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ABSTRACT

STABILIZED FINITE ELEMENT METHODS FOR TIME DEPENDENT
CONVECTION-DIFFUSION EQUATIONS

In this thesis, enriched finite element methods are presented for both steady and

unsteady convection diffusion equations. For the unsteady case, we follow the method

of lines approach that consists of first discretizing in space and then use some time in-

tegrator to solve the resulting system of ordinary differential equation. Discretization in

time is performed by the generalized Euler finite difference scheme, while for the space

discretization the streamline upwind Petrov-Galerkin (SUPG), the Residual free bubble

(RFB), the more recent multiscale (MS) and specific combination of RFB with MS (MIX)

methods are considered. To apply the RFB and the MS methods, the steady local prob-

lem, which is as complicated as the original steady equation, should be solved in each

element. That requirement makes these methods quite expensive especially for two di-

mensional problems. In order to overcome that drawback the pseudo approximation tech-

niques, which employ only a few nodes in each element, are used. Next, for the unsteady

problem a proper adaptation recipe, including these approximations combined with the

generalized Euler time discretization, is described. For piecewise linear finite element

discretization on triangular grid, the SUPG method is used. Then we derive an efficient

stability parameter by examining the relation of the RFB and the SUPG methods. Sta-

bility and convergence analysis of the SUPG method applied to the unsteady problem is

obtained by extending the Burman’s analysis techniques for the pure convection problem.

We also suggest a novel operator splitting strategy for the transport equations with nonlin-

ear reaction term. As a result two subproblems are obtained. One of which we may apply

using the SUPG stabilization while the other equation can be solved analytically. Lastly,

numerical experiments are presented to illustrate the good performance of the method.
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ÖZET

ZAMANA BAǦLI KONVEKSIYON DİFÜZYON DENKLEMLERİ İÇİN KARARLI
SONLU ELEMANLAR YÖNTEMLERİ

Bu tezde hem durağan hemde durağan olmayan konveksiyon difüzyon denklem-

leri için zenginleştirilmiş sonlu elemanlar yöntemleri verildi. Durağan olmayan problem-

ler için “method of lines” tekniği ele alınıp denklemin önce uzaysal kısmı ayrıklaştırılıp

sona zamansal ayrıklaştırması ortaya çıkan adi differansiyel denklem sistemine uygu-

landı. Zamandaki ayrıklaştırma için genelleştirilmiş Euler sonlu fark şeması kullanılırken

uzaysal ayrıklaştırma için “streamline upwind Petrov-Galerkin” (SUPG), “residual free

bubble” (RFB) ve daha güncel olan “multiscale” (MS) ile RFB ve MS in özel bir kom-

binasyonu olan MIX motodları incelendi. Özellikle iki boyutlu problemlerde RFB ve

MS algoritmaları için her bir eleman içinde orjinal durağan differansiyel denklem kadar

karmaşık bir denlem çözme gerekliliği bu algoritmaları oldukça kullanışsız yapmaktadır.

Fakat “pseudo” yaklaşım tekniği sayesinde eleman içinde sadece bir kaç nokta kulla-

narak bu denklemlerin etkili ve pratik yaklaşık çözümleri elde edilebildi. Daha sonra bu

metodların ve genelleştirilmiş Euler şemasının uygun bir kombinasyon formülü verilerek

durağan olmayan denklemler için bir adaptasyon sağlanmış oldu. Üçgensel ağ üzerinde

parçalı sürekli doğrusal baz fonksiyonları için SUPG metodu incelendi. Bu sayede, etkili

bir SUPG stabilizasyon parametresi RFB metodu kullanılarak elde edildi. SUPG için sta-

bilite ve yakınsama analizleri ayrıca incelenip, Burman’ın durağan olmayan salt konvek-

siyon denklemi için önerdiği analiz tekniği burada konveksiyon difüzyon denklemi için

genelleştirildi. Ayrıca yeni bir operatör ayırma stratejisi linear olmayan reaksiyon terimi

içeren taşınım denklemi için önerildi. Bunun sonucu olarak bir tanesi SUPG methodu

kullanılarak yaklaşık olarak çözülebilen diğeri ise analitik olarak çözülebilen iki alt prob-

leme ulaşıldi. Son olarak metodumuzun etkinliği sayısal deneylerle gösterildi.
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CHAPTER 1

INTRODUCTION

1.1. Introduction

It is known that the standard Galerkin finite element method (SGFEM) based on

low order piecewise polynomials is unsuitable for the solution of singularly perturbed

problems. When the advection term dominates the diffusion one or small time steps are

employed, numerical solutions obtained by SGFEM suffer from nonphysical oscillations

unless appropriately designed mesh is used (Ross, Stynes and Tobiska, 2008), (Harari,

2004). Although a number of studies focuses on the steady problems, little attention is

given to the unsteady cases. The present study contributes to filling in that gap. For the

unsteady problems, the method of lines approach, which is based on separating spatial

and temporal discretization, is applied. Consequently the steady case of the convection

diffusion equation is considered in detail.

Many stabilization techniques for steady equations have been proposed to cure

the drawback of the SGFEM in the convection dominated case. One of the frequently

used method is the streamline-upwind Petrov-Galerkin (SUPG) introduced by Brooks

and Hughes (Brooks and Hughes, 1982) and analyzed by Johnson et al. (Johnson, Nävert

and Pitkäranta, 1984). This method corresponds to adding a consistent term providing an

additional diffusion in the streamline direction to improve the numerical stability of the

Galerkin method without compromising accuracy. A wide variety of applications of this

method to many worthwhile problems can be found in the literature (Hughes, Franca and

Balestra, 1986), (Brezzi and Douglas, 1988), (Franca and Frey, 1992), (Franca, Frey and

Hughes, 1992), (Harari and Hughes, 1994) and (Franca and Valentin, 2000). However,

a common drawback of this method is that the amount of additional diffusion should be

carefully selected by user through a stabilization parameter δ, which is usually seen as a

drawback of the method. In this work we derive δ by examining the relation between of

the SUPG and a more recent strategy known as the residual-free bubble (RFB) method

introduced in (Brezzi and Russo, 1994) (see also (Brezzi, Franca and Russo, 1998),

(Franca, Neslitürk and Stynes, 1998), (Brezzi, Hughes, Marini, Russo and Süli, 1999),

(Brezzi, Marini and Russo, 2000) and (Sangalli, 2000)).

To capture the small scales, the RFB method is based on the enrichment of the
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finite element spaces. This strategy maintains the Galerkin method by enhances the poly-

nomial spaces with the so called the residual-free bubble functions which satisfy a differ-

ential equation inside each element and vanish on its boundary. However, the vanishing

boundary condition along inter-element boundaries in higher dimensions may lead to in-

accuracies in the numerical solution since the approximate solution is still interpolated

by polynomials along element’s edges. In fact, the RFB method in advection-dominated

problems is less accurate at the outflow boundaries when compared to other stabilized

methods (Franca, Madureira and Valentin, 2005). Thus an improvement in the RFB

method is required. An alternative strategy based on enriching the test space with bubble

functions and the trial space with the so called the multiscale (MS) functions, which sat-

isfy the same differential equation as the RFBs but do not vanish on the element edges,

was proposed by Franca et. al. in (Franca, Madureira and Valentin, 2005), (Franca,

Madureira, Tobiska and Valentin, 2005) and (Franca, Ramalho and Valentin, 2005).

However, contrary to the residual-free bubbles, internal layers are not well captured by

the latter algorithm if the mesh is not aligned with the convection field. Therefore, Franca

and his co-workers combine these two approaches and report that employing the MS

functions in elements connected to the outflow boundaries and the RFB functions in the

rest of the domain increases the accuracy of the numerical approximations considerably

(Franca, Ramalho and Valentin, 2005); this approach is renamed as MIX method. The

common point of these two approaches is that either they employ the exact solutions of

the equations defining the enriching functions (those are the bubble functions or the multi-

scale functions) or their approximations using a very fine mesh inside each element; both

approaches make the numerical method less practical. Regarding the RFBs, the imple-

mentation of the method requires the solution of a local boundary value problem which

may not be easier to solve than the original problem. Therefore, owing to the simplicity of

element geometry, researchers have been proposed several numerical methods to compute

an inexpensive approximate solution to the local problem on a specially chosen sub-grid

consisting of a few nodes. Nevertheless the approximate counterpart of the RFB functions

retain the crucial features of the exact RFBs from the convergence point of view (Brezzi,

Hauke, Marini and Sangalli, 2003) and (Brezzi, Marini and Russo, 2005).

In this work, we extend the idea above to the MS functions and propose a stable,

fully discrete, yet inexpensive numerical method for convection-diffusion problems on

rectangular grids. As we simply enrich the test space by bubble functions, to enrich the

trial space, we employ the MS functions in elements connected to the outflow boundaries

and the RFB functions in the rest of the domain. However, the numerical method proposed
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suggests to use suitable approximate counterparts of enriching functions. The significant

feature of it is that they retain the stabilizing feature of the exact ones. This can be

achieved by using a specially chosen sub-grid with a single internal node in the interior of

each element in the approximation of the RFBs, which are also known as pseudo residual-

free bubbles (PRFBs) and the associated method is denoted by PRFB (Neslitürk, 2010).

Regarding the MS functions, they only differ along element’s edges from the bubbles,

therefore the same strategy in the element’s interior is used. Along element’s edges, we

apply the same method reduced to 1D, which uses a single additional node per edge to

approximate the restriction of the MS function on the element’s edges. The resulting

algorithm , which is renamed as PMS, numerically performs well and the results are

comparable with previous ones found in the literature.

Since enriched methods are originally developed for the steady problem, their

adaptation to the unsteady case has some difficulties. Following papers can be given as

examples of this issue (Franca, Ramalho and Valentin, 2006), (Asensio, Ayuso and San-

galli, 2007) and (Frutos and Novo, 2008). One of our goals is to find a way that combines

the methods RFB, MS and MIX with generalized Euler time integration (θ method) for the

unsteady problem on a rectangular grid. In order to construct practical algorithm we have

enriched the bilinear trial function space with MS or/and RFB functions while the bilinear

test function space has been used without making an enrichment. Then enriched part of

the solution of the steady problem has been directly employed for the unsteady problem.

Since the enriching basis multiscale and bubble functions are obtained from steady equa-

tion, their shapes do not change at different time levels, which makes the method quite

cheap with utilizing the pseudo approximate forms of these functions instead of their ex-

act counterparts in the full discrete algorithm. The efficiency of the proposed algorithms

on the unsteady problem is investigated by the numerical experiments.

For the case of continuous piecewise linear elements, the RFB and the SUPG

methods have an identical structure (Brezzi, Marini and Russo, 1998). After choosing

the SUPG parameter δ by the relation of these methods, the combination of the SUPG

method in space and θ method in time for the unsteady convection diffusion equation

is studied. According to the coercivity estimate in (Bochev, Gunzburger and Shadid,

2004) such implicit algorithm can be considered as well posed regardless of the time

step size. Another important recent papers about SUPG type stabilization with θ method

are (Burman, 2010) for pure advection equation, (Burman and Smith, 2011) for advec-

tion diffusion equation and (Lube and Weiss, 1995), (Frutos, Garcia-Archilla and Novo,

2010), (John and Novo, 2011) for advection diffusion reaction equation. Using the fact
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that the approximation space consists of piecewise linear polynomials, we extend stability

and convergence analysis for the pure convection equation given in (Burman, 2010) to

the convection diffusion equation. For the time integration both two A-stable cases back-

ward Euler (θ = 0) and Crank-Nicolson (θ = 1/2) are considered and similar results in

(Burman, 2010) are obtained i.e. uniform stability of the general formulation is proved

under a regularity condition on the data and then quasi-optimal convergence is shown un-

der sufficiently smoothness condition of the exact solution. After proving the robustness

of the SUPG/θ method (for θ ∈ [0, 1/2]), we apply it to more general problems. The last

chapter provides an illustrating example.

Finally a chapter is devoted to mathematical models describing the transport phe-

nomena which is time dependent convection diffusion reaction equations. This kind of

equation with linear or nonlinear reaction term is one for which approximate solution

procedures persistently exhibit significant limitations for certain problems of physical

interest. The most interesting cases appear when convection is dominated. In such sit-

uations users are usually forced to choose either nonphysical oscillations or excessive

diffusion. Here we investigate another alternative: an operator splitting method widely

used to simulate models coming from environmental processes (Zlatev, 1995), (Geiser,

2008), (Levine, Pamuk, Sleeman and Hamilton, 2010), (Ewing, 2002) and (Frolkovič and

Geiser, 2000). In essence we split the transport equation into two unsteady subproblems.

The main advantage of splitting is that each subproblem can be discretized separately by

the convenient method independently from each other. In our splitting strategy the first

part becomes a first order nonlinear differential equation without space derivatives and the

second one becomes an unsteady linear convection diffusion equation. The first problem

can be solved exactly by using simple analytical techniques or numerically by appropriate

time integrator. However the second one is problematic when convection is dominated. In

this regime, the SUPG method for space discretization and θ-method for time discretiza-

tion are employed. Numerical results that illustrate the good performance of this method

for both one and two dimensional test problems are reported.
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CHAPTER 2

MOTIVATION WITH ONE DIMENSIONAL PROBLEMS

2.1. Steady Convection Diffusion Equation

In this section we study some stabilization techniques for the following linear

steady convection-diffusion equation.

Lu := −ε u ′′ + βu
′

= f in Ω = (0, 1) (2.1)

u = 0 on ∂Ω

where we assume the diffusion term ε is positive constant, the convection (advection)

term β > 0 and the right hand side function f are piecewise constant with respect to the

standard partition Th of Ω. Then the weak formulation of (2.1) can be written as:

Find u ∈ V := H1
0 (Ω) such that

a(u, v) = ε(u′, v′) + (βu′, v) = (f, v) ∀v ∈ V (2.2)

where a(., .) defines continuous and coercive bilinear form on

H1
0 (Ω) := {v ∈ L2(Ω) : v′ ∈ L2(Ω) and supp(v) ⊂ Ω}

and the notation (., .)D is used standard inner product on L2(D) .To simplify the notation

we drop subscript D from (., .)D in the case D = Ω. Under the conditions described

above, existence and uniqueness of the solution of (2.2) are guaranteed by Lax-Milgram

theorem (Raviart and Thomas, 1992).

In the following section we mention about the (standard) Galerkin and SUPG

approximations to the solution of the problem (2.1).
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2.1.1. The Galerkin and The SUPG Methods

We first consider the Galerkin approximation of the problem (2.2). Let VL ⊂ V

be a finite dimensional space of Lagrangian finite elements according to

VL := {vL ∈ H1
0 (Ω) : vL|K ∈ P1(K) ∀K ∈ Th}

where Th is the partitions of Ω into M elements with the interval size hi = xi − xi−1 for

i = 1, 2, ...,M.

It is known that

VL = span{ϕi}Mi=0 where ϕi(x) =


(

1 +
x− xi
hi

)
+

, x ≤ xi(
1− x− xi

hi+1

)
+

, x ≥ xi

(2.3)

then the Galerkin finite element problem reads: Find uL ∈ VL ⊂ H1
0 (Ω) such that

a(uL, vL) = (f, vL) ∀vL ∈ VL (2.4)

It is well known that the Galerkin method fails to provide a satisfactory approximation

for the convection diffusion equation when the convection term (β) dominates the diffu-

sion one (ε) (more concrete description of regimes will be given in the next sections). In

this case the Galerkin method produce non-physical oscillations that pollute the whole

computational domain. Because of this undesirable feature of the Galerkin method sev-

eral approaches have been proposed to cure this problem with in the framework of finite

element methods. Now we consider the most favorite one the SUPG method. In order to

construct the SUPG method to the problem (2.2) we introduce the space of test functions

WL defined by

WL := {wL : wL = vL + δβv′L and vL ∈ VL}
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where δ is stabilizing parameter and it is piecewise constant with respect to Th such that

δ|K = δK ∀K ∈ Th.

Then the approximation uh obtained by the SUPG method can be written as: Find uL ∈
VL such that

a(uL, vL) +
∑
K

δK(βu′L, βv
′
L)K = (f, vL) +

∑
K

δK(f, βv′L) (2.5)

Here the stabilizing parameter δ must be sellected in a suitable way. According to thumb-

rule arguments and a lot of numerical tests, several recipes have been proposed for the

choice of δ. Nevertheless the need for a suitable convincing argument to guide the choice

of δ is still considered as a major drawback of the method by several users. In recent

times, the SUPG method has been related to the process of addition and elimination of

suitable bubble functions ( Brezzi, Baiocchi and Franca, 1992), (Baiocchi, Brezzi and

Franca, 1993) than aroused considerable interest, although the problem of the optimal

choice of δ was simply translated into the problem of the optimal choice of the bubble

space.

2.1.2. The RFB Method and The SUPG Stabilization Parameter

One way to recover intrinsically the value of δK is to use the RFB approach

(Brooks and Hughes, 1982), (Franca and Russo, 1996) and (Neslitürk, 2006) that will

be recalled here. The idea is to enlarge the finite element space VL in the following way:

For each element K, we define the space of bubbles in K as

BK := H1
0 (K) (2.6)
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and enlarging space

VB := ⊕KBK . (2.7)

Then we solve the weak problem (2.2) on Vh = VL ⊕ VB. Now the Petrov-Galerkin

formulation on Vh is: Find uh ∈ Vh such that

a(uh, vh) = (f, vh) ∀vh ∈ Vh. (2.8)

Since vh ∈ Vh, it can be split into a linear part vL ∈ VL and into a bubble part vB ∈ VB in

a unique way:

vh = vL + vB (2.9)

and the bubble part itself can be uniquely split element by element :

vB =
∑
K

vB,K , vB,K ∈ BK . (2.10)

Then the variational problem (2.8) in Vh is equivalent to the following set of problems:

Find uL ∈ VL such that

a(uL + uB, vL) = (f, vL), ∀vL ∈ VL (2.11)

and

a(uL + uB,K , vB,K)K = (f, vB,K)K , ∀K ∈ Th and ∀vB,K ∈ BK . (2.12)
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Let’s consider (2.11), it can be written as

a(uL, vL) +
∑
K

a(uB,K , vL)K = (f, vL). (2.13)

The term
∑

K a(uB,K , vL)K represents the effect of the bubble part uB,K onto the linear

part uL. Observing that, for suitable u and v

a(u, v)K = (Lu, v)K = (u,L∗Kv)K (2.14)

where L∗K is the formal adjoint of L on K. Then the bubble part of (2.13) is represented

by

∑
K

a(uB,K , vL)K =
∑
K

(uB,K ,L∗KvL)K . (2.15)

Now consider (2.12) to determine uB,K in terms of uL.

a(uB,K , vB,K)K = (f − LuL, vB)K = (f − β u ′L, vB)K (2.16)

or using the differential form

LuB,K = f − β u ′L in K = (xk, xk+1) (2.17)

uB,K = 0 in ∂K.

For each uL ∈ VL the problem (2.17) has always a unique weak solution uB,K ∈ BK that

can be represented by

uB,K = MK(f − β u ′L) (2.18)
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where MK is the inverse of the operator defined by (2.17), it is also a bounded linear

operator from H−1(K) to BK = H1
0 (K). Substituting (2.18) into (2.13), we obtain:

a(uL, vL) +
∑
K

a(MK(f − β u ′L), vL)K = (f, vL) (2.19)

or using (2.14),

a(uL, vL) +
∑
K

(MK(f − β u ′L),L∗KvL)K = (f, vL) ∀vL ∈ VL. (2.20)

Since (f − βu′L) is constant on K ∈ Th,

a(uL, vL) +
∑
K

((f − β u ′L)(−β u ′L)(MK(1), 1) = (f, vL) ∀vL ∈ VL. (2.21)

Then

a(uL, vL) +
∑
K

δ̂K((β u
′

L − f), (β v
′

L))K = (f, vL) ∀vL ∈ VL (2.22)

where

δ̂K =
1

hK

∫
K

bK dx (2.23)

and bK ∈ H1
0 (K) is the solution of the boundary value problem (local bubble problem)

−ε b ′′K + βb
′

K = 1 in K (2.24)

bK = 0 on ∂K.
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Then (2.21) implies

a(uL, vL) +
∑
K

a(uL, βδ̂Kv
′

L)K = (f, vL) +
∑
K

(f, βδ̂Kv
′

L)K ∀vL ∈ VL. (2.25)

It can be seen that the SUPG scheme (2.5) and (2.25) have an identical structure. We only

need to obtain the approximate value of δ̂K . For this purpose we use the pseudo bubble

approximation (Brezzi, Marini and Russo, 1998).

The problem of finding the optimum value for δ̂K would be solved if we know

explicitly in each interval K and for any given value of ε and β|K , the exact solution

of problem (2.24) (or at least its integral on K). However in general this can not be

computable in an easy way. Now we will present a strategy to solve this problem, at least

in a reasonably good approximate way. The idea is to look for a solution of (2.24) having

the shape of a triangle with vertex in a point PK internal to K.

Figure 2.1. Basic Pseudo Bubble is presented in left side and in the right side approx-
imate solution of local bubble problem is presented.

The height of the triangle will be determined by solving the problem (2.24) in the

following way:

a(b̃K , bP )K = (1, bP )K . (2.26)

We look for αK such that

a(αKbP , bP )K = (1, bP )K .
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then

αK =

∫
K
bP dx

ε||b ′P ||K
=

hK/2

ε hK/η(hK − η)
=
η(hK − η)

2 ε
. (2.27)

On the other hand, to determine the optimum position of the point PK in K, we need to

minimize the following integral

J(PK) =

∫ xk+1

xk

∣∣∣∣−εb̃ ′′K + βb̃
′

K − 1

∣∣∣∣ dx. (2.28)

Note that b̃K being piecewise linear on K the term b̃
′′
K will have only distributional mean-

ing, so that the integral appearing in (2.28) has to be intended in the sense of measures.

It is obvious that

J(PK) ≤ ε

∫ xk+1

xk

|b̃ ′′K | dx+

∫ xk+1

xk

∣∣∣∣βb̃ ′K − 1

∣∣∣∣ dx
= ε

∫ xk+1

xk

|b̃ ′′K | dx+

∫ PK

xk

∣∣∣∣βb̃ ′K − 1

∣∣∣∣ dx+

∫ xk+1

PK

∣∣∣∣βb̃ ′K − 1

∣∣∣∣ dx. (2.29)

Firstly let us consider the integral

ε

∫ xk+1

xk

|b̃ ′′K | dx = εαK

∫ xk+1

xk

|b ′′P | dx. (2.30)

Assume ∂bP and ∂2bP are the first and second order derivatives of bP in a weak sense

such that they satisfies:

(∂bP , φ)K = −(bP ,
dφ

dx
)K ∀φ ∈ C∞0 (K) (2.31)

(∂2bP , φ)K = −(∂bP ,
dφ

dx
)K ∀φ ∈ C∞0 (K) (2.32)

where C∞0 (K) is the space of continuously infinitely many differentiable functions which
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has compact support included in K It is easy to see that

∂bP (x) =

{
1/h− η, x ∈ (xk, PK)

−1/η, x ∈ (PK , xk+1)
(2.33)

∂2bP (x) = (−1

η
− 1

hK − η
)δP (x) (2.34)

where δP denotes the dirac-delta notation such that

δP (x) =

{
∞, x = PK

0, x 6= PK
(2.35)

From functional analysis, we know that

∫ xk+1

xk

δP (x)dx = 1

and using (2.27) , we can easily compute the integral

εαk

∫ xk+1

xk

|b′′P |dx = ε
η(hK − η)

2ε

hK
η(hK − η)

=
hK
2
. (2.36)

Now minimizing (2.29) amounts to minimize

J̃(PK) =

∫ PK

xk

|J1|dx+

∫ xk+1

PK

|J2|dx (2.37)

where

J1 = βb̃|′(xk,PK) − 1 and J2 = βb̃|′(PK ,xk+1) − 1.
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On the other hand

∫ PK

xk

J1dx+

∫ xk+1

PK

J2dx = (
βαK
hK − η

− 1)(hK − η) + (−βαK
η
− 1)η = −hK < 0

implies ∫ xk+1

PK

J2dx < 0.

If we take

∫ PK

xk

J1dx ≤ 0 (2.38)

then

∫ PK

xk

|J1|dx+

∫ xk+1

PK

|J2|dx = (1− βαK
hK − η

)(hK − η) + (1 +
βαK
η

)η = hK . (2.39)

It is the minimum value of J̃(PK) since

hK = |
∫ PK

xk

J1dx+

∫ xk+1

PK

J2dx| ≤
∫ PK

xk

|J1|dx+

∫ xk+1

PK

|J2|dx = J̃(PK). (2.40)

Consequently from this analysis the upper bound of η can be found as in the following

way

∫ PK

xk

J1dx ≤ 0 ⇐⇒ (
βαK
hK − η

− 1)(hK − η) =
βη(hK − η)

2ε
− (hK − η) ≤ 0

⇐⇒ η ≤ 2ε

β
. (2.41)

The criteria (2.41) describes the position of the point PK i.e. for the convection dominated

regime η = 2ε/β and for the other case η = hK/2. More preciously, in order to satisfy

the continuity of the transition of the regimes we use the relation

ε =
βhK

4
. (2.42)
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Then the position of PK in the interval [xk, xk+1] can be given by the following rule

PK =


xk+1 −

2ε

β
, ε ≤ βhK

4

xk+1 −
hK
2
, ε ≥ βhK

4

(2.43)

Hence the SUPG parameter δ̂K can be computed such that

δ̂K =
1

hK

∫
K

bKdx ≈
1

hK

∫ xk+1

xk

b̃Kdx =
1

hK

αPhK
2

=
η(hK − η)

4ε
.

which implies

δ̂K =


hK
2β
− ε

β2
, ε ≤ βhK

4
h2
K

16ε
, ε ≥ βhK

4
.

(2.44)

2.1.3. Numerical Experiments

In this section we test the methods considered in previous sections for the steady

convection-diffusion equation to assess the performance of the stabilization method. These

tests show the effect of the stabilization coefficient computed with the pseudo residual free

bubble.

In our calculations we take a uniform partition of Ω into subintervals of length h = 1/M .

Firstly we will test our methods with following steady problem:

−εu′′ + βu′ = 1 in Ω := (0, 1) (2.45)

u(0) = u(1) = 0

In the Figs. 2.2 and 2.3 exact solutions u (red curves) and the Galerkin approximations

uL (blue doted curves) are compared. This figures shows that the Galerkin method gives
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Figure 2.2. The Galerkin approximation with ε = 1, β = 1 and M = 10 (left) and
ε = 10−3, β = 1 and M = 10 (right)

satisfactory results in diffusion dominated case. However in the convection dominated

case it fails to yield stable solutions unless the discretization step size is small enough.

Stabilized methods have been introduced in order to overcome this undesirable feature.

We shall deal here with the RFB and the SUPG methods.

In the Fig. 2.4 left side we present the refine -grid numerical solution uh (green

curve) , the coarse-grid numerical solution uL (blue curve) and the exact solution u (red

curve). Since we have obtained the SUPG parameter from bubble stabilization, coarse

grid numerical solution uL is identically same as the SUPG solution. According to these

figures stabilized methods give accurate results.

2.2. Time Dependent Convection Diffusion Equation

In this section we will consider the numerical solution of the given unsteady prob-

lem:

Ltu := ut + Lu = f in Ωt := (0, 1)× (0, T ]

u(0, t) = u(1, t) = 0 in [0, T ] (2.46)

u(x, 0) = u0(x) in Ω = (0, 1)
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Figure 2.3. The Galerkin approximation with ε = 10−3, β = 1 and M = 50.

where the elliptic operator L , which depends on space variable, is defined in previous

chapter. We assume f ∈ L2(Ω) for each t ∈ (0, T ] and u0 ∈ L2(Ω). Then the weak

formulation of (2.46) reads:

Find u ∈ L2(0, T ;V ) ∩ C0([0, T ];L2(Ω)) such that

d

dt
(u(t), v) + a(u(t), v) = (f(t), v) ∀v ∈ V (2.47)

u(0) = u0

It can be shown that, under the conditions given above the weak problem (2.47)

is well-posed. Following sections have been devoted to semi-discretization and full dis-

cretization of (2.46) by the SUPG method in space and by the θ method in time, respec-

tively.

2.2.1. Semi-Discrete Approximation by The SUPG Method

Firstly the standard Galerkin approximation for the problem (2.47) will be consid-

ered. Let VL ⊂ V be a finite dimensional space of Lagrangian finite elements as in (2.3).

Then the semi-discrete Galerkin finite element problem reads:
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Figure 2.4. The RFB method with ε = 10−3, β = 1 and M = 10 (left) and The
SUPG method with ε = 10−3, β = 1 and M = 10 (right)

For each t ∈ (0, T ] find uL(t) ∈ VL such that

d

dt
(uL(t), vL) + a(uL(t), vL) = (f(t), vL) ∀vL ∈ VL (2.48)

uL(0) is chosen as a suitable approximation of u0. SGFEM is also unsuitable for the

solution of transient advection-diffusion problems as well as the steady form so stabilizing

term must be added to the semi discrete algorithm (2.48). Then the semi-discrete problem

related to the SUPG method reads as follows:

For all t ∈ (0, T ] find uL(t) ∈ VL such that

d

dt
(uL(t), vL) +

∑
K

δK
d

dt
(uL(t), βv′L)K + a(uL(t), vL) +

∑
K

δK(βu′L(t), βv′L)K

= (f, vL) +
∑
K

δK(f, βv′L) ∀vL ∈ VL. (2.49)
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Here the stability parameter δK is determined by (2.44). We introduce the following

bilinear forms in order to simplify (2.49).

Z(
∂

∂t
uL, vL) =

d

dt
(uL(t), vL) +

∑
K

δK
d

dt
(uL(t), βv′L)K

G(uL, vL) = a(uL(t), vL) +
∑
K

δK(βu′L(t), βv′L)K

F (f, vL) = (f, vL) +
∑
K

δK(f, βv′L).

Then (2.49) reduces to

Z(
∂

∂t
uL, vL) +G(uL, vL) = F (f, vL) (2.50)

On the other hand numerical solution uL(x, t) can be written in the following form:

uL(x, t) =
M∑
i=0

αi(t)ϕi(x). (2.51)

where αi(t)’s are the coefficients of ϕ’s at the time level t ∈ (0, T ]. Also using the

boundary conditions α0(t) = αM(t) = 0 for all t ∈ (0, T ]. Combining (2.51) and (2.49),

we get the system of ordinary differential equation (ODE) such that

Zα̇(t) +Gα(t) = F (t) (2.52)

where α(t) = (α0(t), α1(t), ..., αM(t))t is unknown vector. The matrices Z and G are

generated in the usual manner from the bilinear forms Z(., .) and G(., .) respectively and

F is a vector whose components are L2 products of the source term and the model shape

functions ϕi. On the other hand initial condition α(0) = (α0(0), α1(0), ..., αM(0))t can

be taken as

αi(0) = u0(ih) for i = 0, ...,M. (2.53)
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2.2.2. Full Discretization by θ Method

The system of ODE (2.52) can be solved by suitable ODE solvers. In this work

we use θ-method which is also known as the generalized trapezoidal Euler rule.

In order to obtain full discretization, the time interval (0, T ) is subdivided into N

equal subintervals [tj, tj+1] with the length τ = tj+1 − tj for j = 0, ..., N − 1 . Using

the notations unL for linear approximation to uL(tn) (or uL(x, tn)). Then fully discrete

problem is linear system of algebraic equations:

(Z + (1− θ)τG)αn = F n−θ + (Z − θτG)αn−1 for n = 1, ..., N. (2.54)

where F n−θ = (1− θ)F (tn) + θF (tn−1), the initial condition is defined as

α(0) = α0 = (u0(0), u0(h), ..., u0(Mh))t for n = 0, ..., N − 1 (2.55)

and the unknown vector is

α(tn) = α(nτ) ≈ αn = (αn0 , α
n
1 , ..., α

n
M). (2.56)

Applying the boundary conditions, we obtain

αn0 = αnM = 0 for all n = 0, 1, ..., N. (2.57)

For θ = 1 the scheme (2.54) is the explicit Euler method, θ = 1/2 gives Crank-

Nicolson method and θ = 0 gives the implicit Euler rule. Having found the unknown

vectors αn approximate solution of (2.47) can be written as follows

u(x, tn) ≈ uL(x, tn) =
M∑
i=0

αni ϕi(x). (2.58)
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2.2.3. Numerical Experiments

In this section we present some numerical experiments for the time dependent

convection diffusion equation to assess the performance of the stabilization method in-

troduced this chapter. These tests indicate the effect of the stabilization term τ . In the

calculations we take uniform partition of Ω and of (0, T ) into M and N subintervals, re-

spectively. We also fix the following parameters in (2.46): ε = 10−3, β = 1, T = 3/5,

N = 100, f = 0 and u0(x) = sin(πx).
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Figure 2.5. Numerical simulation (left) and final time result (right) of the method
Galerkin disc. in space and θ = 1/2 disc. in time with M = 20.

In the Figs. 2.5, 2.6, 2.7, 2.8 and 2.9 approximate solutions uL of the problem

(2.46) are presented in all computational domain (left) and in final time T restriction.

Similarly to the steady case, the Galerkin method again fails to satisfy accurate solution

unless discretization step size is small enough (see Figs. 2.5 and 2.6). Contrary to the

Galerkin method in space, the SUPG method gives oscillation free approximation with

Crank Nicolson method (θ = 1/2) as in Fig. 2.7. We have also applied the Galerkin and

SUPG methods in Figs. 2.8 and 2.9, respectively with the forward Euler (θ = 1) method

in order to verify the accuracy of the method.
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Figure 2.6. Approximate solution (left) and its final time result (right) obtained by the
Galerkin in space and θ = 1/2 in time with M = 1000.
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Figure 2.7. Approximate solution (left) and its final time result (right) obtained by the
SUPG in space and θ = 1/2 disc. in time with M = 20.
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Figure 2.8. Approximate solution (left) and its final time result (right) obtained by the
Galerkin disc. in space and θ = 1 disc. in time with M = 20.
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Figure 2.9. Approximate solution (left) and its final time result (right) obtained by the
SUPG disc. in space and θ = 1 disc. in time with M = 20.
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CHAPTER 3

PSEUDO RESIDUAL FREE BUBBLES FOR

STABILIZATION OF THE STEADY EQUATION ON

TRIANGULAR GRID

Previous chapter contains the results that are representative of the body of dis-

cretization dealing with singular perturbed boundary value problems in one space vari-

able. We now move to two space dimensions, where one encounters technical problems

that are much more varied and challenging.

In this chapter we discuss the linear singularly perturbed boundary value problem

Lu := −ε4u+ β.∇u = f(x, y) in Ω := (0, 1)2 (3.1)

u(x, y) = 0 on ∂Ω

As usual the parameter ε positive constant and let Th = {K} be a regular decomposition

of Ω into triangles, hK be the diameter of the elementK and h = maxK∈T hK . We assume

also that the convection field β and the source term f are piecewise constants with respect

to decomposition Th.

Then the classical variational formulation of the problem (3.1): Find u ∈ H1
0 (Ω) such

that

a(u, v) := ε(∇u,∇v) + (β.∇u, v) = (f, v) forall v ∈ H1
0 (Ω) (3.2)

where a : H1
0 (Ω)×H1

0 (Ω)→ R defines a continuous and coercive bilinear form. Hence

the weak problem (3.2) is well-posed by Lax-Milgram theorem.
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3.1. Standard Galerkin Approximation

The Galerkin approximation of the problem (3.1) consists of taking a finite di-

mensional subspace Vh of H1
0 (Ω) and solving the variational problem (3.2) on Vh. In

this chapter, we choose the finite element space as space of continuous, piecewise linear

functions. More formally, this space can be represented by

VL = {v ∈ H1
0 (Ω) : v|K linear for all K ∈ Th} (3.3)

Then the standard Galerkin approximation of the problem (3.2) on VL reads:

Find uL ∈ VL such that

a(uL, vL) = (f, vL) forall vL ∈ VL. (3.4)

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 x
y 

U
h

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

 x

y 

U
h

Figure 3.1. The Galerkin Approximations for diffusion dominated (left) and convec-
tion dominated (right) problems.

It is well known that the exact solution of the problem (3.1) will have a boundary

layer at the outflow when ε << βh. In this case, the Galerkin finite element approxima-

tion (3.4) will typically fail showing strong oscillations near the boundary layer (see Fig.
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3.1-right) and stabilization is necessary.

3.2. Relation Between The RFB and The SUPG methods

The most classical and extensively used technique to stabilize (3.4) is to use the

SUPG method as follows: Find uL ∈ VL such that

a(uL, vL) +
∑
K∈Th

τK(β.∇uL, β.∇vL)K = (f, vL)

+
∑
K∈Th

τK(f, β.∇vL)K ∀ vL ∈ VL. (3.5)

Since β.∇uL and β.∇vL are constants in each element for the space of continuous piece-

wise linear elements, (3.5) implies

a(uL, vL) +
∑
K∈Th

τK(β.∇uL − f)(β.∇vL)|K| = (f, vL) forall vL ∈ VL. (3.6)

A way to recover the value of τK is to use the RFB approach (Brezzi and Russo, 1994) the

idea consists of enlarging the finite element space VL. For this method, in each element

K, the space of bubbles BK = H1
0 (K) and the enlarging space VB as VB =

⊕
K∈Th

BK are

constructed. Then we define

Vh = VL
⊕

VB. (3.7)

Thus any vh ∈ Vh can be split into a linear part vL ∈ VL and a bubble part vB ∈ VB in a

unique way:

vh = vL + vB ∈ Vh = VL
⊕

VB (3.8)
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and the bubble part itself can be uniquely split element by element

vB =
∑
K

vB,K , vB,K ∈ BK . (3.9)

The variational problem (3.2) in Vh can be given as follows:

Find uh = uL + uB ∈ VL
⊕

VB for all vL ∈ VL and vB,K ∈ BK such that

a(uL + uB, vL) = (f, vL) (3.10)

a(uL + uB,K , vB,K)K = (f, vB,K)K (3.11)

Solving (3.11) for uB,K we obtain the following expression for triangular element

uB,K = (f − LuL)MK(1) (3.12)

bK : = MK(1) (3.13)

where MK is the inverse operator of L. MK on L2(K) is defined such a way:

g := MK(f) ⇐⇒ Lg = f in K and g = 0 on ∂K. (3.14)

Then substituting uB,K into the first equation, it can be shown that the effect of the bubbles

which are chosen to be residual-free inside each K, can be identified with an additional

term that has an identical structure with the mesh-dependent term in the SUPG method.

Consequently the resulting scheme on VL reads: Find uL ∈ VL such that

a(uL, vL) +
∑
K∈Th

τ̂K(β.∇uL − f, β.∇vL)K = (f, vL) forall vL ∈ VL. (3.15)

27



where

τ̂K =
1

|K|

∫
K

bkdk. (3.16)

A priori error estimates for RFB method were proved for linear elements in (Brezzi,

Hughes, Marini, Russo and Süli, 1999) such that

If the solution belongs to Hs(Ω) for some s with 1 < s ≤ 2 then

ε|u− uRL |2H1(Ω) +
∑
K∈Th

hK ||β.∇(u− uRL)||2L2(Ω) ≤ C
∑
K∈Th

(εh2s−2
K + h2s−1

K )|u|2Hs(Ω)(3.17)

where uRL is the linear component of the RFB solution. See (Brezzi, Marini and Russo,

2000) and (Franca, Neslitürk and Stynes, 1998) for additional results.

3.3. The Pseudo Residual-Free Bubbles (PRFB)

To find the optimum value of τ̂K , we need to solve (3.13) explicitly or at least find

its integral on K. Although it couldn’t be evaluated in most cases, the reasonably good

approximate way, which is called pseudo residual free bubble (PRFB) approximation

(Neslitürk, 2006), (Brezzi, Marini and Russo, 2005), can be given. Now we are going to

summarize this strategy for linear triangular elements.

Figure 3.2. Bases of the Pseudo-bubbles for triangular element
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The idea is to look for a solution of (3.13) having the shape of pyramid with vertex

in a point P internal to K as in the Fig. 3.3.

The notation b̂K = αKbP is used for the approximate solution of (3.13) i.e.

bK ≈ b̂K = αKbP .

The height of the pyramides α can be determined by solving the local bubble problem

(3.13) in the Galerkin sense as follows

a(αKbP , bP )K = (1, bP )K . (3.18)

Then

αK =
(1, bP )K

ε(∇bP ,∇bP )K
=
|K|/3
ε
∑
i

|ei|2
4|Ki|

=
4|K|2

3ε
∑
i

|ei|2
wi

. (3.19)

where |ei| will denote the length of the edge ei, ni the outward unit normal to ei and wi =

|ei|ni. Now we only need to determine the exact position P . Without loss of generality,

the components of the convection field β = (β1, β2) are nonnegative. According to the

pseudo bubble strategy, the exact location of P is to be chosen on the line I (see Fig. 3.3)

in order to minimize the L1-norm of the residual equation.

J(P ) :=

∫
K

| − ε4b̂K + β∇b̂K − 1|dk (3.20)

Note that the single basis function of the bubble space BK being piecewise lin-

ear on K, the term 4b̂K will have only in distributional meaning, so that the integral

appearing in (3.20) has to be intended in the sense of measures.

If the problem is advection dominated in K the projection of the max point of b̂K
on xy-plane will be very close to outflow part of the boundary ∂K. Hence we choose the

stability point P in K such a strategy:
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Figure 3.3. Case of 2 inflow boundary edges (left) and two outflow boundary edges
(right).

For the inflow boundary is made of two edges:

P ∈ [G,M) ⊂ [V1,M ] and P →M whenever ε→ 0.

For the inflow boundary is made of single edge:

P ∈ [G, V1) ⊂ [V1,M ] and P → V1 whenever ε→ 0.

The set of points on the median (V1,M) can be described as a function depending on a

single parameter σ : P = (1− σ)V1 + σM where 0 < σ < 1 for details see (Neslitürk,

2006).

Hence the minimization of (3.20) gives the exact position of the subgrid point P

as following rules

Case 1:The inflow boundary is made of two edges of K

σ =

 σ∗1 := 1 + ε|e1|2
ε|e2−e3|2+ 4

3
|K|(β,w2)

, ε ≤ ε∗1 := −4|K|(β,w2)/3
3|e1|2+|e2−e3|2 ,

2
3

, otherwise.
(3.21)
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Case 2:The inflow boundary is made of one edge of K

σ =

{
σ∗2 := ε(|e2|2+|e3|2)

ε|e2−e3|2/2−|K|(β,w1)/3
, ε ≤ ε∗2 := −2|K|(β,w1)/3

|e1|2+|e2|2+|e3|2 ,

2
3

, otherwise.
(3.22)

Case 3:One edge of the triangle is parallel to β

From the error estimates point of view in (Brezzi, Marini and Russo, 2005) P can be

taken as the definition of point either in case1 or case2 if convection field is parallel to

any one edge of the triangle. The solution will has small changing but it is not important.

Under these definitions, the approximate solution of the local bubble problem

(3.13) can be explicitly described in order to obtain the numerical solution of (3.1).

Another possible way of choosing the position of P was suggested in the context

of Standard Galerkin method on such augmented grid (SGAG) strategy (see (Brezzi,

Marini and Russo, 2005)).

3.4. Numerical Results

In this section we examine the numerical methods presented here for two different

test problems. The nontrivial boundary condition described in Fig. 3.4 is used for both

two problems. The basic mesh is made 2*25*25 nonuniform triangles for linear elements.

Figure 3.4. Problem description on square domain
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1st Test Problem:

Test 1.a) −0.014u+ (1, 3).∇u = 0 in Ω := (0, 1)2

Test 1.b) −0.00014u+ (1, 3).∇u = 0 in Ω := (0, 1)2
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Figure 3.5. Galerkin (left) and PRFB solution (right) of Test(1.a) on triangular elements
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Figure 3.6. Galerkin (left) and PRFB solution (right) of Test 1.b on triangular elements

2nd Test Problem:

Test 2.a) −0.014u+ (2, 1).∇u = 0 in Ω := (0, 1)2

Test 2.b) −0.00014u+ (2, 1).∇u = 0 in Ω := (0, 1)2
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In the Figs. 3.5, 3.6, 3.7 and 3.8 we compare the standard Galerkin (left side) and the

PRFB method (right side) for all test problems considered here. As a result, PRFB method

is able to produce more stable results than the Galerkin method that validate the accuracy

of the PRFB algorithm.
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Figure 3.7. Galerkin (left) and PRFB solution (right) of Test 2.a on triangular elements
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Figure 3.8. Galerkin (left) and PRFB solution (right) of Test 2.b on triangular elements
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CHAPTER 4

PSEUDO MULTISCALE FUNCTIONS FOR THE

STABILIZATION OF THE STEADY EQUATION ON

RECTANGULAR GRIDS

In this chapter, we extend the idea of the pseudo bubble techniques to the multi-

scale functions and propose a stable, fully discrete, yet inexpensive numerical method for

convection-diffusion problems on rectangular grids.

4.1. Problem Description

Let Ω be a bounded open domain in R2 with polygonal boundary ∂Ω. We consider

the following linear advection-diffusion problem:

Lu := −ε4u+ β.∇u = f in Ω (4.1)

u = 0 on ∂Ω

where ε > 0 is a constant diffusion coefficient. Let Th be a standard partition of domain

into rectanglesK and h refers to the level of refinement of the discretization that is defined

by

h := max
K∈Th

hK

where hK is the diameter of K. As usual we assume that the source term f and the

convection field β = (β1, β2) are piecewise constants with respect to the decomposition

Th. Without loss of generality we take components of β are positive in each element K.

The outflow boundary is a part of ∂Ω defined by

∂Ωout := {(x, y) ∈ ∂Ω| β.n(x, y) > 0}
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where n is the outflow normal to boundary. We denote by Touth the set of elements in Th

that has at least one boundary contained by ∂Ωout.

Then associated weak formulation is to find u ∈ H1
0 (Ω) such that

a(u, v) := ε(∇u,∇v) + (β.∇u, v) = (f, v) ∀v ∈ H1
0 (Ω) (4.2)

Due to the coercivity of the bounded bilinear form a : H1
0 (Ω) × H1

0 (Ω) → R and the

Lax-Milgram theorem, the weak problem (4.2) is well-posed.

To introduce the Galerkin approach, we introduce the finite dimensional subspace

VL(Ω) of H1
0 (Ω) as

VL(Ω) = {v ∈ H1
0 (Ω) : v|K is a bilinear polynomial ∀K ∈ Th}

Then the classical Galerkin approach of (4.2) reads: Find uL ∈ VL ⊂ H1
0 (Ω) such that

a(uL, vL) = (f, vL) ∀vL ∈ VL (4.3)

Here uL is the bilinear approximation of u and it can be represented by the linear combi-

nation of standard nodal basis functions ψi with the coefficients ui.

It is well known that the Galerkin method inherits the stability of the continuous

problem and it yields to spurious oscillations when the advection coefficient is larger

than the diffusive one (ε << |β|h). Since we are interested in finding a finite element

discretization for (4.2) that is stable and coarse mesh accurate for all ε and β, we consider

a Petrov-Galerkin type stabilization so that we respectively enrich the trial and test spaces

as

Uh(Ω) : = VL(Ω)⊕ Eh(Ω) (4.4)

Wh(Ω) : = VL(Ω)⊕B(Ω). (4.5)
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Here B(Ω) is the bubble space defined by

B(Ω) := {v ∈ H1
0 (Ω) : v|K ∈ H1

0 (K) ∀K ∈ Th}

and we later define the enriching space Eh(Ω). Now the Pertrov-Galerkin problem (4.3)

reads: Find uh ∈ Uh(Ω) such that

a(uh, wh) = (f, wh) ∀wh ∈ Wh(Ω). (4.6)

Since typical member uh of Uh(Ω) can be split into a bilinear part uL ∈ VL(Ω) and a

enriching part ue ∈ Eh(Ω), solving (4.6) is equivalent to find uL ∈ VL(Ω) such that

a(uL + ue, vL) = (f, vL) ∀vL ∈ VL(Ω) (4.7)

where for all K ∈ TK , ue is the weak solution of the following residual equation:

Lue = f − LuL in K (4.8)

ue = µ on ∂K.

In order to evaluate ue uniquely, we need to choose a boundary condition. It is known

that for RFB method we set µ = µb := 0. In this case enriching space Eh(Ω) can be

represented direct sum of the two dimensional bubble spaces (Franca and Tobiska, 2002)

such that

Eh(Ω) = Bh(Ω) :=
⊕
K∈Th

Bh(K)

where Bh(K) = span{bK0 , bK2 } and bK0 , bK1 are the solutions of the following problems

{
LbK0 = 1 in K

bK0 = 0 on ∂K
and

{
LbK1 = β1(x− xK) + β2(y − yK) in K

bK1 = 0 on ∂K
(4.9)

where (xK , yK) is the barycenter of K. Then enriching part of the solution can be written
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as

ue = ub :=
∑
K∈Th

(αK0 b
K
0 + αK1 b

K
1 ) (4.10)

where

αK0 = (f − β.∇uL)(xK , yK) and αK1 = − ∂
2uL

∂x∂y
.

For the MS method we choose µ = µm that satisfies the following ordinary differ-

ential equation:

L∂Kµm = −L∂KuL on ∂K (4.11)

µm = 0 at the vertices of K

where

L∂Kv := −ε∂
2v

∂s2
+ P(β, s)

∂v

∂s

with s is a variable that parameterizes ∂K by arc-length and P(β, s) is the usual projection

of the convection field onto ∂K. In order to make the method more practical the boundary

condition in the original MS algorithm in (Franca, Ramalho and Valentin, 2005) was

modified as in (4.11) but numerical tests indicate that this difference is negligible.

Let I0 be the set of indexes of internal nodal points with respect to the discretiza-

tion of Ω then MS space can be given by

Eh(Ω) = Mh(Ω) := span{φi, φf}i∈I0

where φi and φf are enriching basis functions, defined by the following auxiliary problems

{
Lφi = −Lψi in K

φi = νi on ∂K
where

{
L∂Kνi = −L∂Kψi on ∂K

νi = 0 at the vertices of K
(4.12)
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and

φf =
∑
K∈Th

f |K bK0 (4.13)

Then enriching part of the solution can be written in terms of the global MS basses func-

tions

ue = um :=
∑
i∈I0

uiφi + φf (4.14)

It is reported in (Franca, Ramalho and Valentin, 2005) that the MS method capture layers

near the outflow boundary better than the RFB method does. On the other hand the RFB

method produces more accurate results than the MS one in some parts of the domain close

to the internal layer if mesh is not aligned with the advection field. Motivated by this

observation, the RFB-MS (MIX) algorithm was proposed by Franca et. al. in (Franca,

Ramalho and Valentin, 2005). This algorithm is based on the idea that the MS functions

are used in the elements connected to the outflow boundaries and the RFB functions are

used in the rest of the domain. According to MIX method we set the boundary condition

of the residual equation (4.8) µ = µbm such that

µbm =

{
µm , K ∈ Touth

µb , otherwise

In this case enriching part of the solution can be written as:

ue = ubm :=
∑

K∈Th/T
out
h

ub|K +
∑

K∈Tout
h

um|K . (4.15)

4.2. Computing the Enriching Functions

In order to obtain the enriching part of the solution ue, equations (4.9) and (4.12)

should be solved. This task is as difficult as solving the original problem that makes the

method impractical. So in this study we are just interested in obtaining cheap and efficient
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approximation of enriching bubble and MS functions.

We first consider the bubble equation in (4.9). Although Bh(K) spanned by two

bubble basis functions bK0 and bK1 in each element, considering only the dominant one

bK0 is sufficient to obtain stable results. We also use the PRFB approximation for bK0 as

illustrated in Fig. 4.1 -left (Neslitürk, 2010). Therefore the resulting method is called

PRFB.

The height of the pyramid can be determined by the formulation (3.19) and exact

location P is to be chosen on the line, whose end points are V1 and V3, in order to minimize

the integral (3.20). Without loss of generality, we assume components of the convection

field are nonnegative. Then the stability point P in K is choosen by the strategy

P ∈ [G, V3) ⊂ [V1, V3] and P → V3 whenever ε→ 0.

where G is the barycenter of the rectangle. Hence the minimization of (3.20) gives the

exact position of the subgrid point P as following rule. Let σ be a parameter that describes

P = (1− σ)V1 + σV3 then

σ =

 σ∗ := 1− 3εh2K
|K|(β,w2+w3)

, ε ≤ ε∗ := |K|(β,w2+w3)

6h2K
,

1
2

, otherwise.
(4.16)

where wi = |zi|ni with |zi| and ni denotes the length of zi and the outward unit normal to

zi, respectively.

We secondly consider the pseudo multiscale (PMS) approximation for the MS ba-

sis functions φi. Without loss of generality, we may consider typical element K whose

lower-left vertex is located at the origin and (hx, hy) is the ith inner node in the discretiza-

tion as in Fig. 4.1 -right. We only display the computation of φi in K, as the other

enriched functions can be found in a similar way.

The problem (4.12) can be written in terms of the enriched basis function λi :=

φi + ψi:

{
Lλi = 0 in K

λi = θi on ∂K
where

{
L∂Kθi = 0 on ∂K

θi = ψi at the vertices of K.
(4.17)
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Figure 4.1. Approximation of the bubble bases function bK0 (left) and typical element
K (right)

Since λi and its restriction to ∂K satisfies (4.17), its solution can be written as

λi(x, y) = λxi (x)λyi (y) where λxi (x) := θi|z1 and λyi (y) := θi|z4 (4.18)

and the single variable functions λxi and λyi satisfy

L∂K |z1λxi = −εd
2λxi
dx2

+ β1
dλxi
dx

= 0 in (0, hx) (4.19)

λxi (0) = 0 and λxi (hx) = 1

L∂K |z4λ
y
i = −εd

2λyi
dy2

+ β2
dλyi
dy

= 0 in (0, hy) (4.20)

λyi (0) = 0 and λyi (hy) = 1.

Enriched functions λxi and λyi can be brought to the form of bubble functions before we

suggest a suitable subgrid. That is, they should vanish at the boundary of domain where

the equations are posed, without upsetting the nature of the differential operator. To bring

that end, let us define two auxiliary functions αxi and αyi by

αxi := λxi − ψxi and αyi := λyi − ψ
y
i . (4.21)
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where ψxi (x) := ψi(x, 0) and ψyi (y) := ψi(0, y).

Then from (4.19)-(4.21), following equations are satisfied

 −ε
d2αxi
dx2

+ β1
dαxi
dx

=
β1

hx
in (0, hx)

αxi (0) = αxi (hx) = 0
and

 −ε
d2αyi
dy2

+ β2
dαyi
dy

=
β2

hy
in (0, hy)

αyi (0) = αyi (hy) = 0.

(4.22)

We now can add specially chosen internal nodes into the domains (0, hx) and (0, hy), on

which we approximate αxi and αyi so that the resulting approximations, say α̃xi and α̃yi
retain stabilizing features of αxi and αyi . The location of the additional node is crucial for

the stabilization and its choice depending on different configurations can be found in the

literature (Brezzi, Hauke, Marini and Sangalli, 2003) and (Neslitürk, 2006). Here we use

the formulation (2.43) for the position of this additional critical node. A straightforward

application of the asserted approach to the problem (4.22) results in

α̃xi (x) =


β1(hx − P )x

2hxε
, x ≤ P

β1P (hx − x)

2hxε
, x > P

where P =

{
hx − 2ε/β1, ε ≤ β1hx/4

hx/2, otherwise.
(4.23)

α̃yi (y) is similarly obtained by replacing x by y, hx by hy and β1 by β2 in (4.23). Thus

approximate enriching basis function φ̃i can be written as

φ̃i(x, y) = λ̃i(x, y)− ψi(x, y) = λ̃xi (x)λ̃yi (y)− ψi(x, y)

=

(
α̃xi (x)− ψxi (x)

)(
α̃yi (y)− ψyi (y)

)
− ψi(x, y)

= α̃xi (x)α̃yi (y)− α̃xi (x)ψyi (y)− α̃yi (y)ψxi (x). (4.24)

A comparison of φi and its approximate counterpart φ̃i are displayed on a patch of four

rectangular elements in the Figs. 4.2-4.3 for decreasing values of ε. It is remarkable that

although a few additional nodes are used in each element, the results are very compara-

ble with the exact solution. Therefore, it is quite reasonable to employ the approximate

enriching functions φ̃i in place of φi. Hence PMS is used for the resulting algorithm.
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Figure 4.2. φi(left) and φ̃i(right) for ε = 0.1, β = (1, 2) and hx = hy = 0.05
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Figure 4.3. φi(left) and φ̃i(right) for ε = 0.001, β = (1, 2) and hx = hy = 0.05

4.3. Numerical Results

Experiment 1: We examine the numerical method presented here on a bench-

mark problem posed on the unit square, subject to the nontrivial boundary conditions as

depicted in Fig. 4.4. The basic mesh is made up of 20 × 20 rectangles, whose edges

are parallel to the coordinate axes. The only exception is in Fig. 4.5-right, in which we

use 20 × 10 rectangular elements. We test the method for high Peclet numbers, that is

ε = 10−6, and three different convection fields: β = (1, 2), β = (1, 1) and β = (2, 1).

Since the basis functions in both the MS and the PMS method are comparable (see Figs.

4.2 and 4.3), they produce almost the same results. Therefore we only display the numer-

ical results obtained by the PMS method due to its little cost.

Case 1. f = 0: On non-aligned meshes, we observe that the PMS method produces
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Figure 4.4. Problem description on square domain

accurate results at the outflow boundaries, yet it does not well capture internal layers

(Fig. 4.5-left), in which case, numerical solution presents oscillations in some parts of the

domain close to the internal layer. We now apply the MIX strategy, yet, the approximate

counterparts of the MS and RFB functions are used. The resulting numerical method will

be denoted by PMIX. In order to display the performance of our method, we compare

it with the PRFB method on the uniform mesh in Figs. 4.6,4.7 and 4.8 and nonuniform

mesh in Fig. 4.9. It is obvious that the proposed algorithms improves over the PRFB

method.
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Figure 4.5. PMS approximations on nonaligned (left) and aligned (right) uniform rect-
angular mesh with β = (1, 2).

Case 2. f = 1: In this part, we report some results for convection diffusion problem with
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Figure 4.6. PRFB (left) and PMIX (right) approximations with β = (1, 2).
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Figure 4.7. PRFB (left) and PMIX (right) approximations with β = (1, 1).

nonzero source term. For this case φf satisfies

Lφf = 1 in K (4.25)

φf = 0 on ∂K

By using (4.13), we see φf |K = bK0 . Since bK0 is a bubble function, the PRFB method on

rectangular elements can be applied to (4.25). Thus, we employ the approximation of φf
instead of φf in the MIX algorithm. In Figs. 4.10 and 4.11 we again compare the PRFB

and PMIX methods for f = 1 and the convection fields β = (1, 1) and β = (2, 1). As

predicted, the PMIX method performs better than the PRFB in each cases.
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Figure 4.8. PRFB (left) and PMIX (right) approximations with β = (2, 1).
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Figure 4.9. PRFB (left) and PMIX (right) approximations on nonuniform mesh with
β = (2, 1).

Experiment 2: We now test the proposed algorithm for non-constant flow field

on L-shape domain with boundary conditions depicted in Fig. 4.12(left). We take β =

(y, 1 − x), ε = 0.005 and f = 0. Exact solution of the problem exhibits boundary layers

near the outflow boundaries which are upper side, right-upper side and below the corner of

the domain (Brezzi, Marini and Russo, 1998). We discretize the domain into 300 uniform

rectangular elements (Fig. 4.12(right)). In computations, we use the average value of the

flow field over the whole element, that is,

β̄i|K =
1

|K|

∫∫
K

βi dx dy for i = 1, 2.
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Figure 4.10. PRFB (left) and PMIX (right) approximations with β = (1, 1) and f = 1.
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Figure 4.11. PRFB (left) and PMIX (right) approximations with β = (2, 1) and f = 1.

We apply the same approach used in Experiment 1 and observe that PMIX method is

still able to produce better approximations than the PRFB for more complicated problem

configurations (Fig. 4.13).
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Figure 4.13. PRFB (left) and PRFB-PMS (right) approximations on L-shape domain..
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CHAPTER 5

BUBBLE AND MULTISCALE STABILIZATION FOR

UNSTEADY EQUATIONS ON RECTANGULAR GRIDS

Here we consider the approximation technics based on enriched methods which

consist of the Galerkin method with enhanced approximation spaces then applied the

simple time integration to the resulting semidiscrete formulation. In this chapter we also

discuss how the stabilized finite element methods RFB, MS and MIX designed for steady

problem could be properly combined with generalized Euler time integration for the nu-

merical solution of the unsteady advection diffusion equation.

5.1. Problem Description

In this part we consider the following initial boundary value problem:

Ltu := ut + Lu = f in Ωt := Ω× (0,T) (5.1)

u = 0 on ∂Ω× [0, T ] , u(., 0) = u0(.) in Ω

where L is taken as previous section, u0 ∈ L2(Ω) is an initial datum and right hand side

function f(., t) (or f(t)) is chosen from L2(Ω) for each t ∈ [0, T ] .

Then the weak formulation associated with (5.1) reads: For all t ∈ (0, T ] find

u(t) ∈ H1
0 (Ω), u(0) = u(., 0) satisfying

d

dt
(u(t), v) + a(u(t), v) = (f(t), v) ∀v ∈ H1

0 (Ω). (5.2)

We first discretize the space variable in order to construct an approximation to (5.1). This

process leads to a system of ODE whose solution uh(t) is an approximation of the exact

solution u at t ∈ [0, T ].

Then semi discrete Petrov-Galerkin approximation of (5.1) can be given by: For
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all t ∈ (0, T ], find uh(t) ∈ Uh such that

d

dt
(uh(t), vL) + a(uh(t), vL) = (f(t), vL) ∀vL ∈ VL(Ω). (5.3)

In order to simplify algorithm we only enrich the trial space as in (4.4) for each t ∈ (0, T ].

However, test space will be taken as Wh = VL instead of (4.5) and enriched part of the

solution of steady equation will be adapted for unsteady case by the following recipe.

• RFB method: ue(t) = ub(t) :=
∑
K∈Th

(f(t)− LuL(t))|(xK ,yK)b
K
0 .

• MS method: ue(t) = um(t) :=
∑
i∈I0

ui(t)φi + φf (t).

• MIX method: ue(t) = ubm(t) :=
∑

K∈Th/T
out
h

ub(t)|K +
∑

K∈Tout
h

ue(t)|K .

Here

φf (t) =
∑
K∈Th

f(t)|KbK0

and ui(t) is the unknown coefficients of the uL(t), more formally,

uL(t) =
∑
i∈I0

ui(t)ψi(x, y).

In order to obtain full discretization of (5.1) we take a uniform subintervals for the

time variable with

tn = nτ, n = 0, .., N

where τ is the time-step and N = T/τ .

Next we replace the time derivative with θ method in (5.3) therefore we obtain the fol-

lowing problem:

Given u0
h as some suitable approximation of u(0), for n ≥ 1, find unh ∈ Uh s.t.

(
unh − un−1

h

τ
, vL

)
+a(un−θh , vL) = (fn−θ, vL) ∀vL ∈ VL (5.4)

where un−θh = θun−1
h + (1− θ)unh. For θ = 0, θ = 1/2, and θ = 1 we have the Backward
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Euler, Crank-Nicolson and Forward Euler Method, respectively.

Since unh = unL + une , full discrete algorithm (5.4) can be given by:

For all t ∈ (0, T ], find uL(t) ∈ VL such that

(
unL − un−1

L

τ
, vL

)
+

(
une − un−1

e

τ
, vL

)
+ a(un−θL , vL) + a(un−θe , vL) = (fn−θ, vL) ∀vL ∈ VL. (5.5)

Here une denotes the discrete version of the enriched function ue(t), more precisely,

• RFB method: une = unb :=
∑
K∈Th

(fn − LunL)|(xK ,yK)b
K
0

• MS method: une = unm :=
∑
i∈I0

uni φi + φnf

• MIX method: une = unbm :=
∑

K∈Th/T
out
h

unb |K +
∑

K∈Tout
h

une |K

Since the enriching basis functions φi and bK0 are obtained from the steady equation, their

shape do not change at different time levels. Therefore, we employ the approximate forms

φ̃i and b̃K0 instead of their exact forms in the full discrete formulation (5.5).

5.2. Numerical Experiments and Conclusion

We illustrate the accuracy of the method by different two test problems on Ω =

(0, 1)2 with uniform 20*20 rectangular discretization. For all numerical simulations, ε =

10−6 and τ = 0.0025 are used.
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Figure 5.1. Initial condition (left), its counter plot (center) and Galerkin solution at
T = 1/4 (right).

For the first test problem, we chose f = 0, β = (1, 1), θ = 0 with L-shape dis-

crete type initial condition (see Fig. 5.1-left and center). The instable result for standard

Glaerkin solution at T = 1/8 has been shown in Fig. 5.1 (right). We also compared the

enriching finite element methods RFB, MS and MIX algorithms in Figs. 5.2 and 5.3 at

the final time T = 1/8 and T = 1/4, respectively. It is known that the MS method cap-

tures the outflow layer and the RFB methods capture the internal layer well for the steady

problems. In these figures, similar results can be seen for unsteady problems that verify

the accuracy of the MIX algorithm.

In the second test problem, we examine the enriching methods with the problem

parameters f = 1, β = (1, 1/2), T = 1/2 and homogeneous initial condition. We

again compared the RFB, MS and MIX method in Figs. 5.4 and 5.5 for backward Euler

(θ = 0) and Crank-Nicholson (θ = 0.5) time discretization, respectively. Both cases MIX

algorithm shows more stable behaviors. As a result, numerical simulations indicate that

MIX algorithm combined with the implicit Euler time integration can be considered a

reliable and accurate method for unsteady convection diffusion problems.
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Figure 5.2. Results for RFB (left), MS (center) and MIX (right) methods at T = 1/8.

0

0.5

1 0

0.5

1

0

0.5

1

y

x

0

0.5

1 0

0.5

1

0

0.5

1

y

x

0

0.5

1 0

0.5

1

0

0.5

1

y

x

RFB

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
MS

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
MIX

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 5.3. Results for RFB (left), MS (center) and MIX (right) methods at T = 1/4.
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Figure 5.4. Results obtained by RFB (left), MS (center) and MIX (right) algorithms
for θ = 0.
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Figure 5.5. Results obtained by RFB (left), MS (center) and MIX (right) algorithms at
θ = 1/2.
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CHAPTER 6

STABILITY AND CONVERGENCE ANALYSIS OF THE

SUPG/θ METHOD FOR THE UNSTEADY PROBLEM

In this chapter we consider the time/space discretization of the transient advection-

diffusion equation and apply Burman’s analysis in (Burman, 2010) to this equation un-

der the restriction that approximation space consists of piecewise linear polynomials.

Discretization in space is performed by the streamline upwind Petrov-Galerkin (SUPG)

method and in time we use the generalized Euler rule (θ-method). Two A-stable cases

backward Euler (θ = 0) and Crank-Nicolson (θ = 1/2) are considered.

6.1. Problem Setting

Let Ω be a bounded open domain in Rd(d = 1, 2, 3) with Lipschitz continuous

boundary ∂Ω. We consider the following initial boundary value problem:

Ltu := ut + Lu = f in Ωt := Ω× (0,T)

u = 0 on ∂Ω× [0,T] (6.1)

u(., 0) = u0(.) in Ω

where L is the second order differential operator defined by

Lv := −ε4v + β.∇v.

Here ε > 0 is a constant diffusion coefficient, β ∈ [L∞(Ω)]d is solenoidal convection

field (∇.β = 0) which is constant in time, f is given source function assuming that it is

function of bounded variation in time i.e. f ∈ BV 0(0, T ;L2(Ω)), and u0 ∈ L2(Ω) is an
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initial datum, with u0|∂Ω = 0. We also assume that variation of field is bounded such that

∃Cβ∗ , Cβ∗ ∈ R+ with Cβ∗ sup
x∈Ω
|β| ≤ β ≤ Cβ∗ sup

x∈Ω
|β| (6.2)

where β denote the average of |β| over Ω.

As usual we use the notation Hm(D) for the Hilbertian Sobolev space of order m

on an open set D ⊆ Ω. Then the norm and semi norm of Hm(D) are denoted by ||.||m,D
and |.|m,D ,respectively. To simplify the notation, we drop the subscript m in the case

m = 0 and D in the case D = Ω. In particular we denote the inner product by (., .) and

the norm by ||.|| in L2(Ω).

Then the weak formulation of (6.1): For all t ∈ (0, T ] find u(t) ∈ V 0 := H1
0 (Ω) ,

u(0) = u(., 0) satisfying

(∂tu, v) + ε(∇u,∇v) + (β∇u, v) = (f, v) ∀v ∈ V 0. (6.3)

Under the conditions described above, existence and uniqueness of the solution of (6.3)

are guaranteed (Raviart and Thomas, 1992).

6.2. Semi-Discrete Approximation by SUPG Method

We first discretize the space variable in order to construct an approximation to

(6.1). This process leads to a system of ordinary differential equations whose solution

uh(t) is an approximation of the exact solution for all t in [0, T ]. Let Th be a standard

partition of Ω into triangles K, we introduce mesh diameter

h := max
K∈Th

hK , with hK := max
F∈F(K)

hF

where hF the diameter of the face F and F(K) denotes the set of faces such that F ∈
∂K. We choose a finite dimensional subspace V 0

h of H1
0 (Ω) that is space of continuous
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piecewise affine polynomials and vanish on ∂Ω:

V 0
h := {vh ∈ C(Ω) : vh|K ∈ P1(K) ∀ K ∈ Th and vh|∂Ω = 0}.

Then the classical Galerkin approach can be given by solving the variational problem (6.3)

on discrete space V 0
h instead of V 0. Due to the instable results for the Galerkin method on

coarse mesh, we consider the most popular stabilized method SUPG. In order to obtain

SUPG approximation we replace the the trial space V 0 by V 0
h and the test space V 0 by

Wh defined by

Wh := {wh(vh) = vh + δβ.∇vh : vh ∈ V 0
h }.

We assume that stabilization parameter δ is constant in space and time. We choose it as

δ =


µh

β
, Pe :=

βh

ε
> 1

0, P e ≤ 1.

Here µ ∈ R+ so that

µ <
1

2
min

{
β

ci||β||∞
,

1

c2
i

}
where ci satisfies the following inverse inequality for all K ∈ Th and vh ∈ V 0

h ,

||∇vh||K ≤
ci
hK
||vh||K . (6.4)

It is important to note that we only consider the convection dominated case (Pe > 1),

analysis for other case is similar to the analysis for standard parabolic problems (Thomee,

2006).

Then the SUPG approximation of (6.1) can be given by: For all t ∈ (0, T ], find

uh(t) ∈ V 0
h such that

(∂tuh, wh) +
∑
K∈Th

(−ε4uh, wh)K + (β∇uh, wh) = F (wh) ∀wh ∈ Wh,

56



with F (w) := (f, w) or equivalently;

(∂tuh, wh(vh)) + a(uh, vh) = F (wh(vh)) ∀vh ∈ V 0
h , (6.5)

where

a(u, v) := ε(∇u,∇v)−
∑
K∈Th

(ε4u, δβ∇v)K + (β∇u, v + δβ∇v) (6.6)

and uh(0) ∈ V 0
h is a suitable approximation of u(0), to be specified. Since we restrict

ourselves to the piecewise affine polynomials, the summation term in (6.6) will be 0.

The formulation (6.5) is consistent in the sense that the time derivative is included in the

stabilization term i.e.

(∂t(uh − u), wh(vh)) + a(uh − u, vh) = 0 forall vh ∈ V 0
h .

Before considering the full discrete formulation, we state the Young’s lemma (Thomee,

2006).

Lemma 6.1 (Young’s Inequality) Let a, b ∈ R. Then ∀κ ∈ R+

a.b ≤ κ

2
a2 +

1

2κ
b2, (6.7)

and

(a+ b)2 ≤ (1 + κ)a2 + (1 +
1

κ
)b2. (6.8)
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6.3. Full Discretization by θ Method

In order to obtain full discretization of (6.1) we take a uniform subintervals for the

time variable with

tn = nτ, n = 0, .., N

Here τ is the time-step and N = T/τ . Next we replace the time derivative with suitable

difference quotients in (6.5) therefore we construct a sequence unh(x) which is the approx-

imation of u(tn, x). For simplicity we restrict ourselves to the one step scheme θ method

(Quarteroni and Valli, 1996). Applying this method to the equation (6.5), we obtain the

following problem:

Given u0
h as some suitable approximation of u(0), for n ≥ 1, find unh ∈ V 0

h s.t.

(∂τu
n
h, wh(vh)) + a(un−θh , vh) = F n−θ(wh(vh)) ∀vh ∈ V 0

h . (6.9)

Here

∂τu
n
h =

unh − un−1
h

τ
, un−θh = θun−1

h + (1− θ)unh

and

F n−θ(wh) := (f(tn−θ), wh) = (f(θtn−1 + (1− θ)tn), wh).

For θ = 0, θ = 1/2, and θ = 1 we have the Backward Euler, Crank-Nicolson and

Forward Euler Method, respectively. We will now state a property valid for all cases.

Lemma 6.2 Let s(., .) be a symmetric positive semi-definite bilinear form. Then there

holds,

2τs(un−θh , ∂τu
n
h) = ||unh||2s − ||un−1

h ||2s + (1− 2θ)||unh − un−1
h ||2s, (6.10)

and for θ ∈ [0, 1/2]

||unh||2s ≤ 2τ
n∑

m=1

s(um−θh , ∂τu
m
h ) + ||u0

h||2s ∀n ≥ 1. (6.11)

Here notation ||.||s used for semi-norm defined by s(., .).
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Proof (6.10) can be obtained by the following expression

2τs(un−θh , ∂τu
n
h) = s(unh + un−1

h + (1− 2θ)(unh − un−1
h ), unh − un−1

h )

= s(unh, u
n
h)− s(un−1

h , un−1
h ) + (1− 2θ)s(unh − un−1

h , unh − un−1
h ).

Since (1− 2θ) is nonnegative for θ ∈ [0, 1/2], (6.11) is an open result of (6.10). �

Now we introduce the following semi-norm on V 0
h

|||vnh |||2 := δ||∂τvnh + β.∇vn−θh ||2 + ε||∇vn−θh ||2

and the norm on V 0
h

||vnh ||2δ := ||vh||2 + δ2||β.∇vh||2 + εδ||∇vh||2.

In the rest of this work,the symbol . referring an inequality up to a multiplicative con-

stant, that is independent of the discretization parameters h, τ and problem parameters

β, ε and T , on the other hand it depends on the domain, mesh geometry or θ. Under these

definitions some useful inequalities can be given by a lemma.

Lemma 6.3 For any vh ∈ V 0
h , following norm equivalence holds

||wh(vh)|| ≤
√

2||vh||δ . ||vh|| ≤ ||vh||δ. (6.12)

and the linear form F n−θ(wh(vh)) satisfies the upper bound

|F n−θ(wh(vh))| ≤
√

2||f(tn−θ)||.||vh||δ. (6.13)

Proof The first inequality in (6.12) can be obtained from triangular and Young’s in-

equalities, second one follows from (6.2) and inverse inequality (6.4) and we get easily

third one by the definition of ||.||δ .

Other part of the proof can be done by the definition of F n−θ, Cauchy-Schwarz inequality
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and (6.12) such that

|F n−θ(wh(vh))| = |(f(tn−θ), wh(vh))| ≤ ||f(tn−θ)||.||wh(vh)|| ≤
√

2||f(tn−θ)||.||vh||δ.

�

6.4. Stability Estimates

Before giving the main stability results that holds for the formulation (6.9), we

state the discrete Gronwall lemma.

Lemma 6.4 (Discrete Gronwall Lemma) Let {k,B}∪ {am, bm, cm, dm}∞m=0 ⊂ R+
0 and

kdm < 1 for all m ≥ 0, such that

an + k
n∑

m=0

bm ≤ k
n∑

m=0

(dmam + cm) +B for n ≥ 0.

Then

an + k
n∑

m=0

bm ≤ exp

(
k

n∑
m=0

dm
1− kdm

)[
k

n∑
m=0

cm +B

]
for n ≥ 0.

For the proof of this lemma see (Heywood and Rannacher, 1990).

Theorem 6.1 Let {unh}Nn=0 be the solution of the scheme (6.9) with θ ∈ [0, 1
2
] then at every

time level 1 ≤ n ≤ N there holds

||unh||2δ + τ

n∑
m=1

|||umh |||2 . tnτ

n∑
m=1

||f(tm−θ)||2 + tnτ
n∑

m=1

δ2||∂τf(tm−θ)||2

+δ2 sup
t∈(0,tn]

||f(t)||2 + ||u0
h||2δ (6.14)
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or if f ∈ C0(0, T ;L2(Ω)) only, then

||unh||2δ + τ
n∑

m=1

|||umh |||2 . τ

n∑
m=1

tn
(

1 +
δ

τ

)2

||f(tm−θ)||2 + ||u0
h||2δ (6.15)

Proof First take vh = um−θh in (6.9) to obtain

(∂τu
m
h , u

m−θ
h ) + (∂τu

m
h , δβ.∇um−θh ) + ε||∇um−θh ||2 + δ||β.∇um−θh ||2

= Fm−θ(wh(u
m−θ
h )). (6.16)

Now take vh = δ∂τu
m
h in (6.9) to obtain

δ||∂τumh ||2 + (∂τu
m
h , δ

2β.∇∂τumh ) + ε(∇um−θh , δ∇∂τumh ) + (β.∇um−θh , δ∂τu
m
h )

+ (β.∇um−θh , δ2β.∇∂τumh ) = Fm−θ(wh(δ∂τu
m
h )) (6.17)

Consider the summation

(∂τu
m
h , δβ.∇um−θh ) + δ||β.∇um−θh ||2 + δ||∂τumh ||2 + (β.∇um−θh , δ∂τu

m
h )

= δ||∂τumh + β.∇um−θh ||2. (6.18)

This trick in (Burman, 2010) shows that the combination of the functions um−θh and

δ∂τu
m
h positively contributes in the estimate from the term

(∂τu
m
h , δβ.∇um−θh ).

Then if we take vh = um−θh + δ∂τu
m
h in (6.9) with (6.18) and product both side by τ , we

obtain

τ(∂τu
m
h , u

m−θ
h ) + τ |||umh |||2 + τε(∇um−θh , δ∇∂τumh ) + τ(β.∇um−θh , δ2β∇∂τumh )

= τFm−θ(wh(u
m−θ
h + δ∂τu

m
h )). (6.19)
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Now sum over m = 1, ..., n and use the inequality (6.11),

1

2
[||unh||2 − ||u0

h||2] − δ2

2
[||β.∇unh||2 − ||β.∇u0

h||2] +
εδ

2
[||∇unh||2 − ||∇u0

h||2]

−
n∑

m=1

τ |||umh |||2 ≤ τ

n∑
m=1

Fm−θ(wh(u
m−θ
h + δ∂τu

m
h )). (6.20)

Using the definition of ||.||δ, we obtain

||unh||2δ − ||u0
h||2δ + 2τ

n∑
m=1

|||umh |||2 ≤ 2τ |
n∑

m=1

Fm−θ(wh(u
m−θ
h + δ∂τu

m
h ))|. (6.21)

It follows that

||unh||2δ + 2τ
n∑

m=1

|||unh|||2 . 2τ |
n∑

m=1

Fm−θ(wh(u
m−θ
h + δ∂τu

m
h ))|+ ||u0

h||2δ . (6.22)

Observe that by using the definition of Fm−θ(.) and that of wh(.) and by a summation by

parts we may write

τ
n∑

m=1

Fm−θ(wh(u
m−θ
h + δ∂τu

m
h ))

= τ

n∑
m=1

(
(f(tm−θ), um−θh + δβ.∇um−θh ) + (δf(tm−θ), ∂τu

m
h + δβ.∇∂τumh )

)
= τ

n∑
m=1

(f(tm−θ), um−θh + δβ.∇um−θh )︸ ︷︷ ︸
I

+ (δf(tn−θ), unh + δβ∇unh)︸ ︷︷ ︸
II

− (δf(t1−θ), u0
h + δβ∇u0

h)︸ ︷︷ ︸
III

−τ
n∑

m=2

(δ∂τf(tm−θ), um−1
h + δβ∇um−1

h )︸ ︷︷ ︸
IV

. (6.23)

Using the Cauchy-Schwarz and Young’s inequality with κI = stn/2, κII = 1/4, κIII =

1/2 and κIV = stn/2 for the I, II, III and IV terms in (6.23) respectively where s > 0 will
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be specified later.

τ

n∑
m=1

|Fm−θ(wh(u
m−θ
h + δ∂τu

m
h ))|

≤ τ
n∑

m=1

(
stn

4
||f(tm−θ)||2 +

1

stn
||um−θh + δβ∇um−θh ||2

)
+

1

8
||unh + δβ∇unh||2 + 2δ2||f(tn−θ)||2 +

1

4
||u0

h + δβ∇u0
h||2 + δ2||f(t1−θ)||2

+ τ

n∑
m=2

(
stn

4
δ2||∂τf(tm−θ)||2 +

1

stn
||um−1

h + δβ∇um−1
h ||2

)
. (6.24)

Now using (6.24) and (6.12) in (6.22), we obtain

||unh||2δ − ||u0
h||2δ + 2τ

n∑
m=1

|||umh |||2

≤ τ
n∑

m=1

(
stn

2
||f(tm−θ)||2 +

4

stn
(||um−θh ||2δ + ||um−1

h ||2δ)
)

+
1

2
||unh||2δ + 4δ2||f(tn−θ)||2 + ||u0

h||2δ + 2δ2||f(t1−θ)||2

+
τtns

2

n∑
m=2

δ2||∂τf(tm−θ)||2. (6.25)

Using triangular inequality for δ-norm, it can be written that

||um−θh ||2δ ≤ (1− θ)2||umh ||2δ + θ2||um−1
h ||2δ + 2θ(1− θ)||umh ||δ||um−1

h ||δ.

≤ ((1− θ)2 +
1

4
)||umh ||2δ + (θ2 +

1

4
||um−1

h ||2δ)

Using this inequality in (6.25),

1

2
||unh||2δ + 2τ

n∑
m=1

|||umh |||2 ≤
τtns

2

n∑
m=1

||f(tm−θ)||2 +
τtns

2

n∑
m=2

δ2||∂τf(tm−θ)||2

+ 6δ2 sup
t∈[0,tn]

||f(t)||2 +
4τ

tns

n∑
m=1

[(
(1− θ2) +

1

4

)
||umh ||2δ

+

(
θ2 +

5

4

)
||um−1

h ||2δ
]
+2||u0

h||2δ . (6.26)
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Since θ ∈ [0, 1/2], (6.26) implies

||unh||2δ + 4τ
n∑

m=1

|||umh |||2 ≤ τtns

n∑
m=1

||f(tm−θ)||2 + τtns
n∑

m=1

δ2||∂τf(tm−θ)||2

+ 12δ2 sup
t∈[0,tn]

||f(t)||2 +
16τ

tns

n∑
m=0

||umh ||2δ + 4||u0
h||2δ . (6.27)

We can apply the lemma 6.4 for s > 16 to (6.27)

||unh||2δ + 4τ
n∑

m=1

|||unh|||2 ≤ exp

(
τ

n∑
m=1

1/stn

1− 16τ/stn

)[
τ

n∑
m=1

stn||f(tm−θ)||2

+ stnτ

n∑
m=2

δ2||∂τf(tm−θ)||2 + 12δ2 sup
t∈[0,tn]

||f(t)||2 + 4||u0
h||2δ
]
.

By the definition of the symbol ., we obtain the desired result (6.14).

If the source function f belongs to the space C0(0, T ;L2(Ω)), the summation by

parts in (6.14) may not be bounded uniformly. Hence for this case the estimate should be

reanalyzed starting from the inequality (6.21).

||unh||2δ + 2τ
n∑

m=1

|||unh|||2 ≤ 2τ |
n∑

m=1

Fm−θ(wh(u
m−θ
h + δ∂τu

m
h ))|+ ||u0

h||2δ .

Applying the inequality for F n−θ in lemma 6.3, we have

||unh||2δ + 2τ
n∑

m=1

|||umh |||2 ≤ 2
√

2τ
n∑

m=1

||f(tm−θ)||.||um−θh + δ∂τu
m
h ||δ + ||u0

h||2δ . (6.28)

Using the norm equivalence (6.12), there holds

||wh(um−θh + δ∂τu
m
h )|| ≤

√
2||um−θh + δ∂τu

m
h ||δ ≤

√
2

(
1 +

δ

τ

)
(||um−1

h ||δ + ||umh ||δ).
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Then (6.28) implies that

||unh||2δ + τ

n∑
m=1

|||unh|||2 ≤ 2
√

2τ
n∑

m=1

(
1 +

δ

τ

)
||f(tm−θ)||(||um−1

h ||δ + ||umh ||δ) + ||u0
h||2δ .

It follows from the Young’s inequality with κ = 2
√

2tn,

||unh||2δ + τ
n∑

m=1

|||unh|||2 ≤ τ

n∑
m=1

[
1

2tn
(||um−1

h ||δ + ||umh ||δ)2

+ 4tn
(

1 +
δ

τ

)2

||f(tm−θ)||2
]
+||u0

h||2δ .

Finally applying the lemma 6.4 and the definition of the symbol ., we get the desired

result (6.15) such that

||unh||2δ + τ
n∑

m=1

|||umh |||2 ≤ exp

(
τ

n∑
m=1

1/(2tn)

1− τ/(2tn)

)
[
τ

n∑
m=1

4tn
(

1 +
δ

τ

)2

||f(tm−θ)||2 + ||u0
h||2δ
]

. τ
n∑

m=1

tn
(

1 +
δ

τ

)2

||f(tm−θ)||2 + ||u0
h||2δ .

�

In the case f ∈ C0(0, T ;L2(Ω)), stability is obtained if δ ≤ τ that is strong re-

quirement. When the Backward Euler method reanalyzed, this condition can be stretched

to δ2 ≤ τ .

Corollary 6.1 Let {unh}Nn=0 be the solution of the scheme (6.9) discretized using backward

Euler method, assume that δ2 ≤ τ , then at every time level 1 ≤ n ≤ N there holds

||unh||2δ + τ
n∑

m=1

|||umh |||2 . τ(1 + tn)
n∑

m=1

||f(tm)||2 + ||u0
h||2δ (6.29)

65



Proof For the backward Euler method, relation (6.19) is expressed using the formula:

τFm(wh(u
m
h + δ∂τu

m
h )) = (umh − um−1

h , umh ) + εδ(∇umh ,∇(umh − um−1
h ))

+ τ |||umh |||2 + δ2(β.∇umh , β∇(umh − um−1
h )).

Using (6.10) with θ = 0 we obtain

τFm(wh(u
m
h + δ∂τu

m
h )) =

1

2
(||umh ||2 − ||um−1

h ||2 + ||umh − um−1
h ||2) + τ |||umh |||2

+
εδ

2
(||∇umh ||2 − ||∇um−1

h ||2 + ||∇(umh − um−1
h )||2)

+
δ2

2
(||β∇umh ||2 − ||β∇um−1

h ||2 + ||β∇(umh − um−1
h )||2).

By the definition of ||.||δ, it follows that

τFm(wh(u
m
h + δ∂τu

m
h ))

= τ |||umh |||2 +
1

2
(||umh ||2δ − ||um−1

h ||2δ + ||umh − um−1
h ||2δ). (6.30)

Let us now give a bound for the term Fm(wh(u
m
h + δ∂τu

m
h )). Using the lemma 6.3 with

triangular inequality, we have

Fm(wh(u
m
h + δ∂τu

m
h )) ≤

√
2

(
||f(tm)|| ||umh ||δ︸ ︷︷ ︸

I

+ ||f(tm)|| δ
τ
||umh − um−1

h ||δ︸ ︷︷ ︸
II

)
(6.31)

By the Young’s inequality with κI = 2
√

2tn and κII =
√

2 for the I and II terms in (6.31)

respectively, we may write

Fm(wh(u
m
h + δ∂τu

m
h )) ≤ (1 + 2tn)||f(tm)||2 +

1

4tn
||umh ||2δ

+
δ2

2τ 2
||umh − um−1

h ||2δ . (6.32)
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The term ||umh −um−1
h ||2δ can be absorbed by the same term in (6.30) provided that

τ ≥ δ2. Hence from (6.30) and (6.32) we obtain that

2τ |||umh |||2 + ||umh ||2δ − ||um−1
h ||2δ ≤ 2τ(1 + 2tn)||f(tm)||2 +

τ

2tn
||umh ||2δ . (6.33)

Now sum over m = 1, ..., n, we have

||unh||2δ + τ
n∑

m=1

|||umh |||2 ≤ τ

n∑
m=1

[
1

2tn
||umh ||2δ + 2(1 + 2tn)||f(tm)||2

]
+||u0

h||2δ .

Applying the lemma 6.4, there holds

||unh||2δ + τ
n∑

m=1

|||umh |||2 ≤ exp

(
n

2n− 1

)[
τ

n∑
m=1

4(1 + tn)||f(tm)||2 + ||u0
h||2δ
]
. (6.34)

By the definition of the symbol ., we obtain the desired result (6.29). �

In order to escape growing the right hand side of the estimate (6.14), the factor tn

can be eliminated when ||.||δ norm considered. For the Crank-Nicolson method, we now

state this analysis in the following corollary.

Corollary 6.2 Let {unh}Nn=0 be the solution of the scheme (6.9) discretized using Crank-

Nicolson method then at every time level 1 ≤ n ≤ N there holds

||unh||δ . τ

(
1 +

δ

τ

) n∑
m=1

||f(tm−1/2)||+ ||u0
h||δ. (6.35)

Proof For the Crank-Nicolson method, relation (6.19) is expressed using the formula:

2τFm−1/2(wh(u
m−1/2
h + δ∂τu

m
h ))

= (umh − um−1
h , umh + um−1

h )

+ εδ(∇(umh + um−1
h ),∇(umh − um−1

h ))

+ 2τ |||umh |||2 + δ2(β.∇(umh − um−1
h ), β∇(umh − um−1

h )).
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Using (6.10) with θ = 1/2, we obtain

4τFm−1/2(wh(u
m−1/2
h + δ∂τu

m
h ))

= (||umh ||2 − ||um−1
h ||2) + εδ(||∇umh ||2 − ||∇um−1

h ||2)

+ δ2(||β∇umh ||2 − ||β∇um−1
h ||2) + 4τ |||umh |||2.

By the definition of ||.||δ, it follows that

4τFm−1/2(wh(u
m−1/2
h + δ∂τu

m
h )) = 4τ |||umh |||2 + (||umh ||2δ − ||um−1

h ||2δ). (6.36)

Let us now give a bound for the term Fm−1/2(wh(u
m−1/2
h + δ∂τu

m
h )). Using the lemma

6.3 with triangular inequality, we have

Fm−1/2(wh(u
m−1/2
h + δ∂τu

m
h ))

≤
√

2||f(tm−1/2)||
(

1

2
||umh + um−1

h ||δ +
δ

τ
||umh − um−1

h ||δ
)

≤ ||f(tm−1/2)||
(
||umh ||δ + ||um−1

h ||δ +
δ

τ
||umh ||δ +

2δ

τ
||um−1

h ||δ
)

≤ ||f(tm−1/2)||
(

1 +
2δ

τ

)
(||umh ||δ + ||um−1

h ||δ). (6.37)

Now combine with (6.36) and (6.37), we obtain

4τ |||umh |||2 + (||umh ||2δ − ||um−1
h ||2δ) ≤ 4τ ||f(tm−1/2)||

(
1 +

2δ

τ

)
(||umh ||δ + ||um−1

h ||δ).

It can be written that

(||umh ||δ − ||um−1
h ||δ)(||umh ||δ + ||um−1

h ||δ)

≤ 8τ ||f(tm−1/2)||
(

1 +
δ

τ

)
(||umh ||δ + ||um−1

h ||δ).
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Using the definition of the symbol . and cancel the term ||umh ||δ + ||um−1
h ||δ from both

side,

||umh ||δ − ||um−1
h ||δ . τ

(
1 +

δ

τ

)
||f(tm−1/2)||.

Finally taking sum over m = 1, ..., n gives the desired result. �

6.5. Convergence Analysis

In this part convergence analysis for the SUPG/θ = 0 and SUPG/θ = 1/2 are

investigated. In order to apply stability estimates obtained in previous section, we have

assumed that exact solution u is sufficiently smooth. We also use the notation U i,j
m as in-

troduced in (Burman, 2010), that simplifies the estimates, for different norms of the exact

solution. Here the index m ∈ {1, 2,∞} refers to the norm in time and the indices i and j

refer to numbers of derivatives applied to u in time and space, respectively. Moreover

U i,j
1 :=

∫ tn

0

|∂itu|jdt , U
i,j
2 :=

∫ tn

0

|∂itu|2jdt , U i,j
∞ := sup

t∈[0,tn]

|∂itu|2j .

The following a priori error estimates for Ritz-projection in (Burman and Smith, 2011)

is widely used in our analysis:

Lemma 6.5 For t ∈ [0, T ] and Pe > 1, let u(t) ∈ Hk+1(Ω) be the solution of (6.3) and

rhu(t) ∈ V 0
h be the solution of

a(rhu(t), vh) = a(u(t), vh) ∀vh ∈ V 0
h .

Then

||(rhu− u)(t)||2∗ . h2k+1||β||∞|u(t)|2k+1 (6.38)
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and for u ∈ Hm(0, T ;Hk+1(Ω))

||∂mt (rhu− u)(t)||2∗ . h2k+1||β||∞|∂mt u(t)|2k+1 (6.39)

where k is the degree of the polynomial functions in finite element space V h and the

*-norm is defined by

||v||2∗ = ||v||2 + δ||β∇v||2 + ε||∇v||2.

Note that since we restrict the finite element space to the continuous piecewise linear

polynomial functions space, we take k = 1 in our analysis.

Let us take θ = 0 in (6.9) then we obtain backward Euler time stepping formula-

tion such that

For 1 ≤ n ≤ N find unh ∈ V 0
h such that

(∂τu
n
h, wh(vh)) + a(unh, vh) = F n(wh(vh)) ∀vh ∈ V 0

h (6.40)

with u0
h = rhu0.

Now we can give our main result for this method.

Theorem 6.2 Let {unh}Nn=0 be the solution of (6.40) and u be the solution of (6.1). Then

for 1 ≤ n ≤ N there holds

||unh − u(tn)||2δ + τ
n∑

m=1

|||umh − u(tm)|||2

. h3||β||∞
[
(tn + δ)U1,2

2 + tnδ2U2,2
2 + δ2U1,2

∞ + τ 2δ2U2,2
∞

+ (1 + ||β||∞tn)U0,2
∞

]
+τ 2

[
tnU2,0

2 + tnδ2U3,0
2 + δ2U2,0

∞

]
. (6.41)

Proof First we decompose the error in a discrete error and a projection error.

unh − u(tn) = unh − rhu(tn) + rhu(tn)− u(tn) = φn + ηn
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where φn = unh − rhu(tn) and ηn = rhu(tn)− u(tn). By the definition of Ritz-projection

and (6.40), it follows that for n ≥ 1

(∂τφ
n, wh(vh)) + a(φn, vh) = (∂τφ

n, wh(vh)) + a(unh − u(tn), vh)

= (∂τφ
n, wh(vh))− (∂τu

n
h − ∂tu(tn), wh(vh))

= −(λn, wh(vh)) ∀vh ∈ V 0
h . (6.42)

where

λn = (rh − I)∂τu(tn)︸ ︷︷ ︸
λn1

+ ∂τu(tn)− ∂tu(tn)︸ ︷︷ ︸
λn2

.

As a consequence of the stability estimate (6.27) there holds

||φn||2δ + τ
n∑

m=1

|||φm|||2 . tnτ
n∑

m=1

||λm||2 + tnτ
n∑

m=2

δ2||∂τλm||2

+ δ2(||λ1||2 + ||λn||2) +
τ

tn

n∑
m=1

||φm||2δ + ||φ0||δ.(6.43)

Since u0
h = rhu(t0), φ0 = 0. Applying lemma 6.4, we get

||φn||2δ + τ
n∑

m=1

|||φm|||2 . τtn
n∑

m=1

||λm||2 + τtn
n∑

m=2

δ2||∂τλm||2

+ δ2(||λ1||2 + ||λn||2). (6.44)

By the standard Taylor development, there exists ξn ∈ [tn−1, tn] such that

∂τu(tn) = ∂tu(tn)− τ

2
∂2
t u(ξn).

Now we obtain the upper bound for the last two terms in (6.44).

||λn||2 ≤ ||(rh − I)∂τu(tn) + ∂τu(tn)− ∂tu(tn)||2

. ||(rh − I)(ut(t
n)− τ

2
utt(ξ

n))||2 + τ 2 sup
0≤t≤tn

||utt(t)||2 (6.45)
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and by the lemma 6.5 it follows

||λn||2 . h3||β||∞|ut(tn)|22 + τ 2h3||β||∞|utt(ξn)|22 + τ 2 sup
0≤t≤tn

||utt(t)||2.

Then

||λ1||2 + ||λn||2 . h3||β||∞
[

sup
0≤t≤tn

|ut(t)|22 + τ 2 sup
0≤t≤tn

|utt(t)|22
]

+ τ 2 sup
0≤t≤tn

||utt(t)||2. (6.46)

Since β and ε are constant in time rh commutes with time derivative, we therefore have

|λm1 | =
∣∣∣∣1τ
∫ tm

tm−1

(rh − I)ut(t)dt

∣∣∣∣≤ 1√
τ

(∫ tm

tm−1

|(rh − I)ut(t)|2dt
)1/2

. (6.47)

Then

τ
n∑

m=1

||λm1 ||2 = τ
n∑

m=1

∫
Ω

|λm1 |2dx

≤
n∑

m=1

∫
Ω

∫ tm

tm−1

|(rh − I)ut(t)|2dtdx =

∫ tn

0

||∂tη||2dt

. h3||β||∞
∫ tn

0

|∂tu(t)|22dt = h3||β||∞U1,2
2 . (6.48)

Now consider

|∂τλm1 | =

∣∣∣∣(rh − I)∂τ

[
u(tm)− u(tm−1)

τ

]∣∣∣∣= |(rh − I)∂τut(ξ
m)|

≤ 1√
τ

(∫ ξm

ξm−τ
|(rh − I)utt(t)|2dt

)1/2

for some ξm ∈ [tm−1, tm]

≤ 1√
τ

(∫ tm

tm−2

|(rh − I)utt(t)|2dt
)1/2

. (6.49)
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Then

τ
n∑

m=2

||∂τλm1 ||2 ≤
n∑

m=2

∫
Ω

∫ tm

tm−2

|(rh − I)utt(t)|2dtdx

.
∫ tn

0

||∂2
t η(t)||2dt . h3||β||∞

∫ tn

0

|utt(t)|22dt

. h3||β||∞U2,2
2 . (6.50)

The term related to λm2 can be similarly estimated as λm1 such that

λm2 = −1

τ

∫ tm

tm−1

(t− tm−1)utt(t)dt ≤
√
τ

(∫ tm

tm−1

|utt(t)|2dt
)1/2

. (6.51)

Then

τ
n∑

m=1

||λm2 ||2 = τ
n∑

m=1

∫
Ω

τ

∫ tm

tm−1

|utt(t)|2dtdx = τ 2

∫ tn

0

∫
Ω

|utt(t)|2dxdt

= τ 2

∫ tn

0

||utt(t)||2dt = τ 2U2,0
2 . (6.52)

Similarly we can bound the term τ
∑n

m=2 ||∂τλm2 || such that

τ
n∑

m=2

||∂τλm2 ||2 . τ 2

∫ tn

0

||uttt(t)||2dt = τ 2U3,0
2 . (6.53)

Hence we obtain the following estimate from (6.44)

||φn||2δ + τ

n∑
m=1

|||φm|||2 . h3||β||∞
[
tnU1,2

2 + tnδ2U2,2
2 + δ2U1,2

∞

+ τ 2δ2U2,2
∞

]
+τ 2

[
tnU2,0

2 + tnδ2U3,0
2 + δ2U2,0

∞

]
. (6.54)
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We now estimate the approximation error of Rietz-projection in the following terms

||ηn||δ and τ

n∑
m=1

|||ηm|||

Using the definition of the norm ||.||δ, inverse inequality and lemma 6.5 we obtain

||ηn||2δ = ||(rh − I)u(tn)||2 + δ2||β.∇(rh − I)u(tn)||2 + εδ||∇(rh − I)u(tn)||2

.

(
1 +

δ2||β||2∞ + εδ

h2

)
||(rh − I)u(tn)||2.

Since δβ = µh and ε < βh , then δ||β||∞ . h and εδ . h2. Therefore we may write

||ηn||2δ . h3||β||∞U0,2
∞ (6.55)

Let us consider

τ
n∑

m=1

|||ηm|||2 = τ
n∑

m=1

δ||∂τηm + β∇ηm||2 + ε||∇ηm||2

. τ
n∑

m=1

δ||∂τ (rh − I)u(tm)||2 + (δ||β||2∞ + ε)||∇(rh − I)u(tm)||2

. h3||β||∞δ
∫ tn

0

|ut|22dt+ (δ||β||2∞ + ε)
n∑

m=1

τ

h2
||(rh − I)u(tm)||2

. h3||β||∞(δU1,2
2 + tn||β||∞ sup

0<t≤tn
|u(t)|22)

. h3||β||∞(δU1,2
2 + tn||β||∞U0,2

∞ ). (6.56)

Then we obtain the following estimate

||ηn||2δ + τ
n∑

m=1

|||ηm|||2 . h3||β||∞
[
(1 + ||β||∞tn)U0,2

∞ + δU1,2
2

]
. (6.57)

Combination of (6.54) and (6.57) gives the desired result. �
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When the solution u is not sufficiently smooth, the right hand side of (6.41) may fail to

be bounded. In this case we have still optimal convergence rates in space and time of

SUPG/θ = 0-method by using the stability estimate (6.1).

Corollary 6.3 Let {unh}Nn=0 be the solution of (6.40), with δ2 ≤ τ , and u be the solution

of (6.1). Then for n such that 1 ≤ n ≤ N there holds

||unh − u(tn)||2δ + τ
n∑

m=1

|||umh − u(tm)|||2

. h3||β||∞
[
(1 + tn + δ)U1,2

2 + (1 + ||β||∞tn)U0,2
∞

]
+ τ 2(1 + tn)U2,0

2 . (6.58)

Proof As a consequence of the stability analysis in the corollary (6.1) for the term φn

we obtain

||φn||2δ + τ
n∑

m=1

|||φm|||2 . τ(1 + tn)
n∑

m=1

||λm||2

. (1 + tn)[h3||β||∞U1,2
2 + τ 2U2,0

2 ]. (6.59)

Using the estimate (6.57) and (6.59) proof can be easily completed. �

Let us take θ = 1/2 in (6.9) then we obtain Crank-Nicolson time stepping formu-

lation such that

For 1 ≤ n ≤ N find unh ∈ V 0
h such that

(∂τu
n
h, wh(vh)) +

1

2
a(unh + un−1

h , vh) = F n−1/2(wh(vh)) ∀vh ∈ V 0
h (6.60)

with u0
h = rhu0. Now we can give our main result for this method.

Theorem 6.3 Let {unh}Nn=0 be the solution of (6.60) and u be the solution of (6.1). Then
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for 1 ≤ n ≤ N there holds

||unh − u(tn)||2δ + τ

n∑
m=1

|||umh − u(tm)|||2

. h3

[
(tn||β||∞ + δ)U1,2

2 + tnδ2||β||∞U2,2
2 + δ2(U1,2

∞ + τ 4U3,2
∞ )

+ (1 + ||β||∞)U0,2
∞

]
+τ 4

[
tnU3,0

2 + tn||β||2∞U
2,1
2 + tnε2U2,2

2

+ tnδ2U4,0
2 + tnδ2||β||2∞U

3,1
2 + tnδ2ε2U3,2

2

+ δ2U3,0
∞ + δ2||β||2∞U2,1

∞ + δ2ε2U2,2
∞

]
. (6.61)

Proof First we decompose the error in a discrete error and a projection error.

unh − u(tn) = unh − rhu(tn) + rhu(tn)− u(tn) = φn + ηn

where φn = unh − rhu(tn) and ηn = rhu(tn)− u(tn). By the definition of Ritz-projection

and (6.60), it follows that for 1 ≤ n ≤ N :

(∂τφ
n, wh(vh)) +

1

2
a(φn + φn−1, vh)

= (∂τ (u
n
h − rhu(tn)), wh(vh)) +

1

2
a(unh − u(tn) + un−1

h − u(tn−1), vh)

= −
[
(rh∂τu(tn), wh(vh))− (∂τu

n
h, wh(vh))− (∂tu(tn−1/2), wh(vh))

− a(u(tn−1/2), vh) + (f(tn−1/2), wh(vh))− a(u
n−1/2
h , vh)

+
1

2
a(u(tn) + u(tn−1), vh)

]
= −

[
((rh − I)∂τu(tn), wh(vh)) + (∂τu(tn)− ∂tu(tn−1/2), wh(vh))

− a(u(tn−1/2), vh) +
1

2
a(u(tn) + u(tn−1), vh)

]
= −(λn, wh(vh)) ∀vh ∈ V 0

h . (6.62)
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where

λn = (rh − I)∂τu(tn)︸ ︷︷ ︸
λn1

+ ∂τu(tn)− ∂tu(tn−1/2)︸ ︷︷ ︸
λn2

+
1

2
(β.∇u(tn) + β.∇u(tn−1))− β.∇u(tn−1/2)︸ ︷︷ ︸

λn3

+ ε4u(tn−1/2)− 1

2
(ε4u(tn) + ε4u(tn−1))︸ ︷︷ ︸

λn4

= λn1 + λn2 + λn3 + λn4 .

As a consequence of the stability estimate (6.22) and (6.24) there holds

||φn||2δ + τ
n∑

m=1

|||φm|||2 . tnτ
n∑

m=1

||λm||2 + tnτ
n∑

m=2

δ2||∂τλm||2

+ δ2(||λ1||2 + ||λn||2) +
τ

tn

n∑
m=1

||φm||2δ + ||φ0||δ.

Since u0
h = rhu(t0), φ0 = 0. Applying lemma 6.4, we get

||φn||2δ + τ
n∑

m=1

|||φm|||2 . τtn
n∑

m=1

||λm||2 + τtn
n∑

m=2

δ2||∂τλm||2

+ δ2(||λ1||2 + ||λn||2). (6.63)

By the standard Taylor development, there exists ξn ∈ [tn−1, tn] such that

∂τu(tn) = ∂tu(tn−1/2) +
τ 2

24
∂3
t u(ξn).

Then we may write that

ε4
(
u(tn−1/2)− u(tn) + u(tn−1)

2

)
= −τ

2

4
ε4utt(ξn)
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and

−β.∇
(
u(tn−1/2) +

u(tn) + u(tn−1)

2

)
=
τ 2

4
β∇utt(ξn).

Now we obtain the upper bound for the last two terms in (6.63).

||λn||2 . ||(rh − I)(ut(t
n−1/2) +

τ 2

24
uttt(ξ

n))||2

+ τ 4

[
sup

0≤t≤tn
||uttt(t)||2 + sup

0≤t≤tn
||β.∇utt(t)||2 + sup

0≤t≤tn
||ε4utt(t)||2

]
.

and by the lemma (6.5) it follows

||λn||2 . h3

[
|ut(tn−1/2)|22 + τ 4 sup

0≤t≤tn
|uttt(t)|22

]
+ τ 4

[
sup

0≤t≤tn
||uttt(t)||2 + sup

0≤t≤tn
||β.∇utt(t)||2 + sup

0≤t≤tn
||ε4utt(t)||2

]
.

Then

||λ1||2 + ||λn||2 . h3

[
sup

0≤t≤tn
|ut(t)|22 + τ 4 sup

0≤t≤tn
|uttt(t)|22

]
+ τ 4

[
sup

0≤t≤tn
||uttt(t)||2 + sup

0≤t≤tn
||β.∇utt(t)||2 + sup

0≤t≤tn
||ε4utt(t)||2

]
. h3(U1,2

∞ + τ 4U3,2
∞ ) + τ 4(U3,0

∞ + ||β||2∞U2,1
∞ + ε2U2,2

∞ ). (6.64)

Now we need to find an estimate for the terms for i = 1, 2, 3, 4

τ
n∑

m=1

||wmi ||2 and τ
n∑

m=1

||∂τwmi ||2
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τ
n∑

m=1

||λm1 ||2 and τ
n∑

m=2

||∂τλm1 ||2 are estimated in a similar manner as for backward scheme

such that

τ

n∑
m=1

||λm1 ||2 = h3||β||∞U1,2
2 and τ

n∑
m=2

||∂τλm1 ||2 = h3||β||∞U2,2
2 . (6.65)

Now let us consider the terms related to λm2 :

λm2 =
1

2τ

[∫ tm−1/2

tm−1

(t− tm−1)2uttt(t)dt+

∫ tm

tm−1/2

(t− tm)2uttt(t)dt

]
||λm2 || =

1

2τ

τ 2

4

∫ tm

tm−1

||uttt(t)||dt . τ 3/2

(∫ tm

tm−1

||uttt(t)||2dt
)1/2

.

Then

τ
n∑

m=1

||λm2 ||2 = τ
n∑

m=1

τ 3

∫ tm

tm−1

||uttt(t)||2dt

. τ 4

∫ tn

0

||uttt(t)||2dt = τ 4U3,0
2 , (6.66)

and similarly we obtain

τ
n∑

m=2

||∂τλm2 ||2 . τ 4U4,0
2 . (6.67)

Now consider the terms related to λm3 .

λm3 =
1

2
(β∇u(tm) + β∇u(tm−1))− β∇u(tm−1/2)

=
1

2

[∫ tn−1/2

tn−1

(t− tn−1)β.∇utt(t)dt+

∫ tn

tn−1/2

(tn − t)β.∇utt(t)dt
]
.

||λm3 || ≤
τ

4

∫ tm

tm−1

||β.∇utt(t)||dt . τ 3/2

(∫ tm

tm−1

||β.∇utt(t)||2dt
)1/2

.
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Then we may write

τ

n∑
m=1

||λm3 ||2 . τ 4||β||2∞U
2,1
2 . (6.68)

For the contribution τ
∑n

m=2 ||∂τλm3 ||2 it can be written that

∂τλ
m
3 = −(∂τβ.∇u(tm−1/2)− ∂tβ.∇u(tm−1)) +

1

2
(∂τβ.∇u(tm)− ∂tβ.∇u(tm−1/2))

+
1

2
(∂τβ.∇u(tm−1)− ∂tβ.∇u(tm−3/2))− ∂tλm−1/2

3 .

The first three terms on the right hand side are on the same form as w2 and the last term

is on the same form as w3. Using the results on w2 and w3 we conclude

τ
n∑

m=2

||∂τλm3 ||2 . τ 4||β||2∞U
3,1
2 . (6.69)

Consider

λm4 = ε4u(tm−1/2)− 1

2
(ε4u(tm) + ε4u(tm−1))

=
1

2

[∫ tn−1/2

tn−1

(tn−1 − t)ε4utt(t)dt+

∫ tn

tn−1/2

(t− tn)ε4utt(t)dt
]
.

||λm4 || ≤
τ

4

∫ tm

tm−1

||ε4utt(t)||dt . τ 3/2

(∫ tm

tm−1

||ε4utt(t)||2dt
)1/2

.

Then we may write

τ

n∑
m=1

||λm4 ||2 . τ 4ε2U2,2
2 . (6.70)

Contribution of τ
∑n

m=2 ||∂τλm4 ||2 is same as the term τ
∑n

m=2 ||∂τλm3 ||2 such that

τ
n∑

m=2

||∂τλm4 ||2 . τ 4ε2U3,2
2 . (6.71)
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Now using (6.64)-(6.71) in (6.63)

||φn||2δ + τ

n∑
m=1

|||φm|||2 . h3

[
tn||β||∞U1,2

2 + tnδ2||β||∞U2,2
2 + δ2(U1,2

∞ + τ 4U3,2
∞ )

]
+ τ 4

[
tnU3,0

2 + tn||β||2∞U
2,1
2 + tnε2U2,2

2

+ tnδ2U4,0
2 + tnδ2||β||2∞U

3,1
2 + tnδ2ε2U3,2

2

+ δ2U3,0
∞ + δ2||β||2∞U2,1

∞ + δ2ε2U2,2
∞

]
. (6.72)

Projection error can be bounded as similar as the analysis for the backward Euler scheme.

Therefore we obtain desiered result by means of (6.57) and (6.72). �

If the solution is not smooth enough to satisfy the uniform bounds we still have optimal

convergence under the inverse CFL condition δ ≤ τ for the Crank-Nicholson method.

Corollary 6.4 Let {unh}Nn=0 be the solution of (6.60), and u be the solution of (6.1). Then

for n such that 1 ≤ n ≤ N there holds

||unh − u(tn)||δ . h3/2||β||1/2∞
[(

1 +
δ

τ

)
U1,2

1 + U0,2
∞

]
+ τ 2

(
1 +

δ

τ

)[
U3,0

1 + ||β||∞U2,1
1 + εU2,2

1

]
. (6.73)

Proof As a consequence of the stability analysis in the corollary (6.2) for the term φn

we obtain

||φn||δ . (τ + δ)
n∑

m=1

||λm||

.

(
1 +

δ

τ

)
τ

n∑
m=1

(||λm1 ||+ ||λm2 ||+ ||λm3 ||+ ||λm4 ||).
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Using the approximation properties of the Ritz-projection, leading to the upper bounds

(Burman, 2010)

τ
n∑

m=1

||λm1 || . h3/2||β||1/2∞ U1,2
1 , τ

n∑
m=1

||λm2 || . τ 2U3,0
1 ,

τ

n∑
m=1

||λm3 || . τ 2||β||∞U2,1
1 , τ

n∑
m=1

||λm4 || . τ 2εU2,2
1 .

Proof is completed by these bounds and (6.55). �

Numerical experiments that validate the order of convergence of methods consid-

ered here can be found in (Burman and Smith, 2011).

82



CHAPTER 7

AN OPERATOR SPLITTING APPROACH COMBINED

WITH THE SUPG METHOD FOR THE TRANSPORT

EQUATIONS

The mathematical models describing the transport phenomena are time dependent

advection diffusion reaction equations. This kind of equation with linear or nonlinear

reaction term is one for which approximate solution procedures continue to exhibit sig-

nificant limitations for certain problems of physical interest. The most interesting cases

are appeared when advection is dominated.

In this chapter we advocate an operator splitting method which is widely used to

simulate the models come from environmental processes (Zlatev, 1995), (Geiser, 2008),

(Levine, Pamuk, Sleeman and Hamilton, 2010), (Ewing, 2002), (Frolkovič and Geiser,

2000). We split the transport equation into two unsteady subproblems. The main advan-

tage of splitting is that each subproblem can be discretized separately by the convenient

method independently from the other subproblem.

7.1. Transport Problem and Operator Splitting

In this section we consider a model equation for simulating the transport and decay

of particles in a fluid:

ut + Lu = R(u) + f in Ωt := Ω× (0, T ]

u = 0 on ∂Ω× [0, T ] (7.1)

u = u0 on Ω× {0}

where elliptic operator L, source function f and initial datum u0 are defined in previous

chapter and R(u) is a nonlinear reaction term comes from the following models:

• Radioactive decay model: R(u) = −au.

• Logistic model : R(u) = au− bu2.
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• Bio-remediation model : R(u) =
au

u+ b
.

Here a and b are nonnegative real numbers for each model. In order to simplify the

notation, let us define

Lf (u) := f − Lu

Then the equation (7.1) can be read

ut = Lf (u) +R(u)

An efficient approach for finding the approximate solution of (7.1) is based on an operator

splitting strategy. The principle of this procedure is starting from unh, an approximation

u(tn, .), construct un+1
h through two or more intermediate values, each one obtained by

solving a boundary value problem related to only one of the separating operators. In

the literature authors generally prefer to separate diffusion from advection (Quarteroni

and Valli, 1996), (Geiser, Ewing and Liu, 2005). Unlike to this prevailing approach we

separate the non-linear reaction term from advection diffusion term such that

wt = R(w). (7.2)

zt = Lf (z) (7.3)

Since R and Lf are not commute operator except for radioctive decay model, we obtain

a splitting error first order (o(τ)). On the other hand our splitting has two important

advantages that we can apply stabilized finite element method SUPG with backward Euler

time stepping to (7.3), which is done in previous section, and exact solution of (7.2) can

be easily obtained.

wt = R(w) in Ωt := Ω× (0, T ) (7.4)

w = φ on Ω× {0}
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Exact solution of the equation (7.4) can be given for each reaction terms described above

such that

• Radioactive decay model : w(x, t) = e−atφ(x)

• Logistic model: w(x, t) =
aφ(x)

bφ(x)(1− e−at) + ae−at

• Bio-remediation model : w(x, t) + bln|w(x, t)| = at+ φ(x) + bln|φ(x)|

For more complex cases, one may use an appropriate time integrator for instance gener-

alized Euler or Runge Kutta (RK) methods instead of their exact expressions.

We also use the two step Yanenko splitting strategy (see Fig. 7.1) which is first

order accurate and unconditionally stable if the discrete counterparts of the differential

operators are non-negative definite matrices (Marchuk, 1990). More formal description

Figure 7.1. Two step Yanenko splitting scheme.

of two step Yanenko splitting method can be given in the following algorithm. Start-

ing with z(t0) = u0, then two subproblems are sequentially solved on the sub-intervals

(tn, tn+1], n = 0, ..., N − 1:

Given z(tn) find w : Ω× (tn, tn+1]→ R such that

wt = R(w) in Ω× (tn, tn+1] (7.5)

w(tn) = z(tn) on Ω.
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Find z : Ω× (tn, tn+1]→ R such that

zt = Lf (z) in Ω× (tn, tn+1]

z = 0 on ∂Ω× [tn, tn+1] (7.6)

z(tn+) = w(tn+1) on Ω.

This two step splitting algorithm presents z(tn), n = 1, ..., N which is an approximation

of u(tn).

7.2. Numerical Experiments

We firstly test our method for the following one-dimensional transport problems:

ut − 0.0001uxx + ux = R(u) + 1 in Ωt := (0, 1)× (0, 2]

u(0, t) = u(1, t) = 0 for t ∈ [0, 2] (7.7)

u(x, 0) = 0 for x ∈ (0, 1).

where the reaction term is chosen as follows:

• Radioactive decay model : R(u) = −15u.

• Logistic model : R(u) = 15u− u2.

• Bio-remediation model : R(u) =
15u

u+ 1
.

For all numerical simulation N = 400 uniform time steps are used and space discretiza-

tion Th of Ω = (0, 1) is made by 20 quasi-uniform subintervals. For all numerical

methods we obtain a sequence of continuous piecewise linear approximation unL (n =

1, 2, ..., 400) then we only compare the final time results obtained by different schemes.

In Fig. (7.2) and Fig (7.3)(left), the curve labeled with splitting with SUPG and the curve

labeled with standard splitting are obtained by our algorithm (7.5)-(7.6) and the algorithm

proposed in (Geiser, Ewing and Liu, 2005), respectively. The reference approximations

were computed with the Galerkin method on a very fine mesh and with sufficiently small

time steps. The curve labeled with Standard Galerkin in the Fig. 7.2(left) also illustrates
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the result obtained by the Galerkin method on the coarse mesh for radioactive decay

model .
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Figure 7.2. Numeric simulations for radioactive decay model (left) and logistic model
(right).

The convergence plot in Fig. 7.3 (right) is presented by using 400-450-500-550-

600-650 time steps for the radioactive decay test model:

ut − 0.01uxx + ux = −15u in Ωt := (0, 1)× (0, 2]

u(0, t) = u(1, t) = 0 for t ∈ [0, 2] (7.8)

u(x, 0) = exp (50x) sin(πx).

In this case exact solution of the problem (7.8) can be written:

u(x, t) = exp (50x− 40t− 0.01π2t) sin(πx).

As we see in Fig. 7.3 (right), our splitting algorithm presents first order convergence with

respect to the time step size.
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Figure 7.3. Numeric simulation for bio-remediation model (left) and error rate for the
radioactive decay model (right).

Finally we also illustrate the numerical performance of our splitting strategy for

two dimensional problems:

ut − 0.00014u+ (1, 1).∇u = R(u) in Ωt := Ω× (0, T ]

u = 0 on ∂Ω× [0, T ] (7.9)

u = u0 on Ω× {0}

where the reaction term is chosen as follows:

• Radioactive decay model : R(u) = −3u.

• Logistic model : R(u) = 3u− u2.

• Bio-remediation model : R(u) =
3u

u+ 1

and space discretization Th of Ω = (0, 1)2 is made by 800 quasi-uniform triangles de-

scribed in Fig. 7.4 (left). We choose final time T = 1/2 and fixed time step size

τ = T/400. We also choose a discrete initial data whose form is square prism of height 1
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such that

u0(x, y) =

{
1, (x, y) ∈ [ 3

16
, 6

16
]2

0, otherwise
(7.10)

The contour-lines of the interpolant of the initial data is shown in Fig. 7.4(right). We
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Figure 7.4. Quasi-uniform mesh (left) and contour-lines of the initial data (right).

also compare the final time results obtained by the Galerkin approximation and the present

splitting algorithm in Fig. 7.5. As we see in this figure, although the Galerkin approxima-

tion is completely contaminated by spurious oscillations all over the whole domain Ω, our

splitting strategy provides oscillation-free approximations. The satisfactory results of our

splitting algorithm are presented for the logistic and bio-remediation model in Fig. 7.6.
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Figure 7.5. Contour-lines of Galerkin approximation (left) and our splitting algorithm
(right) for the radioactive decay model at the final time.
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Figure 7.6. Contour-lines of our operator splitting approximation for the logistic (left)
and bio-remediation (right) models at the final time.
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CHAPTER 8

CONCLUSION

Here we studied enriched finite element methods for both steady and unsteady

convection diffusion equations. For the unsteady problems, the methods based on sepa-

rating spatial and temporal discretization was considered. In detail we primarily applied

the stabilization techniques to the steady problem then adapted these algorithms to the un-

steady problem in combination with the θ method. Above all our goal was the construct

efficient and practical approximations for both the steady and unsteady problems. There-

fore we utilized the pseudo approximation techniques for solving the residual equation

which appears as a result of bubble elimination procedure.

For the case of continuous piecewise linear elements, the stability and convergence

analysis of the SUPG/θ method for the unsteady convection diffusion equation have been

studied. We managed to extend analysis for the pure convection equation given in (Bur-

man, 2010) to the convection diffusion equation. Consequently for both A-stable cases

θ = 0 and θ = 1/2, assuming regularity conditions on the data we proved uniform stabil-

ity and quasi optimal convergence of the algorithm that allow safely using this method to

more general transport problems.

For piecewise bilinear finite element discretization on rectangular grid, enriched

finite element methods RFB, MS and MIX have been considered for the steady problem.

Then the pseudo approximation techniques, which employ only a few nodes in each ele-

ment, for evaluating the enriching basis functions were suggested. Next, for the unsteady

problem we suggested a proper adaptation recipe, to combine these methods developed

for the steady equation with the θ method. Several numerical tests support the good per-

formance of the corresponding methods for both the steady and unsteady equations.

Lastly, we suggested an operator splitting strategy for the transport equations

which includes nonlinear reaction terms. In our splitting strategy the first part becomes

a first order nonlinear differential equation without space derivatives and the second part

becomes an unsteady linear convection diffusion equation. The former problem can be

solved exactly by using simple analytical techniques. The latter one is problematic when

convection is dominated. In this regime, we have used the SUPG method for space and

θ method for time discretization. Numerical tests indicate our splitting strategy provides

oscillation-free approximations.
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