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ABSTRACT 
 

MODELING, SIMULATION AND OPTIMIZATION OF FLASHED-
STEAM GEOTHERMAL POWER PLANTS FROM THE POINT OF 

VIEW OF NONCONDENSABLE GAS REMOVAL SYSTEMS 
 

Geothermal fluids contain noncondensable gases (NCGs) at various amounts. 

The presence of NCGs in geothermal steam results with a dramatic decrease in net 

power output increasing condenser pressure and total auxiliary power consumption. 

Hence, NCGs should be withdrawn by a gas removal equipment to improve the 

performance of geothermal power plants (GPPs). The flashed-steam GPPs (single-flash, 

double-flash) are a relatively simple way to convert geothermal energy into electricity 

when the geothermal wells produce a mixture of steam and liquid. The primary aim of 

the Thesis is to model and develop a code to simulate flashed-steam GPPs to examine 

the thermodynamic and economical performance of NCG removal systems, which are 

major concerns at planning and basic design stages of GPPs. The model is validated 

comparing model output with Kizildere GPP output, classified as deterministic and 

static. The model is simulated to identify the effects of input variables which are NCG 

fraction, separator pressure, condenser pressure, wet bulb temperature, interest rate, tax 

rate, O&M cost ratio and electricity sales price. Among the variables, NCG fraction is 

the most significant parameter affecting thermodynamic performance and profitability 

of flashed-steam GPPs. The net power output and overall exergetic efficiency of single-

flash GPP is decreased 0.4% for compressor system (CS), 2.2% for hybrid system (HS), 

2.5% for reboiler system (RS) and 2.7% for steam jet ejector system (SJES) by 1% 

increase in NCG fraction. Based on thermodynamic and economical simulations, SJES, 

HS and CS can be recommended to be used for a NCG fraction range of 0-2%, 2-10% 

and >10%, respectively. Furthermore, thermodynamic performance of single-flash 

plants can be improved by adding second flash by 45.5-127.9%. 
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ÖZET 
 

FLAŞ BUHARLI JEOTERMAL ELEKTRİK SANTRALLARININ GAZ 
AYIRMA SİSTEMLERİ AÇISINDAN MODELLENMESİ, 

SİMÜLASYONU VE OPTİMİZASYONU 
 

Jeotermal akışkanlar değişik miktarlarda yoğuşmayan gazlar (YGlar) içerir. 

Jeotermal buhardaki YGların varlığı kondenser basıncını ve santralın toplam iç tüketimi 

arttırarak santral net güç üretiminde önemli boyutlarda düşüşe neden olurlar. Bu 

nedenle, YGlar jeotermal elektrik santrallarının (JESlarının) performansını iyileştirmek 

için gaz ayırma ekipmanları ile sistemden uzaklaştırılmalıdır. Flaş-buharlı JESları (tek-

flaşlı ve ikincil-flaşlı) jeotermal kuyulardan buhar ve sıvı karışımı üretilmesi 

durumunda, jeotermal enerjinin elektrik enerjisine çevrilmesindeki en basit yollardan 

biridir. Tezin ana amacı, flaş-buharlı JESlarının, dizayn ve planlama aşamalarında 

büyük önemi olan gaz ayırma sistemlerinin termodinamik ve ekonomik performansını 

belirlemek için modellenmesi ve simülasyonu için bir kod geliştirilmesidir. Modelden 

elde edilen sonuçların Kizildere JES verileri ile karşılaştırılması ile doğrulanan model, 

statik ve determinist olarak sınıflandırılır.  YG oranı, separatör basıncı, kondenser 

basıncı, yaş termometre sıcaklığı, faiz oranı, vergi oranı, işletme ve bakım giderleri 

oranı ve elektrik satış fiyatı gibi model girdilerinin etkilerini belirleyebilmek için 

simülasyonlar yapılmıştır. Girdiler arasında, YG oranı, flaş-buharlı JESlarının 

performansını ve karlılığını etkileyen en önemli parametredir. Tek-flaşlı JESnın net güç 

üretimi ve çevrim ekserji verimi YG oranındaki %1’lik artış ile, kompresör sisteminde 

%0.4, hibrid sisteminde %2.2, reboyler sisteminde %2.5 ve buhar jet ejektörü 

sisteminde %2.7 oranında azalmaktadır. Termodinamik ve ekonomik simülasyon 

sonuçlarına bağlı olarak, buhar jet ejektörü, hibrid ve kompresör sistemlerinin  YG 

oranlarına göre sırasıyla %0-2, %2-10 ve >%10 aralıklarında kullanılması tavsiye edilir. 

Ayrıca, tek-flaşlı JESnın termodinamik performansı, ikincil-flaş uygulanması 

durumunda %45.5-127.9 oranında arttırılabilir.  
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Chapter 1 INTRODUCTION 

 

INTRODUCTION 

 
  High temperature geothermal fluids are widely used for electricity production 

and total installed geothermal power plant (GPP) capacity in the World has reached to 

10,715 MW and 520 units in 2010. An increase of approximately 20% in the five year 

term 2005-2010 has been achieved, following the rough standard linear trend of 350 

MW/year, with an evident increment of the average value of about 200 MW/year in the 

precedent 2000-2005 period (Bertani, 2010). In Turkey, geothermal power development 

initiated with Kizildere GPP in 1984 and paused 22 years until 2006 due to lack of 

legislative framework. Since enaction of the Renewable Energy Law (2005) and the 

Law on Utilization of Renewable Energy Resources for the Purpose of Generating 

Electrical Energy (2007), investors have shown a significant interest on GPP 

construction. From 2006 to 2010 geothermal power installed capacity increased by 

388% and an addition of 153 MW capacity license is issued by Energy Market 

Regulatory Authority of Turkey (EPDK) (EPDK, 2010).  

Geothermal power can be produced by dry steam, flashed-steam, binary and 

Kalina plants depending on the temperature and state of the geothermal fluid. Flashed-

steam (single and double-flash) GPPs are the most commonly used power generation 

systems with a total share of 61% within the installed capacity in the World, mainly 

because most geothermal reservoirs are formed by liquid dominated hydrothermal 

systems (Bertani, 2010). Similar to the global trends, flashed-steam GPPs constitute 

68% of total GPP installed capacity in Turkey (Aksoy, 2007; Serpen et al., 2008; Durak, 

2009; EPDK, 2010). 

Geothermal steam, which flows through the entire cycle of conventional (dry 

and flashed-steam) GPPs, contains higher concentration of noncondensable gases 

(NCGs) (CO2, H2S, NH3, N2, CH4 etc.) compared with conventional fossil-fueled power 

plants. The amount of NCGs contained in geothermal steam has significant impact on 

the power production performance of a GPP. Depending on the resource, the fraction of 

the NCGs varies over the World from almost zero to as much as 25% by weight of 

steam (Hall, 1996; Coury et al., 1996).  

CHAPTER 1 
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The NCGs in geothermal steam interfere with heat transfer in the condenser by 

forming a ‘gas-blanketing’ effect, which raises the condenser temperature and back-

pressure on the turbine, reducing its output. In practice, the gases’ effect can only be 

overcome by evacuating them, along with a portion of steam (Vorum and Fritzler, 

2000). The power needed to extract the NCGs from the condensers and exhaust them to 

the atmosphere or an abatement system is supplied from the generated electricity; this 

seriously impairs the power production performance (Duthie and Nawaz, 1989). NCGs 

also decrease the exergy of the fluid reducing the available work in the plant. Thus, 

evaluation of the net work of the turbine should consider the NCG content (Montero, 

1990). Comparing with fossil-fuelled power plants, GPPs require larger capacity NCG 

removal systems which occupy large portion in total plant cost. Therefore, selection of 

NCG removal system becomes a major concern at planning and basic design stages 

which aim to maximize net power output and minimize both investment and operation 

and maintenance (O&M) costs of GPPs in a long-term perspective (Tajima and 

Nomura, 1982; Hankin et al., 1984). 

The commonly used conventional NCG removal systems are steam jet ejector 

(SJE)s, liquid ring vacuum pumps (LRVPs), centrifugal compressors and hybrid system 

(HS)s. Besides, innovative upstream RSs. are another approach to remove NCGs from 

geothermal steam before they enter the turbine. Recently, in GPPs hybrid NCG removal 

system (SJE and LRVP) are most common. Some flashed steam GPPs and the type of 

NCG removal systems employed are given in Table 1.1. 

 

Table 1.1. Some flashed steam GPPs and the type of NCG removal systems employed.  
  (Source: Kwambai, 2010; Horie et al., 2010; Moya and DiPippo, 2010; 
Wallace et al., 2009) 

 

Name of GPP Type of GPP 
Number of 

Stage 

Type of NCG  

Removal System 

Miravalles Unit-3, Costa-Rica Single-flash 3 2-SJE and LRVP 

Kawerau, New Zealand Double-flash 3 2-SJE and LRVP 

Gurmat, Turkey Double-flash 2 SJE and LRVP 

Olkaria-1, Kenya Single-flash 2 SJE 

Kizildere-Turkey Single-flash 3 Compressor 

 



 
3

The complex and unique nature of GPPs reveals to use design and simulation 

software. The majority of existing commercial software are developed for reservoir and 

geothermal field modeling (Milicich, et al., 2010; Tanaka and Itoi, 2010; Holzbecher 

and Sauter, 2010), borehole heat exchangers and heat pumps (Kim et al., 2010; Cisarova 

et al., 2010), geochemical modeling of geothermal fluids (Hasse et al., 2006; Putten and 

Colonna, 2007) and direct use applications (HeatMap, 2010). There exists several 

software to design and simulate GPPs. The oldest known is GEOCOST (Bloomster et 

al., 1975), which includes only steam jet ejectors as NCG removal system, not 

applicable to high NCG fields. The other software is RetScreen is a power plant design 

software includes GPP module (RetScreen, 2010).  GPP module of RetScreen does not 

include information of NCG removal system information. GETEM determines the 

performance of flashed-steam GPPs considering only steam jet ejector and LRVP as 

NCG removal system (GETEM, 2010).  The most comprehensive and costly software, 

is ASPEN-HYSYS, which is a modeling tool for conceptual design, optimization, 

business planning, asset management, and performance monitoring of energy systems It 

is possible to make mass and energy balance with software but there is no information 

about NCG removal system (Aspen-HYSYS, 2010). Since there is a substantial lack of 

design and simulation software of GPPs including NCG gas removal alternatives, the 

Thesis aims to develop a model to provide a guide or reference which could quickly and 

easily be used to determine the GPP gas removal system which maximizes the power 

output at minimum cost. The model includes mass, energy and exergy balances, and 

economical analysis under steady-state, steady-flow conditions. 

Systems and processes that degrade the quality of energy resources can only be 

identified through a detailed thermodynamic analysis of the whole system. Most cases 

of thermodynamic imperfection cannot be detected by an energy balance. A careful 

evaluation of processes using exergy balance enables the identification of the source of 

inefficiencies and waste, which leads to improved designs and resultant savings. Exergy 

balance is a tool for identifying the types, locations and magnitudes of thermal losses. 

Identifying and quantifying these losses allows for the evaluation and improvement of 

the designs of thermodynamic systems (Rosen, 1999; 2002; Rosen and Dincer, 2001; 

Kwambai, 2005). 

The prime objective of every project is to be profitable. For a geothermal 

project, profits are related to the difference between the price obtained for power and 

the cost of producing it. The financial structure, conditions and capital, operational and 
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maintenance (O&M) and financial costs are important factors influencing the levelized 

cost of energy and profitability of the project. The economical viability of GPPs can be 

evaluated by various methods including net present value (NPV), internal rate of return 

(IRR) and simple payback time (SPT) methods, and cost of electricity production. 

The aim of the Thesis is manifold: 

a. Modeling of flashed-steam GPPs with particular emphasis on NCG 

removal systems, 

b. Development of a code  based on mass, energy and exergy balances, and 

economical analysis, 

c. Validation of the model for Kizildere GPP, which is a single-flash plant, 

d. Thermodynamic simulation of flashed-steam GPPs depending on 

geothermal field (NCG fraction, separator pressure), plant (condenser 

pressure and turbine inlet temperature), and environmental parameters 

(wet bulb temperature), 

e. Economical simulation of flashed-steam GPPs depending on interest 

rate, tax rate, O&M cost ratio, electricity sales price, 

The static model is developed for flashed-steam (single and double-flash) GPPs 

with different NCG removal system options which are compressor system (CS), steam 

jet ejector system (SJES), hybrid (steam jet ejector and LRVP) system (HS) and reboiler 

system (RS). A code is developed by Engineering Equation Solver (EES) (F-Chart, 

2010) including mass, energy and exergy balances for each plant component. 

Economical model consists of NPV, IRR and SPT methods, and cost of electricity 

production. The model is validated by Kizildere GPP data. Then the simulation is 

performed on the disturbances of input parameters which are geothermal field (NCG 

fraction, separator pressure), plant (condenser pressure and turbine inlet temperature), 

environmental (wet bulb temperature) and economical (interest rate, tax rate, O&M cost 

ratio, electricity sales price) parameters.  

In the Thesis, in Chapter 2, geothermal power production and NCG removal 

systems are introduced. General literature survey on NCG removal systems are 

summarized in Chapter 3. While the detailed information about mass, energy and 

exergy balances, and economical analysis in the model are given in Chapter 4, the 

methodology of the model is explained in Chapter 5. The results of the modeling and 

simulation given in Chapter 6, are summarized in Chapter 7. Finally, Conclusions take 

place in Chapter 8. 
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Chapter 2 GEOTHERMAL POWER GENERATION AND NCG 

REMOVAL SYSTEMS 

GEOTHERMAL POWER PRODUCTION  

AND NCG REMOVAL SYSTEMS 

 
The word geothermal comes from the Greek words geo (earth) and therme 

(heat). Geothermal energy is energy from the depths of the earth. It originates from the 

earth’s molten interior and from the decay of radioactive materials in underground 

rocks. The heat is brought near the surface by crustal plate movements, by deep 

circulation of groundwater and by intrusion of molten magma. In some places the heat 

rises to the surface in natural streams of steam or hot water. In the history, geothermal 

resources have been used in many ways, including healing and physical therapy, 

cooking, space heating, and bathing. One of the first known human use of geothermal 

resources was more than 10,000 years ago with the settlement of Paleo-Indians at hot 

springs as bathing and cooking. Geothermal resources have since been developed for 

many applications as given in Lindal diagram such as electricity production and direct 

use applications. The Lindal diagram (Figure 2.1) shows examples of current and 

potential uses of geothermal energy in terms of resource temperature.  

Prince Piero Ginori Conti invented the first GPP in 1904, at the Larderello dry 

steam field in Italy (Dickson and Fanelli, 2004). In 1958 a small GPP began operating 

in New Zealand. The first GPPs in the United States were operated in 1960 at The 

Geysers in Sonoma County, California, with a capacity of 11 MW (World Energy 

Council, 2010; Crest, 2008).  

Direct use applications include space and district heating, industrial process 

heating, snow melting, drying, greenhouse heating, aquaculture.  
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Figure 2.1. Lindal diagram.  

                                 (Source: Gupta and Roy, 2007) 
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2.1. Geothermal Power Production 

 
Geothermal resources are like human fingerprints, no two are exactly alike. A 

geothermal resource may have geothermal fluid in the following thermodynamic states: 

(1) saturated or superheated vapor (dry steam), (2) saturated liquid-steam mixture (wet 

steam) and (3) saturated or compressed liquid (brine). Different technologies are used to 

produce power depending on the state of geothermal fluid extracted. GPPs operating in 

the World are basically of four types: dry steam, flashed-steam, binary and Kalina 

power plants (Kanoglu, 1999). 

The simplest and cheapest GPPs are dry steam GPPs (Figure 2.2-a). Steam from 

the geothermal well is simply passed through a steam turbine, which convert the 

thermal energy extracted from pressurized steam into useful mechanical energy. Then 

mechanical energy is then converted into electricity by the generator. Dry steam GPPs 

have a condenser at the exit of the turbines and cooling towers. The Geysers GPPs in 

The United States and the Larderello GPP in Italy are example for dry steam GPPs in 

the World.  

A hot water reservoir (such as Wairakei in New Zealand) is used in a flashed-

steam power plant, in which hot fluids with temperatures usually in excess of 180oC are 

brought up to the surface through a production well where, upon being released from 

the pressure of the deep reservoir, some of the water flashes into steam in a separator 

(Figure 2.2-b). The steam powers the turbines then is cooled, condensed and either used 

in the cooling system of the plant or injected back into the reservoir. Since most 

geothermal reservoirs are formed by liquid dominated hydrothermal systems, flashed-

steam GPPs are the most commonly used GPPs in the World.  

Low-to-medium temperature geothermal reservoirs which are between about 85 

and 150oC are not hot enough to flash enough steam but can still be used to produce 

electricity in a binary power plant (also, referred as Organic Rankine Cycle (ORC) 

power plants). In a binary GPP (Figure 2.2-c),  the geothermal fluid is passed through a 

heat exchanger, where its heat is transferred into a low-boiling point binary (secondary) 

fluid such as propane, iso-butane, iso-pentane or ammonia. When heated, the binary 

liquid flashes into vapor, expands and powers the turbines. The vapor is then re-

condensed and used repeatedly (Gupta and Roy, 2007). 
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Figure 2.2. Basic GPP types. 
(Source: Gupta and Roy, 2007) 
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Kalina cycle (Figure 2.3) is another cycle used in GPPs for low temperature 

resources.  

 

 
 

Figure 2.3. Kalina cycle. 
(Source: Bombarda et al., 2010) 

 

The Kalina cycle is principally a modified Rankine cycle.  The transformation 

starts with an important process change to the Rankine cycle, changing the working 

fluid in the cycle from a pure component (typically water) to a mixture of ammonia and 

water. In comparison with binary GPPs, the main advantages of Kalina GPPs lie in 

higher thermodynamic efficiency, producing less emission and requiring less energy. 

The Kalina cycle technology is presently undergoing active testing in Iceland, and it 

will take some more time to demonstrate the actual improvement in efficiency resulting 

from its use (Mlcak, 1996; Kalina, 2003; Gupta and Roy, 2007; Swandaru, 2009; 

Geothermania, 2010; DiPippo, 2005; Kanoglu, 1999). 

There are some geothermal resources that demand more sophisticated energy 

conversion systems than the basic ones explained before. Furthermore, energy 

conversion systems have evolved to fit the needs of specific developing fields by 

integrating different types of power plant into a unified, complex enterprise such as 

double-flash, combined single and double flash, combined flash and binary, combined 

flash and kalina etc. As an example in Figure 2.4 a simplified schematic diagram of a 

double-flash plant, is an improvement on the single-flash plant design, is illustrated. 

Main equipment of double-flash GPPs are a high and low pressure separator, a high and 

low pressure turbine, a condenser, a cooling tower and circulation water pump and a 
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NCG removal system. In the double-flash plant, the steam from the single-flash turbine 

exhaust is directed to the low pressure turbine instead of directly to the condenser. 

Then, it is combined with the steam from the low pressure separator (DiPippo, 2005; 

Swandaru, 2009).   

 
 

Figure 2.4. Simplified flow diagram of a double-flash GPP. 
(Source: Swandaru, 2009) 

 

2.1.1. Geothermal Power Production in the World 

 
An acceleration of power production from geothermal resources continues to 

increase in recent years (Figure 2.5). By the year of 2010, 35 countries are engaged in 

producing electric power from geothermal energy resources. The total installed capacity 

is about 10,715 MW from 526 power generating units (Bertani, 2005; 2010). 
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Figure 2.5. Growth of installed capacity of GPPs during the period 1950–2010 and                  
generated electricity of last 20 years from GPPs. (Source: Bertani, 2010) 

 

Contribution of installed geothermal electric capacity to overall national electric 

power capacity (all sources) for major geothermal power-producing countries is shown 

in Figure 2.6. Although USA is the leading country based on installed geothermal 

power capacity, El Salvador has the highest ratio of installed geothermal electric 

capacity to overall national electric power capacity (all sources). 

 

 
Figure 2.6. Contribution of installed geothermal electric capacity to overall national 

electric power capacity (all sources) for major geothermal power-
producing countries. (Source: Gupta and Roy, 2007) 
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Worldwide GPP distribution by plant type is given in Table 2.1, which indicates 

that the largest installed capacities correspond to single and double-flash plants, 

covering 2/3 of the total (Bertani, 2005; 2010). 

 

Table 2.1. Power plant distribution by plant type (early 2010 data).  
(Source: Bertani, 2010) 

 
Installed capacity 

Plant type 
(MW) (%) (number of units) (%) 

Dry steam 2878 27 62 12 

Single-flash 4421 41 141 27 

Double-flash 2092 20 61 12 
Flashed-

Steam 
TOTAL 6513 61 202 39 

Binary combined cycle/hybrid 1178 11 236 45 

Back pressure 145 1 25 5 

TOTAL 10715 100 525 100 

 
 

2.1.2. Geothermal Power Production in Turkey 

 
The first geothermal exploration and exploitation studies in Turkey started by 

Turkish Mineral Research and Exploration Institute (MTA) in 1960s. Since then, about 

170 geothermal fields have been discovered by MTA, where 95% of them are low-

medium enthalpy fields, which are suitable mostly for direct-use applications. Table 2.2 

presents high-temperature geothermal fields suitable for electricity generation in Turkey 

(Erdogdu, 2009). 

Kizildere GPP, which is the first GPP of Turkey, constructed in 1984 with an 

installed and average gross capacity of 20.4 MW and 10 MW, respectively. Kizildere 

GPP had been the only one GPP until 2006. After the Renewable Energy Law (2005) 

and Law on Utilization of Renewable Energy Resources for the Purpose of Generating 

Electrical Energy (2007) were released, GPP investment became attractive. Since then 

79.2 MW GPP has been constructed and by 2010 GPP capacity of Turkey increased by 

388% (Figure 2.7). An addition of 153 MW capacity licence for 8 GPPs at 6 different 

locations is issued by EPDK. 
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Table 2.2. Geothermal fields suitable for electricity generation in Turkey. 
(Source: Erdogdu, 2009) 

 
Geothermal Field Temperature (oC) 

Denizli-Kizildere 243 

Aydın-Germencik 232 

Manisa-Salihli-Gobekli 182 

Canakkale-Tuzla 174 

Aydın-Salavatli 171 

Kutahya-Simav 162 

Izmir-Seferihisar 153 

Manisa-Salihli-Caferbeyli 150 

Aydın-Yilmazkoy 142 

Izmir-Balcova 136 

Izmir-Dikili 130 

  

A list of existing and planned GPPs in Turkey and is given in Table 2.3 and 2.4, 

respectively (Aksoy, 2007; Serpen, et al., 2008; Durak, 2009; EPDK, 2010).   
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Figure 2.7. Cumulative installed capacity of GPPs in Turkey. 
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Table 2.3. GPPs installed in Turkey. 
(Source: Aksoy, 2007; Serpen et al., 2008; EPDK, 2010) 

 
Installed Capacity 

Power Plant Type Location Year 
(MW) (%) 

Single-flash Kizildere-Denizli 1984 20.4 20.5 

Double-flash Germencik-Aydın 2009 47.4 47.5 
Flashed- 

Steam 
TOTAL  67.8 68 

Salavatlı-Aydın 2006 7.95 8 

Denizli 2007 6.85 6.9 

Tuzla-Çanakkale 2010 7.5 7.5 

Salavatli-Aydın 2010 9.5 9.6 

Binary 

TOTAL  31.8 32 

GRAND TOTAL  99.6 100 

 

 

Table 2.4. GPPs have and/or applied to electricity production license in Turkey. 
(Source: EPDK, 2010) 

Location Power Plant Capacity 
(MW) 

Maximum 
Temperature 

(oC) 

Caferbeyli-1, Salihli-Manisa 15 168 

Caferbeyli-2, Salihli-Manisa 15 168 
Atça, Nazilli, Sultanhisar-
Aydın 9.5 124 

Salavatlı,Sultanhisar - Aydın 34 171 
Germencik-Aydın 9.5 143 
Sarayköy-Kizildere-Denizli 60 242 
Umurlu-1-Aydın  5 131 
Umurlu-2-Aydın  5 131 

TOTAL  153  
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2.2. NCGs and NCG Removal Systems 

 
Geothermal steam, which flows through the entire cycle of conventional GPPs 

contains NCGs such as CO2, H2S, NH3, N2, CH4 and air. Depending on the resource, the 

concentration of NCGs can very from less than 0.5% to greater than 25% by weight of 

steam (Duthie and Nawaz, 1989). NCG concentration in some geothermal fields in the 

World is presented in Table 2.5. 

 
Table 2.5. NCG concentration of some geothermal fields in the World.  

(Source: Gokcen and Ozcan, 2007; Coury, 1987; Siregar, 2004; Swandaru, 2006) 
 

Geothermal Field 
NCG Concentration 

(% by weight of steam) 

Kizildere, Turkey 10-21 

Larderello, Italy 10 

Broadlands, Ohaaki, New Zealand 3-6 

BacMan, Philippines 5 

Sibayak, Indonesia 3.1 

Tongonan, Philippines 3 

Geysers, USA 0.5-2 

Patuha, Indonesia 1.1-1.8 

Palinpinon, Philippines 1.3 

Wairakei, New Zealand 0.2 

China Lake, California 0.2 

Puna field, Hawaii 0.1 

 
 
The practical problems associated with elevated levels of NCGs in GPPs are: 

• NCG collects in the sub-atmospheric pressure steam condensers by forming a 

‘gas-blanketing’ effect, which raises the condenser temperature and  back-

pressure on the turbine, reducing its output 

• The gases reduce the heat transfer efficiency of the power plant condensers. The 

primary effect of this is to increase the condenser operating pressure, which 

reduces turbine power output. As a consequence, overcoming the gas effects 

requires larger condensers with greater total heat transfer area and higher costs. 
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• The gases contribute a partial pressure that adds to the backpressure on the 

turbine.  

• If NCG removal systems under-perform, this has the effect of an under-designed 

condenser, increasing the power turbine backpressure. 

• NCGs contain lower recoverable specific energy than does steam. The gases 

dilute the geothermal steam and reduce gross turbine output in the power plant.  

•  NCGs such as CO2 and H2S contribute to corrosion problems in piping and 

equipment that contact steam and condensate. 

• Conversely, when volatile acid gases evolve from flashing geothermal brine, the 

pH of the brine increases. This raises the risk of scale formation in brine piping 

and equipment, creating a potentially expensive maintenance problem in the 

process systems that handle both the steam and spent brine, including brine re-

injection wells. Geothermal steam also entrains brine mist that causes the build-

up of scale in power turbines and in flow systems (Vorum and Fritzler, 2000). 

Because of the elevated NCG levels, GPPs require large capacity NCG removal 

systems which play a vital role in power production occupying large portion in its total 

plant cost and total auxiliary power consumption. Therefore, selection of NCG removal 

system becomes a major concern at planning and basic design stages of geothermal 

power plants. 

  The conventional gas removal systems used in geothermal power plants are: 

_ Jet ejectors, e.g. steam jet ejectors, which are suitable for low NCG flows 

(<3%). 

_ Liquid ring vacuum pumps (LRVPs). 

_ Roto-dynamic, e.g. radial blowers, centrifugal compressors, which are mainly 

used for large flows of NCG (>3%). 

_ Hybrid systems (any combination of equipment above), 

_ Reboilers (Hall, 1996). 

 

2.2.1. Steam Jet Ejectors  

 
An ejector is a type of vacuum pump or compressor, which removes the NCGs 

from the condenser. Since an ejector has no valves, rotors, pistons or other moving 
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parts, it is a relatively low-cost component, is easy to operate and requires relatively 

little maintenance.  

Figure 2.8 shows a diagram of a single-stage steam jet ejector. A steam jet 

ejector operates on the venture principle. The motive steam is expanded through the 

nozzle to the design suction pressure. The pressure energy of the steam is converted to 

velocity energy and on leaving the nozzle at high supersonic velocities the steam passes 

through the suction chamber and enters the converging diffuser or entrainment, as gas 

and associated water vapor. 

 

 
Figure 2.8. Single-stage steam jet ejector. 

(Source: Swandaru, 2006) 
 

Since the capacity is fixed by its dimensions, a single unit has practical limits on 

the total compression and throughput it can deliver. Two or more ejectors can be 

arranged in series for greater compression.  Figure 2.9 shows a diagram of a two-stage 

system. Two stages of equal compression ratio gives a decrease in steam consumption 

compared to the single-stage ejector system (Birgenheier et al., 1993; Swandaru, 2006). 

In a multi-stage system, condensers are typically used between successive ejectors. By 

condensing the vapor before sending the stream onto the next stage, the vapor load is 

reduced. This allows smaller ejectors to be used, and reduces steam consumption. Pre-

condensers (gas coolers) can be added to reduce the load on the first-stage ejector, and 

allow for a smaller unit. An after-condenser can also be added, to condense steam from 

the final stage. Adding an after-condenser will not affect overall system performance, 

but may ease disposal of steam (Birgenheier et al., 1993). 
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Figure 2.9. Two-stage SJES. 

 (Source: Geothermal Institute, 1996a) 
 

2.2.2. Liquid Ring Vacuum Pumps 

 
Liquid ring vacuum pumps (LRVPs) belong to the group of positive 

displacement pumps. The  characteristic  feature  of  this  pump  type  is  the  energy  

transmission from  the  impeller  to  the  fluid  pumped  by means  of  a  liquid  ring.  

The basic design of a LRVP is shown in Figure 2.10.   

LRVP increases gas pressure by rotating a vaned impeller within an eccentric to 

a cylindrical casing. Liquid (usually water) is fed into the pump and, by centrifugal 

acceleration, forms a moving cylindrical ring against the inside of the casing. This 

liquid ring creates a series of seals in the space between the impeller vanes, which form 

compression chambers. The eccentricity between the impeller's axis of rotation and the 

casing geometric axis results in a cyclic variation of the volume enclosed by the vanes 

and the ring. Gas, is drawn into the pump via an inlet port in the end of the casing. The 

gas is trapped in the compression chambers formed by the impeller vanes and the liquid 

ring. The reduction in volume caused by the impeller rotation, increases gas pressure 

which forces to the discharge port (Lehmann, 1995).  
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Figure 2.10. LRVP. 
 (Source: Sugar Engineers, 2010) 

 

LRVPs have relatively high efficiency but high capital cost and are generally 

used alone in low flow applications where large pressure ratios are not required. It has 

been proposed to use LRVPs for geothermal applications in series with a steam jet 

ejector, which would provide the first stage of compression (Geothermal Institute, 

1996b).  

  

2.2.3. Centrifugal Compressors  

 
Increasing NCG fraction increases steam consumption of steam jet ejectors and 

consequently operational cost becomes uneconomic. Centrifugal compressors (Figure 

2.11) although expensive to install, have overall efficiencies in order of 75%.  

When dealing with large quantities of NCGs this makes them the preferred 

option compared to the other systems. Centrifugal compressors are expensive to install 

and maintenance. In some cases, compression of NCG requires up to 20% of the power 

produced by the plant. But they are nearly 30% more efficient than LRVPs and 250% 

more efficient than SJEs (Barber-Nichols, 2010). Kizildere GPP employs the 

compressors as NCG removal system.  
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Figure 2.11. Centrifugal compressors. 

 (Source: Barber-Nichols, 2010) 
 

2.2.4.  Hybrid Systems 

 
Integration of a SJE with a LRVP or centrifugal compressors is referred to as a 

HS. It is one of the more efficient methods for producing a process vacuum. HS having 

SJE and LRVP combination is commonly used in the World. The first and most recent 

cases of a LRVP being used in a GPP for removal of NCGs was in the Onikobe power 

plant, Japan (Geothermal Institute, 1996b) and Gurmat plant, Turkey.  

 

2.2.5. Atmospheric Exhaust Turbines  

 
The geothermal fluid produced by the wells is separated by separators, and the 

stream of steam and NCGs is scrubbed and expanded through a turbine to atmospheric 

pressure. Slightly higher than atmospheric pressure may be required if an H2S 

abatement system is needed. Likewise, a condenser operating at essentially atmospheric 

pressure may be needed to condense steam and cool the NCGs prior to treatment by an 

H2S abatement system. As shown in Figure 2.12, the liquid stream from the separator is 

flashed to generate steam for expansion in a low pressure steam turbine (Hankin et al., 

1984). 
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Figure 2.12. Atmospheric exhaust turbine. 

(Source: Hankin et al., 1984) 
 

2.2.6.  Reboilers 

 
RSs offer the only technology available for removing NCGs from geothermal 

steam upstream of the turbine. The advantages of the reboilers are; 

• The stream feed to the turbine is less corrosive. 

• Since NCGs concentration in the steam is reduced drastically, for certain 

resources, direct contact power plant condensers can be used rather than surface 

condensers which would be required if vent gas treatment is needed. Surface 

condensers may then still be needed but secondary H2S abatement may not be 

required.  

• Use of upstream reboilers allows H2S abatement even during stacking 

operations. 

• In case of high NCG content, the overall energy conversion process is more 

efficient (Awerbuch et al., 1984). 

Upstream reboilers mainly are classified as two groups as indirect contact 

reboilers (vertical, horizontal and kettle types) and direct contact.  
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2.2.6.1. Vertical Tube Evaporator Reboilers 

 
A vertical tube evaporator reboiler is a surface type heat exchanger shown in 

Figure 2.13.  

 

 
Figure 2.13. Vertical tube evaporator reboiler. 

(Source: Hughes, 1987) 
 
 
Wellhead steam enters the shell side of the exchanger near the bottom. The shell 

side is at a pressure and temperature slightly higher than the tube side. The temperature 

difference will result in steam condensing on the shell side and condensate evaporating 

on the tube side. Most of the NCGs will be exhausted in the vent stream. Condensate 

from the sump is pumped to the heat exchanger tubes where a fraction of the liquid 

flowing down will evaporate in a single pass (Awerbuch et al., 1984). 
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Vertical tube evaporator reboiler technology has been applied at the pilot level at 

the Geysers, California. During more than 1000h of accumulated test time, the average 

H2S removal efficiency obtained as 94% (Coury and Associates, 1981). 

 

2.2.6.2. Horizontal Tube Evaporator Reboilers 

 
A horizontal tube evaporator reboiler is illustrated in Figure 2.14. Wellhead 

steam enters one of the tube boxes and flows into the tube side of the heat exchanger. 

The tube side temperature and pressure is higher than the shell side. Condensate is 

sprayed onto the shell side of the heat exchanger. The temperature difference will result 

in the steam condensing on the tube side and the condensate evaporating on the shell 

side. The condensate and the uncondensed vapor in the tubes will flow to a knockout 

chamber where the condensate and vent gases are separated. The condensate not 

evaporated is returned to the spray nozzles by a recirculation pump (Awerbuch et al., 

1984). 

 

 
 

Figure 2.14. Horizontal tube evaporator reboiler. 
(Source: Palen 1984; Gunerhan, 1999) 

 

2.2.6.3. Kettle Type Reboilers 

 
Kettle type reboilers basically consist of a bundle of U-tubes submerged in the 

condensate (Figure 2.15). The contaminated geothermal steam flows inside the tubes. 
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Figure 2.15. Kettle type reboiler. 

(Source: Spirax Sarco, 2010; Gunerhan, 1999) 
 

2.2.6.4. Direct Contact Reboilers 

 
A direct contact heat exchanger vessel (e.g., packed bed column), flash vessels, 

and recirculation pump are the main components of a direct contact reboiler, shown in 

Figure 2.16.  

 

 
Figure 2.16. Direct contact reboiler. 

           (Source: Gunerhan, 1999) 
 
 

Wellhead steam enters the direct contact heat exchanger near the bottom of the 

column. As the steam flows up the packed column, it condenses as it contacts 
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circulating colder condensate. At the top of the column, most of the NCGs will remain 

in the vapor stream which is vented. This hot liquid flows to a flash vessel where steam 

can be produced as feed to the turbines. A variation of the basic design is the use of two 

flash vessels to produce high and low pressure steam (Awerbuch et al., 1984). 

The comparison of the reboiler types is given in Table 2.6. 

 
Table 2.6. Comparison of upstream reboiler types. 

(Source: Gunerhan, 1999). 
  

Reboiler 

types 

Application 

in 

geothermal 

Advantages Disadvantages 

Vertical 
Tube 

At pilot level 
in The 

Geysers 
(USA) and 

Cerro Prieto 
(Mexico) 

Less fouling, 
Suitable for using 
Fouling liquids, 

low 
Residence time, 

low Liquid 
inventory, Low 

floor area 

High head room 
(can cause stability 
problems), difficult 

to design, high 
differential pressure 

can cause tube 
collapse 

Horizontal 
tube 

No 
application 

Capability of 
handling high 

Pressure difference, 
easier to Access for 

cleaning 

 

Kettle 

Commercial 
Experience in 

New 
Zealand 

Rugged 
construction, easy 

to design, 
negligible 

pressure drop 

Expensive material, 
Control or stability 

problems, high 
liquid inventory, 
uneconomic for 
high pressure 

operation, 
unsuitable for 

fouling liquids, not 
easy to clean 

Direct 
contact 

Latera (Italy) 
(start-up in 
early 1999, 
abundant in 

2003) 

Suitable for fouling 
fluids, cheap to 
build, simple 
construction 

Control problems 
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Chapter 3 LITERATURE SURVEY 

 

LITERATURE SURVEY 

 
The effects of NCGs on the performance of GPPs were first studied by Khalifa 

and Michaelides in 1978. In the study CO2 was taken into consideration as NCGs and 

the influence of dissolved carbon dioxide on the performance of various components of 

GPP, such as turbine, flash tank, condenser and gas extraction system, had been 

analyzed in a simple, thermodynamically consistent manner. The study showed that, 

presence of 10% by weight of steam CO2 in the geothermal steam results in as much as 

a 20-25% decrease in the net work output compared to a clean steam system (Khalifa 

and Michaelides, 1978). 

Because of the NCGs heat transfer coefficient in the condenser is reduced. 

Therefore, Michaelides (1980) proposed a flash system at the wellhead to separate the 

NCGs before they enter the turbine and determined the flash temperature depending on 

the NCG content. It was emphasized that NCG content in the steam is an important 

factor for the estimation of the recoverable work. If the initial gas content was higher 

than 0.1% by weight of steam, the separation of the NCGs by flashing results in the 

recovery of higher amounts of work (Michaelides, 1980). 

In another study of Michaelides (1982), different NCG removal systems, such as 

ejectors, pumps, compressors and combined system with steam jet ejectors and 

compressors were studied. It was explained that, the ejectors are simple, inexpensive 

devices and require little maintenance. However, they were inefficient and consume a 

great deal of available work. Compressors and pumps, although more efficient, were 

expensive and require frequent maintenance. In general, ejectors were used where the 

NCG content was relatively low and compressors are used where the gas content was 

high (Michaelides, 1982).  

Optimization of NCG removal systems becomes extremely important if the 

geothermal steam contains large amount of NCGs. Tajima and Nomura (1982) and 

Hamano (1983) were studied four different NCG removal systems, which were steam 

jet ejectors, centrifugal gas compressors, combined systems of steam jet ejectors and 

centrifugal compressors, and back pressure turbine without NCG removal system. 

CHAPTER 3 
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Evaluation was made by comparison of electrical power generating cost, steam cost and 

capital cost for four alternative NCG removal systems. The study (Tajima and Nomura, 

1982) showed that for 7.25% by volume NCG content, centrifugal compressors gave the 

highest capital cost and the lowest steam cost. Back pressure turbine gave the lowest 

capital cost and highest steam cost. If there was a large quantity of NCG content, more 

than 10% by weight of steam, the GPP may adopted a back pressure turbine without a 

condenser (Hamano, 1983).  Because of the back pressure turbine caused a decrease of 

the total output or increases the steam consumption, for large capacity unit such as 50 

MW, back pressure turbine was not recommended. The selection of the NCG removal 

systems depends on the condenser pressure. Consequently, centrifugal CSs were 

selected according to optimum condenser pressure. If the condenser pressure is below 

11.77 kPa abs, combined system of steam jet ejector and centrifugal compressor became 

the most economical option (Tajima and Nomura, 1982). 

Hankin, et al. (1984) studied, the performance of different NCG removal 

systems, which were condensing turbine with compressors, atmospheric exhaust 

turbine, tube type reboiler and direct contact reboiler, were examined and compared to 

the conventional process (condensing turbine with steam jet ejectors) for a 25% by 

weight of steam NCG content. Required flow rate of geothermal fluid, which relates 

directly to the number of the wells needed to operate the plant, was one of the 

comparison criteria. The better power plant processes were condensing turbine with 

compressor, tube type reboiler and direct contact reboiler require one-half to two-thirds 

the number of the wells as the conventional condensing turbine with steam jet ejectors 

for the optimum wellhead pressure (2.45 MPa). The first two required large, relatively 

expensive equipment to handle the high NCG. However, the direct contact reboiler 

process used relatively low cost direct contact heat exchangers for NCG separation. 

Thus, the direct contact reboiler process was promising for plant design where the steam 

contains high amount of NCG (Coury et al., 1980).  

Although the use of upstream reboilers is not commonly practiced in GPPs to 

date, these reboilers can play a significant role in power plant design. Awerbuch, et al. 

(1984), described various upstream reboiler concepts, vertical tube evaporator (VTE), 

horizontal tube evaporator (HTE), kettle type and direct contact (DCR) reboilers, and 

application of these concepts for geothermal resources with low and high NCG content 

was discussed. According to the study, because of design constraints the VTE reboilers 

were generally most suitable for low concentrations of NCG steam where the pressure 
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differences between the shell and tube sides are relatively small. On the other hand, 

HTEs had some advantages over the VTE reboilers including capability of handling 

high pressure differences, and easier access for cleaning in case of fouling. The main 

concern with surface reboilers (VTE, HTE and Kettle) was selection of materials of 

construction and therefore capital cost. In view of the cost of surface reboilers, direct 

contact reboilers (DCR) had great promise since no heat transfer surfaces are required 

(Awerbuch, et al., 1984; Awerbuch and Van der Mast, 1985). Another study about 

upstream reboilers was conducted by Duthie and Nawaz in 1989. In the study direct 

contact and kettle reboilers were compared. This study has also shown that for large-

scale projects based on a high NCG content resource, the direct contact reboiler had 

significant capital cost and levelized cost of power advantages over the kettle type 

reboiler (Duthie and Nawaz, 1989).  

Gunerhan studied upstream RSs as an alternative to conventional gas extraction 

system for Kizildere GPP in Denizli, Turkey. Both vertical tube type (VTE) reboiler and 

direct contact reboiler (DCR) designed and evaluated. It was concluded that vertical 

tube type reboilers were not efficient for fields that contain high levels of NCG (>15% 

by weight of steam). Thus, the use of direct contact reboilers was recommended. The 

direct contact tests had been carried out in the field with a gas removal efficiency 

76.3± 22.6 % at the base case (Gunerhan, 2000).  

In June 2000, National Renewable Energy Laboratory (NREL) published a 

subcontractor report about removing NCGs from flashed steam GPPs (Vorum and 

Fritzler, 2000). In the study, six different methods of removing NCGs from GPPs were 

compared according to design and economic considerations. The studied NCG removal 

systems were, a two stage system of steam jet ejectors, a three-stage system using an 

innovative steam-driven turbo compressor, a HS using two stages of steam jet ejectors 

and a turbo compressor third stage, a HS using two stages of steam jet ejectors and a 

liquid ring vacuum pump third stage, a conceptual bi-phase eductor system and a 

reboiler process. It was concluded that, two gas removal options appeared to offer 

profitable economic potential. The hybrid vacuum system configurations and the 

reboiler process yield positive net present-value results over wide-ranging gas 

concentrations. The hybrid options looked favorable for both low-temperature and high-

temperature resource applications. The reboiler looked profitable for low-temperature 

resource applications for NCG levels above about 20,000 parts per million by volume 

(ppmv). A vacuum system configuration using a three-stage turbo compressor battery 



 
29

may be profitable for low temperature resources, but the results also showed that a HS 

is more profitable (Vorum and Fritzler, 2000). 

A tray-type direct contact RS was applied to 40 MW Latera GPP in Italy where 

the NCG content is 3.5% at the wellhead. This was the first application to the 

geothermal industry in the world of the reboiler concept on a commercial scale. It was 

started up in early 1999 and abundant in 2003 because of the environmental problems 

(Sabatelli and Mannari, 1995).   

Yildirim and Gokcen (2004) considered the NCG content on each step of energy 

and exergy analysis of Kizildere GPP. They emphasized the importance of NCGs on 

power plant performance and concluded that since GPPs contain a considerable amount 

of NCGs, the NCG content should not be omitted throughout the process and dead state 

properties should reflect the specified state properties. 

In another study (NASH, 2006), NCG removal systems for GPPs were 

compared to each other depending on their capital cost, operating cost and electric 

power cost. Three different options were considered: Option A was three-stage all 

SJES, Option B was a three-stage HS with two stage steam jet ejector and third stage 

vacuum pump, Option C was a two-stage HS with first stage ejector and third stage 

vacuum pump. The study showed that, Option A, the all SJES, shows an attractively 

low initial investment. However, the annual operating costs are far higher than either of 

the other two cases. Option B balances operating costs savings against initial 

investment. Option C has the lowest operating costs. The higher initial investment to 

gain this cost reduction, however, extends its payoff time considerably (NASH, 2006). 

Siregar (2004) studied ejectors and liquid ring vacuum pump in one of his 

studies. The study was about optimization of electric power production process for the 

Sibayak geothermal field, Indonesia. The NCG fraction was 3.07% (by weight of 

steam). The liquid ring vacuum pump power consumption was calculated as 803 kW for 

a single-flash GPP with the capacity of 20 MW.  Similar studies had been conducted by 

Swandaru in 2006 for Patuha geothermal field in Indonesia. In the field NCG 

concentration is 1.77 % (by weight of steam). As NCG removal system 3-stage NCG 

removal system exists at first two stages with SJE and the last stage is LRVPp. In the 

study, the steam consumption of SJEs and power consumption of LRVP were 

determined.  

The complex and unique nature of GPPs reveals to use design and simulation 

software. The majority of existing commercial software are developed for reservoir and 



 
30

geothermal field modeling (Milicich et al., 2010; Tanaka and Itoi, 2010; Holzbecher and 

Sauter 2010), borehole heat exchangers and heat pumps (Kim et al., 2010; Cisarova et 

al., 2010), geochemical modeling of geothermal fluids (Hasse et al., 2006, Putten and 

Colonna, 2007), direct use applications (HeatMap, 2010) and GPPs (Blomster et al., 

1975; GETEM, 2010; Aspen-HYSYS, 2010). The oldest known GPP software is 

GEOCOST, which consists of deterministic and static cost models to simulate the 

production of electricity from geothermal energy (Blomster et al., 1975). The 

GEOCOST includes only steam jet ejectors as NCG removal system, not applicable to 

high NCG fields. GETEM, static model, determines the performance of flashed-steam 

GPPs and it includes steam jet ejectors, LRVPs and hybrid NCG removal systems. The 

compressors and reboilers are not included in GETEM software (GETEM, 2010).  

ASPEN-HYSYS, which is a static and dynamic modeling tool for conceptual design, 

optimization, business planning, asset management and performance monitoring of 

energy systems by offering a comprehensive thermodynamics foundation of physical 

properties. GPPs can be modeled by the software but it does not include a specific 

module for NCG removal systems (Aspen-HYSYS, 2010). Since there is a substantial 

lack of design and simulation software of GPPs including NCG gas removal options, 

the Thesis aims to develop a model to provide a guide or reference which could quickly 

and easily be used to determine the GPP gas removal system which maximizes the 

power output at minimum cost. The model includes mass, energy and exergy balances, 

and economical analysis under steady-state, steady-flow conditions. 

Energy and exergy balances of geothermal power plants have been conducted by 

many researchers. The studies mostly are focused on determination of exergetic 

efficiency of the plants and simulation of dead state properties. The authors considered 

that NCG content is zero through the cycle or NCGs are taken into consideration only at 

the gas extraction system not the entire cycle (DiPippo and Marcille, 1984; DiPippo, 

1992, 1994, 2004; Cadenas, 1999; Cerci, 2003; Siregar, 2004; Kwambai, 2005; Aqui et 

al., 2005; Dagdas et al., 2005; Ozturk et al., 2006; Kanoglu et al., 2007). The Thesis 

differs from the previous studies by considering NCG fraction through the entire cycle 

during mass, energy and exergy balances.  

The developed model allows the designer to simulate the disturbed parameters to 

forecast and validate the performance of flashed steam GPPs under various working 

conditions, which is useful for system design. Furthermore, the model can support new 

plant designs at the earlier phases to avoid possibly costly late modifications caused by 
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conceptual design errors. The simulation models can also help personnel involved with 

the plant at various levels to become familiarized with its behavior before the first plant 

start-up, and considerably shorten the commissioning time.  
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Chapter 4 MODELING 

 

MODELING 

 
The thermodynamic and economical models of flashed-steam GPPs (single and 

double-flash) have been developed with an emphasis on NCG removal systems, in order 

to obtain the maximum power output at lowest production cost. Four different gas 

removal options which are two-stage SJES, two-stage HS (steam jet ejector and liquid 

ring vacuum pump), two-stage CS and RS are evaluated based on mass, energy and 

exergy balances, and economical analysis under varies geothermal fluid, power plant, 

environmental and economical parameters. The model is validated by Kizildere GPP 

data.  

In this chapter, the thermodynamic and economical equations for single-flash 

GPP model given in detail are subjected to double-flash GPP model. 

 

4.1. Thermodynamic Model 

 
 
4.1.1. Mass, Energy and Exergy Balance Equations 

 
Energy is defined as motion or the ability to cause motion and is always 

conserved in a process.  The First Law of Thermodynamics states that energy can 

neither be created nor destroyed. Energy is available in many different forms and may 

be converted between these forms. On the other hand, exergy is defined as work or the 

ability to cause work and is always conserved in a reversible process, but is always 

consumed in an irreversible process. The Second Law of Thermodynamics states that 

conversions of energy are possible only if the total entropy increases. While energy is a 

measure of quantity, exergy is a measure of quantity and quality.  

An exergy balance is a mathematical tool for evaluation of exergy flows through 

a system (Figure 4.1). Most cases of thermodynamic imperfection cannot be detected by 

mass and energy balances. A careful evaluation of processes using exergy balance 

enables the identification of the source of inefficiencies and waste, which leads to 
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improved designs and resultant savings. Exergy balance is a tool for identifying the 

types, locations and magnitudes of thermal losses using conservation of mass and 

energy principle together with the Second Law of Thermodynamics. Identifying and 

quantifying these losses allows for the evaluation and improvement of the designs of 

thermodynamic systems (Rosen, 2002; Kwambai, 2005). 

  

 
Figure 4.1. Illustration of exergy flow through a system. 

(Source: Kwambai, 2005) 
 

The main equations of mass, energy and exergy balance used in the static 

(steady-state, steady-flow) model are summarized in Table 4.1. 

 

Table 4.1. Main equations of the model. 
 

 Equation Equation Number 

NCGsl mmmm &&&& ++=  (4.1) 

( ) mmmx NCGs &&& +=  (4.2) 

( )NCGsNCG mmmf &&& +=  (4.3) 

( ) ( )
outin

mm ∑∑ = &&  (4.4) 

( ) mxml && ×−= 1  (4.5) 

( ) mfxms && ×−×= 1  (4.6) 

Mass 

mfxmNCG && ××=  (4.7) 

(cont. on next page)
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Table 4.1. (cont.) 

NCGNCGssll hmhmhmhm ×+×+×=× &&&& (4.8) 
Energy 

( ) ( )
outin

hmhm ∑∑ ×=× &&  (4.9) 

destroyedoutin xExExE &&& +=  (4.10) 

wastedesiredout xExExE &&& +=  (4.11) 

sTxE destroyed ×= 0
&  (4.12) 

2COsf xExExExE &&&& ++=  (4.13) 

Exergy 

[ ])()( 000 ssThhmxE −×−−×= &&  (4.14) 

 
 

The most commonly used measure of the performance of a system in terms of 

exergy is the exergetic efficiency which is a measure of the performance of a system 

relative to the maximum theoretical performance of the same system. Exergetic 

efficiency is defined as the ratio of the sum of desired exergy outputs to the sum of the 

necessary exergy inputs and given by Eq. 4.15. 

 

in

desired
Ex xE

xE
&

&
=η  (4.15)

 

Figure 4.2 shows the schematic diagram of representative single-flash GPP 

model. The plant mainly consists of production wells, wellhead/main separator(s), 

turbine, condenser, NCG removal system, cooling tower and auxiliary equipment such 

as pumps and fans.  

Geothermal fluid which is a mixture of liquid, water vapor and NCGs at the 

wellhead is separated into the steam and liquid phases at the separator. Steam phase is 

directed to the turbine contains water vapor and NCGs. After passing the turbine; steam, 

condensate and NCGs flow to the condenser where NCGs are accumulated and 

extracted by a gas removal system. The rest is pumped to the cooling tower which helps 

the temperature of the fluid drops down to the cooling water temperature to be re-used 

in the condenser. Liquid phase is driven by circulation pumps and air is drawn into the 

cooling tower by fans. 
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Figure 4.2. Schematic diagram of representative single-flash GPP. 
 
 

Overall mass, energy and exergy balance for steady-state conditions with 

reference to Figure 4.2, can be expressed as below (Kwambai, 2005). The subscript 

numbers refer to state locations on Figure 4.2. 

 

BA airaair mmmmmmm &&&&&&& ++++=+ 3122131210  (4.16)

∑−= auxgennet WWW &&&  (4.17)

otherfanmotorpumpmotorgrsaux WWWWW &&&&& +++=∑ ,,  (4.18)

∑+++++++=+ GPPnetBairpipeheatlossaAair IWxExExExExExExExE &&&&&&&&&
,31,221312,10  (4.19)

 

where  

pipeheatlossxE ,
&  : Exergy loss through pipe between condenser exit and cooling tower 

inlet, 

∑ GPPI : Total destroyed exergies. 
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The overall exergetic efficiency of the plant is expressed as: 

 

10xE
Wnet

overall &

&
=η  (4.20)

 

The GPP is simplified into sub-systems, each with distinct mass, energy and 

exergy inflows and outflows and approximated into steady-state flow. In the following 

part, mass, energy and exergy balance equations of all plant components, which are 

separator, demister, turbine-generator, condenser, cooling tower, NCG removal system 

and auxiliary equipment such as fans and pumps, are introduced.  

 

4.1.1.1.  Separator  

 
The geothermal fluid is separated into vapor and liquid in a steam separator 

(Figure 4.3 and 4.4). As it is illustrated in Figure 4.3, the sequence of processes begins 

with geothermal fluid under pressure at state 10 (see also Figure 4.2) close to the 

saturation curve.   

 

 
 

Figure 4.3. T-s diagram for a single-flash plant. 
(Source: DiPippo, 2005) 

 

The flashing process is modeled as one at constant enthalpy, an isenthalpic 

process, because it occurs steadily, spontaneously, essentially adiabatically, and with no  
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Figure 4.4. Main separator flow process. 

 
 
work involvement. Any change in the kinetic or potential energy of the fluid as it 

undergoes the flash, is also neglected. Thus it can be written as: 

 

1011 hh =  (4.21)

 

The separation process is an isobaric process, once the flash has taken place.  

 

sepPPPP === 131211  (4.22)

 
The quality of dryness fraction, x of the mixture that forms after the flash, state 

11, can be found from: 

 

1213

1211
11 hh

hhx
−
−

=  (4.23)

 

The mass flowrate of steam that flows to the turbine coming from the separator 

is given by: 

 
111113 mxm && =  (4.24)

 

Then, the mass flowrate of the brine from the separator is written as: 
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( ) 111112 1 mxm && ×−=  (4.25)

 

Exergy loss and exergetic efficiency: 

 

131210 xExExEIsep
&&& +−=  (4.26)

 

10

13

xE
xE

sepEx &

&
=η  (4.27)

 
 
4.1.1.2.  Demister  

 
A demister, shown in Figure 4.5, is employed prior to the turbine to remove the 

condensate from the steam and make sure dry steam is introduced to the turbine. The 

pressure drop through the demister is taken as 10 kPa and the flashed mass flowrate is 

considered as 1% of the steam flowrate (Swandaru, 2006).  

 
1313 01.0 mm a && ×=  (4.28) 

 

 
 

Figure 4.5. Flow diagram of demister. 
 
 

Exergy loss and exergetic efficiency: 

 

adem xExExEI 131413
&&& −−=  (4.29)
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13

14
, xE

xE
demEx &

&
=η  (4.30)

 
 

4.1.1.3.  Steam Turbine and Generator 

 
Turbine expansion process is illustrated in Figure 4.6.  For a turbine under 

steady operation, the inlet state of the working fluid and the exhaust pressure are fixed. 

Therefore, the ideal process for an adiabatic turbine is an isentropic process between the 

inlet state and the exhaust pressure (Figure 4.7). 

 

 

Figure 4.6. Turbine expansion flow process. 

 

 

Figure 4.7. h-s diagram for the actual process and isentropic of an adiabatic turbine  
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Turbine power is given by the following equation: 

 
)( 151414 hhmWtur −×= &&  (4.31)

 

The turbine isentropic efficiency (ηtur) is given by:  
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Usually the changes in kinetic and potential energies, associated with a fluid 

stream flowing through a turbine, are small relative to the change in enthalpy and can be 

neglected. Then the work output of an adiabatic turbine simply becomes the change in 

enthalpy, and the equation becomes (Swandaru, 2006);  
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Steam turbine efficiencies are calculated by a modified Baumann rule (DiPippo, 

1982); 

 

))1(2.11(85.0 ,15 istur x−×−×=η  (4.34)

 

To determine the steam turbine efficiency, it is necessary to calculate the 

isentropic quality (x15,is) at the turbine exit.      
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The actual turbine power is calculated using the actual enthalpy of the 

geothermal fluid at state 15 by the help of Eq. 4.33. Thus, the turbine power is 

calculated by Eq. 4.31. The turbine-generator power is defined by the following 

equation: 
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genturgen WW η×= &&  (4.36)

 

Exergy loss and exergetic efficiency: 

 

turgentur WxExEI &&& −−=− 1514  (4.37)
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4.1.1.4.  Condenser 

  
The primary purpose of the condenser is to condense the exhaust steam leaving 

the turbine. The circulating water system supplies cooling water to the turbine 

condensers and thus acts as the vehicle by which heat is rejected from the steam cycle to 

the environment. Its performance is vital to the efficiency of the power plant itself 

because a condenser operating at the lowest temperature possible results in maximum 

turbine work and cycle efficiency and in minimum heat rejection. 

The typical condensate temperature attained in practice is 45-50°C, 

corresponding to a condenser pressure of 9.6-12.5 kPa-abs (El-Wakil, 1984; 

Moghaddam, 2006).  

Figure 4.8 presents the temperature distribution in the condenser. The 

circulating-water inlet temperature should be sufficiently lower than the steam-

saturation temperature to result in reasonable values of ΔT0. It is usually recommended 

that ΔTi should be between about 11 and 17°C and that ΔT0, should not be less than 

2.8°C. The enthalpy drop and turbine work per unit pressure drop is much greater at the 

low-pressure end than the high-pressure end of a turbine (El-Wakil, 1984). 
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Figure 4.8. Condenser temperature distribution. 

(Source: Siregar, 2004) 
 

There exist two types of condensers, which are direct contact and surface 

condensers. The most common type used in GPPs is direct-contact condensers (Siregar, 

2004). The flow diagram of a direct-contact condenser is shown in Figure 4.9. Steam 

leaving the turbine (15) is exhausted into the condenser where it is mixed with a spray 

of cold water from the cooling tower (30) and gas coolers of the NCG removal system 

(29). The steam condenses on the water droplets and the condensate drains through a 

barometric leg (20) into a seal pit tank to overcome atmospheric pressure. NCGs and 

small amount of steam are sucked from the condenser (16) by NCG removal system. 

 

 

Figure 4.9. Condenser flow diagram. 
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The condenser heat load can be calculated using the following equation: 

 

[ ] 2016,15,15,16161515 )( hmmmhmhmQ sslcon ×−+−×−×= &&&&&&  (4.39)

 

The cooling water mass flowrate is calculated as: 

 

)/())(( 302029202930 hhhhmQm con −−×−= &&&  (4.40)

 

Exergy loss and exergetic efficiency: 
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4.1.1.5.  Cooling Tower 
 

Power plants generate large quantities of waste heat that is often discarded 

through cooling water in nearby lakes or rivers. In some cases, however, the cooling 

water supply is limited or thermal pollution is a serious concern. In such cases the waste 

heat must be rejected to the atmosphere, with cooling water re-circulating and serving 

as a transport medium for heat transport between the source and the sink (the 

atmosphere). One way of achieving this is through the use of cooling tower.  

A cooling tower is an evaporative heat transfer device in which atmospheric air 

cools warm water, with direct contact between the water and the air, by evaporating part 

of the water (Siregar, 2004). 

The mass and energy balances between hot water and cold air entered, cold 

water and hot air exiting the cooling tower are shown in Figure 4.10.  
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Figure 4.10. Cooling tower flow diagram. 
 

The circulating condensate leaves (20) the condenser is pumped by a circulating 

water pump (Pump1) to the top of the cooling towers (21). Water reaches the top of the 

cooling towers with 3°C temperature drop. As the water droplets fall down and break up 

into fine droplets, a stream of air (A) flows across the water droplets thus creating 

cooling by evaporation and convection-conduction mechanisms. The stream of air is 

created by suction of air fans ( fanW& ) located at the top of the cooling towers. The water 

droplets eventually fall into the cold pond from where it is transferred into the 

condenser inlet pipeline (23). Some water goes to the gas cooler of the NCG removal 

system and the rest into the condenser. Warm moist air leaves the cooling tower (B) 

driven out by air fans ( fanW& ). Some condensate is lost to the air. Changes in potential 

and kinetic energies and heat transfer are all negligible. No mechanical work is done. 

The dry air goes through the tower unchanged. The water vapor in the air gains mass 

due to the evaporated water. Thus, based on a unit mass of dry air, and with the 

subscripts A and B referring to air inlet and exit, and the subscripts 21 and 23 to 

circulating water inlet and exit, respectively (the air leaving the system at B is often 

saturated): 

Following psychometric practice, the equations are written for a unit mass of dry 

air (El-Wakil, 1984).  
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From the cooling water calculation in the condenser section, it is known that the 

volume flowrate of hot cooling water entering the cooling tower is cwm&  (m3/s). Thus, 

dry air mass flowrate can be found from: 

 

21Wmm cwa && =  (4.45)

 

Exergy loss and exergetic efficiency: 

 

BairfanAairct xExExEWxExEI ,2322,21
&&&&&& −−−++=  (4.46)

 

Aair

exhaustctAair
ctEx xExE

xExEIxExE

,21

22,21
, &&

&&&&

+
−−−+

=η  (4.47)

 

 
4.1.1.6.  NCG Removal Systems 

 
CS, SJES, HS and RS is modeled as NCG removal systems.  

 

4.1.1.6.1. Compressor System 
 

A two-stage CS flow diagram is shown in Figure 4.11. 

Compression is ideally an isentropic process. To determine the actual enthalpy 

at compressor exit is quite complex since the geothermal steam is a mixture of water 

vapor and CO2. Therefore, the isentropic enthalpies of water vapor and CO2 are 

calculated separately. Then, the isentropic enthalpy of the mixture is calculated using 

the mass flowrate of water vapor and CO2 and their isentropic enthalpies.  
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Figure 4.11. Two-stage CS flow diagram 

 

The actual enthalpy at the compressor exit is calculated using Eq. 4.49. 
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Exergy loss and exergetic efficiency: 
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4.1.1.6.2. Steam Jet Ejector System 
 

Two-stage SJES flow diagram is shown in Figure 4.12.  

 

 

Figure 4.12. Two-stage SJES flow diagram. 

 

The suction and discharge pressure of each stage is determined by the following 

calculations (Geothermal Institute, 1996b). Each stage uses equal pressure ratios based 

on system suction and discharge pressure of 90% condenser pressure and 105 kPa. The 

following formula decides the suction and discharge pressures for each stage through 

equal ratios: 
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=  (4.52)

 

SJEs are feed by the motive steam, which leaves the separator. Between the 

stages the gas coolers are used. Dalton’s laws of partial pressure and ideal gas 

equations are used to calculate necessary motive steam flowrate at point 33 and 34 

(Hall, 1996). 

  Calculate the entrainment ratio using the equation which was determined from 

the entrainment ratio curve (Figure 4.13).  
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Figure 4.13. Entrainment ratio curve. 
(Source: Geothermal Institute, 1996b) 

 

  The entrainment ratio for NCG can be determined by the equation: 
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The entrainment ratio for steam can be determined by the equation: 
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Calculate total air equivalent (TAE): 
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  The compression ratio is defined as the ratio of discharge to suction as expressed 

in Eq. 4.51. The expansion ratio for the first and second stages is defined as the ratio of 

motive steam pressure to suction pressure: 
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  The air steam ratio (AS) can be found by a curve (Figure A.1) that has been 

transformed into a small program in EES called procedure ratio_1. Inputs required for 

this program are the expansion ratio and the compression ratio. 

  Finally, the motive steam mass flowrate for both stages can be found from: 
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Exergy loss and exergetic efficiency: 
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4.1.1.6.3. Hybrid System 
 

The flow diagram of HS which is a combination of SJE and LRVP is 

demonstrated in Figure 4.14.   

 

 

Figure 4.14. The flow diagram of HS. 
 

The power of the LRVP is calculated by the following equation (Siregar, 2004): 
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Exergy loss and exergetic efficiency: 
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4.1.1.6.4. Reboiler System 

 
RSs offer the only technology available for removing NCGs from geothermal 

steam upstream of the turbine. In the Thesis, a vertical tube evaporator reboiler is used 

(Figure 4.15). 

 

 

Figure 4.15. RS flow diagram. 
 

The rejection of NCGs to vent stream and steam/NCG weight ratio in vent gas 

are taken as 98% and 50%-50%, respectively. Blowndown is taken as 1% (Eq. 4.66). 

RS requires at least 330 kPa pressure drop between the separator and turbine inlet 

according to a study for KGPP (Coury, et al., 1996; Vorum and Fritzler, 2000; 

Gunerhan, 1996). 

 

bNCGNCG mm 13,36, 98.0 && ×=  (4.64)

 

36,36, NCGs mm && =  (4.65)
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Exergy loss and exergetic efficiency: 
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4.1.1.6.5. Inter and After Condensers 
 

In a multi-stage system, inter and after condensers are typically used between 

the stages. By condensing the vapor prior to the next stage, the vapor load is reduced. 

This allows smaller NCG removal systems to be used, and reduces steam consumption. 

After condenser can also be added to condense vapor from the final stage. Adding an 

after condenser will not affect overall system performance, but may ease disposal of 

vapor and acts as a noise suppressor. (Birgenheier et al., 1993; Swandaru, 2006).  

 

• Inter condenser 

 
Flow diagram of inter condenser (IC) is shown in Figure 4.16.  

 

 

Figure 4.16. The inter condenser flow diagram. 
 

01.0)( 36,13,42, ×−= sbss mmm &&&  (4.66)
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Inter condenser heat load: 
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The cooling water mass flowrate: 
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Exergy loss and exergetic efficiency: 
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• After condenser 

 
In Figure 4.17 flow diagram of after condenser (AC) is presented.  

 

 

Figure 4.17. The after condenser flow diagram. 
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Similarly with inter condenser calculations, heat load: 

 

2519,31,31,19,19,19,19, hmhmhmhmQ sNCGNCGNCGNCGssac ×−×−×+×= &&&&&  (4.73)

 

and cooling water mass flowrate: 
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Exergy loss and exergetic efficiency: 

 

25312419 xExExExEIac
&&&& −−+=  (4.75)

 

2419

2419
, xExE

IxExE ac
acEx &&

&&

+
−+

=η  (4.76)

 

4.1.1.7.  Water Circulation Pumps and Cooling Tower Fans  

 
In a power plant, pumps play an important part in cooling process. The 

representative single-flash GPP employs mainly three water circulation pumps are 

considered as shown in Figure 4.18. 

• Pump1: from the condenser exit to the cooling tower inlet, 

• Pump2: from the cooling tower exit to the condenser inlet,  

• Pump3: for makeup water to the cooling tower inlet. 
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Figure 4.18. Water circulation pumps in the GPP. 
 

Make-up water must be added to the cycle to replace the water loss due to 

evaporation and air draft. To minimize the water carried away by the air, drift 

eliminators are installed in the wet cooling tower above the spray section (Cengel and 

Boles, 2006). The makeup water flowrate is calculated by 

 

lossnEvaporatiom upmake ×= 22.1&  (4.77)

 

The evaporation loss rate is 1-1.5% of the total circulating water flowrate. 

Blowdown is normally 20% of evaporation loss but sometimes the value is similar to 

evaporation loss, depending upon the content of chemicals, content of various minerals, 

and the size of the plant. The drift loss is perhaps 0.03% of the total circulating water 

flowrate (Siregar, 2004).  

 

)( 12 ωω −×= amlossnEvaporatio &  
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(4.78)

 

The following equation is used to calculate the power of water circulation 

pumps pumpW& , in watt: 
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Exergy loss and exergetic efficiency: 

 

pumpoutinpump WxExEI &&& +−=  (4.81)
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The air circulation in the cooling tower is provided by fans and the power of the 

fan is determined in similar way with water circulation pumps by using Eqs. 4.79-82.  

 

4.2. Economical Model 

 
GPPs, like most types of power plants, promote economic growth. One of the 

unique external benefits of geothermal power, unlike many traditional types of power, is 

sustainable development. GPPs provide long-term, stable, well-paying jobs (typically in 

rural areas), and supply income to local, state, and federal economies through decades 

of reliable, secure, domestic, renewable energy production (Kagel, 2006). 

The prime objective of every project is to be profitable. Profits are related to the 

difference between the price obtained for power and the cost of producing of a 

geothermal project. The financial structure, conditions and related costs are important 

factors influencing the levelized cost of energy and profitability of the project. 

Therefore, in the Thesis, flashed-steam GPPs are evaluated depending on NPV, IRR and 

SPT methods. Besides, cost of electricity production of the plant for four different NCG 

removal system options are determined to compare the NCG removal systems to each 

other. 
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4.2.1. Geothermal Power Production Cost 

 
Power plant design is a complex activity that aims to minimize both construction 

and O&M costs in a long-term perspective. It thus consists of defining the optimal size 

of power plant equipment and choosing the best suited technologies and construction 

materials to deal with site and resource particularities.  

Geothermal power production cost is composed of two major cost components:  

• Initial capital investment cost 

• Operation and maintenance (O&M) costs. 

 

4.2.1.1. Initial Capital Investment Cost 

 
Initial capital investment cost of GPPs is very site and resource specific. The 

major cost components of the initial investment cost are: 

• Exploration, 

• Confirmation,  

• Drilling, 

• Permitting, 

• Steam Gathering System, 

• Power Plant Design&Construction, 

• Transmission. 

The wide range of the exploration costs is resulted of the nature and size of 

exploration activities. Current projects tend to be smaller, focus on more difficult areas 

than past projects and may use more advanced and thus more expensive exploration 

technologies (GEA, 2005). 

The confirmation cost mainly consists of reservoir design, engineering and the 

drilling of some injection capacity to dispose of fluids from production well tests. This 

corresponds roughly to one-fourth of the total drilling costs. Resulting confirmation 

costs may however vary widely according to the resource characteristics and drilling 

success rate (GEA, 2005). 
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Drilling cost is highly dependent upon rock permeability, resource temperature 

and pressure, well productivity, number of wells, depth and diameter of wells and 

operating time of the drilling rig (GEA, 2005).   

Permitting cost includes exploration and site development permits together. 

Permitting cost is unique depending on the geothermal region and located city and 

country (GEA, 2005). In Turkey the unit range of the tender cost for permitting was 

565-2030 USD/kW in 2008 (Sener and Uluca, 2009).  

The steam gathering cost includes the cost of the network of pipes connecting 

the power plant with all production and injection wells. The cost for these facilities 

varies widely depending on the distance from the production and injection wells to the 

power plant, the flowing pressure and chemistry of the produced fluids (GEA, 2005). 

Power plant design and construction cost are unique in terms of site 

(accessibility and topography, local weather conditions, water availability and land 

type) and resource characteristics (temperature, chemistry etc.) and these characteristics 

effect on the power conversion technology (steam vs. binary) and power system cost 

(GEA, 2005).  

Transmission cost includes the cost of building a new transmission line to 

connect the power plant to the grid. Because, valuable geothermal resources are not 

always located in areas furnished with transmission facilities. Transmission lines are 

quite expensive and their cost may be a hurdle to a project's competitiveness (GEA, 

2005).  

The capital investment cost components and ranges of GPPs are summarized in 

Table 4.2. 

 

Table 4.2. Capital investment cost components and unit cost range. 
(Source: GEA, 2005) 

 
Capital Investment Cost  

Component 
Cost Range 
 (USD/kWe) 

Exploration 14-263 
Confirmation 150 
Drilling 600-1200 
Permitting 565-2030* 
Steam Gathering System 30-400 

Binary 1100-2700 Power Plant Design&Construction 
Flash 1062-2400 

Transmission 13-236 
            *Values specific for Turkey (since 2008). (Source: Sener and Uluca, 2009) 
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Typical cost breakdown of geothermal power projects is summarized in Figure 

4.19. 

 

 
 

Figure 4.19. Typical cost breakdown of geothermal power projects. 
(Source: GEA, 2005) 

 

4.2.1.2. Operation and Maintenance Cost 

 

Each power plant has specific O&M cost that depends on the quality and design 

of the power plant, the characteristics of the geothermal resource, the environmental 

regulations and requirements applicable to the site, and the structure and efficiency of 

the company. Major parameters affecting O&M cost are related to the plant 

requirement,  

• the amount of chemicals and other consumables used during operation,  

• the extent of make-up drilling requirements, and 

• the cost of the equipment that has to be replaced throughout the years.  

According to the available data presented by GEA (2005), O&M cost changes in 

a range of 10 to 45 USD/MWh and average costs are listed in Table 4.3 On the other 

hand, in the study of Vorum and Fritzler (2000), O&M costs were taken as 5% of the 

initial capital investment cost.  
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Table 4.3. Average O&M cost. 
(Source: GEA, 2005) 

O&M Cost Components Average Cost (USD/MWh) 

Operation cost 7 

Power plant maintenance 9 

Steam field maintenance & make-up 

drilling costs 

8 

TOTAL 24 

 

4.2.1.3. Factors Affecting Geothermal Power Production Cost 

 
The resource temperature, depth, chemistry, permeability and capacity factor are 

the major factors affecting the cost of the geothermal power production. The site 

accessibility and topography, local weather conditions, land type and ownership are 

additional parameters affecting the cost and time required to bring the power plant 

online.  

The resource temperature will determine the power conversion technology 

(steam vs. binary) as well as the overall efficiency of the power system. Cost estimates 

and temperature data is shown in Figure 4.20 (Brugman, 1996).  

 

 
 

Figure 4.20. Unit cost of GPP vs. resource temperature. 
 (Source: Brugman, 1996) 
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The chemical characteristic of geothermal fluid may require additional 

equipment that can deal with specific problems or may influence the size of some power 

plant components. Current detailed cost estimates and variability ranges for these 

impacts are unfortunately not available. Brugman (1996) provides cost estimates for 

different projects with various resource characteristics and locations. Cost information 

for equipment needed to dealing with NCG disposal and H2S abatement is displayed in 

Table 4.4. (GEA, 2005).   

 

Table 4.4. Additional cost information of the power plant according to chemistry of the 
resource. (Source: Brugman, 1996) 

 
 Average Unit Cost 

(USD/kW) 

Unit Cost Range 

(USD/ kW) 

NCG Removal 9 3-85 

H
2
S Abatement 33 0-75 

 

The capacity factor (CF) of GPPs corresponds to the ratio between the amount 

of energy actually delivered to the grid and the potential energy that it could have 

delivered during the period of time considered. GPPs typically have a CF around 90%, 

which is higher than most other power production technology. The capacity factor will 

determine the quantity of electricity produced and thus the amount of kWh on which all 

power production costs (i.e. Capital Investment Costs and O&M costs) will be spread 

out (GEA, 2005).  

 

4.2.2. Economic Evaluation Methods and General Equations 

 
The purpose of an economic analysis is to determine differences between 

outflows and inflows of the project. In accordance with the result of an economic 

analysis, the project manager can compare different investments and their cash flow 

profiles. If the total amount of net incomes is greater than total net outcomes for a 

considered investment, the project will be accepted. At the end of this evaluation, a 

project manager decides either this project is applicable or not and selects the 

appropriate project among the alternatives (Erdogmus, 2003; EIEI, 1997).  
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There are several economical parameters, such as economic project life, salvage 

or amortization cost, cash flows, discount or interest rate, which have major effects on 

the investment decision.  

An economic analysis and finance scheduling for renewable energy investments 

should be based on long-term consideration. If the duration extends, the degree of 

uncertainty of cash flows will be increased. Physical life of an investment is the 

duration in which all of the facilities are realized. Economic project life of the GPPs is 

taken as 20-25 years (Vorum and Fritzler, 2000; Lund and et al., 1998; Triyono, 2001; 

GEA, 2005; Kanoglu and Cengel, 1999).  

Salvage or amortization cost is the market value of an asset at the end of its life. 

This concept includes both the cost of an investment at the end of the economic and 

physical lives. Therefore, to determine the accurate salvage or amortization cost is 

important in proposed investments.  

Most economic analysis involves conversion of estimated or given cash flows to 

some point or points in time. The difference between cash inflows and cash outflows for 

the project life is defined as cash flows. Cash flow diagrams are used to visualize cash 

flows. Individual cash flows are represented as vertical arrows along a horizontal time 

scale, which covers the life of a project. Upward-pointing arrows generally used to 

indicate net inflows whereas downward-pointing arrows used to show net outflows. A 

sample cash flow diagram is drawn in Figure 4.21 (GEA, 2005; Erdogmus, 2003). 

 

 

 

 

 

 

 

 
Figure 4.21. A sample cash flow diagram. 

 

Discount rate has vital role in economical analysis. Higher discount rates enable 

investor to select the project that gives higher cash flows in the earliest years of the 

investments while smaller discount rates enable investor to select the project which has 

high net cash flow.  
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Investment 

0 1 2 n-2 n-1 n

Expenditures 

Reveneues 



 
63

There exist various economical evaluation methods for the financial viability 

analysis of investments, which are based on the some input values: revenues, 

disbursements, and capital investment costs. These methods are: 

• Net present value method 

• Net future value method 

• Internal rate of return method 

• Payback time period method 

• Benefit/ Cost ratio method 

• Net Benefit/Cost ratio method 

 

In the Thesis, NPV, IRR and SPT methods are used. Addition of these methods, 

cost of electricity production is calculated.   

Cost of electricity production can be defined as cost of per kWh electricity 

production and it includes initial capital investment and O&M costs. Therefore, cost of 

electricity production is one of the parameters which gives an idea about project 

profitability. Besides the profitability, electricity sales price range can be determined by 

the help of the cost of the electricity production. 

  The general equations in the economical analysis are listed in Table 4.5. 

 

Table 4.5. General equations of economical analysis. 

 Equation Equation No 

Tax cost TRTITax nn *=  (4.83) 

Taxable income ntn ACOMvTI −−= cosRe  (4.84) 

Book value* 19.0 −= nn BVBV  (4.85) 

Amortization cost nnn BVBVAC −= −1  (4.86) 

  *The first BV is the capital investment cost of the system. 
 

4.2.2.1. Net Present Value Method 

 
NPV method takes the time value of money into the consideration. NPV 

criterion of an investment is defined as the difference of present value of benefits and 
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costs in the project exploitation period. Calculations are based on a specific rate of 

discount that should be determined before. Mathematical expression of NPV criterion is 

given by Eq. 4.87.  
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If the NPV is calculated for one project and the result is greater than zero, the 

project or investment is attractive and could be accepted. When the evaluation is 

realized among alternative projects, the project, which has the greatest NPV, should be 

recommended for acceptance. Selecting of the most profitable project is not the main 

objective in this method. If the discount rate and benefits in the future are well 

estimated, these methods are easily applied on projects. Determination of a discount rate 

is important in the present value calculations. Different discount rates give various 

results. Higher discount rates enable investor to select the project that gives higher cash 

flows in the earliest years of the investments while smaller discount rates enable 

investor to select the project which has high net cash flow. On the other hand, discount 

rates are accepted as constant throughout the economic life of the project in the present 

value calculations. As a matter of fact, it is variable with regard to changing market 

economies. Usage of different discount rates for different years is quite difficult. NPV 

method does not reflect the real output of investment project. If this method is used for 

more than one project, which have different size, selecting of the most appropriate 

project is not always correct. Therefore, IRR method is more realistic than NPV 

method.  

 

4.2.2.2.  Internal Rate of Return Method  

 
IRR method is also called as discounted cash flow return, profitability index, or 

simply rate of return method. The IRR measures the performance of an investment as a 

rate of return unlike NPV which express it as an amount of return. It expresses the real 

return on any investment. Therefore IRR is related with the calculation of expected 

profit for the prospective investment. Profit in simple terms is what is left after all the 

income has been received and all the costs or expenditures have been settled. The IRR 



 
65

or break-even interest rate is a hypothetical discount rate that equates the sum of the 

present values of all cash inflows to the sum of the present values of all cash outflows. 

IRR use same cash flows used in NPV method. However discount rate is an unknown 

parameter in this method. A minimum standard of desirability, which is determined by 

an investor, is compared against the calculated value of discount rate that sets the NPV 

equal to zero. If the calculated rate is higher or equal to the market interest rate, it is 

profitable to undertake prospective project. IRRs should be ranked from the highest IRR 

down for the selection of project among alternative projects. On the other hand, it gives 

an idea to investor to choose the correct time for borrowing money for the project and 

payable the maximum interest rate. Investments are classified by counting the number 

of sign changes in its net cash flow sequence. A change from either “+” to “-” or “-”to 

“+” is counted as one sign change (Figure 4.22). Simple investment is defined as one in 

which the initial cash flows are negative and there is only one sign change in the net 

cash flow (Erdogmus, 2003). 

Cash flows change during the phases of a project. Generally, the net cash flows 

are negative in the construction period of projects. They become positive in the 

following years. If the future net cash flows changes perpetually or project’s net 

benefits switch sign more than once over time, there may be no or multiple IRRs 

associated with the project. The NPVs of project exhibits different behaviors in these 

cases. In these circumstances, NPV method should be preferred. 

 

 

 

 

 

 

 

 

 
 

Figure 4.22. NPV profile for a simple investment. 
 

 

 

 



 
66

Mathematical expression for IRR is given by Eq. 4.88. 
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4.2.2.3. Simple Payback Time Method 

 
The SPT, the most commonly used and simple method for assessing the 

economic desirability of an investment, is defined as the length of time required to 

recover the initial cost of an investment from the net cash flow produced by that 

investment for an interest rate of zero. In other words, SPT is calculated by dividing the 

investment cost to the net revenue of the system.  

The given detailed equations of thermodynamics and economical models for 

single-flash GPP in this chapter are also valid for double-flash GPP model which only 

the results are presented in Chapter 6.  
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Chapter 5 METHODOLOGY 

 

METHODOLOGY 

 
The code is developed using Engineering Equation Solver (EES) software for 

flashed-steam GPPs with the ability of mass, energy, exergy balances and economical 

analysis by focusing various NCG removal systems. General flow diagram of the 

model, which consists of two modules as single-flash and double-flash GPPs, is given in 

Figure 5.1. The main components of flashed-steam GPPs are wellhead, separator, 

demister, turbine and generator, condenser, cooling tower, circulation pumps and 

cooling tower fans. NCG removal systems, which are focused in this Thesis, are CS, 

SJES, HS and RS. The NCG removal systems are modeled for given design parameters 

and assumptions using mass and energy, exergy balance equations and economical 

analysis. Then, simulation is conducted for geothermal field (NCG fraction, separator 

pressure), power plant (condenser pressure and turbine inlet temperature), 

environmental (wet bulb temperature) and economical (interest rate, tax rate, O&M cost 

ratio, electricity sales price) parameters.  

 

5.1. Assumptions and Input Parameters 

 
Assumptions are classified into four groups: geothermal field, power plant, 

environmental and economical parameters. 

 

5.1.1. Geothermal Field Properties 

 
1. Geothermal fluid is a saturated vapor-liquid mixture at the wellhead. 

2. The presence of NCGs is treated as only CO2 since it constitutes over 80% of the 

NCGs in most liquid dominated geothermal fields (Michaeliedes, 1982).  

3. Geothermal fluid properties at each state are determined by considering the 

geothermal fluid is a mixture of liquid, water vapor and NCGs stream.  
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Figure 5.1. Flow diagram of the model. 
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5.1.2. Plant Properties 

 
1. Geothermal fluid properties at each state are determined by considering the 

geothermal fluid is a mixture of liquid, water vapor and NCG stream.  

2. For all processes of the power plant, CO2 is considered not to dissolve in the 

water. 

3. Turbine efficiency is calculated according to Baumann Rule (DiPippo, 1982) 

and the calculation of isentropic quality considers the existence of NCGs. 

4. The temperature difference between cooling water entering the cooling tower 

and hot air leaving the cooling tower is 6°C (Siregar, 2004; Swandaru, 2006). 

5. The temperature drop of the condenser exit to the cooling tower entrance is 3°C 

(Swandaru, 2006). 

6. The temperature of CO2 gas is assumed same as to the wet bulb temperature of 

cooling water (Swandaru, 2006).  

7. NCG removal systems are considered as two-stage. 

8. Each stage is assumed to use equal pressure ratios based on system suction and 

discharge pressure of 90% condenser pressure and 105 kPa. 

9. The pressure drop throughout the inter and after condensers is assumed as 1 kPa. 

 

5.1.3. Environmental Properties 

 
1. Meteorological data of the location. 

2. Wet bulb temperature is determined from outdoor temperature, pressure and 

humidity. 

 

5.1.4. Economical Properties 

 
1.  Economic life span is 20 years. 

2. Amortization life is considered same as economic life span. 

3. Amortization coefficient is taken as 0.1 by dividing 200% to the amortization 

year of 20. 

4. Annual O&M cost is assumed constant during the economic life of the plant. 
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5. Taxable income consists of revenue, O&M cost and amortization cost. 

6. The amortization cost value at the end of the plant’s economic life of the plant is 

taken as salvage cost. 

7. Inflation is not taken into account. 

8. Capital investment is considered at the first year of the construction.  

9. Revenue, O&M cost, amortization cost and tax are issued one year later of the 

capital investment. 

 

Input parameters of the model are summarized in Table 5.1. 

 
Table 5.1. Input parameters of the model. 

 
Input Parameters 

Flowrate (kg/s) Wells 
Wells 
Wellhead 

CS 
SJES 
HS 

Pressure (kPa) 
Separator 

RS 
Temperature (°C) Wells 

 
Geothermal 
field 

NCG fraction  (%) At main separator exit 
Condenser 
Pressure drop between main separator 
exit and turbine inlet 
Pressure drop throughout the reboiler 
Pressure drop of fans/circulation 
pumps 

Pressure (kPa) 

NCG removal system final stage 
discharge pressure 

Temperature (°C) Water at cooling tower exit 
Generator 
Compressor 
LRVP 
Fans/Circulation pumps 

Power plant 

Efficiency (%) 

Fans/Circulation pumps motor 
Pressure (kPa) Dead state 
Temperature (°C) Dead state Environmental 
Relative humidity 
(%) Dead state 

(cont. on next page)
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Table 5.1. (cont.) 
 

Unit cost of GPP  
Electricity sales price per kWh 

CS 
SJES 
HS 

Cost (USD) 
NCG removal system cost  

RS 
O&M cost ratio 
(%) Ratio of total investment cost of GPP 

Interest rate (%) 
Tax rate (%) 
Capacity factor (%) 

Economical 

Installed capacity (MW) 
 

5.2. Computational Model 

 
  A code is written to model flashed steam GPPs in EES software. EES is a 

powerful tool for solving engineering problems and is useful in solving thermodynamic 

and heat transfer problems since it offers several built-in libraries comprising of 

thermodynamic and thermophysical properties. There are two major differences 

between EES and existing numerical equation-solving programs. First, EES 

automatically identifies and groups equations that must be solved simultaneously. 

Second, EES provides many built-in mathematical and thermophysical property 

functions useful for engineering calculations. Hence there is no need to look these 

values up in tables. The EES allows the user to write his/her own equations, draw 

sketches on diagram windows and conduct simulation on diagram window with any 

input parameter. Both single and double flash GPPs are modeled but only single flash 

model is introduced in this section since the same equations and principles apply to 

double-flash model 

 The sketch of the single-flash model is drawn and located on main diagram 

window of EES (Figure 5.2). Figure 5.2 is depicted that, the model gives an opportunity 

to change the design parameters since most of the design parameters are taken as inputs 

in the model. The model consists of three modules namely 

• Mass & energy balances 

• Exergy balance 

• Economical analysis 



 

72

 
Figure 5.2. Diagram window view of the single-flash GPP model. 
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5.2.1.1. Mass and Energy Balances Module 

 

The module is the combination of several sub-modules and mainly computes the 

net power output and total auxiliary power of the plant. The sub-modules are 

• Separator-demister module (Section 4.1.1.1 and 4.1.1.2), 

• Turbine-generator module (Section 4.1.1.3) 

• Condenser module (Section 4.1.1.4) 

• Cooling tower module (Section 4.1.1.5) 

• NCG removal system module, contains equations for four different NCG 

removal system  (Section 4.1.1.6)  

• Auxiliary power module (Section 4.1.1.7) 

 

The flow diagram of mass and energy balance module is demonstrated in Figure 

5.3.  The figure exhibits the input and output parameters of each sub-module. The sub-

models work simultaneously using output parameters of each sub-module as input 

parameters of the others. The main output of the module is net power output, total 

auxiliary power of the plant and specific steam consumption of the plant. 

First step of the module is to determine the optimum separator and condenser 

pressures which give the maximum net power output and minimum total auxiliary 

power.   

NCG removal system sub-module contains equations for four different NCG 

removal systems. Using the optimum separator and condenser pressures, the module 

runs for NCG removal systems to calculate net power output and total auxiliary power 

of the plant. 

Mass flowrate, temperature and pressure at each state of the plant are determined 

in this module.  

Results screen view of mass and energy balance module is shown Figure 5.4.  
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Figure 5.3. Flow diagram of mass and energy balance module. 
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Figure 5.4. Results screen view of mass and energy balance module. 
 

5.2.1.2. Exergy Balance Module 

 
The flow diagram of exergy balance module is shown in Figure 5.5. As it is 

demonstrated in Figure 5.5, exergy balance module mainly consists of two sub-modules 

namely exergy losses and exergetic efficiencies. The input parameters of the module 

are; 

• Environmental parameter:  

o dead-state temperature and  

o dead-state pressure 

• The outputs of mass and energy balance 

o flowrate, temperature and pressure output at each state of the 

plant 

o turbine power output, 

o generator power output,  

o net power output, 

o auxiliary power of NCG removal systems, pumps and fans 

( fanpumpHPCLPCLRVP WWWWW &&&&& ,,,, ) 

The thermodynamical definitions and equations of exergy balance are given in 

Chapter 4 in detail. Module first calculates exergy of each state by Eq. 4.10-4.14 
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considering input parameters explained above. Then exergy losses and exergetic 

efficiencies of each component of the plant is computed. The module results with the 

determination of overall exergetic efficiency of the plant by Eq. 4.20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5. Flow diagram of exergy balance module. 

 

Similar to mass and energy balance module, exergy balance includes four 

different NCG removal system options. Exergy losses and exergetic efficiencies of the 

plant for each NCG removal system option are computed by the module. Results screen 

view of exergy losses and exergetic efficiencies sub-modules are illustrated in Figure 

5.6 and Figure 5.7. 

 

 
 



 77

Figure 5.6. Results screen view of exergy losses sub-module of the model. 

 

 

 
Figure 5.7. Results screen view of exergetic efficiencies sub-module of the model. 

 

5.2.1.3. Economical Analysis Module 

 
The module uses mass and energy balance module outputs and economical 

parameters such as interest and tax rates, NCG removal system and GPP costs, 
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electricity sales price, O&M cost ratio and amortization cost coefficient as inputs. Total 

investment cost, annual electricity production and annual net revenue are computed in 

the first step of the module.  Furthermore, NPV, IRR, SPT and cost of electricity 

production calculations follow the cash flow determination. The flow diagram and the 

results screen view of the module are shown in Figure 5.8 and 5.9, respectively. 

 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

  
Figure 5.8. Flow diagram of economical analysis module. 
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Figure 5.9. Result screen view of economical analysis module. 
 

5.2.1.4. Simulation 

 
The model is simulated to evaluate the effect of the input parameters which are 

listed in Table 5.1 on the model results. The parameters and the flow diagram of 

simulation are presented in Figure 5.10.  

 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.10. Flow diagram of simulation module. 
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Chapter 6 RSULTS 

RESULTS 

 
The results are classified in two categories as single-flash and double-flash 

GPPs. The annual average of the Kizildere GPP operational data are taken as input 

parameters of the model. 

 

6.1. Single-Flash GPPs 

 

6.1.1. Mass and Energy Balances 

 
The objective of a detailed mass and energy balance of a single-flash GPP is to 

compute the net power output, total auxiliary power and specific steam consumption of 

the plant for various NCG removal system alternatives.  

Kizildere GPP operational data and main assumptions are listed in Table 6.1. 

The main results of the mass and energy balance of the plant are presented in Table 6.2.  

 

Table 6.1. Input parameters of the model. 
 

Parameters Values 
Flowrate (kg/s) Wells 281.6

Wells 1,800
Wellhead 1,330Pressure (kPa) 
Separator 460

Temperature (°C) Wells 204.7

Geothermal 
field 

NCG fraction  (%) At main separator exit 13
Condenser 10
Pressure drop between 
main separator exit and 
turbine inlet 

10 

Pressure drop throughout 
the reboiler 320

Power plant 
 Pressure (kPa) 

Pressure drop of 
fans/circulation pumps 0.1

(cont. on next page)
 

CHAPTER 6 



 81

Table 6.1. (cont.) 
 

Pressure (kPa) 
NCG removal system 
final stage discharge 
pressure 

105

Temperature (°C) Water at cooling tower 
exit 29

Generator 90
Compressor 75
LRVP 40
Fans/Circulation pumps 70

Power plant 

Efficiency (%) 

Fans/Circulation pumps 
motor 85

Pressure (kPa) Dead state 95
Temperature (°C) Dead state 16Environmental 
Relative humidity (%) Dead state 65

 
 

Table 6.2. Main results of the mass and energy balance of the plant with Kizildere 
operational data. 

 
NCG Removal System CS SJES HS RS 

Separator Pressure (kPa) 460 460 460 460 
Condenser Pressure (kPa) 10 10 10 10 

Compressor /LRVP  1262  1299  

Steam Jet Ejector *  6666 3038 180 

Water Circulation Pumps 346 372.4 360.3 192 

Cooling Tower Fans 86.3 91.5 89.8 47.2 

Other 150 150 150 150 

Auxiliary 

Power 

(kW) 

TOTAL 1844 7279 4936 569.2 

Net Power Output (kW) 10235 5466 7447 5667 

 

6.1.1.1.  Validation of the Model  

 
The model is validated only with the annual average electricity production 

capacity (net power output) of Kizildere GPP, which uses compressors as NCG removal 

system, since the recorded data of the plant components are limited. Figure 6.1 indicates 

that the average net power output of Kizildere GPP in 1984-2004 is 9505 kW (DPT, 

2001; Gokcen, 2004). By using actual annual operational data of Kizildere GPP, listed 
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in Table 6.1, net power output of CS is computed by the model as 10235 kW (Table 

6.2), which is within 7.7% in recorded data. 

 

  
Figure 6.1. Annual average net power output of Kizildere GPP.  

(Source: DPT, 2001; Gokcen, 2004) 
 

6.1.1.2. Simulation Results 

 
Effects of NCG fracftion, wet bulb temperature, separator and condenser 

pressures, and turbine inlet temperature are evaluated on net power output and auxiliary 

power of the plant by simulation. The simulation range for each parameter is given in 

Table 6.3. Base case uses the data, which are given in Table 6.1. 

 

Table 6.3. Simulation range for the parameters of mass and energy balances. 

Parameter Base 

Case 

Simulation 

Range 

Number of 

Simulation 

Separator Pressure (kPa) 460 100,120,…,1000 46 

Condenser Pressure (kPa) 10 8,9,10 3 

NCG Fraction (%) 13 0,1,2,…,25 26 

Wet Bulb Temperature (oC) 12.2 5,10,….,25 5 

Turbine Inlet Temperature (oC)  147.9 130-260 14 
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6.1.1.2.1. Condenser and Separator Pressures  

 
The temperature regime in the condenser is one of the limiting factors for 

determining of condenser pressure. As it is given in section 4.1.1.4., the difference 

between saturated temperature and cooling water inlet temperature (∆Ti) should be 

between about 11 and 17°C.  Condenser pressure range is taken as 4-20 kPa to check 

the ∆Ti, and the results are illustrated in Figure 6.2. The Figure indicates that 

recommended temperature range falls into 8-10 kPa condenser pressure range. 

Therefore, the range for condenser pressure is taken as 8-10 kPa for simulation. 

 
 

 

 

 

 

 

 

 

 

 
Figure 6.2. Condenser pressure vs. ∆Ti. 

 
 

Net power output of the plant is calculated for condenser and separator pressures 

of 8-10 kPa and 100-1000 kPa, respectively to evaluate the effects of condenser and 

separator pressures on thermodynamic performance of the plant.  The net power output 

versus separator pressures are shown in Figure 6.3 at 13% NCG fraction. It is seen that 

from Figure 6.3 increasing separator pressure increases the net power output upto a 

peak value, which corresponds to optimum separator pressure. Further increase in 

separator pressure shows a dramatic decrease in net power production caused by a 

consequent decrease in steam flowrate. Optimum separator pressures obtained from the 

Figure 6.3 is 220 kPa for CS, 500 kPa for SJES, 340 kPa for HS and 580 kPa for RS at 

13% NCG fraction.  

 

0

5

10

15

20

25

30

35

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Condenser Pressure (kPa)

∆T
i (

ºC
)

11°C

17°C



 84

SJES

0

3000

6000

9000

12000

100 200 300 400 500 600 700 800 900 1000
Separator Pressure (kPa)

N
et

 P
ow

er
 O

ut
pu

t 
(k

W
)

HS

0

3000

6000

9000

12000

100 200 300 400 500 600 700 800 900 1000
Separator Pressure (kPa)

N
et

 P
ow

er
 O

ut
pu

t 
(k

W
) 

RS

0

3000

6000

9000

12000

400 500 600 700 800 900 1000 1100 1200 1300 1400
Separator Pressure (kPa)

N
et

 P
ow

er
 O

ut
pu

t 
(k

W
)

CS

0

3000

6000

9000

12000

100 200 300 400 500 600 700 800 900 1000
Separator Pressure (kPa)

N
et

 P
ow

er
 O

ut
pu

t 
(k

W
) 

CS

11000

12000

180 200 220 240 260
 (kPa)

(k
W

) 

SJES

4800

5800

460 480 500 520 540
(kPa)

(k
W

)

HS

7000

8000

300 320 340 360 380
(kPa)

(k
W

) 

RS

6000

7000

540 560 580 600 620
(kPa)

(k
W

)

 

 

 

Figure 6.3. Net power output of the plant for various separator and condenser pressures. 
 



 85

To be able to compare thermodynamic performance of the plant with operational 

and optimum separator pressures, net power output and auxiliary power of the plant are 

calculated at optimum separator pressure for each NCG removal system and the results, 

which are summarized in Table 6.4, show that the net power outputs are increased as 

0.2-11.7% by using optimum separator pressures.  

  
Table 6.4. Main results of mass and energy balances of the plant at optimum separator 

pressures. 
 

NCG Removal System CS SJES HS RS 
Optimum Separator Pressure (kPa) 220 500 340 580 
Condenser Pressure (kPa) 10 10 10 10 

Compressor /LRVP  1749  1518  

Steam Jet Ejector *  6239 3645 370 

Water Circulation Pumps  486 353 424 252 

Cooling Tower Fans 121 87 106 62 

Other 150 150 150 150 

Auxiliary 

Power 

(kW) 

TOTAL 2506 6829 5843 834 

Net Power Output (kW) 11436 5476 7712 6294 

         * Consumed motive flow rate is converted into power in kW. 

 

Effect of condenser pressure on net power output and auxiliary power are 

evaluated for a range of 8-10 kPa (Figure 6.4). Figure 6.4 exhibits that increase in 

condenser pressure causes an increment in net power output for SJES and HS while a 

decrement encountered for CS and RS. On the other hand, increasing condenser 

pressure decreases auxiliary power requirement accompanies which reduces O&M 

costs. As an example; changing the condenser pressure from 8 kPa to 10 kPa results 

2.5% (296 kW) decrement in net power output of CS, the decrement in auxiliary power 

is 14% (406 kW).  Because of higher auxiliary power allows for larger equipment and 

cost, 10 kPa condenser pressure can be selected as optimum condenser pressure with the 

lowest auxiliary power. 
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Figure 6.4. Net power output and total auxiliary power of the plant for various              
condenser pressures for optimum separator pressures. 

 

6.1.1.2.2. NCG Fraction 

 
The effect of NCG fraction on the turbine power output, auxiliary power and net 

power output at the conditions, given in Table 6.1, for a 0-25% range of NCG fraction 

are plotted in Figure 6.5. The Figure indicates that, auxiliary power increases and net 

power output decreases with increasing NCG fraction. The plant which is employed 

with compressors generates highest net power output at each NCG fraction. Increment 

in NCG fraction (1%) causes a net power output loss of 0.4% for CS, 2.2% for HS, 

2.5% for RS and 2.7% for SJES. Especially, SJES has a dramatical decrease on net 

power output by NCG fraction. On the other hand, it is interesting to see, the turbine 

power output of CS increases with increasing NCG fraction. The reason for that is 

increment in steam quality at the separator by considering NCG in the steam. Therefore, 

separator pressure has vital importance for maximizing the net power output. In Figure 

6.6., separator pressure versus net power output of the plant for various NCG fractions 

(0-25% by weight of steam) is demonstrated at 10 kPa condenser pressure.  
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Figure 6.5. Turbine power output, net power output and auxiliary power of the plant vs. 
NCG fraction. 

 
 

The Figure 6.6 indicates that each option exhibits the same behavior for zero 

NCG fraction except RS. Because RS requires at least 330 kPa pressure drop between 

the separator and turbine inlet, while the other NCG removal systems require 10 kPa.  
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Figure 6.6. Separator pressure vs net power output of the plant for various NCG 
fractions.  

 

Figure 6.6 shows that, optimum separator pressures, which maximize the net power 

output, are changed by NCG fraction.   
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Figure 6.7 gives a better insight of the optimum separator pressures depending 

on NCG fraction. Increasing NCG fraction increases optimum separator pressures for 

each NCG removal system.  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.7. Optimum separator pressures vs. NCG fraction. 
 

 

Specific steam consumption, the ratio of steam flowrate at separator exit to net 

power output of the plant, is one of the criteria for the comparison of the NCG removal 

systems and it is shown in Figure 6.8 for various NCG fractions (0-25% weight).  
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Figure 6.8. Specific steam consumption for various NCG fractions. 
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RS has the highest and CS has the lowest specific steam consumption among 

NCG removal systems. Specific steam consumption is increased as approximately 

1.73% for CS, 7.38% for HS, 10.07% for RS and 11.94% for SJES by 1% increment in 

NCG fraction and it is observed that, while specific steam consumption of CS does not 

change very much by increasing NCG fraction, specific steam consumption of SJES 

changes dramatically. 

 

6.1.1.2.3. Turbine Inlet Temperature 

 
The effect of turbine inlet temperature is analyzed on net power output of the 

plant. Figure 6.9 is drawn by taking the turbine inlet temperature in the range of 130-

260oC at optimum separator and condenser pressures with 13% NCG fraction and 

12.2oC wet bulb temperature.  
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Figure 6.9. Turbine inlet temperature vs. net power output of the plant at optimum 

separator and condenser pressures. 
 
 

As it can be observed from Figure 6.9, the net power output increases with 

increasing turbine inlet temperature. As an example, by 10°C increasing in turbine inlet 

temperature of CS, the net power output of the turbine increases 2.6%. Because, 

superheated steam enters the turbine with increasing the turbine inlet temperature. 

Therefore, the turbine efficiency increases. That means, if a pre-heater can be used 

before entrance the turbine, the net power output increases. As a pre-heater a heat 

exchanger can be used by feeding the steam at compressor exit.  
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6.1.1.2.4. Wet Bulb Temperature 

 
Wet bulb temperature is important parameter to determine the motive steam 

flowrate for the NCG removal system. In Figure 6.10 and Table 6.5, wet bulb 

temperature vs. net power output and auxiliary power of the plant at optimum condenser 

and separator pressures are shown.  
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Figure 6.10. Net power output and auxiliary power of the each system vs. wet bulb 

temperature. 
 
 
 

Table 6.5. Wet bulb temperature vs net power output and auxiliary power of the plant. 
 

Wet  Bulb Temperature (oC) 5 10 15 20 25 

Net Power Output (kW) 11514 11464 11391 11280 11104
CS 

Auxiliary Power (kW) 2428 2478 2551 2662 2838 

Net Power Output (kW) 5561 5507 5430 5316 5144 
SJES 

Auxiliary Power (kW) 6955 7015 7101 7228 7419 

Net Power Output (kW) 7819 7748 7643 7485 7236 
HS 

Auxiliary Power (kW) 5897 5977 6093 6269 6545 

Net Power Output (kW) 6302 6297 6289 6276 6257 
RS 

Auxiliary Power (kW) 824 831 840 853 875 
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As it can be observed from Figure 6.10, the net power output of the plant 

decreases with increasing wet bulb temperature. Because by increasing the wet bulb 

temperature, increases the motive steam flowrate, since the auxiliary power increases. 

The results of Table 6.5 is depicted that net power output is decreased as 0.18% for CS, 

0.37% for SJES and HS and 0.04% for RS, while auxiliary power is increased as 0.84% 

for CS, 0.33% for SJES, 0.55% for HS and 0.31% for RS by 1oC increment in wet bulb 

temperature. 

 

6.1.2. Exergy Balance 

 
Exergy balance is carried out to determine the overall second law of efficiency 

(exergetic efficiency) for the power plant, identify the locations and processes where 

exergy is wasted, lost or destroyed and suggest steps that can be taken to reduce exergy 

losses and wastes. General assumptions of mass and energy balances are vital for 

exergy balances. The dead state for the geothermal fluid can be chosen to be the state of 

environment at which the temperature and the atmospheric pressure are 16°C and 95 

kPa, respectively. These values are obtained from the local meteorological data (TTMD, 

2000), 

In the exergy balance condenser pressure is taken as 10 kPa, which is 

determined as optimum condenser pressure for each NCG removal system option. The 

operational turbine inlet pressure of Kizildere GPP (450 kPa) is taken as comparison 

pressure, because of each NCG removal system option has different optimum separator 

pressure. 13% NCG fraction, average value of Kizildere GPP, is considered in exergy 

analyses.  

 

6.1.2.1.  Compressor System 

 
The representative model of CS is shown in Figure 6.11.  

The energy and exergy rates of the geothermal fluid and the CO2 gas are 

calculated starting from the reservoir through the major states of the geothermal fluid, 

including the NCG removal system, and the results are tabulated in Table 6.6 and 

Figure 6.12 for 460 kPa separator, 10 kPa condenser pressures with 13% NCG fraction. 

The locations of states are shown on the plant schematic in Figure 6.11.  
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Figure 6.11. The representative model of CS. 
 

 

Table 6.6. Property values at major locations of CS. 
 

State 

No 
T P m mf mg mCO2 Enthalpy 

Specific 

exergy 

Energy 

rate 

Exergy 

rate 

 (°C) (kPa) (kg/s) (kg/s) (kg/s) (kg/s) (kJ/kg) (kJ/kg) (kW) (kW) 

9 204.7 1800 281.6 276.8 0 4.8 861.3 188.9 242542 53194

10 192.7 1330 281.6 269.1 7.6 4.8 861.3 187.9 242542 52915

11 148.7 460 281.6 244.4 32.4 4.8 861.3 176.5 242542 49702

12 148.7 460 244.4 244.4 0 0 626.8 99.8 153190 24384

13 148.7 460 37.2 0 32.4 4.8 2402 680.4 89354 25311

14 147.9 450 36.8 0 32 4.8 2401 677.5 88405 24946

15 45.8 10 36.8 3.3 28.8 4.8 2037 163.8 75002 6031

16 43.7 9 5.2 0 0.4 4.8 198.4 -103.0 1023 -531

17 170.6 31.2 5.2 0 0.4 4.8 324 1.4 1670 7

18 69.3 30.3 4.9 0 0.1 4.8 89.2 -49.8 436 -243

19 200 105 4.9 0 0.1 4.8 215.1 56.1 1051 274

(cont. on next page)
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Table 6.6. (cont.) 

20 45.8 10 1026 1026 0 0 191.7 5.9 196684 6078

21 42.8 95 1026 1026 0 0 179.2 4.8 183859 4930

22 29 95 12.6 12.6 0 0 121.5 1.1 1526 14

23 29 95 994.1 994.1 0 0 121.5 1.1 120783 1090

24 29 95 10.3 10.3 0 0 121.5 1.1 1256 11

25 45.8 10 10.4 10.4 0 0 191.7 5.9 1999 62

26 29 95 983.8 983.8 0 0 121.5 1.1 119532 1078

27 29 95 16.8 16.8 0 0 121.5 1.1 2046 18

28 45.8 10 17.1 17.1 0 0 191.7 5.9 3280 101

29 45.8 10 27.5 27.5 0 0 191.7 5.9 5279 163

30 29 95 967 967 0 0 121.5 1.1 117491 1060

31 98.2 95 4.8 0 0 4.8 63.9 8.8 306 42

 

 

In Table 6.6, point 9 represents average reservoir conditions of the production 

wells. Point 10 is the wellhead properties of the geothermal fluid. It can be seen that 

some exergy values have a negative sign in Table 6.6. This means that the work input to 

the stream is required to bring it to the dead state. 

 

 
 

Figure 6.12. Exergy flow chart for CS. 
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Overall exergy balance of the system is shown in Figure 6.13. 
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Figure 6.13. Overall exergy balance of CS. 
 

 

Production wells provide a total exergy of 52915 kW at the wellhead. Major 

exergy destructions occur due to the separation of steam from geothermal fluid, the 

discharge of the geothermal fluid from the separator, turbine, and generator, cooling 

tower, condenser and NCG removal system. 

A total exergy of 3221 kW is destroyed during the separation process itself as 

the geothermal fluid is flashed into steam and brine in the separators, and this loss 

corresponds to 6.1% of the total exergy input. The remaining brine stream at relatively 

low temperature and pressure after passing through the silencer is re-injected or sent to 

the other applications. A total exergy of 24384 kW, which amounts 46.1% of the total 

exergy input is brine. The demister is located between the separator and turbine. There 

is 10 kPa pressure drop from separator to turbine. Therefore, the exergy loss of the 

demister is around 107 kW and 1% of the steam is flashed from demister with 253 kW 

exergy waste. The exergy loss of the turbine is 5496 kW, which amount 10.4% of the 

total exergy input. The exergy further destroyed in the generator during the conversion 

of the mechanical shaft work to the electrical energy. This accounts for 2.5% of the total 

exergy destruction. Cooling tower and condenser are the other vital components with 

1924 and 1707 kW exergy destruction, respectively. The pipe between the condenser 
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exit and cooling tower inlet is assumed to have 3°C temperature drop. Therefore, the 

exergy destruction with heat loss is calculated as 1147 kW.  The exergy loss is 206 kW 

for the compressor and 349 kW for gas coolers in NCG removal system. The total 

exergy loss of the NCG removal system is 556 kW, which is 1% of the total exergy 

input. A further usage of exergy output is consumed by internal devices such as 

auxiliaries, pumps, fans and control systems. This parasitic load is calculated as 582 kW 

and compressor work is 1262 kW. This completes all the exergy losses in the plant, and 

thus the total exergy destruction becomes 42680 kW, which is 80.7% of the total exergy 

input. The remaining 10235 kW leaves the plant as the net power output. 

The optimum separator pressure is determined as 220 kPa for CS for 10 kPa condenser 

pressure at 13% NCG fraction. Exergy balance is conducted for optimum separator 

pressure (Table 6.7) and the results show that, the exergy destruction of the plant 

components are increased by comparing with the results of the exergy balance for 460 

kPa operational separator pressure. The exergy loss of the brine is decreased around 

16.7% with optimum separator pressure, which results an increase on overall exergetic 

efficiency of the plant from 19.3% to 21.6%. 

 

Table 6.7. Exergy losses of CS at optimum and operational separator pressures. 
 

Separator pressure 460 kPa 220 kPa 

Exergy loss Exergy loss  

(kW) (%) (kW) (%) 

Exergy at wellhead  52915  52904  

Exergy losses of main equipments 38524 72.8 35758 67.6 

 Expansion valve+Separator 3221 6.1 7312 13.8 

 Brine 24384 46.1 15549 29.4 

 Demister 107 0.2 314 0.6 

 Turbine 5496 10.4 5450 10.3 

 Generator 1342 2.5 1549 2.9 

 Condenser 1707 3.2 2400 4.5 

 Cooling tower 1924 3.6 2703 5.1 

 Pump1 176 0.3 247 0.5 

 Pump2 168 0.3 236 0.4 

(cont. on next page) 
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Table 6. 7. (cont.) 

Reject to atmosphere or river 309 0.6 377 0.7 

 Reject from cooling water 14 0.0 19 0.0 

 Flashing to atmosphere 253 0.5 300 0.6 

 CO2 discharge 42 0.1 58 0.1 

Heat loss 1147 2.2 1612 3.0 

 Pipe (from condenser to cooling tower) 1147 2.2 1612 3.0 

Other 300 0.6 444 0.9 

NCG removal system 556 1.0 770 1.4 

 Compressors 206 0.4 286 0.5 

 Inter and after condenser 349 0.7 484 0.9 

Auxiliary power  1844 3.5 2506 4.7 

 Parasitic load (pumps, fan etc.) 582 1.1 757 1.4 

 Compressor work 1262 2.4 1749 3.3 

Net power output  10235 19.3 11486 21.6 

 

In Table 6.8, exergetic efficiencies of main components of CS at optimum 

separator pressure (220 kPa) and operational separator pressure (460 kPa) are given.  

 

Table 6.8. Exergetic efficiencies of main components of CS at optimum and operational 
separator pressures. 

 
Separator pressure 460 kPa 220 kPa 

Equipment Exergetic efficiency (%) Exergetic efficiency (%)

Expansion valve + Separator 47.8 56.8 

Turbine-generator 63.9 66.6 

Condenser 76.5 76.5 

Cooling tower 61.4 61.4 

NCG removal system   

 Compressor 1 83.1 83.1 

 Compressor 2 84.2 84.2 

 Inter condenser 25.3 25.3 

 After condenser 23.8 23.8 

GPP overall 19.3 21.6 
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Table 6.8 is depicted that changing the separator pressure effects mainly on 

exergetic efficiency of the separation process and the exergetic efficiency of the 

separation is increased approximately 9% by using optimum separator pressure.  

 

6.1.2.2.  Steam Jet Ejector System 

 
The flow diagram of SJES is demonstrated in Figure 6.14. Property values at 

major locations of SJES are summarized in Table 6.9 at 460 kPa separator pressure and 

13% NCG fraction. Exergy distribution throughout the plant is calculated using Table 

6.9 and shown in Figure 6.15.  

 

 
Figure 6.14. The representative model of SJES. 
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Table 6.9. Property values at major locations of SJES. 
 

T P m mf mg mCO2 Enthalpy 
Specific 

exergy 

Energy 

rate 

Exergy 

rate 
State 

No 
(°C) (kPa) (kg/s) (kg/s) (kg/s) (kg/s) (kJ/kg) (kJ/kg) (kW) (kW) 

9 204.7 1800 281.6 276.8 0 4.836 861.3 188.9 242542 53194

10 192.7 1330 281.6 269.1 7.626 4.836 861.3 187.9 242542 52915

11 148.7 460 281.6 244.4 32.36 4.836 861.3 176.5 242542 49702

12 148.7 460 244.4 244.4 0 0 626.8 99.77 153190 24384

13 148.7 460 37.2 0 32.36 4.836 2402 680.4 89354 25311

14 147.9 450 18.54 0 16.13 2.41 2401 677.5 44515 12561

15 45.79 10 18.54 1.653 14.47 2.41 2037 163.8 37766 3037

16 43.74 9 2.594 0 0.1846 2.41 198.4 -103 515 -267

17 113.8 31.24 8.017 0 4.902 3.115 1688 228.1 13533 1829

18 69.28 30.25 3.177 0 0.0628 3.115 89.24 -49.81 284 -158

19 127.6 105 16.04 0 11.26 4.787 1943 406 31166 6512

20 45.79 10 1103 1103 0 0 191.7 5.924 211445 6534

21 42.79 95 1103 1103 0 0 179.2 4.805 197658 5300

22 29 95 11.03 11.03 0 0 121.5 1.096 1340 12

23 29 95 1071 1071 0 0 121.5 1.096 130127 1174

24 29 95 408.9 408.9 0 0 121.5 1.096 49681 448

25 45.79 10 420.1 420.1 0 0 191.7 5.924 80533 2489

26 29 95 662.2 662.2 0 0 121.5 1.096 80457 726

27 29 95 175.5 175.5 0 0 121.5 1.096 21323 192

28 45.79 10 180.3 180.3 0 0 191.7 5.924 34564 1068

29 45.79 10 600.4 600.4 0 0 191.7 5.924 115097 3557

30 29 95 486.7 486.7 0 0 121.5 1.096 59134 533

31 98.18 95 4.787 0 0 4.787 63.86 8.787 306 42

32  18.29 0 15.91 2.378 2401 677.5 43914 12391

33 147.9 450 5.423 0 4.718 0.705 2401 677.5 13021 3674

34 147.9 450 12.87 0 11.19 1.673 2401 677.5 30901 8719
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Figure 6.15. Exergy flow chart for SJES. 
 

 

In detail overall exergy balance of the plant is shown in Figure 6.16. 
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Figure 6.16. Overall exergy balance of SJES. 

 
 

Figure 6.15 and 6.16 represent that after exergy destruction of the brine the 

second largest exergy destruction of the plant occurs at NCG removal system by 17.3% 

of total exergy input. Total exergy destruction of the NCG removal system is 9165 kW 
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total exergy loss with 3623 kW from steam jet ejectors and 5542 from gas coolers. The 

other major exergy loss occurs throughout the separation process with 3221 kW and 

6.1% of total exergy input. The exergy further destroyed in the turbine and generator 

couple with total of 3443 kW, which amounts 6.5 % of the total exergy input of 52915 

kW. Cooling tower and condenser has 2063 kW and 859 kW exergy destructions, 

respectively. The exergy destruction is calculated as 614 kW for the internal usage. The 

total exergy destruction of the plant becomes 47449 kW, which is 89.7% of the total 

exergy input. The remaining 5466 kW leaves the plant as the net power output. 

The results of the exergy analyses for 460 kPa operational and 500 kPa optimum 

separator pressure are given in Table 6.10. It is clearly seen from the Table, the results 

are not changed much because of the separator pressures are close to each other. 

 

Table 6.10. Exergy losses of SJES at optimum and operational separator pressures. 
 

Separator pressure 460 kPa 500 kPa 

Exergy loss Exergy loss  

(kW) (%) (kW) (%) 

Exergy at wellhead 52915  52916  

Exergy losses of main equipments 34447 65.1 35191 66.5 

 Expansion valve+Separator 3221 6.1 2844 5.4 

 Brine 24384 46.1 25627 48.4 

 Demister 107 0.2 93 0.2 

 Turbine 2767 5.2 2806 5.3 

 Generator 676 1.3 674 1.3 

 Condenser 859 1.6 841 1.6 

 Cooling tower 2063 3.9 1956 3.7 

 Pump1 189 0.4 179 0.3 

 Pump2 181 0.3 171 0.3 

Reject to atmosphere or river 307 0.6 296 0.6 

 Reject from cooling water 12 0.0 12 0.0 

 Flashing to atmosphere 253 0.5 244 0.5 

 CO2 discharge 42 0.1 40 0.1 

(cont. on next page)
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Table 6.10. (cont.)  

Heat loss 1233 2.3 1169 2.2 

 Pipe (from condenser to cooling tower) 1233 2.3 1169 2.2 

Other 1683 3.2 1596 3.0 

NCG removal system 9165 17.3 8598 16.2 

 SJEs 3623 6.8 3509 6.6 

 Inter and after condensers 5542 10.5 5089 9.6 

Auxiliary power  614 1.2 590 1.1 

 Parasitic load (pumps, fan etc.) 614 1.2 590 1.1 

   0.0  0.0 

Net power output  5466 10.3 5476 10.3 

 
 

Exergetic efficiencies of the main components of SJES are given in Table 6.11.  

The table indicates that while the overall exergetic efficiency of the plant with CS is 

19.3, it is reduced to 10.3% with SJES. 

 

Table 6.11. Exergetic efficiencies of main components of SJES at optimum and 
operational separator pressures. 

 
Separator pressure  460 kPa 500 kPa 

Equipment 
Exergetic efficiency 

(%) 

Exergetic efficiency 

(%) 

Expansion valve+Seperator 47.8 46 

Turbine-generator 63.9 63.6 

Condenser 87.9 87.6 

Cooling tower 61.5 61.5 

NCG removal system   

 SJE 1 53.7 52.9 

 SJE 2 76.1 75.1 

 Inter condenser 42.3 42.2 

 After condenser 50.8 50.7 

GPP overall 10.3 10.4 
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6.1.2.3.  Hybrid System 

 
The flow diagram of HS is shown in Figure 6.17.  

 

 
 

Figure 6.17. The representative model of HS. 
 
 

Exergy balance is conducted to the plant at 460 kPa separator pressure and 13% 

NCG fraction and the results are given in Table 6.12.  

 

Table 6.12. Property values at major locations of HS. 
 

T P m mf mg mCO2 Enthalpy 
Specific 

exergy 

Energy 

rate 

Exergy 

rate 
State 

No 
(°C) (kPa) (kg/s) (kg/s) (kg/s) (kg/s) (kJ/kg) (kJ/kg) (kW) (kW) 

9 204.7 1800 281.6 276.8 0 4.836 861.3 188.9 242542 53194

10 192.7 1330 281.6 269.1 7.626 4.836 861.3 187.9 242542 52913

11 148.7 460 281.6 244.4 32.36 4.836 861.3 176.5 242542 49702

12 148.7 460 244.4 244.4 0 0 626.8 99.77 153190 24384

(cont. on next page)
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Table 6.12. (cont.) 

13 148.7 460 37.2 0 32.36 4.836 2402 680.4 89354 25311

14 147.9 450 28.49 0 24.79 3.704 2401 677.5 68404 19302

15 45.79 10 28.49 2.54 22.25 3.704 2037 163.8 58034 4667

16 43.74 9 3.987 0 0.2838 3.704 198.4 -103 791 -411

17 113.8 31.24 12.32 0 7.535 4.787 1688 228.1 20796 2810

18 69.28 30.25 4.884 0 0.097 4.787 89.24 -49.81 436 -243

19 304.8 105 4.884 0 0.097 4.787 325.2 105.5 1588 515

20 45.79 10 1068 1068 0 0 191.7 5.924 204736 6327

21 42.79 95 1068 1068 0 0 179.2 4.805 191386 5132

22 29 95 11.77 11.77 0 0 121.5 1.096 1430 13

23 29 95 1036 1036 0 0 121.5 1.096 125874 1135

24 29 95 17.99 17.99 0 0 121.5 1.096 2186 20

25 45.79 10 18.09 18.09 0 0 191.7 5.924 3468 107

26 29 95 1018 1018 0 0 121.5 1.096 123687 1116

27 29 95 269.7 269.7 0 0 121.5 1.096 32769 296

28 45.79 10 277.2 277.2 0 0 191.7 5.924 53139 1642

29 45.79 10 295.3 295.3 0 0 191.7 5.924 56609 1749

30 29 95 748.1 748.1 0 0 121.5 1.096 90894 820

31 98.18 95 4.787 0 0 4.787 63.86 8.787 306 42

32 147.9 450 8.335 0 7.251 1.084 2401 677.5 20012 5647

33 147.9 450 8.335 0 7.251 1.084 2401 677.5 20012 5647

 

 

Exergy flow chart (Figure 6.18) is drawn by calculating exergy destruction 

throughout the plant and overall exergy balance of HS is shown in Figure 6.19 in detail. 

Exergy destruction of the NCG removal system is the second largest exergy losses of 

the plant with 5059 kW, which amounts of 9.6% of total exergy input of 52915 kW. The 

other major exergy destructions are 8% of turbine, 6.1% of separation process, 3.8% of 

cooling tower, 3.6% of parasitic load and 2.5% of condenser.  
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Figure 6.18. Exergy flow chart for HS. 
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Figure 6.19. Overall exergy balance of HS. 
 

 

Optimum separator pressure for 13% NCG fraction is determined as 340 kPa for 

HS. Exergy losses of HS for optimum separator pressure and operational separator 

pressure are given in Table 6.13. The exergy loss of the brine is decreased around 8% 

and overall exergetic efficiency increases to 14.6% from 14.1% with using optimum 

separator pressure. 
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Table 6.13. Exergy losses of HS at optimum and operational separator pressures. 
 

Separator pressure 460 kPa 340 kPa 

Exergy loss Exergy loss  

(kW) (%) (kW) (%) 

Exergy at wellhead  52915  52910  

Exergy losses of main equipments 36679 69.3 34859 65.9 

 Expansion valve+Separator 3221 6.1 4737 9.0 

 Brine 24384 46.1 20330 38.4 

 Demister 107 0.2 170 0.3 

 Turbine 4252 8.0 4243 8.0 

 Generator 1038 2.0 1101 2.1 

 Condenser 1321 2.5 1507 2.8 

 Cooling tower 1999 3.8 2350 4.4 

 Pump1 183 0.3 215 0.4 

 Pump2 175 0.3 206 0.4 

Reject to atmosphere or river 308 0.6 342 0.6 

 Reject from cooling water 13 0.0 15 0.0 

 Flashing to atmosphere 253 0.5 278 0.5 

 CO2 discharge 42 0.1 49 0.1 

Heat loss 1194 2.3 1404 2.7 

 Pipe (from condenser to cooling tower) 1194 2.3 1404 2.7 

Other 328 0.6 398 0.8 

NCG removal system 5059 9.6 5998 11.3 

 SJE 2426 4.6 2754 5.2 

 LRVP 540  631  

 Inter and after condensers 2093 4.0 2613 4.9 

Auxiliary power  1899 3.6 2197 4.2 

 Parasitic load (pumps, fan etc.) 600 1.1 679 1.3 

 LRVP work 1299 2.5 1518 2.9 

Net power output  7447 14.1 7712 14.6 

 
 

In Table 6.14, the exergetic efficiency of main components of the plant is given 

for operational and optimum separator pressure. Table 6.14 shows that the exergetic 
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efficiencies of the separation, turbine-generator and condenser increase with optimum 

separator pressure.  

 
Table 6.14. Exergetic efficiencies of main components of HS at optimum and 

operational separator pressures. 
 

Separator pressure  460 kPa 340 kPa 

Equipment 
Exergetic efficiency 

(%) 

Exergetic Efficiency 

(%) 

Expansion valve+Seperator 47.8 52.6 

Turbine-generator 63.9 65 

Condenser 81.8 82.3 

Cooling tower 61.5 61.5 

NCG removal system   

 SJE 53.7 56.6 

 LRVP 48.8 48.8 

 Inter condenser 42.3 42.5 

 After condenser 19.3 19.3 

GPP overall 14.1 14.6 

 

6.1.2.4.  Reboiler System  

 
In Figure 6.20, the flow diagram of RS is demonstrated.  

The pressure drop throughout the reboiler is taken as 320 kPa. Exergy balance is 

conducted to reboiler NCG removal system at 13% NCG fraction and 450 kPa turbine 

inlet pressure and result are given in Table 6.15 and shown in Figure 6.21.  
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Figure 6.20. The representative model of RS. 
 

 

Table 6.15. Property values at major locations of RS. 
 

T P m mf mg mCO2 Enthalpy
Specific 

exergy 

Energy 

rate 

Exergy 

rate 
State 

No 
(°C) (kPa) (kg/s) (kg/s) (kg/s) (kg/s) (kJ/kg) (kJ/kg) (kW) (kW) 

9 204.7 1800 281.6 278.4 0 3.2 865.5 188.8 243725 53166

10 192.7 1330 281.6 270.7 7.7 3.2 865.5 187.9 243725 52915

11 169.4 780 281.6 257 21.4 3.2 865.5 183.8 243725 51758

12 169.4 780 257 257 0 0 716.6 129.7 184166 33333

13 169.4 780 24.6 0 21.4 3.2 2425 749.8 59558 18415

14 147.9 450 17.5 0 17.4 0.1 2735 760.7 47780 13289

15 45.79 10 17.5 1.6 15.8 0.1 2349 207.1 41037 3618

16 43.74 9 0.1 0 0 0.1 198.4 -103 13 -7

17 113.8 31.24 0.2 0 0.1 0.1 1688 228.1 346 47

18 69.28 30.25 0.1 0 0 0.1 89.24 -49.81 7 -4

19 127.6 105 0.4 0 0.3 0.1 1943 406 796 166

20 45.79 10 569.4 569.4 0 0 191.7 5.924 109154 3373

(cont. on next page)
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Table 6.15. (cont.) 

21 42.79 95 569.4 569.4 0 0 179.2 4.805 102036 2736

22 29 95 7 7 0 0 121.5 1.096 847 8

23 29 95 551.6 551.6 0 0 121.5 1.096 67019 605

24 29 95 10.5 10.5 0 0 121.5 1.096 1270 11

25 45.79 10 10.7 10.7 0 0 191.7 5.924 2057 64

26 29 95 541.1 541.1 0 0 121.5 1.096 65744 593

27 29 95 4.5 4.5 0 0 121.5 1.096 545 5

28 45.79 10 4.6 4.6 0 0 191.7 5.924 883 27

29 45.79 10 15.3 15.3 0 0 191.7 5.924 2941 91

30 29 95 536.6 537 0 0 121.5 1.096 65197 588

31 98.18 95 0.1 0 0 0 63.86 8.787 8 1

32   0.5 0 0.5 0 2735 760.7 1278 355

33 147.9 450 0.1 0 0.1 0 2401 677.5 333 94

34 147.9 450 0.3 0 0.3 0 2401 677.5 789 223

35 147.9 450 17.9 0 17.9 0.1 2735 760.7 49066 13647

36 169.4 780 6.2 0 3.1 3.1 1448 491.2 8969 3042

 

 

  
Figure 6.21.  Exergy flow chart for RS. 

 
 

The results of the exergy balance show that the largest exergy destruction occurs 

on brine with 33339 kW, which amounts 63% of total exergy input (Figure 6.22). The 
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exergy destruction of brine of RS is higher than the other NCG removal systems 

because of RS has higher separator pressure. 
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Figure 6.22. Overall exergy balance of RS. 
 

 

Thermodynamic evaluation according to exergy balance of RS is repeated for 

optimum separator pressure of RS, determined as 580 kPa. The results are summarized 

in Table 6.16 and Table 6.17. The overall exergetic efficiency of RS is increased to 

11.9% from 10.7% with using optimum separator pressure. 

 
Table 6.16. Exergy losses of RS at optimum and operational separator pressures. 

 
Separator pressure 460 kPa 580 kPa 

Exergy Loss Exergy Loss  

(kW) (%) (kW) (%) 

Exergy at wellhead 52915  52919  

Exergy Losses of main equipments 40353 76.3 36774 69.5 

 Expansion valve+Separator 1174 2.2 2223 4.2 

 Brine 33339 63.0 27987 52.9 

 Demister 41 0.1 72 0.1 

(cont. on next page)
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Table 6.16. (cont.) 

 Turbine 2941 5.6 2899 5.5 

 Generator 673 1.3 751 1.4 

 Condenser 930 1.8 1195 2.3 

 Cooling Tower 1065 2.0 1397 2.6 

 Pump1 97 0.2 128 0.2 

 Pump2 93 0.2 122 0.2 

Reject to atmosphere or river 3236 6.1 3950 7.5 

 Reject from cooling water 8 0.0 10 0.0 

 Flashing to atmosphere 184 0.3 227 0.4 

 Vent from reboiler 3043 5.8 3711 7.0 

 CO2 discharge 1 0.0 2 0.0 

Heat loss 637 1.2 835 1.6 

 Pipe (from condenser to cooling tower) 637 1.2 835 1.6 

Other 907 1.7 1225 2.3 

NCG removal system 1735 3.3 3377 6.4 

 Steam Jet Ejectors 93 0.2 135 0.3 

 Reboiler 1501 2.8 2903 5.5 

 Gas Coolers 142 0.3 339 0.6 

Auxiliary Power  389 0.7 464 0.9 

 Parasitic load (pumps, fan etc.) 389 0.7 464 0.9 

Net Power Output  5667 10.7 6294 11.9 

 
 

Table 6.17. Exergetic efficiencies of main components of RS for optimum and 
operational separator pressure. 

 
Separator pressure 460 kPa 580 kPa 

Equipment 
Exergetic efficiency 

(%) 

Exergetic efficiency 

(%) 

Expansion valve+Seperator 34.8 42.9 

Turbine-generator 62.6 64.9 

Condenser 78.4 78.7 

(cont. on next page)
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Table 6.17. (cont.) 

Cooling tower 61.5 61.5 

NCG removal system   

 SJE 1 53.7 59.5 

 SJE 2 76.1 83.8 

 Reboiler 75 70.5 

 Inter condenser 42.3 42.6 

 After condenser 50.8 51.4 

GPP overall 10.7 11.9 

 

6.1.2.5. Comparison of the NCG Removal Systems 

 
The main results of the exergy analyses of the NCG removal systems are 

summarized in Table 6.18 for 450 kPa turbine inlet and 10 kPa condenser pressures and 

13% NCG fraction.  The biggest exergy loss results from brine. While SJES, CS and HS 

has 46.1% exergy loss on brine, RS has 63%. Because as it is explained in the previous 

sections, reboiler has 320 kPa higher pressure drop than the others. When the separator 

pressure increases, the quality of the geothermal fluid decreases. As a result of it, the 

liquid stream of the fluid increases and RS has 17% higher exergy losses on brine. 

SJES has the highest exergy loss on NCG removal system with 17.3% of the 

total exergy input. HS follows SJES by 9.6%. CS has the lowest exergy losses among 

the system with 1%.  The other equipments having the major exergy losses are turbine 

(5.2-10.4%), expansion valve and separator couple (2.2-6.1%), cooling tower (2-3.9%), 

condenser (1.6-3.2%) and generator (1.3-2.5%). 

In Table 6.19, at 450 kPa turbine inlet pressure and 13 % NCG fractions the 

exergetic efficiencies of main components of the plant for different gas removal options 

are compared. The results indicate that the exergetic efficiency is around 61.5% for the 

cooling tower and around 63% for turbine-generator couple. Condenser exergetic 

efficiency is in range of 76.5-87.9%.  
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Table 6.18. Exergy losses of the NCG removal systems. 
 

CS SJES HS RS  

Components (kW) (%) (kW) (%) (kW) (%) (kW) (%)

Exergy losses of main 

equipments 
38524 72.8 34447 65.1 36679 69.3 40353 76.3

 Expansion valve+Separator 3221 6.1 3221 6.1 3221 6.1 1174 2.2

 Brine 24384 46.1 24384 46.1 24384 46.1 33339 63.0

 Demister 107 0.2 107 0.2 107 0.2 41 0.1

 Turbine 5496 10.4 2767 5.2 4252 8.0 2941 5.6

 Generator 1342 2.5 676 1.3 1038 2.0 673 1.3

 Condenser 1707 3.2 859 1.6 1321 2.5 930 1.8

 Cooling tower 1924 3.6 2063 3.9 1999 3.8 1065 2.0

 Pump1 176 0.3 189 0.4 183 0.3 97 0.2

 Pump2 168 0.3 181 0.3 175 0.3 93 0.2

Reject to atmosphere or river 309 0.6 307 0.6 308 0.6 3236 6.1

 Reject from cooling water 14 0.0 12 0.0 0.0 15 8 0.0

 Flashing to atmosphere 253 0.5 253 0.5 0.5 278 184 0.3

 CO2 discharge 42 0.1 42 0.1 0.1 49 1 0.0

 Vent from reboiler   3043 5.8

Heat loss 1147 2.2 1233 2.3 1194 2.3 637 1.2

 Pipe  1147 2.2 1233 2.3 1194 2.3 637 1.2

Other 300 0.6 1683 3.2 328 0.6 907 1.7

NCG removal system 556 1.0 9165 17.3 5059 9.6 1735 3.3

 Compressors/SJEs 206 0.4 3623 6.8 2426 4.6 93 0.2

 LRVP/Reboiler 540 1.0  1501 2.8

 Inter and after condensers 349 0.7 5542 10.5 2093 4.0 142 0.3

Auxiliary power  1844 3.5 614 1.2 1899 3.6 389 0.7

 Parasitic load (pumps, fan etc.) 582 1.1 614 1.2 600 1.1 389 0.7

 Compressor work/LRVP 1262 2.4 1299 2.5  

 

 

 



 114

Table 6.19. Comparison of exergetic efficiencies of main components of the plant for 
different gas removal options.  

 
Exergetic efficiency (%) 

Component 
CS SJES HS RS 

Expansion valve+Seperator 47.8 47.8 47.8 34.8 

Turbine-Generator 63.9 63.9 63.9 62.6 

Condenser 76.5 87.9 81.8 78.4 

Cooling tower 61.4 61.5 61.5 61.5 

 
 

The plants with different NCG removal systems are compared to their net power 

output and overall exergetic efficiency at 450 kPa turbine inlet and 10 kPa condenser 

pressures for 13% NCG fraction (Table 6.20). Among the systems, CS has the highest 

net power output (10235 kW), depending on highest overall exergetic efficiency 

(19.3%). The worst option is SJES with the 5466 kW net power output and 10.3% 

overall exergetic efficiency.  

 
Table 6.20. Net power output and overall exergetic efficiencies of the plant for different 

gas removal options.  
 

 CS SJES HS RS 

Net Power Output (kW) 10235 5466 7447 5667 

Overall Exergetic Efficiency (%) 19.3 10.3 14.1 10.7 

 

In Figure 6.23, overall exergetic efficiency of NCG removal systems depending 

on NCG fraction at operational turbine inlet pressure of the KGPP is shown. Among the 

systems, CS has the highest overall exergetic efficiency. RS is the worst option for low 

NCG fractions, for high NCG fractions at low turbine inlet pressure it becomes more 

efficient than SJES. 
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Figure 6.23. Overall exergetic efficiency of NCG removal systems depending on NCG 

fraction. 
 
 

Overall exergetic efficiencies of the systems are normalized according to steam 

ejector NCG removal system for various NCG fractions and turbine inlet pressures. The 

results are demonstrated in Figure 6.24.  As it can be seen from the Figure the exergetic 

efficiencies of the systems have largest difference at low NCG fractions, but increasing 

the NCG fraction the efficiencies becomes closer to each other especially for high 

turbine inlet pressures. 
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Figure 6.24. Normalized overall exergetic efficiency for various NCG fractions and 
turbine inlet pressures. 
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6.1.3. Economical Results 

 
In the Thesis, economic analysis of the four different types of NCG removal 

systems, which are two-stage CS, SJES, HS and RS, has been conducted. Various 

methods of comparison exist for economic analysis to be able to show the advantage of 

one type against to the other. NPV, IRR and SPT methods are used. Addition to these 

economic comparison methods, the systems are compared according to cost of 

electricity production per kWh. 

Simulations have been conducted for interest rate, tax rate, O&M cost ratio, 

NCG removal system cost, GPP unit cost, electricity sales price and NCG fraction. 

 

6.1.3.1.  Economical Evaluation of NCG Removal Systems 

 
In this section, NCG removal systems are evaluated depending on NPV, IRR 

and SPT values. Additionally, cost of electricity production of the plant is computed for 

each NCG removal system option. In the calculations NCG fraction, condenser pressure 

and wet bulb temperature are taken as 13%, 10 kPa and 12.2 oC, respectively. Other 

main economical assumptions and calculated cost are summarized in Table 6.21 for 

electricity sales price of 0.0733 USD/kWh (equals to 5.5 Eurocent/kWh, which is the 

government guaranteed tariff according to Law 5346). O&M cost of the plant is 

assumed as 5% of the total capital investment cost. Interest rate is taken as 15%. 

 The cash flow of the plant is computed for 20 years economical life with 

amortization coefficient of 0.1 and tax rate 20%. Electricity sales revenue, O&M cost 

and amortization cost are taken into account for determination of taxable income. The 

cash flow of the NCG removal systems is given in Table B.1-4 in Appendix B.  

 

Table 6.21. General results of economical analysis of GPPs. 
 

 Unit CS SJES HS RS 

Separator Pressure  (kPa) 460 460 460 780 

Turbine Inlet Pressure  (kPa) 450 450 450 450 

Net Power Output  (kW) 10,235 5,466 7,447 5,667 

(cont. on next page)
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Table 6.21. (cont.) 

Annual Electricity 

Production  
(kWh) 80,692,740 43,093,944 58,712,148 44,678,628

GPP Investment Cost  (USD) 15,000,000 15,000,000 15,000,000 15,000,000

NCG Removal System  

Investment Cost * 
(USD) 8,000,000 2,000,000 3,250,000 3,500 000 

Total Capital 

Investment Cost  
(USD) 23,000,000 17,000,000 18,250,000 18,500,000

Electricity Sales 

Revenue 
(USD) 5,917,468 3,160,223 4,305,558 3,276,433 

O&M Cost (USD) 1,150,000 850,000 912,500 925,000 

      * It is assumed depending on Vorum and Fritzler (2000) and Nash (2006). 

 

6.1.3.1.1. Net Present Value  
 

NPV of NCG removal system versus electricity sales price is presented in Figure 

6.25 for the electricity sales price range of 0.06-0.12 USD/kWh and 15% interest rate. 

Among the systems, CS has the highest and mostly positive NPV value. HS follows CS. 

NPV of RS and SJES are close to each other but these systems start to be profitable for 

the electricity sales prices are higher than 0.09 USD/kWh.  
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Figure 6.25. NPV of NCG removal systems vs. electricity sales price. 
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6.1.3.1.2. Internal Rate of Return 
 
IRR method is evaluated for NCG removal system options and the results are 

demonstrated in Figure 6.26. Similarly of NPV results, CS has the highest IRR. Even 

SJES is cheaper than RS, it has lower IRR than RS. As an example, IRR is 17.3% for 

CS, 11.3% for RS, 15.4% for HS and 10.7% for SJES for 0.0733 USD/kWh electricity 

sales price. 
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Figure 6.26. IRR of the NCG removal systems. 

 

6.1.3.1.3. Simple Payback Time 
 

The SPT of NCG removal systems is calculated with 15% interest rate, 20% tax 

rate and 5% O&M ratio. In Figure 6.27 SPT of NCG removal systems versus various 

electricity sales prices are illustrated. Figure 6.27 provides that, depending on the 

assumed cost parameters such as investment and O&M costs for all electricity sales 

prices the SPT of SJES is the highest. CS has the lowest payback time among the NCG 

removal systems. SPT is 5.69 years for CS, 8.06 years for RS, 6.3 years for HS and 8.43 

years for SJES with 0.0733 USD/kWh electricity sales price. 
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Figure 6.27. SPT of NCG removal systems. 

 

6.1.3.1.4. Cost of Electricity Production 
 

Cost of electricity production versus electricity sales price is shown in Figure 

6.28.  CS has the lowest electricity production cost per kWh. HS, RS and SJES follow 

CS. With 0.0733 USD/kWh electricity sales price, electricity production cost per kWh 

is 0.069 USD for CS, 0.087 USD for RS, 0.074 USD for HS and 0.09 USD for SJES.   
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Figure 6.28. Cost of electricity production of NCG removal systems. 
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These results indicate that, only CS can be selectable option at 13% NCG fraction 

depending on the assumed economical cost parameters. 

 

6.1.3.2.  Simulation of the Parameters of Economical Analysis 

 
Simulation parameters are interest rate, tax rate; O&M cost ratio, NCG removal 

system cost, GPP unit cost, electricity sales price and NCG fraction. 

 

6.1.3.2.1. Interest Rate 

 
Money has a time value. That means a dollar at the beginning of an investment 

does not have the same value as a dollar at the end of the investment (even neglecting 

possible inflation) due to the existence of interest. Therefore, cost of money is directly 

related to the interest rate and the length of the debt period. Both these parameters (i.e. 

interest rate & debt length) may vary widely according to conditions and circumstances. 

The interest or discount rate gives money a time value. To be able to see the effect of 

the interest rate on the cost of the system, NPV of the system is calculated for various 

interest rates, which is in range of 10-30% by keeping the other economical parameters 

as constant. In Figure 6.29, NPV versus electricity sales price for various interest rates 

is shown of CS.  

 

-20

-10

0

10

20

30

40

50

0.06 0.07 0.08 0.09 0.1 0.11 0.12

Electricity Sales Price (USD/kWh)

N
PV

 (1
,0

00
,0

00
 U

SD
)

i=10%
i=15%
i=20%
i=25%
i=30%

 
 

Figure 6.29. NPV of CS vs. electricity sales price changing with interest rate. 
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It can be seen that from Figure 6.29, NPV decreases with increasing interest 

rate. The other outcome from the Figure is NPV increases with increasing electricity 

sales price. 

 

6.1.3.2.2. Electricity Sales Price 

 
The other comparison parameter for the economical analysis of NCG removal 

systems of flashed-steam GPPs is the cost of electricity production per kWh depending 

on electricity sales price. The cost of electricity production per kWh of CS is calculated 

and the results are tabulated on Figure 6.30 for various interest rates and electricity sales 

price. While the cost of electricity production is 0.0688 USD/kWh for 15 % interest rate 

and 0.0733 USD/kWh electricity sales price, it is 0.0741 USD/kWh for 0.1 USD/kWh 

electricity sales price. These results show that, the cost of electricity production 

increases with increasing electricity sales price. Because revenue and depending on the 

revenue the tax cost is high for higher electricity sales price.  
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Figure 6.30. Cost of electricity production of CS vs. electricity sales price for various    

interest rates. 
 
 

6.1.3.2.3. Tax Rate 
 

One of the parameters of the simulation is tax rate. In the literature different tax 

rates exist for different countries. While in some references the tax rate is 34% (Vorum 
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and Fritzler, 2000; Triyono, 2001), for the other references it is 20% (Sener and Uluca, 

2009). Therefore, in the simulations the tax rate is taken as 20% and 34%. The same 

economical analyses methods have been conducted to CS for different tax rates. On 

Figure 6.31, NPV, cost of electricity production per kWh, SPT and IRR versus 

electricity sales prices for two different tax rates are exhibited. As it is expected, while 

NPV and IRR decrease, cost of electricity production and SPT increase with increasing 

tax rate. As an example, for 0.0733 USD/kWh electricity sales price, NPV of CS 

decreases to 36,886 USD from 2,910,000 USD with 70% increment in tax rate. While 

cost of electricity production and SPT increase %8.7 and 14.2%, IRR decreases 13.3% 

by 70% increment in tax rate. 
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Figure 6.31. Simulation results of CS for tax rate.  

 

6.1.3.2.4. O&M Cost 
 

O&M costs are variable for the GPPs. Upto now O&M costs are assumed as 5% 

of the total investment cost. Simulations have been conducted to be able to see the 

effect of the O&M cost in the economical analyses. NPV, cost of electricity production 

per kWh, SPT and IRR versus electricity sales prices for two different O&M ratio as 
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5% and 10% are calculated for CS. The results of simulations are plotted on Figure 

6.32.  While NPV and IRR decreases, cost of electricity production and SPT increases 

with increasing O&M cost. With 0.0733 USD/kWh electricity sales price, the electricity 

production cost is 0.069 USD/kWh for 5% O&M ratio. The electricity production cost 

increases to 0.08 USD/kWh for 10% O&M ratio. Similarly the SPT changes to 7.37 

years from 5.69 years by changing O&M cost from 5% to 10% of the investment cost. 
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Figure 6.32. Simulation results of CS for O&M ratio. 
 

6.1.3.2.5. NCG Fraction 
 

The other parameter for the simulation is NCG fraction. Upto here, the NCG 

fraction was taken 13%. To be able to see the effect of the NCG fraction on economical 

analysis the calculations (NPV, IRR, cost of electricity production and SPT) are 

repeated for the NCG fraction in the range of 0-25%. The electricity sales price, O&M 

cost ratio, tax rate are 0.0733 USD/kWh, 5% and 20%, respectively. The GPP 

investment cost without NCG removal system is 15 Million USD with 12 MW 

installation capacity for each NCG removal system alternatives. The results, shown in 

Figure 6.33, indicate that RS has negative values for all NCG fractions. Therefore, it is 
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not profitable alternative with these assumptions. While until 2% NCG fraction SJES is 

the best option, after that until 10% NCG fraction HS is the best option with the highest 

NPV, IRR and lowest SPT and cost of electricity production. But when the NCG 

fraction is higher than 10%, CS becomes to the most profitable option among the NCG 

removal systems. 
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Figure 6.33. Simulations results of CS for NCG fraction. 
 

6.1.3.2.6. Separator Pressure 

 
Effect of the separator pressure on economical analysis of the plant (NPV, IRR, 

SPT and cost of electricity production) is evaluated by using optimum and operational 

separator pressures for 13% NCG fraction and results are summarized in Table 6.22. By 

using optimum separator pressure the net power output of CS increases in the amount of 

1251 kW, which represents 12.2% performance improvement of operational separator 

condition.  RS follows to CS with having 627 kW improvement on net power output.  

While HS has 265 kW net power output improvement, SJES has only 10 kW. Because 
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optimum separator pressure of SJES is close to operational separator pressure. NPV and 

IRR of CS have an increment by using optimum separator pressure as 3.48 Million USD 

and 2.6%, respectively. While, the cost of the electricity production is decreased by the 

amount of 0.5 USD¢/kWh, SPT is reduced to 5 years from 5.69 years by optimum 

separator pressure. SJES and RS are not a profitable option having negative sign for 

NPV, even with optimum separator pressure. The major improvement occurs in NPV 

with optimum separator pressure for HS. NPV increases to 1.126 Million USD from 

0.356 Million USD.  

 
Table 6.22. Simulation of separator pressure. 

 
NCG 

Removal 

System 

At Separator 

Pressure 

 

Net Power 

Output 

(kW) 

NPV 

 

(Million USD) 

IRR 

 

(%) 

Cost of electricity 

production 

(USD/kWh) 

Simple 

payback time

(year) 

Operational 10,235 2.91 17.3 0.06875 5.69 
CS 

Optimum 11,486 6.39 19.9 0.06307 5 

Operational 5466 -3.92 10.7 0.08951 8.43 
SJES 

Optimum 5476 -3.89 10.7 0.08938 8.41 

Operational 7447 0.356 15.4 0.07365 6.3 
HS 

Optimum 7712 1.126 16.1 0.07162 6.05 

Operational 5667 -4.52 10 0.09244 8.85 
RS 

Optimum 6294 -1.53 13.4 0.07967 7.09 

 
 

NPV vs. NCG fractions are shown on Figure 6.34 at operational and optimum 

separator pressures.  
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Figure 6.34. Simulation results for separator pressure. 
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The major outcome from Figure 6.34 is upto 8% NCG fraction all NCG removal 

system options have positive NPV values. That means all options can be possible to 

install. Among the systems HS is the most profitable options until 5% NCG fraction. 

After this point, CS becomes the most profitable options. 

 

6.1.3.2.7. GPP Cost 

 
Initial investment cost of GPP has a vital role in economic analysis. Therefore, 

simulation has been conducted for investment cost of the power plant. During the 

iterations of simulation, investment cost of NCG removal systems keep same to the 

previous cost assumption, unit cost of GPP changes +/- 20%. That means, unit cost of 

GPP are taken as 1000, 1250 and 1500 USD/kW without NCG removal system cost. 

The results are given in Table 6.23 at 15% interest rate, 20% tax rate, 5% O&M ratio 

and 12 MW installed capacity.  

 
Table 6.23. Simulation results of unit cost of GPP. 

 
Unit Cost of GPP (USD/kW) 

Economical 

Parameter 

NCG 

removal 

system 
1000 1250 1500 

CS 6.39 2.91 -0.57 
SJES -0.44 -3.92 -7.41 
HS 3.84 0.36 -3.13 

NPV             

(Million USD) 
RS 0.14 -3.34 -6.82 
CS 20.6 17.3 14.6 

SJES 14.4 10.7 7.9 
HS 19.4 15.4 12.3 

IRR              

  (%) 
RS 15.2 11.3 8.5 
CS 4.84 5.69 6.58 

SJES 6.64 8.43 10.38 
HS 5.11 6.30 7.58 

SPT              

(Year) 
RS 6.36 8.06 9.90 
CS 0.062 0.069 0.076 

SJES 0.076 0.090 0.103 
HS 0.064 0.074 0.083 

Cost of Electricity 

Production 

(USD/kWh) RS 0.074 0.087 0.100 
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Table 6.23 indicates that, NPVs of the plants are varied +/- 3.48 Million USD by 

variation of 3 Million USD on total investment cost of the plant. IRRs are varied as 16% 

for CS, around 19.5% for HS, 26% for SJES, 25-26% for RS by 20% variation on total 

investment cost of the plants. SPT of the investment responses to 20% alteration on total 

investment cost of the plants with the variation of 14.5% for CS, 18% for HS, 20% for 

SJES, 21% for RS. Cost of electricity productions are changed 0.7 USD¢ for CS, 1 

USD¢ for HS, 1.4 USD¢ for SJES and 1.3 USD¢ for RS by 20% variation on total 

investment cost of the plants. 

 

6.1.3.2.8. NCG Removal System Cost 

 
Upto here, NCG removal system cost are taken 8 Million USD for CS, 3.5 

Million USD for RS, 3.25 Million USD for HS and 2 Million USD for SJES (Table 

6.21). To be able to see the effect of NCG removal system cost on economical analysis, 

simulation has been conducted with varies NCG removal system costs. The range for 

NCG removal investment cost is 1-10 Million USD with the increment of 1 Million 

USD. The other investment costs of the plant are taken 15 Million USD (12 MW 

installed capacity) for all options. NPV, IRR, SPT and cost of the electricity production 

vs. NCG removal system cost are shown on Figure 6.35. The Figure indicates that SJES 

and RS are not profitable options with negative NPV values. The most profitable option 

is CS with the highest NPV and IRR values. HS can be profitable upto 4 Million USD 

of NCG removal system investment cost. 
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Figure 6.35. Simulation of the plants for NCG removal system investment cost. 
 

6.2. Double-Flash GPPs 

 
The flow diagram of the considered double-flash design of the plant is shown on 

Figure 6.36.  

A secondary flashing unit in which the brine is re-flashed by decreasing its 

pressure to a lower value is installed to the wellhead to obtain more steam in the double-

flash design, The steam coming from the secondary flashing unit is not routed to the 

existing turbine; it is passed through a different turbine, because its pressure is lower 

than that obtained from the primary flashing units. After the low pressured turbine, the 

steam goes to main condenser in the single-flash design.   

In the double-flash design, as the first step, the optimum primary separator 

pressures of NCG removal system options are determined. To be able to determine the 

optimum primary separator pressures, the net power output of each NCG removal 

system options are calculated for the primary separator pressures, which are taken as in 

the range of 340-1300 kPa with the secondary separator pressure of 100 kPa. 
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Figure 6.36. Flow diagram of double-flash design. 

 

General assumptions, made for single-flash design, are valid for double-flash 

design. The net power output vs. primary separator pressure is shown on Figure 6.37 for 

13% NCG fraction and 10 kPa condenser pressure. The pressures, at where the net 

power outputs are maximum, are determined as optimum primary separator pressures.  

Finally, the optimum primary separator pressure is 500 kPa for CS, 800 kPa for HS, 880 

kPa for RS and 1080 kPa for SJES for the double-flash design.  
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Figure 6.37. Net power output vs. primary separator pressure 
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As the second step of the double-flash design, the optimum secondary separators 

are determined by using optimum primary separator pressures of the each NCG removal 

system options. The net power output of the plant with different NCG removal system 

options vs. secondary separator pressure is shown in Figure 6.38. The range for the 

secondary separator pressure is taken as 60-260 kPa. The optimum secondary separator 

pressure is determined as 100 kPa for CS, 120 kPa for HS, 130 kPa for RS and 150 kPa 

for SJES. 
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Figure 6.38. Net power output vs. secondary separator pressure. 

 

6.2.1. Compressor System 

 
The optimum primary and secondary separator pressures are determined as 500 

kPa and 100 kPa, respectively. The second turbine of the double-flash design produces 

5887 kW power. The additional investment cost of the double-flash design is calculated 

as 7,359,000 USD by 1250 USD/kW unit investment cost for 5887 kW the secondary 

turbine power output. In the economical analysis, interest rate, tax rate and   O&M ratio 

are 15%, 20% and 5%, respectively. The electricity sales price is 0.0733 USD/kWh. 

The main results of the single-flash and double-flash design are given in Table 6.24.  
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Table 6.24. The comparison of the single-flash and double-flash design of CS. 
 

 Single-flash Design Double-flash Design

Net power output (kW) 10235 14887 

Exergy losses from brine (kW) 24384 9463 

Overall exergetic efficiency (%) 19.3 28.1 

Total investment cost (Million USD) 23 30.36 

NPV ( Million USD) 2.91 7.827 

IRR (%) 17.3 19.6 

Cost of electricity production (USD/kWh) 0.069 0.064 

SPT (year) 5.69 5.09 

 

Table 6.24 indicates that, net power output of the double-flash plant with CS 

option is increased to 14,887 kW by 5298 kW net power output of the secondary turbine 

power output. The increment on the net power output of the plant equals to 45.45% of 

the net power output of the single-flash design. 

 

6.2.2. Steam Jet Ejector System 

 
Similar analyses have been conducted to double-flash plant with SJES which has 

1080 kPa and 150 kPa optimum primary and secondary separator pressures. The 

comparison of the single-flash and double-flash design of SJES is given in Table 6.25.  

 

Table 6.25. The comparison of the single and double-flash design for SJES. 
 
Single-flash Design Double-flash Design 

Net power output (kW) 5466 12268 

Exergy losses from brine (kW) 24384 12463 

Overall exergetic efficiency (%) 19.3 23.2 

Total investment cost (Million USD) 17 30.18 

NPV ( Million USD) -3.92 0.455 

IRR (%) 10.7 15.3 

Cost of electricity production (USD/kWh) 0.090 0.074 

SPT (year) 8.43 6.33 
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The net power output is increased to 12268 kW from 5466 kW by a secondary flash. 

The 7202 kW increment represents 131% of the net power output of the single-flash 

design. 13.18 million USD additional investment cost changes to SJES investment to 

profitable with having positive sign NPV. 

 

6.2.3. Hybrid System 

 
By double-flash design, net power output of HS increases in the amount of 5371 

kW, results 10% improvement on overall exergetic efficiency of the plant. Total 

investment cost is 28.83 million USD by around 10.5 million USD additional cost for 

double-flash design (Table 6. 26).  

 
Table 6.26. The comparison of single-flash and double-flash design of HS. 

 
 

6.2.4. Reboiler System 

 
In Table 6.27, single-flash and double-flash design of the plant with RS is 

compared. As it can be seen from the Table, the biggest improvement occurs on exergy 

losses from brine. While the exergy losses of the brine are 33339 kW for single-flash 

design, it reduces to 11335 kW by double-flash design. The net power output of the 

double-flash design reaches to 12914 kW.  

 

 

 Single-flash Design Double-flash Design 

Net power output (kW) 7447 12818 

Exergy losses from brine (kW) 24384 10743 

Overall exergetic efficiency (%) 14.1 24.2 

Total investment cost (Million USD) 18.25 28.83 

NPV ( Million USD) 0.36 3.617 

IRR (%) 15.4 17.2 

Cost of electricity production (USD/kWh) 0.074 0.069 

SPT (year) 6.3 5.7 
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Table 6.27. The comparison of the single and double-flash design for RS. 
 

 Single-flash Design Double-flash Design

Net power output (kW) 5667 12914 

Exergy losses from brine (kW) 33339 11335 

Overall exergetic efficiency (%) 10.7 24.4 

Total investment cost (Million USD) 28.46 28.46 

NPV ( Million USD) -3.34 4.318 

IRR (%) 11.3 17.7 

Cost of electricity production (USD/kWh) 0.087 0.068 

SPT (year) 8.06 5.56 

 
 

6.2.5. Comparison of NCG Removal Systems 
 

The results on the net power plant increment with double-flash design are 

summarized in Table 6.28. Thermodynamic performance of single-flash plant can be 

improved by adding a second flash by 45.5-127.9%.  

 
Table 6.28. Comparison of the net power outputs of the GPP with single-flash and 

double-flash design at 13% NCG fraction. 
 

Increment 
NCG Removal System 

Single-flash Design

(kW) 

Double-flash Design

(kW) (kW) (%) 

CS 10235 14887 4652 45.5 

SJES 5466 12268 6802 124.4 

HS 7447 12818 5371 72.1 

     

RS 5667 12914 7247 127.9 

 

 

NCG removal system options are compared to each other according to NCG 

fraction. The optimum primary and secondary separator pressures are used in the 

comparison. NPV, IRR, cost of electricity production and SPT are calculated and shown 

on Figure 6.39. NPVs have positive sign for all NCG removal system options upto 15% 

NCG fraction. That means upto this point all of the NCG removal system options can be 
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profitable. But among the systems, while until 2% NCG fraction HS is the best option 

with the highest NPV and IRR, then CS is the best option for all NCG fractions. NPVs 

of RS and HS are close to each other. There is an intersection at around 8% NCG 

fraction. Until 8% NCG fraction HS is better than RS. On the other hand, even HS has 

the minimum cost of electricity production nearly for all NCG fractions, CS has the 

minimum SPT. In double-flash design, SJES is the worst option with minimum NPV 

and IRR, maximum cost of electricity production and SPT. 
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Figure 6.39. Comparison of the NCG removal system for double-flash design with 

optimum separator pressures.  
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Chapter 7 SUMMARY OF THE RESULTS 
 

SUMMARY OF THE RESULTS 

 
The results of modeling and simulation of flashed- steam GPPs are summarized 

in this chapter. The model is used the data of Kizildere GPP as input parameters. 

Simulation parameters are wet bulb temperature, separator pressure, condenser pressure, 

NCG fraction, turbine inlet temperature, interest rate, tax rate, O&M cost ratio, 

electricity sales price, unit cost of GPP and NCG removal systems. 

 

7.1. Single-Flash GPPs 

 

7.1.1. Mass and Energy Balances 

 

• Optimum condenser pressure for each NCG removal system is determined as 10 

kPa. 

• Optimum separator pressures are determined as 220 kPa, 340 kPa, 500 kPa and 

580 kPa for CS, HS, SJES and RS, respectively. 

• The net power output of the plant is computed for 460 kPa, which is operational 

pressure of Kizildere GPP, and optimum separator pressures of each NCG 

removal system and results are exhibited in Table 7.1. 

  
Table 7.1. Comparison of the net power outputs of the GPP at operational and optimum 

separator pressures for 13% NCG fraction. 
 

Net Power Output (kW) 
Increment NCG 

Removal 
System 

At Operational 
Separator 
Pressures 

At Optimum 
Separator 
Pressures (kW) (%) 

CS 10235 11436 1201 11.7 
SJES 5466 5476 10 0.2 
HS 7447 7712 265 3.6 
RS 5667 6294 627 11.1 
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• 10°C increment in turbine inlet temperature causes approximately 2.3-2.6% 

increment in net power output. 

• Net power output is decreased by 0.18% for CS, 0.37% for SJES and HS and 

0.04% for RS by 1°C increment in wet bulb temperature.  

• Specific steam consumption is the highest for RS and lowest for CS. As an 

example at 460 kPa separator pressure; for 2% NCG fraction, RS consumes 

47.4% more steam than CS, for 13% NCG fraction it is 97.4%.  

• 1% increment in NCG fraction results a decrement on net power output as 0.4% 

for CS, 2.2% for HS, 2.7% for SJES and 2.5% for RS.   

• Based on the results of thermodynamic model, CS is the best gas removal option 

in terms of the highest net power output and lowest auxiliary power for 

Kizildere GPP operational conditions. On the other hand, RS is the worst option 

for entire NCG fraction range. HS is responded late to the change in NCG 

fraction because the LRVP is more efficient since its performance lies between 

CS and SJES.  

 

7.1.2. Exergy Balance 

 

• While CS has the highest overall exergetic efficiency of 19.3%, SJES has the 

lowest overall exergetic of 10.3% for operational condition of Kizildere 

GPP. The overall exergetic efficiency of HS and RS are 14.1% and 10.7%, 

respectively.  

• SJES has the highest exergy loss on NCG removal system with 17.3% of the 

total exergy input. HS follows SJES with 9.6%. CS has the lowest exergy 

losses among NCG removal systems with 1%.  

• The other equipment having the major exergy losses are turbine (5.2-10.4%), 

expansion valve and separator couple (2.2-6.1%), cooling tower (2-3.9%), 

condenser (1.6-3.2%) and generator (1.3-2.5%).  

• The exergy destruction of brine discharge after flashing processes in the 

separators is 62.9% for RS and 46% for CS, SJES and HS of the total exergy 

input.  
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7.1.3. Economical Analysis 

 

• Depending on the assumptions (investment cost, O&M ratio, tax rate etc.) 

electricity production cost per kWh is 0.069 USD for CS, 0.087 USD for RS, 

0.074 USD for HS and 0.09 USD for SJES at 13% NCG fraction.   

• IRR is 17.3%, 11.3%, 15.4% and 10.7% for CS, RS, HS and SJES, 

respectively.  

• The SPT is 5.69 years for CS, 8.06 years for RS, 6.3 years for HS and 8.43 

years for SJES. 

• CS has the highest and most positive NPV value. HS follows CS. NPV of 

the reboiler and SJES are close to each other but these systems become 

profitable if the electricity sales prices are higher than 0.09 USD/kWh at 460 

kPa separator pressure and 13% NCG fraction. 

• According to the results of the economical analysis for 460 kPa separator 

pressure and 13% NCG fraction, among the NCG removal system options, 

CS is the best option with highest NPV and IRR, lowest SPT and cost of 

electricity production. HS and RS follow to CS and SJES is the worst option. 

• The best NCG removal system option at 460 kPa separator pressure 

(Kizildere GPP operational condition) is SJES for 0-2% NCG fraction, HS 

for 2-10% NCG fraction and CS for 10 higher than 10% NCG fraction with 

the highest NPV, IRR and lowest SPT and cost of electricity production.  

• If the GPP is operated at optimum separator pressures of each NCG removal 

system Upto 8% NCG fraction all NCG removal system options have 

positive NPV values. Among the systems HS is the most profitable options 

until the around of 6% NCG fraction. After this point, CS becomes to the 

most profitable options. 

• The most profitable option is CS with the highest NPV and IRR values. One 

of the outcomes from the results that HS can be race against to CS, if the 

investment cost of HS NCG removal system is around 23% of the cost of 

CS. 
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7.2. Double-Flash GPPs 
 

• The optimum primary separator pressure is determined as 500 kPa for CS, 800 

kPa for HS, 880 kPa for RS and 1080 kPa for SJES for 13% NCG fraction.  

• The optimum secondary separator pressure is determined as 100 kPa for CS, 120 

kPa for HS, 130 kPa for RS and 150 kPa for SJES. 

• The highest net power output is 14887 kW for CS by 4652 kW increment with 

double-flash design. The increment represents 45.5% of the net power output of 

the single-flash design. But especially, for SJES and RS the net power increment 

is very high in the amount of 124.4% and 127.9% of the single-flash design, 

respectively. The net power output is reached to 12268, 12818 and 12914 kW by 

double-flash design for SJES, HS and RS. 

• By double-flash design NPVs have positive sign for all NCG removal system 

options up to 15% NCG fraction. That means up to this point all of the NCG 

removal system options can be profitable. But among them, while until 2% NCG 

fraction HS has the highest NPV and IRR, then CS has the best options for all 

NCG fractions. NPVs of RS and HS are close to each other. There is an 

intersection between them at around 8% NCG fraction. Until 8% NCG fraction 

HS is better than RS. On the other hand, even HS has the minimum cost of 

electricity production nearly for all NCG fraction, CS has the minimum SPT. In 

double-flash design, SJES is the worst option with minimum NPV and IRR, 

maximum cost of electricity production and SPT. 
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Chapter 8 CONCLUSIONS 

 

CONCLUSIONS 

 
A deterministic and static model of flashed-steam (single and double-flash) 

GPPs is developed and a code written in EES software to examine the effects of NCGs 

and gas removal systems. The modeled NCG removal system alternatives are 

compressor system (CS), steam jet ejector system (SJES), hybrid (steam jet ejector and 

LRVP) system (HS) and reboiler system (RS). Model is firstly run for Kizildere GPP 

input parameters. Then plant is simulated based on input variables, which are wet bulb 

temperature, separator pressure, condenser pressure, NCG fraction, interest rate, tax 

rate, O&M cost ratio and electricity sales price. 

 

• Wet bulb temperature 
 

- Increasing wet bulb temperature causes a decrement on net power output and an 

increase in auxiliary power consumption with an increase in motive steam 

flowrate. 

 

• Separator and condenser pressures 
 

o Optimum separator pressure which corresponds to the maximum net power 

output, is the highest for SJES and lowest for CS at the same NCG fraction and 

wet bulb temperature. Net power output of the plant decreases with increasing 

separator pressure with a decrease in steam flowrate feeding the turbine. This 

makes the situation more dramatic for steam jet ejectors in a feasibility study. To 

increase the power output, steam flowrate should be increased by drilling more 

wells which leads the higher cost of field development. 

o Thermodynamic performance of single- flash plant can be improved by 0.2-

11.7% running the separator and condenser pressures on their optimum values. 

GPPs should be urged to operate around design conditions to generate optimum 

net power. 
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• Interest rate, tax rate, O&M cost ratio and electricity sales price 
 

o While profitability of the system increases with increasing electricity sales price, 

it decreases with interest and tax rate and O&M cost ratio. 

 

• NCG fraction 
 

o NCG fraction is the most influencing factor on GPP performance. 

o CS is the most efficient and robust system where the influence of the NCG 

fraction is limited. On the other hand, SJES and RS are highly affected by 

increasing NCG fraction since motive steam flowrate to the steam jet ejectors 

are directly related to NCG fraction. Thus they exhibit as the worst case. HS is 

responded late to the change in NCG fraction because the LRVP is more 

efficient since its performance lies between compressors and steam jet ejectors. 

o The net power output and overall exergetic efficiency of single-flash GPP is 

decreased by  

- 0.4% for CS,  

- 2.2% for HS,  

- 2.5% for RS  

- 2.7% for SJES by 1% increment in NCG fraction. 

o Based on thermodynamic and economical simulations, SJES, HS and CS can be 

recommended to be used for a NCG fraction range of 0-2%, 2-10% and >10%, 

respectively.  

 

• Specific steam consumption 
 

o For constant separator pressure and wet bulb temperature, specific steam 

consumption is highest for steam jet ejectors. The consumption becomes severe 

at higher NCG fractions. 

 

• Double-flash  
 

o Thermodynamic performance of single-flash plant can be improved by adding a 

second flash by 45.5-127.9%.  
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It can be summarized that existance of NCGs in geothermal fluid cause a 

significant decrease in power production. Consequently, a special care should be taken 

to the NCG removal system. 

Selection of the NCG removal system requires a detailed analysis depending on 

geothermal field, power plant, environmental and economical parameters. The 

developed code, provides a quick and easy way to determine the type and/or to evaluate 

the performance of gas removal systems. 

The code would also be a useful tool for the pre-feasibility study of new plants 

and/or evaluation of the operational conditions of existing plants.  

Furthermore, the code can be improved by adding time-varying interactions 

among variables (dynamic).  
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APPENDIX A AIR TO STEAM RATIO 

 

AIR TO STEAM RATIO 
 

 
Figure A. 1. Air to steam ratio curve.  
(Source: Geothermal Institute, 1996b) 

 

 

 

 
 
 
 

APPENDIX A 



 154

APPENDIX B. CASH FLOW 

 

CASH FLOW 
 

 
Table B. 1.  Cash flow of CS. 

 
CS 

Year Book 
Value 
(USD) 

Amortization 
Cost         

(USD) 

Revenue 
 

(USD) 

O&M 
Cost 

(USD) 

Tax 
 

(USD) 

Net 
Revenue 
(USD) 

0 23,000,000      

1 20,700,000 2,300,000 5,917,468 1,150,000 493,494 4,273,974 

2 18,630,000 2,070,000 5,917,468 1,150,000 539,494 4,227,974 

3 16,767,000 1,863,000 5,917,468 1,150,000 580,894 4,186,574 

4 15,090,300 1,676,700 5,917,468 1,150,000 618,154 4,149,314 

5 13,581,270 1,509,030 5,917,468 1,150,000 651,688 4,115,780 

6 12,223,143 1,358,127 5,917,468 1,150,000 681,868 4,085,599 

7 11,000,829 1,222,314 5,917,468 1,150,000 709,031 4,058,437 

8 9,900,746 1,100,083 5,917,468 1,150,000 733,477 4,033,991 

9 8,910,671 990,075 5,917,468 1,150,000 755,479 4,011,989 

10 8,019,604 891,067 5,917,468 1,150,000 775,280 3,992,188 

11 7,217,644 801,960 5,917,468 1,150,000 793,101 3,974,366 

12 6,495,879 721,764 5,917,468 1,150,000 809,141 3,958,327 

13 5,846,291 649,588 5,917,468 1,150,000 823,576 3,943,892 

14 5,261,662 584,629 5,917,468 1,150,000 836,568 3,930,900 

15 4,735,496 526,166 5,917,468 1,150,000 848,260 3,919,207 

16 4,261,946 473,550 5,917,468 1,150,000 858,784 3,908,684 

17 3,835,752 426,195 5,917,468 1,150,000 868,255 3,899,213 

18 3,452,177 383,575 5,917,468 1,150,000 876,778 3,890,689 

19 3,106,959 345,218 5,917,468 1,150,000 884,450 3,883,018 

20  3,106,959 5,917,468 1,150,000 332,102 4,435,366 
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Table B. 2.  Cash flow of SJES. 
 
SJES 

Year Book 
Value 
(USD) 

Amortization 
Cost         

(USD) 

Revenue 
 

(USD) 

O&M 
Cost 

(USD) 

Tax 
 

(USD) 

Net 
Revenue 
(USD) 

0 17,000,000      

1 15,300,000 1,700,000 3,160,223 850,000 122,045 2,188,178 

2 13,770,000 1,530,000 3,160,223 850,000 156,045 2,154,178 

3 12,393,000 1,377,000 3,160,223 850,000 186,645 2,123,578 

4 11,153,700 1,239,300 3,160,223 850,000 214,185 2,096,038 

5 10,038,330 1,115,370 3,160,223 850,000 238,971 2,071,252 

6 9,034,497 1,003,833 3,160,223 850,000 261,278 2,048,945 

7 8,131,047 903,450 3,160,223 850,000 281,355 2,028,868 

8 7,317,943 813,105 3,160,223 850,000 299,424 2,010,799 

9 6,586,148 731,794 3,160,223 850,000 315,686 1,994,537 

10 5,927,533 658,615 3,160,223 850,000 330,322 1,979,901 

11 5,334,780 592,753 3,160,223 850,000 343,494 1,966,729 

12 4,801,302 533,478 3,160,223 850,000 355,349 1,954,874 

13 4,321,172 480,130 3,160,223 850,000 366,018 1,944,204 

14 3,889,055 432,117 3,160,223 850,000 375,621 1,934,601 

15 3,500,149 388,905 3,160,223 850,000 384,263 1,925,959 

16 3,150,134 350,015 3,160,223 850,000 392,042 1,918,181 

17 2,835,121 315,013 3,160,223 850,000 399,042 1,911,181 

18 2,551,609 283,512 3,160,223 850,000 405,342 1,904,880 

19 2,296,448 255,161 3,160,223 850,000 411,012 1,899,210 

20  2,296,448 3,160,223 850,000 2,755 2,307,468 
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Table B. 3.  Cash flow of HS. 
 

HS 

Year Book 
Value 
(USD) 

Amortization 
Cost         

(USD) 

Revenue 
 

(USD) 

O&M 
Cost 

(USD) 

Tax 
 

(USD) 

Net 
Revenue 
(USD) 

0 18,250,000      

1 16,425,000 1,825,000 4,305,558 912,500 313,612 3,079,446 

2 14,782,500 1,642,500 4,305,558 912,500 350,112 3,042,946 

3 13,304,250 1,478,250 4,305,558 912,500 382,962 3,010,096 

4 11,973,825 1,330,425 4,305,558 912,500 412,527 2,980,531 

5 10,776,443 1,197,383 4,305,558 912,500 439,135 2,953,923 

6 9,698,798 1,077,644 4,305,558 912,500 463,083 2,929,975 

7 8,728,918 969,880 4,305,558 912,500 484,636 2,908,422 

8 7,856,027 872,892 4,305,558 912,500 504,033 2,889,024 

9 7,070,424 785,603 4,305,558 912,500 521,491 2,871,567 

10 6,363,382 707,042 4,305,558 912,500 537,203 2,855,854 

11 5,727,043 636,338 4,305,558 912,500 551,344 2,841,714 

12 5,154,339 572,704 4,305,558 912,500 564,071 2,828,987 

13 4,638,905 515,434 4,305,558 912,500 575,525 2,817,533 

14 4,175,015 463,891 4,305,558 912,500 585,833 2,807,224 

15 3,757,513 417,501 4,305,558 912,500 595,111 2,797,946 

16 3,381,762 375,751 4,305,558 912,500 603,461 2,789,596 

17 3,043,586 338,176 4,305,558 912,500 610,976 2,782,081 

18 2,739,227 304,359 4,305,558 912,500 617,740 2,775,318 

19 2,465,304 273,923 4,305,558 912,500 623,827 2,769,231 

20  2,465,304 4,305,558 912,500 185,551 3,207,507 
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Table B. 4.  Cash flow of RS. 
 

RS 

Year Book 
Value 
(USD) 

Amortization 
Cost         

(USD) 

Revenue 
 

(USD) 

O&M 
Cost 

(USD) 

Tax 
 

(USD) 

Net 
Revenue 
(USD) 

0 18,500,000      

1 16,650,000 1,850,000 3,276,433 925,000 100,287 2,251,146 

2 14,985,000 1,665,000 3,276,433 925,000 137,287 2,214,146 

3 13,486,500 1,498,500 3,276,433 925,000 170,587 2,180,846 

4 12,137,850 1,348,650 3,276,433 925,000 200,557 2,150,876 

5 10,924,065 1,213,785 3,276,433 925,000 227,530 2,123,903 

6 9,831,659 1,092,407 3,276,433 925,000 251,805 2,099,627 

7 8,848,493 983,166 3,276,433 925,000 273,653 2,077,779 

8 7,963,643 884,849 3,276,433 925,000 293,317 2,058,116 

9 7,167,279 796,364 3,276,433 925,000 311,014 2,040,419 

10 6,450,551 716,728 3,276,433 925,000 326,941 2,024,492 

11 5,805,496 645,055 3,276,433 925,000 341,276 2,010,157 

12 5,224,946 580,550 3,276,433 925,000 354,177 1,997,256 

13 4,702,452 522,495 3,276,433 925,000 365,788 1,985,645 

14 4,232,207 470,245 3,276,433 925,000 376,238 1,975,195 

15 3,808,986 423,221 3,276,433 925,000 385,642 1,965,790 

16 3,428,087 380,899 3,276,433 925,000 394,107 1,957,326 

17 3,085,279 342,809 3,276,433 925,000 401,725 1,949,708 

18 2,776,751 308,528 3,276,433 925,000 408,581 1,942,852 

19 2,499,076 277,675 3,276,433 925,000 414,752 1,936,681 

20  2,499,076 3,276,433 925,000 29,529 2,380,961 
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