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ABSTRACT 
 

DEVELOPMENT OF GENETIC ALGORITHM BASED 
CLASSIFICATION AND CLUSTER ANALYSIS METHODS FOR 

ANALYTICAL DATA 
 

In this study genetic algorithm based classification and clustering methods were 

aimed to develop for the spectral data. The developed methods were completely 

achieved hybridization of nature inspired algorithm (genetic algorithms, GAs) to other 

classification or clustering methods. The first method was genetic algorithm based 

principal component analysis (GAPCAD), and the second was genetic algorithm based 

discriminant analysis (GADA). Both methods were performed to achieve the best 

discrimination between the olive oil and vegetable oil samples. The classifications of 

samples were examined directly from their spectral data obtained from using near 

infrared spectrometry, Fourier transform infrared (FTIR) spectrometry, and 

spectrofluorometry. The GA was used to optimize the performance of classification or 

clustering techniques’ on training set in order to maximize the correct classification of 

acceptable and unacceptable samples or samples of dissimilar properties and to reduce 

the spectral data by wavelength selection. After GA optimization the classification 

results of training set were controlled by validation set. Lastly, the success of both 

algorithms was compared to the results of PCA and SIMCA.  
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ÖZET 
 

ANALİTİK VERİLER İÇİN GENETİK ALGORİTMA TEMELLİ 
SINIFLANDIRMA VE ÖBEK ANALİZİ METOTLARI 

GELİŞTİRİLMESİ 
 

Bu çalışmada spektral veriler için genetik algoritmaya dayalı sınıflandırma ve 

öbekleme yöntemlerinin geliştirilmesi amaçlanmıştır. Geliştirilen yöntemler, genetik 

algoritma gibi doğayı model alarak, var olan çeşitli sınıflandırma ve kümeleme 

yöntemlerine uyarlanmıştır. İlk olarak genetik algoritmaya dayalı temel bileşen analiz 

yöntemi (Genetic Algorithm based Principle Component analysis, GAPCA), ikinci 

olarak da genetik algoritmaya dayalı diskriminant analizi yöntemi (Genetic Algorithm 

based Discriminant Analysis, GADA) geliştirilmiştir. Her iki yöntem de zeytin yağları 

ve bitkisel yağların sınıflandırılması için kullanılmıştır. Bu süreçte, yakın infrared 

(NIR), Fourier dönüşümlü infrared (FTIR) ve floresans spektroskopi verileri 

kullanılmıştır. Sınıflandırma ve kümeleme yöntemlerinin performansını iyileştirmek ve 

spektral verileri daraltarak dalga boyu seçimini gerçekleştirmek için genetik algoritma 

kullanılmış, böylelikle farklı özellikler üzerinden uyumlu ve uyumsuz örneklerin 

sınıflandırılması gerçekleştirilmiştir. Genetik algoritmanın optimizasyonunu takiben, 

sınıflandırma sonuçları farklı bir test setiyle karşılaştırılmıştır. Son olarak geliştirilen 

her iki algoritmanın da başarısı PCA ve SIMCA yöntemlerinden elde edilen sonuçlarla 

karşılaştırılmıştır. 
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CHAPTER 1 

 

1. INTRODUCTION 

 
The use of spectroscopic techniques is continuously increasing rapidly and this 

increase lets more research on spectroscopic data. There are two main reasons in 

increasing the usage of spectroscopic techniques. The first one is mainly based on the 

development of computer techniques. By the help of the computer sciences, the 

mathematical techniques can be easily applied to the spectroscopic data and this 

application provides more precise results, better methods in both qualitative and 

quantitative analysis techniques and lastly more knowledge on samples interested. 

Secondly, spectroscopic techniques are fast, have to be non-invasive methods and 

provide more than hundreds of data among the other instrumental and traditional 

techniques. The advantages of spectroscopic techniques lead to usage of these 

techniques both in industry and academic research. As it is known, spectroscopy is a 

general term that concerns the interactions of various types of radiation with matter. 

These interactions between the radiation and the matter interested depend on the energy 

of radiation, the types and numbers of the atoms and molecules that are present in the 

matter, and lastly the influence of sample matrix. By the help of these effects, it was 

realized that spectroscopic signal was mainly proportional to the amount of sample. The 

spectroscopic signal of pure samples at a specific wavelength provides information both 

in quantitative and qualitative means. However, the amplitude of signal often changes 

on the complexity of sample interested. The contamination of other constituents 

presented in the sample cause the changes of amplitude of a spectroscopic signal and 

less accurate prediction results in the concerning component. The more constituents 

cause the more complex and overlapped spectroscopic signal and also a spectrum 

contains hundreds or thousands of wavelengths/wavenumbers with their corresponding 

instrumental signal. Traditionally, these complexities have been diminished using 

hyphenated systems such as gas chromatography–infrared spectroscopy. Firstly, gas 

chromatography separates the components than each component analyzed by infrared 

spectrometer. In last fifty years, to solve the complexity of a spectrum signal and predict 

the results accurately, chemometric techniques are used in both qualitative and 
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quantitative manner.  In quantitative analysis, multivariate calibration methods such as 

principal component regression (PCR), partial least squares (PLS), and genetic 

regression (GR) are used to predict the concentrations or amounts of constituents 

interested. For the qualitative analysis, classification and clustering techniques are used 

to identify the class or cluster of samples.  

In this thesis, classification methods will be investigated mainly in two parts. 

Generally classification methods are divided into two ways named as: supervised and 

unsupervised classification. In supervised classification methods, the chemical or 

physical properties of samples are known previously and the class of unknown sample 

is identified. Soft independent methodology of class analogies (SIMCA), K-nearest 

neighbor (KNN) are the mostly used supervised methods. On the other hand, in the 

unsupervised classification methods such as principal component analysis (PCA), 

hierarchical cluster analysis (HCA), there is no knowledge about the samples and these 

samples are firstly clustered in order to identify the boundaries of clusters then clusters 

of unknown samples are identified. As mentioned before in spectral analyses hundreds 

or thousands of variables are observed for each sample. To observe the desired 

information classical classification techniques will not be enough. Therefore, 

hyphenated classification methods will be preferred for the data reduction. Nowadays, 

the genetic algorithms are mostly used algorithms. In this thesis study, the development 

of genetic algorithm based supervised classification methods will be investigated. Two 

different algorithms were developed named as distance based genetic algorithm 

principal component analysis (GAPCAD), genetic algorithm based discriminant 

analysis (GADA) and these were examined using spectral data. Both classification 

methods were designed supervised classification methods. Three different spectroscopic 

techniques were used to examine the developed algorithms. Near infrared spectroscopy 

(NIR), middle infrared spectroscopy (MIR), and fluorescence spectroscopy were the 

studied techniques. The spectral analysis of food samples was preferred due to the non-

invasive property of spectroscopy. Olive oil samples and vegetable oil samples were 

chosen as samples and spectral data matrix of each sample set was observed. These 

spectral data matrices were used in the examination of GAPCAD and GADA.  

This thesis is divided into six parts. In the first part (Chapter 2) the basic theory 

of spectroscopic techniques will be investigated. Chapter 3 concerns the basic principles 

of supervised and unsupervised classification methods. Chapter 4 describes the working 

principles of two developed genetic algorithm based classification methods in details. In 
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the next chapter, the samples that are used in case studies will be explained and the 

importance of classification of these samples will be discussed. In chapter 6 the 

experimental procedure of used methods will be described. The major part of this thesis 

study consisting of the major results of the developed two new algorithms will be given 

in Chapter 7.  
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CHAPTER 2 

 

2. SPECTROSCOPY 

 
2.1. Spectroscopy 

 

Spectroscopy is a general term that concerns the interaction of various types the 

electromagnetic radiation with matters or substances. Electromagnetic radiation is 

described by using electromagnetic spectrum. Figure 2.1 shows the wavelengths and 

frequencies of radiations in an enormous range.  

 
 

 
 

Figure 2.1 Regions of electromagnetic spectrum. 
 
 
In spectroscopic techniques generally the energetic level of matter or substance 

is increased by the external enforced energy beams. Therefore spectroscopic techniques 

can be categorized into different groups depending on the wavelength range used for the 

energy beam. For instance, the technique concern the interaction of the electromagnetic 
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radiation exists in 200 to 1000 nm with matter is called as ultraviolet–visible (UV–Vis) 

spectroscopy. Most of the spectroscopic techniques measure the energy that absorbed or 

transmitted by the matter. UV–Visible spectroscopy, infrared spectroscopy are the 

examples of these types of techniques. On the other hand sometimes not only the 

absorbed energy but also the energy that is released from the matter is also measured. 

Fluorescence spectroscopy is an example of this type of technique. 

In this study mainly two types of spectroscopic techniques were used in the 

analysis of samples. These are infrared and fluorescence spectroscopic techniques. In 

infrared region near infrared and middle infrared regions were examined using two 

different spectrometer called as near infrared (NIR) spectrometer and Fourier transform 

infrared (FTIR) spectrometer. And lastly fluorescence spectrofluorometer was used in 

two different measurement modes: excitation – emission fluorescence and synchronous 

fluorescence. The theory of each technique will be not given in detail since there are a 

lot of textbooks that explain these techniques (Skoog, et al. 1998, Ingo, et al. 1988, 

Lakowicz 1999, Valuer 2001, Stuart 2004, Burns, et al. 2001, Smith 2000).  

 

2.2. Infrared Spectroscopy  
 

Infrared spectroscopy deals with the absorption/transmission of light from any 

substance at vibrational or rotational levels. Infrared region (0.78 – 1000 µm) exists in 

electromagnetic spectrum divided into three different regions named as: near, middle, 

and far infrared region. These regions are classified according to the nature of the 

process in vibrational or rotational levels (Skoog, et al. 1998).  

 

2.2.1. Near Infrared (NIR) Spectroscopy 
 

2.2.1.1. Principles 
 

Near infrared region (13,000–4000 cm–1) is the higher energy section of the 

infrared region in electromagnetic spectrum. The absorptions observed in near infrared 

region are overtones and combinations of the fundamental stretching bands which occur 

in the 3000–1700 cm–1. The bands are usually due to the CH, OH, NH stretching. 

Overtone bands are analogous and multiples of fundamental absorption frequency 
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(Stuart 2004). The energy levels of overtones are shown in Figure 2.2. Combination 

bands arise when two fundamental bands absorbing at ν1 and ν2 absorb energy 

simultaneously. The resulting band will appear at (ν1 + ν2) wavenumbers. 

 
 

 

 

 
Figure 2.2. Energy levels for fundamental and overtone bands. 

 
 
 

 

 

Figure 2.3. Near infrared absorption bands  
(Source: Analytical Spectral Devices Inc. 2005) 

 
 
The resulting bands in the near infrared are usually shows weak responses and 

the intensity of the response decreases one overtone to the next. The resulting spectrum 

obtained from measurement generally plotted against wavenumber to absorbance and 

each absorption bands refer the functional group that contains CH, OH, NH, and SH 

(Figure 2.3). The observed bands in near infrared region are generally overlapped 

(Figure 2.4), therefore using this region in qualitative analysis difficult compare to the 

middle infrared region. Chemometric methods will be needed to identify and 

 

Fundamental  1st overtone 2nd overtone 
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characterize the features of spectra. Fundamental of CH and OH stretching bands in 

middle infrared region are highlighted and their 1st, 2nd overtones are illustrated in near 

infrared region shown in different intensities. 

 
 

 
Figure 2.4. Infrared spectra of methanol in near and middle infrared regions. 

 
 

2.2.1.2. Instrumental 
 

The instrumentation in near infrared region is generally similar with UV-Visible 

absorption spectroscopy. Tungsten-halogen lamps are usually used as a source. Cells are 

used as sample holders are generally quartz or fused silica cells that are transparent up 

to 3000 nm. Detectors are generally lead sulfide photoconductors (Skoog, et al. 1998).   

 
 

 
 

Figure 2.5. Optical diagram of typical near infrared spectroscopy instrument. 
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2.2.2. Fourier Transform Infrared (FTIR) Spectroscopy 
 

2.2.2.1. Principles 
 

The region starts from 4000 cm–1 and ends at 400 cm–1 in the electromagnetic 

spectrum assigns the middle infrared region. Infrared radiation is not sufficient to cause 

the transitions between the electronic states. The transitions occur only between the 

vibrational or rotational states. Vibrations include either a change in bond length 

(stretching) or bond angle (bending) (Figure 2.6). Some bands can stretch in-phase 

(symmetric stretching) or out-of-phase (asymmetric stretching). Bending also has 

different contributions in the infrared spectrum. There four types of bending vibrations 

named as: rocking, scissoring, twisting, and wagging. 

 
 

 
 

Figure 2.6. Stretching and bending vibrations in middle infrared region 
(Source: Stuart 2004). 

 
 
Molecular bonds vibrate at various frequencies depending on the element and 

type of the bonds. According to the quantum mechanics these frequencies correspond to 

the ground state (lowest frequency) to the several excited states (higher frequencies).  

 

2.2.3. Instrumental 
 

Fourier transform infrared spectrometer is the preferred instrument in middle 

infrared region. It was developed to overcome the limitations of dispersive instruments. 

The main difficulty using dispersive instruments is the slow scanning process. In order 

to achieve the simultaneous measurement process, an interferometer is developed. Most 

interferometers employ a beamsplitter which takes the incoming infrared beam and 
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divides it into two optical beams. The result of these two beams is “interfering” with 

each other. The resulting signal is called an interferogram which has the unique property 

that every data point (a function of the moving mirror position) which makes up the 

signal has information about every infrared frequency which comes from the source. 

Because the analyst requires a frequency spectrum (a plot of the intensity at each 

individual frequency) in order to make identification, the measured interferogram signal 

cannot be interpreted directly. A means of “decoding” the individual frequencies is 

required. This can be accomplished via a well-known mathematical technique called the 

Fourier transformation (Figure 2.7). This transformation is performed by the computer 

which then presents the user with the desired spectral information for analysis (Thermo 

Nicolet Co. 2001). 

 
 

 
 

Figure 2.7. Schematic representation of Fourier transforms 
(Source: Thermo Nicolet Co. 2001). 

 
 
In infrared instruments Nernst glower, globar, tungsten filament, mercury arc or 

CO2 laser are used as a source. Due to the heat property of sources, the detectors should 

be resistant to the heat. Thermocouples, bolometer, photoconducting tubes or 

pyroelectrics are generally used detectors in infrared spectrometers and also the mostly 

used one as an interferometer is the Michelson interferometer. Figure 2.8 shows the 

optical diagram of an infrared instrument.  
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Figure 2.8. Optical diagram of Fourier transform infrared spectroscopy. 
 
 
In infrared spectroscopy not only transmittance but also reflection can be 

measured by the help of the reflection accessories. Attenuated total reflectance (ATR) is 

the mostly used reflectance accessory in the measurements. In reflection techniques the 

infrared beam is bounced off the sample instead of passing through the sample (Smith 

2000). In attenuated total reflectance, at the heart of the accessory is a crystal of infrared 

transparent material of high refractive index. Generally zinc selenide, thallium iodide/ 

thallium bromide, (KRS5) and germanium are used as crystal. Figure 2.9 shows the 

schematic diagram of an attenuated total reflectance accessory. As it is seen from the 

diagram, an evanescent wave is attenuated by the sample’s absorbance; therefore this 

technique is called as attenuated total reflectance accessory (ATR).  

 
 

 
 

Figure 2.9. A schematic diagram of an attenuated total reflection accessory. 
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2.3. Fluorescence Spectroscopy 
 

Molecular luminescence spectrometry deals with emission of light from any 

substance and occurs in electronically excited states (Lakowicz 1999). It is initially 

divided into two different categories named as fluorescence and phosphorescence. 

Chemiluminescence is also categorized in the luminescence spectrometry as a third type 

(Skoog, et al. 1998). These three types of luminescence are categorized according to the 

nature of the excited state. Fluorescence and phosphorescence are alike in which the 

excitation is brought by absorption of photons. The third type of luminescence; 

chemiluminescence is based on the emission spectrum of an excited species that are 

formed in a chemical reaction (Skoog, et al. 1998). In this thesis, only fluorescence will 

be considered.  

 

2.3.1. Principles 
 

Fluorescence and phosphorescence are different in terms of electronic energy 

transitions. In a singlet state all electron spins are paired, when one of a pair electrons 

are excited to the high energy level, either a singlet or a triplet state is formed. In 

fluorescence, the electron in the excited orbital is paired to the second electron in the 

ground state orbital. The electron spin is rapidly returned to the ground state and occurs 

in nanoseconds. Phosphorescence is the emission of light from the triplet excited states 

which has same spin orientation as the ground state. In this configuration, transition to 

the ground state are said to be forbidden, therefore the emission rates are slowly. Figure 

2.10 shows the singlet/triplet excited states.  
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Figure 2.10. Singlet/Triplet excited states 

 
 
The process which occurs between the absorption and emission of light are 

usually illustrated by a Jabloński diagram (Figure 2.11). Jabloński diagram typically 

explains the fluorescence and phosphorescence in terms of energy level. Three non-

radiational processes are also explained here. These are internal conversion (IC), 

intersystem crossing (ISC), and vibrational relaxation. Internal conversion is the 

transition between energy states of the same spin state. The transition between the 

different spin states called as intersystem crossing. The last non-radiational process 

vibrational relaxation occurs in a molecule which is in excited vibrational and rotational 

sates. Molecules dissipate their excess vibrational energy and relax to the ground 

vibrational level in a given electronic state.  
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Figure 2.11. Jabloński diagram. 
 
 
In many molecules which have aromatic ring fluorescence is observed, since 

fluorescence usually involves π-π* transitions. Fluorescence efficiency is also not only 

depended on molecular structure but also the temperature, pH, solvent of the sample are 

important. Fluorescence spectral data are generally presented by emission spectra of 

fluorophores. The main advantage of studying with fluorescence spectrometry is the 

high sensitivity among the other spectroscopic techniques. Even in low concentrations 

there is linearity between the intensity and the concentrations of fluorophores. However 

at high concentrations, there is a deviation from the linearity. Since the high amount of 

fluorophores itself causes inner filter effect and/or by quenching (Ingle, et al. 1988). 

Quenching is the most seen process causes the decreasing in the fluorescence intensity. 

There are different phenomena which can be seen together in quenching and inner filter 

effect. Dynamic quenching requires contact between the excited fluorophores and the 

quencher. In static quenching, the fluorophores and the quencher form a stable 

compound at ground state. If dipole-dipole coupling occurs between the fluorophores 

and quencher, the long-range quenching is formed. Lastly, in inner filter effect the 

fluorophores can absorb the emitted light itself (Ingle, et al. 1988) (Figure 2.12).  
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Figure 2.12. a) Excited fluorophore, four ways of a decrease in fluorescence intensity b) 

dynamic quenching, c) static quenching, d) long-range quenching, e) inner 
filter effect (Source: Rinnan 2004). 

 
 

2.3.2. Instrumental 
 

There are several types of fluorescence instruments. Figure 2.13 shows the 

general representation of fluorescence instruments. Fluorescence instruments are named 

as according to the wavelength selectors. If both are filter, the instrument is called as 

fluorometer. If monochromators are used as wavelength selectors, these types of 

instruments are called as spectrofluorometer (Skoog, et al. 1998). Generally in 

fluorometer, low-pressure mercury vapor lamp equipped with fused silica window is 

used whereas xenon-arc lamps are generally used as a continuum source in 

spectrofluorometer. Generally the fluorescence signal is a low intensity, therefore 

photomultiplier tubes are the most common transducer in fluorescence instruments. 

Diode-array and charge transfer detectors have been also proposed for 

spectrofluorometers (Skoog, et al. 1998).  
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Figure 2.13. Optical diagram of typical fluorescence instrument. 
 
 
In the fluorescence instruments, the beam passes through the samples. Two 

monochromators or filters allow the scanning of excitation spectra at a fixed emission 

wavelength or emission spectra at a fixed excitation wavelength or synchronous (both 

wavelengths scanned with a fixed wavelength offset between two monochromators or 

filters). At the end of the measurements fluorescence spectrum is obtained. If an 

emission spectrum is recorded at a fixed excitation wavelength region, three-dimension 

excitation – emission fluorescence spectrum will be obtained (Figure 2.14).  

 

 
 

Figure 2.14. A typical excitation–emission fluorescence spectrum. 
 

In excitation–emission fluorescence spectrum, generally includes Raman and 

Rayleigh scatters (Lakowicz 1988, Skoog, et al. 1998). Rayleigh scattering generally 
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occurs from the solute and sometimes fluorophores themselves. The dimensions of 

scatterer are much smaller than the incident beam wavelength. In the fluorescence 

measurements, the absorbing and emission wavelength are same and due the multiple of 

the absorbing wavelength scatter lines sometimes will occur (Figure 2.15). Therefore 

Rayleigh scattering is denoted by number as 1st, 2nd,…. While Rayleigh scattering is 

elastic, Raman scattering is inelastic. Raman scattering generally caused by the 

vibrational and rotational levels of molecules and sometimes can occur with a relatively 

small frequency shift that varies with the scattering angle (Ingle, et al. 1988). 

 
 

 
 

Figure 2.15. An EEF of de-ionized water showing three diagonal peaks: two Rayleigh 
(1st and 2nd order) and one Raman peaks (Source: Rinnan 2004). 
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CHAPTER 3 

 

3. CLASSIFICATION METHODS 

 
Chemometrics has a broad definition since it contains the application of 

mathematical and statistical techniques to the chemical data. Calibration and 

classification methods have a large application area in chemometrics. The development 

in computer technology causes to obtain large amounts of data after chemical analysis 

which is done using computerized instrumental methods. In order to evaluate results and 

extract the necessary information from the huge amount of data, mathematical and 

statistical techniques were begun to use from other disciplines. Chemometrics mainly 

contains the signal processing, time-series analysis, optimization and experimental 

designs, pattern recognition, classification and calibration modeling methods. Each of 

these techniques can be found in chemometrics textbooks (Otto 1999, Brereton 2002) 

In this chapter not only the classification and clustering techniques will be 

investigated but also preprocessing techniques in data analysis will be given.  Since the 

raw spectroscopic data sometimes contain irrelevant sources such as random or 

systematic errors.  

 

3.1. Preprocessing Techniques 
 

Preprocessing is a very important part of chemometrics and it is any 

mathematical manipulation of the data prior to the primary data analysis (Beebe, et al. 

1998). Choosing the most appropriate preprocessing techniques will affect the results 

either positively or negatively. Preprocessing techniques can be investigated in to 

different types depending on whether they operate on samples or variables. 

Normalizing, weighting, smoothing and baseline corrections are the preprocessing 

techniques that operate on samples. On the other side preprocessing of variables 

includes the mean centering and variable weighting. Normalization of a sample vector is 

observed by dividing each variable by a constant. At the end of the process, 

normalization puts all the samples on the same scale. For example removing the 

variable injection volume in chromatography or reducing the pathlength variation in 
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near–infrared reflectance spectrum of a sample. Weighting is similar to the 

normalization but differs in the defining of the criteria. It is accomplished by 

multiplying each element in a sample vector. Sample weighting gives some samples 

more influence on the analysis than the others. For instance weight of zero eliminates a 

sample. In instrumentation, the instrumental signal contains the true signal together with 

random noise. The amount and type of noise depends on the experimentation. 

Smoothing procedures are used to reduce the noise and maximize signal-to-noise ratio. 

The last preprocessing technique on samples is the baseline correction. Baseline 

correction is applied to the low-frequency variations of a sample vector, in order to 

reduce the systematic variations (Beebe, et al. 1998). 

Mean centering of a variable is obtained by subtracting the mean of that variable 

vector from all of its elements. Mean centering is the most used one in data analysis, 

since it generally helps to improve the results. The second one variable weighting 

emphasizes some variables over others, and increases their influence on the primary 

analysis. Variance scaling, autoscaling and the variable selection are the types of the 

variable weighting (Beebe, et al. 1998).   

 
 

 
 
Figure 3.1. Schematic representation of some preprocessing techniques (a) original data, 

(b) centered data, (c) autoscaled data (Source: Otto 1999). 
 
 

Figure 3.1 shows the demonstration of mostly used preprocessing that operates 

on variables. It should be reminded here; the spectroscopic data also contains variables 

that are the wavelengths or wavenumbers with their corresponding instrumental 

responses and also the chemical profiles of the samples such as their metal contents 

refers the variables of the data. The better ways to choose the most appropriate 

(a)
(c)(b)
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preprocessing technique, both non preprocessed and preprocessed data are tried and the 

results are compared.  

 

3.2. Classification Techniques 
 

Human skills are enough to identify or recognize the differences between the 

samples depending on the shapes. But it is generally acceptable for the sample set which 

includes several numbers of samples. In analytical chemistry the data matrices including 

a large number of rows and columns and human skills cannot enough to recognize the 

properties of the data. On account of this, the classification methods have been 

developed to present the chemical data into the pictures instead of matrices. 

Mathematical relationship is built by the help of the computer and the results are 

interpreted using plots in order to observe differences or similarities between the 

samples. The rule of the distinction is observed by the mathematical equations. The 

samples which have similarities are called as class membership. According to the class 

membership term, a class is defined as a collection of samples are defined as being 

similar. Classification methods can be categorized mainly two groups named as 

unsupervised and supervised (Otto 1999, Beebe, et al. 1998, Brereton 2002).  

Figure 3.2 shows the diagram decision tree for the classification methods. 

Choosing the right technique depends on the prior knowledge of the samples. If there is 

no information about unknown generally unsupervised classification methods are 

preferred. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) 

are the unsupervised techniques. If the aim is to develop a predictive model, a training 

set with known class membership is required to construct the model and the techniques 

are called as supervised classification methods (Beebe, et al. 1998). Soft independent 

modeling of class analogy (SIMCA) and K-nearest neighbor (KNN) are typically used 

as supervised techniques.  
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Figure 3.2. Classification Decision Tree  
(Source: Beebe, et al. 1998). 

 
 

3.2.1. Unsupervised Classification Techniques 
 

In the examination of unsupervised techniques, the evaluation of whether the 

clustering is existed in a data set without any prior class membership information in the 

calculations is investigated. As it understood from the theory behind the unsupervised 

techniques, the presence or absence of the clustering in data is displayed. Mainly two 

different techniques are mostly used in unsupervised methods. Hierarchical cluster 

analysis (HCA) based on cluster analysis which is based on the aggregation of samples 

according to their similarities. Principal component analysis (PCA) is a factor analysis 

method that is aimed projecting the original data from high dimensional space on to a 

line, a plane, or a 3D-coordinate system. 
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3.2.1.1. Hierarchical Cluster Analysis (HCA) 
 

HCA examines the interpoint distances between all the samples and represents 

that information in the form of a two-dimensional plot called a dendrogram (Figure 3.3). 

To generate the dendrogram, HCA forms clusters of samples based on their similarities 

in space. Different approaches are used to measure distances between the clusters 

(Beebe, et al. 1998). Firstly the distances are calculated and linkage methods are used to 

form the dendrogram.  

 

 

 
 

Figure 3.3. Schematic representation of a dendrogram for 6 objects. 
 
 
A general distance measure is the Minkowski distance or Lp-metric. 

 
 

 
pK

k

p

jkikij xxd
/1

1








−= ∑

=

 (3.1) 

 
 
where K is the number of variables and i, j indices the object i and j. The mostly used 

distance is the Euclidean distance for which p=2. If the distances refer to travel around 

corner, this distance is called as Manhattan or city-block distance. In this case p is equal 

to the 1. These distances are generally based on metrics that are used in the process. 

Therefore the scaling is mostly unavoidable in these distance measurements. The 

variables which have different scales need to use another distance measurement 
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technique. This measure is calculated by use of the following formula and it is called as 

Mahalanobis distance.  

 
 

 ( ) ( )ji
T

jiij xxCxxD −−= −12  (3.2) 

 
 
where C is the covariance matrix and xi, xj are the column vectors for objects i and j. 

After calculation of the distances between the objects, a distance data matrix is 

observed. Reducing of the distance matrix is performed by aggregation of objects.  

 
Table 3.1. The summary of linkage methods that are used HCA 

(Source: Otto 2002). 
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The mathematical process in the aggregation of the objects is called as linkage 

method. In general the distance to a new object or cluster k is computed by calculating 

the average distances from the objects A and B to object i. Table 3.1 summarizes the 

principles and mathematical expression linkage methods that are used to form the 

dendrogram.  

In a summary, dendrogram shows the closeness of samples in row space in the 

form of two-dimensional graph. The samples are plotted against the distances and the 

similarities/differences between samples without imposing prior information regarding 

the class membership. Samples existed at large distances can indicate as outliers, on the 

other side the samples with small distances have similar properties.  

 

3.2.1.2. Principal Component Analysis (PCA) 
 

Principal component analysis is the oldest and the mostly used algorithms in the 

unsupervised classification techniques. It is used both in multivariate calibration and 

classification techniques (Lavine 2000). PCA is a mathematical manipulation of a data 

matrix where the goal is to represent the variation present in many variables using a 

small number of “factors” or “principal components (PC)” (Beebe, et al. 1998). Simply, 

PCA decomposes the data matrix into smaller matrices named as scores and loadings. In 

order to predefine the axes using factors instead of original variables. These new axes 

are called as principal components. Equation (3.3 shows the mathematical formula of 

principal component analysis.  

 
 

 T
dxpnxdnxp LTX =  (3.3) 

 
 
where X is the original data matrix with n rows and p columns; T is the scores matrix 

with n rows and d columns (number of principal components); L is the loading matrix 

with d columns and p rows; T indicates the transpose of the matrix (Otto 2002). When 

two variable systems are considered, the relationships between the samples are defined 

by the help of the distances between the samples which have similarities or differences. 

PCA describes the spread or variation of the distances in a few axes or dimensions, 

since in analytical chemistry more than two varieties are studied. As it is seen from the 
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Figure 3.4., the original variables are not enough to explain the variation in the data set. 

However the first principal component describes more than the original variables.  

The principal components calculated in the PCA have some properties. The 

following entries are explained these properties (Beebe, et al. 1998). 

• The first principal component explains the maximum amount of variation 

possible in the dataset in one direction. 

• Sample has coordinates in the original space; it has also coordinates with 

respect to the new principal components. The coordinates of the samples 

relative to the principal components are typically named as “scores”. 

• Each PC is constructed from the combinations of the original measurement 

variables. The contribution of original measurement variable is proportional 

to the principal components. This contribution of each axis to the principal 

component is the cosine of the angle between the variables axes and the 

principle component axis. These cosine values are often called “loadings” 

and can range -1 to 1.  

• Excluding nonsignificant principal components can be used filter the noise 

from the data set. 

• The maximum number of PCs can be calculated is the smaller of the number 

of samples or variables. 

• Principal components are orthogonal (perpendicular) to each other.  

 
 

 
 

Figure 3.4. A row plot data in a two-measurement system, with the first two principal 
components.  
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PCA has some different mathematical operation in the computation. The 

simplest one is the NIPALS (nonlinear iterative partial least squares). More powerful 

methods are based on the matrix diagonalization such as singular value decomposition. 

The detailed information about NIPALS algorithm can be found in chemometrics 

textbook (Otto 2002). Here only singular value decomposition (SVD) based principal 

component analysis will be discussed.  

SVD decomposes the data matrix, X, into the matrices coded as U, W, and V.  

 

 

 
 

Figure 3.5. Schematic representation of decomposition in SVD-PCA 
 

 

Equation (3.4) shows the mathematical representation of the SVD.  

 
 

 TUWVX =  (3.4) 
 
 
The matrix U contains the same column vectors as does the scores matrix T in 

Equation (3.3) but it is normalized to one. W is the diagonal matrix containing the 

square roots of the eigenvalues or singular values. The number of principal components 

after decomposition of the original data matrix is important for the success of the model. 

There are some methods to determine the number of PCs. Percentage explained 

variance, eigenvalues-one criterion, Scree-test and cross validation are the examples of 

heuristic and statistical criterion tests. The percent explained variance is the simplest 

heuristic criterion. The fraction of the explained (cumulative) variance se
2, is calculated 

from the ratio of the sum of d important eigenvalues and the sum of all p eigenvalues. 

The eigenvalues-one criterion is based on the average eigenvalue of autoscaled data is 

just one. In the Scree-test, the residual variance off when the appropriate number of PCs 

is obtained. The eigenvalues are often plotted against the PCs and leveling-off point is 
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used to determine the number of components. Lastly, in cross validation, every object of 

the X-matrix is removed from the data set once, a model is computed from the 

remaining data, and then the removed data are predicted by PCA model. The sum of the 

square of the roots of the residuals overall removed object is calculated. The number of 

significant PCs is determined by minimum residual error. Also for the large data sets, 

leave-one-out method can be used. The matrix VT is identical to matrix LT Equation 

(3.3). The matrices U and V are also denoted as left and right vector of singular values, 

respectively (Otto 2002).  

 

3.2.2. Supervised Classification Techniques 
 

In supervised classification techniques, the main question is as followed: use the 

learning or training objects to derive a classification rule which allows classifying new 

objects with unknown origin in one of three known classes, based on the values of the 

features of the new object (Massart 1997). Supervised classification techniques are 

generally based on: 

Selection of training or learning set which contains the objects of known 

classification for which a certain number of variables are measured. 

Feature selection, that is the selection of variables that are meaningful for the 

classification and elimination f those that have no discriminating.  

Derivation of a classification rule 

Validation of the classification rule, using an independent test set.  

using the training set and modeling 

techniques. 

There are a lot of supervised classification methods which are linear learning 

machine (LLM), discriminant analysis (DA), k-nearest neighbor (KNN) and soft 

independent modelling of class analogy (SIMCA). Here only SIMCA will be discussed. 

The detailed information can be found in textbooks (Beebe, et al. 1998, Otto 1999, 

Brereton 2002, Massart 1997). 

 

3.2.2.1. SIMCA 
 

The SIMCA method, first presented by the S. Wold in the early 1970s and it is 

regarded as a form of soft modeling used in classification methods. The idea of soft 
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modeling comes from two overlapping classes and there is no problem with an object 

belonging to both (or neither) classes simultaneously. In most cases, an object belongs 

to discrete. This is the expected result; therefore these types of classification are named 

as hard modeling (Brereton 2002). Figure 3.6 illustrates the phenomena of soft 

modeling by two overlapping classes.  

 
 

 
 

Figure 3.6. Illustration of two overlapping classes in concept of soft modeling 
(Source: Brereton 2002). 

 
 
SIMCA uses the PCA model to determine the principal components or 

eigenvectors needed to builds a distinct confidence region around each class of the 

training class (Maesschalck, et al. 1999). If the numbers of observed eigenvectors coded 

as r*, the value of r* presents the dimensionality of the model shape. As it is seen from 

Figure 3.7, if r* is equal to the 1, all data are considered to be modeled by a one-

dimensional model, a line (Figure 3.7. a). For r*=2 two-dimensional model, a plane 

(Figure 3.7.b) is observed. The residuals of the training class towards such a model are 

assumed to follow a normal distribution with a residual standard deviation: 

 
 

 ( )( )[ ]∑∑
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The residuals from the model can be computed from the scores on the non-

retained eigenvectors, i.e. the scores tij on the eigenvectors r* + 1 to r (r = min {{n -1), 

m)). Then: 
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Figure 3.7. SIMCA: a) step 1 in a 1 PC model, b) step 1 in a 2 PC model, c) step 2 in a 1 
PC model, d) step 2 in a 2 PC model (Source: Massart 1997) 

 
 
If care is not taken about the way s is obtained, SIMCA has a tendency to 

exclude more objects from the training class than necessary. The s-value should be 

determined by cross-validation. Each object in the training set is then predicted, using 

the r*-dimensional PCA model obtained, for the other (n-1) training set objects. The 

(residual) scores obtained in this way for each object are used in Equation (3.4).  

A confidence limit is obtained by defining a critical value of the (Euclidean) 

distance towards the model. This is given by: 

 
 sFs critcrit =  (3.7) 
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Fcrit is the tabulated one-sided value for (r - r*) and (r - r*) (n - r* - 1) degrees of 

freedom. The scrit is used to determine the boundary (the cylinder) around the PC1 line 

in Figure 3.7.c and the planes around the PC1, PC2 plane in Figure 3.7.d. Objects with 

s<scrit belong to class K, otherwise they do not. To predict whether a new object xnew 

belongs to class K one verifies whether it falls within the cylinder (for a one-

dimensional model), between the limiting planes (for a two-dimensional model, etc.). 

Suppose the following r* dimensional PC model was obtained.  

 
 

 K
T
KKK ELTX +=  (3.8) 

 
 
with XK the centred X-matrix for class K, TK the (un-normed) score matrix (nxr*), (TK 

= UKΛK, where UK is the normed score matrix and ΛK is the singular value matrix). LK 

is the loading matrix (mxr*) and EK. is the matrix of residuals (nxm) 

For a new object xnew one first determines the scores using the equation below. 

 
 

 ( ) K
T

Knew
T
new Lxxt −=  (3.9) 

 
 
The Euclidean distance from the model is then obtained as: 
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If snew<scrit. then the new object belongs to class K, otherwise it does not. 

A useful tool in the interpretation of SIMCA is the so-called Coomans plot. It is 

applied to the discrimination of two classes (Figure 3.8).  
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Figure 3.8. The Coomans plot. 
(Source: Massart 1997) 

 
 
The distance from the model for class 1 is plotted against that from model 2. On 

both axes, one indicates the critical distances. In this way, one defines four zones: class 

1, class 2, overlap of class 1 and 2 and neither class 1 nor class 2. By plotting objects in 

this plot, their classification is immediately clear. It is also easy to visualize how certain 

a classification is. In Figure 3.8, object a is very clearly within class 1, object b is on the 

border of that class but is not close to class 2 and object c clearly belongs to neither class. 

All the equations and the definitions of each step were taken from Handbook of 

Chemometrics and Qualimetrics Part B textbook edited by Massart.  
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CHAPTER 4 

 

4. GENETIC ALGORITHMS AND GENETIC ALGORITHM 

BASED CLASSIFICATION METHODS 

 
4.1. Genetic Algorithms (GAs) 

 

Genetic algorithms are the evolution and optimization methods which were 

firstly represented by Holland in the early 1960s (Lucasius 1991). From the middle of 

1980s onwards genetic algorithms have received increasing usage in problem solving. 

And now they have been providing a powerful general purpose search strategy in the 

area of image processing, pattern recognition, modeling and system identification, 

adaptive filtering etc. (Fontain 1992, Cong and Li 1994, Wienke, et al. 1993, Hibbert 

1993, Lucasius and Kateman 1991). In terms of calibration and classification, there 

have been several applications of GAs to wavelength selection (Lucasius, et al. 1994, 

Lucasius and Kateman 1992, Paradkar and Williams 1997, Ozdemir, et al. 1998a, 

Ozdemir, et al. 1998b, Ozdemir and Williams 1999). They were developed to 

understand the adaptive process of natural systems and to design artificial systems 

software that retains the robustness of natural systems. They are basically based on the 

Darwinian’s classical rules about natural evolution which is “struggle for life 

(competition rule) and survival of the fittest (selection rule)” (Lucasius 1993). 

As it is mentioned above, GAs use the biological systems that exist in the nature. 

Therefore the definitions of terms that will be used in the explanation of GAs should be 

given. The ability of a living simple organism is to produce an enzyme which contains a 

code that is stored in its chromosome. This chromosome contains a string of 

deoxyribonucleic acids (DNA) and it can contain four different nucleic acids (A, C, G, 

or T). These four nucleic acids are the genetic alphabet of the chromosome. A region or 

substring of the chromosome that contains the code of the enzyme is called as gene. In 

GAs, the solution of a given problem is called a “gene” and the vector of genes is called 

a “chromosome”. A set of chromosomes collected from the generation is used to 

describe a “population”. The population is the genotype of this organism or assumed 

solution and the ability of the set of selected features to solve the problem. The criterion 
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which solves the problem is also known as its “fitness”. In the production of offspring, 

two parents are selected and the chromosome of the offspring is constructed by 

combining sections of the parents’ chromosomes. There is a small probability that a 

mutation can occur in the offspring before its genotype is established. This genotype 

produces a phenotype for the offspring. Darwin’s ‘survival of the fittest’ generally 

determines which parents are used for mating and whether or not the offspring is viable 

enough to become a parent (Luke 2003). 

The operation principle of GAs can be summarized as evolutionary process in 

nature. They start with initial population of potential solutions to prescribed problems. 

Darwinian principle is used to generate new, modified populations. This process is 

repeated until converging on a near optimal solution for fitness criterion. Figure 4.1 

summarized the operation steps of GAs. They include five basic steps followed by 

initialization of the population, evaluation and ranking the population, selection of 

parents for breeding, crossover and mutation, replacing the parents with their offspring.  

 

 

 
 

Figure 4.1. Block diagram of basic genetic algorithms  
(Source: Karaman 2008) 

 

 

GAs can handle large number of variables and they can use for discrete and 

continuous variables, and they can also be accepted as versatile nature evolution 

processes. However they have a few constraints. They are based on randomness and for 

each run of algorithm different results will be obtained.  
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4.2. Genetic Algorithm Based Classification Methods 
 

Natural evolution based methods allow themselves to hybridization since they 

are flexible and also their strengths are to complement and assist other methods. As it is 

mentioned before GAs require only a specific fitness function that depends on a given 

problem. Thus a genetic algorithm can operate with other optimization methods in a 

number of ways. It can be used to optimize another method, provide a method of 

generating search conditions, or be totally integrated with other methods (Hibbert 

2003).  

 

 

 
 

Figure 4.2. Three configurations of genetic algorithms hybrids. 
(Source: Hibbert 2003) 

 

 

Generally there are three different configurations for the genetic algorithms as 

summarized in Figure 4.2. Genetic algorithms can be used in conjunction with another 

method. The level of interaction can be changeable configuration to configuration. If the 

problem is very large, genetic algorithms can be used before or after another program 

without any interaction between them. Genetic algorithm can be a precursor to a second 

optimizer with or without interaction (Hybrid 1). There are some studies on this type of 

hybridization (Handschuh, et al. 1998, Hibbert 1993, Kemsle 2001, Liu 1999, Vivo-

Truyols 2001a, Vivo-Truyals 2001b, de Wejver 1994). The most prevalent one in the 

hybridization is the genetic algorithm that provides input to a second optimization 
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method. The results may or may not be cycled back into the genetic algorithm in an 

iterative manner. They have great ability to search a parameter space makes it ideal as a 

formulator of input data for a more directed optimizer (Hibbert 2003). This type of 

hybrid is shown as Hybrid 2 in Figure 4.2. Raymer, et al. and Yoshida, et al. in 1997 

work in this type of algorithm. Last type of hybridization (Hybrid 3) genetic algorithm 

with an optimizer determines an aspect of the genetic algorithm. Hanagandi and 

Nikolaou in 1998 present a study about Hybrid 3 type study.  

 

4.2.1. Distance Based Genetic Algorithm Principal Component 
Analysis (GAPCAD) 
 

In this study, the main goal is to perform a discrimination using spectral data. To 

observe efficient discrimination of the samples, partition on spectral data is commonly 

used in the process. Since spectral data contain more than thousands of response signals 

with corresponding wavelengths, using whole spectrum can cause overfitting in the 

training sample set (Reynes, et al. 2006). Instead of optimizing full spectra, local 

optimization can reduce the classification errors of the samples. The searching 

capability of genetic algorithms (GAs) seems to more adaptable to the classification and 

clustering techniques among the other nature inspired algorithms (Leardi 2003). Since 

they are randomized global search and optimization techniques based on the principles 

of natural evolution and selection (Lucasius and Kateman 1991, 1993; Hibbert 1993). 

The samples’ spectral data matrix is arranged into two different sample set named as 

training and test sets. GAs is applied to the training set which includes whole spectra of 

each training sample. Initial population includes chromosomes and the best of these 

chromosomes are specified, tested and ranked according to their fitness criterion. The 

chromosomes having the best fitness have the possibility of surviving and producing 

offspring chromosomes. The principal component analysis (PCA) is firstly performed to 

initial population; score and loading matrices of data matrix are obtained. After that, 

score matrix is used to determine the distance values between groups in order to observe 

the classes. Those distances are designed as fitness criterion in the algorithm. The 

observed classes are tested by independent sample set. The whole process is called as 

distance based genetic algorithm principal component analysis classification analysis 

(GAPCAD). This method will be discussed in detail. 
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4.2.1.1. Population initialization 
 

Spectral data is used directly in the classification process. Neither binary coding 

nor string representation is used in the presentation of genes. In this process, each 

wavelength with its corresponding instrumental response value refers the genes. The 

genes in each chromosome which are the solution of a given problem are initialized 

randomly from the data matrix set. Random selection minimizes the bias whereas 

maximizes the possibilities of recombination and the diversity of genes. Genetic 

algorithm based principal component analysis is designed to select initial genes in 

somewhat biased random fashion in order to start with genes better suited to the 

problem than those which would be randomly selected. This becomes more important 

when the search space contains large regions, which do not contain any useful 

information. The size of the initial population is predefined by the user. 

 

4.2.1.2. Evaluation of Selected Genes and Ranking 
 

The evaluation of the genes is done with a fitness function that measures the 

success of the population based on their ability to solve the given problem. Once a 

chromosome is selected, it is used to form the reduced spectral data matrix at the points 

determined by the elements in that chromosome. Then fitness calculation is done in a 

two-step process: Singular value decomposition based principal component analysis and 

calculation of Manhattan distance between the sample groups. The reduced data matrix 

is used in singular value decomposition PCA analysis where score and loading matrix of 

all principal components (PC’s) are determined as it is shown in Equation (4.1).  

 
 

 T
pxpnxp

T
pxpnxpnxnnxp VTVWUX ==  (4.1) 

 
 
where n is the number of samples, p is the number of spectra, X represents the spectral 

data matrix, U represents the unweighted score matrix of principal components, whereas 

W is the diagonal matrix containing the square roots of eigenvalues, V is the loading 

matrix of principal components and T is the weighted score matrix (Maesschalck, et al. 

1999). The summation of cumulative value of these first two eigenvalues generally 

explains most of the variability in the data. The total cumulative value of a few 
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eigenvalues is expected as near as 100%. According to the GAPCA algorithms, the first 

two eigenvalues are forced to be very significant in explaining the variability of the 

system. These first two principal components are used to calculate the distance between 

the groups, since the rows of first two PCs indicates the coordinates of objects in 2-

dimensional illustration. Manhattan or city block distance is used to calculate the 

distances between the groups as shown in Equation (4.2). 
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where n is the number of groups, i and j are the objects are existing in the same sample 

groups, dij is the value of calculated Manhattan distance, t is the elements of score 

matrix obtained from PCA. After calculating the distances, the classes will be 

constructed. In order to get accurate results a “check value” is assigned for the system. 

It is defined depending on the investigation and predefined by the user. Equation (4.3) 

represents the check value. 
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where dij is the distance between the groups. After determination of check values, the 

chromosomes are ranked according to their check values, the best one has the highest 

ranking value. These check values are used to define the selection probability of parents 

for the next generation. 

 

4.2.1.3. Selection of Parents 
 

This step is used to select the chromosomes from the mating pool. In this step 

roulette wheel selection method is used. The chromosomes with highest fitness value 

have a larger area on the wheel and highest probability of selection whereas the 

chromosomes with lowest fitness value have a smaller area and lowest selection 
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probability. The chromosomes with a larger fitness value have greater chance for further 

step of the genetic algorithm.  

 

4.2.1.4. Crossover and Replacing the Parents by Their Offspring 
 

Crossover makes combinations of selected parent chromosomes in order to get 

offspring. In this algorithm, single point crossover is used in a random way. The parent 

chromosomes are divided into two parts with a random length. Indeed, crossover can 

generate offspring which may be better or worse than their parents. Therefore the 

evaluation process is again applied to the offspring generation to obtain the best 

individuals and to eliminate the worst ones.  

 

4.2.2. Genetic Algorithm Based Discriminant Analysis (GADA) 
 

GADA has same steps just told in GAPCA, however, it shows some differences 

in the step of evaluation of the genes and the whole method is based on the full cross 

validation, in other words leave-one-out sample. In the evaluation step, after obtaining 

score matrix with variance larger than explained value in the PCA part, the T matrix is 

separated into predefined groups. Variance-covariance matrix of each group (Equation 

(4.4) is found in order to use in the calculation of Mahalanobis distances (MD) shown in 

Equation (4.5). 
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where CTi is the variance-covariance matrix of each group, Ti is the score matrix of each 

group, tij is the score value of the each group in each column. All MD’s are calculated 

and used to classify samples. In order to obtain the most valid classification, there 

should be a value which will be the criterion of validity. As it is shown in Figure 4.3, 

calculated MD’s refer to the distance between the central point of a group and its 

corresponding sample (MDAA), and the distance between the central point of the other 
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group and the sample of a different group (MDAB). Same calculations are done for the 

MDBB and MDBA. In this study, the criterion value is calculated as shown in Equation 

(4.6) and named as “check value”: 
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Figure 4.3. Schematic representation of Mahalanobis distances in PC space. 
 
 
All the other genes in initial generation are determined by this way and a check 

value is assigned to each of them. After the calculation of the check values for all the 

genes in the population, the genes are sorted from largest to smallest fitness and the best 

one is reserved for the comparison with the best of the next generation. Then best parent 

genes are selected with roulette wheel selection method for meting and breeding, 

following by crossover and replacing the parent genes with their offspring. This whole 

cycle is based on leave-one-out cross validation is continued until a predefined number 

of iteration is reached. At the end the gene that has the highest classification power is 

selected to analyze the data at the final step. Because the GA based supervised pattern 

recognition is based on a lot of random processes, it expected that whenever the 

algorithm is rerun, it will generate a somewhat different result. For this reason, the 
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algorithm is designed to run multiple times for a given classification problem and it is 

possible to make a comparison among these runs in terms of the similarities and 

dissimilarities of the best genes of each run. At the end of the whole method Coomans 

plot is used for the interpretation of the results. The distance from the model for class 1 

is plotted against that form model 2. On both axes, critical distances are shown in order 

to define the classes, overlap zone, and outlier zone. By plotting objects in this plot, the 

classification results can be clearly visualized. Critical distances are calculated as shown 

in Equation (4.7) and (4.8). 
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 2
0.crit.crit sFs ∗=  (4.8) 

 
 
where d is the value of distances of samples are existed in each class, m is the number 

of samples, PC is the number of principal components that are used in the modeling of 

classes, Fcrit.  is the tabulated value for (m-PC-1) degrees of freedom for each classes at a 

significance level of 95%.  
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CHAPTER 5 

 

5. VEGETABLE OILS AND OLIVE OILS 

 
In analytical chemistry the identification of chemical and physical properties of 

food and beverages have an important role. Since the amount of the components of food 

and beverage samples are used to define the quality of foods for the consumers. In this 

study the classifications of vegetable oils and olive oils were examined using developed 

methods GAPCAD and GADA, separately. The reason of choosing the vegetable oils 

and olive oils is the economical importance of these foods in the world. In this chapter 

the definitions of vegetable oils and olive oils will be given and the reasons of the 

importance of classification will be discussed.  

 

5.1. Vegetable Oils 
 

All most all pants contain oils in their seeds. For a plant to be suitable for oil 

production has two criteria. The first one is announced as that the plant must be suitable 

for high acreage cultivation. On the other side plants contain in a different amount of oil 

in their seed. Therefore the second one is stated as the oil content must reach the 

minimum commercially viable exploitation. Of course the only exceptions are plants 

that contain oils unique in their composition or with properties that cannot be found 

elsewhere (Bockisch 1998). There are mainly two clusters of vegetable oils according to 

their source namely pulp and seed oils. Within these two groups further categorization 

is possible, usually based on fatty acid composition. Table 5.1 shows the classes of pulp 

and seed oils. Generally the fatty acid composition of oils has an important role in the 

identification of economic value and the nutritional value or oxidation stability.  

The list of natural fatty acids exceeds 1000, but commercial interest is limited to 

a smaller number perhaps around 20. Ignoring the lipid membrane, rich in a-linolenic 

acid and present in all green tissue, the three dominant acids in the plant kingdom are 

palmitic, oleic, and linoleic, sometimes accompanied by stearic acid and by linolenic 

acid. Others, occurring in specialty oils, include myristic, lauric, erucic, hexadecenoic, 

petroselinic, γ-linolenic acid, eleostearic and isomers, ricinoleic, and vernolic (Gunstone 
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2005). Table 5.2 assigns the more common fatty acids existing in vegetable oils. The 

classification of oils according to their fatty acid composition is also given in  

 
 

Table 5.1. Classification of Oils 
(Source: Bockisch 1998). 

 

Pulp Oils Seed Oils 

Olive Oil 

Palm Oil 

Avocado Oil 

Sunflower Oil, 

Cottonseed Oil 

Corn Oil  

Pumpkin Oil 

Sesame Oil 

Linseed Oil 

 
 

Table 5.2. Structures of the More Common Acids in Vegetable Oils 
(Source: Gunstone 2005) 

 

Trivial Name Structure Unsaturations  
(If Any) 

Saturated 
Lauric  12:0 --- 
Myristic 14:0 --- 
Palmitic 16:0 --- 
Stearic 18:0 --- 
Monounsaturated 
Oleic 18:1 9c 
Petroselinic 18:1 6c 
Erucic 22:1 13c 
Polyunsaturated (non-conjugated) 
Linolenic 18:2 9c12c 
Linolenic (α) 18:3 9c12c15c 
Linolenic (γ) 18:3 6c9c12c 
Polyunsaturated (conjugated) 
Eleostearic 18:3 9c11t13t 
Calendic 18:3 8t10t12c 
Oxygenated 
Ricinoleic 18:1 12-OH 9c 
Vernolic 18:1 12,13epoxy 9c 
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Table 5.3. Vegetable oils by fatty acid type 
(Source: Gunstone 2005) 

 
Acids Vegetable Oil 
Lauric coconut, palm kermel 
Palmitic palm, cottonseed 

Oleic/Linoleic groundnut, safflower, sesame, sunflower, cottonseed, canola, 
soybean  

High oleic olive, safflower, sunflower, canola, groundnut, soybean 
Linoleic linseed, canola, soybean 
Vegetbale butters cocoa butter 
Erucic acid HEAR (high erucic acid rapeseed oil), crambe 
Conjugated acid tung, calendula 
Oxygenated acids castor, vernolic 

 
 
In this study, sunflower oil, corn oil and olive oil samples were used as 

vegetable oils. These vegetable oils will be defined and explain in terms of chemical 

and physical properties. Only olive oil is investigated in detail since olive oil samples 

were classified according to both their geographic origin and fatty acid ester 

composition.  

 
5.1.1. Sunflower Oil 

 

5.1.1.1. Definition of Sunflower Oil 
 

Sunflower (Helianthus annuus L.), one of the most ancient oilseed species in 

North America, belongs to the family Compositae (Asteraceae) and the genus 

Helianthus. Sunflower was introduced into Europe by the Spanish explorers returning to 

the continent at the beginning of the 1500s A.D. Starting from Spain, sunflower crops 

spread rapidly through France and Italy, and toward the north and east of Europe. In 

several regions, it was a source of smoking leaves, flowers for consumption in salads, or 

for the manufacture of paint, edible, and medicinal seed, and cooking oil. But it was, 

perhaps, the beauty in the inflorescence of sunflowers that interested the first growers, 

large and bright yellow, always facing the sun. Hence, the name of the genus, 

Helianthus, derived from the Greek helios meaning sun and anthos meaning flower; and 

its Spanish, English, French, and German words: girasol, sunflower, tournesol and 

Sonnenblumen (Grompone 2005). 



 

43 
 

5.1.1.2. Chemical and Physical Properties of Sunflower Oil 
 

Sunflower oil just like most vegetable oils is composed mainly of 

triacylglycerols (98–99%), and a small fraction of phospholipids, tocopherols, sterols, 

and waxes (all of the latter are commonly referred to as the ‘‘unsaponifiable fraction’’). 

Table 5.4 shows the variation range for major fatty acids in percentage of sunflower oil. 

Grompone was indicated the results according to the research results of Merrien in 1998 

and American Oil Chemists’ Society (AOCS) that is presented in 1997. Two important 

criteria regarding the composition of sunflower oil make worth than the other vegetable 

oils 

• It provides an essential fatty acid which is linoleic acid.  

• It has low amount of palmitic acid compared to the other vegetable oils. 

Since it is believed that palmitic acid is not good for the human health. 

As expected from its high linoleic acid content, the main triacylglycerol is 

trilinolein (36.3%), followed by oleo-dilinolein (29.1%); triolein being practically 

nonexistent (0.6%). Thus, the percentage of triacylglycerols (TAG) with four or more 

double bonds is higher than 80%. This TAG distribution is responsible for the low 

solidification point of regular sunflower oil (-160C to -190C), allowing, for example, 

storage of mayonnaise manufactured with regular sunflower oil in a refrigerator without 

breakage of the emulsion (Grompone 2005). Lastly it is widely used as a cooking oil 

and is valued an important components of as soft spreads (Gunstone 2005). 

 
 

Table 5.4. Variation range for major fatty acids (%) of sunflower oil 
(Source: Grompone 2005) 

 

 
Fatty Acid AOCS Merrien 

16:0 5 – 8  5 – 7  

18:0 2.5 – 7  4 – 6  

18:1 13 – 40  15 – 25  

18:2 40 – 74  62 – 70  

18:3  <0.3 <0.2 
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5.1.2. Corn Oil 
 

Corn oil is a major vegetable oil with an annual production of around 2 million 

tons obtained from corn or maize (Zea mays) by wet milling, particularly in the United 

States. The major acids are palmitic (9–17%), oleic (20–42%), and linoleic (39–63%), 

and the major triacylglycerols are typically LLL (15%), LLO (21%), LLS (17%), 

LOO% (14%), LOS (17%), LSS (5%), OOO (6%), and OOS (4%). Despite its high 

unsaturation, the oil has good oxidative stability. The refined oil is used as frying oil, 

salad oil, and in the production of spreads after partial hydrogenation (Gunstone 2005) 

 

5.2. Olive Oil 
 

In first aspect olive oil seems the most consumed and produced vegetable oil in 

the world. Olive oil production is mainly concentrated on Mediterranean countries such 

as Spain, Italy, Portugal, Turkey, Tunisia, and Morocco. These seven countries alone 

account for 90% of world production. The evolution of production and consumption 

shows a slight growth from the 1970s to the early nineties. In the mid 1990s there was a 

strong increase both in production and consumption. Despite the production fall that 

came afterwards, consumption did not decrease (Oliveoillife.com 2009) 
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(a)  

 

(b) 

 

(c) 

  

(d) 

  
 
Figure 5.1. Statistical graphs of consumption and production of olive oils in the world. 

a) Main producing countries in 2005, b) Production of olive oil, 1993-2005 
(1,000 tones), c) Main consuming countries in 2005, d) Production and 
consumption of olive oil in the world and in the European Union, 1970-2005 
(1,000 tones) (Source: UNCTAD based on data from the Report on the 
proceedings of the 86th session of the International Oil Council June 2002).  

 

 

5.2.1. Olive Oil Definitions 
 

According to the International Olive Oil Council (IOOC) the international 

definition of olive oil is that oil produced by extraction of the fruit of the olive tree 

(Olea Europaea Sativa Hoffman et Link) to the exclusion of oils obtained using solvents 

or reesterification processes and of any mixture with oils of other kinds (Firestone 

2005). There two main clusters of olive oils. The first one is the virgin olive oil, and the 

other is olive-pomace oil.  

1. Virgin olive oil: It is the oil obtained from the fruit of the olive tree solely by 

mechanical or other physical means under conditions, particularly thermal conditions, 

that do not lead to alterations in the oil, and which has not undergone any treatment 

other than washing, decantation, centrifugation, and filtration. Virgin olive oil is 
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designated as nature oil is categorized into four different groups. Table 5.5. shows the 

categories of virgin olive oils.  

 
 

Table 5.5. Categories of virgin olive oil 
(Source: Internationaloliveoil.org 2009) 

 

Olive Oil 
Amount of Free Acidity (expressed as 

oleic acid) in 100 grams Olive Oil. 

Extra Virgin Olive Oil 0.8 grams 

Virgin Olive Oil 2.0 grams 

Ordinary Virgin Olive Oil 3.3 grams 

Lampante Virgin Olive Oil 3.3 grams 

 
 
On the other side there are some different definitions for the different types of 

olive that are not fit into virgin olive oil. These types of olive oils have different amount 

of oleic acid. Refined olive oil is the olive oil obtained from virgin olive oils by refining 

methods which do not lead to alterations in the initial glyceridic structure. It has a free 

acidity, expressed as oleic acid, of not more than 0.3 grams per 100 grams (0.3%) and 

its other characteristics correspond to those fixed for this category in this standard. This 

is obtained by refining virgin olive oils which have a high acidity level and/or 

organoleptic defects which are eliminated after refining. Over 50% of the oil produced 

in the Mediterranean area is of such poor quality that it must be refined to produce an 

edible product. Note that no solvents have been used to extract the oil but it has been 

refined with the use of charcoal and other chemical and physical filters. An obsolete 

equivalent is “pure olive oil”. Olive oil is the oil consisting of a blend of refined olive 

oil and virgin olive oils fit for consumption as they are. It has a free acidity, expressed 

as oleic acid, of not more than 1 gram per 100 grams (1.0%).  The cheap refined oil is 

mixed with flavorful virgin oil.  

2. Olive-pomace oil: Pomace is the ground flesh and pits after pressing.  Olive-

pomace oil is the oil obtained by treating olive pomace with solvents or other physical 

treatments, to the exclusion of oils obtained by re-esterification processes and of any 

mixture with oils of other kinds. There are mainly three types of olive-pomace oil: 

Olive-pomace oil is the oil comprising the blend of refined olive-pomace oil and virgin 
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olive oils fit for consumption as they are. It has a free acidity of not more than 1 gram 

per 100 grams and its other characteristics correspond to those fixed for this category in 

this standard. In no case shall this blend be called “olive oil”. Crude olive-pomace oil is 

olive -pomace oil whose characteristics correspond to those fixed for this category in 

this standard. It is intended for refining for use for human consumption, or it is intended 

for technical use and refined olive-pomace oil is the oil obtained from crude olive -

pomace oil by refining methods which do not lead to alterations in the initial glyceridic 

structure. It has a free acidity, expressed as oleic acid, of not more than 0.3 grams per 

100 grams. All of these definitions are directly taken from the sources of IOOC.  
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CHAPTER 6 

 

6. MATERIALS AND METHODS 

 
6.1. Samples 

 

6.1.1. Olive Oil Samples 
 

Totally 108 of olive oil samples were obtained from TARİŞ, the Union of 

TARIS Olive and Olive Oil Co-operatives. These olive oil samples can be categorized 

in two different groups. The first categorization is based on the origin of olive oil 

samples. All of the olive oil samples were collected from Aegean region of Turkey. 

Forty nine of them belong to the North Aegean and thirty one of them are from the 

South Aegean region. The remaining olive oil samples are the mixtures of natural and 

refined olive oils and their origin are not known. The second categorization is organized 

according to the value of free acidity of olive oil samples. The existed types of olive oil 

in the sample set are extra virgin, natural, refined, lampante and virgin olive oil with the 

number of twenty six, fifteen, thirty five, twenty six, and five, respectively.  The 

acronyms used to indicate the olive oil samples for different categorization are given in 

the Table 6.1. 

The samples stored in deep freezer at +40C until they were analyzed. There was 

no any prior treatment before the analysis of samples.  

During the examination of developed genetic algorithm based classification 

methods, GAPCAD and GADA, all of the samples were not used. Due to the working 

principle of these algorithms, training and validation set must contain the same number 

of samples. Therefore training and validation set were organized as equal number of 

samples.  
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Table 6.1. Acronyms that used to identify the olive oil samples. 
 

Categorization according to the geographical origin 

Sample Name Acronym  

North Aegean Olive Oil NA 

South Aegean Olive Oil SA 

  

Categorization according to the level of free acidity 

Sample Name Acronym  

Extra Virgin Olive Oil EVOO 

Lampante Olive Oil LOO 

Refined Olive Oil ROO 

Natural Olive Oil NOO 

Virgin Olive Oil VOO 

 
 

6.1.2. Vegetable Oils 
 

Totally 34 samples of vegetable oils with different brands were purchased from 

the global markets. Three different vegetable oils were chosen for the classification 

studies. The studied vegetable oil samples were olive, sunflower, and corn oil. These 

vegetable oils were categorized as pulp and seed oils. Olive oil is accepted as pulp oil 

whereas the remaining are seed oils. Table 6.2 shows the abbreviations of each type of 

vegetable oils.  

 
 

Table 6.2. Acronyms of vegetable oils. 
 

Vegetable Oil Acronym  

Olive Oil OO 

Sunflower Oil SFO 

Corn Oil CO 
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The samples stored in deep freezer at +40C until they were analyzed. There was 

no any prior treatment before the analysis of samples.  

 

6.2. Near Infrared Measurements 
 

FTS-3000 NIR spectrometer (Bio-Rad, Excalibur, Cambridge, MA) near 

Infrared (NIR) spectrometer system was used to measure the olive oil samples at room 

temperature in 2 mm cuvette. The working range was set to 10,000 – 4000 cm–1 

wavenumber with 8 cm–1 resolution by averaging 64 scan numbers. Both blank and 

sample spectra were collected in absorbance method. 

Background was spectrum was obtained empty and dry quartz cell. The same 

number of scans, resolution, and scan numbers were using in the observation of 

background spectrum as the sample spectra.  Before and after each sample analyses 

background was collected to reduce the contaminations that might come from sample 

cuvette. Quartz cuvette was cleaned with pure acetone and allowed to dry. 

 

6.3. Middle Infrared Measurements 
 

Spectrum 100 (Perkin Elmer, Waltham, MA, USA) Fourier Transform Infrared 

(FTIR) spectrometer system coupled to attenuated total reflectance (ATR) accessory 

was used to measure the olive oil samples. ATR (Miracle ATR, Pike Technology, 

Madison, WI, USA) equipped with ZnSe crystal plate was used to analyze the olive oil 

samples at room temperature. The working range was set to 630 – 4000 cm–1 

wavenumber with 4 cm–1 resolution (data point interval of 1 cm–1) by averaging 64 scan 

numbers. Both blank and sample spectra were collected in absorbance method. 

Background was spectrum was obtained empty and dry ATR cell. The same 

number of scans, resolution, and wavenumbers interval were using in the observation of 

background spectrum as the sample spectra.  Before and after each sample analyses 

background was collected to reduce the contaminations that were come from the ATR 

crystal. ATR crystal was cleaned with pure ethanol and allowed to dry. 
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6.4. Fluorescence Measurements 
 

Excitation–emission fluorescence (EEF) and total synchronous fluorescence 

(TSyF) spectra were obtained using Varian Cary Elipse spectrofluorometer (Varian, Inc. 

Hansen Way, Palo Alto, CA) equipped with a xenon flash lamp. In both measurement 

modes, the detector was set to 600 V. The slid with of both monochromators were set to 

5 nm. The acquisition interval was maintained as 1 nm and the right angle geometry 

was used to analyze olive oil samples in a 10 mm quartz cuvette. Three dimensional 

EEF spectra were obtained by measuring emission spectra in the range of excitation 

400–850 nm, repeatedly, at excitation wavelengths from 300–435 nm with the 15 nm 

intervals in the excitation domain. Three-dimensional TSyF spectra were acquired by 

measuring the synchronous fluorescence spectra in the wavelength range of 250–800 

nm, repeatedly, at offset values (∆λ) from 50–100 nm with the 10 nm intervals. 

 

6.5. Data Analysis 
 

Four different classification techniques were used in the data analysis which 

were singular value decomposition based principal component analysis (SVD-PCA), 

genetic algorithm based discriminant analysis (GADA), distance based genetic 

algorithm principal component analysis (GAPCAD), and soft independent modeling of 

class analogy (SIMCA). Developed genetic algorithm based and principal component 

analysis statistical processes were implemented in Matlab R2009a (MathWorks Inc, 

Natick, MA). SIMCA was implemented in SIMCA-P 10.5 (Umetrics, Umeå,Sweeden) 
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CHAPTER 7 

 

7. RESULTS AND DISCUSSION 

 
In this study, two different supervised classification methods which are based on 

genetic algorithm were developed. These two methods are named as distance based 

genetic algorithm principal component analysis (GAPCAD) and genetic algorithm 

discriminant analysis (GADA). Both methods were examined in various spectral data. 

These are near infrared (NIR) spectral, Fourier transform infrared (FTIR) spectral, 

fluorescence spectral (in two different modes: there way array of excitation–emission 

fluorescence and total synchronous fluorescence) data matrices. The spectral data were 

obtained from the measurement of different types of vegetable oil samples and olive oil 

samples and the classification of vegetable oils and olive oils were studied. Secondly 

the classification of olive oil samples was performed based on their chemical and 

physical composition. In this chapter, all the classification results will be discussed in 

detail for both supervised classification methods and all the sample types. 

 

7.1. Classification of Olive Oils Based on Chemical Properties 
 

Olive oil quality is largely controlled by the grower and processor. During the 

harvest and storage, bruising or damage to the fruit will result in reduced quality in the 

oil. Olive growers therefore need to have basic understanding of what oil quality is and 

how it is preserved. This prime fact covers a range of topics related to quality in olive 

oil including basic composition of olive oil and composition of virgin olive oils.  

As it mentioned before, the main components of almost 97–98% of whole olive 

oil are substances of a glyceride nature concentrated in the pulp and seed. The 

remaining nonacylglycerol lipid fraction is a mixture of compound classes, including 

alkanes, squalene, wax esters, aliphatic alcohols and aldehydes, tetracyclic (sterols) and 

pentacyclic triterpenes (acids, alcohols and esters), free fatty acids, vitamins, 

phospholipids, polyphenols and glycosides, distributed in the various parts of the fruit 

The free fatty acid proportions are in the narrow 1–3% range for olive oils obtained by 

simply pressing the fruit, whereas these can be as high as 10–15% for solvent-extracted 
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oils. It is the minor compound classes, their concentrations and relative percentages that 

are the determinants of olive oil characterization and commercial grading. Furthermore, 

some of these minor components are determinant factors of oil stability, as well as being 

relevant from the hedonistic and salutary points of view (Table 7.1). The natural 

concentration of these minor components in an oil can vary greatly, being related 

mainly to the cultivar, the stage of maturity of the fruits, the soil, the climate and also to 

the extraction technique adopted (Bianchi 2002). 

 
 

Table 7.1. Significance of the olive oil parameters  
(Source: Bianchi 2002) 

 

Parameters  Significance 

Free Fatty Acids (%) Deterioration of olive oils 

Peroxide Value (meq O2/kg) Presence of hydroperoxides 

Halogenated solvents Detection of harmful contamination 

Phenols (mg/kg) Antioxidants 

Induction time (h) Stability, resistance to oxidation 

Chlorophyll Pigments (mg/kg) Influence on oil acceptability by consumer 

K232,  

K270 

Double bond conjugation: (i) drastic thermal and 

chemical treatment of oil; (ii) oxidation 

Panel Test Organoleptic analysis 

 
 
The chemical composition of olive oil samples were purchased from the TARİŞ 

was identified by the manufacturer and all the analysis results were also taken together. 

Totally twenty six parameters of olive oil samples were organized to classify of these 

samples into two different ways. The first one was based on the geographical origin. 

The training set was designed as including both the North Aegean (NA) and South 

Aegean (SA) olive oils with totally forty samples. An independent test set was 

constructed using totally twenty olive oil samples. Both training and test sample sets 

were containing twenty of NA, twenty SA, ten of NA, ten of SA olive oil samples, 

respectively.  

Before investigation of the results of the classification methods, the acronyms of 

each variable are given in Table 7.2. 
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Table 7.2. The corresponding acronyms of each variable. 
 

Variables Acronyms Variables Acronyms 

Free Fatty Acid (Oleic acid %) FFA Sterol Composition 

Peroxide Value (meq O2 / kg oil) PERO Cholesterol CHOL 

UV Absorbance Value UVA Brassicasterol BRA 
K (λ=232 nm) K232 Campesterol CAM 
K (λ=270 nm) K270 Stigmasterol STIG 
∆K ∆K ∆7 Stigmastanol D7 
Trilinolein % TRI β- Sitosterol BSTE 
Difference between the real and 
theoretical value of ECN 42 triglyceride 

TRG Total Sterol 
(mg/kg) 

TOSTE 

 Eritrodiol+Uvaol ERIUVA 
Fatty Acid Composition    

Myristic acid  MYRA   
Palmitic acid PALA   
Palmitoleic acid PALMA   
Heptadecanoic acid HEP   
Stearic acid  STEA   
Oleic acid  OLEA   
Linoleic acid LINOA   
Linolenic acid LIA   
Arachidik acid ARA   
Gadoleic acid GADA   
Behenic acid BEA   
Lignoceric acid LIGA   

 
 

7.1.1. Classification Olive Oils Based Geographical Origin Using 
GAPCAD and SVD-PCA 
 

GAPCAD was performed to classify the olive oil samples according to their 

geographical origin. The initiated data matrix has 40x26 (samples x variables) 

dimensions. The algorithm was initiated 100 genes and 100 iterations. Also the training 

and test set was combined and examined using SVD-PCA. Both results were compared 

in order to prove the success of developed genetic algorithm based classification 

methods. Before starting the examination of both algorithms autoscaling was performed 

to the data matrix in order to organize the variables in one scale.  
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SVD-PCA 

 
(a) 

 

GAPCAD 

(b) 

 

Figure 7.1. Score plots of principal components calculated from the chemical variables 
of olive oil samples a) SVD-PCA, b) GAPCAD.  

 
 
Totally twenty six principal components (the data matrix contained twenty six 

variables.) were calculated in the examination of SVD-PCA. The first two principal 

components (25.24% of explained variance) were plotted against each other in order to 
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visualize the classes of the North and South Aegean olive oil samples in the space 

(Figure 7.1.a). As it seen from the score plot that obtained from the SVD-PCA, olive oil 

samples are laid on principal component 1 (PC1). Generally the positive scores of PC1 

refer the distribution of SA olive oil samples whereas the NA olive oil samples are 

scattered on negative scores of PC1. Only a few samples of SA olive oil samples cannot 

be distinguished from the class of NA olive oil samples. 

The resulting plots (score and loading) of GAPCAD are shown in Figure 7.1.b 

and Figure 7.2.b. The first one is the score plot of the first two principal components 

with 33.77% of explained variance. The South Aegean olive oil samples are scattered 

on the positive values of PC1 whereas the North Aegean olive oil samples are on 

negative scores of PC1. This distribution emphasize that the principal component 1 is 

the most explained component. The results of the GAPCAD also show a better 

distribution of two classes in the space. Due to the working principle of GA which is 

based on the selection of features, all the variables that are defined at the beginning of 

the algorithm will not be used in the classification of samples. Figure 7.2.b shows the 

distribution of selected variables which have the most influenced information about 

olive oil samples. The same path is followed in the explanation of the selected variables. 

The variables distributed on the positive values of loadings take a role in the 

identification of SA olive oil samples and for the NA olive oil samples vice versa.  
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SVD-PCA 

 
(a) 

 

GAPCAD 

 
(b) 

 
Figure 7.2. Loading plots of principal components calculated from the chemical 

variables of olive oil samples a) SVD-PCA, b) GAPCAD.  
 

 
As a result the GAPCAD gives more efficient way in the identification olive oil 

samples, since genetic algorithm is selected the variables which have the most influence 

on the classification of samples. Knowing only these variables will be enough in the 
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classification of olive oil samples based on the geographical origin. These reduced the 

analysis time, cost of the experiments for the analyzers.  

 

7.1.2. Classification Olive Oils Based Geographical Origin Using 
SIMCA and GADA 
 

The chemical composition of olive oil samples were purchased from the TARİŞ 

was identified by the manufacturer and all the analysis results were also taken together. 

Totally twenty six parameters of olive oil samples were organized to classify of these 

samples into two different ways. The first one was based on the geographical origin. 

The training set was designed as including both the North Aegean (NA) and South 

Aegean (SA) olive oils with totally forty samples. An independent test set was 

constructed using totally twenty olive oil samples. Both training and test sample sets 

were containing twenty of NA, twenty SA, ten of NA, ten of SA olive oil samples, 

respectively.  

SIMCA and GADA were performed to classify the olive oil samples according 

to their geographical origin. The two classes of olive oil were predefined as NA (North 

Aegean Olive Oil) and SA (South Aegean Olive Oil). The initiated training data matrix 

has 40x26 (samples x variables) dimensions, whereas the test data matrix has 20 x 26 

dimensions. The GADA analysis was initiated 4 genes and 10 iterations. Both results 

were compared in order to prove the success of developed genetic algorithm based 

discriminant analysis method. Before starting the examination of both algorithms 

autoscaling was performed to the data matrix in order to organize the variables in one 

scale.  
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Figure 7.3. Cooman's plot of olive oil samples obtained from SIMCA analysis of NIR 
spectra (triangle: SA oils-training, circle: NA oils-training, box: test set). 

 
 
Two principal components (54.50% of explained variance) for class of NA oil 

and three principal components (66.70% of explained variance) for class of SA oils 

were calculated in the examination of SIMCA. The Cooman’s plot was drawn to 

visualize the classes of the North and South Aegean olive oil samples in the space 

(Figure 7.3). The critical limits that are used to define the boundaries between the 

classes were calculated as 1.47 at 95% confidence level. As it seen from the Cooman’s 

plot that obtained from the SIMCA, olive oil samples mostly classified as North and 

South Aegean olive oil samples. However, the olive oil samples that existing in the 

training set coded as NA-5, NA-20 and SA-18 were classified as not belonging to any 

classes. In the results of test step, the 55% (11/20) of olive oil samples were found as 

not belonging to either NA oils or SA oils.  

At the end of the GADA analysis, seven significant principal components were 

found out with a 92.53% of explained variance. The critical limits were calculated as 

4.5 at 95% confidence level and the Cooman’s plot was plotted to observe the 

distribution of olive oil samples (Figure 7.4). According to the critical limits for NA and 

SA classes, the training set was classified without any outlier samples or these classes 

do not contain any samples that have similar properties. However the test results of SA 

oil samples are not good as NA oil samples. The 50% of SA olive oil samples and NA-2 
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oil sample are classified as not belonging to any classes. In order to explain the reasons 

of classification results, the selected variables or chemical properties should be 

investigated.  

 
 

 
Figure 7.4. Cooman's plot of olive oil samples obtained from GADA analysis of NIR 

spectra. 
 
 
As it is seen from the plot of loading vectors, there are only nine chemical 

variables that are used in the classification of olive oils according to their geographical 

origin. Generally the sterol composition of olive oils seems to be more effective in the 

classification of olive oil samples. The amount of sterol composition is very important 

in the determination of olive oil adulteration with high oleic acid content oil. In our 

country, the olive oils that are obtained from south region generally have high content 

of ∆7 Stigmastanol (D7) and this high level of D7 causes problem in the exportation of 

olive oils (Oliveoillife.com 2009). GADA analysis was classified the olive oil samples 

especially based on the sterol constituents. It should be noticed here, sterols does not 

affect the taste of olive oils. However it has very high influence on the chemical 

characterization of olive oils.  
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Figure 7.5. Loading plots of principal components calculated from the chemical 

variables of olive oil samples obtained using GADA.  
 
 

7.2. Near Infrared Results 
 

7.2.1. NIR Measurements of Olive Oil Samples 
 

All the olive oil samples named as EVOO, ROO and LOO were analyzed using 

near infrared spectroscopy (NIR) in the range of 10,000 – 4000 cm–1. Figure 7.6 shows 

the spectra of all olive oil samples in the range of 8900 – 4500 cm–1. The region 

between the 4500 – 4000 cm–1 and 10,000 – 8900 cm–1 were discarded due to the noise 

and no relevant NIR peaks. Absorption maxima are clearly seen at 4590, 4656, 4700, 

5675, 5786, 7074, 7170, 8240, 8560 cm–1 and smaller absorption bands at 5149 and 

5250 cm–1. 
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Figure 7.6. NIR spectra of olive oil samples measured in the range of 8900 – 4500 cm–1.  

 

 

The assignments of absorption maxima are given in Table 7.3. The overtones of 

and the combinations of the CH, OH, NH functional groups present in food samples 

give absorption maxima in NIR region. The low absorbance values of overtones and 

combinations allow using the NIR for the non destructive analysis of food samples. As 

it is seen from the NIR spectra plot of olive oil samples, NIR spectra generally contains 

numbers of broad and overlapping absorption bands. The nature of these overlapping 

bands makes qualitative and quantitative analyses difficult.  
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Table 7.3. Evaluation of NIR spectrum 
(Source: Ozaki, et al. 2004). 

 

Wavenumber cm–1 Functional Group 

8560 CH3, C-H strecthing 2nd overtone 

8240 CH2, C-H strecthing 2nd overtone 

7170 CH3, 2C-H strecthing 

7074 CH2, 2C-H strecthing 

6000 cis R1CH=CHR2CH3, cis CH 

5786 CH3, C-H strecthing 1st overtone 

5675 CH2, C-H strecthing 1st overtone 

5250 C=O strecthing 2nd overtone 

5149 C=O strecthing 2nd overtone 

4700 COOR, C-H strecthing, C=O streching 

4656 HC=CH, =CH strecthing, C=C strecthing 

4590 HC=CH, CH asymmetric strecthing C=C streching 

 

 

7.2.2. Classification Results of SVD-PCA and GAPCAD 
 

7.2.2.1. Classification Results of Extra Virgin Olive Oils and Lampante 
Olive Oils 

 

All NIR spectra of olive oil samples were designed into two different ways. In 

the examination of GAPCAD algorithm, NIR spectral data matrix into two different 

samples set: training set contains 38 olive oil samples and test set includes 10 olive oil 

samples. Both sample set were prepared independent from each other and randomly 

chosen olive oil samples. Spectral data matrix has 38 x 1079 (sample number x 

wavenumbers) dimensions for training set and 10 x 1079 dimensions for test set. Both 

training and test set were combined in order to observe the results of SVD-PCA 

algorithms. Both results were compared to each other. Before starting performing the 

classification methods, spectral data matrices were autoscaled to reduce the metric unit 

in one scale.  
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SVD-PCA 

 
(a) 

GAPCAD 

 
(b) 

 

Figure 7.7. Score plot of principal components calculated from NIR spectral data matrix 
of olive oil samples using a) SVD-PCA and b) GAPCAD for selected 
spectral data (ν = 8700 – 4500 cm–1). 

 
 
In SVD-PCA calculation, seven significant principal components were found 

out with 57.52% of explained variance. Principal component 1 (PC1) and principal 

component 2 (PC2) which have totally 44.50% of explained variance were plotted 

against to observe the distribution of olive oil samples. As it is seen from the Figure 7.7, 
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there are no definite olive oil classes. However we can say that EVOO samples are 

generally lay on the negative scores of PC2, whereas LOO samples are distributed on 

the positive scores of PC1. Same spectral data matrices were examined in GAPCAD 

calculations. GAPCAD algorithm was initiated with 100 genes and 100 iterations. At 

the end of the calculation 3 significant principal components (99.0% of total explained 

variance) were found out. The first two principal components with a 95.7% of explained 

variance were used to represent the score plot of olive oil samples.  

 

 

 

Figure 7.8. Loading plots of NIR spectral data of the olive oil samples (autoscaled data) 
obtained from the calculation of SVD-PCA a) loading of PC1 b) loading of 
PC2, and GAPCAD c) loading of PC1, d) loading of PC2.  

 
 
Loading plots were obtained from both SVD-PCA and GAPCAD are given in 

Figure 7.8. and these plots refer the scores for PC1 and PC2 are given Figure 7.7. 

Loading plot of PC1 obtained from SVD-PCA shows that the overtones and 
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combinations of CH3 and CH2 stretching mostly have contribution on the classification 

of olive oils in the region of 6000 – 5500 cm–1. The acidity of olive oils varies with 

different amount of fatty acids. Fatty acids have a general formula as CH3-(CH2)n-
COOH where n is typically an even number between 12 and 22. The acidity value of 

olive oils is generally expressed according to the amount of oleic acid. This fatty acid 

has 18 of C atoms with a single double bond. The loading plot PC2 (Figure 7.8.b.) 

proves the contributions of overtones and combinations exist in the region of 5000 – 

4500 cm–1 have the most contribution in the classification of EVOO and LOO samples. 

In this region not only the stretching of C=C and =CH are assigned but also the 

contribution of oleic acid is emphasized.  

On the other side, GAPCAD was selected only 4 wavenumbers that have the 

most contribution in the classification of olive oil samples. These wavenumbers are the 

8190, 7357, 6355, 4625 cm–1 and the weight of these wavenumbers changes according 

to the scores and loadings matrices of PCA. Figure 7.8.c. and Figure 7.8.d. show the 

weight of loading for each wavenumbers. According to the scores of GAPCAD, the 

classification of olive oil samples generally is along on PC2.  These contributions come 

from the overtones and combinations of CH2, CH stretching and =CH, C=C stretching. 

In order to investigate the frequency of selected wavenumbers, GAPCA was repeated 

100 times and the distribution of selected wavenumbers was plotted against the 

wavenumbers in the region of 8700 – 4500 cm–1. Figure 7.9 shows the plot of frequency 

of selected wavenumbers.  
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Figure 7.9. Frequency of selected wavelengths after 100 runs of GAPCAD in the 
examination of NIR spectral data. 

 
 
As it is seen from the frequency of selected wavenumbers, the contribution of 

2nd overtones of CH3 and CH2 groups of fatty acids are larger than the other groups. The 

same result is also obtained from the loading values of corresponding scores.  

 

7.2.3. Classification Results of SIMCA and GADA 
 

7.2.3.1. Classification Results of Extra Virgin Olive Oils and Lampante 
Olive Oils 

 

The training set with thirty eight samples, and test set with twelve samples were 

predefined at the beginning of the classification studies. The extra virgin olive oil 

samples containing 18 samples and lampante olive oil samples including 18 samples 

with their corresponding NIR spectral data were predefined as class 1 and class2, 

respectively. Before starting classification procedure, autoscaling was applied to the 

spectral data matrix as a preprocessing technique.  

SIMCA analysis was firstly examined to the NIR spectral data matrix. Totally 

nine principal components were found out for both classes with a 92.40% and a 95.10% 

of explained variances, respectively. The critical limits were calculated as 1.38 at 95% 
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confidence level. The Cooman’s plot was constructed and the boundaries of each class 

were identified by the help of the critical limits (Figure 7.10). As it is seen from the 

Figure 7.10, most of the extra virgin olive oil samples existing in the training set are 

classified as belonging to both classes, and also LOO-14 is classified in this region. On 

the other side, the samples of test set coded as LOO-1, LOO-2, LOO-3 and EVOO-1 

belong to the neither class of EVOO nor class of LOO samples. Each row of spectral 

data matrix contains 1079 of wavenumbers with their corresponding absorbance values, 

therefore the identification of reasons of this classification results is difficult by naked 

eyes. Since all the wavenumbers were used in the classification.  

 

 
Figure 7.10. Cooman's plot of olive oil samples obtained from SIMCA analysis of TSyF 

spectra (triangle: EVOO-training, circle: LOO-training, box: test set).  
 

 
Genetic algorithm based discriminant analysis was examined using the spectral 

data matrix. GADA analysis was initiated with 8 genes and 10 iteration numbers. 

Totally fifteen significant principal component analysis were found out with a 90.11% 

of explained variance. The critical limits that were used to identify the classes of olive 

oil samples were calculated as 8.32 at 95% confidence level. Cooman’s plot of extra 

virgin olive oil and lampante olive oil samples was drawn to see the distribution of 

samples in the space (Figure 7.11). According to the results, the extra virgin olive oil 

samples coded as EVOO-2 and EVOO-6, and also the lampante olive oil sample coded 

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11

D
ist

an
ce

 fr
om

 L
O

O
 D

-c
ri

t:1
.3

8

Distance from EVOO D-crit:1.38

SIMCA-P 10.5 - 6/14/2009 4:40:05 PM



 

69 
 

as LOO-12 existing in the training set show similar properties. Therefore they are 

assigned in the region of intersection of both classes. In the test step, the samples coded 

as EVOO-5, EVOO-4 belongs to the both classes, whereas the samples coded as 

EVOO-2, EVOO-3, LOO-3, and LOO-5 are classified as not belonging to none of 

classes. In order to see which wavenumbers have the most contribution on the 

classification of olive oil samples, selected wavelengths were plotted against the 

wavenumbers of NIR region.  

 
 

 
Figure 7.11. Cooman's plot of olive oil samples obtained from GADA analysis of TSyF 

spectra 
 
 
As it is seen from the plot of selected wavenumbers, the wavenumbers which 

assign the differences in the absorbance values were chosen by the genetic algorithm. 

The overtones and the combinations of CH, CC, and OH groups have the contribution 

on the classification of olive oil samples. It can be concluded as GADA is selectable 

analysis techniques compare to the SIMCA analysis when the spectral information is 

sued as data matrix in the classification procedure.  
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Figure 7.12. The plot of selected wavelengths used in the classification of olive oil 
samples using GADA analysis 

 
 

7.2.3.2. Classification Results of Refined Olive Oils and Lampante 
Olive Oils 

 

The spectral data matrix was constructed as training set and test set that contains 

totally 38 and 12 olive oil samples, respectively. Each sample has 3371 of wavenumbers 

in the spectrum. Before starting the classification procedure, autoscaling was applied to 

the spectral data matrices as a preprocessing technique. SIMCA analysis firstly was 

examined and then the results of the both methods were compared to achieve the 

success of GADA analysis.  

In SIMCA analysis, refined and lampante olive oil samples was predefined as 

class 1 and class2, respectively. Nine principal components were found out for both 

classes with 96.1% and 98.00% of explained variance. In order to construct the 

Cooman’s plot, the vertical and horizontal limits were calculated as 1.38 for each class 

at 95% confidence level. Figure 7.13 shows the distribution of olive oil in the space. 

The refined olive oil samples of training set which are ROO-5, 9, 15, 19, are classified 

as belonging to the both classes. Also the samples of test set coded as ROO-2 and ROO-
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5 belong to the same class. Only LOO-5 of test set is classified as not belonging to the 

any classes.  

 
 

 
Figure 7.13. Cooman's plot of olive oil samples obtained from SIMCA analysis of TSyF 

spectra (star: ROO-training, circle: LOO-training, box: test set).  
 
 
GADA analysis was initiated with 6 genes and 10 iteration numbers. At the end 

of the analysis, sixteen principal components were found out with a 90.85% of 

explained variance. The Cooman’s plot was drawn to visualize the distribution of the 

refined and lampante olive oil samples (Figure 7.14). The critical limits for each class 

were calculated as 10.18 at 95% confidence level. These limits show that there are two 

separate classes for olive oil samples. Only LOO-3 existing in the test set is classified as 

not belonging any of the classes and also LOO-5 can be expected as not belonging to 

any classes.  
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Figure 7.14. Cooman's plot of olive oil samples obtained from GADA analysis of TSyF 

spectra 
 
 

GADA analysis is based on the wavelengths selection that contains the 

necessary information for the classification. Totally forty six wavenumbers with their 

corresponding absorbance values were selected for the classification of olive oil 

samples. These wavenumbers were plotted against the wavenumber region of NIR in 

order to see the selected wavenumbers visually. As it is seen from the Figure 7.15 the 

wavenumbers which shows different intensity in the absorbance values are the most 

selected ones. And also these means that these have the most contribution on the 

classification of olive oil samples.  
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Figure 7.15. The plot of selected wavelengths used in the classification of olive oil 
samples using GADA analysis 

 

 

7.3. FTIR Results 
 

7.3.1. FTIR Measurements of Olive Oil Samples 
 

All the edible olive oils (extra virgin olive oils, EVOO and refined olive oils, 

ROO) and lampante olive oils (LOO) were measured using FTIR spectrometer equipped 

with attenuated total reflectance accessory attached diamond-ZnSe crystal. Due to the 

working range of the ATR crystal, spectra were taken in the range 4000–630 cm–1. As it 

is seen from the spectra of olive oil samples (Figure 7.16), there are several infrared 

peaks including overlapping, since the chemical composition of olive oils includes 

basically fatty triglycerides esters with different structure, length, saturation of chains 

and minor components. Each infrared peak was coded by a letter in order to explain the 

corresponding functional groups.  
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(a) 

 
(b) 

 
Figure 7.16. FTIR spectra of olive oil samples measured in the range of a) 630 – 4000 

cm–1, b) 630 – 1800 cm–1 using ATR accessory attached diamond ZnSe 
crystal. 
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Table 7.4. Evaluation of FTIR spectrum 
(Source: Guillén and Cabo 1997, Vlachos, et al. 2006) 

 

Coded 

Infrared 

Peak 

Wavenumber 

(cm–1) 
Corresponding Functional Group 

a 3470 overtone of the glyceride ester carbonyl absorption 

b 3009 CH stretching of =CH (cis and trans double band) 

c 2960 

symmetric and asymmetric vibration of aliphatic CH3 

groups  

(seen as shoulder) 

d 2925 asymmetric stretching of aliphatic CH2 groups 

e 2854 symmetric stretching of aliphatic CH2 groups 

f 1745 
stretching of ester carbonyl functional group of 

triglycerides  (C=O) 

g 1710 acid group of free fatty acids (seen as shoulder)  

h 1655 C=C stretching vibration of olefins 

i 1460 bending vibration of CH2 and CH3 aliphatic groups 

j 1418 rocking vibrations of CH bonds of cis-disubstituted  olefins 

k 1396 bending in plane of CH bonds of cis-disubstituted  olefins 

l 1379 
symmetrical bending vibration of CH2 bonds of cis-

disubstituted  olefins 

m 1241 stretching vibration of C-O ester 

n 1161 stretching vibration of C-O ester 

o 1120 stretching vibration of C-O ester 

p 1100 stretching vibration of C-O ester 

r 1053 stretching vibration of C-O ester 

s 1033 
stretching vibration of C-O ester, asymmetric vibrations of 

C-C(=O)-O 

t 950 
bending vibration of out-of-plane of trans disubstituted 

olefinic groups. 

v 723 
methylene rocking vibration  and out-of-plane bending 

vibration of cis-disubstituted olefins  
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In order to investigate the power of FTIR spectroscopy in the classification of 

olive oils, FTIR spectral results were examined in two different algorithms. Firstly, the 

singular value decomposition based principal component analysis (SVD-PCA) was 

performed using FTIR spectral data matrix. The same procedure was repeated using 

distance based genetic algorithm principal component analysis (GAPCAD). SVD-PCA 

generally is used to get prior information about the samples, whereas GAPCAD was 

designed as supervised classification methods. The main idea of combining the genetic 

algorithms and principal component analysis is only to use the wavenumbers or 

wavelengths which are included necessary information for the classification of samples. 

As it known, in supervised classification training set is used to define the rule of 

classification then this rule is tested by an independent sample set.  

 

7.3.2. Classification Results of SVD-PCA and GAPCAD 
 

7.3.2.1. Classification Results of Extra Virgin Olive Oils and Lampante 
Olive Oils 

 

The FTIR spectral data contain totally 46 of olive oil samples. In the 

examination of SVD-PCA, all of them used to get the prior information about the 

classes of olive oil samples. On the other side, these olive oil samples divided into two 

samples set named as training set and test set. Training set includes totally 36 olive oil 

samples in which contain 18 of extra virgin olive oils (EVOO) and the remaining is 

lampante olive oil (LOO) samples. Independent sample set has totally 10 of olive oil 

samples that are 5 extra virgin olive oil samples and 5 lampante olive oils. Before 

running the algorithms, different pre-processing methods were applied to the spectral 

data matrix. The used pre-processing techniques were mean-centering and autoscaling. 

Ten significant principal components were obtained with an 87.01% of 

explained variance at the end of the SVD-PCA calculation. The scores of first two 

principal components (with a 55.37% of explained variance) were plotted against each 

other in order to see the distribution of olive oil samples. The expected results from 

olive oil spectral data was two different classes were contained the extra virgin olive 

oils and lampante olive oils, respectively. However, as it is seen from the Figure 7.17.a., 

there is a mainly two different classes with some outliers. EVOO 4, 9, 14 samples are 

totally different from the other olive oil samples. On the other side, EVOO 1, and 18 
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samples have same chemical or organoleptic properties of lampante olive oil samples. 

Also EVOO 2, and 3 show similarities just like lampante olive oil samples. Lampante 

olive oil samples are also scattered in larger area than the extra virgin olive oil has done. 

The main reason of the larger scattering of LOO is to show acidities in a larger scale, 

since the LOO samples have the acidity values more than 3.3% (w/w) in 100 grams of 

olive oil. Also the LOO 7, and 17 show different properties than the other lampante 

olive oils.  

 

(a) 

 
(b) 

Figure 7.17. Score plot of principal components calculated from FTIR spectral data 
matrix of olive oil samples using a) SVD-PCA and b) GAPCAD for whole 
spectral data (ν = 4000–630 cm–1). 
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GAPCAD algorithm was initiated with 100 genes and 100 iteration numbers. 

Six significant principal components were found out with a 96.19% explained variance. 

The score values of first two principal components (with a 68.01% of explained 

variance) were used to obtain the scattering of olive oil samples in the space. Figure 

7.17.b. shows the classes of olive oil samples in the space. Again the EVOO samples 

numbered as 4, 9, and 14 show different properties than the other olive oil samples. 

Also LOO 17 has similar characteristics with EVOO samples 4, 9, and 14.  

In order to investigate the reasons of different places in the space of these olive 

oil samples, FTIR spectra of olive oil samples were plotted against the wavenumber in 

different regions. As it is seen from the Figure 7.18.a, Figure 7.18.c, Figure 7.18.d, and 

Figure 7.18.f.; EVOO 4, 9, and 14 shows different intensities  in the region of 2950–

2830 cm–1, and 1780–1700 cm–1, respectively. In the first region, the symmetric and 

asymmetric vibrations of aliphatic CH2 groups are exhibited and the vibrations of 

aliphatic CH3 groups are also shows FTIR peaks as a shoulder. These aliphatic CH2 and 

CH3 groups assign the fatty acid chains. In the center of spectrum which is the region of 

1780–1700 cm–1, stretching vibration of C=O group of the triglyceride ester linkage is 

present. The region started at 3100 cm–1 and ended at 3600 cm–1 contains the vibrations 

of water (H–OH) and hydroperoxides (ROOH) and alcohols (ROH). Vlachos et al. 

studied on oxidation process of oils in the presence of heat and UV light. They proved 

that the spectral bands between the 3600–2700 cm–1 and around 1750 cm–1 have some 

changes. Since heat and UV light caused the production of saturated aldehydes 

functional groups and the secondary oxidation products.  It can be concluded as the 

reasons of differentiation in the olive oil samples.  

The loading plot of principal components were also plotted against the 

wavenumbers in order to observe which middle infrared region have the most 

contribution in the classification of extra virgin and lampante olive oil samples. In the 

score plot of principal components found out at the end of SVD-PCA process, the olive 

oil samples are mostly scattered mainly along principal component 2 (PC2). The 

infrared regions between the 3050–2800 cm–1, the band around 1750 cm–1 show the 

most intense contributions on the classification of olive oil samples (Figure 7.19.a.). On 

the other side, the EVOO and LOO samples which samples have the different 

characteristics are mainly along on the positive scores of principal component 1 (PC1). 

According the loading plot PC1, the vibration of C=O has the largest and intense 

contribution (Figure 7.19.b.). PCA generally uses whole spectrum in order to define the 
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classes of samples, on the other hand GAPCAD try to find out the wavenumbers include 

the necessary information. The wavenumbers 3989, 3590, 2628, 2431, 2193, 2120, 

1473, and 1130 cm–1 have the contribution in the classification of olive oil samples 

using GAPCAD. In these wavenumbers generally the lampante olive oil samples show 

differences.  

 

  



 

80 
 

 
(a) FTIR spectra of EVOO in the range of 
2950–2830 cm–1. 
 

 
(d) FTIR spectra of LOO in the range of 
2950–2830 cm–1. 
 

 
(b) FTIR spectra of EVOO in the range of 
3600–3100 cm–1 

 

 
(e) FTIR spectra of LOO in the range of 
3600–3100 cm–1 

 

 
(c) FTIR spectra of EVOO in the range of 
1780–1700 cm–1 

 
(f) FTIR spectra of LOO in the range of 
1780–1700 cm–1 

 
Figure 7.18. FTIR spectra of olive oil samples in different regions. 
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(a) 

 
 

(b) 

 

Figure 7.19. Loading plots of FTIR spectral data of the olive oil samples (mean-
centered data) obtained from the calculation of a) SVD-PCA, b) GAPCAD.  

 
 

Due to the nature of the genetic algorithms, GAPCAD is based on a random 

design. Therefore, at each run different results will be obtained. To investigate which 

region or wavenumbers have the larger information about the classification of olive oil 
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samples, GAPCAD was run 100 times and the frequency of selected wavelengths was 

plotted against the wavenumbers.  

  

 
 

Figure 7.20. Frequency of selected wavelengths after 100 runs of GAPCAD in the 
examination of FTIR spectral data. 

 

According to the frequency of selected wavenumbers, the vibration of ROOH 

and ROH groups are produced after the oxidation of olive oils take place in the 

classification olive oil samples. The spectral bands of LOO samples around 2130 cm–1 

show differences unlike EVOO samples. The minor components exist in olive oils 

shows vibrations in the fingerprint region. They are also important in the classification 

olive oil samples.  

 

7.3.2.2. Classification Results of Refined Virgin Olive Oils and 
Lampante Olive Oils 

 

To examine the success of GAPCAD, the classification of refined olive oil and 

lampante olive oil samples were investigated. Firstly the FTIR spectral data matrix of 

olive oil samples with a size of 46 x 3371(sample number x number of wavenumbers) 

was examined using SVD-PCA algorithm. The sample set containing 23 of refined olive 

oil and 23 of lampante olive oil samples were used to observe the classification rule. 

Mean-centering again was used as a pre-processing technique. Nine significant principal 

components (with an 84.23% of explained variance) were found out after the calculation 
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of SVD-PCA. The score values of first two principal components with a 53.60% of 

explained variance were used to visualize classes of refined olive oil and lampante olive 

oil samples.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 
 

 
 
 
Figure 7.21. Score plot of principal components calculated from FTIR spectral data 

matrix of olive oil samples using a) SVD-PCA and b) GAPCAD for whole 
spectral data (ν = 4000–630 cm–1). 
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This result proves that PC1 contains the most explained information about the 

classification of olive oil samples. LOO 3, 17 and ROO 6, 13 shows the different 

properties than the other olive oil samples. The FTIR spectra of ROO samples were 

investigated more detail and as it is seen from Figure 7.22.a. and Figure 7.22.b., ROO 

samples numbered as 6, 13 show different intensities than the other refined olive oil 

samples. The reasons of differences in lampante olive oil samples were explained 

above.  

 
 

 
 

(a) FTIR spectra of ROO in the range of 
2950–2830 cm–1. 

 
 

(b) FTIR spectra of ROO in the range of 
1780–1700 cm–1. 

 
 
Figure 7.22. FTIR spectra of refined olive oil samples in different regions. 
 
 
In the result of SVD-PCA, PC1 was the principal components that define the 

distribution of olive oil samples. As it is seen from the Figure 7.23.a., the region 3080 – 

2780 cm–1 and the infrared peak of C=O group exists as a functional group in the fatty 

acid chain have the most contribution on the classification olive oil samples. The 

vibrations of minor components of olive oils have also effect in the classification olive 

oils, since these regions have the most intense peak area in the FTIR spectrum.  

GAPCAD algorithm was initiated with 100 genes and 100 iteration numbers. 

Six significant principal components (93.45% of explained variance) were calculated at 

the end of the process. The first two principal components with a 64.95% of explained 

variance were plotted against each other in order to visualize the distribution of olive oil 

samples in the space. In the scatter plot of the scores values of PC1 vs. PC2 show nearly 

ROO-13 

ROO-6 
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equal contribution on the classification of refined olive oil and lampante olive oil 

samples.  

 

 
(a) 

 

 
(b) 

 

Figure 7.23. Loading plots of FTIR spectral data of the olive oil samples (mean-
centered data) obtained from the calculation of a) SVD-PCA, b) GAPCAD. 
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It can be easily concluded that the positive scores of PC1 and the negative scores 

of PC2 assign the distribution of refined olive oil samples, whereas the opposite of 

scores of principal components appoint the lampante olive oil samples. In the 

classification of ROO and LOO samples using GAPCAD, GA was selected nine 

wavenumbers with their corresponding absorbance values. These wavenumbers were 

656, 1127, 1384, 1879, 2091, 2435, 2599, 2672, 2769 cm–1 and the score values of 

principal components were calculated according to these absorbance values. As it seen 

from the Figure 7.23.b., the wavenumbers which are 1879, 2091, 2435, 2599, 2672, 

2769 cm–1 have the most contribution in the classification.  

In order to have a better idea about the distribution of wavenumbers or region 

which have the most contribution on the classification, GAPCAD was run 100 times 

and the frequency of selected wavelengths was scattered against the wavenumbers. 

Figure 7.24 is a scatter plot of frequency of selected wavelengths. According to this 

plot, the region of aliphatic CHn groups, the vibrations of oxidation products are existed 

in the 3600–3100 cm–1 are the mostly used ones in the classification. On the other hand 

the baseline in the region of 2600–2100 cm–1 also effects the classification.  

 
 

 
 

 
Figure 7.24. Frequency of selected wavelengths after 100 runs of GAPCAD in the 

examination of FTIR spectral data. 
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7.3.3. Classification Results of SIMCA and GADA 
 

7.3.3.1. Classification Results of Extra Virgin Olive Oils and Lampante 
Olive Oils 

 

The FTIR spectral data matrix was designed as including both extra virgin olive 

oil and lampante olive with their corresponding FTIR spectra. The observed spectral 

data matrix has 46 x 3371 (samples x wavenumbers) dimensions. 10 of them assign the 

test set of the olive oil samples, whereas the remaining are constructed the training set. 

Both sample sets include same numbers of extra virgin and lampante olive oil samples. 

The autoscaling was applied to the both training set and test set before starting the 

examination of SIMCA and GADA analysis.  

SIMCA analysis found out eight principal components (with a 97.70% and a 

98.20 % of explained variance for class of extra virgin olive and class of lampante olive 

oil samples, respectively) for both classes. The Cooman’s plot was constructed by 

plotting the distances of extra virgin olive against the distances of lampante olive oils. 

The boundaries of each class were calculated as 1.35 at 95% confidence level.  

 
 

 
Figure 7.25. Cooman's plot of olive oil samples obtained from SIMCA analysis of FTIR 

spectra (triangle: EVOO-training, circle: LOO-training, box: test set). 
 

0

10

20

30

40

0 10 20 30 40 50

D
ist

an
ce

 fr
om

 L
O

O
D

-c
ri

t:1
.3

5

Distance from EVOOD-crit:1.35

SIMCA-P 10.5 - 6/15/2009 1:14:47 PM



 

88 
 

According to the Cooman’s plot (Figure 7.25), EVOO-3, 6, and 13 existing in 

the training set, and also EVOO-2, EVOO-4 existing in the test set are classified as 

belonging to both classes. O the other side, EVOO-1, EVOO-3, LOO-3, and LOO-4 

existing in the test set are classified as not belonging to any classes.  

GADA analysis was initiated with 6 genes and 10 iteration numbers. At the end 

of the analysis fifteen significant principal component analyses were found out with a 

90.68% of explained variance. The Cooman’s plot was constructed by using the 

distances between the extra virgin olive oil and lampante olive oil samples (). The 

critical limits were calculated as 5.11 at 95% confidence level. According to these 

boundaries, there are not any samples defined as belonging to the both classes. This is 

an improvement for the GADA analysis when the results of both techniques are 

compared Only EVOO-5, LOO-3, 4, and 5 existing in the test set are classified as not 

belonging to any classes.  

 
 

 
 

Figure 7.26. Cooman's plot of olive oil samples obtained from GADA analysis of FTIR 
spectra 

 

0 20 40 60 80 100 120
0

5

10

15

20

25

30

Distance from EVOO D-crit:5.11

D
is

ta
nc

e 
fro

m
 L

O
O

 D
-c

rit
:5

.1
1

EVOO-traininig
LOO-training
EVOO-test
LOO-test



 

89 
 

 
Figure 7.27. The plot of selected wavelengths used in the classification of olive oil 

samples using GADA analysis 
 
 
The selected wavelengths or wavenumbers that were used in the classification 

are shown in Figure 7.27. The wavenumbers are existed in the fingerprint region of 

middle infrared were used in the classification. Since this region assigns the vibration of 

CO groups of esters and the olefins. The stretching vibrations of CH2 and CH3 groups 

are also used in the classification of olive oil samples.  

 

7.3.3.2. Classification Results of Refined Olive Oils and Lampante 
Olive Oils 

 

The classification of refined olive oil and lampante olive oil samples were 

examined using SIMCA and GADA analysis. The FTIR spectral data matrix was 

designed as including 36 samples of olive oil in the training set and 10 samples in the 

test set. The designed spectral data matrices have 36 x 3371 for training set and 10 x 

3371 for test set. Both matrices were autoscaled before the classification procedure was 

started.  

SIMCA analysis was performed after predefinition of each classes and test set. 

At the end of the analysis eight principal components (a 98.80% and a 98.40% of 

explained variances for the classes of refined olive and lampante olive oil samples, 

respectively) were found out for both classes. The critical limits were calculated as 1.35 

for both vertical and horizontal lines at 95% confidence level. According to the 
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Cooman’s plot (Figure 7.28) the samples of LOO-4 and LOO-14 are classified as 

belonging to the both classes whereas the samples ROO-3, ROO-4 existing in the test 

set and the test samples of lampante olive oils coded as LOO-1 and LOO-5 are 

classified as not belonging to the any classes.  

 

 
Figure 7.28. Cooman's plot of olive oil samples obtained from SIMCA analysis of FTIR 

spectra (star: ROO-training, circle: LOO-training, box: test set). 
 

 
Figure 7.29. Cooman's plot of olive oil samples obtained from GADA analysis of FTIR 

spectra 
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GADA analysis was initiated with 6 genes and 10 iteration numbers. Totally 

thirteen principal components (90.80% of explained variance) were found out at the end 

of the analysis. The critical limits were calculated as 5.62 at 95% confidence level and 

these limits were used to separate the olive oil classes. The Cooman’s plot was drawn to 

observe the distribution of olive oil samples in the space (Figure 7.29). The LOO-1 and 

LOO-5, ROO-3, 4, and 5 existing in the test set were found as not belonging to any 

classes predefined as refined olive oil and lampante olive. The same result was also 

obtained from the SIMCA analysis. This proves that FTIR spectra of these olive oil 

samples are different than the other olive oil samples. These samples can be expected as 

outliers.  

The wavenumbers that were selected by genetic algorithms in the GADA 

analysis are shown in Figure 7.30. Totally sixty two of 3371 wavenumbers were used in 

the classification of olive oil samples. As it is seen from the plot of almost all selected 

the wavenumbers that have differentiation in the absorbance value have contribution on 

the identification of similarities or dissimilarities of the olive oils.  

 

 
 

Figure 7.30. The plot of selected wavelengths used in the classification of olive oil 
samples using GADA analysis 

 
 
To see the differentiation in the level absorbance values, the selected regions 

were plotted in a smaller scale (Figure 7.31). As it is seen from the Figure 7.31, the 
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intensity of peak height is based on the quality of olive oil. Genetic algorithm is 

selectable when spectral data matrix is used as an input.  

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
Figure 7.31. FTIR spectra of refined and lampante olive oil samples in different regions 

a) 4000 – 2430 cm-1, b) 2430 – 1600 cm-1, c) 1630 – 630 cm-1. 
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7.4. Fluorescence Results 
 

7.4.1. Excitation – Emission Fluorescence Results 
 

7.4.1.1. Excitation – Emission Fluorescence Measurements of Olive Oil 
Samples 

 

Kyriakids and Skarkalis studied on the fluorescence spectra measurement of 

olive oils and other vegetable oils. The emission spectra of olive oils were taken in the 

range of 400–700 nm at 365 nm excitation wavelength. In the fluorescence spectra of 

olive oils, four different fluorescence peaks were observed with a low intensity 

compared to the vegetable oils. Two medium peaks at 445 and 475 nm, one strong peak 

at 525 nm, and one weak peak to medium peak at 681 nm. Fluorescence at peak 680 nm 

was defined as typical of native chlorophyll. To proof that statement, the addition of 

chlorophyll was examined and the samples of virgin olive oil resulted in increase of the 

680 nm peak. Also the heating experiment was performed and the fluorescence peak at 

680 nm was decreased accompanied by a disappearance of green color of olive oil. As a 

consequent, due to the changes in the amount of chlorophyll, the chlorophyll acts as 

fluorescent quencher. Also another interesting result was observed from the heated olive 

oil sample. It was the increase of the intensity of peak at the region of 400–500 nm. The 

fluorescence peak at 525 nm appeared as a large peak on the spectra of virgin olive oil 

samples. At the beginning the reasons of appearance of this peak was connected to the 

parinaric acid, chlorophyll, and vitamin E. After some experiments, the peak was 

concluded as vitamin E, since the fluorescence spectra of pure vitamin E appeared as 

virgin olive oil samples. Lastly the peaks observed in the region 420–450 nm were 

obtained with different intensity among the virgin olive oils. The correlation studies of 

K270, K232, and acidity with the intensity of fluorescence peaks were examined. As it is 

known, these values (of K270, K232) are related to the oxidation state and hydrolysis 

products (acidity) of the oils. The peaks appeared in that region are proportional to these 

values. Finally the researchers indicated that the UV absorption at 270 and 232 nm were 

responsible for the intensity of fluorescence peak at 445 nm of good quality virgin olive 

oils that contains the monosaturated fatty acids and high content of phenolic 

antioxidants and could be partly due to its tocopherol contents. On the other hand, if this 

fluorescence peak was exhibited as a large peak, it could be due to the large percentages 
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of polyunsaturated fatty acids and their much higher percentages of oxidation products. 

(Kyriakids and Skarkalis 2000) 

 
 

a) 

 
 

b) 

 

c)  

 
Figure 7.32. Excitation–emission fluorescence spectrum of a) extra virgin olive oil b) 

lampante olive oil c) refined olive oil between λexc=300–435 nm and 
λem=400–850 nm 

 
 
In order to determine the whether the peaks in the fluorescent spectra of olive 

oils were related to the chlorophyll, phenolic antioxidants, vitamin E or oxidation 

products, as indicated above, the olive oil samples were purchased from TARİŞ, the 

Union of TARIS Olive and Olive Oil Co-operatives and their fluorescence spectra were 

measured in the range of 400–850 nm at 300–435 nm excitation wavelength. The 

fluorescence spectra of both extra virgin olive oil and lampante olive oil samples shows 

Rayleigh scattering which are appeared at the measuring emission wavelengths below 
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excitation wavelengths (Figure 7.32). Despite this scattering; extra virgin olive oil and 

lampante olive oil samples generally displayed the same pattern due the higher peak 

between the λem=650–700 nm at λexc=300–390 nm. 

These intense peaks are the result of chlorophylls that are existed in the olive 

oils. In the lampante olive oil this peak appears much less intense than the extra virgin 

olive oils, the intensity difference of the chlorophyll peaks between the olive oil 

samples may be the results of differences at the values of K270, K232 or the origin of the 

olive oil samples. There is also another less intense peak in the range of λexc=300–390 

nm and λem=400-550 nm which is attributed to oxidation products (Figure 7.33.). This 

peak in the fluorescence spectrum of lampante olive oil shows a peak around 460 nm 

emission wavelength at 360–390 nm excitation wavelength whereas in the extra virgin 

olive oil shows much less intense peak. The peak at 460 nm refers the oxidation 

products or hydrolysis products that exist in the lampante olive oil samples. Due to 

stability of extra virgin olive oils to the oxidation this peak is less than lampante olive 

oil’s peak. Extra virgin olive oils are quite stable to oxidation process due to their low 

fatty acid unsaturation and the high antioxidant activity of phenolic compounds and α-

tocopherol (Vitamin E). Therefore the peaks around 520 nm can be attributed to 

Vitamin E (Guimet, et al. 2004, Guimet, et al. 2005, Kyriakidis and Skarkalis 2000). 

Oxidation products are formed when olive oils contact with air or light. The oxygen 

existing in the air has radical reactions between the double bonds of unsaturated fatty 

acids and the light accelerates the reaction. In the end conjugated hydroperoxides are 

formed. Due to the instability of these hydroperoxides, they quickly decompose into the 

aldehydes and ketones (Guimet, et al. 2004) and it is particularly known that these 

reactions are affecting the nutritional and safety properties of olive oils (Cheikhousman, 

et al. 2005). 
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a) 

 

b) 

 

c)  
 

 
Figure 7.33. Excitation–emission fluorescence spectrum of a) extra virgin olive oil b) 

lampante olive oil c) refined olive oil between λexc=300–390 nm and 
λem=400–600 nm. 

 
 
The fluorescence spectra of extra virgin olive oil and lampante olive oil can be 

seen in a two-dimensional way. In Figure 7.34, the existing peaks are clearly seen. The 

peaks around 400–550 nm are clearly different oil to oil. The acidity value of extra 

virgin olive oil is smaller than lampante olive oils; therefore the contents of 

monounsaturated and polyunsaturated fatty acids are caused the difference in 

fluorescence spectra. Also less intense peak around 470 nm for extra virgin olive oil is 

appeared in the fluorescence peak. Kyriakids and Skarkalis states in their study, this 

peak was due to oxidation of vitamin E. When it emitted the fluorescence light, vitamin 

E acetate was oxidized in that region.  
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Figure 7.34. Excitation–emission fluorescence spectrum of extra virgin olive oil, refined 
olive oil, and lampante olive oil samples were measured between λem=400–
600 nm at 375 nm excitation.  

 
 
In excitation–emission fluorescence studies, mainly four different compounds 

(chlorophyll, vitamin E, phenolic antioxidants and oxidation products) act as main 

fluorescent components in olive oils. Synchronous fluorescence could be beneficial for 

the analysis of olive oil samples. It collects the emission only from the waveband where 

the absorption and emission bands overlap by the specified wavelength interval. This 

collection reduces the complexity of fluorescence spectra of fluorescent compounds. As 

a result, the selectivity of for individual components is considerably improved; much 

more fluorescent compounds will be detected. 
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7.4.1.2. Classification Results of SVD-PCA and GAPCAD 
 

7.4.1.2.1. Classification of Extra Virgin Olive Oils and Lampante Olive 
Oils 

 

In order to classify the extra virgin olive oil (EVOO) and lampante olive oil 

(LOO) samples, both singular value decomposition based principal component analysis 

(SVD-PCA) and distance based genetic algorithm principal component analysis 

(GAPCAD) were performed. The success of GAPCAD algorithm was compared to the 

results of SVD-PCA. SVD–PCA was calculated from the emission spectra oils between 

the λemis. = 400–800 nm measured at λexc. = 300–435 nm with 15 nm increments. The 

observed three-dimension array data was concatenated in order to obtain two-way array 

spectral data matrix and EEF spectral data matrix was observed in 46 x 4510 (sample 

number x (λexc. x λemis.)) dimensions. The olive oil samples of both training and test set 

were combined and used to calculate the principal components of the spectral data 

matrix. Totally seven significant principal components were calculated with 92.47% of 

explained variance. The scores of first two principal components (70.00% of explained 

variance) were used to see the classes of olive oil samples in the space. Figure 7.35.a. 

shows the scatter plot of scores of PC1 and PC2.  

In the examination of GAPCAD algorithm two different sample set were used 

named as training and test set. The training set contains totally thirty six olive oil 

samples, half of them are extra virgin olive oil and the other remaining are lampante 

olive oil samples. The test set includes totally ten olive oil samples divided into two 

groups with five olive oil samples of each oil classes. The algorithm was initiated with 

50 genes and 100 iteration numbers. For autoscaled data, the number of significant 

principal components was four with %97.91 of explained variance. The first two 

principal components (% 70.87 of explained variance) were used to differentiate the 

olive oil samples into two different classes (Figure 7.35.b.).  
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SVD-PCA 

 
(a)Whole EEF spectral data 

 

GAPCAD 

 
(b) Whole EEF spectral data 

 

 
Figure 7.35. Score plot of principal components calculated from unfolded EEF data 

matrix of olive oil samples using SVD-PCA and GAPCAD for whole 
spectral data (λemis. = 400–850 nm at λexc. = 300–435 nm with 15 nm 
increments). 
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The distribution of olive oils obtained from the scores of principal components 

that were found out using SVD-PCA is along on both the PC1 and PC2. Generally, the 

positive scores of PC1 and negative scores of PC2 refer the EVOO samples whereas 

LOO samples are distributed on the combination of negative scores of PC1 and positive 

scores of PC2. The reasons of scattering on both principal components can be easily 

seen from the loading plots of PC1 and PC2 vs. refolded EEF matrix (Figure 7.36.a and 

Figure 7.36.b). The most contribution of PC1 comes from both the fluorescence peaks 

of chlorophylls (λemis. = 600–700 nm at all excitation wavelengths) and tocopherol 

(λemis. = 500–600 nm at λexc. = 375–435 nm). The loading plot of PC2 shows only the 

contribution of tocopherol (λemis. = 500–550 nm) at low excitation wavelengths. As it 

mentioned before, the main differences between the extra virgin olive and lampante 

olive are the amount of tocopherol and oxidation products. The fluorescence properties 

of tocopherol have weighted effects in both PC1 and PC2. Therefore the distributions of 

olive oil samples in the space are along on both scores.  

On the other hand, the score plot obtained from GAPCAD calculation, the two 

different types of olive oil samples are separated mainly along principal component 1. 

Extra virgin olive oils mostly have positive scores, whereas the lampante olive oil 

samples mostly have negative scores on the score plot. Due to wavelength selection 

property of GAPCAD, it can be easily obtained which wavelength(s) were used in the 

classification of olive oil samples.  
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SVD-PCA GAPCAD 

 
a) Loading plot of PC1 calculated from the 
whole EEF spectral data 
 

 
 
c) Loading plot of PC1 calculated from the 
whole EEF spectral data 
 

 
b) Loading plot of PC2 calculated from the 
whole EEF spectral data 

 
 
d) Loading plot of PC2 calculated from the 
whole EEF spectral data 

 
 

Figure 7.36. Loading plots of refolded EEF spectral data (λemis. = 400–850 nm at λexc. = 
300–435 nm).of the olive oil samples (autoscaled data) a) Principal 
Component 1, b) Principal Component 2 obtained from SVD-PCA, c) 
Principal Component 1, b) Principal Component 2 obtained from 
GAPCAD. 

 
 
In GAPCAD calculation, only seven emission wavelengths at different 

excitation wavelengths were used to classify the extra virgin olive oil and lampante 

olive oil samples. These wavelengths are 564, 669 nm (λexc. =330 nm), 542, 782 nm 

(λexc. =345 nm), 800 nm (λexc. =405 nm), 590, 748 nm (λexc. =420 nm), respectively. 

These wavelengths generally refer the fluorescence peaks of chlorophylls and 

tocopherol. Mainly the fluorescence peak of tocopherol at 345 nm excitation 
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wavelength has the most weighted loading values of PC1. This is the main reason why 

PC1 is more effective in the classification. As it mentioned before the EVOO are mostly 

yielded tocopherol. The results also show that again the chlorophylls fluorescence bands 

are valuable in the classification of olive oil samples (Figure 7.36.c and Figure 7.36.d), 

due to the large and intense fluorescence peak of chlorophylls.  

In order to prove the effect of chlorophyll bands on to the classification results, 

the GAPCAD was performed hundred times and the distribution of selected emission 

wavelengths at a various excitation wavelengths was investigated. Figure 7.37 shows 

the frequency of selected wavelengths after 100 runs of GAPCAD processing. 

Generally the chlorophylls fluorescence peaks are the most selected emission 

wavelengths at a various excitation wavelengths. This is not an amazing result, since the 

chlorophylls fluorescence bands have a large peak area on the whole spectra. For this 

reason, the EEF matrix was designed without chlorophyll fluorescence peaks, is just 

including the emission wavelength 400–600 nm with excitation wavelengths (λexc. = 

300–435 nm). 

To perform the classification analysis, EEF was designed without chlorophyll 

peak region and concatenation was done to observe two way array of 36 x 2010 

(samples x {λexc x λem}) for the training set. The same process was done to the test 

sample set and the array of 10 x 2010 (samples x {λexc x λem}) data matrix was 

observed. For the SVD-PCA calculation training and test sample set were combined and 

evaluated together. In both algorithms, autoscaling preprocessing technique was applied 

to the spectral data matrix.  
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Figure 7.37. Frequency of selected wavelengths after 100 runs of GAPCAD in the 

examination of whole EEF spectral data. 
 
 
In the examination of SVD-PCA algorithm, ten significant principal components 

were calculated with an 81.07% of explained variance. The scores of first two principal 

components (with 46.06% of explained variance) were plotted and the distributions of 

olive oil samples were obtained (Figure 7.38.a). On the other side, distance based 

genetic algorithm principal component analysis was set to initiate with 50 gene and 50 

iteration numbers and at the end of the analysis the first five principal component scores 

was found as 94.38% of explained variance value. The score plot of the first two 

principal components (75.49% of explained variance) were plotted to see the 

distribution of olive oil samples (Figure 7.38.b).  
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SVD-PCA 

 
(a) EEF spectral data without chlorophyll fluorescence peaks. 

 

GAPCAD 

 
(b) EEF spectral data without chlorophyll fluorescence peaks. 

 

 
Figure 7.38. Score plot of principal components calculated from unfolded EEF data 

matrix of olive oil samples using SVD-PCA and GAPCAD for spectral 
data without chlorophyll peaks (λemis. = 400–600 nm at λexc. = 300–435 nm 
with 15 nm increments). 
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As it is seen from the figure, score plots obtained from both algorithms shows 

the same distributions. Only the negative and positive scores of principal components 

refer different type of olive oils. They are mainly along on the PC2. To visualize the 

effect of florescent compounds those are the constituents of olive oils, the loading 

values of each principal components were plotted against refolded EEF spectral data 

matrix. The loading plot of PC2 shows that the emission wavelengths in the range of 

550 – 600 nm at low excitation wavelengths are the most contributed florescence region 

in the classification. This range refers the tocopherol compounds of olive oils, therefore 

the extra virgin olive oil samples are mainly distributed on negative scores of PC2. In 

GAPCAD calculation, only eleven emission wavelengths at different excitation 

wavelengths were used to classify the extra virgin olive oil and lampante olive oil 

samples. These wavelengths are 455, 518 nm (λexc. =330 nm), 474 nm (λexc. =345 nm), 

566 nm (λexc. =360 nm), 436 and 490 nm (λexc. =375 nm), 442 nm (λexc. =405 nm), 415, 

430 nm (λexc. =420 nm), 549 nm (λexc. =435 nm), respectively. Among all these selected 

wavelengths, the emission wavelength of 518 nm at 330 nm excitation has the most 

contribution in the classification of olive oil samples. As it is seen from the score plot of 

olive oils obtained from GAPCAD calculation, the positive scores of PC2 refer the 

distribution of extra virgin olive oil samples.  
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SVD-PCA GAPCAD 

 
a) Loading plot of PC1 calculated from the 
EEF spectral data without chlorophyll 
fluorescence peak 
 

 

 
c) Loading plot of PC1 calculated from the 
EEF spectral data without chlorophyll 
fluorescence peak 
 

 
b) ) Loading plot of PC2 calculated from 
the EEF spectral data without chlorophyll 
fluorescence peak 
 

 

 
d) Loading plot of PC2 calculated from 
the EEF spectral data without chlorophyll 
fluorescence peak 
 

 
 

Figure 7.39. Loading plots of refolded EEF spectral data (λemis. = 400–600 nm at λexc. = 
300–435 nm).of the olive oil samples (autoscaled data) a) Principal 
Component 1, b) Principal Component 2 obtained from SVD-PCA c) 
Principal Component 1, b) Principal Component 2 obtained from 
GAPCAD. 
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GAPCAD was performed 100 times, in order to see the real effect of fluorescent 

compounds. At the end of the performing, the frequency of selected wavelengths was 

determined and plotted. Figure 10 proves that the fluorescence property of tocopherol is 

the dominant factor in the classification of extra virgin and lampante olive oil samples.  

 
 

 
 
Figure 7.40. Frequency of selected wavelengths after 100 runs of GAPCAD in the 

examination of EEF spectral data without chlorophyll fluorescence peak. 
 
 

7.4.1.2.2. Classification of Refined Olive Oils and Lampante Olive Oils 
 

Singular value decomposition based principal component analysis (SVD–PCA) 

was calculated from the emission spectra oils between the λemis. = 400–850 nm 

measured at λexc.=300–435 nm with 15 nm increments. The observed three-dimension 

array data was concatenated in order to obtain two-way array spectral data matrix and 

EEF spectral data matrix was observed in 46 x 4510 (sample number x (λexc. x λemis.)) 

dimensions. Distance based genetic algorithm principal component analysis was also 

performed to the classification of refined olive oil and lampante olive oil samples. The 

training set contains totally thirty six olive oil samples, half of them are refined olive oil 

and the other remaining are lampante olive oil samples. The test set includes totally ten 

olive oil samples divided into two groups with five olive oil samples of each oil classes. 
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concatenation processing. The resulted training and test set’s spectral data matrices have 

36 x 4510, 10 x 4510 (sample number x (λexc. x λemis.)) dimensions, respectively. Due to 

the high intense fluorescence peak of chlorophylls, autoscaling preprocessing technique 

was performed before the decomposition EEF spectral data matrix. The aim of the 

preprocessing is to make use of the contributions of other species exist in the olive oils.  

In SVD-PCA calculation, ten significant principal components with 94.17% of 

explained variance were found for autoscaled spectral data. The first two principal 

components were used to identify the distribution of olive oil samples (Figure 7.41.a). 

These two principal components have 67.18% of explained variance. However it must 

be noted that both groups of olive oil samples overlapped slightly in the classification 

process using SVD-PCA. Both the scores values of PC1 and PC2 have same 

contribution on the classification of olive oil samples. On the other side, GAPCAD 

algorithm was initiated with 50 genes and 100 iteration numbers. For autoscaled data, 

the number of significant principal components was four with %94.01 of explained 

variance. The first two principal components (% 76.88 of explained variance) were used 

to differentiate the two types of olive oil samples into two different classes (Figure 

7.41.b). As it seen from the score plot, the two different types of olive oil samples are 

separated mainly along principal component 1. Refined olive oils mostly have positive 

scores, whereas the lampante olive oil samples mostly have negative scores on the score 

plot.  

To observe the which wavelength region(s) have the most contribution on the 

classification of olive oil samples, the loading plots of PC1 and PC2 were drawn against 

to the refolded EEF spectra. In SVD-PCA calculation, the contribution of oxidation 

products and vitamin E are seen (at higher excitation wavelengths) from the loading plot 

of PC1 (Figure 7.42.a) and also the contribution of chlorophyll fluorescence peaks is 

similar as the other components. On the other hand, the loading plot of PC2 shows that 

the tocopherol and oxidation products (the peaks at lower excitation wavelengths) have 

the larger contributions, as it is seen from Figure 7.42.b.  
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SVD-PCA 

 
(a) Whole EEF spectral data 

 

GAPCAD 

 
(b) Whole EEF spectral data 

 

 
Figure 7.41. Score plot of principal components calculated from unfolded EEF data 

matrix of olive oil samples using SVD-PCA and GAPCAD for whole 
spectral data (λemis. = 400–850 nm at λexc. = 300–435 nm with 15 nm 
increments). 
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Due to the nature of genetic algorithms, the wavelengths which have desired 

knowledge about samples will be selected and the corresponding fluorescence 

properties will be used in the classification of olive oil samples. In the examination of 

GAPCAD, only four emission wavelengths at four different excitation wavelengths 

were used in the calculation of principal components and the scores of these principal 

components were used to classify the two types of olive oil samples. All these emission 

wavelengths are 557 nm (λexc. = 345 nm), 529 nm (λexc. = 375 nm), 573 nm (λexc. = 405 

nm), 641 nm (λexc. = 435 nm). The loading plot of these selected wavelengths at 

different excitation wavelengths is shown in Figure 7.42. The selected wavelengths 

generally related to the vitamin E contents of olive oils which are the refined olive oil 

samples. Refined olive oil samples generally called as pure olive oil, since they are 

obtained from refining virgin olive oils which have higher acidity value and/or 

organoleptic (taste and aroma) defects and they are eliminated after refining of virgin 

olive oil samples. Therefore the contribution of vitamin E is higher than the other 

constituents, as it is seen from Figure 7.42. This contribution also explains the reasons 

of distribution of olive oil samples mainly on PC1 (Figure 7.41).  
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SVD-PCA GAPCAD 

 
a) Loading plot of PC1 calculated from the 
whole EEF spectral data 
 

 

 
c) Loading plot of PC1 calculated from 
the whole EEF spectral data 
 

 
b) Loading plot of PC2 calculated from the 
whole EEF spectral data 
 

 

 
d) Loading plot of PC2 calculated from 
the whole EEF spectral data 
 

 
 

Figure 7.42. Loading plots of refolded EEF spectral data (λemis. = 400–850 nm at λexc. = 
300–435 nm).of the olive oil samples (autoscaled data) a) Principal 
Component 1, b) Principal Component 2 obtained from SVD-PCA, c) 
Principal Component 1, b) Principal Component 2 obtained from 
GAPCAD. 
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the classification of refined and lampante olive oil samples. Due to the predomination of 

vitamin E fluorescence bands, either SVD-PCA or GAPCAD algorithm were performed 

to the whole EEF spectral data.  

 

 

 
 
Figure 7.43. Frequency of selected wavelengths after 100 runs of GAPCAD in the 

examination of whole EEF spectral data. 
 

 

Also in order to compare the differences between the classification results of 

spectra data matrix with and without chlorophyll fluorescence peaks, spectral data 

matrix was redesigned without the fluorescence peak of chlorophylls. The new designed 

spectral data matrix has 36 x 2010 and 10 x 2010 dimensions for training and test set, 

respectively. As it mentioned before training and test sample sets were combined and 

the total spectral data matrix (with a 46 x 2010 dimension) was used in the analysis of 

SVD-PCA.  

For the examination of autoscaled spectral data, ten significant principal 

components (with a 77.21 % of explained variance) were calculated and the scores of 

first two principal components (with a 46.76 % of explained variance) were used to 

visualize the classes of olive oils (Figure 7.44.a.).  
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SVD-PCA 

 
(a) EEF spectral data without chlorophylls 

 

GAPCAD 

 
(b) EEF spectral data without chlorophylls 

 

 
Figure 7.44. Score plot of principal components calculated from unfolded EEF data 

matrix of olive oil samples using a) SVD-PCA and b) GAPCAD for 
spectral data without chlorophyll peaks (λemis. = 400–600 nm at λexc. = 300–
435 nm with 15 nm increments). 
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The results of SVD-PCA show that the lampante olive oils are mainly along on 

the positive scores of PC2, whereas the negative scores of PC2 assign the refined olive 

oils. Due to the broad range in the acidity value of LOO, LOO samples are more 

scattered than ROO samples. The reason of scattering on PC2 becomes from the 

contribution of emission wavelengths in the range of 500–600 nm at low excitation 

wavelengths (Figure 7.45.b). On the other hand there is no intense contribution from 

PC1.  

On the other side, GAPCAD algorithm was initiated by predefinition of 50 

genes and 100 iterations for training set. After the decision rule was obtained for the 

autoscaled EEF spectral data, it applied to the test set and the distributions of olive oils 

samples were obtained by plotting the first two principal components. Four significant 

principal components were found out with a 99.00% of explained variance. The first 

two principal components have a 92.78% of explained variance. As it is seen from 

Figure 7.44.b., the classes of olive oil samples are scattered on both PC1 and PC2.  
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SVD-PCA GAPCAD 

 
a) Loading plot of PC1 calculated from the 
EEF spectral data without fluorescence 
peak of chlorophyll. 
 

 

 
 

c) Loading plot of PC1 calculated from 
the EEF spectral data without 
fluorescence peak of chlorophyll. 
 

 
b) Loading plot of PC2 calculated from the 
EEF spectral data without fluorescence 
peak of chlorophyll. 
 

 

 
 

d) Loading plot of PC2 calculated from 
the EEF spectral data without 
fluorescence peak of chlorophyll. 
 

 
Figure 7.45. Loading plots of refolded EEF spectral data (λemis. = 400–600 nm at λexc. = 

300–435 nm).of the olive oil samples (autoscaled data) a) Principal 
Component 1, b) Principal Component 2 obtained from SVD-PCA, c) 
Principal Component 1, b) Principal Component 2 obtained from 
GAPCAD. 
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GAPCAD algorithm, only five emission wavelengths at 300, 315, 330, and 405 nm 

excitations were used to classify the olive oil samples. The selected emission 

wavelengths which have the largest loading values of PC1 are 419 nm (at 330 nm 

excitation), 433 nm (at 405 nm excitation), and 437 nm (at 300 nm excitation) refer the 

oxidation products of lampante olive oils and the 511 nm emission at 315 nm excitation 

assign the existed of tocopherol in the olive oil samples (Figure 7.45.c). The 

fluorescence peak of tocopherol at 562 nm emission (λexc. = 405 nm) have the largest 

contribution of PC2 in the classification of olive oil samples (Figure 7.45.d). Therefore 

the olive oil samples are scattered on both PC1 and PC2 (Figure 7.44.b). 

 

 

 
 
Figure 7.46. Frequency of selected wavelengths after 100 runs of GAPCAD in the 

examination of EEF spectral data without chlorophyll fluorescence peaks 
 

 

In order to see the frequency of selected wavelengths, GAPCAD was performed 

100 times. Figure 7.46 shows that, the emission in the range of 420–450 nm and the 

fluorescence peaks of tocopherols (emission in the range of 500–550 nm) are the mostly 

used wavelengths.  
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7.5. Classification Results of SIMCA and GADA 
 

7.5.1.1.1. Classification of Extra Virgin Olive Oil and Lampante Olive 
Oil Samples. 

 

Classification of two different olive oil types named as EVOO and LOO were 

studied by using genetic algorithm based discriminant analysis (GADA) and SIMCA. In 

order to achieve the classification performance of GADA, the results of SIMCA was 

compared to the results of GADA. Totally forty six olive oil samples including 23 of 

EVOO and 23 LOO olive oil samples were used to construct the data set of olive oils. 

These data matrix were divided into two different set named as training and test set. 

Training set contains totally thirty six olive oil samples with their corresponding 

excitation–emission fluorescence (EEF) spectra. Each spectrum contains totally 4510 

emission wavelengths at 10 different excitation wavelengths. Therefore the spectral data 

matrix was concatenated in order to obtain two-dimension array data matrix with 36 x 

4510 dimensions. Same procedure was repeated for the independent test set. Test set 

includes ten olive oil samples with 4510 emission wavelengths. Before starting the 

classification analysis, in both analyses autoscaling was used as preprocessing 

technique. Two categories were predefined as class 1 including 18 samples of extra 

virgin olive oils, class 2 for 18 samples of lampante olive oil samples and 5 of extra 

virgin olive oil and 5 of lampante olive oil samples building test set.  

Classification of olive oil samples by SIMCA analysis of EEF spectra (whole 

spectra) is shown in (Figure 7.47). Vertical and horizontal lines in Cooman’s plot 

indicate the boundaries for classifying samples at a 5% significance level. The olive oil 

samples existed in the training set do not place in the outlier region which is indicated 

as neither extra virgin olive oil nor lampante olive oil samples. There is only one LOO 

sample in the outlier region. Two samples of EVOO and one of LOO sample can be 

assigned as belonging to both classes. Eight significant principal components were 

calculated for both EVOO and LOO classes with a 71.6% and 73.7% of total variances, 

respectively.  
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Figure 7.47. Cooman's plot of olive oil samples obtained from SIMCA analysis of EEF 

spectra (triangle: EVOO-training, circle: LOO-training, box: test set) 
 

 

GADA was used to determine which variables better modulate and discriminate 

between the classes or the categories established depending on variety of olives. Same 

data matrix was used to build the classes of olive oil samples. The algorithm was 

initiated with 10 genes and 10 iteration number at 95% confidence level. 10 significant 

principal components were calculated with a 91.02% of explained variance. The 

Cooman’s plot of olive oil samples were shown in Figure 7.48. From the results of 

GADA analysis, three of LOO samples existing in test set were classified as a third 

class which is not belonging to both classes. And also one of the LOO sample was 

found as an outlier at 95% confidence level. On the other side the classification results 

of EVOO samples was better than the results of LOO samples. The main reason for that 

kind of classification is the diversity in the amount of free fatty acids values of lampante 

olive oils.  
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Figure 7.48. Cooman’s plot of olive oil samples obtained from GADA analysis of EEF 

spectral matrix.  
 

 

Due to the working principle of GADA that is based on the natural evolution, 

the emission wavelengths at different excitation wavelengths were selected according to 

the intensity values of components existing in the olive oil samples. These selected 

wavelengths are shown in Figure 7.49. The most important point of these wavelengths 

is that contain the necessary information for the classification of extra virgin olive oil 

samples and lampante olive oil samples. At the end of the analysis, these wavelengths 

are generally related to the fluorescence peaks of chlorophyll compound existing in the 

olive oil samples and at lower excitation wavelengths the peak appeared around 445 nm 

emission wavelength were used in the classification of samples. This peak generally 

refers the monosaturated fatty acids and high content of phenolic antioxidants which 

characterize the good quality virgin olive oils. Also the excitation wavelengths at 300 

and 360 nm contain the most selected emission wavelengths.  
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Figure 7.49. The plot of selected wavelengths used in the classification of olive oil 

samples using GADA analysis.  
 

 

7.5.1.1.2. Classification of Refined Olive Oils and Lampante Olive Oil 
Samples 

 

GADA were also examined in the classification of refined olive oil and 

lampante olive oil samples using EEF spectral data matrix. The observed three-

dimension array data was concatenated in order to obtain two-way array spectral data 

matrix and EEF spectral data matrix was observed in 46 x 4510 (sample number x (λexc. 

x λemis.)) dimensions. In that time, two classes were predefined as class 1, 18 of refined 

olive oil samples and class 2, 18 of lampante olive oil samples. An independent test set 

was built using different 5 of refined olive samples and 5 of lampante olive oil samples. 

Before starting the analysis of SIMCA and GADA, spectral data matrix was autoscaled.  

8 principal components (with a 73.7% and 70.7% of total variance for class 1 

and class 2, respectively) were calculated for both class 1 and class 2 in the analysis of 

SIMCA At 95% confidence level critical limits were found as 1.34 and these limits 

were drawn as vertically and horizontally in the Cooman’s plot (Figure 7.50). As it is 

seen from the plot ROO-22 was appeared as an outlier or assigned as not belonging to 

the both classes.  
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Figure 7.50. Cooman's plot of olive oil samples obtained from SIMCA analysis of EEF 

spectra (star: ROO-training, circle: LOO-training, box: test set) 
 

 

GADA analysis was initiated with 6 genes and 10 iteration numbers at 95% 

confidence level. 15 principal components were used to identify the olive oil classes in 

Cooman’s plot. The vertical and horizontal critical limits were found as 12.49 for both 

classes at 95% confidence level with (m-PC-1) degrees of freedom for each class. As it 

is seen from the Figure 7.51, the training sets of each olive oil type were classified in a 

level of 94.4% (17/18) for ROO and 88.89% (16/18) for LOO samples. On the other 

hand the test set of olive oil samples were classified in a level of 70% (7/10). According 

to the results assigned in Cooman’s plot one of ROO and two of LOO have similar 

properties, and also one LOO sample existing in the test set have similar properties.  
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Figure 7.51. Cooman's plot of olive oil samples obtained from GADA analysis of EEF 
spectra. 

 
 

As it is mentioned before, genetic algorithm is imposed to the discriminant 

analysis to select the wavelengths which contains the necessary information that will be 

useful in the classification of samples. At the end of the analysis, forty six wavelengths 

at different excitation wavelengths were selected. Spectral data matrix was contained 

totally 4510 emission wavelengths, and GADA was used only 46 of them in the 

classification of refined olive oil and lampante olive oil samples. These wavelengths 

generally assign the fluorescence peaks of chlorophylls and tocopherols existing in the 

olive oil samples. Especially the 300, 315, 330, and 435 nm excitation wavelengths 

were used in the classification olive oil samples. The emission wavelengths of 

tocopherols at 300, 315 and 330 nm excitation have the large contribution on the 

classification whereas the emission wavelengths of chlorophylls have contribution only 

at 435 nm excitation.  
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Figure 7.52. The plot of selected wavelengths used in the classification of olive oil 

samples using GADA analysis.  
 

 

7.5.2. Total Synchronous Fluorescence Results 
 

7.5.2.1. Total Synchronous Fluorescence Measurements of Olive Oil 
Samples 

 

In the literature, the synchronous fluorescence studies indicates two main 

fluorescent compounds named as tocopherol and chlorophyll in the olive oil samples 

(Sikorska et al., 2004, Sikorska et al., 2005). The synchronous fluorescence spectra of 

pure α-tocopherol and bacteriopheophytin c (indicates chlorophyll) were studied in the 

range of 250–700 nm with 10, 20, 30, 60 and 80 nm offset values were studied. 

Bacteriopheophytin c was used instead of chlorophyll compound. Bacteriopheophytin c 

differs in structure of chlorophylls a and b, in that the pyrrole ring IV is not reduced, 

and the position 17 is esterified by an acrylic residue instead of a propionic group, 

terminal carboxylic group being generally not esterified (Schoefs, 2002). However the 

fluorescence spectra of the pigments of chlorophylls group are very similar. The 

resulted synchronous spectra at 60 and 80 nm offset values of chlorophyll exhibits two 
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fluorescence peaks at 665, 610 and 665, 603 nm, respectively. The synchronous 

fluorescence spectrum at 10 nm offset value of α-tocopherol in n-hexane shows a 

narrow band with high intensity at 301 nm. However at higher offset values, the 

maximum of band is shifted to the 317–319 nm with large and weak intensity 

depending on oil. (Sikorska, et al. 2005).  

 

 

 
 

Figure 7.53. Synchronous fluorescence spectra of extra virgin olive, refined olive, 
lampante olive oil by synchronous scanning the excitation and emission 
monochromator maintained an offset value of 80 nm in the spectral range 
250–750 nm. 

 

 

In the literature another synchronous fluorescence study indicates that, the 

synchronous fluorescence spectral differences were based on only the acidity of 

lampante and virgin olive oils (Poulli, et al. 2005). Poulli, et al. states that acidity of 

olive oil is based on the hydrolytic rancidity; therefore the expected free fatty acids are 

indicated as linoleic, palmitic and oleic acid. The pure forms of these acids were 

observed and their synchronous fluorescence spectra with an 80 nm offset value were 

taken to prove the bands of oleic, palmitic, and linoleic acid. The fluorescence bands of 
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oleic, butyric and linoleic acids were found as 405 nm, 273 nm, and 325 nm, 

respectively.  

 

 

a)

 

b)

 

c)  

 
Figure 7.54. Total synchronous fluorescence spectrum of a) extra virgin olive oil, b) 

lampante olive oil, and c) refined olive oil samples were measured between 
λem=250–800 nm at 50 – 100 nm offset values with 10 nm increments. 

 

 

The total synchronous fluorescence spectra of extra virgin olive oil, refined olive 

oil and lampante olive oil are shown in Figure 7.54. These spectra show the 

synchronous fluorescence spectra of oils in the range of 250–750 nm with an 80 nm 

offset value. The two intense fluorescence bands at 600 and 660 nm are referred the 

chlorophylls. The weak and large fluorescence bands of olive oils at the region of 280–

370 nm are exhibited the tocopherol bands. Due to the differences in acidity, origin of 

olive oils, the intense of fluorescence bands are changed oil to oil. This feature may be 

helped on the classification of oils according to their quality. In the experimental 
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studies, total synchronous fluorescence was examine in the range of 250–800 nm with 

10 nm wavelength increments of the offset values in the range of 50–100 nm. In the 

classification studies the whole three-dimensional fluorescence spectra were taken as a 

data matrix. 

 

7.5.2.2. Classification Results of SVD-PCA and GAPCAD 
 

7.5.2.2.1. Classification of Extra Virgin Olive Oils and Lampante Olive 
Oils 

 

To observe the classification of extra virgin olive oil and lampante oil, total 

synchronous fluorescence spectral data matrix of olive oil samples was performed using 

singular value decomposition based principal component analysis (SVD-PCA) and 

distance based genetic algorithm principal component analysis (GAPCAD). Firstly, 

SVD-PCA was performed to evaluate which classes of olive oils exist in a data set 

without using any prior information about class memberships. Then GAPCAD was 

examined and the results were compared.  

In the examination of SVD-PCA algorithm, the unfolded TSyF spectral data 

matrix with a 46 x 3306 dimension was constructed by the combination of training and 

test sample sets. The spectral data matrix was autoscaled before the examination of 

PCA. Due to the large and intense fluorescence peak of chlorophylls, autoscaled was 

used as a preprocessing technique. Ten significant principal components explained 

85.11% of explained variance. The scores of the first two principal components with a 

66.32% of explained variance was plotted to see the distribution of olive oil samples 

(Figure 7.55.a.). The samples generally lay on principal component 2 and there are no 

distinguishable two different classes on the score plot.  
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SVD-PCA 

(a) 
 

GAPCAD 

 
(b) 

 

Figure 7.55. Score plot of principal components calculated from unfolded TSyF data 
matrix of olive oil samples using a) SVD-PCA and b) GAPCAD for whole 
spectral data (λ = 250–800 nm at ∆λ= 50–100 nm with 10 nm increments). 

 

 

In the examination of GAPCAD, totally thirty six olive oil samples were set into 

the training set, whereas ten olive oil samples were in the test set. The half of the 

training samples set includes extra virgin olive oil samples and the other half is 
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lampante olive oil samples. Test sample set was designed same with training sample set. 

The whole total synchronous fluorescence spectral data matrix contains 3306 

wavelengths with a six different offset values (∆λ=50–100 nm with a 10 nm 

increments). The algorithm was initiated with 50 genes and 100 iteration numbers. For 

autoscaled data, the number of significant principal components was three with %93.17 

of explained variance. The score plot of first two principal components was used to 

define the classes of olive oil samples (Figure 7.55.b.)The first two principal 

components have %68.75 of explained variance. As it is seen from the score plot of 

principal components, there are two different classes with a few overlapped lampante 

olive oil samples. Lampante olive oils are generally the mixtures of the virgin olive oils 

which are not fit to consumption. These olive oils can be used for the refining step or 

only industrial applications. Therefore the overlapping of lampante olive oil samples 

can be explained as some olive oil samples have extreme characteristics just like extra 

virgin olive oil samples or the mixing ratio of virgin olive oil to olive oil can be higher. 

The distribution of olive oil samples generally are laid on principal component 1. The 

extra virgin olive oil samples have negative scores whereas lampante olive oil samples 

have positive scores.  

In order to compare the classification results, the loading plots of olive oil 

samples were plotted to obtain better visualization. The first two principal components 

which were obtained from SVD-PCA calculation were used to evaluate the classes of 

olive oils; therefore the loading values of first two principal components were plotted 

against the refolded TSyF spectral data. The loading plot of PC1 shows both the 

contribution of chlorophylls (λ=570–670 nm) and tocopherol (λ=350–400 nm) at all 

offset values. On the other side, the oleic acid (λ=450–500 nm) and tocopherol (λ=350–

400 nm) show the most contribution in the classification of olive oil samples. As it 

mentioned before, the main differences between the extra virgin olive and lampante 

olive are the amount of tocopherol and the amount of the oleic acid. The fluorescence 

properties of tocopherol have weighted effects in both PC1 and PC2. Therefore the 

distributions of olive oil samples in the space are mainly along on PC2. 
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SVD-PCA GAPCAD 

 
a) Loading plot of PC1 calculated from the 
whole TSyF spectral data 
 

 

 
 

c) Loading plot of PC1 calculated from 

the whole TSyF spectral data 

 

 
b) Loading plot of PC2 calculated from the 

whole TSyF spectral data 

 

 

 
 

d) Loading plot of PC2 calculated from 

the whole TSyF spectral data 

 

 
Figure 7.56. Loading plots of refolded TSyF spectral data (λ = 250–800 nm at ∆λ = 50–

100 nm).of the olive oil samples (autoscaled data) a) Principal Component 
1, b) Principal Component 2 obtained from SVD-PCA, c) Principal 
Component 1, d) Principal Component 2 obtained from GAPCAD. 

 

 

The classes of EVOO and LOO samples were generated using totally twenty 

five wavelengths with their corresponding fluorescence intensity values at different 

offset values by using GAPCAD calculation. As it is seen from the Figure 7.56.c and 

Figure 7.56.d, the fluorescence peaks of chlorophylls, oleic acid, and tocopherols were 

50
60

70
80

90
100

300
400

500
600

700
800

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Offset ValuesWavelength (nm)

Lo
ad

in
g

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

-6

-4

-2

0

2

4

6

250 300 350 400 450 500 550 600 650 700 750 800L
oa

di
ng

Wavelength (nm)

50nm offset
60nm offset
70nm offset
80nm offset
90nm offset
100nm offset

50
60

70
80

90
100

300
400

500
600

700
800

-0.04

-0.02

0

0.02

0.04

Offset ValuesWavelength (nm)

Lo
ad

in
g

-0.02

-0.01

0

0.01

0.02

0.03

-5

-4

-3

-2

-1

0

1

2

3

4

250 300 350 400 450 500 550 600 650 700 750 800

L
oa

di
ng

Wavelength (nm)

50nm offset
60nm offset
70nm offset
80nm offset
90nm offset
100nm offset



 

130 
 

used in the classification of olive oil samples. The score plot of olive oil samples proves 

that olive oil samples are mainly along on the PC1. 

The weight of loadings that were existed in PC1 comes from the fluorescence 

peaks of oleic acids. The same result can be also easily seen from the loading plot of 

PC2. After 100 runs of GAPCAD algorithm, the frequency of selected wavelengths will 

show the trend of the wavelengths selection in the TSyF whole spectra. According to 

the Figure 7.57, at all offset values, tocopherols and oleic acid at all offset values 

(except 50 nm offset value) have the most contribution in the classification of olive oils. 

On the other hand, the effects of chlorophylls are also seen at lower offset values.  

 

 

 
 
Figure 7.57. Frequency of selected wavelengths after 100 runs of GAPCAD in the 

examination of whole TSyF spectral data. 
 

 

7.5.2.2.2. Classification of Refined Olive Oils and Lampante Olive Oils 
 

Principal component analysis (PCA) based on singular value decomposition 

(SVD) was performed as an unsupervised classification technique in order to get prior 

information on the classification of  the lampante olive oil and refined olive oil samples. 

On the other side, GAPCAD was performed as a supervised technique using two 
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different samples sets. The training set is used to construct the rules of the classification 

and then it is tested by an independent sample set named as test set. In the PCA studies, 

both training and test sample set was combined in order to see the classification results. 

The concatenated TSyF spectral data matrix with a 46 x 3306 dimension was firstly 

autoscaled and then the scores of principal components were found. Totally ten 

significant principal components were found with 85.03% of explained variance. The 

scores of first two principal components which have totally 64.44% of explained 

variance were used to identify the classes of olive oil samples.  

Figure 7.58.a. shows the scatter plot of PC1 and PC2 which has two different 

classes in the space. As it is seen from the scatter plot, there are a few overlapped olive 

oil samples which show similar properties. The score plot principal components shows 

the distribution of olive oil samples on principal component 2 (PC2) on where the 

lampante olive oils lay on positive scores and refined olive oils are gathered on negative 

scores of PC2.  

GAPCAD method was also performed to distinguish the refined olive oil and 

lampante olive oil samples using total synchronous fluorescence (TSyF) spectroscopy. 

TSyF spectral data matrix contains the wavelengths in the range of 250–800 nm at 

different offset values which starts 50 nm and ends 100 nm of offset values with a 10 

nm increments. Totally 6x551 (∆λ x wavelengths) wavelengths with their 

corresponding fluorescence intensities were observed in a three-way stacked array. This 

three-way array was concatenated and at the end 3306 fluorescence points were 

observed for each sample. Training set contains totally 36 samples in which include 18 

of refined olive oil samples and 18 lampante olive oil samples. 10 independent refined 

and lampante olive oil samples construct the test set. The GAPCAD method was 

initiated with 50 genes and 100 iterations. Totally seven significant principal 

components were found with 82.47% of explained variance. The scores of first two 

principal components which have totally 39.52% of explained variance were used to 

identify the classes of olive oil samples. Figure 7.58b shows the scatter plot of PC1 and 

PC2 which has two different classes in the space. Both principal components have 

similar amount of explained variance, therefore there is no distinguishable principal 

component in the space.  
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SVD-PCA 

 
(a) 

 

GAPCAD 

 
(b) 

 

 
Figure 7.58. Score plot of principal components calculated from unfolded TSyF data 

matrix of olive oil samples using a) SVD-PCA and b) GAPCAD for whole 
spectral data (λ= 250–800 nm at ∆λ= 50–100 nm with 10 nm increments). 
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The loading values of first two principal components calculated using SVD-

PCA was plotted against refolded TSyF spectra (Figure 7.59.a. and Figure 7.59.b.). The 

loading values of PC2 prove that the contribution of oxidation products is larger than 

the PC1. Both principal components have similar distribution on the fluorescence peaks 

of chlorophylls. The interesting result obtained from the GAPCAD is the selected 

wavelengths. As it is seen from the Figure 7.59.c and Figure 7.59.d., oxidation products 

and the oleic acid are selective in the identification of classes of olive oil samples. 

Refined olive oils have the lowest acidity value among the types of olive oils. Due to 

the high stability of refined olive oil samples, the content of α-tocopherol is higher than 

the lampante olive oil samples. This difference can be also seen from the TSyF spectra 

in the region of 270–450 nm. Generally these fluorescence peaks existing in the region 

of 270 –450 nm were selected to use in the identification of the olive oil classes. To see 

the frequency of selected wavelengths, GAPCAD was performed 100 times (Figure 

7.60). 
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SVD-PCA GAPCAD 

 
a) Loading plot of PC1 calculated from 
the whole TSyF spectral data 

 

 
 
 
c) Loading plot of PC1 calculated from the 
whole TSyF spectral data 

 
b) Loading plot of PC2 calculated from 
the whole TSyF spectral data 
 

 

 
 

 
d) Loading plot of PC2 calculated from the 
whole TSyF spectral data 
 

 
Figure 7.59. Loading plots of refolded TSyF spectral data (λ = 250–800 nm at ∆λ = 50–

100 nm).of the olive oil samples (autoscaled data) a) Principal Component 
1, b) Principal Component 2 obtained from SVD-PCA, c) Principal 
Component 1, d) Principal Component 2 obtained from GAPCAD 
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Figure 7.60. Frequency of selected wavelengths after 100 runs of GAPCAD in the 

examination of whole TSyF spectral data. 
 

 

7.5.2.3. Classification Results of SIMCA and GADA 
 

7.5.2.3.1. Classification Results of Extra Virgin Olive Oils and 
Lampante Olive Oils 

 

To observe the classification of extra virgin olive oil and lampante oil, total 

synchronous fluorescence spectral data matrix of olive oil samples was performed using 

SIMCA and genetic algorithm discriminant analysis (GADA). Firstly, SIMCA was 

performed and then GAPCAD was examined. After all, the results were compared to 

get the performance of GADA analysis. In the examination of SIMCA algorithm, the 

unfolded TSyF spectral data matrix with a 46 x 3306 dimension was constructed by the 

combination of training and test sample sets. 18 of EVOO samples and 18 of LOO 

samples were predefined as class 1 and class2, respectively. The remaining samples 

were built the test set in the testing step of classification analysis.  

At the end of the SIMCA analysis, 8 significant principal components with a 

88.04% and 90.4% of explained variance were found out. These principal components 

were used to calculate the distances between the olive oil classes. The critical distances 



 

136 
 

of each class were obtained as 1.35 at 95% confidence level. Cooman’s plot was drawn 

to visualize the olive oil classes (Figure 7.61). According to the plot, four of EVOO 

(EVOO-7, 8, 13, 17) samples and one of the LOO (LOO-14) sample show similar 

properties, whereas LOO-20 ad LOO-22 were found as not belonging to both class of 

EVOO and class LOO. The remaining samples of training set were correctly classified.  

 

 

 
Figure 7.61. Cooman's plot of olive oil samples obtained from SIMCA analysis of TSyF 

spectra (triangle: EVOO-training, circle: LOO-training, box: test set) 
 

 

The same training and test sets of unfolded TSyF spectral data matrix of olive 

oil samples were examined with GADA analysis. The algorithm as initiated with 10 

iterations and 10 genes at 95% confidence level. Totally twelve significant principal 

components were found out with 91.07% of explained variance. Critical limits were 

calculated as 3.84 for both vertical and horizontal lines. 
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Figure 7.62. Cooman's plot of olive oil samples obtained from GADA analysis of TSyF 
spectra 

 

 

According to the Cooman’s plot (Figure 7.62) obtained from the analysis of 

GADA, LOO-14 shows similar properties with extra virgin olive oil samples. There are 

no extra virgin olive oil samples show similar properties like as LOO-14. It can be 

concluded that GADA analysis was classified olive oil samples better than SIMCA 

analysis. However in the test step, the olive oil samples existing in the test set were 

found as not belonging to the extra virgin olive oil or lampante olive oil samples. 

Genetic algorithm existing in GADA analysis was chosen the wavelengths which 

contain the better information for the classification of extra virgin olive oil and 

lampante olive oil samples. To get the reasons of this classification the selected 

wavelengths were plotted against the unfolded TSyF spectral data matrix. Totally thirty 

one wavelengths at different wavelength interval were selected from 3306 wavelengths 

and they were used to classify the samples. As it is seen from the Figure 7.63, the 

selected wavelengths generally assign the oxidation products existing in the olive oil 

samples. As it mentioned before the oxidation products show fluorescence property in 

the region of 450–500 nm in synchronous fluorescence spectroscopy. In this region the 

acidity value of lampante olive oil is higher than the acidity of extra virgin olive oil, and 

also the antioxidant contents of extra virgin olive oil is larger than the lampante olive oil 
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samples. Therefore lampante olive oil samples show higher fluorescence intensity in 

that region. GADA generally used these wavelengths in the classification of olive oil 

samples.  

 

 

 
 

Figure 7.63. The plot of selected wavelengths used in the classification of olive oil 
samples using GADA analysis. 

 

 

7.5.2.3.2. Classification Results of Refined Olive Oils and Lampante 
Olive Oils 

 

In the SIMCA studies, both training and test sample sets were predefined in 

order to see the classification results. The concatenated TSyF spectral data matrix with a 

46 x 3306 dimension was firstly autoscaled and then the critical limits of each sample 

classes were calculated at 95% confidence level. Totally eight significant principal 

components were found with 88.40% and 90.40% of explained variances for each class. 

Cooman’s plot of ROO (class 1) and LOO (class 2) was drawn to observe the 

distribution of olive oil samples in the space (Figure 7.64).  
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Figure 7.64. Cooman's plot of olive oil samples obtained from SIMCA analysis of TSyF 
spectra 

 
 

 
 

Figure 7.65. Cooman's plot of olive oil samples obtained from GADA analysis of TSyF 
spectra 
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The sample coded as LOO-8 is show different properties than the other olive oil 

samples existing in the training set. On the other side the distribution of lampante olive 

oil samples have larger variation than the refined olive oil samples. It is the expected 

results since the acidity value of these olive oil shows diversity. In the test step, the 

olive oil samples coded as LOO-2 and 4 also do not belong to the either refined olive oil 

or lampante olive oil.  

The same preprocessing technique was also applied to spectral data matrix 

before starting the GADA analysis. The algorithm was initiated with 6 genes and 10 

iteration numbers. Totally 13 significant principal components were found out with a 

92.14% of explained variance. The critical limits of each class found as 4.22 at 95% 

confidence level. The vertical and horizontal lines used at these distances in the 

constructing of Cooman’s plot (Figure 7.65). According to this plot, the classification 

result of training set is better than the result of SIMCA analysis, whereas in the test step, 

the samples of LOO and the ROO-4 do not belong to the both classes.  

 

 

 
 

Figure 7.66. The plot of selected wavelengths used in the classification of olive oil 
samples using GADA analysis 
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Totally seventy wavelengths have different wavelength interval were chosen by 

genetic algorithm among 3306 wavelengths for this classification. To visualize the 

selected wavelengths, the plot of selected wavelengths vs. unfolded TSyF data matrix 

was plotted (Figure 7.66). 

As it is seen from the plot of selected wavelengths, 80 nm of the wavelengths 

interval contains the most selected wavelengths. And also, due to fluorescence intensity 

of the oxidation products of lampante olive oil in the range of 450–500 nm, this region 

has the most contribution on the classification of olive oil samples. As a result the GA 

was selected the wavelengths based on the variety of fluorescence intensity of olive oil 

samples.  

 

7.6. Classification of Vegetable Oil 
 

7.6.1. NIR Measurements of Vegetable Oils  
 

Three types of vegetable oils were obtained from local markets. These are olive 

oil, sunflower oil, and corn oil. All types of oils include different trade mark. Totally 34 

vegetable oils were analyzed using NIR spectrometer. Typical NIR spectra of vegetable 

oils are shown in Figure 7.67. As it is seen from the NIR plot of vegetable oils, there are 

various overlapped peaks. These bands are the results of the overtones and the 

combinations of fundamental vibrations that occur in the middle infrared region.  The 

absorbance peak existing at 1720 nm is the characteristics of the CH vibration of 

various chemical groups. This variety depends on the amount of the triglyceride that is 

analyzed. The second absorption peak in the area of 2143 nm is the characteristic peak 

of CH vibration of cis-unsaturation and it is more intense in polyunsaturated than in 

monounsaturated fatty acid spectra. Saturated and trans fatty acids show weak bands 

and maxima in the area of 2128–2131 nm. The absorbance peak at 1800nm refers the 

saturated fatty acids groups.  
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Figure 7.67. NIR spectra of corn oil, sunflower oil, and olive oil. 
 

 

Oils that have a high amount of polyunsaturated fatty acids have a maximum 

absorption band at lower wavelengths in the vicinity of 1720 nm. If they are rich in 

monounsaturated fatty acids, there are two absorbance peaks at 1720 and 2140 nm. 

Sunflower oil has a maximum intensity nearly 1720 nm; corn oil shows an absorbance 

peak nearly 1722 nm, and high-oleic sunflower, olive oils have an absorbance peak at 

1724 nm (Harwood and Aparicio, 2000). The spectral regions of 1100–1300 and 2050–

2230 nm also assign the spectral feature characteristics of vegetable species. Table 7.5 

shows the wavelengths that assign a high coefficient of correlation between the 

intensities of absorbance and the chemical indexes.  
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Table 7.5. Relevant near-infrared wavelengths (nm) of several lipids and bands that are 
correlated with some chemical indexes (R>0.90) (Source: Harwood and 
Aparicio 2000) 

 
 

 Spectral Regions 
 Second Overtone First Overtone Combination 

Tricaprin (C10:0)  1726, 1800 2128 
Triolein (cis C18:1)  1725 2143 

Trilinolein (cis C18:2)  1665, 1717 2143 
Trilinoelaidin (trans C18:2)  1725, 1800 2131 

Trilinolenin (cisC18:3)  1665, 1712 2143 
MUFA   1724, 1766 2358 
PUFA 1162, 1212* 1724, 1766 2136,2176 

  1730* 2224,2310 
   2348*, 2434* 

IV  1164 1664, 1714 2144, 2178 
  1740*,1784* 2340*, 2444* 

*: Negative correlation coefficient.  
MUFA: monounsaturated fatty acids 
PUFA: polyunsaturated fatty acids 
IV: iodine value 
 

 
 

7.6.2. Classification Results of Vegetable Oils Using SIMCA and 
GADA 
 

NIR spectra of three different vegetable oils were used to design the spectral 

data matrix. These three types of vegetable oils are olive oil, corn oil, and sunflower 

oils. The expected classes should be the classes or clusters of these oils. The designed 

spectral data matrix has a 54 x 780 (samples x wavenumbers) dimensions. The classes 

of olive oil and corn oil samples were predefined as class 1 and class 2 for the training 

set, whereas the set of sunflower oil was used a test set. Before starting the classification 

studies using SIMCA and GADA, the data matrix was autoscaled.  

SIMCA analysis was found out 8 principal components (98.60% and 96.80% 

explained variances for class1 and 2, respectively) for both classes. The critical limits 

were calculated as 1.38 at 95% confidence level. The Cooman’s plot was plotted and the 

vertical and horizontal limits were used to identify the boundaries of vegetable oil 

classes (Figure 7.68). These limits prove that the olive oils and corn oils are constructed 

as separate classes, whereas sunflower oil samples are classified as not belonging to any 

classes.  
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Figure 7.68. Cooman's plot of vegetable oil samples obtained from SIMCA analysis of 

NIR spectra (triangle: olive oil, circle: corn oil, diamond: sunflower oil, 
box: olive oil-test) 

 

 

GADA analysis was initiated with 6 genes and 10 iterations. Totally eleven 

principal components was found out with a 90.28% of explained variance at the end of 

the algorithm. The critical limits were calculated as 7.27 at the 95% confidence level. 

These horizontal and vertical limits were used in the Cooman’s plot (Figure 7.69). This 

plot shows the distribution of vegetable oils in the space. The same results were 

obtained as they in SIMCA. The main difference between the GADA and SIMCA is the 

wavelength selection. Since GA is used as wavelength selection toll, whereas SIMCA 

uses the all the wavelengths that are exist in the spectral data matrix. The selected 

wavenumbers are plotted against wavenumber region that was used in the measurement 

of vegetable oils.  
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Figure 7.69. Cooman's plot of vegetable oil samples obtained from GADA analysis of 

NIR spectra 
 

 

 
 
 
Figure 7.70. The plot of selected wavelengths used in the classification of olive oil 

samples using GADA analysis.  
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According to the plot of selected wavenumbers, the absorbance peaks of 

polyunsaturated and monounsaturated fatty acids are generally used in the classification 

of three types of vegetable oils. Also the intensity of CH groups that existing in the 

triglycerides have a contribution on the classification of vegetable oils.  

 

7.6.3. Classification Results of Vegetable Oils Using SVD-PCA and 
GAPCAD 
 

The classification studies of vegetable oils were examined using SVD-PCA and 

GAPCAD. The spectral data matrix was designed as including the all three types of 

vegetable oils. The training set was included the olive oil and corn oil samples whereas 

test set contained only the sunflower oil and olive oil that were different from the 

samples of the training set. The spectral data matrix of training set and test set with 36 x 

780 and 36 x 780 dimensions, respectively. Again, autoscaling was used as a 

preprocessing technique. The results of both SVD-PCA and GAPCAD were compared 

to achieve the success of the genetic algorithm based classification method.  

In SVD-PCA calculation, six significant principal components were found out 

with 57.90% of explained variance. Principal component 1 (PC1) and principal 

component 2 (PC2) which have totally 36.54% of explained variance were plotted 

against to observe the distribution of vegetable oil samples. As it is seen from the Figure 

7.71.a, there are two different classes. The vegetable oil samples were classified as pulp 

and seed oil. CO and SFO samples generally lay on the positive scores of PC2, whereas 

OO samples are distributed on the negative scores of PC2. Same spectral data matrices 

were examined in GAPCAD calculations. GAPCAD algorithm was initiated with 10 

genes and 10 iterations. At the end of the calculation 8 significant principal components 

(95.50% of total explained variance) were found out. The first two principal 

components with a 65.80% of explained variance were used to represent the score plot 

of vegetable oil samples. As it is seen from the Figure 7.71.b, the olive oil samples lay 

on positive scores of PC2 and the sunflower oil and corn oil samples lay on negative 

scores of PC2. GAPCAD was also classified the vegetable oil samples as pulp and seed 

oil.  
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SVD-PCA 

 
(a) 

 

GAPCAD 

(b) 

 

Figure 7.71. Score plot of principal components calculated from NIR spectral data 
matrix of vegetable oil samples using a) SVD-PCA, b) GAPCAD. 
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first two principal components were plotted against the wavenumber. The more intense 

value of loadings means the more contribution on the classification of samples. Figure 

7.72 show the loading plot of NIR spectral data obtained from SVD-PCA and 

GAPCAD. Only the first two principal components were taken into the consideration, 

since the scores plot of vegetable oils were obtained using both of them.  

 

 

SVD-PCA GAPCAD 

 
(a) 

 

 
(c) 

 

 
(b) 

 

 
(d) 

 

Figure 7.72 Loading plots of NIR spectral data of the olive oil samples (autoscaled data) 
obtained from the calculation of SVD-PCA a) loading of PC1 b) loading of 
PC2, and GAPCAD c) loading of PC1, d) loading of PC2. 

 

 

On the other side, GAPCAD was selected only 25 wavenumbers that have the 

most contribution in the classification of vegetable oil samples. These wavenumbers are 

the 9550, 9240, 9170, 8500, 8386, 8124, 7546, 7075, 6489,  cm–1 and the weight of 

these wavenumbers changes according to the scores and loadings matrices of PCA. 

Figure 7.72.c and Figure 7.72.d show the weight of loading for each wavenumbers. 

According to the scores of GAPCAD, the classification of olive oil samples generally is 
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along on PC2. Therefore the loading matrix of PC2 has the larger contribution than the 

loadings of PC1 on the classification of vegetable oils. GAPCAD almost selected the 

maxima exist in the NIR spectra. As it mentioned before these maxima depends on the 

amount of the triglyceride, cis-unsaturation, saturated and trans-fatty acids.  

The GAPCAD algorithm was performed 100 times to obtain the frequency of 

selected wavenumbers and then the frequency of these selected wavenumbers was 

plotted against the wavenumbers of NIR region. Figure 7.73 shows the frequency of 

selected wavenumbers after performing 100 times. It is clearly seen that, the maxima 

around 8000, 7000, and 6000 – 5000 cm-1 are the most important region and 

wavenumbers in the classification of vegetable oils.  

 

 

 
 
 
Figure 7.73. Frequency of selected wavelengths after 100 runs of GAPCAD in the 

examination of NIR spectral data 
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CHAPTER 8 

 

8. CONCLUSION 

 
Two different developed genetic algorithm based classification and clustering 

methods were performed using the spectral data. NIR, FTIR and fluorescence 

spectroscopic measurements of olive oils and vegetable oils were examined in both 

developed methods (GAPCAD, and GADA) and the results were compared to SVD-

PCA and SIMCA methods.  

Two different classifications were aimed in the studies of vegetable oils and 

olive oils. Vegetable oils were classified according to the pulp and seed oils whereas 

olive oil samples were classified based on their free acidity values. Olive oil samples 

were also classified based on the geographical region of olive oil samples using the data 

matrix of their chemical properties.  

In the classification studies, the main advantage of using genetic algorithm 

based classification techniques instead of principal component analysis or SIMCA is 

that the output loadings are more interpretable, since the working principle of genetic 

algorithm based methods is laid on the selection of wavelengths which contains the 

necessary the information for the separation of olive oil samples.  
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