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ABSTRACT

ENTANGLEMENT AND TOPOLOGICAL SOLITON STRUCTURES IN
HEISENBERG SPIN MODELS

Quantum entanglement and topological soliton characteristics of spin models are

studied. By identifying spin states with qubits as a unit of quantum information, quantum

information characteristic as entanglement is considered in terms of concurrence. Eigen-

values, eigenstates, density matrix and concurrence of two qubit Hamiltonian of XY Z,

pure DM , Ising, XY , XX , XXX and XXZ models with Dzialoshinskii- Moriya DM

interaction are constructed. For time evolution of two qubit states, periodic and quasi-

periodic evolution of entanglement are found. Entangled two qubit states with exchange

interaction depending on distance J(R) between spins and influence of this distance on

entanglement of the system are considered. Different exchange interactions in the form

of Calogero- Moser type I, II, III and Herring-Flicker potential which applicable to inter-

action of Hydrogen molecule are used.

For geometric quantum computations, the geometric (Berry) phase in a two qubit

XX model under the DM interaction in an applied magnetic field is calculated. Classical

topological spin model in continuum media under holomorphic reduction is studied and

static N soliton and soliton lattice configurations are constructed. The holomorphic time

dependent Schrödinger equation for description of evolution in Ishimori model is derived.

The influence of harmonic potential and bound state of solitons are studied. Relation of

integrable soliton dynamics with multi particle problem of Calogero-Moser type is estab-

lished and N soliton and N soliton lattice motion are found. Special reduction of Abelian

Chern-Simons theory to complex Burgers’ hierarchy, the Galilean group, dynamical sym-

metry and Negative Burgers’ hierarchy are found.
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ÖZET

HEISENBERG SPİN MODELLERİNDE DOLAŞIKLIK VE TOPOLOJİK SOLİTON
YAPILARI

Bu tezde spin modellerinin kuantum dolaşıklığı ve topolojik soliton özellikleri

çalışılmıştır. Spin durumları kübitler aracılığıyla tanımlanarak dolaşıklık uyum ölçümü

kullanılarak kuantum enformasyon özelliği olarak ele alınmıştır. DM etkileşimli XY Z,

DM, Ising, XY , XX , XXX veXXZ modellerinin iki kübitli Hamiltonyeninin özdeğer,

özvektör, yoğunluk matrisi ve uyumu hesaplanmıştır. İki kübitli durumların zamanla

değişimi ile dolaşıklığın periyodik ve kuasiperiyodik evrimi bulunmuştur. Uzaklığa bağlı

takas etkileşimli dolaşık iki kübit durumları ve uzaklığın bu durumların dolaşıklığına etk-

isi incelenmiştir. Calogero- Moser I, II, III tipinde ve Hidrojen moleküllerinin etkileşimine

uygulaması olan Herring-Flicker potansiyeli gibi farklı takas etkileşimleri kullanılmıştır.

Geometrik kuantum hesaplamaları için iki kübitli manyetik alan içindeki DM

etkileşimliXX modeli geometrik (Berry) faz hesaplanmıştır. Analitik indirgemeli topolo-

jik spin modelleri çalışılmıştır. Statik N -soliton ve N -soliton kafes konfigürasyonları

kurulmuştur. Ishimori modelinde evrimi tanımlamak için zamana bağlı analitik Schrö-

dinger denklemi çıkarılmıştır. Harmonik potansiyelin etkisi ve solitonların sınır durumları

çalışılmıştır. Integrallenebilir soliton dinamiği ile Calogero-Moser tipindeki çok parçacıklı

problem arasındaki bağıntı kurulmuş veN -soliton ileN -soliton latis hareketleri bulunmuş-

tur. Abelyan Chern Simons teorisinin karmaşık Burgers’ hiyerarşisine özel indirgenmesi,

Gali- lean grup, dinamik simetri ve negatif Burgers’ hiyerarşisi bulunmuştur.
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CHAPTER 1

INTRODUCTION

In the information age, computers have become an indispensable part of our lives

so that the computer industry has been growing enormously and the size of integrated

circuits has been decreasing very rapidly. Thanks to the miniaturization, computational

power of modern computers increase. Observing these facts, Gordon Moore in 1965 pro-

posed the so called Moore’s law (Moore, 1965) which indicates that the number of tran-

sistors on a single chip doubles approximately every 18 to 24 months. This evolution law

requires miniaturization in memory and processor units. According to these estimates,

the exponential growth has not been reached yet. In the near future, quantum switches,

devices on the nanoscale length (10−9), will substitute silicon based transistors. As a

result, near future computers will work on laws of quantum mechanics rather than the

classical ones. Richard Feynman (Feynman, 1982) and David Deutsch (Deutsch, 1985)

were the first who proposed new type of modern computers based on the laws of quan-

tum mechanics. According to Feynman, some quantum mechanical calculations could

be implemented more efficiently on a quantum computer rather than on a classical com-

puter. Later, in 1994 Peter Shor (Shor, 1994) proposed a quantum algorithm that solves

efficiently the prime factorization problem, which is a crucial problem in computer sci-

ence. This algorithm provides an exponential improvement in computational speed when

compared to classical ones. Some cryptographic systems such as RSA cryptosystem are

based on the conjecture that no efficient algorithms exist for solving the prime factoriza-

tion problem. RSA cryptosystem would be broken if Shor’s algorithm is implemented

on a quantum computer. As a next breakthrough in quantum algorithms in 1997, Lov

Grover (Grover, 1997) found a fast algorithm for searching databases and it requires only

efforts that grow as the square root of the number of entries. Aside from these algorithms,

the original ideas of Feynman, using a quantum computer for the simulation of quantum

problems have become increasingly interesting today. In brief, a quantum computer is a

machine that is based on quantum logic in contrast to the classical computer.

The unit of information in a classical computer is called a bit and it takes two

values 0 or 1 while unit of information in a quantum computer is called a quantum bit

(qubit). The values of a bit correspond to the status of a switch (1 = on, 0 = off) on

an electronic device. Unlike a bit, a qubit is a two-level quantum system, described by a
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two-dimensional complex Hilbert space. In contrast to classical states which are related

to the basis in this space, any superposition of these states also represents a state of a

qubit. There are several ways to realize qubits as an atom, nuclear spin, or a polarized

photon. It turns out that mathematical description of qubit is equivalent to Pauli formalism

describing spin angular momentum in quantum mechanics. According to modern high

energy physics, spin of a particle is a fundamental intrinsic characteristic property of all

elementary particles, namely, the same kind of elementary particles has the same spin

quantum number.

In 1924 Wolfgang Pauli proposed the concept of spin ( (Pauli, 1925)); as a ”two-

valued quantum degree of freedom” associated with the electron in the outermost shell.

This allowed him to formulate the Pauli Exclusion Principle stating that no two electrons

can share the same quantum state at the same time. In 1927, Pauli formalized the the-

ory of spin using the modern theory of quantum mechanics discovered by Schrödinger

and Heisenberg. He pioneered the use of 2x2 matrices which are known as Pauli ma-

trices, representing the spin operators, and introduced a two-component spinor wave-

function. Pauli’s theory of spin is non-relativistic. However, in 1928, Paul Dirac (Dirac,

1928) discovered the Dirac equation which describes the relativistic electron. In the Dirac

equation, a four-component spinor (known as a ”Dirac spinor”) is used for the electron

wave-function. It turns out that in non-relativistic limit, the Dirac equation reduces to the

Schrödinger-Pauli equation as a descriptive of non-relativistic electron with spin. As first

direct experimental evidence of the electron spin, the correct explanation of the Stern-

Gerlach experiment (Stern & Gerlach, 1922a) and (Stern & Gerlach, 1922b) was only

given in 1927.

Spin plays a crucial role in magnetic properties of many materials like ferromag-

netic and antiferromagnetic materials. First it was proposed by Dirac and Heisenberg

(Dirac, 1926), (Heisenberg, 1926), the magnetic Hamiltonian H to be proportional to

JSi · Sj where constant J is called the exchange interaction. For example based on this

Hamiltonian, the Heisenberg ferromagnetic model is

H =
∑
ij

JS⃗i · S⃗j (1.1)

where J < 0, in the case J > 0 this Hamiltonian refers to antiferromagnetic model.

Related with this Heisenberg model several anisotropic modifications were proposed. The

XXZ generalization which appear when some anisotropy like easy axis or easy plane
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anisotropy take place. Particular cases of these models like Ising Model or XY model

has variety of applications in statistical physics. The one dimensional version of then for

N spin chain model it can be solved by the Bethe Ansatz (Bethe, 1931) . Exact solvability

from one side and wide field of applications from another side, shows the importance of

these models and many researchers work on these models. In these cases, Ising type of

models appears effectively in two level systems. Heisenberg type spin models are very

important models. From one side magnetic properties of materials lead to the nonlinear

magnetic systems where magnetic properties of materials described by domain walls,

solitons and vortices. Topological characteristic playing essential role in description of

materials. This is why, studying exactly solvable topological spin models with domain

walls, soliton and soliton solutions has become actual problem of study. From another

side, treatment of spin models as two level quantum systems make them an important tool

for quantum computation and information. Every two level quantum system plays the

role of qubit as a unit of information and the interaction of spins then plays the role of

qubit gates (2 and higher). For performing quantum computations, nonlocal property of

quantum systems as entanglement becomes important tool to study. Being motivated by

these two directions, in this thesis we study spin models as nonlinear dynamical systems

with nontrivial topological solutions and as qubit systems with entanglement property.

Thesis consists of two parts: First part devoted to entanglement property of spin

models while the second part is devoted to topological properties of spin models (formu-

lation of classical spin models, exact solutions and topological properties, reduction of

the model, relation with Complex Burgers’ equation).

In Chapter 2 we introduce the concept of qubit and establish the relation between

spin and qubit. Entanglement property and concurrence as a measure of entanglement

become subject of Section 2.5. Heisenberg spin models and effective spin models are

introduced in Section 2.6 and 2.7. In Section 2.8 we formulate the concurrence as a

measure of thermal entanglement.

In Chapter 3 we consider two qubit entanglement in Heisenberg spin models. We

study the influence of DM interaction on entanglement of two qubits in all particular

magnetic spin models Ising ,XY ,XX ,XXX ,XXZ and the most generalXY Z model.

In Chapter 4 we consider time evolution of two qubit states. In Section 4.1 we

analyze the periodic and quasiperiodic behavior of entanglement. The concept of fidelity

introduced and time evolution found in Section 4.2. In Section 4.3 we established the link

between time evolution of states and SWAP gate.

In Chapter 5 we study entanglement dependence on distance between interacting
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qubits. In Section 5.1 we discuss Ising model in transverse magnetic field with distance

dependent exchange interaction in the form of Calogero-Moser type I, II and III. Herring-

Flicker type distance dependence is the subject of Section 5.2

In Chapter 6 we present briefly geometric quantum computation. Dynamic and

geometric phases are formulated in Section 6.1. The influence of Dzialohinskii-Moriya

interaction on Berry’s phase is discussed in Section 6.2.

In Chapter 7 we consider the problem of magnetic solitons in a magnetic fluid

model. We formulate the topological magnet model in Section 7.1 and its stereographic

projection representation in Section 7.2. The anti-holomorphic reduction of topological

magnetic system to the linear complex Schrödinger equation in considered in Section

7.3. In Section 7.4 we study special form of topological magnet as the Ishimori model.

Applying all results on integrable soliton dynamics in the complex Burgers’ equation

to the magnetic soliton evolution, we construct N magnetic solitons in Section 7.5, and

study their dynamics in Section 7.6. By time dependent Schrödinger problem in harmonic

potential, Section 7.7 , we construct the bound state of N solitons in Section 7.8.

In Chapter 8 we establish relation ofN soliton equations with the Calogero-Moser

multiparticle systems, Section 6.1, showing integrability and the Hamiltonian structure for

N soliton, Section 6.2 and N -soliton lattices, Section 6.3.

In Chapter 9 we consider the Abelian Chern-Simons Gauge Field Theory in 2+1

dimensions and its relation with holomorphic Burgers’ Hierarchy. Complex Galilean

group and soliton generations are studied in Section 9.1. In Section 9.2 we show that

the anti-holomorphic Burgers’ hierarchy appears in the Chern-Simons gauge field theory.

Complex Galilean group hierarchy and soliton solutions are studied in Section 9.3. The

holomorphic Schrödinger hierarchy and corresponding Burgers’ hierarchy are discussed

in Section 9.4.

In conclusions we summarize main results in the thesis. In appendices we show

Lax representation we derived system of equations describing evolution of N solitons.

The main results presented in this thesis were published in the following papers.

• Pashaev O.K., Gurkan Z.N., 2007: Abelian Chern-Simons solitons and holomor-

phic Burgers’ hierarchy, Theor. Math. Phys. , 152, 1, 1017-1029.

• Gurkan Z. N., Pashaev O. K., 2008: Integrable soliton dynamics in anisotropic

planar spin liquid model, Chaos, Solitons and Fractals, 38 , 238- 253.

• Kwan M. K., Gurkan Z. N., and Kwek L. C., 2008: Berry’s phase under the

Dzyaloshinskii Moriya interaction, Physical Review A , 77, 062311.
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• Gurkan Z. N. , Pashaev O., 2010: Entanglement in two qubit magnetic models

with DM antisymmetric anisotropic exchange interaction, International Journal of

Modern Physics B, 24, 8, 943-965.
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PART I

QUBIT ENTANGLEMENT IN SPIN MODELS
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CHAPTER 2

SPIN, QUBIT AND ENTANGLEMENT

Quantum computers based on quantum logic and they process information and

performs logic operations by laws of quantum mechanics.

2.1. Qubit

A quantum bit or a qubit is a two-level quantum system, described by a two-

dimensional complex Hilbert space, generated by a pair of normalized and mutually or-

thogonal quantum states. Two possible states for a qubit

|0⟩ =

(
1

0

)
, |1⟩ =

(
0

1

)
(2.1)

form the computational basis and correspond to the values of 0 and 1 of the classical bit.

From the superposition principle of quantum mechanics, arbitrary state of the qubit may

be written as

|ψ⟩ = α|0⟩+ β|1⟩, (2.2)

where the amplitudes α and β are complex numbers, constrained by the normalization

condition |α|2 + |β|2 = 1. The state vectors are defined only up to a global phase of no

physical significance, this is why without loss of generality, one may choose α to be real

and positive. Then generic state of a qubit maybe written as

|ψ⟩ = cos
θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩ =

[
cos θ

2

eiϕ sin θ
2

]
(2.3)
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where 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π. If the state of the qubit is described by (2.3), as a

result of the measurement one obtains |0⟩ or |1⟩ states with probabilities

p0 = |⟨0|ψ⟩|2 = cos2
θ

2
, p1 = |⟨1|ψ⟩|2 = sin2 θ

2
(2.4)

and p1 + p2 = 1. Using the normalization condition |α|2 + |β|2 = 1 and the global phase

freedom, the qubit’s state can be represented by a point on a two dimensional sphere of

unit radius, called the Bloch sphere. This sphere can be embedded in a three-dimensional

space of Cartesian coordinates x = cosϕ sin θ, y = sinϕ sin θ, z = cos θ so that x2+y2+

z2 = 1. Thus, the qubit state (2.3) can be written in terms of these coordinates as

|ψ⟩ =


√

1+z
2

x+iy√
2(1+z)

 . (2.5)

A Bloch vector r⃗ is a vector whose components r⃗(x, y, z) single out a point on

the Bloch sphere. Therefore, each Bloch vector must satisfy the normalization condition

x2+y2+z2 = 1. It can also be defined in terms of angles θ and ϕ. Eq.(2.5) gives a relation

between Bloch vector and the qubit state so that any Bloch vector determines a qubit

state as well as qubit states can be associated with corresponding Bloch vector. Another

useful representation of the state (2.3) is obtained by means of the projector operator

P̂ = |ψ⟩⟨ψ|, P̂ 2 = P̂ . The matrix representation of the operator P̂ in the computational

basis {|0⟩⟨0|, |0⟩⟨1|, |1⟩⟨0|, |1⟩⟨1|. is given by

P =
1 + z

2
|0⟩⟨0|+ 1− z

2
|1⟩⟨1|+ x− iy

2
|0⟩⟨1|+ x+ iy

2
|1⟩⟨0|

=
1

2

(
1 + z x− iy

x+ iy 1− z

)
(2.6)
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The state of a qubit

|ψ⟩ = cos
θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩, (0 ≤ θ ≤ π, 0 ≤ ϕ 2π) (2.7)

can be measured using the Pauli operators,

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
, (2.8)

so that the following expectation values for the state |ψ⟩ obtained

⟨ψ|σx|ψ⟩ = sin θ cosϕ = x (2.9)

⟨ψ|σy|ψ⟩ = sin θ sinϕ = y (2.10)

⟨ψ|σz|ψ⟩ = cos θ = z. (2.11)

The coordinates (x, y, z) can be obtained with arbitrary accuracy by means of standard

projective measurements on the computational basis, that is, measuring σz. From eq. (2.4)

we obtain

p0 − p1 = |⟨0|ψ⟩|2 − |⟨1|ψ⟩|2 = cos
θ

2

2

− sin
θ

2

2

= cos θ = z (2.12)

Thus, the coordinate z is given by difference of the probabilities to obtain outcomes 0 or

1 from a measurement of σz. If we have a large numberN of systems identically prepared

in the state (2.3), we can estimate z as N0

N
− N1

N
, where N0 and N1 count the number of

outcomes 0 and 1. Therefore, z can be measured to any required accuracy, provided we

measure a sufficiently large number of states. The coordinates x and y can be obtained

by using the possibility to operate a unitary transformation on the qubit. If the unitary

transformation described by the matrix

U1 =
1√
2

(
1 1

−1 1

)
(2.13)
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is applied to the state (2.3), we obtain the state |ψ(1)⟩ = U1|ψ⟩. A projective measurement

in the computational basis then gives outcome 0 or 1 with probabilities p(1)0 = |⟨0|ψ(1)⟩|2

and p(1)1 = |⟨1|ψ(1)⟩|2, respectively. Therefore, we obtain

p
(1)
0 − p

(1)
1 = |⟨0|Ψ1⟩|2 − |⟨1|Ψ1⟩|2 = cosϕ sin θ = x (2.14)

In the same way, if the state (2.3) is transformed by means of the matrix

U2 =
1√
2

(
1 −i
−i 1

)
(2.15)

we obtain the state |ψ(2)⟩ = U2|ψ⟩. Therefore,

p
(2)
0 − p

(2)
1 = |⟨0|ψ2⟩|2 − |⟨1|ψ2⟩|2 = sinϕ sin θ = y, (2.16)

where p(2)0 = |⟨0|ψ(2)⟩|2 and p(2)1 = |⟨1|ψ(2)⟩|2 give the probabilities to obtain outcome 0

or 1 from the measurement of the qubit polarization along z (Benenti et al., 2004).

Spin 1/2 states can be interpreted as qubit states. For spin operator S⃗ = ~
2
σ⃗, spin

states are superposition of spin up | ↑⟩ =

(
1

0

)
and spin down | ↓⟩ =

(
0

1

)
states.

These states can be identified with computational basis | ↑⟩ ≡ |0⟩ and | ↓⟩ ≡ |1⟩ as

|ψ⟩ = α| ↑⟩+ β| ↓⟩. (2.17)

The spin operators generate the SU(2) algebra and Pauli matrices satisfy

[σi, σj] = 2ϵijkσk (2.18)

where ϵijk is Levi-Civita antisymmetric tensor.
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2.2. Qubit and SU(2) Coherent State

The SU(2) coherent states are defined for states generated with angular momen-

tum raising and lowering operators

Ŝ± = Ŝx ± iŜy (2.19)

(Radcliffe, 1971) and (Arrechi et al., 1972 ), where relevant spin operators Ŝi, i = 1, 2, 3

have SU(2) commutation relations

[Ŝi, Ŝj] = iϵijkŜk. (2.20)

The SU(2) coherent states are generated from vacuum state |0⟩ as

|ψ⟩ = eŜ
+ψ√

1 + |ψ|2
|0⟩ = |0⟩+ ψ|1⟩√

1 + |ψ|2
(2.21)

where S−|0⟩ = |1⟩. The eigenstates of Ŝz are |0⟩ and |1⟩, they generate 2D Hilbert space

and represent a single qubit. An SU(2) coherent state is an arbitrary pure qubit state.

Indeed if

|ψ⟩ =

(
ψ1

ψ2

)
, |ψ1|2 + |ψ2|2 = 1 (2.22)

then, in terms of homogeneous coordinate ψ = ψ2/ψ1 we have

|ψ⟩ =

(
ψ1

ψ2

)
= ψ1

(
1

ψ

)
. (2.23)
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We fix ψ1 by normalization condition ⟨ψ|ψ⟩ = 1, so that up to the global phase we have

for the qubit state

|ψ⟩ = 1√
1 + |ψ|2

(
1

ψ

)
(2.24)

This state coincides with the spin 1/2 generalized coherent state (2.21).

From another side, solving normalization condition in (2.22) we have one qubit

state

|θ, φ⟩ = cos
θ

2
|0⟩+ sin

θ

2
eiφ|1⟩ =

(
cos θ

2

sin θ
2
eiφ

)
(2.25)

which is determined by point (θ, φ) on the Bloch sphere. In this parametrization the

homogeneous variable is

ψ =
ψ2

ψ1

= tan
θ

2
eiϕ. (2.26)

This determines the stereographic projection of a point (sin θ cosϕ, sin θ sinϕ, cos θ) on

the unit sphere to the complex plane ψ. Therefore the Bloch sphere considered as a

Riemann sphere for the extended complex plane ψ by the stereographic projection, deter-

mines the SU(2) or the spin coherent state

|ψ⟩ = |0⟩+ ψ|1⟩√
1 + |ψ|2

. (2.27)

Then the computational basis states |0⟩ = | ↑⟩ =

(
1

0

)
and |1⟩ = | ↓⟩ =

(
0

1

)
in this

coherent state representation are just points in extended complex plane (ℜψ,ℑψ)∪{∞},

as ψ = 0 and ψ = ∞ respectively. These points are symmetrical points under the unit

circle at the origin.
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2.3. Multiple Qubit States

Tensor product of qubits

|ψ1ψ2...ψn⟩ ≡ |ψ1⟩ ⊗ |ψ2⟩ ⊗ ...⊗ |ψn⟩ (2.28)

gives the multi qubit state. Quantum gates act on this state as unitary operators transform-

ing the multiqubit state | ↑↓↓↓ ... ↑ ...⟩ = |0111...0...⟩ to another multiqubit state. It turns

out that the multispin states or spin complexes can be interpreted as n- qubit states. In

particular as ferromagnetic ground state

|Φ↑⟩ = | ↑↑↑↑ ... ↑⟩ = S+
2 S

+
3 ...S

+
n |11...1⟩ = |00...0⟩ (2.29)

|Φ↓⟩ = | ↓↓↓↓ ... ↓⟩ = S−
2 S

−
3 ...S

−
n |00...0⟩ = |11...1⟩ (2.30)

and Neel state or anti-ferromagnetic ground state

|Φ⟩ = | ↑↓↑↓ ... ↓⟩ = S+
2 S

−
3 S4...S

−
n |1010...1⟩ = |0101...0⟩ (2.31)

where

S+
i |1⟩i = |0⟩i, S−

i |0⟩ = |1⟩i (2.32)

If we have a finite spin chain so that, at every site of the chain we have spin states then

the total spin state of the chain forms a spin complex.

2.4. Quantum Gates

Like the classical computer consisting of an electrical circuit containing logic

gates, a quantum computer is built from a quantum circuit containing elementary quan-

tum gates to manipulate the quantum information. Single qubit gates can be described by

2 × 2 unitary matrices. Rotation of the Bloch sphere about an arbitrary axis is a unitary
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transformation

Rn(δ) = cos
δ

2
I − i sin

δ

2
(n⃗ · σ⃗) (2.33)

where the unit vector n⃗ = (nx, ny, nz). Phase shift gate is represented as

Rz(δ) = cos
δ

2
I − i sin

δ

2
σz = e−i

δ
2

(
1 0

0 eiδ

)
. (2.34)

Applying the phase shift gate to generic vector ψ we have

Rz(δ)|ψ⟩ = cos
δ

2
|0⟩+ ei(ϕ+δ) sin

δ

2
|1⟩. (2.35)

Hadamard gate is one of the most important single qubit gates and corresponds to

rotations and reflections of the sphere. Rotation through an angle δ = π about the axis

n⃗ = ( 1√
2
, 0, 1√

2
) gives the so called Hadamard gate

H =
1√
2
(σz + σx) (2.36)

H performs the unitary transformation which is Hadamard transform:

H|0⟩ =
1√
2
(|0⟩+ |1⟩) ≡ |+⟩ (2.37)

H|1⟩ =
1√
2
(|0⟩ − |1⟩) ≡ |−⟩ (2.38)

Hadamard gate can be expressed as a matrix in the computational basis {|0⟩, |1⟩}

H =
1√
2

[
1 1

1 −1

]
(2.39)

14



Single qubit gates do not promise much in computations since interaction of qubits are

needed. The most common two qubit gate is Controlled-NOT (CNOT) gate. This gate acts

on the states of the computational basis, {|i1i0⟩ = |00⟩, |01⟩, |10⟩, |11⟩} as the classical

XOR gate:

CNOT (|x⟩|y⟩) = |x⟩|x⊕ y⟩ (2.40)

where x, y = 0, 1 and ⊕ indicating addition modulo 2.

UCNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (2.41)

Quantum gates are universal. Any unitary operation in Hilbert space of n− qubits can be

decomposed into one-qubit and two-qubit CNOT gates. The generic state can be reached

starting from |0⟩ as

Rz(
π

2
+ ϕ)HRz(θ)H|0⟩ = ei

θ
2 (cos

θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩) (2.42)

(Benenti et al., 2004).

2.5. Entanglement and Concurrence

The entanglement property has been discussed at the early years of quantum me-

chanics as a specifical quantum mechanical nonlocal correlation (Schrödinger, 1935)-

(Bell, 1964) and recently it becomes a key point of the quantum information theory (Ben-

net, 2000). We can write the generic two-qubit state in the computational basis as

|ψ⟩ = c00|00⟩+ c01|01⟩+ c10|10⟩+ c11|11⟩ (2.43)
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where c00, c01, c10 and c11 are complex coefficients. Because the state is defined up to a

global phase factor and the normalization condition

|c00|2 + |c01|2 + |c10|2 + |c11|2 = 1 (2.44)

non-separable(entangled) two qubit states have 6 real degrees of freedom while a separa-

ble state

|ψ⟩ = |ψ1⟩ ⊗ |ψ0⟩ (2.45)

has only 4 real degrees of freedom. The complexity of entanglement grows exponentially

with the number of qubits. A separable state of n qubits depends only on 2n real pa-

rameters while the most general entangled state has 2(2n − 1) degrees of freedom. For

entangled subsystems the whole state vector cannot be separated into a product of the

subsystem states. This is why these subsystems are no longer independent, even if they

are far separated spatially. A measurement on one subsystem not only gives information

about the other subsystem, but also provides possibility of manipulating it. Therefore en-

tanglement becomes the main tool in quantum computations and information processing,

quantum cryptography, teleportation and etc., (Angelakis et al., 2006). Due to the intrin-

sic pairwise character of the entanglement, entangled qubit pairs play crucial role in such

computations. If the state is separable

|ψ⟩ = (α1|0⟩+ β1|1⟩)⊗ (α2|0⟩+ β2|1⟩) (2.46)

= α1α2|00⟩+ α1β2|01⟩+ β1α2|10⟩+ β1β2|11⟩ (2.47)

then

C = |α1α2β1β2 − α1β2β1α2| = 0 (2.48)

If C ̸= 0 then the state is not separable. It is called entangled state. Determinant (2.48)

is called the concurrence and it can be considered as a measure of entanglement. One

qubit gates can not generate entanglement so to transform separable states to nonsepara-

ble states we need two qubit gate, for example CNOT gate. Applying CNOT gate to
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separable states

CNOT (α|0⟩+ β|1⟩)|0⟩ = α|00⟩+ β|11⟩ (2.49)

for α, β ̸= 0 we obtain non-separable states. To study entangled states we need to intro-

duce mixed states which is derived in terms of density operator.

2.5.1. Density Operator

If A|i⟩ = i|i⟩ and we know the system is in a state |ψ⟩, we can say measurement

of an observable A will give a value i with probability |⟨i|ψ⟩|2. If a state of the system

can be represented by a state vector |ψ⟩, the system is said to be in a pure state. In such

state, expectation value of A is given by

⟨A⟩ = ⟨ψ|A|ψ⟩
⟨ψ|ψ⟩

(2.50)

If the state of the system is not known completely the system is in mixed state. An ensem-

ble must then be formed with elements in different possible states, weighted according to

any available partial knowledge about the state of the system, so that

⟨A⟩ =
∑
i

pi⟨ψi|A|ψi⟩ (2.51)

where ⟨ψi|ψi⟩ = 1 and
∑

i pi = 1. In order to describe a system in which the probability

that it is in the state |ψi⟩ is pi, we introduce density operator

ρ =
∑
i

pi|ψi⟩⟨ψi| (2.52)
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which is Hermitian ρ =
∑

i pi|ψi⟩⟨ψi| = (
∑

i pi|ψi⟩⟨ψi|)† = ρ†, has unit trace Tr(ρ) = 1

and is the positive operator

⟨ϕi|ρ|ϕi⟩ =
∑
i

pi⟨ϕi|ψi⟩⟨ψi|ϕi⟩ =
∑
i

pi|⟨ψi|ϕi⟩|2 ≥ 0 (2.53)

where |ϕi⟩ be any ket and pi is real and positive. If the state of the system is known then

it is in a pure state. The density operator of a pure state is

ρ = |ψ⟩⟨ψ|. (2.54)

Since ρ2 = ρ it is also a projector. The trace of an operator ρ is Tr(ρ) = ⟨ψ|ψ⟩ = 1 and

Tr(ρ2) = 1 for a pure state . The density operator of a mixed state is

ρ =
∑
i

pi|ψi⟩⟨ψi|. (2.55)

The trace of an operator ρ is Tr(ρ) =
∑

i pi = 1 and

Tr(ρ2) =
∑
i

p2i < 1 (2.56)

for mixed state.

Density matrix for a qubit can be written in the next form

ρ =
1

2
(I + Sxσx + Syσy + Szσz) ≡

1

2
(I + S⃗ · σ⃗) (2.57)

=
1

2

(
1 + Sz Sx − iSy

Sx + iSy 1− Sz

)
(2.58)

Tr(ρ) = 1, T r(ρ2) =
1 + S⃗2

2
(2.59)

If the state is pure Tr(ρ2) = 1, and |S⃗| = 1, so it represents a Bloch sphere. If the state

is mixed Tr(ρ2) < 1 and as follows |S⃗| < 1, then it represents a Bloch ball.
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2.5.2. Reduced Density Matrix

We consider the two systems A and B that can be described by a density operator,

ρAB. The reduced density operator for system A is defined by

ρA ≡ trB(ρ
AB), (2.60)

where trB is a map of operators known as the partial trace over system B. The partial

trace is defined by

trB(|ψ1⟩⟨ψ2| ⊗ |ϕ1⟩⟨ϕ2|) ≡ |ψ1⟩⟨ψ2|tr(|ϕ1⟩⟨ϕ2|) (2.61)

where |ψ1⟩ and |ψ2⟩ are any two vectors in the state space of A, and |ϕ1⟩ and |ϕ2⟩ are

any two vectors in the state space of B. As an example let us consider the Bell state

|ψ⟩ = |00⟩+|11⟩√
2

which has the density operator

ρ =
|00⟩⟨00|+ |11⟩⟨00|+ |00⟩⟨11|+ |11⟩⟨11|

2
(2.62)

Tracing out the second qubit, we find the reduced density matrix for the first qubit

ρA = trB(ρ) (2.63)

=
|0⟩⟨0|+ |1⟩⟨1|

2
=
I

2
. (2.64)

Since tr(ρA)2 = 1
2
≤ 1 this state is a mixed state. The state of the joint system of two

qubits is a pure state, that is, it is known exactly: however, the first qubit is in a mixed

state, that is, a state about which we apparently do not have maximal knowledge. This

strange property, that the joint state of a system can be completely known, yet a subsystem

be in mixed states, is another hallmark of quantum entanglement (Nielsen & Chuang).

Lemma 2.5.2.1 (Singular Value Decomposition:) Any complex dA × dB matrix A can

be written as

A = UDV † (2.65)

19



where U and V are unitary, and D =


c1

.

cn

 is diagonal with ci > 0 and

∑
i c

2
k = 1.

Proof 2.5.2.2

A = UDV †, A† = V DU † (2.66)

AA†U = UD2, A†AV = V D2 (2.67)

Eigenvectors of AA† gives columns of U and eigenvectors of A†A gives columns of V .

Square roots of eigenvalues of AA† or A†A gives diagonal elements of D.

Lemma 2.5.2.3 (Schmidt Decomposition:) Every pure state in the Hilbert space H =

HA ⊗HB with dimension d = dA · dB, can be expressed in the form

|ψ⟩ =
r∑
i

ci|ei⟩A ⊗ |fi⟩B (2.68)

where {|ei⟩} is an orthonormal basis for HA , {|fi⟩} is an orthonormal basis for HB with

ci real, ci > 0 and
∑

i c
2
k = 1.

Proof 2.5.2.4

|ψ⟩ =
∑
ij

tij|ij⟩ =
∑
ijk

UikckV
†
kj|ij⟩ (2.69)

=
∑
ijk

ck Uik|i⟩︸ ︷︷ ︸
|ek⟩A

⊗V †
kj|j⟩︸ ︷︷ ︸
|fk⟩B

(2.70)

=
∑
k

ck|ek⟩A ⊗ |fk⟩B (2.71)

where ci real, ci > 0 and
∑

i c
2
k = 1.
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2.6. Concurrence for Pure State

Density matrix written in Schmidt basis is

ρ = |ψ⟩⟨ψ| =
∑
i

c2i |ei⟩A ⊗ |fi⟩B⟨ei|A ⊗ ⟨fi|B (2.72)

Then the reduced density matrix ρA can be expressed as

ρA = TrB(ρAB) =
∑
i

c2i |ei⟩A⟨ei|A (2.73)

ci =
√
λi where λi are eigenvalues of ρA (or ρB). When Tr(ρA) = 1 the state is separable

(unentangled) and when Tr(ρA) < 1 the state is non-separable (entangled). This allows

us to characterize level of entanglement in terms of concurrence. We have

Tr(ρA) = c21 + c22 = 1 (2.74)

Tr(ρ2A) = c41 + c42 = (c21 + c22)
2 − 2c21c

2
2 = 1− 2c21c

2
2. (2.75)

If c1 = 0 or c2 = 0, Tr(ρ2A) = 1, then the state is a pure state and if c1c2 ̸= 0 ,

Tr(ρ2A) < 1, the state is a mixed state. Then we have

√
2(1− Tr(ρ2A)) = 2c1c2 = C (2.76)

where C is called the concurrence. Relation

Tr(ρA) = c21 + c22 = 1 (2.77)

implies c1 = cosα, c2 = sinα where 0 < α < π
2
, c1 and c2 are positive. Then the

concurrence

C = 2c1c2 = sin 2α. (2.78)
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Since 0 ≤ sin 2α ≤ 1, we have restrictions on values of the concurrence 0 ≤ C ≤ 1.

Now we can apply the definition of concurrence (2.76) to pure state. For T = tij and

D = cij we have T = UDV † and D = U †TV

2| detD| = 2| detU †|| detT || detV | (2.79)

= 2|eiτ || detT ||eiθ| (2.80)

= 2| detT | (2.81)

2|c1c2| = 2| det tij| = C (2.82)

Then for pure state |ψ⟩ =
∑

ij tij|ij⟩ = t00|00⟩+ t01|01⟩+ t10|10⟩+ t11|11⟩ the concur-

rence is

C = 2|t00t11 − t01t10| (2.83)

This formula coincides with the determinant definition of entanglement introduced in

(2.48). For example, let us consider the Bell State

|β00⟩ =
1√
2
(|00⟩+ |11⟩). (2.84)

Then the concurrence is

C = 2|t00t11 − t01t10| (2.85)

= 2| 1√
2
× 1√

2
− 0| = 1 (2.86)

and the state is maximally entangled.

2.7. Heisenberg Spin Models

As we have seen in Section 2.5 two qubit gate, CNOT gate, can generate en-

tanglement of qubits. This gate can be considered as an interaction between two qubits.

Realizing qubits as spins we can describe generic two qubit gate as an interaction between
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spins. The simplest example of two spins S⃗i and S⃗j interaction is given by next exchange

interaction Hamiltonian

H = J S⃗i · S⃗j, (2.87)

where parameter J is called the exchange interaction and

S⃗i · S⃗j = |S⃗i| · |S⃗j| cos θij. (2.88)

For the chain of N spins,

H = J
N∑
i=1

S⃗i · S⃗i+1 (2.89)

it gives the Heisenberg spin chain with the nearest neighbor interaction. If J < 0 then

minimum energy or the ground state of the system is

H = −|J |
∑
i

|S⃗i| · |S⃗i+1| cos θi i+1︸ ︷︷ ︸
θi i+1=0

(2.90)

for θii+1 = 0 which corresponds to the ferromagnetic ground state.

|Φ↑⟩ = | ↑↑↑↑ ... ↑⟩ = |00000...0⟩ (2.91)

|Φ↓⟩ = | ↓↓↓↓ ... ↓⟩ = |11111...1⟩ (2.92)

If J > 0 then minimum energy or the ground state of the system is

H = |J |
∑
i

|S⃗i| · |S⃗i+1| cos θi i+1︸ ︷︷ ︸
θi i+1=π

(2.93)

23



the anti-ferromagnetic ground state.

|Φ⟩ = | ↑↓↑↓ ... ↓⟩ = |0101...0⟩ (2.94)

Generalization of the Heisenberg model (2.89) can be written in the form

H = J

n∑
i=1

(JxS
x
i S

x
i+1 + JyS

y
i S

y
i+1 + JzS

z
i S

z
i+1) (2.95)

is known as theXY Z model. When Jx = Jy = Jz (2.95) reduces to the Heisenberg model

(2.89) or XXX model. Another reductions are known as the Ising model (Jx = Jy = 0)

H = J

n∑
i=1

Szi S
z
i+1, (2.96)

XX model if Jx = Jy = J and Jz = 0

H = J

n∑
i=1

(Sxi S
x
i+1 + Syi S

y
i+1), (2.97)

XY model if Jz = 0

H =
n∑
i=1

(JxS
x
i S

x
i+1 + JyS

y
i S

y
i+1), (2.98)

XXZ model if Jx = Jy- easy axis or easy plane anisotropic Heisenberg model

H =
n∑
i=1

[J(Sxi S
x
i+1 + Syi S

y
i+1) + JzS

z
i S

z
i+1] (2.99)
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2.8. Effective Spin Models

In this section we like to show universality of general Heisenberg spin models.

Indeed the model which appeared first as description of spin interaction, then explored

intensively as models of studying phase transitions in quantum systems. Moreover, re-

cently the models appear as effective models in description of nuclear spins and in the

description of electron correlations of Hydrogen molecule. Below we give two physical

examples effectively described by the Ising model.

2.8.1. Ising Model for Two Nuclear Spins

Recently two nuclear spins were considered in a model with weak Heisenberg

type interaction in a constant longitudinal magnetic field along z direction (Tong & Tao,

2006)

H = Hz +Hxy (2.100)

Hz = −1

2
(ω1σ

z
1 + ω2σ

z
2 + Jσz1σ

z
2) (2.101)

Hxy = −1

2
(Jσx1σ

x
2 + Jσy1σ

y
2) (2.102)

where the isotropic form for the spin coupling J is assumed, and ω1,2 ≡ (B ∓ b) are the

Larmor frequencies of two nuclear spins, ~ = 1. In the experiments, two different nuclear

spins are selected, ω1 ̸= ω2 (we assume ω1 > ω2), and the longitudinal constant magnetic

field is in the order of 1THz, so that ω1, ω2 are much larger than J and η = J
(ω1−ω2)

≪ 1.

Hxy is non-diagonal in σz representation and due to quantum fluctuations of order η2, can

be ignored. Thus, the Ising part Hz of the Hamiltonian is a well precise approximation

(Tong & Tao, 2006). However as will see in next section, for the Ising model with external

magnetic fields no entanglement occurs, this is why two nuclear spins in this model are

unentangled for any ω1 and ω2.
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2.8.2. Ising Model for Electron Correlations

To understand the entanglement behavior for H2 molecule using quantum chem-

istry methods, the entanglement for a simpler two-electron model system was calculated

(Huang & Kais, 2005). This is a model of two spin 1/2 electrons with an exchange

coupling constant J in an effective transverse magnetic field of strength B. In order to

describe the environment of the electrons in a molecule, we simply introduce a small ef-

fective external magnetic field B. The general Hamiltonian for such a system is given

by

H = −Jσx1 ⊗ σx2 −Bσz1 ⊗ I2 −BI1 ⊗ σz2 (2.103)

This Hamiltonian has the form of effective Ising model which describes electron correla-

tions in molecular systems.

2.9. Thermal Entanglement and Wootters Concurrence

In realistic situation quantum computers will work in environment with nonzero

temperature, so important question is to see the influence of temperature on entanglement

property. Since by increasing temperature generically entanglement should decrease and

at some critical value of temperature it disappears. Starting from this critical temperature

quantum computers will not work. Our goal in the next chapter is to study influence on

critical temperature of different physical parameters like exchange constants, magnetic

fields, anisotropic exchange DM interaction, distance between qubits, to find the way to

increase the critical temperature and so far the entanglement. We are not going to work

with real physical systems but with some models, studying basic principles and influence

of these parameters on entanglement. This will allow us to see in which situations critical

temperature can be increased. According to quantum statistics (Landau & Lifshitz, 1980)

the state of the quantum system at thermal equilibrium is determined by the density matrix

ρ(T ) =
e−H/kT

Tr[e−H/kT ]
=
e−H/kT

Z
, (2.104)
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where Z = Tr[e−H/kT ] is the partition function, k is the Boltzmann constant and T is the

temperature. As ρ(T ) represents a thermal state, the entanglement in this state is called

the thermal entanglement. The degree of entanglement could be characterized by the

concurrence C12, which is defined as (Wootters, 1998), (Hill & Wootters, 1997)

C12 = max{λ1 − λ2 − λ3 − λ4, 0}, (2.105)

where λ1 ≥ λ2 ≥ λ3 ≥ λ4 > 0 are the ordered square roots of eigenvalues of the operator

ρ12 = ρ(σy ⊗ σy)ρ∗(σy ⊗ σy). (2.106)

The concurrence is bounded function 0 ≤ C12 ≤ 1, so that when C12 = 0, the states are

unentangled, while for C12 = 1, the states are maximally entangled.
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CHAPTER 3

TWO QUBIT ENTANGLEMENT IN SPIN MODELS

The results shown in this chapter appeared in (Gurkan & Pashaev, 2010 ) and

presented in (Gurkan & Pashaev, 2010). It is clear that single qubit gates are unable

to generate entanglement in an N qubit separable system, and to prepare an entangled

state one needs an inter qubit interaction, which is a two qubit gate. The simplest two

qubit interaction is described by the Ising Hamiltonian in the form of Jσz1σ
z
2 . More gen-

eral interaction between two qubits is given by the Heisenberg magnetic spin interaction

models. These models have been extensively studied during several decades, experimen-

tally in condensed matter systems (Baryakhtar et al., 1998) and theoretically as exactly

solvable many body problems (Bethe, 1931), (Lieb & Mattis, 1966), (Baxter, 1982).

Now they become promising to realize quantum computation and information processing,

by generating entangled qubits and constructing quantum gates (Zheng & Guo, 2000),

(Imamoglu et al., 1999) in a more general context than the magnetic chains.

Recently in this way interaction of two nuclear spins having the Heisenberg form

were considered (Tong & Tao, 2006). The nuclear spins from one side are well isolated

from the environment and their decoherence time is sufficiently long. From another side

nuclei with spin 1/2 are natural representatives of qubits in quantum information process-

ing, which can realize quantum computational algorithms by using NMR (Yusa et al.,

2005), (Chuang et al., 1998), (Vandersypen et al., 2001).

Very recently entanglement of two qubits (Wootters, 1998) and its dependence

on external magnetic fields, anisotropy and temperature have been considered in several

Heisenberg models: the Ising model (Gunlycke et al., 2001), (Terzis & Paspalakis, 2004),

(Childs et al., 2003); the XX and XY models (Zheng & Guo, 2000), (Wang, 2002),

(Wang, 2001a), (Kamta & Starace, 2002), (Xi & Liu, 2007), (Hamieh & Katsnelson,

2005), (Sun et al., 2003); the XXX model (Arnesen et al., 2001); the XXZ model

(Wang, 2001c); and the XY Z model (Xi et al., 2002), (Rigolin, 2004), (Zhou et al.,

2003). Particularly dependence of entanglement on the type of spin ordering, was shown,

so that in the isotropic Heisenberg spin chain (the XXX model) spin states are unen-

tangled in the ferromagnetic case J < 0, while for the antiferromagnetic case J > 0

entanglement occurs for sufficiently small temperature T < Tc = 2J
k ln 3

. Significant

point in the study of such models is how to increase entanglement in situation when it
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already exists or to create entanglement in situation when it does not exist. Certainly

this can be expected from a generalization of bilinear spin-spin interaction of the Heisen-

berg form. Around 50 years ago explaining weak ferromagnetism of antiferromagnetic

crystals (α − Fe2O3,MnCO3 and CrF3), has been controversial problem for a decade,

Dzialoshinskii (Dzialoshinski, 1958) from phenomenological arguments, and Moriya

(Moriya, 1960) from microscopic grounds, have introduced anisotropic antisymmetric

exchange interaction, the Dzialoshinskii-Moriya (DM) interaction, expressed by

D⃗ · [S⃗1 × S⃗2]. (3.1)

This interaction arising from extension of the Anderson superexchange interaction the-

ory by including the spin orbit coupling effect (Moriya, 1960), is important not only for

the weak ferromagnetism but also for the spin arrangement in antiferromagnets of low

symmetry. In contrast to the Heisenberg interaction which tends to render neighbor spins

parallel, the DM interaction has the effect of turning them perpendicular to one another.

As we will see in the present thesis it turns out that such spin arrangements are likely to

increase entanglement. In most materials with weak ferromagnetism and the DM cou-

pling, parameter D is small compared to J . The values reported in the literature range

from D
J
≈ 0.02 to 0.07 (see (Aristov & Maleyev, 2000) and references therein). However

in some compounds the DM interaction can attain a sizeable value in comparison with

the usual symmetric superexchange J . Depending on compound its value varies between
D
J
≈ 0.05 to 0.2. Moreover, recently the DM interaction was found to be present in a num-

ber of quasi-one-dimensional magnets (Pires & Goueva, 2000). Even it was found that

the compound RbCoCl3.2H2O is described as a pure DM chain (Elearney & Merchant,

1999). The low-temperature magnetic behavior of this compound gives strong evidence

that the material consists of weakly interacting linear chains with predominant DM in-

teraction. In addition, study of the DM interaction influence on dynamics of the one

dimensional quantum antiferromagnet shows the big difference in the behavior, depend-

ing on whether the coupling D is smaller or larger than the exchange interaction J (Pires

& Goueva, 2000). All these results imply that a study of spin models with DM interaction

could have realistic applications. Then for applications in quantum computations it poses

the problem to find the entanglement dependence on this interaction.

In the present chapter we study the influence of the Dzialoshinskii-Moriya inter-

action on entanglement of two qubits in all particular magnetic spin models, including the

most generalXY Z model (Gurkan & Pashaev, 2010 ). We find that in all cases, inclusion
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of the DM interaction creates, when it does not exist, or strengthens, when it exists, en-

tanglement. For example, we show that in the case of isotropic Heisenberg XXX model

discussed above, inclusion of this term increases entanglement for antiferromagnetic case

and for sufficiently strong coupling

D > (kTsinh−1e|J |/kT − J2)1/2 (3.2)

it creates entanglement even in ferromagnetic case. We give detailed physical explana-

tions of these results by studying ground state of the system at T = 0. In this state we

find nonanalytic dependence of concurrence on the DM interaction and establish its rela-

tion with the quantum phase transition. These results indicate that spin models with DM

coupling have some potential applications in quantum computations, and DM interaction

could be an efficient control parameter of entanglement.

3.1. Spectrum and Density Matrix

We start our consideration with the most general XY Z model, by inclusion of ho-

mogeneous B and nonhomogeneous b magnetic fields, and choosing the DM interaction

(3.1) in the form D⃗
2
= D

2
· z⃗. Then for two qubits we have Hamiltonian

H =
1

2
[Jx σ

x
1σ

x
2 + Jy σ

y
1σ

y
2 + Jz σ

z
1σ

z
2 +B+ σ

z
1 +B− σ

z
2 +D(σx1σ

y
2 − σy1σ

x
2 )], (3.3)

where product of σi1 and σj2

σi1σ
j
2 ≡ σi1 ⊗ σj2 (3.4)

is a tensor product which we will frequently skip ⊗ and B+ ≡ B + b, B− ≡ B − b and

σxi , σ
y
i , σ

z
i , i = 1, 2 denote Pauli matrices related with the first and the second qubits.

To study the thermal entanglement in this system firstly we need to obtain all

eigenvalues and eigenstates of the Hamiltonian (3.3):

H|Ψi⟩ = Ei|Ψi⟩, i = 1, 2, 3, 4. (3.5)
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Simple calculations show that the energy levels are:

E1,2 =
Jz
2

∓ µ, E3,4 = −Jz
2

∓ ν (3.6)

where µ ≡
√
B2 + J2

−, ν ≡
√
b2 + J2

+ +D2, J± ≡ Jx±Jy
2

, and the corresponding wave

functions are (for details see Appendix A)

|Ψ1,2⟩ =
1√

2µ(µ±B)


J−

0

0

−(B ± µ)

 , |Ψ3,4⟩ =
1√

2ν(ν ∓ b)


0

(b∓ ν)

J+ − iD

0

 . (3.7)

ForB = 0, b = 0, D = 0 these wave functions reduce to the maximally entangled

Bell states

|Ψ2,1⟩ −→ |B0,3⟩ =
1√
2
(|00⟩ ± |11⟩) (3.8)

|Ψ4,3⟩ −→ |B1,2⟩ =
1√
2
(|01⟩ ± |10⟩ (3.9)

State of the system at thermal equilibrium is determined by the density matrix (for

details Appendix B)

ρ(T ) =
e−H/kT

Tr[e−H/kT ]
=
e−H/kT

Z
, (3.10)

where Z = Tr[e−H/kT ] is the partition function, k is the Boltzmann constant and T is the

temperature. Then by exponentiation of Hamiltonian (3.3) we find

e−H/kT =


A11 0 0 A14

0 A22 A23 0

0 A32 A33 0

A41 0 0 A44

 (3.11)
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where

A11 = e
−Jz
2kT

[
cosh

µ

kT
− B

µ
sinh

µ

kT

]
(3.12)

A44 = e−
Jz
2kT

[
cosh

µ

kT
+
B

µ
sinh

µ

kT

]
(3.13)

A14 = −e−
Jz
2kT

J−
µ

sinh
µ

kT
(3.14)

A41 = −e−
Jz
2kT

J−
µ

sinh
µ

kT
(3.15)

A22 = e
Jz
2kT

[
cosh

ν

kT
− b

ν
sinh

ν

kT

]
(3.16)

A33 = e
Jz
2kT

[
cosh

ν

kT
+
b

ν
sinh

ν

kT

]
(3.17)

A23 = −e
Jz
2kT

J+ + iD

ν
sinh

ν

kT
(3.18)

A32 = −e
Jz
2kT

J+ − iD

ν
sinh

ν

kT
(3.19)

and

Z = Tr[e−H/kT ] = 2
[
e

−Jz
2kT cosh

µ

kT
+ e

Jz
2kT cosh

ν

kT

]
. (3.20)

As ρ(T ) represents a thermal state, the entanglement in this state is called the thermal

entanglement. The degree of entanglement could be characterized by the concurrence

C12, which is defined as (Wootters, 1998), (Hill & Wootters, 1997)

C12 = max{λ1 − λ2 − λ3 − λ4, 0}, (3.21)

where λ1 ≥ λ2 ≥ λ3 ≥ λ4 > 0 are the ordered square roots of eigenvalues of the operator

ρ12 = ρ(σy ⊗ σy)ρ∗(σy ⊗ σy). (3.22)

The concurrence is bounded function 0 ≤ C12 ≤ 1, so that when C12 = 0, the states are

unentangled, while for C12 = 1, the states are maximally entangled.
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For the general Hamiltonian (3.3) we find :

λ1,2 =
e

−Jz
2kT

Z

∣∣∣∣∣∣
√
1 +

J2
−

µ2
sinh2 µ

kT
∓ J−

µ
sinh

µ

kT

∣∣∣∣∣∣ (3.23)

λ3,4 =
e

Jz
2kT

Z

∣∣∣∣∣
√
1 +

J2
+ +D2

ν2
sinh2 ν

kT
∓
√
J2
+ +D2

ν
sinh

ν

kT

∣∣∣∣∣ . (3.24)

Then, to calculate the concurrence we need to order these eigenvalues. Since they depend

on several parameters, before studying the most general case, it is useful to treat all partic-

ular cases separately to clarify the influence of the DM interaction on the entanglement.

Starting from pure DM model we study various Heisenberg models, including the general

XY Z case.

Before this, we like just to stress here the general observation on the concurrence

(3.21). If the biggest eigenvalue say λ1 is degenerate, then its positive contribution would

be compensated by the another degenerate one, so that C12 = 0 and states are always

unentangled. We will encounter this situation in several cases and it has a simple physical

explanation. The degenerate biggest eigenvalues of the density matrix correspond to the

minimal values of the energy, so that the ground state of the system becomes degenerate

and no entanglement occurs.

3.2. Pure DM Model

For pure DM model Jx = Jy = Jz = 0 and B = b = 0, D ̸= 0 the Hamiltonian

is in the next form

H =
D

2
(σx ⊗ σy − σy ⊗ σx). (3.25)

As we discussed in introduction some realistic quasi-one dimensional compounds with

predominance of DM interaction can be described as a pure DM model (Elearney &

Merchant, 1999). Here we consider the main characteristic properties of the DM coupling

interaction interaction between two qubits and its influence on the entanglement. If in

Hamiltonian (3.3) we put Jx = Jy = Jz = 0 and B = b = 0 then the model is determined

completely by the DM term (3.1). In this case the first two eigenstates become degenerate
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E1 = E2 = 0 and E3,4 = ±D. For definiteness we choose D > 0, then for T = 0 the

ground state of the system with energy E4 = −D is an entangled state |10⟩− i|01⟩. When

temperature increases this state becomes mixed with the higher states and entanglement

decreases. But for sufficiently large value of D the ground state can be alienated so that

entanglement increases. This shows that for a given D there exists

kTc =
D

ln(1 +
√
2)

(3.26)

so that for the under critical case T < Tc the states become entangled and the concurrence

is

C12 =
sinh D

kT
− 1

cosh D
kT

+ 1
. (3.27)

As it can be seen in Fig. 3.1 for T = 0 the concurrence C12 = 1 and the ground state is

maximally entangled.
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kT

0.2

0.4

0.6

0.8

1
C12

Figure 3.1. Concurrence versus temperature for D = 1 and Tc = 1.136
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3.3. Ising Model

For Jx = Jy = 0, Jz ̸= 0 and B = b = 0, D = 0 the Hamiltonian

H =
Jz
2
σz1 ⊗ σz2 (3.28)

or in the matrix form

H =


Jz
2

0 0 0

0 −Jz
2

0 0

0 0 −Jz
2

0

0 0 0 Jz
2

 (3.29)

describes the Ising model . When both anti-ferromagnetic and ferromagnetic cases ana-

lyzed in the anti-ferromagnetic case (Jz > 0), the ordered eigenvalues are

λ1 = λ2
eJz/2kT

Z
> λ3 = λ4 =

e−Jz/2kT

Z
. (3.30)

where Z = 4 cosh Jz
2kT

and the concurrence is

C12 = max{ −eJz/2kT

2 cosh Jz
2kT

, 0} = 0. (3.31)

In the ferromagnetic case (Jz < 0), the ordered eigenvalues are

λ1 = λ2
e|Jz |/2kT

Z
> λ3 = λ4 =

e−|Jz |/2kT

Z
. (3.32)

where Z = 4 cosh |Jz |
2kT

and the concurrence is

C12 = max{−e
−|Jz |/2kT

2 cosh |Jz |
2kT

, 0} = 0 (3.33)
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It was observed for both cases the concurrence is zero and the states are always

unentangled (Gunlycke et al., 2001), (Terzis & Paspalakis, 2004), (Childs et al., 2003).

The physical insight of such behavior is easy to understand. When J− = J+ = 0 the

density matrix ρ (3.10) is diagonal in the standard basis which implies the absence of

quantum correlations. Despite of having four maximally entangled states as the eigen-

vectors, the states |Ψ1,2⟩ and |Ψ3,4⟩ are degenerated, so that the Ising thermal state has

no entanglement. The situation does not change if one includes homogeneous B or non-

homogeneous b magnetic fields, because the density matrix ρ is still diagonal and no

entanglement occurs .

3.3.1. Ising Model with DM Interaction

With addition of the DM interaction we have the next Hamiltonian

H =
1

2
[Jz σ

z
1σ

z
2 +D(σx1σ

y
2 − σy1σ

x
2 )] (3.34)

or in the matrix form

H =


Jz
2

0 0 0

0 −Jz
2

iD 0

0 −iD −Jz
2

0

0 0 0 Jz
2

 . (3.35)

The eigenvalues are

λ1 =
e(Jz+2D)/2kT

Z
, λ2 =

e(Jz−2D)/2kT

Z
, λ3 = λ4 =

e−Jz/2kT

Z
. (3.36)

where Z = 2(eJz/2kT cosh D
kT

+ e−Jz/2kT ). In contrast to magnetic fields, which does

not create entanglement, inclusion of the DM interaction contributes to the nondiagonal

elements of ρ and creates entanglement. In the anti-ferromagnetic case, the addition of the

DM interaction to the Ising model splits the degenerate ground state withE3 = E4 = −Jz
2

so that it becomes a singlet with E3 = − |Jz |
2

− D, for D > 0 or E4 = − |Jz |
2

+ D, for
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D < 0. Ordering the eigenvalues λ1 > λ2 > λ3 = λ4 we have the concurrence

C12 = max{
sinh |D|

kT
− e−Jz/kT

cosh |D|
kT

+ e−Jz/kT
, 0} (3.37)

Then C12 = 0 and no entanglement occurs. If sinh |D|
kT

≤ e−Jz/kT . When sinh |D|
kT

>

e−Jz/kT the states are entangled

C12 =
sinh |D|

kT
− e−Jz/kT

cosh |D|
kT

+ e−Jz/kT
. (3.38)

Moreover states become more entangled for low temperatures (maximally entangled for

any D and T = 0).

lim
kT→0

C12 = 1 (3.39)

and for stronger DM interaction

lim
D→∞

C12 = 1. (3.40)

When temperature increases the maximally entangled ground state becomes mixed with

the higher eigenstates and the entanglement decreases. However, for a given temperature

by increasing the DM interaction D > Dc, where Dc = kT sinh−1 e−Jz/kT , we can

decrease this mixture and increase entanglement. In the ferromagnetic case the ground

state for small D at T = 0 is also a doublet and no entanglement occurs. However, with

growing D the eigenstate E3 = |Jz |
2

− D is lowering so that at critical value Dc = |Jz|
the ground state becomes triplet. With weak DM interaction |D| < |Jz|, the ordered

eigenvalues are λ3 = λ4 > λ1 > λ2 and we obtain the concurrence as

C12 = max{
− cosh |D|

kT

cosh |D|
kT
e−|Jz |/kT + e|Jz |/kT

, 0} = 0 (3.41)
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no entanglement occurs. With strong DM interaction |D| > |Jz|, the ordered eigenvalues

are λ1 > λ3 = λ4 > λ2 and obtain the concurrence as

C12 = max{
sinh |D|

kT
− e|Jz |/2kT

cosh |D|
kT

+ e|Jz |/2kT
, 0} (3.42)

When D > Dc the ground state E3 is maximally entangled singlet. With growing tem-

perature, a mixture of this state with the higher states decreases entanglement. For given

temperature T , there exist the critical value

Dc = |Jz|+
kT

2
ln(1 + e−2|Jz |/kT ) (3.43)

so that for D > Dc the concurrence is

C12 =
sinh |D|

kT
− e|Jz |/kT

cosh |D|
kT

+ e|Jz |/kT
.. (3.44)

Moreover states become more entangled for low temperatures

lim
kT→0

C12 = 1 (3.45)

and for stronger DM interaction

lim
D→∞

C12 = 1 . (3.46)

There is entanglement even in ferromagnetic case with strong spin-orbit coupling. Com-

paring eqs. (3.38) and (3.44) we can see that in anti-ferromagnetic case, states can be

more easily entangled then in the ferromagnetic one
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3.3.2. Ising Model for Two Nuclear Spins with DM Interaction

As an application of the above calculations here we discuss entanglement of two

nuclear spins. Recently two nuclear spins were considered in a model with weak Heisen-

berg type interaction in a constant longitudinal magnetic field along z direction (Tong &

Tao, 2006)

H = Hz +Hxy (3.47)

Hz = −1

2
(ω1σ

z
1 + ω2σ

z
2 + Jσz1σ

z
2) (3.48)

Hxy = −1

2
(Jσx1σ

x
2 + Jσy1σ

y
2) (3.49)

where the isotropic form for the spin coupling J is assumed, and ω1,2 ≡ (B ∓ b) are the

Larmor frequencies of two nuclear spins, ~ = 1. In the experiments, two different nuclear

spins are selected, ω1 ̸= ω2 (we assume ω1 > ω2), and the longitudinal constant magnetic

field is in the order of 1THz, so that ω1, ω2 are much larger than J and η = J
(ω1−ω2)

≪ 1.

Hxy is non-diagonal in σz representation and due to quantum fluctuations of order η2, can

be ignored. Thus, the Ising part Hz of the Hamiltonian is a well precise approximation

(Tong & Tao, 2006). However as we have seen above, for the Ising model with external

magnetic fields no entanglement occurs, this is why two nuclear spins in this model are

unentangled for any ω1 and ω2. From another side, as follows from our consideration in

Sec.3.1 the addition of an interaction between qubits in the form of the DM coupling could

make them entangled. Now by adding the DM interaction to two nuclear spin Hamiltonian

(3.48) we get the Ising model with homogeneous magnetic field B, nonhomogeneous

magnetic field b and the DM interactionD. In the antiferromagnetic and the ferromagnetic

cases, when Jz = ±|Jz| respectively, for sufficiently strong D > Dc, where

Dc√
D2
c + b2

sinh

√
D2
c + b2

kT
= e∓

|Jz |
kT , (3.50)

the states become entangled and the concurrence is

C12 =
D
ν
sinh ν

kT
− e∓

|Jz |
kT

cosh ν
kT

+ cosh B
kT
e∓

|Jz |
kT

(3.51)
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where B = (ω1 + ω2)/2, b = (ω1 − ω2)/2 and ν =
√

(ω2−ω1)2

4
+D2. It is worth

to note that the homogeneous magnetic field B does not change critical value for the

entanglement, but could change level of the entanglement. Moreover, increasing magnetic

field decreases value of the entanglement. It turns out that for the system at T = 0, the

concurrence becomes nonanalytic when D = Dc

C12 =



D
ν
, ν > B ∓ |Jz|;

D
2ν
, ν = B ∓ |Jz|;

0, ν < B ∓ |Jz|,

(3.52)

which implies quantum phase transitions at the critical value Dc = (B ∓ |Jz|)2 − b2.

3.4. XY Heisenberg Model

In pure XY Heisenberg Model Jz = 0, Jx ̸= Jy and B = 0, b = 0, D = 0 with

the Hamiltonian

H =
1

2
[Jx σ

x
1σ

x
2 + Jyσ

y
1σ

y
2 ] (3.53)

or in the matrix form

H =


0 0 0 J−

0 0 J+ 0

0 J+ 0 0

J− 0 0 0

 , (3.54)

the eigenvalues are calculated as

λ1 =
eJ−/kT

Z
, λ2 =

e−J−/kT

Z
, λ3 =

eJ+/kT

Z
, λ4 =

e−J+/kT

Z
, (3.55)
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where

Z = 2(cosh
J−
kT

+ cosh
J+
kT

). (3.56)

Next we will analyze anti-ferromagnetic and ferromagnetic cases. In the anti-ferromagnetic

case, the ordered eigenvalues are λ3 > λ1 > λ2 > λ4 and the concurrence is found as

C12 = max{
sinh J+

kT
− cosh J−

kT

cosh J−
kT

+ cosh J+
kT

, 0}. (3.57)

For sinh J+
kT

> cosh J−
kT

the concurrence is

C12 =
sinh J+

kT
− cosh J−

kT

cosh J−
kT

+ cosh J+
kT

(3.58)

and for

lim
T→0

C12 = 1 (3.59)

we have maximally entangled state. For sinh J+
kT

≤ cosh J−
kT

the concurrence is C12 = 0

and no entanglement occurs. In the ferromagnetic case the concurrence for the ferromag-

netic case is

C12 = max{
sinh |J−|

kT
− cosh J+

kT

cosh |J−|
kT

+ cosh J+
kT

, 0}. (3.60)

According to (3.60) the entanglement occurs only when sinh |J−|
kT

> cosh J+
kT

with concur-

rence

C12 =
sinh J+

kT
− cosh |J−|

kT

cosh |J−|
kT

+ cosh J+
kT

(3.61)
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lim
T→0

C12 = 1 (3.62)

and no entanglement for sinh |J−|
kT

≤ cosh J+
kT

and C12 = 0 (Wang, 2001a), (Hamieh &

Katsnelson, 2005) .

Kamta and Starace investigated the thermal entanglement of a two- qubit Heisen-

berg XY chain in the presence of an external magnetic field along the z- axis in (Kamta

& Starace, 2002) with the Hamiltonian

H =
1

2
[Jx σ

x
1σ

x
2 + Jy σ

y
1σ

y
2 +B (σz1 + σz2)] (3.63)

and eigenvalues

λ1,2 =
1

Z

√√√√1 +
2J2

−

µ2
sinh2 µ

kT
∓ 2J−

µ
sinh

µ

kT

√
1 +

J2
−

µ2
sinh2 µ

kT
(3.64)

λ3 =
eJ+/kT

Z
, λ4 =

eJ−/kT

Z
(3.65)

where

Z = 2(cosh
µ

kT
+ cosh

|J+|
kT

). (3.66)

They showed that by adjusting the magnetic field strength, entangled states are produced

for any finite temperature.

Sun et al. (Sun et al., 2003) extended later the work reported in (Kamta & Starace,

2002) by introducing a non-uniform magnetic field. The Hamiltonian is

H =
1

2
[Jx σ

x
1σ

x
2 + Jy σ

y
1σ

y
2 + (B + b)σz1 + (B − b)σz2]. (3.67)

Comparing to the uniform field case, they showed that entanglement can be more ef-

fectively controlled via a non-uniform magnetic field. Comparing to uniform field case

entanglement can be more effectively controlled via non-uniform magnetic field.
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3.4.1. XY Heisenberg Model with DM Interaction

By addition of the DM coupling the Hamiltonian becomes

H =
1

2
[Jx σ

x
1σ

x
2 + Jy σ

y
1σ

y
2 +D(σx1σ

y
2 − σy1σ

x
2 )] (3.68)

and the eigenvalues are calculated as

λ1,2 =
e±J−/kT

Z
, λ3,4 =

e±
√
J2
++D2/kT

Z
(3.69)

where Z = 2

[
cosh |J−|

kT
+ cosh

√
J2
++D2

kT

]
. For the anti-ferromagnetic case the concur-

rence is in the next form

C12 = max{
sinh

√
J2
++D2

kT
− cosh J−

kT

cosh

√
J2
++D2

kT
+ cosh J−

kT

, 0}. (3.70)

It shows that for any temperature T we can adjust sufficiently strong DM interaction D

to have entanglement. For sinh
√
J2
++D2

kT
> cosh J−

kT
the concurrence is calculated as

C12 =
sinh

√
J2
++D2

kT
− cosh J−

kT

cosh

√
J2
++D2

kT
+ cosh J−

kT

. (3.71)

In the T → 0 limit

lim
T→0

C12 = 1 (3.72)

the states are maximally entangled.
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3.5. XX Heisenberg Model

In this section we consider isotropic XY Model so called XX model. For Jz =

0, Jx = Jy ≡ J and B = 0, b = 0, D = 0. The Hamiltonian of this system is

H =
J

2
(σx1 ⊗ σx2 + σy1 ⊗ σy2) (3.73)

or in the matrix form

H =


0 0 0 0

0 0 J 0

0 J 0 0

0 0 0 0

 (3.74)

the eigenvalues are

λ1 =
eJ/kT

Z
, λ2 = λ3 =

1

Z
, λ4 =

e−J/kT

Z
. (3.75)

In the anti-ferromagnetic case the ordered eigenvalues are λ1 > λ2 = λ3 > λ4 and the

concurrence is

C12 = max{
sinh J

kT
− 1

cosh J
kT

+ 1
, 0}. (3.76)

For sinh J
kT

> 1 the concurrence is

C12 =
sinh J

kT
− 1

cosh J
kT

+ 1
(3.77)

with

lim
T→0

C12 = 1 (3.78)
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shows the states are maximally entangled and for sinh J
kT

≤ 1, C12 = 0 no entanglement

occurs. In the ferromagnetic case the eigenvalues are

λ1 =
e−|J |/kT

Z
, λ2 = λ3 =

1

Z
, λ4 =

e|J |/kT

Z
(3.79)

and the concurrence is in the next form

C12 = max{
sinh |J |

kT
− 1

cosh |J |
kT

+ 1
, 0}. (3.80)

For sinh |J |
kT

> 1 the concurrence is

C12 =
sinh |J |

kT
− 1

cosh |J |
kT

+ 1
(3.81)

with

lim
T→0

C12 = 1 (3.82)

and for sinh |J |
kT

≤ 1, C12 = 0. In both antiferromagnetic and ferromagnetic cases the

states become entangled at sufficiently small temperature

T < Tc =
|J |

k sinh−11
. (3.83)

As was shown in (Zheng & Guo, 2000), (Imamoglu et al., 1999), (Wang, 2002), (Xi et

al., 2002) inclusion of the magnetic field does not change this critical temperature.
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3.5.1. XX Model with DM Interaction

For B = b = 0, D ̸= 0 the Hamiltonian is

H =
J

2
[J(σx1σ

x
2 + σy1σ

y
2) +D(σx1σ

y
2 − σy1σ

x
2 )] (3.84)

and the ordered eigenvalues are

λ4 =
e
√
J2+D2/kT

Z
> λ3 =

e−
√
J2+D2/kT

Z
> λ1,2 =

1

Z
, (3.85)

where partition function is Z = 2(1 + cosh ν
kT
). Then the entanglement occurs when

sinh
√
J2+D2

kT
> 1 and the concurrence is

C12 =
sinh

√
J2+D2

kT
− 1

cosh
√
J2+D2

kT
+ 1

. (3.86)

Comparison with the pure XX model (3.83) shows that the critical temperature

Tc =

√
J2 +D2

k sinh−11
(3.87)

in this case increases with growing D. For D = 0 |Ψ3⟩ in (3.7) is the ground state with

eigenvalue E3 = −|J+|, which is maximally entangled Bell state, so that the concurrence

C12 = 1. As T increases the concurrence decreases due to the mixing of other states with

this maximally entangled one1 .

1In ref. (Wang, 2001c) entanglement in XX model with DM coupling was derived but not in the
general XXZ case as it is claimed in the paper.
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3.5.2. Ising Model in Transverse Magnetic Field

As a particular case of the general XY model now we consider the transverse

Ising model, when Jy = 0, with external magnetic field B in z− direction (Kamta &

Starace, 2002), and with addition of DM interaction:

H =
1

2
[Jx(σ

x
1σ

x
2 ) +B(σz1 + σz2) +D(σx1σ

y
2 − σy1σ

x
2 )]. (3.88)

The corresponding eigenvalues and the partition function Z can be written as follows

λ1,2 =
1

Z

∣∣∣∣∣∣
√
1 +

J2

B2 + J2
sinh2

√
B2 + J2

kT
∓ J√

B2 + J2
sinh

√
B2 + J2

kT

∣∣∣∣∣∣(3.89)

λ3,4 =
1

Z
e∓

√
J2+D2

kT , (3.90)

with the partition function

Z = 2

[
cosh

√
B2 + J2

kT
+ cosh

√
D2 + J2

kT

]
. (3.91)

To find the maximal eigenvalue we compare the difference of λ4 and λ2 as a function of

B,D and T , λ4 − λ2 ≡ f(B,D, T ):

f = e

√
J2+D2

kT −

√
1 +

J2

B2 + J2
sinh2

√
B2 + J2

kT
− J√

B2 + J2
sinh

√
B2 + J2

kT
(3.92)

When f(B,D, T ) = 0 we find the critical D = Dc(B, T ) as

Dc(B, T ) =√√√√√−J2 + T 2

ln

√1 +
J2

B2 + J2
sinh2

√
B2 + J2

kT
+

J√
B2 + J2

sinh

√
B2 + J2

kT

2

.(3.93)
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In Fig. 3.2 we plot Dc as a function of T for different values of magnetic field B =

0.05, 0.5, 0.7, 1 (J = 1, k = 1). The 3D plot of Dc as a function of B and T for the same

values of parameters is given in Fig. 3.3.
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Figure 3.2. Dc versus T for B = 0.05, 0.5, 0.7, 1
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Figure 3.3. 3D plot Dc versus B and T

For critical D = Dc, the eigenvalues are degenerate λ2 = λ4 and as a result

the concurrence C12(B,Dc, T ) = 0. However the value of concurrence is different for the

under critical and the over critical cases. In under critical case whenD < Dc the maximal

eigenvalue is λ2 and for the concurrence we have
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C12 = max{
J√

B2+J2 sinh
√
B2+J2

kT
− cosh

√
D2+J2

kT

cosh
√
B2+J2

kT
+ cosh

√
D2+J2

kT

, 0}, (3.94)

while in the over critical case, when D > Dc, the maximum eigenvalue is λ4 and the

concurrence is

C12 = max{
sinh

√
D2+J2

kT
−
√

1 + J2

B2+J2 sinh
2
√
B2+J2

kT

cosh
√
B2+J2

kT
+ cosh

√
D2+J2

kT

, 0}. (3.95)

In pure Ising model when B = 0 and D = 0 as we can see from (3.92) we have

f(0, 0, T ) = 0 and no entanglement occurs. But as reported in (Kamta & Starace,

2002) an addition of the transverse magnetic field to the Ising model could create en-

tanglement. Now we can generalize these results by analyzing in addition the influence

of DM interaction on entanglement in the Ising model with the magnetic field. When

B = 0 the addition of solely DM term creates entanglement at sufficiently strong D, and

this value of D becomes bigger for higher temperatures. If we have both terms B ̸= 0

and D ̸= 0, then with increasing D the behavior of entanglement becomes nontrivial. In

Figs. 3.4.a, 3.4.b, 3.4.c we show behavior of entanglement as a function ofD for different

temperatures. When T = 0 entanglement is nonanalytic function of D, given by the step

function

C12(D) =



J√
J2+B2 , D < Dc ;

0, D = Dc ;

1, D > Dc,

(3.96)

where Dc = B (see Fig. 3.4-a). This nonanalytic behavior signals on the quantum phase

transition (Sachdev, 1999) appearing at D = Dc = 1. In Fig. 3.4-b at temperature

T = 0.5 the entanglement as a function of D decreases down to zero and at Dc ≈ 0.75

reaches its nondifferentiable minima. After this, it increases monotonically with growing
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D. For higher temperature T = 1 in Fig. 3.4-c, the entanglement is zero until D becomes

sufficiently strong at D = Dc, where entanglement appears and monotonically grows

with growing D.
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Figure 3.4. Concurrence of Ising model in transverse magnetic field versus D, when
B = 1 and T = 0.01, 0.5, 1

3.6. XXX Heisenberg Model

In pure XXX model Jx = Jy = Jz ≡ J and B = b = D = 0 with the

Hamiltonian

H =
1

2
[J(σx1σ

x
2 + σy1σ

y
2 + σz1σ

z
2)] , (3.97)

entanglement behavior for the ferromagnetic and the antiferromagnetic cases is different.

For Jx = Jy = Jz ≡ J and B = 0, b = 0, D = 0, the eigenvalues are

λ1,2 =
e−J/2kT

Z
, λ3 =

e−J/2kT

Z
, λ4 =

e3J/2kT

Z
(3.98)

where the partition function is

Z = 2(e−J/2kT + eJ/2kT cosh
J

kT
) . (3.99)
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It was observed before (Arnesen et al., 2001) that for the ferromagnetic case (J < 0) the

concurrence

C12 = max{
− cosh |J |

kT

cosh |J |
kT

+ e|J |/kT
, 0} = 0 (3.100)

is zero and the states are always unentangled. It happens because when J < 0, the ground

state of the system is an equal mixture of the triplet states with energy, E1 = E2 = E4 =

− |J |
2

. The density matrix ρ is diagonal and inclusion of magnetic field does not change the

result. Increasing temperature T just increases the singlet mixture with the triplet, which

can only decrease entanglement (Arnesen et al., 2001), (Nielsen, 2000).

In the anti-ferromagnetic case the situation is different. In this case the ground

state is the maximally entangled singlet state with E3 = −3J
2

. The concurrence is

C12 = max{
sinh J

kT
− e−J/kT

e−J/kT + cosh J
2kT

, 0} (3.101)

For sinh J
kT

> e−J/kT the concurrence has the form

C12 =
sinh J

kT
− e−J/kT

e−J/2kT + cosh J
2kT

(3.102)

It decreases with T due to mixing of the triplet higher states with the singlet ground state.

For a given coupling constant J entanglement occurs at temperature T < 2J
k ln 3

(Wang,

2001c)

lim
T→0

C12 = 1 (3.103)

For sinh J
kT

≤ e−J/kT the concurrence is C12 = 0 and no entanglement occurs.
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3.6.1. XXX Heisenberg Model with Magnetic Field

With inclusion of magnetic field B the eigenvalues of XXX Heisenberg model

are calculated as

λ1,2 =
e−J/2kT

Z
, λ3 =

e−J/2kT

Z
, λ4 =

e3J/2kT

Z
(3.104)

and the partition function is

Z = 2(e−J/2kT cosh
B

kT
+ eJ/2kT cosh

J

kT
) , (3.105)

In the anti-ferromagnetic case the concurrence is found as

C12 = max{
sinh J

kT
− e−J/kT

e−J/kT cosh B
kT

+ cosh J
2kT

, 0}. (3.106)

For sinh J
kT

> e−J/kT the concurrence is

C12 =
sinh J

kT
− e−J/kT

e−J/2kT cosh B
kT

+ cosh J
2kT

(3.107)

and for sufficiently small temperature T < 2J
k ln 3

entanglement occurs and

lim
T→0

C12 = 1 (3.108)

Comparing eqs. (3.102) and (3.107) we can see that the inclusion of magnetic field B

does not change critical value but decrease entanglement. While for sinh J
kT

< e−J/kT no

entanglement occurs C12 = 0. In the ferromagnetic case the concurrence is calculated as

C12 = max{
− cosh |J |

kT

cosh |J |
kT

+ e|J |/kT cosh B
kT

, 0} = 0. (3.109)
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In this case no entanglement occurs. As a result inclusion of magnetic field does not

change the result, for ferromagnets spins are always disentangled and for anti-ferromagnets

entanglement is observed.

3.6.2. XXX Heisenberg Model with DM Interaction

Now by adding DM coupling for the antiferromagnetic and the ferromagnetic

cases we have the Hamiltonian is in the form

H =
1

2
[J(σx1σ

x
2 + σy1σ

y
2 + σz1σ

z
2) +D(σx1σ

y
2 − σy1σ

x
2 )] (3.110)

or in the matrix form

H =


J
2

0 0 0

0 −J
2

J + iD 0

0 J − iD −J
2

0

0 0 0 J
2

 , (3.111)

The eigenvalues are

λ1,2 =
e−J/2kT

Z
, λ3 =

e(J−2
√
J2+D2)/2kT

Z
, λ3 =

e(J+2
√
J2+D2)/2kT

Z
(3.112)

where the partition function is

Z = 2(e−J/2kT + eJ/2kT cosh

√
J2 +D2

kT
) (3.113)

In the anti-ferromagnetic case, the concurrence is

C12 = max{
sinh

√
J2+D2

kT
− e−J/kT

e−J/kT + cosh
√
J2+D2

kT

, 0} (3.114)

53



For given temperature when D > Dc =
√
kTsinh−1e−J/kT − J2 there is entanglement

with concurrence

C12 =
sinh

√
J2+D2

kT
− e−J/kT

e−J/kT + cosh
√
J2+D2

kT

. (3.115)

In this case the ground state of the system remains singlet with energy E3 = − |J |
2

−
√
J2 +D2, while from degenerate excited triplet state one of the energy levels E4 =

− |J |
2
+

√
J2 +D2 is splitting up. With increasing coupling D the gap between ground

state and the first excited doublet state is increasing, this is why the system becomes

more entangled. As we can see inclusion of the DM coupling, in the XXX model,

increases entanglement in the antiferromagnetic case and creates entanglement even in

the ferromagnetic case. In the ferromagnetic the concurrence is

C12 = max{
sinh

√
J2+D2

kT
− e|J |/kT

e|J |/kT + cosh
√
J2+D2

kT

, 0} (3.116)

For given temperature when D > Dc =
√
kTsinh−1e|J |/kT − J2 there is entanglement

with concurrence

C12 =
sinh

√
J2+D2

kT
− e|J |/kT

e|J |/kT + cosh
√
J2+D2

kT

(3.117)

and for sinh
√
J2+D2

kT
< e|J |/kT no entanglement occurs C12 = 0. In this case from unen-

tangled triplet ground state one of the states splits with the energy E3 =
|J |
2
−
√
J2 +D2.

Then at temperature zero this state becomes maximally entangled ground state. This way

the DM interaction creates entanglement in the ferromagnetic case. With increasingD the

gap between singlet ground state and the first doublet state increases, this is why entan-

glement in the ferromagnetic case increases. Inclusion of spin- orbit coupling D increase

entanglement.
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3.7. XXZ Heisenberg Model

When Jx = Jy = J ̸= Jz the Hamiltonian (3.3) becomes

H =
1

2
[J(σx1σ

x
2 + σy1σ

y
2 +∆σz1σ

z
2) +B+ σ

z
1 +B− σ

z
2 +D(σx1σ

y
2 − σy1σ

x
2 )], (3.118)

where ∆ ≡ Jz/J .

In a pure XXZ ferromagnetic model when Jz < 0 and −|Jz| < J < |Jz| or

|∆| > 1, we have the degenerate maximal eigenvalues λ1 = λ2 and no entanglement

occurs. This happens since the ground state of the system is doublet with eigenvalues

E1 = E2 = − |Jz |
2

. In particular case |∆| = 1 or |J | = |Jz| we have reduction to the

XXX model, where the energy level E3 merges to the ground state, and the last one

becomes triplet state, as we discussed above in Sec. 3.6. For J > 0 and ∆ > −1 the

maximal eigenvalue is λ3 and the states are entangled when sinh J
kT

> e−Jz/kT with the

concurrence

C12 =
sinh J

kT
− e−Jz/kT

cosh J
kT

+ e−Jz/kT
. (3.119)

For J < 0 and ∆ < 1 the maximal eigenvalue is λ4 and the states are entangled for

sinh |J |
kT

> e−Jz/kT with the concurrence

C12 =
sinh |J |

kT
− e−Jz/kT

cosh |J |
kT

+ e−Jz/kT
. (3.120)

3.7.1. XXZ Heisenberg Model with DM Interaction

With addition of the DM coupling we have the eigenvalues

λ1,2 =
1

2
[
1 + eJz/kT cosh

√
J2+D2

kT

] , λ3,4 = e∓
√
J2+D2/kT

2
[
e−Jz/kT + cosh

√
J2+D2

kT

] . (3.121)
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Then for Jz < 0 and |Jz| > |J |, there exists critical value Dc =
√
J2
z − J2 so that for

D > Dc and sinh
√
J2+D2

kT
> e−Jz/kT the states are entangled with the concurrence

C12 =
sinh

√
J2+D2

kT
− e|Jz |/kT

cosh
√
J2+D2

kT
+ e|Jz |/kT

. (3.122)

This happens because for Jz < 0, |Jz| > |J | and D = 0, the ground state is doublet

with E1 = E2 = − |Jz |
2

, and by increasing D so that D > Dc, the higher energy level E3

lowers to the singlet ground state which is maximally entangled. Comparison of (3.122)

with (3.120) shows that with growing D entanglement increases. It is worth to note that

the concurrence (3.122) for both signs of J is the same. Moreover, as easy to see in

(3.122) parameters J and D appear symmetrically. It means that the concurrence could

be increased by growing J with fixed D either by growing D with fixed J . This reflects

the known result (Wreszinski & Alcaraz, 1990) on equivalence of the Heisenberg XXZ

model with DM coupling to pure XXZ model with modified anisotropy parameter and a

certain type of boundary conditions. In fact comparing entanglement in our formulas for

pure antiferromagnetic case (3.120) with the one including the DM interaction (3.122),

we can see that the concurrences are connected by the replacement J → J
√

1 + D2

J2 ,

which corresponds to the substitution for the anisotropy parameter in the pure XXZ

model as ∆ → ∆√
1+∆2D2

J2
z

.

3.7.2. XXZ Heisenberg Model with DM Interaction and Magnetic

Field

If we take into account the DM interaction D and magnetic field B simultane-

ously, the above results for critical value of the DM coupling are still valid, but the level

of entanglement decreases according to

C12 =
sinh

√
J2+D2

kT
− e−Jz/kT

cosh
√
J2+D2

kT
+ e−Jz/kT cosh B

kT

. (3.123)
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For T = 0 and Jz > 0 we have nonanalytic behavior

C12 =



1,
√
D2 + J2 > B − Jz;

1
2
,

√
D2 + J2 = B − Jz;

0,
√
D2 + J2 < B − Jz,

(3.124)

which signals appearance of quantum phase transitions. The concurrence versus temper-

ature for different values of coupling D is shown in Fig. 5, where J = 1 , Jz = 0.5

and magnetic field B = 2. As we can see in general the entanglement decreases with

growing temperature. However we like to emphasize that for D < Dc in Fig. 5a, when

D = 0.1, the entanglement is increasing with growing temperature. This phenomena can

be explained by the fact that for such values of the parameters at T = 0 the ground state

is the separable state with energy E1 =
Jz
2
−B = −1.75, and the concurrence is zero (see

the last case in eqn. (3.124)). When temperature increases the entangled state with energy

E3 = −Jz
2

∓
√
J2 +D2 = −1.255 becomes involved into the mixture and entanglement

is increasing.

When D = Dc the entanglement decreases smoothly from C12 = 0.5 (Fig. 3.5b,

Dc = 1.118). By increasing D (D = 1.19), first it gives sharp decrease from C12 = 1

(Fig. 3.5 c) and then it vanishes slowly. When D becomes bigger (D = 3) entanglement

decreases slowly from C12 = 1 (Fig. 3.5 d).
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Figure 3.5. Concurrence in XXZ model versus temperature for B = 2 and a) D =
0.1, b) D = 1.118, c) D = 1.19, d) D = 3

We compare the concurrence versus magnetic field for different temperatures,

when D = 0 (Fig. 3.6) and when D = 2 (Fig.3.7). In both cases at T = 0 the en-
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tanglement vanishes abruptly as B crosses critical value Bc =
√
B2 + J2 + Jz. This

special point T = 0, B = Bc at which entanglement becomes nonanalytic function of B,

is the point of quantum phase transition. Comparison of figures 3.6 and 3.7 shows that the

critical value of B at which entanglement disappears suddenly is growing with increasing

coupling D: in Fig.3.6, Bc = 2 and in Fig.3.7, Bc = 3.3. It shows again that increasing

DM coupling improves entanglement.

1 2 3 4 5 6 7 B
0.2
0.4
0.6
0.8
1
C

T=1

T=0.5

T=0.1

Figure 3.6. Concurrence versus magnetic field B for D = 0 and T = 0.1, 0.5, 1.

3.8. Pure XY Z Heisenberg Model

In the antiferromagnetic case, we start from the pure XY Z model, where for

determinacy we chose Jz > Jy > Jx > 0 implying J+ > |J−| > 0, J− = −|J−| < 0.

Eigenstates of the Hamiltonian (3.3) are

E1,2 =
|Jz|
2

± |J−|, E3,4 = −|Jz|
2

∓ |J+|. (3.125)

For zero temperature the ground state is maximally entangled Bell state |01⟩ − |10⟩ with

the energy

E3 = −|Jz|
2

− |J+|. (3.126)
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When temperature increases, the state mixes with higher states decreasing entanglement.

Using the highest eigenvalue

λ4 =
1

Z
exp

|Jz|+ 2|J+|
2kT

(3.127)

the concurrence is calculated as

C12 = max{
sinh J+

kT
− cosh J−

kT
e−Jz/kT

cosh J+
kT

+ cosh J−
kT
e−Jz/kT

, 0}. (3.128)

Then entanglement occurs when

sinh
J+
kT

> cosh
J−
kT

e−Jz/kT . (3.129)

It shows that entanglement depends essentially on the anisotropy, and grows with J+ and

decreases with J− (Rigolin, 2004).

In the ferromagnetic case, let Jz < Jy < Jx < 0 then J+ = −|J+|, J− =

|J−| > 0 and Jz = −|Jz|. For pure XY Z model, eigenstates of the Hamiltonian are

E1,2 = − |Jz |
2

∓ |J−| and E3,4 = |Jz |
2

± |J+|. For zero temperature the ground state is

maximally entangled Bell state |00⟩ − |11⟩ with the energy E1 = − |Jz |
2

− |J−|. With

increasing temperature this state mixes with other states and entanglement decreases so

that the concurrence is

C12 =
sinh |J−|

kT
− cosh |J+|

kT
e−|Jz |/kT

cosh |J−|
kT

+ cosh |J+|
kT
e−|Jz |/kT

. (3.130)

When temperature reaches the critical value T = Tc, given by a solution of the following

transcendental equation

sinh
|J−|
kTc

= cosh
|J+|
kTc

e−|Jz |/kT , (3.131)

the concurrence vanishes and state becomes unentangled.
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3.9. XY Z Model with DM Interaction

In the anti-ferromagnetic case inclusion of the DM coupling, remains the energy

levels E1 and E2 the same as above, while E3,4 = − |Jz |
2

∓
√
J2
+ +D2. In this case

the ground state continues to be entangled state but with the energy E3. With growing

temperature, mixing of this state with the higher states decreases the entanglement. If

we consider the difference between two lower states E4 − E3 =
√
J2
+ +D2, then by

increasing the coupling D, it can be made arbitrary large, so that the entanglement will

increase. For D >> |J+| the state would be maximally entangled.

At T = 0 the concurrence

C12 =


1,

√
D2 + J2

+ > J− − Jz;

0,
√
D2 + J2

+ = J− − Jz;

1,
√
D2 + J2

+ < J− − Jz,

(3.132)

is nonanalytic function in D, and it signals about the quantum phase transition at D = Dc

where
√
D2
c + J2

+ = J− − Jz. When the temperature increases, entanglement occurs for

sinh

√
J2
+ +D2

kT
> e−Jz/kT cosh

J−
kT

, (3.133)

and the concurrence

C12 =
sinh ν

kT
− e−Jz/kT cosh J−

kT

cosh ν
kT

+ e−Jz/kT cosh J−
kT

, (3.134)

increases with growing anisotropy J+ and the coupling D.

In the ferromagnetic case, with inclusion of the DM coupling, the first couple of

energy levels is the same E1,2 = −|Jz |
2

∓ |J−| while the second couple becomes E3,4 =
|Jz |
2
∓
√
J2
+ +D2. For D < Dc where Dc satisfies the equation

√
D2
c + J2

+ = |Jz|+ |J−|,
the ground state of the system is the maximally entangled Bell state |00⟩ − |11⟩. If we

increase D, the difference between energy levels E1 and E3 decreases, so that at D = Dc

the ground state becomes degenerate and entanglement vanishes. When D > Dc the

ground state E3 becomes entangled again.
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Due to the mixture of states by increasing temperature the entanglement decreases,

so that, in the under critical region D < Dc the concurrence is

C12 = max{
sinh |J−|

kT
− cosh

√
J2
++D2

kT
e−|Jz |/kT

cosh |J−|
kT

+ cosh

√
J2
++D2

kT
e−|Jz |/kT

, 0}, (3.135)

while in the over critical region D > Dc it is

C12 = max{
sinh

√
J2
++D2

kT
− e|Jz |/kT cosh |J−|

kT

cosh

√
J2
++D2

kT
+ e|Jz |/kT cosh |J−|

kT

, 0}. (3.136)

For D = Dc, due to λ1 = λ3, the entanglement vanishes for any temperature.

The entanglement dependence on T and D is shown in Figs. 3.8 and 3.9. For T = 0 the

figures show nonanalyticity at D = Dc which signals a quantum phase transition. The

entanglement behavior in the under and the over critical regions is qualitatively different.

For the under critical case with fixed temperature the entanglement decreases with grow-

ing D, and the level of entanglement quickly decreases with temperature. From another

side, for fixed temperature in the over critical region the entanglement increases, and the

level of entanglement decreases with temperature quite slowly. In addition if at T = 0 we

have only one critical point D = Dc in which entanglement is zero, for T > 0 entangle-

ment vanishes at some interval which includes Dc and this interval extends with growing

temperature. This is a result of ground state mixture with higher states. However by in-

creasing D we can always lower the level of our ground state to decrease this mixture and

increase entanglement.
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Figure 3.7. Concurrence in ferromagnetic XYZ model versus coupling D at tempera-
ture T = 0.1, 0.5, 1
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Figure 3.8. 3D plot of concurrence in ferromagnetic XYZ model versus coupling D
and temperature T
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CHAPTER 4

TIME EVOLUTION OF ENTANGLEMENT

During the evolution of a generic two qubit state, entanglement of the system

could be changed. So that even starting from a separable state with C = 0, the time

evolution of quantum state can produce entangled and even maximally entangled state and

vice versa. In this chapter we study evolution of two qubit entanglement in Heisenberg

XY Z model with the Dzialoshinskii-Moriya (DM) interaction. These results presented

in (Gurkan & Pashaev, 2009). First we consider the evolution operator

U(t) = exp[− i

~
Ht] (4.1)

with the Hamiltonian

H =
1

2
[Jx σ

x
1σ

x
2 + Jy σ

y
1σ

y
2 + Jz σ

z
1σ

z
2 +B+ σ

z
1 +B− σ

z
2 +D(σx1σ

y
2 − σy1σ

x
2 )]. (4.2)

The matrix form of this operator is

U(t) =


A11 0 0 A14

0 A22 A23 0

0 A32 A33 0

A41 0 0 A44

 (4.3)
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where

A11 = e−
iJzt
2~

[
cos

µt

~
− iB

µ
sin

µt

~

]
= e−

iw3t
4

[
cosw1t−

iB

w1

sinw1t

]
(4.4)

A44 = e−
iJzt
2~

[
cos

µt

~
+
iB

µ
sin

µt

~

]
= e−

iw3t
4

[
cosw1t+

iB

w1

sinw1t

]
(4.5)

A14 = −ie−
iJzt
2~
J−
µ

sin
µt

~
= −ie−

iw3t
4
J−
w1

sinw1t (4.6)

A41 = −ie−
iJzt
2~
J−
µ

sin
µt

~
= −ie−

iw3t
4
J−
w1

sinw1t (4.7)

A22 = e
iJzt
2~

[
cos

νt

~
− ib

ν
sin

νt

~

]
= e

iw3t
4

[
cosw2t−

ib

w2

sinw2t

]
(4.8)

A33 = e
iJzt
2~

[
cos

νt

~
+ i

b

ν
sin

νt

~

]
= e

iw3t
4

[
cosw2t+

ib

w2

sinw2t

]
(4.9)

A23 = e
iJzt
2~
D − iJ+

ν
sin

νt

~
= e

iw3t
4
D − iJ+
w2

sinw2t (4.10)

A32 = e
iJzt
2~

−D − iJ+
ν

sin
νt

~
= e

iw3t
4

−D − iJ+
w2

sinw2t (4.11)

with parameters ν =
√
b2 + J2

+ +D2 , µ =
√
J2
− +B2, and frequencies

ω1 =
µ

~
=

√
J2
− +B2

~
(4.12)

ω2 =
ν

~
=

√
b2 + J2

+ +D2

~
(4.13)

ω3 =
2Jz
~
. (4.14)

Acting by the evolution operator (4.1) to the initial state |Ψ(0)⟩ =
∑

ij cij(0)|ij⟩ of the

system we get the time dependent wave function in the form

|Ψ(t)⟩ =
∑
ij

cij(t)|ij⟩ = U(t)|Ψ(0)⟩ (4.15)

where cij(t) = ⟨ij|Ψ(t)⟩.
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4.1. Time Dependent Concurrence

Entanglement of (4.15) depends on time. To find how it changes with time we use

the concurrence characteristic in the determinant form (2.48).

C(t) = 2|c00(t)c11(t)− c01(t)c10(t)| (4.16)

or

C(t) = 2

∣∣∣∣∣ A11c00(0) + A14c11(0) A22c01(0) + A23c10(0)

A33c10(0) + A32c01(0) A44c11(0) + A41c00(0)

∣∣∣∣∣ . (4.17)

Here we restrict our consideration to a specific case ofXY model, but our analysis

can be easily extended to other cases. For this particular model, Jz = 0, and as follows

ω3 = 0, this is why only two characteristic frequencies ω1 (4.12) and ω2 (4.13) remain.

Then, time dependence of the entanglement would be determined by ratio of these fre-

quencies. For specific values of parameters J+ = 1, J− =
√
3, B = 1, b = 0 and D = 0,

we get commensurable frequencies of motion ω1 = 2 and ω2 = 1. So that in this case, the

concurrence

C(t) =
1

16
[31− 4(1 + 2

√
3) cos 2t− 12 cos 4t+ (−3 + 2

√
3) cos 6t− 3 cos 8t] (4.18)

is a periodic function of time with period T = π, oscillating between C = 0 and C = 1

states (see Fig. 4.1).
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Figure 4.1. Concurrence versus time for B=1, b=0, D=0, ω1 = 2, ω2 = 1

To see evolution of concurrence we will use phase portrait in (C, Ċ) plane, (see

Fig. 4.2) then we can see that the phase portrait represents a closed orbit of motion for

commensurable ratio of frequencies ω1 and ω2.
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Figure 4.2. Phase portrait B=1, b=0, D=0, ω1 = 2, ω2 = 1

For J+ = 1, J− =
√
2, B = 1, b = 0, D = 0 the frequencies ω1 =

√
3 and ω2 = 1

are incommensurable and the concurrence for these values

C(t) =
1

18
(1− 3 cos 2t+ 2 cos 2

√
3t)2 +

1

2
(sin 2t−

√
2 sin 2

√
6t)2. (4.19)

66



In this case the entanglement evolves as a quasi-periodic function of time (Besicovitch,
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C

Figure 4.3. Concurrence versus time for B=1, b=0, D=0, ω1 =
√
3, ω2 = 1

1954)(see Fig. 4.3). So that entangled and non-entangled states appear in time without

any type of regularity. In the phase plane (C, Ċ) the phase curve is irregular and nonclosed

(Fig. 4.4).
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Figure 4.4. Phase portrait B=1,b=0,D=0,ω1 =
√
3, ω2 = 1
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4.2. Fidelity

In addition to entanglement property of two qubit states exist another characteris-

tic of qubit states which is called the fidelity. It is determined by

F = |⟨ψ1|ψ2⟩|2, (4.20)

and characterize closeness of two states |ψ1⟩ and |ψ2⟩ in the Hilbert space. In this section

we are going to calculate fidelity evolution with time, showing closeness of evolved state

|ψ(t)⟩ to initial state |ψ(0)⟩.

F (t) = |⟨Ψ(0)|Ψ(t)⟩|2 (4.21)

By evolution operator

|Ψ(t)⟩ = U(t)|Ψ(0)⟩ =⇒ F (t) = |⟨Ψ(0)|U(t)|Ψ(0)⟩|2 (4.22)

For generic two qubit state

|Ψ(t)⟩ =
∑
i,j

cij(t)|ij⟩ (4.23)

we have

|Ψ(0)⟩ =
∑
k,l

ckl(t)|ij⟩ =⇒ F (t) =

∣∣∣∣∣∑
i,j

c̄ij(0)cij(t)

∣∣∣∣∣
2

. (4.24)
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Then

F (t) = |⟨Ψ(0)|U(t)|Ψ(0)⟩|2 (4.25)

= ||c00|2A11 + |c01|2A22 + |c10|2A33 + |c11|2A44

+ c̄01c10A23 + c̄10c01A32 + c̄00c11A14 + c̄11c00A41|2 (4.26)

For the maximally entangled Bell state as an initial state

Ψ(0)⟩ = 1√
2
(|00⟩+ |11⟩) (4.27)

c00 = 1/
√
2, c11 = 1/

√
2 and fidelity is oscillating in time

F (t) =
1

4
|A11 + A44 + 2A14|2 (4.28)

= cos2
µt

~
+
J2
−

µ2
sin2 µt

~
(4.29)

with frequency ω = µ
~ where µ =

√
J2
− +B2.
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Figure 4.5. Fidelity versus time for J− = 1, B = 1, µ =
√
2

In Fig. 4.5 we plot time evolution of initially maximally entangled state. As we
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can see fidelity in this case is oscillating in time between maximally entangled stateC = 1

and state with concurrence C = 0.5. So during the evolution the state never leave below

this value. Concurrence is

C =

∣∣∣∣J2
− −B2

J2
− +B2

∣∣∣∣ (4.30)
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Figure 4.6. Concurrence versus time for J− = 1, B = 1, µ =
√
2

70



4.3. SWAP Gate

Here we like to show the direct relationship between XY Z model with DM cou-

pling, B = 0, b = 0 and quantum gates. Then evolution of the standard basis is given

by

U(t)|00⟩ → e
−iJzt

2~

[
cos

tJ−
~

|00⟩ − i sin
tJ−
~

|11⟩
]
, (4.31)

U(t)|11⟩ → e
−iJzt

2~

[
cos

tJ−
~

|11⟩ − i sin
tJ−
~

|00⟩
]
, (4.32)

U(t)|01⟩ → e
iJzt
2~

[
cos

tν

~
|01⟩ − i

J+ − iD

ν
sin

tν

~
|10⟩

]
, (4.33)

U(t)|10⟩ → e
iJzt
2~

[
cos

tν

~
|10⟩ − i

J+ + iD

ν
sin

tν

~
|01⟩

]
(4.34)

where ν =
√
J2
+ +D2.

If we consider particular case of pure DM model when Ji = 0 the we have

U(t)|00⟩ → |00⟩, (4.35)

U(t)|11⟩ → |11⟩, (4.36)

U(t)|01⟩ → cos
tD

~
|01⟩ − sin

tD

~
|10⟩, (4.37)

U(t)|10⟩ → cos
tD

~
|01⟩+ sin

tD

~
|01⟩ (4.38)

For time moments t = ~π
2D

we have

U(
π~
2D

)|00⟩ = |00⟩, U(
π~
2D

)|11⟩ = |11⟩ (4.39)

U(
π~
2D

)|01⟩ = −|10⟩, U(
π~
2D

)|10⟩ = |01⟩. (4.40)

Therefore we can see that the operator U( π~
2D

) acts as the SWAP gate. Moreover at time
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t = π~/4D the states |01⟩ and |10⟩ becomes maximally entangled Bell states.

U(
π~
4D

)|01⟩ =
1√
2
(|01⟩ − |10⟩) (4.41)

U(
π~
4D

)|10⟩ =
1√
2
(|10⟩+ |01⟩) (4.42)
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CHAPTER 5

ENTANGLEMENT DEPENDENCE ON DISTANCE

BETWEEN INTERACTING QUBITS

In realistic spin lattice, position of spins could oscillate by producing phonons.

In this case the exchange integrals are function of position and depend on distance be-

tween spins. In the present chapter we study entangled two qubit states with exchange

interaction depending on distance J(R) between spins and influence of this distance on

entanglement of the system. We analyze the concurrence and its dependence on distance

for various values of magnetic field B. These results presented in (Gurkan & Pashaev,

2010).

First we consider the Ising model in transverse magnetic field with the Hamilto-

nian

H =
1

2
[J(R)σx1σ

x
2 +B(σz1 + σz2)]. (5.1)

The eigenvalues are

E1,2 =
∓
√
4B2 + J(R)2

2
(5.2)

E3,4 =
∓J(R)

2
(5.3)

and the corresponding eigenvectors

|ψ1,2⟩ =


2B∓

√
4B2+J(R)2

J

0

0

1

 (5.4)

|ψ3,4⟩ =


0

∓1

1

0

 . (5.5)
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Performing calculation of concurrence according to the determinant form of the concur-

rence (2.48) for the ground state |ψ1⟩, we find the concurrence depending on R as

C(R) =
|J(R)|√

J(R)2 + 4B2
. (5.6)

5.1. Calogero-Moser Model Type I

First we consider J(R) in the form of the Calogero-Moser type I model, where

the two particle potential is

J(R) =
1

R2
. (5.7)

It is monotonically decreasing function of polynomial type displayed in Fig. 5.1.
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Figure 5.1. Potential J(R) = 1/R2 versus R

We consider the two qubit Ising model with exchange interaction given by (5.7)

H =
1

2R2
σx1σ

x
2 +

B

2
(σz1 + σz2). (5.8)
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Performing calculation for the concurrence we get

C =
1√

1 + 4B2R4
. (5.9)

In Fig. 5.2 we plot concurrence as a function of the distance between two qubits for

different values of magnetic field B. It can be observed that the concurrence is zero at the

limit R → ∞.
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Figure 5.2. Concurrence as a function of distance R and magnetic field B =
0.001, B = 0.01, B = 0.1, B = 1 for potential J(R) = 1/R2

In Fig. 5.3 we plot 3D plot of concurrence as a function of distance between two

qubits for different values of magnetic field B.
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Figure 5.3. Concurrence as a function of distance R and magnetic field B for potential
J(R) = 1/R2

5.2. Calogero-Moser Model Type III

Next we consider Calogero-Moser type III model with exchange interaction

J(R) =
1

sin2R
(5.10)

as a periodic function of R as seen in Fig. 5.4.
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Figure 5.4. Potential J(R) = 1/ sin2R versus R
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Corresponding spin model with Hamiltonian

H =
1

2 sin2R
σx1σ

x
2 +

B

2
(σz1 + σz2) (5.11)

is called Haldane-Shastry Model (Haldane, 1988), (Shastry,1988). The concurrence

calculated as

C =
1√

1 + 4B2 sin4R
(5.12)

which is also a periodic function of R with the same period, taking maximal value C = 1

at R = 0 (mod π) and minimal value C ≈ 0.25 at R = π/2 (mod π.)

Concurrence as a function of distance R is shown in Fig. 5.5 and C is also plotted

in Fig. 5.6 depend on R and B.
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Figure 5.5. Concurrence as a function of distance R and magnetic field B =
0.001, B = 0.01, B = 0.1, B = 1 for potential J(R) = 1/ sin2R
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Figure 5.6. Concurrence as a function of distance R and magnetic field B for potential
J(R) = 1/ sin2R

5.3. Calogero-Moser Model Type II

Finally we consider Calogero-Moser type II model which is a hyperbolic version

of Haldane-Shastry model with the exchange interaction

J(R) =
1

sinh2R
(5.13)

exponentially decreasing with R displayed in Fig. (5.7).
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Figure 5.7. Potential J(R) = 1/ sinh2R versus R
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The corresponding Hamiltonian is written as

H =
1

2 sinh2R
σx1σ

x
2 +

B

2
(σz1 + σz2) . (5.14)

and the concurrence is calculated as

C =
1√

1 + 4B2 sinh4R
. (5.15)

Concurrence for Hamiltonian (5.13) It is shown in Fig. 5.8 for various values of magnetic

field B.
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Figure 5.8. Concurrence as a function of distance R and magnetic field B =
0.001, B = 0.01, B = 0.1, B = 1 for potential J(R) = 1/ sinh2R

5.4. Herring-Flicker Potential

In a recent paper (Huang & Kais, 2005) a relation between entanglement and the

electron correlation energy in H2 molecule has been analyzed and it was shown that the

entanglement can be used as an alternative measure of the electron correlation in quan-

tum chemistry calculations. Despite of the standard definition of electron correlation as

the difference between the Hartree-Fock energy and the exact solution of the nonrela-

tivistic Schrodinger equation, it is found that entanglement can be used as an alternative

measure of electron correlations. In these calculations following Herring-Flicker, the ex-
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change coupling constant J for H2 molecule has been approximated as a function of the

interatomic distance R: J(R) = −0.821R5/2e−2R + O(R2e−2R). This is why, as a next

example we consider concurrence for exchange interaction in the form

J(R) = −0.821R5/2e−2R +O(R2e−2R). (5.16)
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Figure 5.9. Exchange interaction J(R) as a function of distance R

In Fig. 5.9 we display this function with extreme minimal value at R ≈ 1.2,

exponentially approaching the horizontal asymptotes J = 0. Corresponding concurrence

for various magnetic fields is shown in Fig. 5.10. It has characteristic maxima at R ≈
1.2 and B = 1. With growing B the region of maximal C is extending to almost all

characteristic region 0 < R < 5.
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Figure 5.10. Concurrence C versus distanceR forB = 0.001, B = 0.01, B = 0.1, B =
1 respectively
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CHAPTER 6

GEOMETRIC QUANTUM COMPUTATION

The results presented in this chapter partially appeared in (Kwan et al., 2008).

One of the recently proposed perspective direction in quantum computation is related

with geometric quantum computation, based on geometric phase in quantum mechanics.

When a quantum mechanical system undergoes a cyclic evolution, a phase of the wave

function is acquired as a result of the geometrical properties of the parameter space of

the Hamiltonian. This geometric phase or the Berry phase is a purely geometric effect

that only depends on the area covered by the motion of the system. Pancharatnam was

the first to introduce the concept of geometric phase in 1956 (Pancharatnam, 1956).

Then Michael Berry in 1984 realized that geometric (Berry) phase is a generic feature of

quantum mechanics (Berry, 1984). Existence of Berry phases have been demonstrated

in a variety of quantum systems (Shapera & Wilczek, 1989), NMR (Suter et al., 1987),

(Goldman et al., 1996), optical systems (Tomita & Chiao, 1986), experimental (Jones et

al., 2000). Very recently (Ekert et al., 2000) proposed geometric phases have the potential

of performing quantum computations.

6.1. Dynamic and Geometric Phase

A particle which starts out in the nth eigenstate of H(0) remains, in the nth eigen-

state of H(t), picking up only a time dependent phase factor with the wave function

|Ψ(t)⟩ = ei(θ(t)+γ(t))|ψ(t)⟩. (6.1)

The time evolution of a quantum system is governed by the Schrödinger equation

i~
d

dt
|Ψ(t)⟩ = H(t)|Ψ(t)⟩. (6.2)

82



Substituting (6.1) in (6.2) we have

θ̇(t) + γ̇(t) = −1

~
⟨Ψ(t)|H(t)|Ψ(t)⟩+ i ⟨ψ(t)| d

dt
|ψ(t)⟩ (6.3)

after the integration of (6.3) we find the dynamical phase θ(t) as

θ(t) = −1

~

∫ τ

0

⟨Ψ(t)|H(t)|Ψ(t)⟩ dt (6.4)

and the geometric phase γ(t) as

γ(t) = i

∫ τ

0

⟨ψ(t)| d
dt
|ψ(t)⟩ dt (6.5)

In the present chapter we are going to calculate Berry phase for two qubitXX Heisenberg

Hamiltonian with DM interaction term and external magnetic field B. The purpose is to

find dependence of geometric phase on the parameters of the system.

6.2. Berry’s Phase under Dzialoshinskii-Moriya Interaction

In this section, we consider an XX chain with DM interaction in an applied

magnetic field of the form

H =
∑
⟨i,j⟩

[
J
(
Sxi · Sxj + Syi · S

y
j

)
+ D⃗ij · S⃗i × S⃗j

]
+ B⃗ · S⃗1 (6.6)

where the sum is taken over the nearest neighbor sites, the spin operator S⃗ ≡ (Sx, Sy, Sz),

the vector D⃗ij is the DM vector and B⃗ is the orientation of the magnetic field, which is

applied only to the first site as in (Yi et al., 2004). For simplicity, we shall choose DM

vector so that it is aligned to the z-component, parameterize the vector

B⃗ = B0(sin θ cosϕ, sin θ sinϕ, cos θ) (6.7)
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and set the spin-spin coupling term J =1. We consider two sites under the Hamiltonian in

Eq (6.6). There are four eigenstates |Ei⟩, i = 1, 2, 3, 4,

|Ei⟩ =
1√
N
[ai|00⟩+ bi|01⟩+ ci|10⟩+ di|11⟩] (6.8)

where

ai =
e−2iϕ

sin2 θ

(Ei − cos θ)(E2
i − g1g2 − 1)

g1
(6.9)

bi =
e−iϕ

sin θ
(Ei + cos θ) (6.10)

ci =
e−iϕ

sin θ

(E2
i − 1)

g1
(6.11)

di = 1, (6.12)

N = |ai|2 + |bi|2 + |ci|2 + |di|2 (6.13)

and g1 = 2J+2iD
B0

, g2 = 2J−2iD
B0

. Corresponding eigenvalues are

E1 = −E2 = −

√
2 + g1g2 −

√
g1g2(2 + g1g2 − 2 cos 2θ)

√
2

E3 = −E4 = −

√
2 + g1g2 +

√
g1g2(2 + g1g2 − 2 cos 2θ)

√
2

(6.14)

Note that 2 + g1g2 ≥
√
g1g2(2 + g1g2 − 2 cos 2θ) and that E1 ≤ E2 ≤ E3 ≤ E4. Thus,

E1 corresponds to the ground state, |E2⟩ corresponds to the first excited state, and so

forth.

For each eigenvector |Ei⟩, we consider situation in which the external magnetic

field undergoes adiabatic evolution in the azimuthal angle ϕ for closed loop at a fixed polar

angle θ. The dynamical phase of the system is zero, and the total phase of the system is

equal to the geometric (Berry) phase. Thus the geometric (Berry) phase is given by

γ = i

∫ 2π

0

⟨Ei|
d

dϕ
|Ei⟩dϕ (6.15)
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⟨Ei|
d

dϕ
|Ei⟩ =

−2iāj ȧj − ib̄j ḃj − ic̄j ċj
|aj|2 + |bj|2 + |cj|2 + |dj|2

(6.16)

= f(θ) (6.17)

We can calculate the Berry Phase as

γ = i

∫ 2π

0

⟨Ei|
d

dϕ
|Ei⟩dϕ = i

∫ 2π

0

f(θ)dϕ = 2πif(θ). (6.18)

Due to the symmetry inherent in the eigenstates, it turns out that the eigenstates

|E1⟩ and |E4⟩ (and |E2⟩ and |E3⟩) yields the same Berry phase as one adiabatically

evolves the parameter ϕ around a closed path. The graph of the Berry phase against

the polar angle θ for the eigenstate |E1⟩ (or |E4⟩) for different values of B field and with

the DM interaction set to unity is shown in Fig. 6.1. As shown in Fig. (6.1), an increase

Figure 6.1. Geometric phase for the ground state |E1⟩ (or the highest excited state,
|E4⟩) with different values of the external magnetic field and with constant
DM interaction, D = 1. The inset shows the cross-sectional plots for dif-
ferent values of B. The dashed plot in the inset is the limit of the variation
of Berry phase with θ for B → ∞.

in the external magnetic field can substantially increase the amount of the Berry phase.
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Moreover, in the large B limit, i.e. B → ∞, the values of g1, g2 → 0 so

E1 = −1 (6.19)

and

|E1⟩ =


0

−e−iϕ sin θ
2

0

cos θ
2

 (6.20)

Calculating the Berry phase we have

γ = i

∫ 2π

0

⟨Ei|
d

dϕ
|Ei⟩dϕ = i

∫ 2π

0

(−i) sin2 θ

2
dϕ = π(1− cos θ) (6.21)

the Berry phase assumes the value of −π cos θ in the large B limit, i.e. B → ∞ indepen-

dent of the value of D. Unlike the case of the ground state (or highest excited state), the

Berry phase could be non-trivial for low magnetic field if one confines the evolution to

polar angle near θ =
π

2
.
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PART II

TOPOLOGICAL SOLITONS IN SPIN MODELS
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CHAPTER 7

CLASSICAL SPIN MODELS IN CONTINUOUS MEDIA

The results presented in this chapter appeared in (Gurkan & Pashaev, 2008). Mag-

netic materials could be arranged as spin chains and as spin lattices. By identifying spins

with qubits, information characteristics of these materials maybe represented by chain

of qubits or lattice of qubits. In the linear chain case, quantum states are represented

by spin complexes, and every spin complex is a N qubit computational basis state. The

ground state of the system depends on magnetic order, and for ferromagnetic spin chain

the ground state is one of the states

|00...0⟩ = | ↑↑ ... ↑⟩, (7.1)

|11...1⟩ = | ↓↓ ... ↓⟩. (7.2)

Then excitations in the chain appear as flipping. Propagation of these excitations in linear

approximation are described by magnons. Another type of excitations for spin chains,

corresponds to the domain wall, separating spin up and spin down states. All these states

appearing as a computational basis are involved in information characteristic of one di-

mensional magnetic materials.

In two dimensional lattice case with ferromagnetic order, the ground state corre-

sponds to orientation of all spins in up or down directions. If in the plane with ferromag-

netic ground state at finite point suppose at origin, we have spin flips then it appear as a

magnetic soliton configuration. Depending on flipping spins in the lattice, simple soli-

ton or multi soliton configurations can appear. These configurations are characterized by

winding number or the topological charge. Under time evolution these solitons in general

can move and interact with each other. In the present chapter we consider continuous

distribution of qubits in the plane as 2 + 1 dimensional spin field. By using spin coherent

states, this field can be described by a classical unit vector attached to every point of the

plane. Evolution of this vector field is determined by classical continuous Heisenberg

model.
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7.1. Topological Magnet Model

The classical Heisenberg spin model (Makhankov & Pashaev, 1992) deter-

mines evolution of the classical spin vector

S⃗ = (S1(x, y, t), S2(x, y, t), S3(x, y, t)) (7.3)

valued on two dimensional sphere S2,

S2
1 + S2

2 + S2
3 = 1 (7.4)

according to the Landau-Lifshitz equation

S⃗t = S⃗ ×∆S⃗. (7.5)

In the spin liquid (ferromagnetic fluid) one have in addition to magnetic variables S⃗ =

S⃗(x, y, t) the hydrodynamic variable v⃗(x, y, t) (Volovik, 1987) and time derivative ∂/∂t

would be replaced by the material derivative (Martina et al., 1994a)

D

Dt
=

∂

∂t
+ (v⃗∇). (7.6)

Between hydrodynamic and spin variables exists relation called the Mermin-Ho relation

(Ho & Mermin, 1980), (Mermin & Ho, 1976). It relates vorticity of the flow with the

topological charge density (or winding number),

rot v⃗ = S⃗ · (∂xS⃗ × ∂yS⃗). (7.7)
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Then we have a simple model of ferromagnetic fluid - the so called Topological Magnet

model (Martina et al., 1994b),

S⃗t + υa∂aS⃗ = S⃗ × ∂a∂aS⃗ (7.8)

∂aυb − ∂bυa = 2S⃗(∂aS⃗ × ∂bS⃗) (7.9)

where the scalar product AaBa = AagabB
b , a = 1, 2 is determined by the metric tensor

gab = diag(1, α2), α2 = ±1. For particular case of the metric gab = (1,−1) we have the

system

S⃗t + υ1∂1S⃗ − υ2∂2S⃗ = S⃗ × (∂21 − ∂22)S⃗ (7.10)

∂1υ2 − ∂2υ1 = 2S⃗(∂1S⃗ × ∂2S⃗). (7.11)

For this system we have the next lemmas

Lemma 7.1.0.1 The following identities hold

−v1∂21 S⃗ · ∂1S⃗ = −1

2
∂1[v1(∂1S⃗)

2] +
1

2
(∂1v1)(∂1S⃗)

2 (7.12)

v2∂
2
2 S⃗ · ∂2S⃗ = +

1

2
∂2[v2(∂2S⃗)

2]− 1

2
(∂2v2)(∂2S⃗)

2 (7.13)

Proof 7.1.0.2 Proof of Eqn. (7.12) is given as

−v1∂21 S⃗ · ∂1S⃗ = −∂1[v1(∂1S⃗)2] + ∂1S⃗ · ∂1(v1∂1S⃗) (7.14)

= −∂1[v1(∂1S⃗)2] + (∂1S⃗)
2∂1v1 + v1∂1S⃗ · ∂21 S⃗ (7.15)

−2v1∂
2
1 S⃗ · ∂1S⃗ = −∂1[v1(∂1S⃗)2] + (∂1S⃗)

2∂1v1 . (7.16)

Proof of Eqn. (7.13) is given by

−v2∂22 S⃗ · ∂2S⃗ = −∂2[v2(∂2S⃗)2] + ∂2S⃗ · ∂2(v2∂2S⃗) (7.17)

= −∂2[v2(∂1S⃗)2] + (∂2S⃗)
2∂2v2 + v2∂2S⃗ · ∂22 S⃗ (7.18)

−2v2∂
2
2 S⃗ · ∂2S⃗ = −∂2[v2(∂2S⃗)2] + (∂2S⃗)

2∂2v2 . (7.19)
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Lemma 7.1.0.3 The following identities hold

−v1∂2S⃗ · ∂1∂2S⃗ =
1

2
∂1[v1(∂2S⃗)

2]− 1

2
∂1v1(∂2S⃗)

2 (7.20)

−v2∂1S⃗ · ∂1∂2S⃗ = −1

2
∂2[v2(∂1S⃗)

2] +
1

2
∂2v2(∂1S⃗)

2 (7.21)

Proof 7.1.0.4 Proof of Eqn. (7.20) can be written as

−v1∂2S⃗ · ∂1∂2S⃗ = ∂1[v1(∂2S⃗)
2]− ∂1v1(∂2S⃗)

2 − v1∂1∂2S⃗ · ∂2S⃗ (7.22)

=
1

2
∂1[v1(∂2S⃗)

2]− 1

2
∂1v1(∂2S⃗)

2 . (7.23)

Proof of Eqn. (7.21) is as follows

−v2∂1S⃗ · ∂1∂2S⃗ = −∂2[v2(∂1S⃗)2] + ∂2v2(∂1S⃗)
2 + v2∂1∂2S⃗ · ∂1S⃗ (7.24)

= −1

2
∂2[v2(∂1S⃗)

2] +
1

2
∂2v2(∂1S⃗)

2 . (7.25)

Theorem 7.1.0.5 For the system which has been defined with Eqs. (7.10)and (7.11) with

the flow constrained by the incompressibility condition is given by

∂1υ1 + ∂2υ2 = 0, (7.26)

and the conservation law is given by

∂tJ0 + ∂2J2 − ∂1J1 = 0 . (7.27)

where

J0 = (∂1S⃗)
2 + (∂2S⃗)

2, (7.28)

J1 = −2∂1S⃗ · S⃗ × (∂21 − ∂22)S⃗ + v1J0 + 2S⃗ · (∂1S⃗ × ∂22 S⃗ − ∂1∂2S⃗ × ∂2S⃗)(7.29)

J2 = 2∂2S⃗ · S⃗ × (∂21 − ∂22)S⃗ + v2J0 − 2S⃗ · (∂21 S⃗ × ∂1∂2S⃗ − ∂1S⃗ × ∂2S⃗) . (7.30)
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Proof 7.1.0.6

∂tJ0 = ∂t[(∂1S⃗)
2 − α2(∂2S⃗)

2] (7.31)

= 2[∂1S⃗ · ∂1∂tS⃗ + ∂2S⃗ · ∂2∂tS⃗] (7.32)

= 2[∂1(∂1S⃗ · ∂tS⃗)− ∂21 S⃗ · ∂tS⃗ + ∂22 S⃗ · ∂tS⃗ − ∂2(∂2S⃗ · ∂tS⃗)] (7.33)

Eq. (7.33) can be reorganized as

∂tJ0 − 2∂1(∂1S⃗ · ∂tS⃗)− 2∂2(∂2S⃗ · ∂tS⃗) = −2[∂21 S⃗ · ∂tS⃗ + ∂22 S⃗ · ∂tS⃗] (7.34)

Using equations of motion (7.10) we estimate expression in the r.h.s. of Eqn. (7.34)

∂21 S⃗ · ∂tS⃗ + ∂22 S⃗ · ∂tS⃗ = (∂21 S⃗ + ∂22 S⃗)[−v1∂1S⃗ + v2∂2S⃗]

+ (∂21 S⃗ + ∂22 S⃗)[S⃗ × (∂21 − ∂22)S⃗] (7.35)

= −v1∂21 S⃗ · ∂1S⃗ − v1∂
2
2 S⃗ · ∂1S⃗ + v2∂

2
1 S⃗ · ∂2S⃗

+ v2∂
2
2 S⃗ · ∂2S⃗ − (∂21 S⃗ + ∂22 S⃗) · (S⃗ × (∂21 − ∂22)S⃗) (7.36)

= −1

2
∂1[v1(∂1S⃗)

2]− 1

2
(∂1v1)(∂1S⃗)

2 +
1

2
∂2[v2(∂2S⃗)

2]

+
1

2
(∂2v2)(∂2S⃗)

2 + ∂1[v2∂1S⃗∂2S⃗]− ∂2[v1∂1S⃗∂2S⃗]

− 2S⃗(∂1S⃗ × ∂2S⃗)(∂1S⃗ · ∂2S⃗) +
1

2
∂1(v1(∂2S⃗)

2)

− 1

2
∂2(v2(∂1S⃗)

2)− 1

2
∂1v1((∂2S⃗)

2) +
1

2
∂2v2((∂1S⃗)

2)

− (∂21 S⃗ + ∂22 S⃗) · (S⃗ × (∂21 − ∂22)S⃗) (7.37)

and we find

∂tJ0 = 2∂1(∂1S⃗ · ∂tS⃗) + 2∂2(∂2S⃗ · ∂tS⃗)

− 2∂1[−
1

2
v1[(∂1S⃗)

2 − (∂2S⃗)
2] + v2∂1S⃗ · ∂2S⃗ + (∂2S⃗)

2 · (S⃗ × ∂1S⃗)

+ ∂1∂2S⃗ · (S⃗ × ∂2S⃗)]

− 2∂2[
1

2
v2[(∂1S⃗)

2 − (∂2S⃗)
2]− v1∂1S⃗ · ∂2S⃗ + (∂1S⃗)

2 · (S⃗ × ∂2S⃗)]

− ∂1∂2S⃗ · (S⃗ × ∂1S⃗)] . (7.38)
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Due to the above theorem 7.1.0.5 the energy functional is written as

E =

∫ ∫
J0d

2x , (7.39)

or it is given by

E =

∫ ∫
{(∂1S⃗)2 + (∂2S⃗)

2}d2x . (7.40)

Here the energy is conserved quantity. From another side, there exist another integral of

motion, the topological charge of a spin configuration, defined as

Q =
1

4π

∫ ∫
S⃗ · (∂1S⃗ × ∂2S⃗)d

2x . (7.41)

These two conserved quantities are related by the Bogomolnyi Inequality

E ≥ |Q| (7.42)

which means that the energy is bounded below by topological charge (Makhankov &

Pashaev, 1992).

To find Bogomolnyi inequality we do several transformations of the evident inequality

∫ ∫
(∂iS⃗ ± ϵijS⃗ × ∂jS⃗)

2d2x ≥ 0, i, j = 1, 2 (7.43)

writing explicitly

∫ ∫
(∂iS⃗ ± ϵij(S⃗ × ∂jS⃗) · (∂iS⃗ ± ϵikS⃗ × ∂kS⃗)d

2x ≥ 0 (7.44)∫ ∫
[(∂iS⃗)

2 + ϵijϵik(S⃗ × ∂jS⃗) · (S⃗ × ∂kS⃗)

±ϵij(S⃗ × ∂jS⃗)∂iS⃗ ± ϵik∂i(S⃗S⃗ × ∂kS⃗)]d
2x ≥ 0 (7.45)
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we have

∫ ∫
[(∂iS⃗)

2 + δjk∂jS⃗ · ∂kS⃗ ± ϵij∂iS⃗(S⃗ × ∂jS⃗)± ϵik∂iS⃗(S⃗ × ∂kS⃗)]d
2x ≥ 0 (7.46)

where ϵijϵik = δjk

∫ ∫
[(∂iS⃗)

2 + (∂jS⃗)
2 ± ϵij∂iS⃗(S⃗ × ∂jS⃗)± ϵik∂iS⃗(S⃗ × ∂kS⃗)]d

2x ≥ 0. (7.47)

By cyclic permutation

∫ ∫
[(∂iS⃗)

2 + (∂jS⃗)
2 ± ϵijS⃗(∂jS⃗ × ∂iS⃗)± ϵikS⃗(∂kS⃗ × ∂iS⃗)]d

2x ≥ 0 (7.48)

∫ ∫
2[(∂1S⃗)

2 + (∂2S⃗)
2]d2x︸ ︷︷ ︸

2E

∓
∫ ∫

4S⃗ · (∂1S⃗ × ∂2S⃗)d
2x︸ ︷︷ ︸

16πQ

≥ 0 (7.49)

finally we have

E ∓ 8πQ ≥ 0 =⇒ E ≥ ±8πQ (7.50)

For Q > 0 we obtain

E ≥ 8πQ = 8π|Q| (7.51)

while for Q < 0 we obtain

E ≥ −8πQ = 8π|Q| (7.52)
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Combining together Eqns. (7.50) and (7.51) we have

E ≥ 8π|Q| . (7.53)

This inequality is saturated for spin configurations satisfying the first order system (Mar-

tina et al., 1994a)

∂iS⃗ ± ϵijS⃗ × ∂jS⃗ = 0 (7.54)

called the Belavin Polyakov self-duality equations (Belavin & Polyakov, 1975).

7.2. Self Duality and Stereographic Projection Representation

If we consider the spin phase space, the 2-dimensional sphere, as a Riemann

sphere for a complex plane, we can project points on this sphere to that plane. The stere-

ographic projections are given by formulas

S1 + iS2 = S+ =
2ζ

1 + |ζ|2
, S3 =

1− |ζ|2

1 + |ζ|2
(7.55)

where ζ is complex valued function. Now we will rewrite the self-duality equations (7.54)

in the stereographic projection form: For i = j, where i, j = 1, 2, Eqn. 7.54 is written as

∂1S⃗ ± S⃗ × ∂2S⃗ = 0 (7.56)

∂2S⃗ ∓ S⃗ × ∂1S⃗ = 0 . (7.57)

Here we can write

∂z =
1

2
(∂1 − i∂2) ∂z̄ =

1

2
(∂1 + i∂2) . (7.58)
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Multiplying (7.57) by i and then adding to (7.56) we have

∂z̄S⃗ ∓ iS⃗ × ∂z̄S⃗ = 0 (7.59)

∂zS⃗ ± iS⃗ × ∂zS⃗ = 0 (7.60)

Eqn. (7.59)

∂z̄S⃗ − iS⃗ × ∂z̄S⃗ = 0 (7.61)

can be written explicitly

∂z̄S1 − i(S⃗ × ∂z̄S⃗)1 = ∂z̄S1 − i(S2∂z̄S3 − S3∂z̄S2) = 0 (7.62)

∂z̄S2 − i(S⃗ × ∂z̄S⃗)2 = ∂z̄S2 − i(S3∂z̄S1 − S1∂z̄S3) = 0 (7.63)

Multiplying (7.63) by i and then adding to (7.62) we have

∂z̄S+ + [S3∂z̄S+ − ∂z̄S3S+] = 0 (7.64)

Substituting S3 and S+ in (7.55) we have the analyticity condition:ζz̄ = 0 Eqn. (7.60)

∂zS⃗ − iS⃗ × ∂zS⃗ = 0 (7.65)

can be written explicitly

∂zS1 − i(S⃗ × ∂zS⃗)1 = ∂zS1 − i(S2∂zS3 − S3∂zS2) = 0 (7.66)

∂zS2 − i(S⃗ × ∂zS⃗)2 = ∂zS2 − i(S3∂zS1 − S1∂zS3) = 0 (7.67)
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Multiplying (7.67) by i and then adding to (7.66) we have

∂zS+ + [S3∂zS+ − ∂zS3S+] = 0 (7.68)

Substituting S3 and S+ in (7.68)we have the anti-analyticity condition:

ζz = 0 . (7.69)

The above consideration shows that the self- duality equations in the stereographic pro-

jection form are just the analyticity conditions while for the anti-self-duality equations

they are anti-analyticity conditions. In both cases the energy (7.40) reaches its minima.

7.3. Anti-Holomorphic Reduction and Topological Magnet

As we have seen analytic/anti-analytic configurations saturate Bogomolny inequal-

ity and have minimal energy. This suggest to search solutions of topological magnet (7.10)

and (7.11) with holomorphic/anti-holomorphic stereographic projections. For this reason

we first rewrite equations in the stereographic form

i(ζt + v1∂1ζ − v2∂2ζ) + ∂21ζ − ∂22ζ − 2
(∂1ζ)

2 − (∂2ζ)
2

1 + |ζ|2
ζ̄ = 0 (7.70)

∂1v2 − ∂2v1 = −4i
∂1ζ̄∂2ζ − ∂2ζ̄∂1ζ

(1 + |ζ|2)2
. (7.71)

In complex coordinates we have

iζt + iv1(ζz + ζz̄) + v2(ζz − ζz̄) + (∂z + ∂z̄)
2ζ + (∂z − ∂z̄)

2ζ

− 2
(ζz + ζz̄)

2 − (ζz − ζz̄)
2

1 + |ζ|2
ζ̄ = 0 . (7.72)
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For v+ = v1 + iv2 and v− = v1 − iv2 (7.72) becomes

i(ζt + v−ζz + v+ζz̄) + 2(∂2zζ + ∂2z̄ζ)− 4
ζ̄

1 + |ζ|2
(ζ2z + ζ2z̄ ) = 0 (7.73)

Eqn. (7.71) is written in the form

∂1v2 − ∂2v1 = (∂z + ∂z̄)v2 − i(∂z − ∂z̄)v1

= ∂z(v2 − iv1) + ∂z̄(v2 + iv1)

= i[−∂z(v1 + iv2) + ∂z̄(v1 − iv2)]

= i[∂z̄v− − ∂zv+] (7.74)

or in complex coordinates

i[∂z̄v− − ∂zv+] =
−4i

(1 + |ζ|2)2
(∂1ζ̄∂2ζ − ∂2ζ̄∂1ζ)

=
8

(1 + |ζ|2)2
[ζz ζ̄z̄ − ζ̄zζz̄] (7.75)

If ζ is anti-holomorphic ζz = 0, then the system defined with (7.73) and (7.75) is reduced

to

iζt + iv+ζz̄ + 2ζz̄z̄ − 4
ζ2z̄

1 + |ζ|2
ζ̄ = 0 (7.76)

and

∂zv+ − ∂z̄v− =
−8i

(1 + |ζ|2)2
ζ̄zζz̄ . (7.77)

To be consistent, the anti-holomorphicity constraint must be compatible with the

time evolution. So that

∂ζ(z̄, t)

∂z
= 0 =⇒ ∀t′ ∂ζ(z̄, t′)

∂z
= 0 (7.78)
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∂ζ(z̄, t+ dt)

∂z
=

∂

∂z
[ζ(z̄, t+ dt)]

=
∂

∂z
[ζ(z̄, t) +

∂ζ

∂t
dt]

=
∂ζ(z̄, t)

∂z
+

∂

∂z

∂ζ

∂t
dt

=
∂

∂z

∂ζ

∂t
= 0 . (7.79)

Proposition 7.3.0.7 For incompressible flow

v1x + v2y = 0 =⇒ div v⃗ = 0 (7.80)

the anti-holomorphic constraint ζz = 0 is compatible with the time evolution

∂

∂t
ζz = 0. (7.81)

Proof 7.3.0.8 Differentiating (7.76) with respect to z

∂

∂z

(
iζt + iv+ζz̄ + 2ζz̄z̄ − 4

ζ2z̄
1 + |ζ|2

ζ̄

)
= 0 (7.82)

we get

v+z = −4i
ζ̄zζz̄

(1 + |ζ|2)2
(7.83)

and complex conjugate of it

v−z̄ = 4i
ζ̄zζz̄

(1 + |ζ|2)2
. (7.84)
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Adding (7.83) to (7.84) implies incompressibility condition

v+z + v−z̄ = 0 (7.85)

and subtracting implies

v+z − v−z̄ = −8i
ζ̄zζz̄

(1 + |ζ|2)2
(7.86)

which coincides with the second equation (7.77)

Under the above constraint we have the reduced system

iζt + iv+ζz̄ + 2ζz̄z̄ − 4
ζ2z̄

1 + |ζ|2
ζ̄ = 0 (7.87)

iζt + ζz̄

[
iv+ + 2

(
ln

ζz̄
(1 + |ζ|2)2

)
z̄

]
= 0 (7.88)

For function

F ≡ v+ − 2i

[
ln

ζz̄
(1 + |ζ|2)2

]
z̄

(7.89)

Eq. (7.88) becomes

ζt + Fζz̄ = 0 (7.90)

where Fz = 0, due to Eq. (7.83).
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7.4. Ishimori Model Reduction

Now we consider the topological magnet model (7.10) and (7.11) with incom-

pressibility condition (7.26), which allows simplification of the equations. (Martina et

al., 2003) Equation ∇⃗ · v⃗ = 0 can be solved in terms of a real function ψ, the stream

function of the flow,

v1 = ∂2ψ, v2 = −∂1ψ . (7.91)

If we replace v1 and v2 in equations (7.10) and (7.11) respectively, we get the so called

Ishimori Model (Ishimori, 1984)

S⃗t + ∂2ψ∂1S⃗ + ∂1ψ∂2S⃗ = S⃗ × (∂21 S⃗ − ∂22 S⃗) (7.92)

(∂21 + ∂22)ψ = −2S⃗ · (∂1S⃗ × ∂2S⃗) (7.93)

where we have used

∂1v2 − ∂2v1 = −∆ψ . (7.94)

The Ishimori model is the first example of integrable classical spin model in 2+1 di-

mensions (Konopelchenko, 1987). It was shown to be gauge equivalent to the Davey-

Stewartson equation, representing the 2+1 dimensional generalization of the Nonlinear

Schrodinger equation (Makhankov & Pashaev, 1992), (Lepovskiy & Shirokov, 1989) ,

(Pashaev, 1996).

In terms of complex variables

v+ = v1 + iv2 = −2iψz̄ (7.95)

v− = v1 − iv2 = 2iψz (7.96)
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and the stereographic projection (7.55), Eqns. (7.92) and (7.93) is written in the form,

respectively

iζt − 2ψzζz + 2ψz̄ζz̄ + 2(ζzz + ζz̄z̄)− 4
ζ̄

1 + |ζ|2
(ζ2z + ζ2z̄ ) = 0 (7.97)

ψzz̄ = −2
ζz ζ̄z − ζ̄zζz̄
(1 + |ζ|2)2

(7.98)

7.4.1. Anti-holomorphic Reduction of Ishimori Model

The Ishimori model appears from the topological magnet model for the incom-

pressible flow. But according to Proposition we have seen that such flow preserves

anti(holomorphicity) constraint. This is why we consider now anti(holomorphicity) con-

strained Ishimori model. Under constraint ζz = 0 we have dependence ζ = ζ(z̄, t) and

the model reduces to

iζt + 2ψz̄ζz̄ + 2ζz̄z̄ − 4
ζ̄

1 + |ζ|2
ζ2z̄ = 0 (7.99)

ψzz̄ = 2
ζ̄zζz̄

(1 + |ζ|2)2
. (7.100)

We can rearrange the first equation as follows

iζt + 2ζz̄

[
ψz̄ +

ζz̄z̄
ζz̄

− 4
ζ̄ζz̄

1 + |ζ|2

]
= 0 (7.101)

iζt + 2ζz̄

(
ψ + ln

ζz̄
(1 + |ζ|2)2

)
z̄

= 0 (7.102)

so that

iζt + 2ζz̄
[
ψ − 2 ln(1 + |ζ|2) + ln ζz̄

]
z̄
= 0 . (7.103)
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7.4.2. Static N -Soliton Configuration

For static configurations

ζt = 0

we have solution

ψ = 2 ln(1 + |ζ|2)− ln ζz̄ + f(z) (7.104)

where f(z) is arbitrary holomorphic function. Due to reality of ψ

ψ = ψ̄ ⇒ f(z) = ln ζ̄z (7.105)

then

ψ = 2 ln(1 + |ζ|2)− ln ζz̄ − ln ζ̄z (7.106)

Differentiating (7.106) we find that Eqn. (7.100) is satisfied automatically

ψzz̄ = [2 ln(1 + |ζ|2)]zz̄ = 2
ζ̄zζz̄

(1 + |ζ|2)2
(7.107)

Then from (7.100)

eψ = e2 ln(1+|ζ|2)e− ln ζz̄e− ln ζ̄z =
(1 + |ζ|2)2

ζz̄ ζ̄z
(7.108)

e−ψ =
ζz̄ ζ̄z

(1 + |ζ|2)2
(7.109)
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Using Eq. (7.100) we see that function ψ (7.108) is the general solution of the Liouville

equation

ψzz̄ = 2e−ψ . (7.110)

It means that any solution of the Liouville equation is a static solution of the Ishimori

Model (Martina et al., 1994c). Now we consider solution of model (7.110) in the form

(7.108) where function

ζ = sin(z̄ − z̄1) (7.111)

ζz̄ = cos(z̄ − z̄1) (7.112)

ζ̄z = cos(z − z1) . (7.113)

Then the corresponding stream function is given by

ψ = 2 ln(1 + | sin(z̄ − z̄1)|2)− ln cos(z̄ − z̄1)− ln cos(z̄ − z̄1) (7.114)

= 2 ln(1 + | sin(z̄ − z̄1)|2)− ln | cos(z̄ − z̄1)|2 (7.115)

= ln
(1 + | sin z̄|2)2

| cos z̄|2
(7.116)

= ln
[1 + (sinx cosh y)2 + (cosx sinh y)2]2

(cosx cosh y)2 + (sinx sinh y)2
(7.117)

describes periodic in x lattice of solitons .

7.4.3. Single Soliton and Soliton Lattice

Now if in Eq. (7.108) for function ζ we choose

ζ = z̄ sin z̄ (7.118)

ζz̄ = sin z̄ + z̄ cos z̄ (7.119)
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then we find the stream function descriptive of the single soliton and the soliton lattice

ψ = 2 ln(1 + |z̄|2| sin z̄|2)− ln(sin z̄ + z̄ cos z̄)− ln(sin z + z cos z) (7.120)

= ln
[1 + |z̄|2| sin z̄|2]2

| sin z̄ + z̄ cos z̄|2
(7.121)

= ln
1 + (x2 + y2)[(sin x cosh y)2 + (cos x sinh y)2]

2

| sin z|2 + |z|2| cos z|2 + z cos z sin z̄ + z̄ cos z̄ sin z
. (7.122)

7.4.4. Holomorphic Time Dependent Schrödinger Equation

If we choose

ψ = 2 ln(1 + |ζ|2) (7.123)

then

ψzz̄ = 2[
ζ̄zζ

1 + |ζ|2
]z̄ (7.124)

= 2
ζ̄zζz̄

(1 + |ζ|2)2
(7.125)

and Eq.(7.100) is satisfied automatically. Then from equation (7.103) for function ζ we

have complex time dependent Schrödinger equation

iζt + 2ζz̄z̄ = 0 (7.126)

Each zero of function ζ in complex plane z determines magnetic soliton of the Ishimori

model. The spin vector at center of the soliton is S⃗ = (0, 0, 1) while at infinity S⃗ =

(0, 0,−1). Then a motion of zeroes of equation (7.126) determines the motion of magnetic

solitons in the plane. From another side, if we consider analytic function

f(z, t) =
Γ

2πi
Log ζ(z, t) (7.127)
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as a complex potential of an effective flow (Lavrantiev & Shabat, 1973), then every zero

of function ζ corresponds to hydrodynamical vortex of the flow with intensity Γ, and to

the simple pole singularity of complex velocity

u(z̄, t) = f̄z̄ =
iΓ

2π
(Log ζ̄)z̄. (7.128)

But the last relation has meaning of the holomorphic Cole-Hopf transformation, according

to which the complex velocity is subject to the holomorphic Burgers’ equation (Gurkan

& Pashaev, 2008)

iut +
8πi

Γ
uuz̄ = 2uz̄z̄. (7.129)

Thus, every magnetic soliton of the Ishimori model corresponds to hydrodynamical vortex

of the anti-holomorphic Burgers’ equation. Moreover, relation (7.127) is written in the

form

ζ = e
2πi
Γ
f = e

2πi
Γ

(ϕ+iχ) =
√
ρ e

2πi
Γ
ϕ (7.130)

shows that the effective flow is just the Madelung representation for the linear holomor-

phic Schrödinger equation (7.126), where functions ϕ and χ are the velocity potential and

the stream function correspondingly. Motion of zeroes of Complex Burgers equation

iut + uuz̄ = νuz̄z̄ (7.131)

and relations with solitons of the complex Burgers equation can be interpreted now in

terms of the magnetic solitons. Particularly, to find generating function of the basic soliton

solutions of this equation we consider solution in the form

ζ(z̄, t) = ekz̄+ωt (7.132)
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where dispersion ω = 2ik2 . Then

ζ(z̄, t) = ekz̄+2ik2t (7.133)

Let x ≡ k
√

2t
i

, then we rewrite it as the generating function for the Hermite

polynomials of complex argument

ekz̄+2ik2t = e−x
2+2(z̄

√
i
8t
)x

=
∞∑
n=0

Hn(z̄

√
i

8t
)
xn

n!
(7.134)

or

ζ(z̄, t) =
∞∑
n=0

kn

n!
(−2it)n/2Hn(z̄

√
i

8t
)

=
∞∑
n=0

kn

n!
Ψn(z̄, t) (7.135)

where at every power kn we have a polynomial solution of order n:

Ψn(z̄, t) =

(
2t

i

)n/2
Hn(z̄

√
i

8t
) . (7.136)

This polynomial has n complex roots z̄1(t), ..., z̄n(t) describing positions of solitons.

7.5. N Spin Soliton System

For N soliton system in general, we can choose

ζ(z̄, t) =
N∏
j=1

(z̄ − z̄j(t)) . (7.137)
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Then positions of solitons are subject to the system

d

dt
z̄j =

4

i

∑
k ̸=(j)

1

(z̄j − z̄k)
. (7.138)

This system admits 2N integrals of motion. The first 5 integrals are of the form

N∑
j=1

z̄j = I1 − iI2 (7.139)

N∑
j=1

z2j + z̄2j = I3 (7.140)

N∑
j=1

z̄3j + 3
∑
j<k<l

z̄j z̄kz̄l = I4 − iI5 (7.141)

This is why the dynamics of solitons in Ishimori model is integrable. The system

(7.138) admits mapping to the complexified Calogero-Moser N particle problem. We

differentiate it once and use the system again (Appendix D) to have Newton’s equations

d2

dt2
z̄j =

∑
k

16

(z̄j − z̄k)3
. (7.142)

These equations have the Hamiltonian form

˙̄zj =
∂H

∂pj
= pj, ṗ = −∂H

∂z̄ j
(7.143)

with the Hamiltonian function

H =
1

2

n∑
j=1

p2j +
∑
j<k

8

(z̄j − z̄k)2
. (7.144)
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The Calogero-Moser model is finite-dimensional integrable system admitting the Lax rep-

resentation, from which follows the hierarchy of constants of motion in involution.

Complexification of the classical Calogero-Moser model and holomorphic Hopf

equation has been considered in connection with limit of an infinite number of particles,

leading to quantum hydrodynamics and quantum Benjamin-Ono equation (Abanov &

Wiegmann, 2005). From another side holomorphic version of the Burgers equation is

considered in (Bonami et al., 1999) to prove existence and uniqueness of the non-linear

diffusion process for the system of Brownian particles with electrostatic repulsion when

the number of particles increases to infinity.

7.6. Dynamics of Topological Solitons in the Plane

In this section we study dynamics ofN solitons and vortex lattices in the plane for

magnetic systems under restriction of constant ν = −2 (Gurkan & Pashaev, 2008). By

stereographic projection formulas

S1 + iS2 =
2ζ

1 + |ζ|2
S3 =

1− |ζ|2

1 + |ζ|2
(7.145)

we can see that at every zero of function ζ(z̄k, t) = 0

(S1 + iS2)(z̄k, t) = 0, S3(z̄k, t) = 1 . (7.146)

From another side for N degree polynomial ζN at infinity |z| → ∞

(S1 + iS2)(z̄k, t) = 0, S3(z̄k, t) = −1 . (7.147)

It shows that our zeroes correspond to the magnetic solitons located at that zeroes with the

spin vector S⃗ directed up, while at infinity it is directed down (ferromagnetic type order).
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If we calculate the topological charge

Q =
1

4π

∫ ∫
S⃗ · (∂1S⃗ × ∂2S⃗)d

2x (7.148)

= − 1

8π

∫ ∫
(∆ψ)d2x (7.149)

where

ψ = 2 ln(1 + |ζ|2) (7.150)

Q = − 1

4π

∫ ∫
(∆ ln(1 + |ζ|2))d2x . (7.151)

By Green’s theorem then integral transforms

∫ ∫  ∂

∂x

 ∂

∂x
ln(1 + |ζ|2)︸ ︷︷ ︸

A

+
∂

∂y

 ∂

∂y
ln(1 + |ζ|2)︸ ︷︷ ︸

B


 =

∮
Bdx+ Ady (7.152)

=

∮ [
− ∂

∂y
ln(1 + |ζ|2)

]
dx+

[
∂

∂x
ln(1 + |ζ|2)

]
dy (7.153)

=

∮
− (|ζ|2)y
1 + |ζ|2

dx+
(|ζ|2)x
1 + |ζ|2

dy (7.154)

=

∮
R→∞

−(|ζ|2)ydx+ (|ζ|2)xdy
1 + |ζ|2

. (7.155)

For N zeroes solution (7.137) asymptotically |z| → ∞, z = Reiθ, R → ∞, |ζ|2 → ∞,

ζ ≃ z̄N , |ζ|2 = |z|2N

|ζ|2x = [(x2 + y2)N ]x = N(x2 + y2)N−12x (7.156)

|ζ|2y = N(x2 + y2)N−12y (7.157)
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and (7.155) is equal

∮
R→∞

−N(x2 + y2)N−12ydx+N(x2 + y2)N−12xdy

(x2 + y2)N
= 2N

∮
−ydx+ xdy

x2 + y2

= 2N · 2π

= 4πN . (7.158)

Then we find that topological charge is integer valued and equal to the number of solitons

Q = −N (7.159)

In Fig. 7.1 and Fig. 7.2 we reproduce S3 component for N = 1 and N = 2 solitons.

Figure 7.1. N = 1 Static Magnetic soliton
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Figure 7.2. N = 2 Magnetic soliton Dynamics

If we consider solution

ζ(z̄, t) =
N∏
k=1

sin(z̄ − z̄k(t)) (7.160)

then it describes N magnetic soliton chain lattices periodic in the x direction. In Fig. 7.3

we reproduce S3 component of these lattices for N = 2.
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Figure 7.3. Two Magnetic soliton Lattice Dynamics

7.7. Time Dependent Schrödinger Problem in Harmonic Potential

The vorticity equation (7.100) is invariant under substitution ψ → ψ + U where

U is an arbitrary harmonic function: ∆U = 0. If we choose

ψ = 2 ln(1 + |ζ|2) + U(z̄, t) + Ū(z̄, t) (7.161)

then substituting to Eq.(7.103) we have complex Schrödinger equation with additional

potential term

iζt + ζz̄z̄ + ζz̄Uz̄ = 0 (7.162)

7.8. Bound State of Solitons

Here we choose particular form (Gurkan & Pashaev, 2008)

U(z̄, t) =
1

2
z̄2 (7.163)
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so that

ψ = 2 ln(1 + |ζ|2) + 1

2
(z̄2 + z2) . (7.164)

Then we have the time evolution subject to the equation

iζt + 2ζz̄z̄ + z̄ζz̄ = 0 . (7.165)

Looking for solution in the form

ζ =
∑
n

eintun(z̄) (7.166)

we find that functions un(z̄) satisfy the complex Hermite equation

2u′′n + z̄u′n − nun = 0 . (7.167)

It gives time dependent soliton solution in the form

ζ =
∑
n

eintHn(z̄) . (7.168)

For particular value N = 2 we have solution

ζ = H0(z̄) + eitH1(z̄) + e2itH2(z̄) (7.169)

or

ζ = ℜζ + iℑζ (7.170)

where

ℜζ = 1 + 2x cos t+ 2y sin t+ [4(x2 − y2)− 2] cos 2t+ 8xy sin 2t (7.171)

ℑζ = −2y cos t+ 2x sin t− 8xy cos 2t+ [4(x2 − y2)− 2] sin 2t . (7.172)

114



This solution is periodic in time with period T = 2π and it describes the bound state of

two magnetic solitons. In Fig. 7.4 we demonstrate oscillation of solitons in this bound

state for function

f =
1

1 + (ℜζ)2 + (ℑζ)2
(7.173)

which characterizes projection of spin vector S3.
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Figure 7.4. Bound State of Two Magnetic solitons
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Finally we note that the holomorphic Hopf equation

iut + uuz = 0 (7.174)

which corresponds to the dispersionless limit of the holomorphic Burgers’ equation

iut + uuz̄ + 2uz̄z̄ = 0, (7.175)

has been considered very recently as nonlinear bosonisation in quantum hydrodynamics

for description of quantum shock waves in edge states of Fractional Quantum Hall Effect

(Abanov & Wiegmann, 2005). The weak solution of this equation for point solitons with

strength Γ1, ...,ΓN , so that

rot u =
N∑
k=1

Γkδ(x− xk(t))δ(y − yk(t)) (7.176)

gives the following soliton system

dzk
dt

= 4i
N∑

l=1,(l ̸=k)

Γl
zk − zl

, k = 1, ..., N. (7.177)

When all the soliton strengths are equal Γ1 = ... = ΓN then this system reduces to (8.12)

when ν = −2 and is integrable. However, in the general case the system is not known

to be integrable. In particular, for N = 3 the system with constraint Γ1 = Γ2 ̸= Γ3 has

been studied in (Calogero et al., 2005) to explain the transition from regular to irregular

motion as travel on the Riemann surface.
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CHAPTER 8

INTEGRABLE SOLITON DYNAMICS AND

MULTI-PARTICLE PROBLEM

In the present chapter we study the mapping of the point soliton equations to the

integrable multiparticle problem - the complexified Calogero-Moser problem (Gurkan &

Pashaev, 2008).

8.1. Calogero-Moser Models

One dimensional problem ofN -interacting particles admits the Lax representation

and is integrable (Calogero et al., 1978) if in the Hamiltonian function

H =
1

2

N∑
j=1

p2j + g2
∑
j<k

v(qj − qk) (8.1)

the pair interaction potential v(qj − qk) has the one of the next forms

v(ξ) =


ξ−2, I;

a2 sinh−2(aξ), II;

a2 sin−2(aξ), III;

a2P(aξ), IV.

(8.2)

where a is an arbitrary parameter, and P(ξ) = P(ξ, ω1, ω2) is the Weierstrass function,

which is a double periodic function of the complex variable ξ with periods 2ω1 and 2ω2

and with second order poles at the points 2(mω1+mω2) (Perelomov, 1990). In the limit as

one of the periods goes to infinity , the potential of type IV goes over into the potentials of

type II or III. The potential of type I results by letting both periods go to infinity. Therefore

the system of type IV is the most general one. Nevertheless the systems of type I, II and

III have certain specific features that make it reasonable to treat them separately.
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The Hamiltonian equations for the above potentials

ṗj = −∂H
∂qj

, q̇j = pj, j = 1, ..., N (8.3)

are equivalent to the Lax matrix equation (Perelomov, 1990)

iL̇ = AL− LA (8.4)

Explicit form of the Lax operators for the Case I is

Ljk = δjkpj + ig(1− δjk)
1

qj − qk
, (8.5)

Ajk = g

[
δjk
∑
l ̸=j

1

(qj − ql)2
− (1− δjk)

1

(qj − qk)2

]
. (8.6)

The Lax equation (8.4) is the isospectrality condition (λt = 0) for the next linear

problem (see Appendix C)

LU = λU (8.7)

iUt = AU . (8.8)

From this Lax representation follows that under time evolutionL(t) undergoes a similarity

transformation

L(t) = U(t)L(0)U−1(t) . (8.9)

Due to this similarity transformation the eigenvalues of L(t) are time independent

and so are integrals of motion. Equivalently we can say that matrix L(t) is isospectrally

deformed with time. Instead of the eigenvalues it is often more convenient to take their
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symmetric functions as integrals of motion, for example ,

Ik = trLk+1 . (8.10)

If in such a way one can findN functionally independent integrals of motion and show that

they are in involution, then the system is completely integrable in the Liouville sense. It is

the case for the Calogero -Moser model (8.1) of all four types I, II, II, IV. In the first part

of the thesis, Chapter 5, we have considered exchange interactions in Heisenberg model

depending on distance between qubits in the form (8.2), and calculated corresponding

concurrence. Now we show that evolution of topological solitons is also subject to these

models.

8.2. Integrable Problem for N -soliton Motion

In this section we show that the problem of N-point solitons in the plane can be

reduced to the complexified version of the Calogero-Moser model (8.1) type I. The system

of N point solitons is described by function

Φ(z̄, t) =
N∏
j=1

(z̄ − z̄j(t)) (8.11)

satisfying the complex Schrodinger equation (??). Then positions of solitons in the com-

plex plane, z̄1, ..., z̄N , are subject to the first order system

d

dt
z̄j = 2νi

N∑
k ̸=(j)

1

(z̄j − z̄k)
. (8.12)

If we differentiate once and use the system again (Appendix C), then we have the second

order Newton’s equations of motion

d2

dt2
z̄j =

N∑
k ̸=(j)

4ν2

(z̄j − z̄k)3
. (8.13)
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These equations have (complex) Hamiltonian form

˙̄zj =
∂H

∂pj
= pj, ṗ = −∂H

∂z̄j
(8.14)

with the Hamiltonian function

H =
1

2

N∑
j=1

p2j + 2ν2
∑
j<k

1

(z̄j − z̄k)2
. (8.15)

The system (8.13) implies the complex conjugate one

d2

dt2
zj = 4ν2

∑
k

1

(zj − zk)3
(8.16)

with Hamiltonian

H̄ =
1

2

N∑
j=1

p̄2j + 2ν2
∑
j<k

1

(zj − zk)2
. (8.17)

Then the real Hamiltonian for these systems is given by H + H̄ .

As easy to see, the system (8.13) is complexified version of the Calogero-Moser

system discussed in the previous Section 8.1 with the Hamiltonian function (8.1) type

I, where N-particle positions, q1, ..., qN should be replaced by complex soliton positions

z̄1, ..., z̄N , as in Eq.(8.15).

The Lax representation from Section 8.1 can be transformed to the complex case

in a straightforward way. The complexified Hamiltonian equations (8.14) are equivalent

to the Lax matrix equation

iL̇ = AL− LA (8.18)
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where

Ljk = δjkpj + ig(1− δjk)
1

z̄j − z̄k
(8.19)

Ajk = g

[
δjk
∑
l ̸=j

1

(z̄j − z̄l)2
− (1− δjk)

1

(z̄j − z̄k)2

]
(8.20)

and the coupling constant g =
√
2ν. Since matrix L(t) is isospectrally deformed with

time, the corresponding (complex) eigenvalues are time independent integrals of motion.

If one takes their symmetric functions as integrals of motion, then they are given by

Ik = trLk+1 (8.21)

It shows that complexified Calogero-Moser system is an integrable system and as a conse-

quence, the N-soliton system (8.12), which has been mapped to Calogero-Moser system,

is also integrable.

8.3. Integrable Problem for N -soliton Lattices

Similar to the previous case now we consider mapping of the N-soliton chain

lattices to the complexified Calogero-Moser system of type II and III . For simplicity first

we consider the system of two soliton chain lattices described by function

Φ(z̄, t) = sin(z̄ − z̄1(t)) sin(z̄ − z̄2(t)) (8.22)

so that position of lattices is subject to the first order system

˙̄z1 = 2νi cot(z̄1 − z̄2) (8.23)

˙̄z2 = −2νi cot(z̄1 − z̄2) (8.24)
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Differentiating this system once in time we get the second order equations of motion in

the Newton’s form

¨̄z1 = 2iν

(
− 1

sin2(z̄1 − z̄2)

)
( ˙̄z1 − ˙̄z2) (8.25)

= −8ν2
cot(z̄1 − z̄2)

sin2(z̄1 − z̄2)
(8.26)

¨̄z2 = 2iν

(
1

sin2(z̄1 − z̄2)

)
( ˙̄z1 − ˙̄z2) (8.27)

= 8ν2
cot(z̄1 − z̄2)

sin3(z̄1 − z̄2)
. (8.28)

These equations are Hamiltonian

˙̄z1 =
∂H

∂p1
= p1 (8.29)

ṗ1 = −∂H
∂z̄1

= 8ν2
cot(z̄1 − z̄2)

sin3(z̄1 − z̄2)
(8.30)

˙̄z2 =
∂H

∂p2
= p2 (8.31)

ṗ2 = −∂H
∂z̄2

= 8ν2
cot(z̄2 − z̄1)

sin3(z̄2 − z̄1)
(8.32)

with the Hamiltonian function

H =
p21
2

+
p22
2

+
4ν2

sin2(z̄1 − z̄2)
. (8.33)

Comparing this Hamiltonian of two soliton lattices with the Calogero-Moser system, we

realize that it corresponds to complexified version of the model type III.

We can generalize this result considering N soliton chain lattices periodic in the

horizontal direction x. Positions of lattices are subject to the first order system
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˙̄zj = 2νi
N∑
k ̸=j

cot(z̄j − z̄k) . (8.34)

Differentiating once we get

¨̄zj = −8ν2
N∑
k ̸=j

cot(z̄j − z̄k)

sin2(z̄j − z̄k)
(8.35)

which is complexified Calogero-Moser system type III with Hamiltonian

H =
1

2

N∑
j=1

p2j +
∑
j<k

4ν2

sin2(z̄j − z̄k)
. (8.36)

If instead of horizontal x direction, we consider N chain lattices periodic in the vertical

y direction, it results in rotation of every zero of Φ (8.22) on angle π/2, which means

replacement of complex function sin z̄ by sinh z̄. As a result, the corresponding Calagero-

Moser system would be of type II. This consideration shows equivalence of complexified

Calogero-Moser systems of type II and III.
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CHAPTER 9

ABELIAN CHERN-SIMONS SOLITONS AND

HOLOMORPHIC BURGERS’ HIERARCHY

9.1. The Complex Galilei Group and Soliton Generation

The results shown in this chapter appeared partially in (Pashaev & Gurkan, 2007)

and presented in (Pashaev & Gurkan, 2006). The complex Galilei group is generated by

algebra

[P0, Pz] = 0, [P0, K] = 4iPz, [Pz, K] = −i (9.1)

where the respective energy and momentum operators are P0 = −i∂t, Pz = −i∂z corre-

spondingly, and the Galilean boost is operator

K = z + 4it∂z . (9.2)

The Schrödinger operator from (7.126)

S = i∂t + 2∂2z (9.3)

corresponds to the dispersion relation P0 = −2P 2
z (comparing with previous sections for

simplicity we replaced z̄ by z) and is commuting with Galilei group operator

[P0, S] = 0, [Pz, S] = 0, [K,S] = 0 . (9.4)
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It is known from the theory of dynamical symmetry, that if there exists operator W such

that

[S,W ] = 0 ⇒ S(WΦ) = W (SΦ) = 0 (9.5)

then it transforms solution Φ of the Schrödinger equation into another solution WΦ. This

shows that Galilei generators provide dynamical symmetries for the equation. Two of

them are obvious, time translation P0 :

eit0P0Φ(z, t) = Φ(z, t+ t0) (9.6)

and the complex space translation Pz :

eit0PzΦ(z, t) = Φ(z + z0, t) . (9.7)

The Galilean boost creates new zero (new soliton in C)

Ψ(z, t) = KΦ(z, t) = (z + 4it∂z)Φ(z, t) . (9.8)

Starting from obvious solution Φ = 1 we have the chain of n-soliton solutions,

K · 1 = z = H1(z, 2it), (9.9)

K2 · 1 = z2 + 4it = H2(z, 2it), (9.10)

K3 · 1 = z3 + 12it = H3(z, 2it), (9.11)

.

.

.

Kn · 1 = Hn(z, 2it) , (9.12)
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in terms of the Kampe de Feriet Polynomials (Dattoli 1997)

Hn(z, it) = n!

[n/2]∑
k=0

(it)kzn−2k

k!(n− 2k)!
. (9.13)

They satisfy the recursion relations

Hn+1(z, it) =

(
z + 2it

∂

∂z

)
Hn(z, it), (9.14)

∂

∂z
Hn(z, it) = nHn−1(z, it) (9.15)

and can be written in terms of the Hermite polynomials

Hn(z, 2it) = (−2it)n/2Hn

(
z

2
√
−2it

)
. (9.16)

Let w(k)
n is the k-th zero of the Hermite polynomial, Hn(w

(k)
n ) = 0. Then the

evolution of the corresponding soliton is given by

zk(t) = 2w(k)
n

√
−2it . (9.17)

Under the time reflection t → −t position of the soliton rotates on 90 degrees zk →
zke

iπ/2. This transformation is also a symmetry of the soliton equations (7.138). Using

formula

Hn(z, 2it) = exp

(
it
∂2

∂z2

)
zn (9.18)

and the superposition principle, we obtain the solution

Φ(z, t) =
∞∑
n=0

anHn(z, 2it) =
∞∑
n=0

an exp

(
2it

∂2

∂z2

)
zn = exp

(
2it

∂2

∂z2

) ∞∑
n=0

anz
n(9.19)
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So if

χ(z) =
∞∑
n=0

anz
n (9.20)

is an artbitrary analytic function, then

Φ(z, t) = exp

(
2it

∂2

∂z2

)
χ(z) (9.21)

is a solution determined by the integrals of motion a0, a1, .... Therefore, for a polynomial

degree n describing evolution of n solitons, we have n complex integrals of motion.

The generating function of the Kampe de Feriet Polynomials

∞∑
n=0

kn

n!
Hn(z, it) = ekz+ik

2t (9.22)

is also solution of the plane wave type. If we exponentiate the Galilean boost

eiλK = eiλ(z+4it∂z) (9.23)

factor it by the Baker-Hausdorf formula

eA+B = eBeAe
1
2
[A,B] , (9.24)

such that

eiλK = eiλz+2iλ2te−4λt∂z , (9.25)

apply it to a solution Φ(z, t), we obtain

eiλKΦ(z, t) = eiλz+2iλ2tΦ(z − 4λt, t) (9.26)
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the Galilean boost with velocity 4λ, where the generating function of solitons (9.22) ap-

pears as the 1-cocycle. The Galilean boost (9.8) connecting two solutions of the holomor-

phic Schrödinger equation (7.126) generates the auto-Bäcklund transformation :

v = u+
iΓ

2π
∂z̄ ln(z̄ −

8πt

Γ
u) (9.27)

between two solutions

u(z̄, t) =
iΓ

2π

Φ̄z̄

Φ̄
, v(z̄, t) =

iΓ

2π

Ψ̄z̄

Ψ̄
(9.28)

of anti-holomorphic Burgers’ equation (7.129).

As an example, we consider double lattice solution

ζ(z, t) = e−8it sin(z − z1(t)) sin(z + z1(t)) (9.29)

where cos 2z1 = re8it and r is a constant. Applying boost transformation (9.8) we obtain

a solution describing collision of a soliton with the double lattice

Ψ(z, t) =

(
z + 4it

∂

∂z

)
ζ(z, t) (9.30)

Generalizing we have N-solitons interacting with M-soliton lattices,

Ψ(z, t) = eiMt

(
z + 4it

∂

∂z

)N M∏
k=1

sin(z − zk(t)) (9.31)

where z1, ..., zk are subject to the system

żk = 2i
∑

l=1( ̸=k)

cot(zk − zl). (9.32)
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9.2. Abelian Chern-Simons Theory and Complex Burgers’

Hierarchy

Now we show how the anti-holomorphic Burgers hierarchy appears in the Chern-

Simons gauge field theory. The Chern-Simons functional is defined as follows

S(A) =
κ

4π

∫
M

A ∧ dA =
κ

4π

∫
M

εµνλAµFνλ (9.33)

where M is an oriented three-dimensional manifold, A is a U(1) gauge connection, κ is

the coupling constant - the statistical parameter. In the canonical approach M = Σ2 ×R,

where R we interpret as a time. Then Aµ = (A0, Ai), (i = 1, 2), where A0 is the time

component and the action takes the form

S = − κ

4π

∫
dt

∫
Σ

ϵij
(
Ai

d

dt
Aj − A0Fij

)
(9.34)

In the first order formalism, this implies that the Poisson bracket is

{Ai(x), Aj(y)} =
4π

κ
ϵijδ(x− y) (9.35)

and the Hamiltonian is

H = A0ϵ
ijFij . (9.36)

The Hamiltonian is weakly vanishing (H ≈ 0) because of the Chern-Simons Gauss law

constraint

∂1A2 − ∂2A1 = 0 ⇔ Fij = 0 . (9.37)

Then the evolution is determined by the Lagrange multipliers A0 :

∂0A1 = ∂1A0, ∂0A2 = ∂2A0. (9.38)
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Because of the gauge invariance

Aµ → Aµ + ∂µλ, (9.39)

to fix the gauge freedom we choose the Coulomb gauge condition: divA⃗ = 0. In addition,

we have Chern-Simons Gauss law (9.37):

rotA⃗ = 0. (9.40)

These two equations are identical to the incompressible and irrotational hydrodynamics.

Solving the first equation in terms of the velocity potential φ :

Ak = ∂kφ, (k = 1, 2) , (9.41)

and the second one in terms of the stream function ψ :

A1 = ∂2ψ (9.42)

and

A2 = −∂1ψ; (9.43)

we obtain the Cauchy- Riemann Equations:

∂1φ = ∂2ψ, ∂2φ = −∂1ψ . (9.44)

Hence, these two functions are harmonically conjugate and the complex potential

f(z) = φ(x, y) + iψ(x, y) (9.45)
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is an analytic function of z = x+ iy :

∂f/∂z̄ = 0. (9.46)

Corresponding ”the complex gauge potential”

A = A1 + iA2 = f ′(z) (9.47)

is an anti-analytic function. In analogy with hydrodynamics, the logarithmic singularities

of the complex potential

f(z, t) =
1

2πi

N∑
k=1

ΓkLog(z − zk(t)) (9.48)

determine poles of the complex gauge field

A =
i

2π

N∑
k=1

Γk
z̄ − z̄k(t)

(9.49)

describing point solitons in the plane. Then the corresponding ”statistical” magnetic field

B = ∂1A2 − ∂2A1 = −∆ψ = −∆ℑf(z) (9.50)

where ∆ is the Laplacian, determined by the stream function

ψ = − 1

2π

N∑
k=1

ΓkLog|z − zk(t)| (9.51)
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is equal to

B =
1

2π

N∑
k=1

Γk∆Log|z − zk(t)| =
N∑
k=1

Γkδ(r⃗ − r⃗k(t)) . (9.52)

The corresponding total magnetic flux is

∫
R2

∫
Bd2x =

N∑
k=1

∫ ∫
Γkδ(r⃗ − r⃗k(t))d

2x = Γ1 + Γ2 + ...+ ΓN . (9.53)

The relation (9.52) has interpretation as the Chern-Simons Gauss law

B =
1

κ
ψ̄ψ =

1

κ
ρ (9.54)

for point particles located at r⃗k(t) with density

ρ =
N∑
k=1

Γkδ(r⃗ − r⃗k(t)) (9.55)

(with masses Γ1,Γ2, ...,ΓN ). Then magnetic fluxes are superimposed on particles and

have meaning of anyons. As a result, an integrable evolution of the complex gauge field

singularities (solitons) would lead to the integrable evolution of anyons. Evolution of

the anti-holomorphic complex gauge potential is determined by equation, ∂0A = 2∂z̄A0,

where the function A0, as follows, is harmonic ∆A0 = 0, and is given by

A0 =
1

2
[F0(z̄, t) + F̄0(z, t)] . (9.56)

Then the evolution equation is

∂0A = ∂z̄F0 . (9.57)
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Let

F0 =
∞∑
n=0

cnF
(n)
0 (z̄, t) (9.58)

where

F
(n)
0 (z̄, t) = (∂z̄ + A(z̄, t))n · 1 . (9.59)

then for arbitrary positive integer n we have the anti-holomorphic Burgers’ Hierarchy

∂tnA(z̄, t) = ∂z̄[(∂z̄ + A(z̄, t))n · 1] . (9.60)

Using the recursion operator

R = ∂z̄ + ∂z̄A∂
−1
z̄ (9.61)

we write it in the form

∂tnA = Rn−1∂z̄A . (9.62)

The above hierarchy can be linearized by anti-holomorphic Cole-Hopf transformation for

the complex gauge field

A =
Φ̄z̄

Φ̄
= (ln Φ̄)z̄ = (f(z, t))z̄ (9.63)

in terms of the holomorphic Schrödinger(Heat) Hierarchy

∂tnΦ = ∂nzΦ. (9.64)
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For n = 2 the second member of the hierarchy is just

iζt + 2ζzz = 0 (9.65)

and zeroes of this equation corresponds to magnetic solitons of the Ishimori model. The

relation between Φ and complex potential f has meaning of the Madelung representation

for the hierarchy

Φ(z, t) = ef(z,t) = eφ+iψ = (eφ)eiψ =
√
ρeiψ. (9.66)

Therefore, the hierarchy of equations for f is the Madelung form of the holomorphic

Schrödinger hierarchy

∂tnf = (∂z + ∂zf)
n · 1 = e−f∂nz e

f (9.67)

or

∂tn(e
f ) = ∂nz (e

f ) (9.68)

which is the potential Burgers’ hierarchy. We have the next Linear Problem for the Burg-

ers hierarchy

Φz = ĀΦ, Φtn = ∂nzΦ. (9.69)

It can be written as the Abelian zero-curvature representation for the holomorphic Burgers

hierarchy,

∂tnU − ∂z̄Vn = 0, (9.70)

where

U = A, Vn = (∂z̄ + A)n · 1. (9.71)
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For the N -solitons of equal strength

Φ(z, t) = ef =
N∏
k=1

(z − zk(t)) (9.72)

positions of the solitons correspond to zeroes of Φ(z, t). As a result the soliton dynamics,

leading to integrable anyon dynamics, is related to motion of zeroes subject to the soliton

equations (7.138) for n = 2 case and for arbitrary n to equation

−dzk(tn)
dtn

= Resz=zk

(
∂z +

N∑
l=1

1

z − zl(tn)

)n

· 1, (k = 1, ..., N). (9.73)

9.3. Galilean Group Hierarchy and Soliton Solutions

Now we consider complex Galilean Group hierarchy

[P0, Pz] = 0, [P0, Kn] = innP n−1
z , [Pz, Kn] = −i (9.74)

where the hierarchy of the boost transformations is generated by

Kn = z + nt∂n−1
z (9.75)

is commuting with the holomorphic n-Schrödinger equation

Sn = ∂t − ∂nz . (9.76)

As a result, application of Kn to solution Φ creates solution with additional soliton

Ψ(z, t) = KnΦ(z, t) = (z + nt∂n−1
z )Φ(z, t) . (9.77)
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For particular values we have

Kn · 1 = z = H
(n)
1 (z, t), (9.78)

K2
n · 1 = z2 = H

(n)
2 (z, t), (9.79)

.

.

.,

Kn−1
n · 1 = zn−1 = H

(n)
n−1(z, t), (9.80)

Kn
n · 1 = zn + n! t = H(n)

n (z, t), (9.81)

.

.

. (9.82)

Km
n · 1 = H(n)

m (z, t) , (9.83)

where the generalized Kampe de Feriet polynomials (Dattoli, 2001) are

H(n)
m (z, t) = m!

[m/n]∑
k=0

tkzm−nk

k!(m− nk)!
(9.84)

satisfy the holomorphic Schrödinger hierarchy (9.64)

∂

∂t
H(n)
m (z, t) = ∂nzH

(n)
m (z, t) . (9.85)

The generating function is given by

∞∑
m=0

km

m!
H(n)
m (z, t) = ekz+k

nt . (9.86)

From operator representation

H(N)
n (z, t) = exp

(
t
∂N

∂zN

)
zn ⇒ Φ(z, t) = exp

(
t
∂N

∂zN

)
ψ(z) (9.87)
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we have solution of (9.64) in terms of arbitrary analytic functionψ. PolynomialsH(N)
m (z, t)

are connected with the generalized Hermite polynomials (Srivastava, 1976)

H(N)
m (z, t) = t[m/N ]H(N)

m

(
z
N
√
t

)
. (9.88)

Then the k-th zero w(N)k
n of generalized Hermite polynomial H(N)

n determine evolution

of the corresponding soliton

H(N)
n (w(N)k

n ) = 0 ⇒ zk(t) = w(N)k
n

N
√
t . (9.89)

The zeroes are located on the circle in the plane with time dependent radius. When t→ −t
position of the soliton rotate on angle zk → zke

iπ/N . The Galilean boost hierarchy (9.77)

provides the Bäcklund transformation for n-th member of anti-holomorphic Burgers hier-

archy (9.60)

v = u+ ∂z ln[z +Nt(∂z + u)N−1 · 1] . (9.90)

9.4. The Negative Burgers’ Hierarchy

The holomorphic Schrödinger hierarchy and corresponding Burgers hierarchy can

be analytically extended to negative values ofN . Introducing negative derivative (pseudo-

differential) operator ∂−1
z , so that,

∂−mz zn =
zn+m

(n+ 1)...(n+m)
, (9.91)

we have the hierarchy

∂t−nΦ = ∂−nz Φ (9.92)
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or differentiating n times, in pure differential form ∂t−n∂
n
zΦ = Φ. In terms of A defined

by (9.63) we have the negative Burgers hierarchy

∂t−nA = ∂z̄

[
1− ∂t−n(∂z̄ + A)n · 1

(∂z̄ + A)n · 1

]
. (9.93)

For n = 1 we have equation ∂t−1Φ = ∂−1
z Φ or the Helmholtz equation ∂t−1∂zΦ = Φ. Ana-

lytical continuation of the generalized Kampe de Feriet polynomials to n = −1 (Dattoli,

2001) is given by

H
(−1)
M (z, t) =M !

∞∑
k=0

tkzM+k

k!(M + k)!
. (9.94)

Then

H
(−1)
M (z, t) = et∂

−1
z H

(−1)
M (z, 0) (9.95)

H
(−1)
M (z, 0) = zM . (9.96)

Moreover higher order functions are generated by the ”negative Galilean boost”

H
(−1)
M (z, t) = (z − t∂−2

z )MH
(−1)
0 (z, t) . (9.97)

Functions H(−1)
M (z, t) are related with Bessel functions (Dattoli, 2001). First, they are

directly related with the Tricomi functions

CM(zt) =
z−M

M !
H

(−1)
M (z, t) (9.98)

determined by the generating function

∞∑
M=−∞

λMCM(x) = eλ+x/λ . (9.99)
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The last one is connected with Bessel functions according to

JM(x) =
(x
2

)M
CM(−x

2

4
) . (9.100)

Then we have explicitly

H
(−1)
M (z, t) =M !

(
−z
t

)M/2

JM(2
√
−zt) . (9.101)

This provides solution of the negative (-1) flow Burgers equation

∂tA = ∂z̄
1− ∂tA

A
(9.102)

in the form

A =
(H

(−1)
M (z̄, t))z̄

H
(−1)
M (z̄, t)

=
M

2z̄
+

√
t

−z̄
J ′
M

JM
=

√
t

−z̄
JM−1(2

√
−z̄t)

JM(2
√
−z̄t)

. (9.103)

For arbitrary member of the negative hierarchy we have

H
(−N)
M (z, t) = et∂

−N
z H

(−N)
M (z, 0) (9.104)

H
(−N)
M (z, 0) = zM (9.105)

and relation

W
(N)
M (zt1/N) =

z−M

M !
H

(−N)
M (z, t) (9.106)
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where the Wright-Bessel functions (Dattoli, 2001)W (N)
M (x) are given by generating func-

tion

∞∑
M=−∞

λMW
(N)
M (x) = eλ+

x

λN . (9.107)
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CHAPTER 10

CONCLUSIONS

In the present thesis we studied quantum entanglement and topological soliton

characteristics of spin models. By identifying spin states with qubits as a unit of quantum

information, we have shown two different realization of qubit, one of them characterized

by quantum states on the Bloch sphere another one related with SU(2) or spin coherent

states is given in terms of extended complex plane states. Then multiple qubit states are

associated with spin complexes from quantum theory of magnetism. It allowed us to

study quantum information characteristics as quantum entanglement in spin models. We

derived entanglement characteristic in the form of concurrence for two qubit pure states

and consider concurrence for the thermal states.

Starting from most general fully aniso- tropic symmetrical XY Z model with

anisotropic antisymmetric DM type interaction, we constructed eigenvalues and eigen-

states for two spins Hamiltonian and calculate the density matrix and concurrence char-

acteristic of this model. As particular cases we treated explicitly pure DM , Ising, XY ,

XX , XXX and XXZ cases. We found that in all considered cases critical temperature

for entanglement is increasing with DM coupling and in some specific cases our calcula-

tion indicates on appearance of quantum phase transitions in the model. Time evolution

of two qubit states is determined and it is shown that depending on ratio of characteris-

tic frequencies in the system periodic and quasi-periodic evolution of entanglement take

place. Relation of time evolution with SWAP gate is established. Next fidelity of time

evolved states are found.

We studied entanglement of two qubits with exchange interaction depending on

distance J(R) between spins and influence of this distance on entanglement of the sys-

tem. For this we used different exchange interactions in the form of Calogero- Moser

type I,II,III and Herring-Flicker potential which applicable to interaction of Hydrogen

molecule. We found that entanglement decreases with the increase of distance.

For geometric quantum computations we calculated geometric(Berry) phase under

the DM interaction and studied how the Berry phase changes in a two qubit XX model

with DM interaction in an applied magnetic field. We showed that Berry phase in the

system depend on the amount of DM interaction and also external magnetic field. We

found that large DM interaction tends to wash out the Berry phase while large magnetic

141



field produces a larger range of Berry phase.

As a topological soliton property we study classical spin models in continuum me-

dia under holomorphic reduction and constructed static N soliton configuration, soliton

and soliton lattice configuration. Then holomorphic time dependent Schrödinger equation

were derived for description of evolution in Ishimori model. The influence of harmonic

potential and bound state soliton were studied. Relation of integrable solitons with mul-

tiparticle problem of Calogero-Moser type were established and N soliton and N soliton

lattice motion were derived.

Special reduction of Abelian Chern-Simons to complex Burgers’ hierarchy were

derived. Galilean group of hierarchy, dynamical symmetry and Negative Burgers’ hierar-

chy are found.

The main results presented in this thesis were published in the following papers.

• Pashaev O.K., Gurkan Z.N., 2007: Abelian Chern-Simons solitons and holomor-

phic Burgers’ hierarchy, Theor. Math. Phys. , 152, 1, 1017-1029.

• Gurkan Z. N., Pashaev O. K., 2008: Integrable soliton dynamics in anisotropic

planar spin liquid model, Chaos, Solitons and Fractals, 38 , 238- 253.

• Kwan M. K., Gurkan Z. N., and Kwek L. C., 2008: Berry’s phase under the

Dzyaloshinskii Moriya interaction, Physical Review A , 77, 062311.

• Gurkan Z. N. , Pashaev O., 2010: Entanglement in two qubit magnetic models

with DM antisymmetric anisotropic exchange interaction, International Journal of

Modern Physics B, 24, 8, 943-965.
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APPENDIX A

EIGENVALUES AND EIGENVECTORS OF XYZ MODEL

Hamiltonian for two qubit XY Z model is

H =
1

2
[Jx σ

x
1σ

x
2 + Jy σ

y
1σ

y
2 + Jz σ

z
1σ

z
2 + (B + b)σz1 + (B − b)σz2 + D⃗ · (σ⃗1 × σ⃗2)] .(A.1)

The Hamiltonian in matrix form

H =



Jz
2

+B 0 0
Jx − Jy

2

0 −Jz
2

+ b
Jx + Jy

2
+ iD 0

0
Jx + Jy

2
− iD −Jz

2
− b 0

Jx − Jy
2

0 0
Jz
2

−B


(A.2)

Then solving

H|Ψi⟩ = Ei|Ψi⟩, i = 1, 2, 3, 4. (A.3)

we can obtain the eigenvalues E1, E2, E3, E4. The characteristic equation

det(H − EI) = 0 (A.4)

or ∣∣∣∣∣∣∣∣∣∣∣∣∣

Jz
2

+B − E 0 0 J−

0 −Jz
2

+ b− E J+ + iD 0

0 J+ − iD −Jz
2

− b− E 0

J− 0 0
Jz
2

−B − E

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (A.5)
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where (Jx − Jy)/2 = J− and (Jx + Jy)/2 = J+.

The eigenvalues (energy levels) are:

E1 =
Jz
2

−
√
B2 + J2

− (A.6)

E2 =
Jz
2

+
√
B2 + J2

− (A.7)

E3 = −Jz
2

−
√
b2 + J2

+ +D2 (A.8)

E4 = −Jz
2

+
√
b2 + J2

+ +D2 (A.9)

Now we can find eigenstates corresponding to the eigenvalues which are given by the

well-known Bell states.

1. For the eigenvalue E1 =
Jz
2

−
√
B2 + J2

− :

(H − E1I)|x⟩ = 0 (A.10)


B + µ 0 0 J−

0 −Jz + b+ µ J+ + iD 0

0 J+ − iD −Jz − b+ µ 0

J− 0 0 −B + µ




x1

x2

x3

x4

 = 0 (A.11)

where µ =
√
B2 + J2

−. Solving the system we have the corresponding eigenvector

to the eigenvalue E1

|x⟩ = C


J−

0

0

−(B +
√
B2 + J2

−)

 . (A.12)
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After normalization

|Ψ1⟩ =
1√

2(B2 + J2
− +B

√
B2 + J2

−)


J−

0

0

−(B +
√
B2 + J2

−)

 (A.13)

2. For the eigenvalue E2 =
Jz
2

+
√
B2 + J2

− :

(H − E2I)|x⟩ = 0 (A.14)


B − µ 0 0 J−

0 −Jz + b− µ J+ + iD 0

0 J+ − iD −Jz − b− µ 0

J− 0 0 −B − µ




x1

x2

x3

x4

 = 0. (A.15)

Solving the system we have the corresponding eigenvector to the eigenvalue E2

|x⟩ = C


J−

0

0

−(B −
√
B2 + J2

−)

 . (A.16)

After normalization

|Ψ2⟩ =
1√

2(B2 + J2
− −B

√
B2 + J2

−)


J−

0

0

−(B −
√
B2 + J2

−)

 (A.17)
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3. For the eigenvalue E3 = −Jz
2

−
√
b2 + J2

+ +D2 :

(H − E3I)|x⟩ = 0 (A.18)


Jz +B + ν 0 0 J−

0 b+ ν J+ + iD 0

0 J+ − iD −b+ ν 0

J− 0 0 Jz −B + ν




x1

x2

x3

x4

 = 0 (A.19)

where ν =
√
b2 + J2

+ +D2. Solving the system we have the corresponding eigen-

vector to the eigenvalue E3

|x⟩ = C


0

J+ + iD

−(b+
√
b2 + J2

+ +D2)

0

 . (A.20)

After normalization

|Ψ3⟩ =
−i√

2(b2 + J2
+ +D2 − b

√
b2 + J2

+ +D2)


0

J+ + iD

−(b+
√
b2 + J2

+ +D2)

0



4. For the eigenvalue E4 = −Jz
2

+
√
b2 + J2

+ +D2 :

(H − E4I)|x⟩ = 0 (A.21)
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
Jz +B − ν 0 0 J−

0 b− ν J+ + iD 0

0 J+ − iD −b− ν 0

J− 0 0 Jz −B − ν




x1

x2

x3

x4

 = 0. (A.22)

Solving the system we have the corresponding eigenvector to the eigenvalue E4

|x⟩ = C


0

J+ + iD

−(b−
√
b2 + J2

+ +D2)

0

 . (A.23)

After normalization

|Ψ4⟩ =
1√

2(b2 + J2
+ +D2 − b

√
b2 + J2

+ +D2)


0

J+ + iD

−(b−
√
b2 + J2

+ +D2)

0


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APPENDIX B

THERMAL ENTANGLEMENT

For the Hamiltonian here we calculate e−H/kT and the partition function Z.

e−H/kT = I +

(
−H
kT

)
+

1

2!

(
−H
kT

)2

+ ...+
1

n!

(
−H
kT

)n
+ ... (B.1)

e−H/kT =


A11 0 0 A14

0 A22 A23 0

0 A32 A33 0

A41 0 0 A44

 (B.2)

A11 = e
−Jz
2kT

(
cosh

µ

kT
− B

µ
sinh

µ

kT

)
(B.3)

A14 = e
−Jz
2kT

(
sinh

µ

kT

)(−J−
µ

)
(B.4)

A22 = e
Jz
2kT

(
cosh

ν

kT
− b

ν
sinh

ν

kT

)
(B.5)

A23 = −J+ + iD

ν
sinh

ν

kT
e

Jz
2kT (B.6)

A32 = −J+ − iD

ν
sinh

ν

kT
e

Jz
2kT (B.7)

A33 = e
Jz
2kT

(
cosh

ν

kT
+
b

ν
sinh

ν

kT

)
(B.8)

A41 = e−
Jz
2kT

(
sinh

µ

kT

)(−J−
µ

)
(B.9)

A44 = e−
Jz
2kT

(
cosh

µ

kT
+
B

µ
sinh

µ

kT

)
(B.10)

Z = Tr[e−H/kT ] = 2
(
e−Jz/2kT cosh

µ

kT
+ eJz/2kT cosh

ν

kT

)
(B.11)

where J± = Jx±Jy
2

and µ =
√
B2 + J2

− and ν =
√
b2 + J2

+ +D2.
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The concurrence C12 the density matrix is defined as

C = max{λ1 − λ2 − λ3 − λ4, 0} (B.12)

where λi (i = 1, 2, 3, 4) are the square roots of the eigenvalues of the operator

ρ12 = ρ(σy ⊗ σy)ρ∗(σy ⊗ σy) (B.13)

and λ1 > λ2 > λ3 > λ4. In our case:

ρ(σy ⊗ σy) =
1

Z


A11 0 0 A14

0 A22 A23 0

0 A32 A33 0

A41 0 0 A44




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 =


A14 0 0 A11

0 A23 A22 0

0 A33 A32 0

A44 0 0 A41



ρ∗(σy ⊗ σy) =
1

Z


A∗

11 0 0 A∗
14

0 A∗
22 A∗

23 0

0 A∗
32 A∗

33 0

A∗
41 0 0 A∗

44




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 =


A∗

14 0 0 A∗
11

0 A∗
23 A∗

22 0

0 A∗
33 A∗

32 0

A∗
44 0 0 A∗

41



ρ12 =
1

Z2


A14 0 0 A11

0 A23 A22 0

0 A33 A32 0

A44 0 0 A41




A∗

14 0 0 A∗
11

0 A∗
23 A∗

22 0

0 A∗
33 A∗

32 0

A∗
44 0 0 A∗

41

 (B.14)

Z2ρ12 = W =


A14A

∗
14 + A11A

∗
44 0 0 A14A

∗
11 + A11A

∗
41

0 A23A
∗
23 + A22A

∗
33 A23A

∗
22 + A22A

∗
32 0

0 A33A
∗
23 + A32A

∗
33 A33A

∗
22 + A32A

∗
32 0

A44A
∗
14 + A41A

∗
44 0 0 A44A

∗
11 + A41A

∗
41


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W11 = A14A
∗
14 + A11A

∗
44 = e

−Jz
kT

(
cosh2 µ

kT
+
J2
− −B2

µ2
sinh2 µ

kT

)
(B.15)

W14 = A14A
∗
11 + A11A

∗
41 = −2J−

µ
sinh

µ

kT
e

−Jz
kT

(
cosh

µ

kT
− B

µ
sinh

µ

kT

)
(B.16)

W22 = A23A
∗
23 + A22A

∗
33 = e

Jz
kT

(
cosh2 ν

kT
+

−b2 + J2
+ +D2

ν2
sinh2 ν

kT

)
(B.17)

W23 = A23A
∗
22 + A22A

∗
32 = −2

J+ + iD

ν
sinh

ν

kT
e

Jz
kT

(
cosh

ν

kT
− b

ν
sinh

ν

kT

)
(B.18)

W32 = A33A
∗
23 + A32A

∗
33 = −2

J+ − iD

ν
sinh

ν

kT
e

Jz
kT

(
cosh

ν

kT
+
b

ν
sinh

ν

kT

)
(B.19)

W33 = A33A
∗
22 + A32A

∗
32 = e

Jz
kT

(
cosh2 ν

kT
+

−b2 + J2
+ +D2

ν2
sinh2 ν

kT

)
(B.20)

W41 = A44A
∗
14 + A41A

∗
44 = −2J−

µ
sinh

µ

kT
e

−Jz
kT

(
cosh

µ

kT
+
B

µ
sinh

µ

kT

)
(B.21)

W44 = A44A
∗
11 + A41A

∗
41 = e

−Jz
kT

(
cosh2 µ

kT
+
J2
− −B2

µ2
sinh2 µ

kT

)
(B.22)

|ρ12 − λ2I| = |W
Z2

− λ2I| = |W − λ2Z2I| = |W − µI| = 0 (B.23)

where λ2Z2 = µ.

|W − µI| =

∣∣∣∣∣∣∣∣∣∣∣

W11 − µ 0 0 W14

0 W22 − µ W23 0

0 W32 W33 − µ 0

W41 0 0 W44 − µ

∣∣∣∣∣∣∣∣∣∣∣
λi =

√
µi

Z
(B.24)

λ1,2 =
eJz/2kT

Z

∣∣∣∣∣∣
√
1 +

J2
−

µ2
sinh2 µ

kT
∓ J−

µ
sinh

µ

kT

∣∣∣∣∣∣ (B.25)

λ3,4 =
e−Jz/2kT

Z

∣∣∣∣∣
√

1 +
J2
+ +D2

ν2
sinh2 ν

kT
∓
√
J2
+ +D2

ν
sinh

ν

kT

∣∣∣∣∣ (B.26)
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APPENDIX C

LAX REPRESENTATION

Given eigenvalue problem ( (Ablowitz & Segur, 1981))

LΨ = λΨ (C.1)

is called isospectral, ∂λ/∂t = 0, if eigenfunctions evolution

Ψt = AΨ (C.2)

implies an operator equation

Lt = [A,L] (C.3)

is called the Lax equation. Differentiating (C.1) according to t and using (C.2)gives:

LtΨ+ LΨt = λtΨ+ λΨt (C.4)

LtΨ+ LAΨ = λtΨ+ λAΨ (C.5)

= λtΨ+ AλΨ (C.6)

= λtΨ+ ALΨ (C.7)
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Rearranging the above equations

LtΨ+ LAΨt − ALΨ = λtΨ (C.8)

LtΨ+ (LA− AL)Ψ = λtΨ (C.9)

LtΨ− [A,L]Ψ = λtΨ (C.10)

(Lt − [A,L])Ψ = λtΨ (C.11)

we obtain

λt = 0 ⇔ Lt = [A,L] (C.12)
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APPENDIX D

N VORTEX SYSTEM

In this appendix we derived system of equations describing evolution of N vor-

tices. Let us consider solution of complex Schrödinger equation (??)

iΦt = νΦz̄z̄ (D.1)

having N simple roots

Φ(z̄, t) =
N∏
k=1

(z̄ − z̄k(t)) . (D.2)

For simplicity we start with N = 2 case

Φ(z̄, t) = (z̄ − z̄1(t))(z̄ − z̄2(t)) . (D.3)

Substituting to the equation we have

−i ˙̄z1(z̄ − z̄2)− i ˙̄z2(z̄ − z̄1) = 2ν . (D.4)

This equation considered at points z̄ = z̄1 and z̄ = z̄2 gives the system

˙̄z1 =
2νi

(z̄1 − z̄2)
, ˙̄z2 =

−2νi

(z̄1 − z̄2)
. (D.5)

For N = 3 case

Φ(z̄, t) = (z̄ − z̄1(t))(z̄ − z̄2(t))(z̄ − z̄3(t)) . (D.6)
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Substituting to the equation we have

−i ˙̄z1(z̄− z̄2)(z̄− z̄3)− i ˙̄z2(z̄− z̄1)(z̄− z̄3)− i ˙̄z3(z̄− z̄1)(z̄− z̄2) = 2ν[3z̄− (z̄1+ z̄2+ z̄3)]

This equation considered at points z̄ = z̄1 , z̄ = z̄2 and z̄ = z̄3 gives the system

˙̄z1 = 2νi

[
1

(z̄1 − z̄2)
+

1

(z̄1 − z̄3)

]
(D.7)

˙̄z2 = 2νi

[
1

(z̄2 − z̄1)
+

1

(z̄2 − z̄3)

]
(D.8)

˙̄z3 = 2νi

[
1

(z̄3 − z̄1)
+

1

(z̄3 − z̄2)

]
. (D.9)

Following the same procedure, in general case of arbitrary N zeroes (D.2) we obtain the

system of first order equations

˙̄zj = 2νi
N∑
k ̸=j

1

(z̄j − z̄k)
. (D.10)

Differentiating this system once more in time we get the system of Newton’s equations:

¨̄zj = 2νi
n∑
k ̸=j

−( ˙̄zj − ˙̄zk)

(z̄j − z̄k)2
= 8ν2

n∑
j<k

1

(z̄j − z̄k)3
. (D.11)

For N = 2 case we have two equations

¨̄z1 = 8ν2
n∑
k ̸=j

1

(z̄1 − z̄2)3
, z̈2 = −8ν2

n∑
k ̸=j

1

(z̄1 − z̄2)3
. (D.12)

For N = 3 case we have the following equations

¨̄z1 = 2νi

[
−( ˙̄z1 − ˙̄z2)

(z̄1 − z̄2)2
+

−( ˙̄z1 − ˙̄z3)

(z̄1 − z̄3)2

]
(D.13)

= 8ν2
[

1

(z̄1 − z̄2)3
+

1

(z̄1 − z̄3)3

]
(D.14)
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¨̄z2 = 2νi

[
−( ˙̄z2 − ˙̄z1)

(z̄2 − z̄1)2
+

−( ˙̄z2 − ˙̄z3)

(z̄2 − z̄3)2

]
(D.15)

= 8ν2
[

1

(z̄2 − z̄1)3
+

1

(z̄2 − z̄3)3

]
(D.16)

(D.17)

and

¨̄z3 = 2νi

[
−( ˙̄z3 − ˙̄z1)

(z̄3 − z̄2)2
+

−( ˙̄z3 − ˙̄z2)

(z̄3 − z̄2)2

]
(D.18)

= 8ν2
[

1

(z̄3 − z̄1)3
+

1

(z̄3 − z̄2)3

]
. (D.19)
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