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ABSTRACT 
 

THE EFFECTS OF SiC PARTICLE ADDITION ON THE FOAMING 
AND MECHANICAL BEHAVIOR OF ALUMINUM CLOSED-CELL 

FOAMS PRODUCED BY FOAMING OF POWDER COMPACTS 
 
The maximum and linear expansions of a large number of SiC particle/Al 

powder compacts of varying average SiC particle size (0.03-67 µm), weight percentage 

(wt%) and size distribution and Al compacts without particle addition were 

experimentally determined. The powder compacts showed varying expansion values 

depending on the size, wt% and size distribution of the particles. The linear and 

maximum expansions for small size SiC  particle additions were found to be relatively 

high at relatively low wt%'s (5 wt%) and decreased with increasing wt% of the particles 

from 5 wt% to 10 and 15 wt%. The compacts with small average particle size but wider 

particle size distribution showed higher expansions than the compacts with the similar 

average particle size but narrower particle size distribution, showing the importance of 

the particle size distribution on the expansions of Al compacts. The foam expansions 

were further shown to increase with SiC particle addition until about a critical 

cumulative particle surface area; however, the expansions decreased significantly at 

increasingly high cumulative particle surface areas due to the excessive increase in the 

compact viscosity. For the investigated powder compacts, the optimum wt% of SiC 

addition was determined, as a function particle size, based on the critical cumulative 

particle surface area. Compression tests showed that the density of the foam was the 

most effective parameter in increasing the plateau stresses. Microscopic analysis 

showed that the main deformation mechanism in Al and SiC/Al foams was the cell wall 

bending, i.e. cell edges buckled over cell walls. This resembled the deformation 

characteristics of the open cell foams. It was finally shown that SiC particle addition 

increased the foam plateau stresses over those of Al foam without particle addition, 

which was mainly attributed to the reduced fraction of the metal on the cell edges. 
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ÖZET 
 

TOZ TABLETLERİN KÖPÜKLEŞTİRİLMESİ İLE ÜRETİLEN 
ALÜMİNYUM KAPALI HÜCRELİ KÖPÜKLERDE SiC PARÇACIK 

KATKISININ KÖPÜKLEŞME VE MEKANİK ÖZELLİKLERE 
ETKİLERİ 

 
Farklı SiC parçacık boyutu (0.03-67 µm), ağırlıkça parçacık yüzdesi ve parçacık 

boyut dağılımına sahip ve katkisiz Al köpüklerdeki maksimum ve doğrusal genleşme 

değerleri, çok sayıda numune ile deneysel olarak saptanmıştır. Basılmış tozlar eklenen 

parçacığın boyutu, ağırlıkça oranı ve boyut dağılımına gore değişen genleşme 

davranışları sergilemişlerdir. Küçük tane boyutlu SiC parçacık eklenen numunelerde 

maksimum ve doğrusal genleşme değerleri düşük parçacık katkılarında (%5) daha 

yüksek saptanmıştır. Bu değerler parçacık yüzdeleri %5 ten %10 ve %15 çıktıkça 

azalmışlardır. Daha geniş parçacık boyutu aralığına sahip toz eklenen köpüklerde, aynı 

ortalama parçacık boyutuna sahip fakat daha dar bir boyut aralığındaki parçacık 

katkısından daha yüksek genleşme değerlerine ulaşıldığı gözlenmiştir. Bu bize parçacık 

boyut aralığının önemini göstermiştir. Köpük genleşmeleri SiC parçacık katılması ile 

belirli bir parçacık toplam yüzey alanı değerine kadar artmıştır. Bu değerden daha 

yüksek toplam parçacık yüzey alanına sahip katkılarda ise eriyik viskositesindeki artış 

nedeni ile genleşme değerlerinde belirli düşüşler gözlenmiştir. Kritik toplam parçacık 

yüzey alanına dayanarak, çalışılan parçacık boyutları için optimum SiC katkı oranları 

belirlenmiştir. Köpüklere uygulanan ezilme deneyleri, köpük yoğunluğunun plato 

gerilme değeri için en etkili değişken olduğu bulunmuştur. Mikroskobik çalışmalar 

sonrasında, Al ve SiC/Al köpüklerde asıl deformasyon mekanizmasının hücre duvarı 

bükülmesi olduğu görülmüştür. Bu açık hücreli köpüklerin deformasyon 

mekanizmalarıyla benzemektedir. Son olarak da SiC parçacık katkısının köpük plato 

gerilme değerlerini katkısız köpüklere göre artırdığı görülmüştür. Bu hücre 

köşelerindeki metal oranının azalmasına bağlanmıştır. 
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CHAPTER 1 

 

INTRODUCTION 

 
Foam is a substance characterized by regularly distributed arrays of cells, 

formed by trapping gas bubbles in a liquid or solid. It is an extremely complex system 

consisting of poly-sized gas bubbles separated by films. The cells are formed by the 

liquid phase while the gas phase fills the space in between the cells.  This way of 

structuring of liquid and gas phases is also referred as to cellular and often observed in 

natural materials such as bone and wood. If the cell material is replaced with a solid 

metal, the resultant structure is usually referred to as “metal foam” or “foamed metal”. 

The solid foams can be categorized into two groups according to their pore structure: 

open cell and closed cell. The pores in open cell foam are connected to each other, 

whereas the pores in closed cell foam are separated by a cell wall (Figure 1.1).  

Metal foams have unique mechanical and physical properties, which make them 

attractive materials in structural and functional applications. They are very light, 

possessing densities as low as one tenth of the density of the metal of which they are 

made. They crush under compressive loads almost at a constant load until about very 

large strains, allowing the absorption of a great deal of deformation energy. The energy 

absorbing capabilities of metal foams make them attractive materials to be potentially 

used in crash and blast protections. Application of the foams includes such as the core 

materials in between the metal plates in sandwich structures for blast protection of 

buildings and military vehicles and filler for the bumpers and empty spaces in the car 

body to prevent shock wave passage through the passenger compartment in accidents 

involving collisions. 

 The mechanical properties of the metal foams are mainly dictated by the 

distribution of the cell material in the cell walls (surface), edges and nodes. In open cell 

foams, the metal phase is distributed at the cell edges and vortex, where 3 and 4 cells 

meet, respectively. While in the closed cell foams, additional metal phase forms the cell 

walls, where two cells meet. The final foam structure including the relative distribution 

of the metal phase in the cell walls, edges and nodes is formed by the foaming process, 

which is usually conducted in liquid state at relatively elevated temperatures. The 
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structure of liquid foams changes constantly over time by various types of events 

including drainage, cell wall rupture and coarsening. If the change in the foam structure 

is relatively slow, the foam is said to be kinetically stable. In other words, stable foam 

shows negligible changes in the structure with time. The foam stabilization plays a key 

role in forming of controllable homogeneous foam structures. In aqueous foams, the 

stabilization is achieved by means of (a) surfactants and (b) small particles, which act as 

elastic separator between the cells. It is noted that only the later can be used for the 

metal foam stabilization. 

 

  
(a)                                                                   (b) 

Figure 1.1. Pore structure of (a) an open cell and (b) a closed cell metal foam. 

 

Al closed-cell foams are currently manufactured by several different processes, 

in which the liquid foam is stabilized by the addition of ceramic particles to the liquid 

metal either in-situ or ex-situ. In Alcan foaming process, in which the liquid metal is 

foamed by gas injection, the liquid foam stabilization is achieved by adding SiC 

particles (Banhart 2000a). In the Alporas foaming process, the viscosity of the liquid 

metal is adjusted by Ca-addition into the melt, which results in the formation of oxide 

particles by internal oxidation (Miyoshi, et al. 2000). 

 The ceramic particle addition in the foaming of powder compact process was 

subjected to several studies. TiB2 addition, although, increased the plateau stresses of Al 

foams, it was not effective in long-term foam stabilization (Kennedy and Asavavisitchai 

2004). Contrary to TiB2-addition, SiCp-addition of 3 wt% was shown to improve the 

foam stability of Al powder compacts (Kennedy and Asavavisithchai 2004). The 

compact expansion is expected to vary with the size and wt% of the particle addition, 

along with some other important process parameters, while a comprehensive study of 
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the effect of particle size on the expansion of the powder compacts is still absent in the 

literature. The present thesis is therefore conducted as a further, but a more 

comprehensive investigation of the effect of SiC-particle addition on the foaming 

behavior of Al powder compacts in the foaming powder compact process.  For that 

purpose, a large number of SiC/Al composite and Al powder compacts having the 

similar relative densities were prepared and foamed.  SiC powder average particle size 

investigated ranged between 30 nm and ~67 µm with the particle additions of 0.05-15 

wt%. The effect of SiC particle addition on the foaming behavior was determined by 

comparing the expansions of SiC/Al and Al compacts without particle addition 

processed under the same condition. The effect of SiC particle addition on the 

mechanical properties was further assessed by the compression testing of the foams 

with the similar densities.   The experimental study presented in this thesis was part of a 

TÜBİTAK project, which was aimed to optimize foam structures with respect to the 

particle addition in order to increase the foam energy absorption in certain applications 

such as foam filled crash boxes for the automobiles.  
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CHAPTER 2 

 

MANUFACTURING METHODS AND APPLICATION 

AREAS OF CLOSED CELL ALUMINUM FOAMS 

 
2.1.  Manufacturing Methods of Closed Cell Aluminum Foams 

 
There are essentially nine distinct process-routes for the production of the 

cellular metals (Ashby, et al. 2000). Each of these processes is applicable to certain type 

of metals and they result in different foam structures and properties mainly dictated by 

the nature of the process (Figure 2.1). Closed cell Al foams are manufactured by five 

different methods. These are 1) foaming of melts by gas injection, 2) foaming of melts 

with blowing agents, 3) foaming from powder compacts, 4) accumulative roll-bonding 

technique and 5) laser assisted foaming. The first three methods are currently used to 

produce commercial closed cell Al foams, while the others are still in the development 

stage. The process technique used to produce foam is noted to be very effective on the 

final structure of the foam including cell size and the density of the foam (Figure 2.1). 

Therefore every process technique results in different foams that are suitable for 

different applications. 

The production methods of closed cell Al foams can also be basically divided 

into two main groups according to their processing strategies as direct and indirect 

foaming (Table 2.1). Direct foaming method starts from molten metal containing 

uniformly dispersed non-metallic particles with either gas is injected into the melt or a 

blowing agent is used to lead to the foam structure (Banhart 2001). On the other hand, 

indirect foaming methods start from the solid precursors which consist of an aluminium 

matrix containing uniformly dispersed blowing agent particles. These are mostly 

titanium or zirconium hydride. Upon melting, this precursor expands and forms cellular 

structure of the foam. 
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Table 2.1.  Foaming routes and current manufacturers for aluminum based metal foams 
(Source: Banhart 2007). 

 
Direct foaming Melt alloy  

Make alloy foamable 

Create gas bubles 

Collect foam 

Solidify foam 

Indirect foaming  

 

Prepare foamable 

precursor 

Remelt precursor 

Create foam 

Solidify foam 

Manuıfacturers 

(products) 

Cymat, Canada (SAF) 

Foamtech, Korea (Lasom) 

Hütte Kleinreichenbach (HKB), 

Austria (Metcomb) 

Shinko-Wire, Japan (Alporas) 

(Distributor: Gleich, Germany) 

Manuıfacturers 

(products) 

alm, Germany (AFS) 

Alulight, Austria  

Gleich-IWE, Germany 

 

Schunk, Germany 

 

 

 

Figure 2.1. Effect of metal foam manufacturing process on cell size and relative density 
(Source: Ashby, et al.2000)(Ashby, et al. 2000) 

 

2.1.1.  Foaming of Melts by Gas Injection 

 
Foaming of melts by gas injection is a continuous foam production technique 

that was developed by ALCAN International Limited and is currently being used by 

Alcan N. Hydro (Norway) and Cymat Aluminum Corporation (Canada) (Banhart 

2000a, Banhart and Baumeister 1998). Ceramic particles like SiC, Al
2
O

3
, or MgO are 
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added in order to enhance the viscosity of the liquid metal to be foamed. In the second 

step, the melt is foamed by injecting  gas (air or nitrogen) using rotating air injection 

shaft which generates fine gas bubbles and distributes them homogeneously in the melt 

(Banhart and Baumeister 1998). The schematic representation of the process is shown in 

Figure 2.2. Since the bubbles are stabilized by the ceramic particles, they can be pulled 

off melt surface using a conveyor belt. Finally, the foam is cooled down below the 

melting point of metal matrix resulting in continuous aluminum foam panels with 

various width and thickness values.  

Drainage is usually observed in the foamed slabs, which causes density and pore 

size gradients. The conveyor belt further induces shearing forces, leading to the 

formation of elongated cells (Beals and Thompson 1997). Solidified foams with dense 

outer surface layers can be directly used or machined into any desired shape. However, 

machining of these foams may be difficult due to the presence of hard ceramic particles 

in the metal matrix. The process has the capability for continuous production of large 

volumes of low-density metal matrix composite foams at a relatively lower cost. The 

main disadvantage of this direct foaming method is the necessity for the secondary 

processes such as cutting and machining. The size of the ceramic particles added to the 

melt ranges between 5 and 20 micrometers, while the weight percentages of the 

particles vary between 10 % and 20 % (Raj and Daniel 2007). Typical density, average 

cell size and cell wall thickness are 0.069-0.54 g.cm-3, 3-25 mm, and 50-85 µm, 

respectively (Kenny 1996). Average cell size, average cell wall thickness and density 

can be adjusted by varying processing parameters including gas injection rate and 

rotating shaft speed.  
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Figure 2.2.  Schematic representation of producing aluminum foams by gas injection to 
the melt (Source: Ashby, et al. 2000). (Ashby, et al. 2000).  

 

The effects of particle volume fraction and particle size on the viscosity of an Al 

melt are shown in Figure 2.3. The viscosity of the molten Al can also be adjusted by 

injecting oxygen, air and other gas mixtures through the melt which causes the 

formation of Al
2
O

3 
particles. Complicated temperature cycles, difficulty in the 

adjustment of variables and the possible need for secondary processing (machining) are 

the disadvantages of the process.  

 

 

Figure 2.3.  Effect of particle volume fraction and particle size on the viscosity of Al 
melt (Source: Banhart 2006). (Banhart 2006). 
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2.1.2.  Foaming of Melts with Blowing Agents  

 
The second method of Al closed-cell foam production is to add a foaming or 

blowing agent (0.5-2% TiH
2
 by weight) into liquid metal. As the foaming agent 

decomposes, the released gas drives the foaming process (Figure 2.4). This method is 

also known as ALPORAS foaming process and has been used since 1986 by Shinko 

Wire Co (Japan) for the production of closed-cell Al foams. Before foaming, 1.5 wt% 

calcium is added into Al melt and then the melt is stirred quickly. The viscosity of the 

melt increases with increasing stirring time because of the formation of oxide and/or 

metallic compounds (calcium oxide, calcium-aluminum oxide, or Al
4
Ca intermetallic) 

that thickens the metallic melt (Miyoshi, et al. 2000). In a later stage of the process, 

after adjusting the viscosity of the liquid metal, TiH
2 

with an amount of 1.6 wt% is 

added into the melt, which releases hydrogen gas in the hot viscous liquid according to 

the following reaction  

 

TiH2 (s) → Ti (s) + H2 (g)        (2.1) 

 

Above reaction results in the expansion of the liquid metal and fills the foaming 

vessel with liquid foam at a constant pressure. Finally, the liquid foam is cooled down 

below the melting point of the foamed alloy quickly and the solidified Al foam is 

further processed for specific applications. Al foams produced by the process, 

Alporas
TM

, is the most homogeneous foams produced currently (Banhart 2000b).  

Typical densities of the cast foams are between 0.18 g/cm
3 

and 0.24 g/cm
3 

with an 

average pore size ranging from 2 mm to 10 mm (Banhart 2000b, Miyoshi, et al. 2000).  
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Figure 2.4. The process steps used in the manufacture of aluminum foams by gas-
releasing particle decomposition in the melt (Alporas process) (Source: 
Ashby, et al. 2000). (Ashby, et al. 2000) 

 

 2.1.3.  Foaming from Powder Compacts  

 
Foaming from powder compacts is a technique developed by Fraunhofer-

Institute (Germany). The method is based on the  foaming of the pressed dense Al/ TiH2  

compacts (0.6 % by weight) by increasing the temperature over the melting temperature 

(Baumeister and Schrader 1992). Some companies like FOAMINAL (Schunk GmbH) 

and ALULIGT (Alulight International GmbH) are producing closed cell foams using 

this technique. The process starts with mixing metal powders with a blowing agent 

which upon heating releases a foaming gas (Figure 2.5). Metal powder-blowing agent 

mixture is then compressed to a dense, semi-finished foamable product via metal 

forming processes such as hot compaction, extrusion and rolling. In a final step, the 

semi-finished product is heated to a temperature near to the melting point of the metal. 
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During heating, the blowing agent decomposes and subsequently releases gas, leading 

to the expansion of the molten or mushy metal and the formation of a highly porous 

structure.  

 

 

Figure 2.5. Schematic representation of foaming from powder compacts (Source: 
Baumgartner, et al. 2000). (Baumgartner, et al. 2000) 

 

Besides metal hydrides (e.g., TiH
2
), carbonates (e.g., calcium carbonate, 

potassium carbonate, sodium carbonate and sodium bicarbonate), hydrates (e.g., 

aluminum sulphate hydrate and aluminum hydroxide) or substances that evaporate 

quickly (e.g., mercury compounds or pulverized organic substances) can also be used as 

blowing agent.  

For efficient foaming, it is very critical to form a gas-tight semi finished product 

in which the blowing agent is fully entrapped in the metallic matrix. Therefore the 

temperature and the pressure of hot compaction must be high enough to bond the 

individual metal powder particles and form a gas-tight seal around the blowing agent 

particles so that early decomposition of the blowing agent and the escape of H
2 

gas 

before the melting of semi-finished product is avoided. In compaction by rolling, a 

temperature range between 350 
o
C and 400 

o
C is sufficient for the diffusion between the 

particles (Baumeister and Schrader 1992). The weight ratio of blowing agent for 

forming of aluminum foam and its alloys has been found to be small. Calculations have 

shown that a foamable Al compact which contains 0.6 wt% TiH2 would give an 

expansion factor of 17; a value almost 4 times higher than the expansion factor (4-5) 

experimentally found (Baumeister and Schrader 1992, Baumgartner, et al. 2000). This 
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presents that, only 25% of the released hydrogen is effective in forming pores, and the 

rest is lost during foaming. The time needed for full expansion of the semi-finished 

product depends on the temperature and size of the precursor and ranges from a few 

seconds to several minutes. The process is not only restricted to Al and its alloys, but 

also tin, zinc, brass, lead, gold, and some other metals and alloys can also be foamed 

using appropriate blowing agents and process parameters (Yu, et al. 1998).  

If a piece of foamable precursor is foamed in a furnace, the result will be a lump 

of metal foam with an undefined shape unless the expansion is limited. This is done by 

inserting the semi-finished foamable precursor into a mold having the desired shape of 

product and allowing expansion by heating. This process results in near-net shaped parts 

with a closed and dense outer skin and a highly porous cellular core. Complicated parts 

can be manufactured by pouring the expanding liquid foam into a mold (Figure 2.6 (a)).  

Sandwich panels consisting of a foamed metal core and two metal face sheets can be 

manufactured by bonding the face sheets to a piece of foam with adhesives. Another 

way is to roll clad Al or steel sheets onto a sheet of foamable material and allow the 

foamable core to expand while the face sheets remain dense (Figure 2.6 (b)). By this 

method, Al foam structures can be combined with steel or titanium face sheets as well 

as with Al face sheets. In the latter case, Al sheets with melting points that are higher 

than the core material must be used to avoid melting of the face sheets during foaming. 

 

                             (a)                                                                        (b) 

Figure 2.6.  Views of (a) complicated shaped foam parts (Source: Baumgartner, et al. 
2000), and (b) sandwich foam panel (Source: Yu, et al. 1998). (Baumgartner, et al. 2000, Yu, et al. 1998). 

 

It is also possible, with this process by applying suitable heating, to produce 

bodies that have continuously or discontinuously changing densities over the cross 
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section. If the foaming process is interrupted after a certain time at a constant 

temperature, a certain density will be obtained and if the foaming process is continued 

further, a higher density value will result. For example, structures having higher foam 

densities on the locations exposed to higher external loads could be manufactured by 

this method. If the hot compaction process is performed inside a mold, the powder 

mixture will be surrounded completely or partially by a blowing agent free metal 

powder. Upon foaming, this forms a dense or less porous cover layer and a highly 

porous foam core. This offers advantages for joining of similar or different structures 

and for the production of foam core structures that require a dense cover such as car 

doors and frames. 

Foaming from powder compact process has been recently modified by 

incorporating TiH
2 

particles directly into an Al melt instead of using powders to prepare 

a foamable precursor material. To avoid premature H
2 

evolution, the melt should be 

quickly cooled down below its melting point after mixing or the blowing agent has to be 

passivated to prevent it from releasing gas before solidification. The former technique, 

called Foamcast is carried out in a die-casting machine and the TiH
2 

is injected into the 

die simultaneously with the melt (Banhart 2000a, Yu, et al. 1998). The resulting cast 

part is virtually dense and could be foamed by re-melting in analogy to foaming from 

powder compacts; however, achieving a homogeneous distribution of TiH
2 

powders in 

the die is difficult. The latter route requires that TiH
2 

powders be subjected to a heat 

treatment cycle that forms an oxide layer on each particle, which delays the 

decomposition of TiH
2
. TiH

2 
is then added to the melt and the melt can be cooled at 

comparatively slow rates after stirring. Melts containing SiC particles are used to obtain 

stable foams. The name Formgrip has been given to this process which is an acronym 

of foaming of reinforced metals by gas release in precursors (Gergely and Clyne 2000).  
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2.1.4.  Accumulative Roll-Bonding Technique (ARB)  

 
This process is recently proposed by Kitazono et al. (Kitazono, et al. 2004) and 

based on the dispersion of foaming agent into bulk metal sheets through sequential 

rolling. The stages of process are schematically illustrated in Figure 2.7 (a). Two metal 

strips are stacked together with blowing agent powder (TiH
2
) in between them. The 

stacked strips are then roll-bonded by the reduction of thickness. The bonded strips are 

then cut and after surface treatment, they are stacked again and roll-bonded. After 

several roll-bonding cycles, rolled foamable precursor composite in which the blowing 

agent particles dispersed in a metal matrix is obtained (Figure 2.7 (b)). The composite is 

used as the starting material for the following high temperature foaming process.  

 

 

Figure 2.7.  a) Schematic of the manufacturing process of a perform sheet through ARB 
process (b) prediction of gradual distribution of added blowing agent 
particles (Source: Kitazono, et al. 2004). (Kitazono, et al. 2004). 
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The microstructure of the manufactured preform using ARB method is the same 

as the precursor produced by powder metallurgy process. Closed-cell aluminum foams 

with about 40% porosity were successfully produced through the ARB process. This 

process has the potential to produce a large scale sandwich structure comprising a foam 

core and skin plates using conventional cladding techniques. 

 

2.1.5.  Laser Assisted Aluminum Foaming  

 
Laser Assisted Foaming of Aluminum was proposed by Kathuria (Kathuria 

2001b). The basic principle of laser assisted foaming is shown schematically in Figure 

2.8. The precursor material with blowing agent, prepared by P/M process, is foamed by 

heating it up to its melting point by a high power laser beam irradiation. The uni-

directional expansion of the foamable precursor material can be observed during the 

entire foaming process in the irradiation direction. The expansion in the other directions 

is relatively negligibly small.  

 Besides H
2 

evolution and foaming, the shield gas Ar is an additional help for the 

formation of the porosity and may also become trapped inside the solidified foam. In the 

conventional thermal melting process, the average temperature gradient of the interface 

varies as the bulk temperature is lower. This is accompanied by a slow cooling rate and 

hence a long time for the stabilization of the pores to occur. However, in the case of 

laser process the average temperature gradient of the interface is much higher; thus, a 

faster cooling rate results in the pore stabilization. Figure 2.8 also illustrates how the 

processing speed could affect the cell morphology and the expansion ratio of the 

buildup foam. Increasing the processing speed changes the structure of the foam from 3 

to 1 as seen presented in Figure 2.8.  

The foamable Al-alloy sandwich samples fabricated according to the P/M 

procedure are used in this technique. Porous structures with relative densities of 0.33-

0.39 and porosity of (61-67%) can be fabricated by using this method.  
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Figure 2.8. The block diagram of laser assisted AlSi7 foaming for three processing 
speeds, in decreasing order (1)>(2)>(3) (Source: Kathuria 2001b). (Kathuria 2001b). 

 

2.2.  Applications of Closed-Cell Aluminum Foam 

 
Properties of aluminum foams including high mechanical energy absorption per 

unit volume, high stress and stiffness to weight ratio, constancy over time, temperature 

and moisture range, good acoustic, vibration and electromagnetic insulation, 

recyclability make them usable materials  in various applications. These application 

areas are also presented briefly in the product datasheets of the companies which 

commercially manufacture aluminum foam, like Alulight (Appendix B). Properties and 

the applications of the commercially available foams were also investigated deeply in 

academic researches like Alporas foam (Miyoshi, et al. 2000). Aluminum foams have 

become popular with the potential applications that can be listed as follows: 

 

• Lightweight machine castings with improved sound and vibration damping 

• Impact energy absorption components for cars, lifting and conveyor systems 

• Stiff machine parts with significantly reduced weight 
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• Housings for electronic devices providing electromagnet and thermal 

shielding 

• Permanent cores for castings, replacing sand cores 

• Isotropic cores for sandwich panels and shells 

• Fillings in hollow shapes to inhibit buckling 

• Heat shields and encapsulates 

• Floating structures at elevated temperatures and pressures 

• Sound absorbers for difficult conditions 

  

 Aluminum Foams have relatively high collapse strength compared to polymeric 

foams and very long plateau stress and therefore they are identified as very efficient 

energy absorbers. The dynamic deformation of aluminum foam (high strain rate) starts 

at the impact face and continues through the foam until the densification strain (Gama, 

et al. 2001). 

 They are very suitable materials to be used in cashboxes of automobiles (Fig. 2.9 

(a)) and in composite armor as the intermediate layer which increase the stress wave 

passage to backing composite plate (Gama, et al. 2001). The other important properties 

of metallic foams such as non-inflammability and good sound absorbability are the 

advantages for their use in transport industry. Other application areas of these materials 

include railway and ship constructions and space vehicle landing pads. The shape ability 

of the metallic foams is a key factor for replacing  the honeycomb components in 

existing helicopter designs (Banhart 2001). 

 Because of the porous structure metal foams have higher loss factor than the 

ordinary bulk material for sound absorbing properties. This situation makes the sound 

wave partially entering and damped out while the other part is reflected back. Figure 

2.10 shows the foam panel use under an elevated viaduct. These panels absorb the noise 

and therefore reduce the amount of noise produced in viaducts. Properties as fire 

resistance and no dangerous gas existence in case of a fire can further make the metal 

foams preferred but the sound insulating properties of metal foams are noted to be 

worse than existing polymer based foams or glass wool.  

 



17 

 

 
                                 (a)                                                                     (b) 

Figure 2.9. (a) Prototypes of foam filled tubes designed as energy absorbers, (b) 
Prototype of a part of an engine mount consisting of foam core and cast 
shell (Source: Banhart 2003). (Banhart 2003). 

 

Aluminum foam may be used in aerospace vehicles and all the other 

mechanisms where light-weight is an important factor. Aluminum foam cores are 

currently used in the tail booms of helicopters (Banhart 2001). They are also used in 

elevator systems where reduction of weight can make a significant effect while 

absorbing more energy than the ordinary bulk material in case of an impact. Naturally, 

aluminum foam can be used in sporting equipments such as helmet or bicycle frame 

with some composite materials. Balconies in buildings made of metal foam can be safer 

in case of an earthquake. 

 

 

Figure 2.10. Foam layer used under an elevated viaduct as a noise insulator (Source: 
Miyoshi, et al. 2000). (Miyoshi, et al. 2000). 
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Aluminum foam in sandwich structures (similar to one shown in Figure 2.11) 

are also used in lots of applications due to its high mechanical properties. Aluminum 

foam sandwiches were also tested for space applications (Schwingel, et al. 2007). Same 

material has also high potential to be used in construction of sea vehicles as it has lower 

density then the water besides it is a high strength metal panel. 

 

(a) 

(b) (c) 

Figure 2.11. View of (a) aluminum foam sandwich panel, (b) assembled cone of a space 
craft made from sandwich panels, and (c) cone segment with detailed 
flange and upper edge (Source: Schwingel, et al. 2007). (Schwingel, et al. 2007). 
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CHAPTER 3 

 

MECHANICAL PROPERTIES OF CLOSED-CELL 

ALUMINUM FOAMS 

 
Closed-cell foam metals show characteristic compressive stress-strain curves; 

comprising three distinct deformation regions: linear elastic, collapse and densification 

as marked in Figure 3.1. In linear elastic region deformation is controlled by cell wall 

bending and/or stretching. The elastic region is followed by a highly localized collapse 

region occurring by cell edge buckling, crushing and tearing (Figure 3.2). The repetitive 

nature of the process of cell collapse and densification may lead to oscillations in stress 

values. The collapse region is characterized by a collapse stress and/or a plateau stress 

either with a constant value or increasing slightly with strain, as shown in Figure 3.1.  

At a critical strain, εd, cell walls start to touch each other and, as a result of this, the 

material densifies (densification region).  The stress in this region increases sharply and 

approaches to the strength of the bulk aluminum metal. The high energy absorption 

behavior of aluminum foams under compressive loads is associated with low plateau 

stresses and long collapse regions, which makes them ideal materials for crash and blast 

protections where the kinetic energy is absorbed by the plastic collapse.  
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Figure 3.1.  Compression stress-strain curves of ideal and real Al foam and mechanical 
property parameters. 

 

 

Figure 3.2. Compression localized deformation sequence of aluminum closed cell foam 
(0.27 g.cm-3) at various strain and deformed foam cell structure in the 
localized deformed region. 
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The elastic moduli of ideal open and closed cell foams can be calculated from 

the cell edge bending deflection and the stretching of the planar cell faces and are given 

sequentially by the following relations (Gibson 2000) 
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where E* and Es are the elastic modulus of the foam and the cell wall material, 

respectively; c1, c2, c3 and c4 are the constants and ρ is the relative density which is, 
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where ρ* and ρs are the densities of foam and cell wall material, respectively. For 

tetrakaidecahedral: c1~1, c2=c3~0.32. For low density foams, the value of c4 is ~0.32 

(Gibson 2000). Experimentally measured moduli values of commercial Al closed-cell 

foams were found lower than those predicted by Equation 3.2 particularly at relatively 

low foam densities (Figure 3.3 (a)). The moduli degradation is partly due to the thicker 

cell edges as compared to cell walls since the surface tension draws the liquid metal to 

the intersections during the foaming process. Including material distribution between 

cell walls and edges, Gibson and Ashby proposed the following equation for the 

modulus of the imperfect closed-cell foams (Gibson and Ashby 1997); 
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where φ is the volume fraction of the solids contained on the plateau borders. The first 

term in Equation 3.4 is due to bending and the second membrane stretching. Equation 

3.4 predicts elastic modulus of an open-cell foam, when φ = 1, and closed cell foam, 
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when φ=0. The values of φ can be approximated using the following relation developed 

for tetrakaidecahedral foam (Simone and Gibson 1998): 

 

ρ
φ 3

2
p

2
p

l31.11
)w)3/2(-l(3t6+)w2-l(t3

-1=                                 (3.5) 

 

where l, wp, and t are the cell wall length, plateau border thickness and cell wall 

thickness, respectively. 

 

(a) (b) 

Figure 3.3. (a) Relative modulus vs. relative density of open and (b) relative 
compressive strength vs. relative density of open and closed cell foams; 
comparison with experimentally determined values (Source: Gibson 2000).  

 

The collapse stress or plateau stress is an indication for the progression of the 

inelastic and inhomogeneous deformation and determines the amount and the efficiency 

of plastic energy absorption.  For ideal open and closed-cell foams, the plastic collapse 

is expected to occur by the plastic hinges at the bent cell edges and cell wall stretching 
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in a direction perpendicular to compression axis. The plateau stresses for ideal open-cell  

and tetrakaidecahedra closed-cell foams (Simone and Gibson 1998) are given 

sequentially by the following relations, 
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where σpl and σys are the plateau stress and yield strength of the cell wall material 

respectively. By including material distribution between cell edges and cell walls 

following relation is proposed for a closed-cell foam plateau stress (Gibson and Ashby 

1997), 
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The first term in Equation 3.8 correspond to plastic hinge formation and the second to 

the membrane stretching of the cell walls. Again, φ=1 and φ=0 represent the collapse 

stresses of open-cell and closed-cell foam, respectively.   

A high value of φ is generally found in commercially available Al closed-cell 

foams. The values of φ changes with density and were reported 0. 65 and 0.85 for Alcan 

foams of 0.15 and 0.32 g.cm-3, respectively (Valente, et al. 2000) and 0.57, 0.7 and 0.6 

for Alulight, Alporas and Alcan foams of 0.37 g.cm-3, respectively (Elmoutaouakkil, et 

al. 2002).  High values of φ, together with imperfections such as curved, wrinkled and 

missing cell walls, voids on the cell edges and cell walls and non-uniform density 

degrades the plateau stresses of commercial Al closed-cell foams to the levels of those 

of open-cell foams (Figure 3.3(b)). Alporas foams show monomodal cell size 

distribution and hence exhibit the most homogeneous cell size distribution; whereas, 

Alulight and Alcan foams show bimodal cell size distribution (Elmoutaouakkil, et al. 

2002). Although Alulight and Alporas foams’ cells are nearly spherical, the cells are 

mostly elongated in Alcan foams due to shear forces acted during the transporting of the 
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liquid foam on the conveyer belt. The minimum cell wall thicknesses that basically 

support the cell edges and cell walls depend on the size and content of the ceramic 

particles and alloying elements and found to range between 40 and 100 µm in Alulight 

foams (Banhart 2006). 

The densification strain (Figure 3.1) is generally defined as the strain at which 

the slope of the tangent of stress-strain curve in densification region is equal to that of 

the elastic regime, while some reserachers considered the intersection of the tangents to 

the stress plateau regime and densification regime as the densification strain (Chan and 

Xie 2003, Paul and Ramamurty 2000). The densification strain determines the extent of 

energy absorption behaviour and is given as, 

 

ρε 1.4-1=d                                                       (3.9)  

 

The densification strains of commercial Al closed cell foams range between 0.4 and 0.9 

with the density range of 0.07-0.3 g/cm-3 (Ashby, et al. 2000).   

The foam section under the indenter crushes as in the compression and the 

indenter tears the foam around the perimeter (Figures 3.4 (a) and (b)).  Considering the 

indentation crushing load is the sum of the compression crushing load and the shearing 

load at the perimeter, the following relation is given for the indentation strength of Al 

closed cell foams (Andrews, et al. 2001), 
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where τpl, k, d and D are the shear plateau stress, a constant (~4), cell diameter of the 

foam and diameter of the indenter, respectively.  As the indenter size increases, the 

indentation strength decreases until indentation strength reaches the plateau stress and 

therefore metal foams show indentation strengths slightly higher than uniaxial collapse 

strength (Andrews, et al. 2001, Kumar, et al. 2003).  

The foam mechanical properties are also size dependent: the bulk modulus, 

plateau stresses-reached above the specimen size/cell size aspect ratios of 5-6 

(Andrews, et al. 2001, Onck, et al. 2001, Rakow and Waas 2005).   
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 Aluminum foams absorb relatively high amount of deformation energy 

associated with the low plateau stresses and large densification strains. The energy-

absorption-diagrams are widely used to optimize the foam density choice for the energy 

absorption applications (Maiti, et al. 1984). The area under the stress-strain curves gives 

the absorbed energy per unit volume, 

 

∫
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The maximum useful energy absorption normalized with the modulus of foamed metal 

up to densification is given for closed-cell foam as 
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where σD is the stress corresponding to the shoulder in stress-energy absorption curve  

constructed from stress-strain curve (Figures 3.5 (a) and (b)).  

 

 
(a)                                                            (b) 

Figure 3.4. Deformed cross-sections of Al foams using (a) spherical and (b) flat-end 
indenters (Source: Kumar, et al. 2003). (Kumar, et al. 2003). 

 



26 

 

St
re

ss

Strain

ρ
1

ρ
2

ρ
3

ρ
3
>ρ

2
>ρ

1

(a) 

lo
g 

(S
A

E
/E

s)

log (σ/E
s
)

σ
D

ρ
1

ρ
2

ρ
3

ρ
3
>ρ

2
>ρ

1

 
(b) 

Figure 3.5. Schematic of foams (a) stress-strain curve of various relative densities and 
(b) corresponding normalized specific absorbed energy vs. normalized stress 
curves. 

 

3.1. Crash Energy Absorption 

 
The crash energy absorbing structures have been generally constructed in 

tubular/columnar forms of materials that absorb the deformation energy nearly at a 

constant load. The constant load energy absorption results from the progressive folding 

mechanism of thin walls, which was first analytically formulated by Alexander in 1960 

(Alexander 1960). The area under the load-displacement curve of a crushable element 

of tubular structure with a total length of l is shown in Figure 3.6 (a) gives the total 

absorbed energy (E) until about a displacement of δ .  The mean crushing load (Pm) and 

the specific absorbed energy per unit mass (SAEm) the capability of a structure to 

absorb the deformation energy is formulated per unit mass and volume as,   
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where P, δ and mt are the load, displacement and the total mass of the deformation 

element. The efficiency of energy absorption is checked by the total efficiency (TE) and 

crush force efficiency (AE). The stroke efficiency is defined as the ratio between the 

point at which the total efficiency has its maximum value (δmax) and total length (l) of 

the crushing element, 

 

max
E

δS =
l

             (3.15)  

 

The efficiency terms are directly related to the deformation capacity (DC), which is the 

displacement divided by the initial length of the element: 

 

     
l

=DC
δ                                                         (3.16) 

 

Comparison of SAEs of tubes with those of foams on volume and mass basis 

gives a ratio of about 3 between tube and foam, showing that tubes are energetically 

more efficient than foams.  When aluminum and steel metal tubes are filled with light 

weight core materials such as Al closed cell foams, there exists an interaction effect 

between tube wall and foam filler (Guden, et al. 2006, Hanssen, et al. 2000, Santosa and 

Wierzbicki 1998, Seitzberger, et al. 1997).  The crushing loads of foam filled tubes are 

therefore found to be higher than the sum of the crushing loads of foam (alone) and tube 

(alone) mainly due to this effect as shown in Figure 3.7. The interaction may be partly 

due to the resistance of filler to the inward and/or outward folding of tube wall and 

partly due to the interfacial friction stress between foam and tube wall. The use of 

adhesive can contribute to the specific energy absorption of tube by two mechanisms, 

namely, increased load transfer from tube wall to the foam core and peeling of the 

adhesive.  The latter mechanism occurs mainly due to the outward folding of the tube.     
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(a) 

 
(b) 

 
(c) 

Figure 3.6. (a) Load-displacement, (b) energy-dispacement and (c) crush force and total 
efficiency -displacement curves of a crush element (Source: Fuganti, et al. 
2000). (Fuganti, et al. 2000). 
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Figure 3.7. Interaction effect in Al foam (0.27 g cm-3) filled tube. 

 

The filler deformation was divided in two parts: a densified region at mid 

sections of the tube and extremely densified region next to the tube folds. The extremely 

deformed region (above the densification strain of the foam filler) shown in Figure 3.8 

(a) was proposed to be the main factor leading to interaction effect in filled tubes (Song, 

et al. 2005). The foam filling generally increases the number of folds formed and 

decreases the fold lengths in the metal tubes as depicted in Figure 3.8 (b). Further, the 

tendency for the axisymmetric (concertina) mode of deformation increased with foam 

filling due to the thickening effect of foam filling. Hannsen et al. (Hanssen, et al. 1999, 

Hanssen, et al. 2000) developed an equation for the average crushing load  of foam 

filled (Paf) columns by including contributions of the average crushing load of empty 

tube (Pae), foam plateau stress (σpl) and interaction effect.  The equation was found to be 

well agreed with experimental results and is given as 

 

btσσCbσPP yplavg
2

plaeaf ++=                                 (3.17) 

 

where Cavg, σy, b and t are the dimensionless constant which is directly related to the 

interaction effect, yield strength of the tube material and tube width and thickness, 
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respectively. The second term of the right hand side of the Equation 3.17 accounts for 

the axial compression of the foam and the last term for the interaction effect. Santosa et 

al. (Santosa, et al. 2000b) noted that the bonding between filler and tube wall increased 

the average crushing load of filled tube over the unbounded filled tube when appropriate 

tube geometry and foam density were chosen. Based on finite element modeling results 

the same authors proposed the following equation for the average crushing load of 

foam-filled square tubes of length b,   

 

2bCPP plaeaf σ+=                                               (3.18) 

 

 

 

 

 

(a) (b) 

Figure 3.8. View of (a) three deformation region in an aluminum foam filler: 
undeformed, densified and extremely densified regions (Source: Song, et 
al. 2005), and (b) deformation of aluminum foam filled vs. empty tube 
(Source: Hanssen, et al. 2001). (Hanssen, et al. 2001). (Song, et al. 2005) 

 

The constant C in Equation 3.18 is considered strengthening coefficient of foam 

filling. The values of C for foam-filled single tubes were shown to be 1.8 and 2.8 for the 

unbounded and bounded cases, respectively (Santosa, et al. 2000b). The partially foam 

filling of length of L-H (where L is the length of the steel section and H is half of the 

fold length) showed higher SAE values than full foam filling in single and double hat 

sections (Wang, et al. 2005). Bitubal arrangements comprising an outer and an inner 
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profile and foam filler might be preferable to monotubal arrangements (Seitzberger, et 

al. 2000).  

Al foams have potentials to be used in automobiles as crash energy-absorbing 

filling materials in various places. There are two main groups of energy absorbers used 

in automobiles: (a) for relatively low impact energies such as bumpers for frontal 

collision and for relatively large impact energies such as side beams (B-pillars) to avoid 

severe intrusion in the passenger compartment. The foam-filled sections may also be 

used in the A-pillar and roof frame structures to reduce the roof crushing in roll-over 

accident. Bumpers avoid the chassis plastic deformation up to 3-5km/h and the 

introduction of crash boxes placed between bumper and chassis (Figure 3.9(a)) increase 

this limit up to 15 km/h (Fuganti, et al. 2000).  The function of crash boxes is to absorb 

the crash energy in controllable manner to reduce the damage to the passenger cell. 

Brain damage can easily occur above the decelerations of 20g, therefore in designing 

with crash boxes the resultant force should be below 20g (Ramakrishna and Hamada 

1998). The deceleration curve of a medium class car colliding with a concrete wall at a 

speed of 35 mph is shown in Figure 3.9 (b). In region A the deformation of bumper and 

front panel, in region B the deformation of front section of the car with very large 

displacements and in region 3 the deformation of passenger cell occur. The function of 

crash boxes is to reduce the damage at low speeds and protect the passenger cell at high 

speed collisions. The crash boxes are usually made from square aluminum extrusions 

(Figure 3.10) or welded steel sections. The foam filling increases the energy absorbing 

capability of the crash boxes and therefore  (a) provides weight savings, (b) reduce the 

length of the crash box and (c) volume of the crash boxes (Fuganti, et al. 2000). 

However, in the filling tubes and boxes with Al foam there exist a critical total 

filled tube mass and the corresponding critical foam density above which the use of 

foam filling became more efficient than thickening of empty tube (Guden, et al. 2006, 

Santosa and Wierzbicki 1998). The foam filling is more efficient if the following 

equation is satisfied: 
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where subscripts ft and e refer to the filled-tube and empty tube. The critical foam filler 

density decreases with increasing tube inner radius or decreasing thickness of the tube, 

increasing tube metal density and strength and increasing with interaction effect.   

Foam filling may also result in chance deformation mode from progressive 

folding to the lower energy absorbing deformation model of global buckling at high 

foam density fillers (Seitzberger, et al. 1997).  

Foam filling changes the crushing mode of empty beams from localized folding 

(Figure 3.10(a)) to multiple propagating folds (Fig. 3.10 (b)) (Chen 2001, Santosa, et al. 

2000a, Santosa, et al. 2001). It provides higher bending resistance and momentum by 

retarding the inward fold formation and hence increases the crush energy absorption. 

Partial foam filling of beams provides significant weight savings without reducing the 

energy absorption. Effective foam length (Leff) which would give foam strengthening 

effect in beam was predicted using following equation (Santosa, et al. 2000a): 

 

H4-)
-1

(L=Leff η
η

                                           (3.20) 

 

where, L, η and H are the beam length, strengthening ratio of the maximum bending of 

the fully foam filled top empty beam and the fold length, respectively.  

 

 
(a) 

Figure 3.9. (a) The use of crash-boxes in an automobile and (b) ideal deceleration curve 
of a medium class car (Source: Ramakrishna and Hamada 1998). 

(Ramakrishna and Hamada 1998). (cont. on next page)
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(b) 

Figure 3.9. (cont.) 

 

 

(a) (b) 

Figure 3.10. Bending deformation patter of (a) empty and (b) aluminum foam-filled 
stainless steel beams (Source: Santosa, et al. 2000a). (Santosa, et al. 2000a). 

 

The bending deflections of Al foam plate and Al foam sandwich plate were 

compared with aluminum sheet material of the same weight. The deflection was shown 

to decrease by a factor 5 for Al foam plate and more for Al sandwich structures as 

compared with Al sheets (Figure 3.11). Aluminum foam sandwich (AFS) parts may be 

used in the construction of body panels, bonnets, boot lids and sliding roofs.  The 

German manufacturer Karmann, introduced the concept of AFS parts, produces shaped 

sandwich panels which replaced the stamped steel sheets. The application reduced the 

weight by 25% and increased the stiffness by 700% (Banhart 2001). 
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Figure 3.11. Comparison of bending deflection of aluminum foam panels and 
sandwiches with the same weight  aluminum sheets (Source: Korner and 
Singer 2000). (Korner and Singer 2000). 

 

3.2.  Sound Absorption 

 
 The sound absorption of closed-cell Al alloy foams increases with decreasing 

foam relative density. And the hole-drilling and rolling/compression of the foams with 

an appropriate air-gap backing improve the sound absorption coefficients by increasing 

peak sound absorption coefficients and decreasing the corresponding peak frequencies 

(Han, et al. 1998, Lu, et al. 1999). Hole-drilling is more effective in improving the 

sound absorption than rolling and compression. The rolled foam samples showed sound 

absorption coefficients and peak sound absorption frequencies comparable with that of 

glass wool as shown in Figure 3.12 (Miyoshi, et al. 2000). The improved foam sound 

absorption behavior was attributed to the viscous flow across the small cracks, which 

resulted in passage ways for the in-and-out movement of air. The open-cell Al foams 

show higher sound absorption coefficients than closed-cell Al foam within 100-5000 Hz 

frequency range. 

Sound absorption in metallic foams is mainly due to (a) viscous losses as the 

pressure wave pumps air in and out of cavities in the absorber, (b) thermal losses due to 

heat transfer to the matrix and (c) Helmholtz-type resonators (Lu, et al. 1999). The 

Helmholtz-type resonators in rigid frame cellular solids operate at relatively high 

frequencies (20 KHz). The viscous effect increases with increasing frequency and 
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decreasing pore size. The viscous effect is comparable with thermal effect for relatively 

thin samples (1 cm). The small holes connecting the large pores results in considerable 

sound wave dissipation via friction. The increasing sound absorption capacity of the 

hole-drilled foam samples are therefore attributed to the viscous flow across the small 

holes. The effect is likely to be more pronounced in small size hole-drilled foam 

samples since the smaller drill size results in smaller holes connecting the larger pores 

(Lu, et al. 1999). While compression and rolling can be easily applied to relatively thin 

foam plates, hole drilling is more appropriate for relatively thick samples. In 

applications involving the foam filling of tubular structures, a rigid-wall backing is 

always present at the back of the foam filler. Therefore, inserting air-gap at the back of 

the foam plate may have no practical applications when the foam is used as filler. It 

should also be noted that the sound absorption coefficient is a function of the sample 

thickness.  

Aluminum foams are used to absorb the vehicles sound in elevated viaduct and 

subway tunnel as sound absorbing lining with a backing plate to reduce the noise for the 

neighboring residents and to damp the shock waves created by the trains in Japan. It is 

also used as an impact cushion for railway rolling stock (Miyoshi, et al. 2000). 

 

 

Figure 3.12. Sound absorption coefficient of Alporas foam of relative density ~0.09 
(Source: Miyoshi, et al. 2000). (Miyoshi, et al. 2000).  
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3.3.  High Strain Rate Mechanical Properties 

 
 The effect of strain rate on the collapse behavior of the cellular materials was 

also previously investigated. Deshpande and Fleck (Deshpande and Fleck 2000) found 

strain rate insensitive plateau stresses for Alulight closed-cell and Duocell open-cell Al 

foams up to 5000 s-1. Similar strain rate insensitive plateau stresses were also reported 

for Alulight closed-cell Al-Si (Peroni, et al. 2008) and 6061-Al foams (Hall, et al. 

2000). On the other hand; Mukai et al. (Mukai, et al. 1999, Mukai, et al. 2006) and Paul 

and Ramanmurty (Paul and Ramamurty 2000) found apparent strain sensitive plateau 

stresses of Alporas Al closed-cell foams. The strain rate sensitive crushing stresses of 

cellular materials may be attributed to the strain rate sensitivity of the material from 

which the cellular structure is made, the micro-inertial effects, shock wave propagation 

and the compressed air pressure within the cells (Zhao, et al. 2005). Calculations for 

adiabatic compression have shown that the compressed air pressure in dynamic loading 

contributed less than 1.5% of the quasi-static strength of closed-cell aluminum foams 

(Deshpande and Fleck 2000). The calculation used in (Deshpande and Fleck 2000) was 

repeated for the tested Metallic Hollow Sphere (MHS) structure with a densification 

strain of 0.71. Similar contribution of the compressed air was found for the tested MHS 

structure. At increasing  deformation velocities, excess of 50 m s-1, shock wave 

propagation was shown to have a significant contribution to the strength of the cellular 

metallic structures (Reid and Peng 1997). Micro-inertial effects arise due to lateral 

inertia which results in increase of the buckling loads at increasing strain rates 

(Calladine and English 1984). The columnar structures are mainly classified in two 

groups depending on their response to micro-inertia: Type I and Type II structures 

(Calladine and English 1984, Su, et al. 1995a, Su, et al. 1995b). Type I structures are 

characterized with a flat-topped quasi-static stress strain curves (the stress-strain curve 

is flat after yielding), showing limited or no strength enhancement at increasing 

deformation velocities. Type II structures are characterized with a strong softening after 

yielding at quasi-static strain rates and the lateral inertia forces lead to increased 

bending forces at increasing deformation velocities. The increased deformation forces at 

increasing strain rates in the compression of aluminum honeycomb structures through 

out of plane (Zhao, et al. 2005), metallic columnar structures (Langseth and Hopperstad 

1996),  aluminum foams (Lee, et al. 2006, Paul and Ramamurty 2000, Zhao, et al. 2005, 
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Zhao, et al. 2006) and balsa wood in the axial direction (Reid and Peng 1997, Tagarielli, 

et al. 2008) were reported to result from the micro-inertial effects.    
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CHAPTER 4 

 

FOAM STABILITY OF CLOSED CELL  

ALUMINUM FOAMS 

 
In foaming of aluminum the metal should be in the liquid state; otherwise 

foaming process cannot take place due to the high viscosity. Just after the expansion of 

the liquid metal starts, several different mechanisms become operative quickly in the 

molten metal, and change the cell structure of the foam continuously. The expansion is 

a function of several parameters such as the rate of gas evolution, the viscosity and 

microstructure of the melt, the stability is a different phenomenon. It emphasizes cell 

structures of the stable foam, which do not change over time. This means that, for a 

period of time, the liquid foam is stable. The basic principles of the liquid metal 

stabilization will be analyzed with the mechanisms of liquid foam stability in different 

foaming processes in this chapter. 

To understand the foam stability, the forces acting on the liquid foam within the 

foaming process should be known. The forces are categorized in two groups as driving 

forces and tensile force (Asavavisithchai and Kennedy 2006c, Banhart 2006, Kaptay 

2004). Driving forces consist of gravitational forces and capillary forces while the 

tensile force is formed from atmospheric pressure and the pressure of the blowing gas. 

These forces are effective on the stability of the liquid foams and lead to several 

different events to occur in the liquid foam while they change with time. 

The flow of liquid metal from cell walls to the cell edges is known as drainage. 

Drainage leads to thinner cell walls, thicker cell edges and a dense layer at the bottom of 

the foam (Figure 4.1). It occurs by the action of gravitational force and capillary forces. 

Another problem in foaming process is made up from the diffusion of the gases from 

smaller to larger bubbles causing coarsening of the cells in foam structure (Banhart 

2006). The rupture (coalescence) is the disappearance of cell walls during the foaming 

process due to sudden instability of the pressure (Weaire and Hutzler 1999). These 

events happen simultaneously in liquid foam and interrelated. Under capillary forces, 
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the liquid metal flows from cell walls to edges and results in cell wall thinning and 

under tensional forces the cell walls rupture, which overall reduce the stability of foams. 

 

Figure 4.1.  Cross-section of aluminum foam showing thin cell walls, thick cell edges 
and dense metal layer at the bottom section. 

 

Gergely and Clyne (Gergely and Clyne 2004) modeled the drainage in the 

standing foams of relatively thick cell faces. The model emphasized that the small 

initial cell size and high initial porosity level inhibited the drainage; the attention should 

be given to the rapid foaming processes and cell wall stabilization using a foaming 

agent that would oxidize the cell faces.  

X-ray tomography of 2D and 3D characterization of Alulight (IFAM), Alporas 

and Alcan foams were performed, for the same density of foams, by Elmoutaouakkil et. 

al. (Elmoutaouakkil, et al. 2002). Results have shown that Alporas foam exhibits more 

homogeneous cell size distribution with the highest value of fraction of metal 

accumulated at the cell edges (φ). The cell size distribution was further shown to be 

monomodal for Alporas and bimodal for Alulight and Alcan foams. The values of 

φ changes with the foam density and the typical values were given as 0.57, 0.7 and 0.6 

for Alulight, Alporas and Alcan foams of 0.37 g.cm-3 densities, respectively. It has been 

further shown that although the cells in Alulight and Alporas foams are nearby 
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spherical, in Alcan, they are mostly elongated due to shear forces acting during the 

transport of the liquid foam on the conveyer belt.  

  Aluminum closed cell foam production is not a new process: two relating 

patents of aluminum foam production appeared in 1940’s and 1960’s. (Allen, et al. 

1963, Sosnick 1948). The interest on these materials has recently grown, as the novel 

structural to functional applications of these material were exploited.  

Aqueous liquid foams and liquid metal foams show resemblances. Aqueous 

liquid foams are primarily stabilized by either surfactants or solid particles or both 

(Wubben and Odenbach 2004). However, in liquid metal foams only atoms or at most 

complexes/clusters made of several atoms can be surface active (Kaptay 2004). 

Therefore, the surfactants cannot be used to stabilize metal foams. However, liquid 

metal foams can be stabilized with particles. The solid particles accumulate at gas/liquid 

interface and prevent the bubble-bursting and therefore stabilize the liquid foam 

(Wubben and Odenbach 2004). Commonly used solid particles include SiC, Al2O3, 

MgO and alloying elements (Babcsan, et al. 2004, Leitlmeier, et al. 2002, Wang and Shi 

2003). The particles in liquid can effectively stabilize the foam, if they are partially 

wetted by the liquid metal (Figure 4.2). The non-wetted particle will be found in the gas 

phase, while fully wetted particles in the liquid. Partially wetted particles sit at 

gas/liquid interface increase the surface viscosity of the cell wall, leading to reductions 

in the amount of liquid metal flow from cell faces to the cell edges. 
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Figure 4.2. Schematic view of (a) non-wetted particle, (b) partially wetted particle and 
(c) fully-wetted particle (Source: Kaptay 2004). . 

 

Deqing and Ziyuan  (Wang and Shi 2003) investigated the effect of SiC (1, 7, 14 

and 20 µm) and Al2O3 (3.5, 5 and 10  µm) particles, foaming temperature and gas flow 

rate  on the cell sizes, cell wall thicknesses of Al foams in Alcan foam processing route. 

Cell sizes and cell wall thicknesses increased with increasing particle size and particle 

volume fractions, while the cell wall thicknesses decreased with increasing foaming 

temperature. The cell wall thicknesses varied between 45 to 80 µm depending on the 

particle size and volume fraction.  The cell size increased, while cell wall thickness 

decreased with increasing gas flow rates. It was noted in the same study that, the 

presence of particles in liquid foam increased the bulk viscosity of the composite melt; 

hence, reduced the liquid flow from cell faces to cell edges. The particles at liquid/gas 

interface further reduced the capillary pressure difference between cell edge and cell 

wall. Both were noted to be effective on the stability of the composite foam. Low 

concentration of large particles could not form an adequate coverage of cell surface 

hence lead to unstable foam, while high concentration of small particles increase the 

viscosity of the melt significantly so that the air injection could not foam the composite 

melt.(Song, et al. 2000, Song, et al. 2001).  

Yang and Nakae (Yang and Nakae 2000) investigated the foaming behavior of 

liquid A356 Alloy with the addition of 0.5 to 4wt% TiH2 foaming additions and at 

various temperatures. The liquid viscosity was adjusted by Al powder addition. 
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Increasing the amount of foaming agent addition increased the porosity until about 

1wt% TiH2, while foaming efficiency decreased with increasing foaming agent. The 

optimum foaming agent addition was determined as 1wt% by considering cell 

uniformity and foaming efficiency. At low foaming temperatures, less than 630 °C, 

sufficient gas release from foaming did not occur while foaming at temperatures above 

650 °C, resulted in rapid bubble coalescence. The optimum foaming temperature was 

given in the range of 630-650 °C for studied melt alloy.  

Banhart (Banhart 2006) has recently reviewed stabilization of Al foams in 

various processes. It was shown by comparison of various Al alloys that the critical cell 

wall thickness (cell wall thickness just before the rupture of the film or  the cell wall 

thickness that carry the foam structure) was thickest in pure Al foams and reduced with 

Si and Cu addition. It was further shown using the following equations that the growth 

was accompanied by film rupture in foaming process. 

 

1-∝D 1-3 ρ  (for coalescence-free growth)    (4.1) 

 

1)-(D 1-
crit6d∝ ρ  (growth with rupture ad dcrit)     (4.2) 

 

It shows that when bubbles are blown in a fixed volume size D of the fixed 

number of bubbles increases. If a critical cell wall thickness exists for the foam (Figure 

4.3), below which a film ruptures, the number of bubbles will reduce like the mean pore 

diameter grow more quickly (Figure 4.4). It was concluded that the stabilization of 

foams was accompanied by viscosity enhancing effects and the surface activity of 

particles. Effect of the oxide content of the powder used for making precursors on the 

maximum expansion value of pure Al foams for six different powder sources is shown 

in Figure 4.5. 
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Figure 4.3.  Critical thickness of cell features of various aluminum alloys made by 
foaming a precursor (Source: Banhart 2006). (Banhart 2006). 

 

 

Figure 4.4. Relationship between mean pore diameter and the density of the foams 
expanded under different conditions (Source: Banhart 2006). (Banhart 2006). 
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Figure 4.5. Influence of oxide content of Al powder on the expansion behavior of the 
foam (Source: Banhart 2006). (Banhart 2006). 

 

Kaptay (Kaptay 2004) developed a stabilization criteria for liquid foams based 

on the separation pressure acting on neighboring bubbles. Various kinds of particle 

arrangements on the cell wall were considered (Figure 4.6). The stability of foams 

increased in the following order:  loosely packed single layer of particles, closely 

packed single layer of particles, loosely packed double layer of clustered particles, 

loosely packed ‘double+’ layer of clustered particles, closely packed double layer of 

particles and closely packed ‘double+’ layer of particles. The critical wetting angles for 

various types of particle arrangement were further developed. It was further shown that 

foam stability was not possible when 40>
PRs

σ
 (where P is the pressure that 

destabilizes the foam, Rs is the radius of particles and σ is the surface tension of the 

liquid). It was also estimated that particles smaller than 30 µm stabilized the liquid 

metal foams. 
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Figure 4.6.  Schematic of the different arrangement of the stabilizing particles on the 
cell walls (Source: Kaptay 2004). 

 

Kennedy (Kennedy 2002) and Kennedy and Lopez (Kennedy and Lopez 2003) 

studied the effect of TiH2 heat treatment on the gas release rate foaming of Al powder 

compacts. The heat treatment process between 400-500 °C retarded the gas evolution 

starting at about 495 °C in untreated TiH2 powder to higher temperature. The heat 

treatment however did not prevent the gas release before the melting of the compact and 

hence had small effect on foam expansions.  

Kennedy and Asavavisithchai (Kennedy and Asavavisithchai 2004) investigated 

the effect of 10 µm and 3 vol% Al2O3, SiC and TiB2 addition on the foaming of Al 

powder compacts. Although particle addition increased the maximum expansion of the 

powder compact, at longer waiting times TiB2 and Al2O3 contained powder compacts 

showed reduced expansion compared with Al compact without particle addition. The 

increased drainage in TiB2 and Al2O3 contained powder compacts were attributing to 

the non-wetting behavior of the particles, leading increased drainages.  

Asavavisithchai and Kennedy (Asavavisithchai and Kennedy 2006b) showed 

that the Mg-addition improved the stability of Al/Al2O3 powder compacts by improving 

the wetting behavior of Al2O3 particles. With Mg addition particles were found to be 

embedded at cell wall surface by the cell wall, leading to reduced drainage and hence 

increased expansion values (Figure 4.7). The addition of relatively small amount (0.6 

wt%) of Mg particles in powder compacts was found to enhance the wetting of  Al2O3 

particles (Figure 4.8). It was also shown that there is an optimum oxygen content which 
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leads to maximum expansion in compact. The foam made of Al powder containing 

0.333 wt% oxygen was shown to be the most stable (Figure 4.9).  

 

 

Figure 4.7. Effect of Mg and Al2O3 additions on the expansion of Al foams (Source: 
Asavavisithchai and Kennedy 2006b). (Asavavisithchai and Kennedy 2006b). 

 

 

Figure 4.8. SEM micrographs showing the attachment of Al2O3 particles at the cell 
wall surfaces for (a) and (c) Al–6 wt%Al2O3 and (b) and (d) Al–6 
wt%Al2O3–0.6wt.% Mg foams (Source: Asavavisithchai and Kennedy 
2006b). (Asavavisithchai and Kennedy 2006b). 
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Figure 4.9. Cross sections of Al foams made using different Al powders: (a) as-

received, (b) powder heat treated at 500 ◦C for 60 min, (c) powder heat 
treated at 500 ◦C for 180 min, and (d) powder heat treated at 550 ◦C for 60 
min (Source: Asavavisithchai and Kennedy 2006b).  (Asavavisithchai and Kennedy 2006b). 

 

Duarte and Banhart (Duarte and Banhart 2000) and Duarte et. al. (Duarte, et al. 

2002) studied effects of hot compaction and the foaming conditions on the foaming 

behavior and microstructure  of  AlSi7 and 6061 Al compacts. It was found that 

increasing foaming temperature increased the foam expansion in both compacts within 

the temperature range of 600-800 °C. Increasing temperatures reduced the viscosity and 

promoted gas evolution, leading to increased foam expansions. It was shown in the 

same study that the volume expansion were saturated at 750 °C for AlSi7 alloy 

compact, while the viscosity of 6061 Al alloy compact was not sufficient for the 

efficient foaming until about 800 °C. For the studied Al compacts, the foaming 

temperature was held between 700-730 °C and the maximum expansion was found to 

vary between 4.13-4.86. 

The early stage pore formation in AA6061 Al and Al-7%Si powder compacts 

(Alulight) was investigated by synchrotron-radiation tomography (Helfen, et al. 2005). 

The pores in the former alloy formed dominantly around the blowing agent, while in the 

later alloy the pores preferentially initiated around Si particles. 

Stanzick et al. (Stanzick, et al. 2002a) observed the foaming behavior of 

uniaxially compacted AlSi7 and thixocast AlSi6Cu4 foamable precursors using real 
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time X-ray radioscopy. The anisotropy in compacted precursor was observed in the 

early stage of the foaming; the expansion occurred parallel to the compaction direction 

and the initial cells formed were crack-like. While the precursor produced by casting 

showed no directional expansion and cells were round at all times. The cell wall rupture 

time for both types of precursors were determined around 50 milliseconds and cell 

rupture occurred at thickness of cell walls below 50 µm. The cell rupture time (T) was 

further approximated using following relation 

 

σ
ρc

2
b

=T                                                        (4.3) 

 

where, b, c, ρ and σ are the cell wall length, thickness, liquid metal density and surface 

tension, respectively. Using the typical values of Al in above equation, a rupture time of 

1.2 ms was calculated.  Several types of defects included into the precursor were found 

to be not effective in changing the morphology of the fully expanded foams. 

Banhart et al. (Banhart, et al. 2001) analyzed the foaming behavior of Al-based 

sandwich panels using X-ray radioscopy. The foamable sandwich precursor was 

prepared by roll-cladding of AA3103 Al alloy sheets to the extruded Al alloy foamable 

precursor. In the early stages of the foaming, crack-like pores were formed normal to 

the foaming direction, which was related to the direction of powder consolidation. The 

foamable sandwich precursor showed strong dependency on the foaming temperature 

and duration. Low foaming temperatures resulted in low expansion of the precursor, 

while high foaming temperatures resulted in melting of the face sheet.  

Haibel et al. (Haibel, et al. 2006) have recently analyzed the possible 

stabilization mechanisms operative in foaming of powder compact processes. The liquid 

metal on a film (cell wall) connected to the plateau border (cell edge), under the effect 

of the pressure difference, flows from the cell wall to the plateau borders. Pressure 

difference is as follows. 

 

PBFPB R
2≈)

R
1

-
R
1
(2=P

σ
σ∆                                        (4.4) 
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Several different stabilization models were considered. The partially wetted 

particles on the cell wall form menisci of radius of RF≅RPB, which reduces the pressure 

difference and capillary suction (Figure 4.10 (b)). In another model, small particles sit at 

the liquid/gas interface, which gives rise to local menisci between adjacent particles 

Figure 4.10(c); hence reduce the melt flow from the film. Another model, which has 

become popular recently, is based on the mechanical connection of the particles 

covering the opposite film surface, which provides repulsive mechanical forces Fig 

4.10(d). The last model is based on the increased viscosity of the melt by the presence 

of small particles in the film, which immobilized the liquid metal flow (Figure 4.10 (d)). 

These models were investigated by the foaming of a metal matrix composite Al-10wt% 

Si-1 wt%Mg/10 vol%SiC (13 µm) foamable precursor. It was shown microscopically 

from the solidified foam samples that most of the particles were located at the metal/gas 

boundaries and only few were found at the interior of the cell walls. X-ray tomography 

analysis of cell walls further showed no evidences of mechanical bridges between the 

particles of the opposite cell faces. The global distribution of SiC particles in foaming 

melt was further determined. The particles were found to be predominately located near 

the liquid/gas interface (37%), while at a 40µm distance from the liquid/gas interface 

the particle concentration dropped to 7%. Finally, a model of foam stabilization 

comprising the particle covering of the cell faces and increased apparent viscosity of the 

melt (Fig. 4.10(f)) was proposed. 

 

 

Figure 4.10. (a) Liquid film in a foam (R is the radius of curved films, ∆p is the pressure 
difference within a film), (b) adsorbed particles with film bridges, (c) 
modulated interfaces, (d) particle layers on interfaces connected by particle 
bridges, (e) drainage reduction by particles and (f) model for particles 
(Source: Haibel, et al. 2006). (Haibel, et al. 2006). 
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Babcsan et al. (Babcsan, et al. 2005, Babcsan, et al. 2007) analysed ex-situ and 

in-situ the stability of aluminum metal foaming processes. In foam prepared by 

Formgrip process with 13 µm sized SiC particles, the particles were observed to 

segregate to the cell surface, while in foams of 70 µm SiC particles, only small amount 

of particles were observed on the cell surface. The cell wall thicknesses were also found 

to be quite different: 85-100 µm in foams of 13 µm SiC particles and up to 300 µm in 

foams of 70 µm SiC particles. In Alporas foams, the size and volume of the oxide 

inclusions were predicted as 1 µm and 1%, respectively. A chart showing particle size 

and particle volume fractions that stabilize the 3 foams, namely CYMAT, ALPORAS 

and ALULIGHT, was further developed (Fig.4.11). For CYMAT foam, the particle size 

and volume fraction for foam stabilization were above 1 µm and 1 vol%, while these 

were less than 1 µm and 1 vol% in Alporas and Alulight foams. In gas injection 

foaming of Al melts, it was found that TiB2 particles were not effective in stabilizing 

the foam and they were considered as non-wettable. It was also shown that the 

composition of the melt alloy was effective in particle distribution. Foaming of an 

AlSi0.8Mg0.8/10vol% Al2O3 melt in Alcan process produced thicker cell walls than the 

alloy containing lower Si/Mg ratio. In three different foaming processes, Cymat, 

Alporas and Alulight, the foamed alloy were considered as, by similarity, suspensions 

(50-100 µm), sols (micrometer size particles) and gels (nano size particles), 

respectively. These alloys were foamed through external foaming (gas injection) and 

internal foaming (blowing agent). Results showed that internal foaming of Alporas alloy 

produced longer standing foams than Alulight metal alloy. In external foaming, Alcan 

metal showed the highest and Alulight metal shows the lowest foam qualities. In 

external foaming of 20vol% SiC (10 µm) particle containing melt by argon gas blowing, 

a rupture time of cell wall of below 33 ms were found. It was also shown that rupture 

increased with increasing foaming duration but after an incubation time of 106 s.  
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Figure 4.11. Stability diagram for metal foams relating particle volume fraction and 
particle size (Source: Babscan, et al. 2005). (Babcsan, et al. 2005). 

 

In laser foaming of the foamable compacts produced by powder metallurgy, the 

interaction time was found to be effective on the cell size (Kathuria 2001a, Kathuria 

2001c, Kathuria 2003a, Kathuria 2003b). Longer laser beam interaction times induced 

larger cells and shorter beam interaction led to small size but partial foaming in the 

powder compact.  

The effect of foaming time on pore size and pore size distribution in Alporas 

foam processing method was investigated experimentally and numerically by Song and 

Nutt (Song and Nutt 2007). Two forces were identified resisting the foam expansion: 

the frictional forces between liquid foam and foaming mold surface and excess surface 

pressure arising from the surface tension. The expansion rate was found to increase with 

increasing mold cross-section and decrease with increasing foam height and melt 

viscosity and pore size and pore size distribution was shown to be a function of furnace 

holding time. 

The effect of compaction method on the expansion of Al-0.6%TiH2 powder 

compacts was investigated by (Asavavisithchai and Kennedy 2006a). It was shown that 

simple cold compaction of Al powder compacts of  >99% dense and containing 0.3-

0.4% oxygen produced foam expansions  similar to the ones prepared by hot 

compaction forming processes.  

The effect of oxygen content of the starting Al powder on the expansion and 

stability of Al-0.6%TiH2 powder compacts was investigated (Asavavisithchai and 
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Kennedy, 2006c). The oxide content of the powder was increased by the pre-heat 

treatment. It was shown that the maximum foam expansion increased by increasing the 

oxygen content to 0.333 wt% while increasing oxygen content above 0.333-0.6wt% 

level resulted in low expansion but  stable foams. The oxide particles formed clusters of 

crumpled films, restricting drainage. 

Leitlmeier et al. (Leitlmeier, et al. 2002) have modified gas blowing foaming 

process by using a new gas bubbling equipment which controls the gas bubble 

formation and guiding the particle stabilized foam on the surface of the melt into a mold 

(Figure 4.12). The foam prepared in this modified foaming technique is called 

Metcomb. It was also shown that smaller depths of immersion gas bubbling equipment 

lead to unstabilized bubbles and bubbles burst on the surface of the melt. The minimum 

thickness of depth of immersion of bubbling equipments was shown to increase with 

decreasing particle content (Al2O3 and SiC). The use of nitrogen as blowing gas resulted 

in more frequent bursting of the bubbles before reaching to the melt surface when 

compared with air or oxygen blown foams. It was also found that when nitrogen was 

used for blowing, SiC covered the surface of the walls, while oxygen blown foams the 

cell wall surfaces and SiC particles were covered with thin oxide layer. Stable foam 

processing in Cymat method as a function of distance traveled by bubbles and SiC 

volume fraction is shown in Figure 4.13. At low traveling distances and low SiC 

volume contents, the bubbles are bursted and the stability was lost as depicted in Figure 

4.13, while the stability is achieved at long traveling distances and high volume content 

of SiC particles.  

 

 

Figure 4.12. Schematic presentation of the foaming experiments with blowing gas into a 
melt filling a mold (Source: Leitlmeier, et al. 2002). (Leitlmeier, et al. 2002). 
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Figure 4.13. Criterion to obtain stable Al foams (alloy A356, T = 727 °C) (Source: 

Leitlmeier, et al. 2002).  (Leitlmeier, et al. 2002).  
 

Babcsan et al. (Babcsan, et al. 2004) investigated the foaming behavior of Al 

melts containing SiC particles through foaming by gas blowing process. It was noted 

that Al melts without particle did not form stable bubbles on the surface of the melt. It 

was concluded that a certain concentration of particles were needed for bubble 

stabilization formed by blowing and the stabilization is due to the particle segregation at 

the liquid/gas interface; the surface oxide layer formed in oxygen containing blowing 

gases, provide additional foam stabilization. 

The effects of melt (pure Al) viscosity (adjusted by the Ca-addition and melt 

stirring time) and holding time on the cell structure of Alporas foams were studied by 

Song et al. (Song, et al. 2000, Song, et al.2001). It was observed that pore structure is 

affected by the melt viscosity. With increasing melt viscosity, the metal foam stability 

increased and the cell size decreased. It was further emphasized that too high viscosity 

might prevent the homogenous dispersion of the foaming agent. For large cell size, 

holding time increased and the amount of foaming agent decreased. Too low viscosity 

always leads to rapid floating of bubbles, and too high viscosity suppresses the 

formation and the growth of bubbles. Therefore, it is important to control the viscosity 

carefully in the foaming process. Viscosity of aluminum melt was measured by 

measuring the voltage of paddle motor during the period of stirring. When a liquid is 

stirred, the resistance from the liquid can be signified as the apparent but not the real 

concept of viscosity. As the apparent viscosity is high, higher motor power and the 

winding voltage of stirring motor is needed. As can be seen from Figure 4.14 below 

addition of calcium into aluminum melt can increase the apparent viscosity. 
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Figure 4.14. Relation of stirring time and Ca content with apparent viscosity of Al melt  

(Source: Song, et al. 2000). 
 

It was observed by Ravi et al. that the effective or apparent viscosity rises 

markedly above the viscosity of pure (monolithic) melts when the liquid metal contains 

a dispersion of particles in their study of investigating fluidity of Al alloys and 

composites (Ravi, et al. 2008). For dilute suspensions with particle volume fraction 

smaller than 0.1, the effective viscosity, µc, of the suspension can be predicted using 

Einstein equation 

 
2 2

c 0= (1+2.5 +10.25 )µ µ ϕ ϕ                                           (4.5) 

 

where µc is the apparent viscosity of composite slurries (g/cm.s), µo the viscosity of 

fluids without any particle (g/cm.s) and φ is the volume fraction of the suspended 

particles. Literature suggests that the viscosity of aluminum lies between 1.0-1.4 mPa.s 

(Iida and Guthrie, 1988). In concentrated suspensions, it is necessary to account for the 

effects such as hydrodynamic interactions, particle rotation, collision between particles 

and agglomerate formation. At high volume fractions, the relationship between 

viscosity and concentrations become non-linear. The following equation was developed 

by Wang et al. (Wang, et al. 2003) for viscosity of composite melt considering the 

influence of particle size, shape as well as volume fraction 
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0.95
P

c 0 0.95
P

(1+D )=
(0.01 37.35D )

ξµ µ ϕ
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟+⎝ ⎠⎣ ⎦

                                        (4.6) 

 

where Dp is the diameter of spherical particles (cm) and ξ is the factor related to the 

particle height–diameter ratio. The melt viscosity can significantly increase for reducing 

particle sizes with constant particle volume.  

It was observed by Ravi et al. (Ravi, et al. 2008) that increasing angularity of the 

particle reinforcements leads to a progressively greater decrease in the fluidity at a 

given temperature and volume fraction of particle (Figure 4.15(a)). Fluidity is measured 

as the flowing distance of the melt metal in a spiral shaped mold till it solidifies. 

Fluidity, besides being dependent on many parameters, is inversely dependent to the 

viscosity of the melt. In this study addition of 15 vol% SiC of 9 µm diameter had the 

lowest flow ability, lower than that of composite containing 20 vol% SiC of 14 µm 

diameter, showing that particle size has a strong influence on flow of the melt. The 

decrease in the SiC particle size has been attributed to an increase in the total surface 

area of particulates causing more resistance to fluid flow as a result of stagnant 

boundary layers around the particles (Figure 4.15(b)). It was observed that fluidity 

decreased linearly with the total surface area per unit weight of the particles. Fine 

particles are more effective in stopping a flowing stream than an equivalent percentage 

of coarse particles. Hence, fluidity is expected to decrease with grain refinement. 

Similarly, as can be seen from Figure 4.16, for a constant particle size, increasing the 

SiC particle percentage in the melt resulted in decrease in the fluidity of different Al 

alloys (Ravi, et al. 2008). Generally, fluidity of aluminum alloy increases with 

increasing melt temperature for a given alloy composition. However, in some cases, 

raising the temperature has a negative effect on the fluidity of Al MMCs. For instance, 

the fluidity of AA6061–15 vol% SiCp composites was found to decrease with 

increasing temperature (Ravi, et al. 2008). 
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(a) 

 
(b) 

Figure 4.15. Effect of (a) particle shape and (b) total particle surface area of SiC 
particles on the fluidity of the melt (Source: Ravi, et al. 2008). 

 

. 
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Figure 4.16. Effect of volume percentage of SiC particles on the fluidity of Al alloys. 

 (Source: Ravi, et al. 2008) 
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CHAPTER 5 

 

MATERIALS AND EXPERIMENTAL METHODS 

 
5.1.  SiC Powder and Whisker 

 

The average particle size of Al powder used to make compacts was 34.64 µm 

and the size of TiH2 particles was less than 37 µm as tabulated in Table 5.1.  The 

oxygen content of Al powder was measured as ~0.5% using a LECO oxygen analyzer 

device. TiH2 content was kept at 1 wt% in all foamed compacts. SiC-Aldrich 378097 

numbered as powder 4 was sieved between 20-30, 30-45, 45-56 and 56-74 µm using a 

Fritsch Analysette 3 PRO type vibratory sieve shaker, while powders numbered as 5,6,7 

and 8 were directly used in compact preparation. 10 different SiC/Al compacts were 

prepared and foamed.  

 

Table 5.1. Powders used for the compact preparation. 

 Powder Particle Size 
(µm) 

1 Aluminum (Aldrich-code 214752) < 74 µm 
2 TiH2  (Merck-code 1.12384.0100) < 37 µm 
3 SiC particle  (Aldrich-code 357391) < 37 µm 
4 SiC particle  (Aldrich-code 378097) 30-74 µm 
5 SiC particle (Alfa Aesar-code 43884) 30 nm 
6 SiC particle (Alfa Aesar-code 40155) 2 µm 
7 SiC whisker (Alfa Aesar-code 38787) 1.5 µm in diameter, 18 µm in 

length 
8 SiC particle (Alfa Aesar-code 43332) < 44 µm 

 

The codes of the compacts foamed are tabulated in Table 5.2 together with the 

sieved SiC addition sizes. In Table 5.2, P0 refers to the compacts without SiC addition. 

P1-P8 refers to the compact with SiC particle addition, P9 whisker and P10 nano 

powder addition. Compacts coded between P1-P5 were prepared using sieved particles. 

The average sizes of the SiC particles were measured using a Sedigraph device 

(Micromeritics, Sedigraph 5100). The corresponding SEM micrographs of SiC 
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additions (particles, whisker and nano powder) are also shown sequentially in Figure 

5.1 and Figure 5.2. SiC particles used were generally angular in shape, particularly 

powders with relatively large particle sizes; therefore, the minor (short) and major 

(long) axes of the particles were measured from SEM micrographs using an image 

analyzer program to determine the average particle sizes. At least 100 measurements 

were taken and the results were averaged and tabulated in Table 5.2. It is noted in Table 

5.2 that the sedigraph and SEM measurements show similar average particles sizes. In 

the analysis of the particle size effect on the foaming behavior of SiC/Al compacts, the 

particle sizes measured using SEM micrographs were used.  

 

Table 5.2. Mean particle diameter values of the powders measured from SEM images. 

Compact 
Code 

Powder 
interval 

(µm) 

Mean particle 
size (Sedigraph) 

(µm) 

Mean short 
axis size 

(µm) 

Mean long 
Axis size 

(µm) 

Mean 
particle size 

(µm) 
P0     - 
P1  10-20 19 11 17 14 
P2 20-30 29 18 29 24 
P3 30-45 35 24 43 34 
P4 45-56 42 41 73 57 
P5 56-74 54 51 82 67 
P6 3-40 20 - - 21 
P7 26-74 36 - - 36 
P8 0.2-2 - - - 1 
P9  1.5-18 

(whisker) - - - - 

P10 30 nm - - - - 
  

 
(a) (b) 

Figure 5.1. SEM micrograph of (a) P1, (b) P2, (c) P3, (d)  P4, (e) P5  (f) P6,  (g) P7 and 
(h) P8 SiC powders.  

(cont. on next page)
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(c) (d) 

(e) (f) 

(g) (h) 

Figure 5.1. (cont.) 
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(a) (b) 

Figure 5.2. SEM micrograph of (a) P9 whisker and (b) P10 nano powder. 
 

5.2.  Compact Preparation  

 
The stages of the compact preparation and foaming experiments are 

schematically shown in Figure 5.3. The process starts with the mixing of appropriate 

amounts of basic ingredients (Al powder, TiH2 and SiC) inside a plastic container, 

which was tightly closed. The powder mixture is then rotated on a rotary mill for ½ h in 

order to form a homogeneous powder mixture. For the addition of nano and 1 µm size 

SiC particles, the powder mixture was mixed using a ball milling machine.  The mixture 

was then axially compacted inside a tool steel die (Figure 5.4) with a final compact 

relative density of ~98-99% using a hydraulic press. The compacts were 30 mm in 

diameter and ~8 mm in height. The applied pressure to the powder mixture varied 

between 180 and 260 MPa; higher compaction pressures were applied during the 

compaction of SiC/Al powder mixtures in order to increase the relative densities to that 

of Al compact without particle addition. The percentage of SiC particles in the prepared 

compacts are listed in Table 5.3. The optical micrographs of the polished cross-sections 

of the prepared P1-P5 compacts with 5 and 10 wt% are shown sequentially in Figure 

5.5. As is seen in these figures, no particle agglomeration is seen both for 5 and 10wt% 

SiC/Al compacts and SiC particles were homogeneously distributed throughout the Al 

matrix.  
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Figure 5.3. Schematic representation of foaming process.  

 

 

 

Figure 5.4. Dies used for the compact preparation. 

 

Table5.3. Percentages of SiC in SiC/Al compacts. 

Specimen  
Code 

Mean particle  
Diameter 

Percentage of SiC added 
(%) 

P1  19 µm 5 - 10 
P2 29 µm 5 - 10 
P3 35 µm 5 - 10 
P4 42 µm 5 - 10 
P5 54 µm 5 - 10 
P6 20 µm 5 – 10 – 15 
P7 36 µm 5 
P8 1 µm 0.1 – 0.5 - 1- 3 - 5 
P9  1.5-18 µm (whisker) 0.1- 0.5 - 1- 3 - 5 
P10  30 nm 0.01- 0.1- 0.15 – 1- 3 - 5 
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%5 %10 

(a) 

(b) 

(c) 

(d) 
Figure 5.5. Microstructure of compacts having 5-10 % SiC from (a) P1 (b) P2 (c) P3 

(d) P4 (e) P5 powder. 
(cont. on next page)
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(e) 

Figure 5.5. (cont.) 
 

 The density of the prepared compacts (Figure 5.6(a)) and the dimensions 

including the diameter and height were measured before the foaming tests. The density 

of the compacts was measured using the Archimedes’ method on precision balance 

(Figure 5.6(b)). Weight of the compacts was measured in air and in distilled water 

(shown with white arrows in Figure 5.6 (b)) and density was calculated according to the 

buoyancy force. Then these measured values were used to compare with the calculated 

density values of the compacts to understand the relative density of the compacts. 

Density values used for Al, SiC and TiH2 powders used in calculation of the density of 

the compacts are 2.702 g.cm-3, 3.217 g.cm-3 and 3.910 g.cm-3 respectively.  

 

   
(a)                                                       (b) 

Figure 5.6. Picture of (a) a cold pressed compact and (b) density measurement set-up. 
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5.3.  Foaming Set-Up and Foaming Experiments 

 
The schematic and front view of the foaming set-up used in the foam expansion 

experiments are shown in Figure 5.7 and Figure 5.8, respectively. The experimental set-

up was composed of a vertical furnace, a linear expansion measurement system and a 

foaming mold. The bottom of the foaming mold (3 cm in diameter and 8 cm in height) 

was enclosed tightly and the compact was placed at the bottom of the mold (Figure 

5.9(a)). A linear variable displacement transducer (LVDT) was connected to the steel 

expansion rod through a wire and two pulleys as shown in Figure 5.8. A thermocouple 

directly contacted to the bottom of the compact was used to measure the compact 

temperature during foaming. LVDT and thermocouple data were collected using a data 

logger (Data Taker. DT 80) (Figure 5.9(b)).  

The cold compact was inserted inside a stainless steel foaming mold (Fig. 5.9 

(a)). The thermocouple is placed inside the lower moving bar that holds the mold and 

touches the compact from the hole on the center of the bottom part of foaming mold. 

Expansion rod and the LVDT are connected through very low friction pulleys 

connected with a metallic thin wire. Both are the components used in some type of 

electrical discharge machines commercially available. Weight on both sides of these 

pulleys is balanced using counter weight for the expansion piston to apply minimum 

force possible on the foam during expansion.  
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Figure 5.7. Schematic of foam expansion measurement set-up.  

 

 (a) 

 
(b) 

(c) 

Figure 5.8. (a) Foaming mold and sliding top and bottom rods, (b) low friction pulley 
and (c) pulley mechanism of the foaming set-up. 
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(a) (b) 

Figure 5.9. (a) Foaming mold and (b) LVDT and Data logger. 

 

In a typical foaming experiment, the furnace is initially heated to 750 oC. Then 

the compact is inserted into the furnace with the mold by means of an elevator. After the 

compact insertion into the furnace, the top expansion rod connected to LVDT is 

lowered until the top mold plate touches the compact surface. A typical expansion-time 

and temperature-time graph is shown in Figure 5.10. As soon as the mold is inserted, 

the furnace temperature decreases to ~640 oC and then increases gradually to 750 oC in 

~10 min as the mold is heated up.  As the compact expanded, the linear expansion 

measuring wire moves backward and the movement is measured with the help of a data 

logger which is connected to the LVDT. After foaming, the foaming mold is taken out 

of the furnace with the help of the elevator and cooled for the foam to solidify. The 

linear expansion data (mm) is converted to linear expansion (LE) using the following 

equation: 

 

expansionLE=
initial length                                               (5.1) 
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 The foaming experiments continued until about 900 s. In few experiments, 

the foamed compacts were taken from the furnace at various furnace holding times and 

then quenched with water (interrupted foaming tests). The samples recovered from 

interrupted tests were then sectioned and observed microscopically to evaluate the foam 

evolution as a function foaming time. 

  

 

Figure 5.10.  Typical expansion-time and temperature time graph of foaming 
experiments.  

 

5.4.  Compression and Hardness Testing 

 
For the compression tests, the foams were taken from the furnace at the 

maximum expansion. At the maximum expansion, the foam is supposed to have the 

most homogeneous cell size distribution. The compression test samples were prepared 

by cutting cylindrical test samples, 25 mm in diameter and 20 mm in length, using an 

electro discharge machine. Quasi-static compression tests were conducted using a 
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displacement-controlled SHIMADZU AG-I universal tension-compression test machine 

with a cross-head speed of 2.5 mm/min, corresponding to a strain rate of 2x10-3 s-1. At 

least three compression tests were performed for each foam sample. The nominal strain 

(ε) and stress (σ) in compression test were calculated using the following relations;  

 

oL
δ

=ε                                                          (5.2) 

and 

oA
P

=σ                                                          (5.3) 

 

where δ, P,Lo and Ao are the displacement, the load and the initial length and cross-

sectional area of the tested specimen.   

Micro hardness test were performed on epoxy mounted foam samples polished 

down to 1 µm using a Schimadzu Microhardness testing device (HMV-2 Series) (Figure 

5.11(a)).  Tests were conducted on the locations of the cell walls where there were no 

ceramic particles in order to prevent the effect of ceramic particles on the hardness 

(Figure 5.11 (b)). At least 10 hardness tests were performed for each specimen with an 

applied load of 0.4903N for 10 seconds. 

 

(a) 
 

(b) 

Figure 5.11.  (a) Microhardness measuring device and (b) view of the indention part on 
the cell wall after force applied. 
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5.5.  Microstructure Analysis 

 
The microscopic analysis was performed using a Nikon Eclipse L150 optical 

microscope and a Philips XL30-SFEG SEM with an Energy Dispersive X-ray (EDX). 

The polished cross-sections of epoxy-mounted foam samples were etched with Kroll’s 

reagent (3 cm3 of HF and 6 cm3 of HNO3 in 100 ml of H2O). 



71 

 

CHAPTER 6 

 

FOAM EXPANSION 

    
 Typical linear expansion-time and temperature-time graph of a foamed Al 

powder compact is shown in Figure 6.1. The expansion-time curve virtually consists of 

4 foaming stages as marked in the same figure with the numbers in the circles (1 

through 4). The compact expansion is noted to start at a temperature of 663 oC, below 

the melting temperature of pure Al (~670 oC) and increases with increasing foaming 

time in the first and second regions. The transition from Region 1 to Region 2 occurs 

roughly after about 120 s at about 683 oC (Figure 6.1), just above the melting 

temperature of pure Al. Owing to the complete melting of the compact, the expansion 

increases abruptly in the second region until a maximum value (LEmax) in about 25 s 

following the first region (145 s after foaming starts). The expansion then slightly 

decreases in region 3 and remains almost constant in Region 4, which is taken as LE.  

During foaming experiments, although the furnace temperature was kept constant at 750 

ºC, as soon as the cold steel mold accommodating the foamable compact was inserted, 

the furnace temperature decreased to ~600 oC.  After insertion, the furnace was heated 

up to ~750 ºC and the temperature of the compact raised to the furnace temperature after 

about 600 s.  

 

6.1.  The  Effect of TiH2 wt% on the Foam Expansion 

 
The linear expansion-time and temperature-time graphs of Al compacts with 0.6, 

0.8 and 1.0 wt% TiH2 additions are shown in Figure 6.2. Average LEmax values for the 

compacts with 0.6, 0.8 and 1.0 wt% TiH2 addition are further tabulated in Table 6.1, 

together with compacts coding, dimensions and density. The maximum linear 

expansions of the compacts with 0.6, 0.8 and 1.0 wt% of TiH2 are sequentially 3.525, 

4.145 and 4.08. The maximum linear expansion increases slightly with increasing wt% 

of TiH2, showing an insignificant effect of TiH2 wt% on the compact expansion within 

the investigated wt% of TiH2. In the thesis, the compacts were foamed using 1.0 wt% 

TiH2 addition. Figures 6.3(a) and (b), Figures 6.4(a) and (b) and Figures 6.5(a) and (b) 
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show the pictures of foamed Al compacts and their cross sections with 0.6, 0.8 and 1.0 

wt% of TiH2, respectively.   

 

 
Figure 6.1. Typical linear expansion and temperature vs. time graph of foaming Al 

compact.  

 

 
Figure 6.2. The expansion-time and temperature-time graphs of Al compacts with 

varying wt% of TiH2. 
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Table 6.1. The coding, dimensions and density of the compacts with various TiH2 
addition. 

 
Specimen code Thickness 

(mm) 
Weight 
(g) 

Density  
(g cm-3) 

Relative  
density 

LEmax 

P0.TiH2.06%-01 14.9 7.90 2.681 0.990 3.23 
P0.TiH2.06%-02 14.8 7.78 2.677 0.988 3.82 
P0.TiH2.08%-01 14.7 7.81 2.679 0.988 4.54 
P0.TiH2.08%-01 14.9 7.89 2.676 0.987 3.75 
P0.TiH2.1%-01 14.8 7.81 2.681 0.988 4.27 
P0.TiH2.1%-01 15.0 7.93 2.680 0.987 3.89 

 

 

(a) (b) 

Figure 6.3. Pictures of the foams with 0.6 wt% TiH2 blowing agent addition (at 
maximum expansion); (a) uncut and (b) cross-section. 

 

 

(a) (b) 

Figure 6.4. Pictures of the foams with 0.8 wt% TiH2 blowing agent addition (at 
maximum expansion); (a) uncut and (b) cross-section. 
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(a) (b) 

Figure 6.5. Pictures of the foams with 1.0 wt% TiH2 blowing agent addition (at 
maximum expansion); (a) uncut and (b) cross-section. 

 

In order to verify the effect of TiH2 wt% on the foam cellular structure, the 

number of cells and cell sizes of the cross sectional pictures of the foam samples were 

measured microscopically. The variation of the number of cells and average cell sizes 

with TiH2 wt% are shown in Figure 6.6. The lowest TiH2 wt% contained foam has the 

highest number of cells and the smallest cell size. The number of cells and the cell sizes 

of the foams of different TiH2 content, range between 60 and 100 and 2.8 and 3.4 mm 

respectively, as depicted in Figure 6.6. The differences between the number of cells and 

cell size partly result from the small differences between the furnace holding times of 

the compacts.  A small difference in furnace holding time may lead to increased extend 

of foam cell collapse, which results in the reduction in the number of cells and increase 

in cell size.  

 

 

Figure 6.6. The number of cells and cell sizes as function of wt% of TiH2 addition. 



75 

 

6.2.  Expansion of Al Compacts 

 
 The expansion-time graphs of Al compacts foamed until about 900 s and 

prescribed times (interrupted test) are shown in Figures 6.7(a) and (b), respectively.  As 

noted in Figure 6.7(a), the LEmax values of the compacts range between 4 and 5, while 

LE values between 3 and 4. The arrows in Figure 6.7(b) on the time axis show the 

furnace holding times (100, 150, 200, 400, 500 and 700 s) at which the foams were 

taken from the furnace. The coding, weight, thickness, density and expansions of Al 

compacts without SiC addition are further tabulated in Table 6.2. The relative density of 

Al compacts foamed varies between 0.97 and 0.99. The compacts were prepared at a 

pressure of 183 MPa. The linear expansion and LEmax values vary between 3.25 and 

3.87 and 4.06 and 4.84, respectively. Figures 6.8(a) and (b) show the general and cross-

sectional pictures of Al foam samples taken from the furnace after a certain furnace 

holding time, respectively. The final heights of the foam samples in these figures 

confirm clearly that the linear expansion increases until the maximum expansion (until 

about 150 s). In addition, the cell size is found to increase as the furnace holding time 

increases, particular cells become larger at the upper sections of the foam cylinders. The 

drainage, the accumulation of Al metal at the bottom of foamed compacts, is clearly 

seen to increase as the furnace holding time increases (Figure 6.8(b)). Another effect of 

longer furnace holding times is the thickening of the cell walls and cell edges at the 

bottom and the cell collapse at the upper sections of the foam cylinder. The number of 

cells and the average cell sizes (diameters) of the foamed compacts taken from the 

furnace after prescribed furnace holding times are shown in Figure 6.9. The number of 

cells increases to about 150 until about 150 s furnace holding time; thereafter, decreases 

below 50 at increasing furnace holding times. Similarly, the average cell size increases 

above 3 mm at foaming times above 150 s. In accord with the expansion-time graph, the 

highest number of cells and the smallest cell size are seen when the furnace holding 

time is about 150 s. It is also found that the cell wall thicknesses at the top sections of 

the foam are smaller than those at the bottom part of the foam. The difference in cell 

wall thickness between the top and bottom section increases with increasing foaming 

time. The mean cell wall thickness values increase from 174 to 277 µm when the 

foaming time increases from 100 to 500 s.   
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(a) 

 
(b) 

Figure 6.7.  Expansion-time graph for (a) pure Al foams (700s) and (b) interrupted 
foaming experiments. 
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Table 6.2. The coding, weight, thickness, density and expansions of Al compacts 
without SiC addition (P0). 

 
Specimen 

code 
Weight 

(g) 
Thickness 

(mm) 
Density
(g cm-3) 

Relative 
density 

LE LEmax 

P0.0.1 14.9 7.93 2.648 0.980 3.27 4.13 
P0.0.2 15.1 8.01 2.644 0.979 3.62 4.63 
P0.0.3 14.9 8.02 2.644 0.979 3.25 4.06 
P0.0.4 14.9 7.97 2.644 0.979 3.72 4.84 
P0.0.5 14.9 7.97 2.645 0.979 3.87 4.83 
P0.0.100 15.1 8.05 2.638 0.976 - - 
P0.0.150 14.9 7.97 2.619 0.969 - - 
P0.0.200 15.0 7.93 2.653 0.982 - 4.58 
P0.0.400 15.0 7.93 2.669 0.988 - 4.54 
P0.0.500 15.1 7.98 2.669 0.988 3.55 4.83 
P0.0.700 14.9 7.90 2.679 0.991 3.62 4.65 

 

 

(a) 

(b) 

Figure 6.8. (a) Pictures of foamed pure Al compacts at various furnace holding time and 
(b) corresponding cross sections. 

   



78 

 

 

Figure 6.9. The number of cells and cell sizes of foamed Al compacts as function 
foaming time. 

 

6.3. Expansion of Unsieved P6 and P7 SiC/Al Compacts 

 
The expansion-time graphs of compacts with P6 SiC 5, 10 and 15 wt% addition 

are shown in Figures 6.10(a), (b) and (c), respectively. The increased wt% of SiC 

decreases both LE and LEmax values.  Except 15 wt% SiC addition, the expansion of P6 

SiC addition increases the compact expansions over those of Al compacts as shown in 

Figure 6.10(d). The expansion-time graphs of compacts with 5 wt% P7 SiC addition are 

further shown in Figure 6.11(a). The expansion values of the compacts with 5 wt% P7 

SiC additions are lower than those of the compacts with 5 wt% P6 SiC addition, while 

higher than those for Al compacts, as shown in Figure 6.11(b). 
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(a) (b) 

(c) (d) 

Figure 6.10. Linear expansion-time graphs of the compacts with P6 SiC addition of (a) 
5 wt%, (b) 10 wt% and (c) 15 wt% and (d) comparison of particle 
percentage. 

 

(a) (b) 

Figure 6.11. (a) Linear expansion-time graphs of  the compacts with 5 wt% P7 SiC 
addition  and (b) linear expansion-time graphs of  the compacts with 5wt% 
P6 and P7 SiC addition and Al compact. 
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The coding, weight, thickness, density and expansions of P6 and P7 SiC/Al 

compacts are further tabulated in Table 6.3. The compacts were prepared at a pressure 

of 183 MPa. The linear expansion and LEmax values of P6 SiC/Al compacts vary 

between 4.71 to 5.26 and 6.02 to 6.24 for 5 wt% addition, 4.66 to 5.29 and 5.29 to 5.85 

for 10wt% addition and 2.54 to 2.96 and 2.96 to 3.32 for 15wt% addition. The linear 

expansion and LEmax values of P7 SiC/Al compacts vary between 3.73 to 4.35 and 4.97 

to 5.27 for 5 wt% addition. The relative density of the compacts varies between 0.957 

and 0.983. The smallest relative density is found in 15 wt% P7 SiC/Al compacts, 

containing relatively high wt% of particles. The compaction pressures used are 210, 240 

and 250 MPa for P6 SiC/Al compacts with 5, 10 and 15 wt% SiC addition, respectively, 

and 260 MPa for P7 SiC/Al compacts. It was noted that increasing compaction 

pressures over 250 MPa in P6 SiC/Al compacts resulted in cracking of the compact; 

therefore, the compaction pressure was kept around 250-260 MPa. 

 

Table 6.3. The coding, weight, thickness, density and expansions of P6 and P7 SiC/Al 
compacts. 

 
Specimen code Weight 

(g) 
Thickness

(mm) 
Density 
(gcm-3) 

Relative 
density 

LE LEmax 

P6  
5wt% SiC  

1 15.3 8.00 2.678 0.981 4.91 6.02 
2 15.2 8.05 2.672 0.978 4.71 6.06 
3 15.2 8.04 2.670 0.978 5.26 6.24 

P6  
5wt% SiC  
(time group) 

100 s 15.2 8.04 2.675 0.980 - - 
150 s 15.2 8.01 2.684 0.983 - - 
200 s 14.9 7.92 2.672 0.978 - - 
400 s 14.8 7.85 2.665 0.976 - - 
500 s 14.8 7.88 2.644 0.968 - - 

P6  
10wt% SiC  

1 15.4 8.11 2.679 0.971 4.66 5.29 
2 15.4 8.12 2.678 0.970 4.52 5.37 
3 15.3 8.07 2.694 0.976 5.29 5.85 

P6  
15wt% SiC  

1 15.5 8.14 2.670 0.957 2.54 2.96 
2 15.5 8.15 2.675 0.959 2.96 3.32 

 
 
P7 
5wt% SiC 

1 15.2 8.07 2.664 0.976 3.73 5.02 
2 15.2 8.08 2.668 0.977 3.84 4.97 
3 15.2 8.04 2.672 0.978 4.35 5.17 
4 15.3 8.11 2.668 0.977 4.28 5.06 
5 15.3 8.09 2.670 0.978 4.13 5.27 
6  15.2 8.07 2.669 0.977 3.9 5.06 
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Figure 6.12 (a) and (b) show sequentially the pictures of 5 wt% P6 SiC/Al 

compacts and their sectioned and polished cross-sections recovered in the interrupted 

tests after prescribed foaming times. The numbers in these figures correspond to the 

foaming time at which the foamed compacts were taken from the furnace.  In accord 

with expansion-time graph shown in Figure 6.10, the foam expansion is high until about 

150 s, slightly decreases at 200 s and remains almost constant after about 300 s (Figure 

6.12(a)). The cells are initially noted to be relatively small and become larger as the 

foaming time increases (Figure 6.12(b)). The cell collapse/rupture is clearly seen at the 

upper sections, while a dense metal layer is seen at the bottom sections (Figure 12(b)). 

This dense bottom layer resulted from liquid metal drainage. The thickness of this layer 

increases as the foaming time increases as seen in Figure 6.12(b). As compared with Al 

compacts, the drainage is significantly reduced with SiC particle addition, while the cell 

collapses are still seen. The collapses of the cells are more obvious for 10 and 15 wt% 

additions. The increasing wt% of particles in P6 SiC/Al compact is also found to result 

in irregular cell formation (Figure 6.13(b)).  

 

 

(a) 

(b) 

Figure 6.12.  (a) Foamed 5 wt% P6 SiC/Al compact (interrupted foaming) and (b) the 
corresponding cross-sections. 
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(a) 

 
(b) 

Figure 6.13. (a) The pictures of foamed P6 SiC/Al compacts with 5, 10 and 15 wt% SiC 
addition and (b) their cross sections after 900 s furnace holding time. 

 

Similar with Al compacts, the number of cells decreases and the cell size 

increases with the increasing furnace holding times in foamed P6 SiC/Al compacts as 

shown in Figure 6.14(a). The number of cells decreases from about 100 at 100 s furnace 

holding time to about 50 at the furnace holding times of 200 and 400 s. Average cell 

size increases from 2 mm to 4.5 mm within the same range of furnace holding time. 

Significant increase in cell size and decrease in number of cells occur when wt% of P6 

SiC particles increases from 5 and 10 wt% to 15 wt% as shown in Figure 6.14(b). 

Microscopic observations of the cell walls at the top and bottom sections show that 

drainage is further not extensive as compared with foamed Al compacts.  

The general and cross-sectional pictures of 5 wt% P7 SiC/Al foamed compacts 

after 400 and 900 s furnace holding time are shown in Figures 6.15 (a) and (b), 

respectively. After 400 s furnace holding time, the cells of the upper sections of the 

foam cylinder collapse and the cell walls at the bottom sections become thicker. This 

shows a significant extent of the drainage. The cell collapse is seen to occur earlier than 

foamed P6 SiC/Al compacts with same wt% of particle addition.   
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(a) 

 
(b) 

Figure 6.14. (a) The effect of furnace holding time (5 wt% SiC) and (b) wt% of SiC 
addition on the number of cells and cell sizes (900 s) of foamed P6 SiC/Al 
compacts. 
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(a) 

 
(b) 

Figure 6.15. (a) The pictures of foamed P7 SiC/Al compacts and (b) their cross sections 
after 900 s furnace holding time. 

 

6.4.  Expansion of Nano SiC/Al Compacts (P10) 

 
The expansion-time graphs of compacts with 0.05, 0.1 and 0.15 wt% of P10 SiC 

addition are shown in Figure 6.16. The expansions of these compacts first increase to 

about 3 (Figure 6.16) but, then drops significantly. The coding, weight, thickness, 

density and expansions of P10 SiC/Al compacts are further tabulated in Table 6.4. The 

relative density of the compacts varies between 0.975 and 0.985. The compacts with 

0.15 wt% ceramic addition were prepared by mixing the Al and SiC powder using a ball 

milling machine at 500 rpm for 2 h. The compacts were pressed at a pressure of 183 

MPa. The linear expansion and LEmax values of the compacts vary between 0.83 and 

1.41 and 1.2 and 3.63 respectively. In Figure 6.17(a), the temperature-expansion-time 

graphs of 0.15 wt% SiC/Al compacts are shown. The linear expansion values of these 

compacts are below 2. In addition, the decrease in heating rate delays the foaming 

without affecting LE and LEmax values as shown in Figure 6.17(b). Figure 6.17(c) shows 

expansion-time graphs of 0.15 wt% SiC/Al compacts with the pictures of the foam 

structures at different furnace holding times.  Considerably large cells with thicker cell 
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walls are clearly seen in this figure, proving relatively low foaming property of nano 

SiC/Al compacts.   

 

 

Figure 6.16. Expansion-time graph of foamed 30 nm SiC/Al compacts (P10). 

 

Table 6.4. The coding, weight, thickness, density and expansions of SiC(P10)/Al 
compacts. 

 
SiC
wt% 

Specimen code Weight 
(g) 

Thickness
(mm) 

Density 
(g cm-3) 

Relative 
density 

LE LEmax

0.05 P4.30n.(0.05).I 14.9 7.81 2.662 0.985 1.36 3.15 
P4.30n.(0.05).II 14.7 7.70 2.663 0.985 1.41 3.16 

0.1 P4.30n.(0.1).I 14.9 7.81 2.657 0.981 - 2.62 
P4.30n.(0.1).II 14.9 7.80 2.659 0.982 - 2.80 

0.15 

P4.30n(0.15).I 14.7 7.68 2.661 0.982 - 3.63 
P4.30n.(0.15).II 14.9 7.85 2.659 0.981 - 3.02 
P10.015-1 15.1 8.30 2.643 0.975 1.23 1.73 
P10.015-2 15.0 8.52 2.648 0.977 1.32 1.79 
P10.015-3 15.1 8.40 2.643 0.975 1.24 1.24 
P10.015-4 15.1 8.20 2.643 0.975 1.1 1.85 
P10.015-5 15.0 8.40 2.638 0.973 0.9 1.63 
P10.015-6 15.0 8.40 2.641 0.974 - 1.2 
P10.015-7 15.2 8.30 2.635 0.972 - 1.26 
P10.015-8 15.2 8.50 2.640 0.974 - 1.76 
P10.015-9 14.2 7.75 2.637 0.973 0.83 1.7 
P10.015-10 14.4 7.80 2.640 0.974 - - 
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(a)                                                                    (b) 

 
(c) 

Figure 6.17. (a) Expansion-time-temperature graphs of 0.15 wt% nano SiC/Al compacts 
(b) effect of heating rate (c) foam structure at different furnace holding 
times. 

 

In the next group of compacts, the powders were mixed in a low speed mixing 

device in a closed container with the ceramic balls of 6 mm in diameter. The compacts 

prepared by using ceramic balls are coded as P10.st. The coding, weight, thickness, 

density and expansions of these groups of the compacts are further tabulated in Table 

6.5. The expansion-time graphs of the compacts with 0.013, 0.05, 0.1 and 0.15 wt% 

nano SiC addition are sequentially shown in Figures 6.18 (a-d). Nano SiC particle 

addition of 0.0133 wt% as seen in Figure 6.18 (a) results in very poor expansions with 

an average LEmax value of 0.96. The foam structure is composed of few cells with thick 



87 

 

and non-homogeneous cell wall thickness (Figure 6.19). SiC addition of 0.05 wt% 

however yields the highest average LEmax value, 3.08 (Figure 6.18(b)). The average 

maximum linear expansion values of 0.10 and 0.15 wt% SiC additions are 2.81 and 

2.26, respectively (Figures 6.18(c) and (d)). By considering the cell size, 0.05 wt% 

addition results in the most homogeneous cell size distribution (Figure 6.19). The foam 

with 0.05 wt% SiC addition contains 60 cells at the maximum expansion, which is 

nearly twice as much as the foams with 0.1 and 0.15 wt% addition (Figure 6.20). It is 

also noted that, at longer furnace holding times (900 s), the collapse of cells is not 

prevented by the nano particle addition. 

 

Table 6.5. The coding, weight, thickness, density and expansions of SiC (P10.st)/Al 
compacts. 

 
Specimen 

code 
SiC 
wt% 

Weight
(g) 

Thickness
(mm) 

Density 
(g cm-3) 

Relative 
density 

LEmax

P10.st.0133.01 0.0133 14.9 7.90 2.662 0.981 1.18 
P10.st.0133.02 0.0133 14.9 7.86 2.669 0.983 0.73 
P10.st.05.01 0.05 14.9 7.87 2.663 0.981 3.51 
P10.st.05.02 0.05 14.9 7.84 2.664 0.981 2.64 
P10.st.10.01 0.10 14.8 7.85 2.659 0.980 2.91 
P10.st.10.02 0.10 14.9 7.85 2.660 0.980 2.70 
P10.st.15.01 0.15 14.7 7.76 2.657 0.979 2.37 
P10.st.15.02 0.15 14.8 7.78 2.660 0.980 2.14 

  

 

 
(a)                                                                    (b) 

Figure 6.18.  Expansion behavior of nano size SiC added foams with (a) 0.0133 wt%,  
(b) 0.05 wt%, (c) 0.10 wt% and (d) 0.15 wt% particle additions. 

(cont. on next page) 
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(c)                                                                    (d) 

Figure 6.18.  (cont.) 
 

 Maximum expansion  15 min holding Maximum expansion   15 min holding 

 
 

0.0133 wt% nano SiC  

  
0.05 wt% nano SiC 

  

0.10 wt% nano SiC 

Figure 6.19. Pictures of the nano size SiC added P10 foams and their sections at 
maximum expansion and after 900 s furnace holding time. 

(cont. on next page)
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0.15 wt% nano SiC 

Figure 6.19. (cont.) 
 

 

Figure 6.20.  Number of cells and cell sizes of foamed nano SiC/Al compacts at the 
maximum expansion. 

 

6.5.  Expansion of Whisker SiC (P9)/Al Compacts  

 
The linear expansion-time graphs of SiC whisker/Al compacts with 0.1-3 wt% 

addition are shown in Figure 6.21. The expansions are relatively high until about 1wt% 

addition and above 1 wt% addition the expansions drop sharply. The coding, weight, 

thickness, density and expansions of these groups of compacts are further tabulated in 

Table 6.6. The relative density of SiC whisker/Al compacts varies between 0.972 and 
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0.985. The highest expansion values are found with 0.1 wt% whisker addition as 

tabulated in Table 6.6. Figure 6.22 show the cell structures of whisker contained foams 

after 900 s furnace holding time. The dense metal layer at the bottom of 0.1 wt% 

whisker contained foam is clearly seen in the same figure. The drainage decreases as the 

wt% increases to 0.5 and 1 wt%. Linear expansion-time-temperature curves for 

compacts with 0.5 wt% SiC whisker addition is given in Figure 6.23 (a). Linear 

expansion values tend to increase with the increasing heating rate as seen in the same 

figure. Similarly the effect of heating rate is also seen in 1 wt% SiC whisker/Al compact 

(Figure 6.23(b)). The maximum linear expansion is higher for the foamed compact with 

higher heating rate (Figure 6.24). The cell structures of the 0.5 and 1wt% whisker added 

foams and Al foams without addition after 900 s furnace holding time are shown in 

Figure 6.25. The dense metal layer at the bottom section of the foams with whisker 

addition is seen to decrease considerably as compared with foamed Al compact. It was 

observed from the cross section of the foams that, number of cells decreased rapidly 

after reaching the highest number for 0.5 wt% SiC (Figure 6.26). Number of cells 

formed with the 3 wt% addition is around 30 % of the number of cells with 0.5 wt% 

addition. 

 

 

Figure 6.21. Linear expansion-time graphs of SiC whisker/Al compacts (P9). 
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Figure 6.22. The cross sections of foamed SiC whisker/Al compacts (numbers show 
wt% of SiC whisker after 900 s holding time). 

 

Table 6.6. The coding, weight, thickness, density and expansions of P9 SiC whisker/Al 
compacts. 

 
Specimen 

code 
SiC 
wt% 

Weight
(g) 

Thickness
(mm) 

Density 
(g cm-3) 

Relative 
density 

LE LEmax 

P4.w.(0.1).I 0.1 14.9 7.86 2.658 0.983 4.19 5.43 
P4.w.(0.1).II 14.4 7.68 2.662 0.985 4.17 5.16 
P4.w.(0.5).I 

0.5 

14.8 7.75 2.665 0.985 3.35 4.08 
P4.w.(0.5).II 14.9 7.85 2.663 0.985 3.72 4.96 
CBW1-1 15.1 8.03 2.648 0.979 4.68 4.84 
CBW1-2 15.1 8.01 2.649 0.979 4.35 4.95 
CBW1-3 15.0 7.98 2.648 0.979 3.79 4.14 
CBW1-4 14.5 7.68 2.628 0.972 - - 
CBW1-5 15.1 7.98 2.632 0.973 4.15 4.41 
CBW1-6 15.1 8.05 2.638 0.975 3.96 4.95 
CBW1-7 15.1 8.03 2.642 0.977 - 4.99 
CBW1-8 15.0 8.00 2.643 0.977 - 4.56 
CBW1-9 15.3 8.14 2.650 0.980 - 4.81 
CBW1-10 15.2 8.08 2.648 0.979 - 4.18 
P4.w.(1).I 

1 

14.9 7.88 2.654 0.980 3.6 4.2 
P4.w.(1).II 14.9 7.88 2.661 0.983 3.08 4.11 
CBW2-1 15.1 8.10 2.640 0.975 3.14 3.58 
CBW2-2 15.1 8.05 2.642 0.976 3.25 3.85 
CBW2-3 14.3 7.65 2.651 0.979 3.8 4.66 
CBW2-4 15.1 8.10 2.643 0.976 3.67 4.75 
CBW2-5 15.0 8.00 2.649 0.978 3.48 4.25 
CBW2-6 14.5 7.70 2.640 0.975 - 4.78 
CBW2-7 15.1 8.05 2.648 0.978 - 4.18 
CBW2-8 15.2 8.05 2.650 0.979 - 5.34 
CBW2-9 15.1 8.05 2.645 0.977 - 5.16 
P4.w.(3).I 3 14.9 7.84 2.649 0.974 1.26 1.46 
P4.w.(3).II 14.9 7.91 2.647 0.973 1.2 1.68 
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(a) 

 
(b) 

Figure 6.23. Linear expansion-temperature-time graphs of SiC whisker/Al compacts (a) 
0.5 wt% and (b) 1 wt% whisker addition. 
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Figure 6.24. Linear expansion- temperature-time graphs of 1 wt% SiC whisker/Al 
compacts of different heating rate. 

 

 

Figure 6.25. The structure of foamed 1 and 0.5 wt% SiC whisker/Al and Al compacts 
after 900 s furnace holding time. 
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Figure 6.26. Number of cells and cell sizes of foamed whisker shaped SiC/Al compacts 
at the maximum expansion. 

 

6.6.  Expansion of 2 Micron SiC (P8)/Al Compacts 

 
 The expansions of P8 SiC/Al compacts vary with the wt% of the particle 

addition as shown in Figure 6.27.  P8 SiC/Al compacts, as seen in the same figure, show 

almost no expansion after about 1 wt% SiC addition. The coding, weight, thickness, 

density and expansions of these groups of compacts are further tabulated in Table 6.7. 

As tabulated in Table 6.7, the expansion values of foamed compact with 3 and 5 wt% 

addition are relatively low, showing almost no expansion. The cell structures of the 

foams with 0.1, 0.5 and 1 wt% SiC addition after 900 s furnace holding time are shown 

in Figure 6.28. At relatively long furnace holding times, the drainage is clearly seen at 

the bottom sections of the foams.   
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Table 6.7.  The coding, weight, thickness, density and expansions of P8 SiC/Al 
compacts. 

 
Specimen 
code 

SiC 
wt% 

Weight
(g) 

Thickness 
(mm) 

Density 
(g cm-3) 

Relative 
density 

LE LEmax 

P4.2.(0.1).I 
0.1 14.9 7.77 2.666 0.986 4.12 4.75 

P4.2.(0.1).II 14.7 7.67 2.664 0.986 4.23 5.67 
P4.2.(0.5).I 

0.5 14.3 7.52 2.659 0.983 3.29 4.86 
P4.2.(0.5).II 14.9 7.82 2.664 0.985 3.63 4.60 
P4.2.(1).I 

1 14.9 7.85 2.664 0.984 3.17 4.17 
P4.2.(1).II 14.9 7.84 2.665 0.984 3.44 4.87 
P4.2.(3).I 

3 14.9 7.95 2.642 0.972 0.26 0.26 
P4.2.(3).II 14.9 7.96 2.642 0.972 0.17 0.17 
P4.2.(5).I 

5 15.0 8.03 2.632 0.964 0.105 0.105 
P4.2.(5).II 15.0 8.01 2.622 0.960 0.105 0.105 

 
 

 

Figure 6.27. Linear expansion-time graphs of  P8 SiC/Al compacts of varying particle 
wt%’s. 
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0.1 wt%                       0.5 wt%                     1 wt% 

Figure 6.28. The structure of foamed 0.1, 0.5 and 1 wt% P8 SiC/Al compacts after 900 s 
furnace holding time. 

 

6.7.  Expansion of the Sieved SiC (P1-P5)/Al Compacts 

 
The expansion-time graphs of 5 and 10 wt% (P1, P2, P3, P4 and P5) SiC/Al 

compacts together with those of Al compacts are shown in Figures 6.29 (a) to (e), 

respectively. At 5 wt% particle addition, the expansions in the largest size SiC (P4 and 

P5) added compacts are relatively low, while increase with increasing the particle wt% 

from 5 to 10 wt% (Figure 6.29(d, e)). The coding, weight, thickness, density and 

expansions of P1-P5 SiC /Al compacts are further tabulated in Table 6.8. The cell 

structures of foamed 5 and 10 wt% P1-P5 SiC/Al compacts after 900 s furnace holding 

time are shown in Figures 6.30 (a) and (b), respectively. The dense metal layer at the 

bottom section of the foams with particle addition is seen to be considerably decreased 

as compared with foamed Al compacts.  

 

(a) (b) 

Figure 6.29 The linear expansion-time graphs of 5 and 10 wt% P1-P5 SiC/Al compacts 
(a) P1, (b) P2, (c) P3, (d) P4 and (e) P5. 

(cont. on next page) 
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(c) (d) 
 

(e)  

Figure 6.29. (cont.) 

(a) 5 wt% SiC 

 
(b) 10 wt% SiC 

Figure 6.30. The cell structures of foamed P1-P5 SiC/Al compacts after 900 s furnace 
holding time (a) 5 and (b) 10 wt% addition. 
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Table 6.8. The coding, weight, thickness, density and expansions P1-P5/Al compacts. 

 
Specimen code Weight

(g) 
Thickness

(mm) 
Density 
(g cm-3) 

Relative 
density 

LE LEmax

P1 group 
5 wt% 

P1-05-01 14.9 7.85 2.675 0.980 4.29 5.44 
P1-05-02 14.9 7.86 2.686 0.984 3.97 4.84 
P1-05-03 14.9 7.84 2.684 0.983 4.19 5.19 
P1-05-04 14.9 7.84 2.676 0.980 4.23 5.25 
P1-05-05 14.9 7.80 2.683 0.982 4.22 5.25 

P1 group 
10 wt% 

P1-10-01 14.9 7.80 2.684 0.973 3.70 4.09 
P1-10-02 14.9 7.82 2.695 0.977 3.43 4.04 
P1-10-03 14.9 7.78 2.698 0.978 3.44 4.08 
P1-10-04 14.7 7.66 2.699 0.978 3.50 4.16 
P1-10-05 14.9 7.75 2.703 0.979 3.42 4.08 

 
P2 group 

5 wt%  

P2-05-01 14.9 7.92 2.676 0.980 3.37 4.06 
P2-05-02 14.9 7.92 2.684 0.983 3.50 3.98 
P2-05-03 15.0 7.98 2.682 0.982 3.52 4.29 
P2-05-04 14.7 7.82 2.683 0.982 3.81 4.46 
P2-05-05 14.9 7.90 2.682 0.982 3.84 4.39 

 
P2 group 
10 wt%  

P2-10-01 14.9 7.92 2.684 0.973 3.25 3.93 
P2-10-02 14.9 7.98 2.682 0.972 3.45 4.33 
P2-10-03 14.7 7.82 2.683 0.972 3.66 4.37 
P2-10-04 14.9 7.90 2.682 0.972 3.70 4.42 
P2-10-05 14.6 7.75 2.682 0.972 3.60 4.66 

P3 group 
5 wt% 

P3-05-01 14.5 7.59 2.686 0.984 4.08 4.70 
P3-05-02 14.7 7.70 2.685 0.983 4.00 4.58 
P3-05-03 14.9 7.81 2.687 0.984 4.13 5.24 
P3-05-04 14.9 7.82 2.683 0.982 3.86 4.82 
P3-05-05 15.0 7.88 2.686 0.984 3.80 4.51 

 
P3 group 
10 wt%  

P3-10-01 14.9 7.76 2.701 0.979 3.91 4.78 
P3-10-02 14.9 7.75 2.699 0.978 3.16 4.23 
P3-10-03 14.9 7.77 2.704 0.980 3.62 4.78 
P3-10-04 14.9 7.74 2.701 0.979 3.67 4.29 
P3-10-05 14.8 7.70 2.708 0.981 2.94 4.54 

 
P4 group 

5 wt%  

P4-05-01 14.7 7.65 2.703 0.990 4.49 4.94 
P4-05-02 14.9 7.80 2.709 0.992 4.00 4.41 
P4-05-03 14.8 7.71 2.707 0.991 3.77 4.65 
P4-05-04 14.9 7.82 2.706 0.991 3.51 4.50 
P4-05-05 14.9 7.76 2.712 0.993 3.49 4.44 

 
P4 group 
10 wt%  

P4-10-01 14.9 7.85 2.692 0.975 3.22 4.21 
P4-10-02 14.9 7.80 2.693 0.976 3.26 4.48 
P4-10-03 14.9 7.79 2.695 0.977 3.32 4.54 
P4-10-04 14.8 7.79 2.692 0.975 3.61 4.40 
P4-10-05 14.9 7.82 2.686 0.973 3.48 4.82 

 
P5 group 

5 wt%  

P5-05-01 14.9 7.85 2.692 0.986 3.49 4.34 
P5-05-02 14.9 7.80 2.693 0.986 3.56 4.46 
P5-05-03 14.9 7.79 2.695 0.987 3.70 4.26 
P5-05-04 14.8 7.79 2.692 0.986 3.72 4.26 
P5-05-05 14.9 7.82 2.686 0.984 3.35 4.25 

P5 group 
10 wt%  

P5-10-01 14.9 7.77 2.713 0.983 3.13 4.11 
P5-10-03 14.9 7.77 2.701 0.979 2.89 4.44 
P5-10-04 14.9 7.77 2.707 0.981 3.30 4.61 
P5-10-05 14.8 7.66 2.708 0.981 3.11 4.06 
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6.8.  Expansion of Layered Compacts 

 
Two groups of layered compacts were prepared. In the first group, the half of the 

compact is made of Al and the other half 5 wt% P6 SiC/Al as shown in Figure 6.31. In 

the other group, the lower part is made of Al and the upper part 5 wt% P6 SiC/Al and 

vice verse as shown Figure 6.31. In the first group compacts, a thin separator layer was 

used in the compaction die to separate the powder layers. In the second group, the 

powder with no SiC particle was first compacted, than the second layer was compacted 

over the first layer or vice verse.  The coding, weight, thickness, density and expansions 

of layered compacts are further tabulated in Table 6.9. Higher LEmax values are found in 

group 2 foamed compacts as tabulated in Table 6.9. 

 

 
Figure 6.31. Schematic presentations of the layered compacts. 

 

Table 6.9. The coding, weight, thickness, density and expansions of layered compacts. 

Specimen 
code 

Thickness 
(mm) 

Weight 
(g) 

Density 
(g cm-3) 

Relative 
density LEmax 

Group 1 
PL1-01 7.82 14.8 2.674 0.981 4.61 
PL1-02 7.78 14.8 2.673 0.980 4.39 
PL1-03 7.81 14.8 2.678 0.982 3.82 
PL1-04 7.84 14.8 2.669 0.979 4.07 

Group 2 
PL2-01 7.73 14.7 2.671 0.979 4.02 
PL2-02 7.87 14.9 2.667 0.978 5.19 
PL2-03 7.86 14.9 2.664 0.977 4.71 
PL2-04 7.77 14.8 2.672 0.980 5.25 
PL2-05 7.79 14.8 2.670 0.979 4.02 
PL2-06 7.87 14.9 2.674 0.981 4.10 
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The pictures of group 1 and group 2 foamed layered compacts are shown in 

Figure 6.32. In group 1 foams, 5 wt% SiC contained section is seen darker in Figure 

6.32. The effect of SiC contained layer is visually observable not only on the outer 

surface of the foam (Figure 6.33 (a)), but also in the cell structure of the foam (Figure 

6.33 (b)). The silicon carbide added section has homogeneous cell size distribution, 

while, the extensive cell wall collapse is seen in Al section. The cell structure of the 

group 2 layered foams are shown in Figure 6.33 (c). Drainage is observed to decline 

greatly in these foams.   

 

 

Figure 6.32. Views of the expanded foams from the both groups of layers. 

 

 
(a) (b) (c) 

Figure 6.33. Picture of (a) group 1 layered foamed compact and (b) cross-section and 
structure of group 2 foamed compacts. 
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CHAPTER 7 

 

MICROSCOPIC ANALYSIS FOR EXPANSION TESTS 

 
7.1.  Foamed 30 nm SiC/Al Compacts 
 

In Figures 7.1 (a) and (b) EDAX analysis of a TiH2 particle and the reaction 

zone around the TiH2 particle in a foamed 30 nm SiC/Al compact (P10) after 900 s 

furnace folding time is shown respectively. The white part in Figure 7.1(a) is the 

unreacted TiH2 and the gray section is Al-Ti intermetallic (Figure 7.1(b)) formed as a 

result of the reaction between Ti and liquid Al.  The cell wall microstructure of the same 

foam is shown in Figure 7.2(a). A higher magnification view of the same cell wall 

clearly shows the presence of the secondary phases, precipitates, in 0.5-3 micron size in 

the cell wall (Figure 7.2(b)). These are Al-Si secondary phases (Figure 7.2(c)), resulting 

from the reaction between SiC particles and liquid Al. The elemental mapping of the 

cell wall (Figures 7.3 (a-d)) clearly shows the presence of Si in the cell wall. The lack of 

C in the selected cell wall in Figure 7.3(c) also confirms Al-C phase formed by the 

reaction between SiC and liquid Al is removed during grinding and polishing as it is 

soluble in water.    
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(a) 

 
(b) 

Figure 7.1. EDAX analysis of a (a) TiH2 particle and (b) the reaction zone around the 
TiH2 particle in a foamed 30 nm 0.15 wt% SiC/Al compact (P10) after 900 s 
furnace folding time. 
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(a) (b) 

 
(c) 

Figure 7.2.  SEM micrographs showing (a) and (b) a cell wall in foamed 0.15 wt% nano 
SiC/Al compact and (c)  EDAX analysis of the precipitates in the cell wall.  
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(a) (b) 

(c) (d) 

Figure 7.3. Elemental mapping of the cell wall in a foamed 0.15 wt% nano SiC/Al 
compact: (a)Al, (b) Si, (c) C and for (d) O. 

 

7.2.  Foamed SiC Whisker /Al Compacts 

 
The SEM micrographs of the cell wall in a foamed  1 wt% SiC whisker/Al 

compact  is shown in Figure 7.4(a). The whiskers are mostly located on the surface of 

the cells (Figure 7.4(b)), while few of them are seen interior of the cell wall (Figure 

7.4(c)).  Figure 7.4(d) further shows that whiskers are partially wetted by the liquid Al 

as they suspend on the cell surface. 
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(a) (b) 

(c) (d) 

Figure 7.4. SEM pictures of a foamed 1 wt% whisker/Al compact (a) cell wall and 
surface, (b) cell wall surface, (c) cell wall (d) suspended whiskers on the cell 
wall surfaces. 

 

7.3.  Foamed SiC Particle/Al Compacts 

 
 Microscopic observations further show that SiC  particles are preferentially 

located at cell wall surface/gas interface in the foamed 5 and 10 wt% SiC/Al powder 

compacts as shown in Figures 7.5 (a-f). Increasing wt% of particles is noted to increase 

the number of particles located at the cell wall surface/gas interface as seen in the same 

figures. Figures 7.6 (a) and (b) show the cell wall surface SEM pictures of a foamed 

P10 SiC/Al compact. Since the particle size in foamed P10 1 wt% SiC/Al compacts was 

relatively small, a relatively high magnification was required to detect the particles on 

cell wall surfaces. In these foams, SiC particles are also observed to locate at the cell 

wall surfaces. EDAX analysis of the particle located at the cell surface further show the 

presence of Al, Si, C and O (Figure 7.7). The high wt% of C in the analysis may also 

prove the reaction between SiC and liquid Al.  
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5wt% 10wt% 

(a)  

(b)  

(c)  

(d)  

Figure 7.5. SEM pictures of cell wall surfaces of foamed (a) P1, (b) P2, (c) P3, (d) P4, 
(e)  P5  SiC/Al compacts after 900 s furnace holding time. 

(cont. on next page)
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(e) 

Figure 7.5. (cont.) 
 

(a) (b) 

Figure 7.5. SEM pictures of cell wall surfaces of foamed P10 1wt% SiC/Al compacts 
after 900 s furnace holding time. 

 

A small fraction of the particles are also found interior of the cell walls of small 

size SiC particle added foams (P2) as shown in Figures 7.8 (a) and (b). Similar 

observation is also made for the largest size SiC addition (Figures 7.8(c) and (d)).  

Although nearly equal size particles are observed on the cell wall surfaces of the 

foamed SiC/Al compact (Figure 7.9(a)) as is expected, small and large particles are 

collectively seen on the cell wall surfaces of foamed P6 and P7 SiC/Al compacts 

(Figure 7.9(b)). 
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Figure 7.7. EDAX analysis of the cell wall surface of a foamed 1 wt% P10 SiC/Al 
compact after 900 s furnace holding time. 

      

 

(a) (b) 

Figure 7.8. SEM pictures of cell walls of the foams with (a) and (b) 5 wt% P2 
SiC/Al, (c) 5 wt% P5 and (d) 10 wt% P5 SiC/Al foam. 

(cont. on next page)
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(c) (d) 

Figure 7.8. (cont.) 

 

(a) (b) 

Figure 7.9. Particles at cell wall surfaces (c) 5 wt% P5 SiC/Al foamed compact and (d) 
5 wt% P7 SiC/Al foamed compact after 900 s. 

 

The specimen codes and Hardness Vickers (HV) values of foamed Al and P1-P5 

SiC/Al compacts cell walls are tabulated in Table 7.1, together with standard deviation 

values of the test data for each group. For each specimen, 10 hardness tests were made 

on the surfaces where there is no SiC particle present. Mean value of these tests were 

taken into consideration. The variation of the hardness values with mean SiC particle 

size of the foams is shown in Figure 7.10 for 5 and 10 wt% SiC addition. As seen in 

Figure 7.10, the hardness values of SiC contained foams cell walls are greater than Al 

foam cell walls and increases with wt% of SiC addition except P5 powder. Besides they 

have big difference in the percentages added, hardness values for the nano sized 0.1 

wt% SiC added foams were observed to be close to the average hardness value with 10 

wt% particle added foams (Figure 7.10). This is because of the high surface area of the 

nano powders compared with the sieved SiC particle addition. 
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Table 7.1. Hardness Vickers values of foamed Al and P1-P5 SiC/Al compacts. 

 
Specimen 
group 

Mean HV Standard 
deviation

P0 33.91 4.86 
P10-0.1 46.50 2.09 
P1-05 40.60 5.68 
P1-10 47.80 3.88 
P2-05 42.43 4.54 
P2-10 49.50 4.88 
P3-05 44.20 3.56 
P3-10 48.80 4.66 
P4-05 44.50 2.69 
P4-10 47.60 2.68 
P5-05 53.00 3.84 
P5-10 53.30 4.42 

 

 

 

Figure 7.10. Average hardness values of the cell walls vs. SiC particle size. 
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CHAPTER 8 

 

COMPRESSION BEHAVIOUR OF SiC ADDED FOAMS 

 
The foams expanded until about the maximum expansion were cut into cylindrical 

compression specimens using an electro discharge machine through the foaming 

direction with a l/d ratio of ~1 (Figure 8.1(a)). These samples were cut from the middle 

sections of the foam cylinder and therefore contained no dense layer (Figure 8.1(b)). 

Each foam sample contains more than 5-6 cells. Compression tests were performed until 

about 10, 40 and 80% strain in order to observe the strain dependent deformation 

mechanism.  
 

 
(a) 

 

 
(b) 

Figure 8.1. View from (a) dense shell of the cut foam and (b) prepared compression test 
specimens from expanded 5 wt% P5 SiC/Al foams. 
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 In Figures 8.2 (a-k), the compression stress-strain behavior tested Al and 5 and 

10 wt% P1-P5 SiC/Al foams are shown sequentially. Figure 8.2 (l) shows the 

compression stress-strain curves of SiC wisker/Al foams of different densities. It is 

noted in these graphs that, as the foam density increases the stress values increase 

within the each group of the foam samples.  Figures 8.3(a) and (b) show sequentially the 

compression nominal stress-strain curves of foamed 5 and 10 wt% P1-P5 SiC/Al and Al 

compacts at the similar densities. The compressive stress of foamed Al compact (~0.35 

g cm-3) at 0.1 strain vary between 1.8 and 1.9 MPa, while the stress in 5 and 10 wt% P1-

P4 SiC contained foams increases to 2.5-2.7 MPa, corresponding to a nearly 30% 

increase in the collapse stress. This proves the stress enhancement of the foam with SiC 

particle addition under compression loads.  Relatively low and no strengthening is 

found in P5 SiC/Al and SiC whisker/Al foams. Tables 8.1  and 8.2 further tabulates Al 

and 5 wt% SiC/Al and 5 wt% SiC/Al foam sample densities and corresponding 

mechanical properties, respectively. 

 

 

(a)  (b) 

Figure 8.2. Stress-Strain curves of the foams with; (a) P0, (b) %5 P1 SiC, (c) %10 P1 
SiC, (d) %5 P2 SiC, (e) %10 P2 SiC, (f) %5  P3 SiC , (g)  %10 P3 SiC , (h) 
%5 P4 SiC, (i) %10 P4 SiC, (j) %5 P5 SiC, (k) %10 P5 SiC, and (l) %1 SiC 
whisker additions. 

(cont. on next page)
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(c) (d) 

(e) (f) 

(g) (h) 

 
 

(cont. on next page)
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(i) (j) 

(k) (l) 

Figure 8.2. (cont.)  
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(a) 

 
(b) 

Figure 8.3. The stress-strain curves of the similar density foams: (a) 5 wt% P1-P5 
SiC/Al and SiC whisker/Al  and (b) 10 wt% P1-P5 SiC/Al foam. 
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Table 8.1. Foam compression test samples and mechanical properties of foamed Al and 
5 wt% SiC/Al compacts. 

 
Specimen 
Code 

Density 
(g.cm -3) 

Relative 
Density 

Maximum 
elastic 
stress 
(MPa) 

0.1 strain 
stress 
(MPa) 

Densification 
strain 

0.6strain 
SAE 

(joule g-1) 

P0-01 0.3123 0.1151 1.8813 1.8610 - - 

P0-02 0.3534 0.1302 1.8915 1.8712 0.69 4.9313 

P0-03 0.3212 0.1183 1.1797 1.2203 - - 

P0-04 0.3351 0.1235 1.9322 - - - 

P0-05 0.3050 0.1124 1.5559 1.4847 0.72 4.7025 

P1-05-01 0.3072 0.1125 1.8983 1.9322 -  

P1-05-02 0.3545 0.1298 2.8305 2.6440 -  

P1-05-03 0.3396 0.1244 2.6322 2.1813 0.69 5.8564 

P1-05-04 0.3398 0.1244 2.2101 2.2051 0.74 6.2873 

P2-05-01 0.3227 0.1182 1.8305 2.010 0.65 6.1274 

P2-05-02 0.3462 0.1268 2.3932 2.4338 0.64 5.8595 

P2-05-03 0.3104 0.1137 1.9322 1.8373 - - 

P2-05-04 0.3156 0.1156 1.9729 1.7407 - - 

P3-05-01 0.3275 0.1199 1.7372 1.7915 - - 

P3-05-02 0.3321 0.1216 1.4018 1.4117 - - 

P3-05-03 0.3724 0.1364 2.0745 2.2779 0.68 6.3244 

P3-05-04 0.2992 0.1096 1.7220 1.8305 0.73 5.1716 

P3-05-05 0.3532 0.1293 1.9254 2.0203 0.72 5.5073 

P4-05-01 0.3637 0.1332 2.3593 2.4542 0.68 5.8299 

P4-05-02 0.3339 0.1223 2.1338 1.8254 0.72 5.2416 

P4-05-03 0.3757 0.1376 1.6593 1.6949 0.77 5.5563 

P4-05-04 0.3183 0.1166 1.3153 1.2085 - - 

P4-05-05 0.3230 0.1183 1.7712 1.6610 - - 

P5-05-01 0.4013 0.1454 1.5661 1.6678 0.74 4.7916 

P5-05-02 0.4242 0.1537 1.8813 1.7491 0.71 5.5489 

P5-05-03 0.3478 0.1260 2.0084 1.9949 - - 

P5-05-04 0.3623 0.1313 1.3847 1.3576 - - 
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 Table 8.2. Foam compression test samples and mechanical properties of foamed 10 
wt% SiC/Al compacts. 

 
Specimen 
Code 

Density 
(g.cm -3) 

Relative 
Density 

Maximum 
elastic stress 

(MPa) 

0.1 strain 
stress 
(MPa) 

Densification 
strain 

0.6strain 
SAE 

(joule g-1) 

P1-10-01 0.3253 0.1179 2.7983 2.4779 - - 

P1-10-02 0.3478 0.1260 2.6084 2.8338 0.73 6.7440 

P1-10-03 0.3671 0.1330 3.1864 2.9830 0.71 6.5068 

P1-10-04 0.3920 0.1420 2.4067 2.4746 - - 

P2-10-01 0.4106 0.1488 2.7831 2.7423 - - 

P2-10-02 0.3531 0.1279 2.1322 1.7661 - - 

P2-10-03 0.3343 0.1211 1.8169 1.6406 0.71 5.6164 

P2-10-04 0.3427 0.1242 2.0881 1.8983 0.75 6.3601 

P2-10-05 0.3468 0.1257 2.6644 2.4610 0.71 6.2725 

P3-10-01 0.3993 0.1447 2.8881 2.8169 0.72 6.0447 

P3-10-02 0.3658 0.1325 1.6983 1.9830 0.67 5.9710 

P3-10-03 0.3882 0.1407 2.0356 1.9136 - - 

P3-10-04 0.3416 0.1238 1.9271 1.6017 - - 

P4-10-01 0.4013 0.1454 1.7356 2.0203 0.71 5.5885 

P4-10-02 0.4242 0.1537 2.1288 2.6305 0.73 5.7695 

P4-10-03 0.3478 0.1260 1.9796 1.6406 - - 

P5-10-01 0.3890 0.1409 2.5831 2.6542 0.70 6.3226 

P5-10-02 0.3866 0.1401 2.7051 2.3186 0.69 5.4426 

P5-10-03 0.3735 0.1353 2.1051 2.1864 - - 
 

The effect of SiC addition on SAE values are shown in Figures 8.4 (a) and (b) 

for 5 wt% SiC and 1wt% SiC whisker addition and 10 wt% SiC addition, respectively.  

The SAE values increases with increasing relative density of the foams, and except P5 

SiC/Al and whisker/Al foams, SiC/Al foams show higher SAE values than those of Al 

foams for both 5 and 10 wt% addition.  
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(a) 

 
(b) 

Figure 8.4.  The variation of SAE values of foams with relative density; (a) 5 wt% P1-
P5 SiC and 1 w% SiC whisker and (b) 10 wt% P1-P5 SiC/Al foams. 
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In few experiments, relatively larger rectangular foam samples (5x2x3 cm) were 

compression tested and the deformations were video-recorded in order to observe the 

operative deformation mechanisms in-situ. The deformed micrographs of Al and 10 

wt% P6 SiC/Al foam of large sample size as a function of percent strain are shown in 

Figures 8.5 and 8.6, respectively.  Following the elastic region the deformation was 

localized in the regions marked with black arrows in Figures 8.5 and 8.6. It is also seen 

in the same figures that the deformation localization starts form the locations of the 

largest cell size or the lowest density (weakest link), marked with white arrows at 0% 

strains in Figures 8.5 and 8.6. The deformation localization then proceeded through the 

undeformed sections of the samples as the strain increased. Microscopic analysis of the 

localized regions have shown that the main deformation mechanism in both foams was 

the cell wall bending, i.e. cell edges buckled over cell walls (Figures 8.7(a) and (b)). It 

is also seen in Figure 8.7 (b) that the buckling of the cell walls in some occasions 

resulted in tearing of the cell walls (marked with white arrows). The effect of SiC 

particle on the cell wall tearing is clearly shown in Figures 8.8 (a) and (b). In Figure 

8.8(a), the crack started on the cell wall surfaces is seen to follow the particle/metal 

interface and resulted in particle debonding (marked with arrow). Figure 8.8 (b) shows 

the particles on the locations of cracks on a bended cell wall. Microscopic observations 

of P1-P5 SiC foams also clearly show that thicker cell edges bent over the buckled 

thinner cell walls and tearing of the cell walls (Figures 8.9(a-d)). It was also found that 

whisker contained foams show the similar deformation mechanism as with Al foams. 

 

 

Figure 8.5. The deforming Al foam sample at various percent strains. 
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Figure 8.6. The deforming 10 wt% P6 SiC/Al foam sample at various percent strains. 

 

   
   (a)      (b)  

Figure 8.7. The deformed cell micrographs of (a) Al foam and (b) 10 wt% P6 SiC/Al 
foam samples showing cell wall bending and tearing. 

 

    
(a) 

Figure 8.8. Development of cracks around the SiC particles (a) near to a cell edge and 
(b) on the bent cell walls of 10 wt% P6 SiC/Al foam tested until about 50% 
strains.  

(cont. on next page) 
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           (b) 

Figure 8.8. (cont.) 

 

(a) (b) 

(c) (d) 

Figure 8.9. The pictures of the deformed (0.40 strain) cell walls of (a) Al (P0), (b) 5 
wt% P1, (c) 5 wt% P3 and (d) 5 wt% P5 SiC/Al foams. 
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CHAPTER 9 

 

DISCUSSION 

 
9.1.  The Effect of Particle Addition on the Compact Expansions  

 
Several different factors affect the foamability of the powder compacts including 

compaction pressure and temperature, foaming temperature and heating rate and the 

microstructure of the compacts to be foamed. The effects of compaction and foaming 

conditions on the foaming behavior of AlSi7 and 6061 Al compacts were previously 

determined (Duarte and Banhart 2000, Duarte, et al. 2002). It was found that increasing 

foaming temperature increased the foam expansions in both compacts within the 

temperature range of 600-800 °C. Increasing temperature reduced the viscosity; hence, 

promoted the gas evolutions, leading to increased foam expansions. It was shown in the 

same study that the volume expansions were saturated at 750 °C for AlSi7 alloy 

compact, while the viscosity of 6061 Al alloy compact was not sufficient for efficient 

foaming until about 800 °C. For the studied Al compacts without particle addition, the 

foaming temperature is between 663-750 °C and the maximum expansions were found 

to vary between 3 and 4.5. The expansion values of the studied Al compacts without 

particle addition were also found to be comparable with those of previously studied 

AlSi7 and Al compacts (Asavavisithchai and Kennedy 2006a, Banhart 2000a).  

 The foam evolution in the foaming powder compact process may be considered 

composing of several stages. The foam formation starts in the solid state just before the 

melting of the compact (Region 1 of Figure 9.1). The low rate of the expansion at the 

beginning of the foaming process results from the fact that as the compact is in the 

mushy state with a relatively high viscosity and by the complete melting of the compact 

the expansion rate increases greatly, the compact reaching the maximum expansion in 

Region 2 of Figure 9.1. The observed maximum expansion in the expansion-time graph 

in Region 2 is attributed to the sudden hydrogen gas release (Duarte and Banhart 2000). 

As the foam expands after Region 2 in Region 3 and 4, the decaying processes become 

active with cell wall rupture and coarsening and drainage. The cell wall rupture results 

from the thinning of the cell walls: the liquid metal flows from the film surface (cell 
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wall) to the plateau borders (cell edges) under the action of gravity and the pressure 

difference between film and plateau border. The cell walls get thinner until about a 

minimum thickness and then collapse.  Although the foam expansions in Region 4 of 

Figure 9.1 remain to be almost constant with increasing foaming duration after 300 s, 

the foam structure evolution continues.   

 

 

Figure 9.1. Typical linear expansion and temperature vs. time graph of an Al compact.  

 

The drainage reduces the cell wall thickness and forms a dense layer at the 

bottom and the cell rupture induces larger cells at the top sections of the foam cylinder. 

Stanzick et al. (Stanzick, et al. 2002b) observed the expansions of compacted AlSi7 and 

thixocast AlSi6Cu4 precursors using real time X-ray radioscopy. The cell wall rupture 

time for both types of precursors was determined around 50 ms. The cell rapture 

occurred at cell wall thicknesses below 50 µm. It should be noted that whenever the cell 

wall thickness reaches this critical value, the cell rupture will occur. The cell rupture 

time (T) was further approximated using the following relation; 

 

cbT 2
ρ=
σ

                                                      (9.1) 
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where, b, c, ρ and σ are the cell wall length, thickness, liquid metal density and surface 

tension, respectively. The cell rupture events were further determined as a function of 

foaming time and found to increase significantly with foaming time after an incubation 

time of 106 s. The incubation time was also found to be well in accord with the present 

study, corresponding to the maximum expansions at about 150 s. For the studied foams, 

therefore, the cell wall rupture is likely to be dominant decay process after the 

maximum expansion reached in the expansion-time graphs as elaborated below.  

The number of cells decreases significantly in foamed Al compacts after the  

maximum expansion as shown in Figure 9.2(a) (77% decrease in cell size in 300 s, from 

145 to 33). The foamed P6 SiC/Al compacts although having less number of cells show 

the similar number cell size reduction with the increasing foaming durations as shown 

in the same figure. The reduced number of cells at the beginning of foaming in SiC/Al 

compacts is likely to be due to the increased viscosity of the SiC/Al compacts, leading 

to the delayed incubation time of the bubble nucleation. With increasing foaming 

duration, the average cell size increases with the increased events of the cell wall 

rupture. As the foaming duration proceeds, thinner cells collapse and drainage 

intensifies, leading to increased cell wall thickness as shown in Figure 9.2(b). The 

average cell wall thickness of the Al foams increases about 60% in a foam duration of 

400 s as depicted in Figure 9.2(b). As the cell wall thickness values were measured from 

the cross-sections of the foam cylinders, the thicker cell walls at the bottom of the 

cylinder resulting from the drainage increased the average cell wall thickness. The 

variation of the cell wall thickness for foamed Al compacts for 100 and 200 s is shown 

in Figure 9.3(a). It is seen in the same figure that the thicknesses of the cell walls are 

relatively thinner at the top than the bottom section of the foam cylinder. The minimum 

cell wall thickness as seen in Figure 9.3(a) is around 40 µm, which is in accord with the 

critical cell wall thickness measured previously  in a similar Al compact (Stanzick, et al. 

2002b). Figures 9.3(b) and (c) shows the variations of Al and P6/Al compact cell wall 

thickness after 100 and 200 s, respectively. The particle size of P6 varies between 3-40 

µm. The minimum cell wall thickness of P6/Al foamed compacts is about 66 µm and 60 

µm after 100 and 200 s, respectively. This proves the thicker cell wall thickness in SiC 

particle contained foams.  As the drainage occurs through the bottom sections due to 

gravity, thicker cell walls with wider thickness ranges are observed at the bottom 

sections of the foams.  
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(a)                                                                  (b) 

Figure 9.2. The variation of (a) number of cells and (b) average cell wall thickness with 
furnace folding time in foamed compacts. 

 

 
(a) (b) 

 
(c) 

Figure 9.3. Cell wall thickness variation along the foam cylinder; (a) P0 after 100 and 
200 s, (b) P0 and P6 after 100 s and (c) P0 and P6 after 200 s. 
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 Haibel et al. (Haibel, et al. 2006) analyzed the possible stabilization mechanisms 

operative in the foaming powder compact process. In the case of no particles on plateau 

borders and cell walls, the liquid metal on a cell wall, under the effect of the pressure 

difference, 

 

1 1∆P = 2σ( - )
R RPB F

              (9.2) 

 

flows from the cell walls to the plateau borders (RPB and RF are the radius of curvature 

of plateau border and cell face, respectively). The partially wetted particles on the cell 

wall form menisci of radius of RF≅RPB, which reduces the pressure difference and 

capillary suction. The increased viscosity of the melt by the presence of small particles 

in the film may immobilize the liquid metal flow. Babcsan et. al. (Babcsan, et al. 2005, 

Babcsan, et al. 2007) further analyzed the stability of Al metal foaming processes ex-

situ and in-situ. In foams with 13 µm SiC particle addition, the particles were observed 

to segregate to the cell surface, while in foams with 70 µm SiC particles, only small 

amount of particles observed on the cell surface. In the present study, both small and 

large particles were observed to predominantly accumulate on the cell wall surfaces.  

Deqing and Ziyuan (Wang and Shi 2003) investigated the effect of SiC (1, 7, 14 and 20 

µm) and Al2O3 (3.5, 5 and 10 µm) particle addition on the foam expansion in Alcan 

foam processing route. It was noted that, low concentration of large particles could not 

form an adequate coverage of cell surface; hence, lead to unstable foam, while high 

concentration of small particles increased the viscosity of the melt significantly so that 

the air injection could not foam the composite melt. The results of present study are also 

noted to be in agreement with the above findings.  

 Figure 9.4(a) and (b) show sequentially the variations of maximum and linear 

expansions of 5 and 10 wt% SiC/Al compacts as a function of average particle size. On 

the same graphs, the expansions of Al compacts are also shown. The straight dotted 

lines in the graphs are the average expansion values of Al compacts and the circles on 

the data points show the average values. It is noted in Figure 9.4(a) that for 5 wt% SiC 

addition, the values of maximum and liner expansions are higher than those of Al 

compacts without particle addition except the largest size SiC addition (P5), while the 

highest expansion values were detected in compacts with small average particle size (14 
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and 21 µm). Increasing particle wt% from 5 to 10% decreases the LEmax and LE values 

of the compacts with smaller size SiC particle addition (Figure 9.4(b)). Although 5 wt% 

P7 powder (36 µm) addition shows similar LE and LEmax values with the similar 

average particle size P3 powder (34 µm) addition, 5 and 10 wt% P8 powder additions 

show higher LE and LEmax expansion values than P2 powder (24 µm) addition. Since, 

LE is measured in a longer foaming time period, the effect of SiC particle addition at 10 

wt% is found to be less pronounced in LE than LEmax values. Nevertheless, these have 

confirmed that particle size, wt% and distribution are effective in the powder compact 

expansions. 

 

 
(a) 

Figure 9.4. Linear and maximum expansion as function of particle size; (a) 5 and (b) 10 
wt% particle added compacts. 

 

 

 

 

(cont. on next page) 
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(b) 

Figure 9.4. (cont.) 

 

9.2.  The Characteristics of the Compact Expansions  

 
Expansion-temperature-time graphs of foamed SiC whisker/Al compacts are 

shown in Figure 9.5. Following characteristics parameters are extracted from the graphs 

in the same figure: the time between the start of foaming and the complete melting of 

the compact (t1), the time between complete melting and maximum expansion (t2) and 

time between start of the foaming and maximum expansion (t3) and the expansion rate 

of the compact between t1 and t2. The compact heating rate is calculated between the 

start of the foaming and t1. The effect of heating rate on the time of expansion of t3 is 

shown in Figure 9.6(a); increasing heating rate reduces the t3. This is expected as the 

compact is heated quickly, it reaches the maximum expansion in shorter time.  The 

variation of the expansion rate with heating rate is shown in Figure 9.6(b) for Al and 

5wt% P2 SiC/Al and 0.5 and 1wt% SiC whisker/Al compacts. Increasing heating rate 

increases the compact expansion rate but the effect is more pronounced for SiC particle 

contained compacts. The increased expansion rate in SiC contained compacts shows the 
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effect of particles on the decay processes of the foam structure. The effects of SiC 

particulate and whisker addition on the foam LEmax and LE are shown in Figures 9.7(a) 

and (b), respectively. With increasing heating rate, LEmax values of compacts increases, 

while SiC particle and whisker contained compacts the expansion is higher at low 

heating rates. At increasingly high heating rates, the LEmax values of Al and SiC/Al 

compact become very similar. This proves the effect of SiC particles in increasing 

compact expansion at lower heating rates by increasing the viscosity of the compacts at 

the studied foam temperature. At increasing heating rates as the decay process rate is 

reduced, the effect particle addition vanishes. The high heating rates and SiC addition 

has similar effects on the compact expansions. At increasing foaming durations, the 

effect of SiC addition is less pronounced on the expansion values as shown in Figure 

9.7(b). Finally it is noted the increased LEmax values lead to increase in LE values as 

depicted in Figure 9.8. 

 

 

Figure 9.5. The characteristic behavior of the compact foaming (0.5 wt% P9). 
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(a)                                                                     (b) 

Figure 9.6. The effect of heating rate on the (a) expansion time (t3) and (b) expansion 
rate of the foamed compacts. 

 
 

 
(a)                                                                   (b) 

Figure 9.7. Effect of heating rate on (a) maximum and (b) average linear expansion for 
different foams. 
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Figure 9.8. Relation between maximum and average linear expansion. 

 

9.3.  The Effect of Cumulative Surface Area  

 
Figure 9.9 shows the variations of LEmax and LE values of the compacts as 

function of cumulative particle surface area of SiC particles. Although the expansion 

values scattered significantly for the same type of the compacts, the average linear and 

maximum expansion values of SiC added compacts are higher than those of Al 

compacts at relatively low cumulative particle surface area. The expansion values tend 

to reach a maximum at about 65x103 mm2 cumulative particle surface area.  At 

increasingly high cumulative particle surface areas, for example 5wt% P8 SiC/Al 

compacts (~1350x103 mm2), almost no expansion occurs as depicted in Figure 9.4(a)  

due to the excessive increase in the compact viscosity. The wt% values of the particle 

added compacts corresponding to the critical cumulative surface area of the particles, 

taken as 65x103 mm2 on the average, are further drawn in Figure 9.10 as function of the 

particle size. The region above the linear curve shown in Figure 9.10 is the region of 

likely high compact viscosity and below the region of likely low compact viscosity. The 

optimum particle sizes corresponding to the maximum expansions are also shown in 

Figure.9.10 for 5, 10 and 15 wt% particle additions. For 56 µm particle size addition, 

the optimum percentage particle addition is relatively high, 14 wt%, while this value 
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decreases to about 3.5 wt% when the particle size decreases to 14 µm. For P7 particles 

(21 µm), the optimum wt% addition is about 5 wt%, which is in accord with the 

measured relatively high expansion values for 5 wt% addition and relatively low 

expansion values for  10 and 15 wt% addition (Figure 9.4(b)). Similarly, the expansion 

values of P7 SiC/Al compacts at 5 wt% addition is expected to be higher than those of 

P8 SiC/Al compacts, since the optimum wt% is about 9 for P8 powder. Figure 9.10 also 

shows that, the critical wt% of P8 powder is about 0.3 wt%, which is in accord with the 

reduced expansion values after about 1 wt% P8 SiC addition (Fig. 6.27). The slight 

increase of the foam average expansions with increasing particle wt% in large size SiC 

particles is attributed to the increased particle cell wall surface coverage, while the 

decrease in the foamability at increasing wt% of particles in P1 SiC/Al compacts is 

likely due to the increased viscosity of the melt (Figure 9.4(a) and (b)). The powder size 

distribution may also be effective; a wider particle size distribution would increase the 

cell wall surface particle coverage, leading to higher expansions. It should also be noted 

that above findings are only applicable to the studied Al powder compacts since Al 

powders may show different foaming behavior depending on the alloying element and 

the oxide content.   

  

 
Figure 9.9. Variation of linear and maximum expansion with cumulative particle surface 

area of SiC particles. 
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Figure 9.10. Optimum wt% of SiC particle addition as a function of particle size. 

 

Deqing and Ziyuan (Wang and Shi 2003) investigated the effect of SiC (1, 7, 14 

and 20 µm) and Al2O3 (3.5, 5 and 10 µm) particle addition on the foam expansion in 

Alcan foam processing route. It was noted that, low concentration of large particles 

could not form an adequate coverage of cell surface; hence, lead to unstable foam, while 

high concentration of small particles increased the viscosity of the melt significantly so 

that the air injection could not foam the composite melt. The results of present study are 

also noted to be in agreement with the above findings.  

 

9.4.  The Effect Compact Relative Density 

 
The effect of relative density of the compacts on LE and LEmax for the Al and P1-

P5 SiC/Al foamed compacts are shown in Figures 9.11(a) and (b), respectively. Relative 

density of the compacts varies between 0.965 and 0.993 within the studied compact 

relative densities, it is noted in Figures 9.11(a) and (b), the relative density slightly 

affects the expansions. As the relative densities increases both LE and LEmax increases. 

Therefore, the effect of variations of the relative density of the foamed compacts on the 



134 

 

expansion values may be ignored. On the other hand, Figure 9.11(a) and (b) clearly 

show that at the similar relative densities SiC/Al compacts experienced more than 10% 

increase in expansion values. 

  

 
(a) 

 
(b) 

Figure 9.11. The effect of relative density on (a) LE and (b) LEmax values of Al and P1-
P5 SiC/Al foamed compacts.  
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9.5.  The Reaction Between SiC and Liquid Al  

 
It is known that SiC reacts with molten Al, producing brittle Al3C4 and Si-rich 

Al phases based on the following reaction (Fan, et al. 1998, Sritharan, et al. 2001, Yang, 

et al. 2004).  

 

 4Al (l) + 3SiC Al4C3 (s)+ 3Si (sol)                                   (9.3) 

 

The reaction rate depends on the temperature, chemical composition of both matrix and 

reinforcement and reaction area (surface area of particles). It is proposed that the 

reduced foamability of nano SiC contained foams is due to the reaction between liquid 

Al and nano SiC, leading to increase of Si in Al. The extent of the reaction increases 

with increasing temperature after melting temperature. The liquid metal X-ray 

diffraction showed that the initial high rate of the reaction kinetics slows down and 

saturates to a low rate (Fan, et al. 1998). With SiC particle dissolution, Al4C3 grows and 

Si diffuses into the melt. When time passes, a layer of Al4C3 may form around SiC 

particles and this layer may act as a diffusion barrier for the diffusion of Si, C and Al. It 

is also known that Al4C3 dissolves when exposed to aqueous environment. As the 

reaction proceed the silicon level increases, and the melting point of the composite 

decreases with time (Lloyd, 1994). It was concluded that the morphology of the 

interfacial reaction product, Al4C3, plays a significant role in the fluidity of A356 Al–

SiCp composites at pouring temperatures higher than 700 °C (Ravi, et al. 2007). It was 

also noted that during the interfacial reaction, SiC decomposes into Si and C and the Si 

increases the Si content of molten A356 Al alloy which results in the changes in 

thermophysical properties such as density, specific heat, critical solid fraction, and 

viscosity 

  

9.6.  Mechanical Behavior 

 

The following general equation has been proposed for the collapse stress (σp) of 

open and closed cell foams (Gibson and Ashby 1997):  
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p 3/20.3( ) (1 )
ys

σ
= φρ + − φ ρ

σ                                        (9.4) 

 

where, φ is the volume fraction of the solids contained on the plateau borders, ρ is the 

relative density of the foam (foam density/foam metal density) and σys is the yield 

strength of Al metal.  

The yield strength of Al and SiC/Al foam metals were determined by the 

Vickers Hardness Tests on the relatively thick cell edges. At least 10 hardness tests 

were performed and the results were averaged. The yield strength of Al foam metal was 

determined 110 MPa on the average, while the yield strength of 5 wt% P1 and P2 SiC 

and 10 wt% contained P1 and P2 Al metals were found 132, 138 and 156 and 161 MPa, 

respectively. Note that Equation 9.4 predicts the collapse stress values of open-cell 

foams when φ equals to 1 and the collapse stresses of closed cell foams when φ  equals 

to 0. Equation 9.4 is fitted with experimental collapse stress values of Al foams (Figure 

9.12). As seen in Figure 9.12, Al foams plateau stress values are well fitted with those 

of open cell foams, while closed cell foam has relatively higher plateau stress values. 

Except 10wt% P2/Al foam, foamed SiC/Al compacts show higher plateau stresses than 

the plateau stress values predicted using Equation 9.4 and a φ value of 1 corresponding 

to open cell foam structure. Microscopic observations clearly show that thicker cell 

edges bent over the buckled thinner cell walls, reflecting typical crushing behavior of 

open cell foams. A similar cell crushing behavior is also observed in SiC/Al foams. 

Equation 9.4 is also fitted with the φ value of  0.8  foam SiC/Al foams and the results 

are shown in Figure 9.13. Except, 10% P2 foam, SiC contained foams plateau stresses 

show well agreements with the values predicted by Equation 9.4. The differences 

between the collapse stresses of Al and SiC/Al foams are attributed to the difference 

between the hardness and φ values.  The determined values of φ  are also well accord 

with that  of an SiC particle contained Alcan foam (0.85) at the similar density (0.32 g 

cm-3) (Valente, et al. 2000).  

 

 



137 

 

 

Figure 9.12. Stress vs. relative density of foamed Al and SiC/Al compacts based on the 
open cell foam structure (a) 5% P1, (b) 5% P2, (c) 10% P1 and (d) 10% 
P2. 

 

 

Figure 9.13. Stress vs. relative density of foamed Al and SiC/Al compacts based on φ 
value (a) 5% P1, (b) 5% P2, (c) 10% P1 and (d) 10% P2. 
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Stress-strain behavior of Al foam is strongly related with the density of the metal 

foam. Foams with higher densities show higher stresses under compression. Mechanical 

properties of foamed Al and SiC added compacts were adapted to Equation (9.4), and 

stress-strain behavior for the foams was determined analytically. Because of the plateau 

stress in Equation (9.4) is constant, the equation changes as follows. 

 

pl 3/ 2 md

ys d

10.3( ) (1- ) ( )
D -

σ ⎡ ⎤ε⎡ ⎤= φρ + φ ρ ⎢ ⎥⎣ ⎦σ ε ε⎣ ⎦
              (9.5) 

 

 where D and m are constants.. For Al foam at maximum expansion (0.25-0.3 g cm-3) φ 

is found as 1 from the equation (Equation (3.5)) and Equation (9.5) can be written as; 

 

[ ]3/ 2 md
ys

d

1(0.3 1.0 ) ( )
D -

⎡ ⎤ε
σ = σ ρ ⎢ ⎥ε ε⎣ ⎦

                                (9.6) 

 

The yield strength of Al foam metal was determined 110 MPa on the average 

according to the hardness test results. By interpolating these values at Equation (9.5) D 

and m values were found as 0.9 and 1 respectively. In Figure 9.14, stress-strain 

behaviors of experiments and calculated results are being compared for Al foams with 

different densities. Equation (9.4) was also used for 10wt% P6 and 5wt% P1 added 

foams. For these foams D and m values were similarly found as 2.2 and 0.85, 

respectively. In Figure 9.15 (a) and (b), comparison of calculated and experimental 

results for stress-strain values are presented. It is observed clearly from the graphs that, 

model and experimental results are very similar for the calculated D and m values. 
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Figure 9.14. Stress-behavior of Al foams according to both experimental and analytical 
results. 

 

 
(a) 

Figure 9.15. Stress-strain behavior comparion of experimental and calculated results for 
(a) 10 wt% and (b) 5 wt% SiC added Al foams.  

(cont. on next page)
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(b) 

Figure 9.15. (cont.) 
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CHAPTER 10 

 

CONCLUSIONS 

 
The linear expansions of SiC/Al powder compacts with varying particle size, 

SiC content and size distribution were measured in order to determine the effect of 

particle addition on the foaming behavior of Al compacts. The size of the particles and 

whiskers ranged between 30 nm to 74 µm with the weight percentages between 0.1 and 

15. For comparison, Al compacts without particle addition were also foamed. The effect 

of particle addition on the foam compression behavior was further assessed. A foaming 

set-up composing of a vertical split furnace and a linear expansion measurement system 

was used to measure linear expansion of the prepared compacts at a foaming 

temperature of 750 oC.  In addition, the variation of the compact temperature during the 

foaming experiments was also recorded.   

For the studied Al compacts without particle addition, the foaming temperature 

was between 663-750 °C and the maximum expansions were found to vary between 3 

and 4.5, which were found to be comparable with those of previously studied similar 

powder compacts. The low rate of the compact expansion detected at the beginning of 

the expansion-time graphs resulted from the compact mushy state, and it was followed 

by increased expansion rate due to the complete melting of the compact. The decaying 

processes were found operative during compact expansion in the form of cell wall 

rupture and coarsening and drainage after an incubation time of 150 s. The number of 

cells decreased significantly in foamed Al compacts after the maximum expansion, 

while foamed SiC/Al compacts had less number of cells. The minimum cell wall 

thickness was found to be around 40 µm for foamed Al compacts and 60 µm for foamed 

SiC/Al compacts, proving a higher cell wall thickness in SiC particle contained foams.    

The linear and maximum expansions were found to be relatively high at 

relatively low particle weight percentages and decreased with increasing weight 

percentages of the particles for small size particle additions. The compacts with small 

average particle size but wider particle size distribution was shown to exhibit higher 

expansions than the compacts with similar average particle size but narrower particle 

size distribution, showing the importance of the particle size distribution on the 
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expansions of Al compacts. Microscopic analyses showed that particles were 

collectively located on the cell wall surfaces as they were partially wetted by liquid Al. 

The effect of particle size and wt%'s on the foam expansions was analyzed based on the 

cumulative surface area of the particles, which was presumed to be effective in 

increasing the surface viscosity of the cell walls. The foam expansions were shown to 

increase until about a critical cumulative particle surface area; thereafter decreased due 

to extensive increase in the compact viscosity at the studied foaming temperature.   

The effect of SiC particles was to increase the compact expansion at relatively 

low heating rates by increasing the viscosity of the compacts at the studied foam 

temperature. At increasing heating rates as the decay process rate decreased, the effect 

of particle addition was found to vanish. The high heating rates and SiC addition were 

shown to have similar effects on the compact expansion. At increasing foaming times, 

the effect of SiC addition was found to be less pronounced on the expansion values, 

showing the reduced effect of SiC particle addition on the compact expansion/stability 

at increasing foaming times.   

Compression tests showed that the density of the foam was the most effective 

parameter in increasing the plateau stresses. Microscopic analysis showed that the main 

deformation mechanism in Al and SiC/Al foams was the cell wall bending, i.e. cell 

edges buckled over cell walls. This resembled the deformation characteristics of the 

open cell foams. Buckling of the cell walls in some occasions resulted in tearing of the 

cell walls. It was also found that whisker contained foams showed similar deformation 

mechanism. Foams with 5 and 10 wt% SiC particle addition showed 15-100% higher 

plateau stresses than Al foams at the similar relative densities. The increased plateau 

stresses in foamed SiC/Al compacts was attributed to higher degree of Al metal located 

at the cell walls and increased foam material yield strength with Si inclusion into Al 

matrix.  

 

10.1. Recommendations for Future Studies 

 
Nano size SiC added compacts resulted in poor expansion compared with other 

particle additions. Increased reaction surface area due to small particle size and non 

homogeneous distribution of the particles in the compact can result in poor expansion. 

As it is very difficult to observe products of the reaction between Al and SiC in the 
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foam structure, investigating the reaction with liquid metal X-ray diffraction analyzer 

for different type of SiC additions can be one of the most recommended future works 

for the study. To disperse nano size ceramic particles uniformly in metal, ultrasonic 

dispersion during foaming of the compact can be investigated. 

Viscosity measurements of the Al melts with different SiC additions would help 

in understanding the expansion behavior of the SiC added compacts. These 

measurements can be done by measuring the voltage of the stirring motor of the 

composite melt. By these viscosity measurements different reaction characteristics 

between the SiC types will be included in viscosity of the melt foams.  

With the increased mechanical properties of the SiC added foams, stronger 

sandwich panels and components can be manufactured. Manufacturing a specific foam 

component with SiC addition can result in a better understanding of the foaming 

process. Using different and more common Al powders which are commercially 

available would also help to decrease the unit price of the foam. This would increase the 

application areas of the foams considerably.   
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APPENDIX A 

 

HARDNESS TEST RESULTS  

 
 Micro-hardness test results of foams with different SiC percentages with 

different particle sizes. 

 
Foams without SiC 

P0 L1 L2 HV 
01 56.74 58.76 27.7 
02 60.03 60.03 25.7 
03 55.34 54.92 30.4 
04 54.01 53.86 31.8 
05 47.97 50.17 38.4 

 

5 % SiC addition 10 % SiC addition 
P1-05 L1 L2 HV 
01 54.37 55.74 30.5 
02 45.72 43.27 46.8 
03 46.72 47.78 41.5 
04 55.11 55.45 30.3 
05 48.15 47.98 40.1 

 

P1-10 L1 L2 HV 
01 42.7 38.05 57.7 
02 45.64 47.22 42.9 
03 54.03 52.03 32.9 
04 55.27 56.39 29.7 
05 43.38 44.35 48.1 

P2-05 L1 L2 HV 
01 50.99 50.04 36.03 
02 51.54 51.10 35.01 
03 50.63 51.12 35.98 
04 48.64 52.03 36.5 
05 43.68 46.29 46.0 

 

P2-10 L1 L2 HV 
01 58.25 55.37 28.7 
02 49.44 50.02 37.4 
03 50.38 49.31 37.3 
04 52.80 54.55 32.1 
05 55.86 55.00 30.1 

P3-05 L1 L2 HV 
01 51.24 49.95 36.2 
02 48.88 49.61 38.2 
03 54.43 55.74 30.5 
04 50.66 50.27 36.4 
05 47.12 48.14 40.8 

 

P3-10 L1 L2 HV 
01 57.43 57.43 28.1 
02 53.16 54.18 32.1 
03 49.22 50.75 37.0 
04 52.81 54.76 32.0 
05 52.53 54.20 32.5 

P4-05 L1 L2 HV 
01 54.09 54.86 31.2 
02 45.96 45.51 44.3 
03 53.75 52.73 32.6 
04 47.23 46.86 41.8 
05 52.10 51.92 34.2 

 

P4-10 L1 L2 HV 
01 47.35 50.18 39.8 
02 44.67 45.50 45.6 
03 50.06 51.36 36.0 
04 52.77 51.58 34.0 
05 44.50 44.81 46.2 

P5-05 L1 L2 HV 
01 47.69 45.72 42.4 
02 55.17 53.19 31.5 
03 52.83 50.47 34.7 
04 49.81 50.26 37.0 
05 48.98 49.49 38.2 

 

P5-10 L1 L2 HV 
01 46.31 45.21 44.2 
02 44.75 45.58 45.4 
03 44.27 44.88 46.6 
04 44.99 44.56 46.2 
05 48.64 49.94 38.1 
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