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ABSTRACT 
 

A METHOD ON ENERGY-EFFICIENT RETROFITTING FOR 
EXISTING BUILDING ENVELOPES 

 

Starting in 1970s with the two major oil crises, conservation of non-renewable 

energy sources became an important concern. Buildings, which hold a large portion of 

energy consumed in the world, became subject to significant reductions through the 

energy consuming processes, especially for space heating and cooling energy 

consumption end uses. Strong initiatives are set in the world, promoting energy 

efficiency in buildings, both for new designs and existing building stock. However, 

energy-efficient improvement of existing building stock is a more challenging process 

for existing buildings; due to lack of energy conscious decisions, which were 

disregarded during design process.  Energy-efficient retrofitting thus becomes an 

important focus of the research areas that aim to endorse efficiency in buildings.  

Principally with Energy Performance in Buildings Directive of European Union, 

methodologies to optimize design decisions for energy-efficient retrofitting emerged. In 

Turkey, energy performance of buildings is recently introduced with a regulation in 

2008. Prior to this regulation TS 825 Thermal Insulation in Buildings was the main 

control mechanism, which was only mandatory a decade ago. The lack of 

methodological approach and control mechanisms caused the relatively young Turkish 

building stock, become non-insulated or poorly insulated. 

Therefore this research focuses on proposing a methodology for energy-efficient 

retrofitting of public building envelopes, particularly as building types which may raise 

public awareness on the necessity of energy efficiency in buildings. The dissertation 

aims to fill the gap of a structured methodology which can be applied throughout 

defined set of actions to diagnose the existing performance of a building, to propose 

retrofitting options and evaluate these options to assess an advantageous solution to 

energy-efficient retrofit of public building envelopes. The thesis aims to indicate the 

savings in annual energy consumption, reduction in CO2 emissions and improvement in 

indoor thermal comfort as a result of a retrofitting action applied due to a structured 

methodology. 
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ÖZET 
 

MEVCUT YAPI KABUKLARI İÇİN ENERJİ ETKİN 
İYİLEŞTİRME YÖNTEMİ 

 

1970’li yıllarda ortaya çıkan iki büyük petrol krizinden sonra, yenilenemeyen 

enerji kaynaklarının korunumu önem kazanmıştır. Binalarda ısıtma ve soğutma amaçlı 

tüketilen enerji, toplam tüketimin büyük bir dilimine karşılık gelmektedir.Bu sebeple 

binalarda enerji tüketiminin indirgenmesi önem kazanmış, dünyanın bir çok ülkesinde, 

yeni yapılar ve mevcut yapılarda enerji verimliliğinin sağlanması, enerji tüketiminin 

azaltılması gibi çalışmalar standartlar ve yönetmeliklerle belirlenen çerçevelerde 

uygulanmaya başlanmıştır. Yeni yapılar için tasarım aşamasında uygulanabilecek 

önlemler belirlenirken, mevcut yapıların enerji etkin iyileştirilmesi için de sistematik 

yaklaşımlar geliştirilmesinin gerekliliği gündeme gelmiştir.  

Özellikle Avrupa Birliği’nin “Binalarda Enerji Performansı Yönetmeliği”ni 

(EPBD, 2002) yayınlamasından sonra, yeni yapılardaki önlemlerin yanı sıra, mevcut 

binalar için alınacak enerji etkin iyileştirme kararlarının da uygulanması bir zorunluluk 

halini almıştır. Türkiye bu yönetmeliğe uyum çerçevesinde 2008 yılında Binalarda 

Enerji Performansı yönetmeliğini yürürlüğe koymuştur. Bu yönetmelik yeni yapılar ile 

ilgili sınırlamalar getirirken, mevcut yapıların enerji etkin iyileştirilmesini öngörmekte, 

ancak bir yöntem önermemektedir. TS 825 Isı Yalıtım Yönetmeliğinin ancak 2000 

yılında zorunlu olduğu Türkiye’de yalıtımsız/yetersiz yalıtılmış, çevreye duyarlı tasarım 

ana kararlarından yoksun, göreceli genç bir yapı stoku bulunmakta ve mevcut yapıların 

enerji etkin iyileştirilmesi için gerekli olan yöntemsel hesaplama ve kontrol 

mekanizmalarına işlerlik kazandırılması gerekmektedir. 

Bu bağlamda, bu çalışma mevcut yapı kabuklarının enerji etkin iyileştirilmesi 

için bir yöntem önerisi geliştirmeyi hedeflemektedir. Yöntemin geliştirilebilmesi için, 

binanın mevcut durumdaki enerji performansının belirlenmesi, iyileştirme önerilerinin 

sunulması ve değerlendirilmesi gibi farklı aşamalar alan çalışması üzerinden 

örneklenerek uygulanmıştır. Diğer yandan, önerilen yönteme bağlı olarak yürütülen 

iyileştirme çalışmalarının sonucunda elde edilecek enerji tasarrufu, CO2 emisyonlarının 

indirgenmesi ve iç mekan ısıl konfordaki iyileşmelerin saptanabilmesine olanak 

sağlamaktadır. 
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CHAPTER 1 

 

INTRODUCTION 

 
With the oil crisis in early 1970’s, the fossil fuel consumption became an 

important concern. Due to rapid technological and industrial growth, the need for 

energy in the world increased for the last decades. Figure 1 presents the rising 

consumption trend in primary energy consumption between 1998 and 2008. In a period 

of ten years, the amount of energy consumed increased almost 27 % (BP, 2009). 

Although energy conservation became a crucial subject of interest with the oil crisis in 

early 1970’s, yet the consumption trend cannot be reversed, since utilization and 

integration of renewable sources are still emerging technologies. Therefore, continuing 

demand for non-renewable energy resources (fossil fuels) causes the ongoing depletion 

of natural sources and environmental degradation, which are both the inevitable 

outcomes of this consumption trend (D’haeseleer, 2003; IEEE, 2007). 

 

 

 

Figure 1. Primary energy consumption 1998-2008 
(Source: BP 2009) 

Utilizable energy (such as electricity etc.) is mainly produced from non-

renewable energy resources (Figure 2). Due to the increasing trend in the energy 

consumption, depletion of these non-renewable energy resources become crucial and 

thus energy prices rise inevitably. Coupled with environmental problems (such as CO2 
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emissions), this trend indicates the necessity to decrease the use of non-renewable 

energy sources for all consumption end-uses.  

 

 

 

Figure 2. World share of total primary energy in 2006  
(Sources: IEA 2008, IEA 2009) 

 

Figure 3. Percentage of world energy consumption by end-use  
(Source: IEA 2006) 

Statistical assessment of energy consumption according to end-use sectors 

indicates that approximately 30-40 % of energy is consumed by buildings (residential, 

commercial and public) (Figure 3). The building sector significantly contributes to the 

consumption of non-renewable energy resources during the service life of buildings, 

besides production of building materials and construction processes. In building level, 

energy consumption patterns vary from space heating and cooling, water heating, 

lighting to building services etc. (REEEP, 2007). Consumption measures become 
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important for reducing the environmental impacts of the built environment, such as 

reduction of greenhouse gas emissions, life-cycle energy use of buildings and utilization 

of environmental friendly systems and materials (Dong, Kennedy, & Pressnail, 2005). 

Since early 1990’s a majority of European Countries work on defining and 

formulating methods to reduce energy consumption of buildings in different scales, 

from household even to district scale. Most significant regulatory action is submitted as 

a European Union Legislation in 2002, as “Directive on the Energy Performance of 

Buildings (2002/91/EC)”. In general, this Directive asserts the necessity to increase 

energy efficiency, both for new and existing buildings, to develop certain 

methodologies to determine energy performance of buildings, and to prepare energy 

certificate programs for the building stock of European Union Countries (EPBD, 2002). 

Parallel to acts on energy efficiency/performance of buildings, measures against 

global climate change is as well essential. The most effective act against global climate 

change, Kyoto Protocol (UN, 1998) proposes regulations to limit fossil fuel combustion 

to avoid release of products which cause greenhouse gas intensity to increase and to 

reduce deterioration of climatic balance of our world. Decrease of CO2 emissions highly 

depend on reduction of fossil fuel consumption, thus Kyoto Protocol suggests the use of 

clean and renewable energy technologies for services where possible. 

As a result, the general framework of “resource/production/consumption” and 

additional environmental problems and their consequences on global climate change, 

helped to define broad research areas concentrated on energy efficiency and energy 

performance of buildings. These broad expressions may cover sub areas such as, 

implementation of necessary regulations and benchmarks (national and/or international) 

in the design of new buildings, guidelines for construction/detailing of new buildings, 

improvements for existing buildings to achieve necessary efficiency levels. Figure 4 

illustrates the broad research area as energy performance of buildings and one of the 

sub-research areas as energy-efficient retrofitting, and the major concerns. 
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Figure 4. Broad and sub research area 

Due to rising awareness in European countries, regulations and actions on 

improving the energy performance of buildings are extensively researched and applied 

in the last 20 years. However in Turkey, necessary awareness is still in the regulatory 

level. The standard TS 825 Thermal Insulation in Buildings became mandatory only in 

year 2000. In December 2005, Energy Performance of Buildings Directive was enacted, 

and consecutively in May 2007 Energy Efficiency Law was announced. These three 

important regulations/directives oblige the efficient use of energy in all energy end-use 

sectors. Therefore, it is possible to assert that there is a great potential of energy savings 

for Turkish building stock, yet the regulations are being applied in the last decade and 

demonstrative activities have started in recent years. Nevertheless, there is still a certain 

requirement for standardized methods to determine energy performance of buildings, to 

develop guides for achieving energy efficiency in buildings in Turkey. This area of 

knowledge can only develop with the cooperation of policy makers, experts and end-

users.  

Parallel to the current state in Turkey, this dissertation focuses mainly on one of 

the sub areas of energy efficiency/performance of buildings, specifically energy-

efficient retrofitting of buildings. Since energy-efficient retrofitting is itself a broad 

area, the dissertation is limited to energy-efficient retrofitting of public building 

envelopes. The dissertation focuses explicitly on the question of “How to retrofit?” and 

aims to construct a holistic approach to propose a precise guide for the energy-efficient 

retrofitting of public building envelopes, particularly in Turkey. 

The first and current chapter of the dissertation introduces the aim and scope of 

the study and general definitions and key points on the research area. With this chapter 
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it is possible to gain association to the problem statement and the components of the 

problem. 

In the second chapter, background studies on the research area are evaluated 

according to the main focus of the dissertation. The literature review is composed of 

three main parts. In the first part former studies are evaluated. In the second part 

directives and regulations that are restrictive on the subject area are summarized both in 

international and national level. In the third part, the studies in national context are 

summarized. 

The third chapter aims to define and execute the methodology simultaneously. 

The case study conducted to formulate the methodology is explained in steps/tasks 

comprehensively. The aim of this chapter is to demonstrate the proposed methodology 

in an initial functional frame.  

In the fourth chapter of the dissertation findings and analysis of the outcomes 

from methodology chapter (Chapter 3) will be discussed in detail and general results 

and discussion on the dissertation aims is be completed. 

The fifth, thus the final chapter of the dissertation summarizes the methodology 

proposed by this study and discusses the shortcomings of the dissertation and further 

study suggestions. 

 

1.1. Problem Definition, Aim and Scope of the Study 

 

1.1.1. Problem Statement 

 
World energy need has a rapid growth due to technological, demographical, and 

social developments. Overall energy consumption is mainly based on fossil fuels which 

are non-renewable and hazardous for the environment when combusted. For the last 

decades, the global concern is to decrease fossil fuel consumption for preservation of 

energy sources and environmental health.  

With the oil crisis in 1973 fossil fuel consumption became an important of the 

world agenda. In the following years, the emphasis on the energy conservation uniting 

with the emphasis of environmental sustainability, developed into a more effectively 

researched and evaluated topic. Consequently, research areas on decreasing the percent 

of energy consumed in buildings, integrating renewable energy technologies into 
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building design and systems, limiting the energy use for heating and cooling of 

buildings by providing necessary envelope measures, obtaining the optimal daylight for 

indoor environments, facilitating natural ventilation in buildings became more 

comprehensively examined and evaluated in today’s engineering and architectural 

disciplines (D’haeseleer, 2003). 

Increasing interest on decreasing energy consumption through buildings 

emerged the necessity of energy efficiency improvements of existing buildings, as well 

as energy-efficient new building designs. This interest developed into research areas 

such as monitoring and energy performance of existing buildings. With an evaluation in 

this framework, it is possible to suggest that Turkey needs to advance in these particular 

research areas, since the building stock, which dates before 2000, commonly lack 

thermal and moisture insulation. Therefore, this built stock consumes excessive energy 

for heating and cooling, almost 35 to 40 % of the total energy, and require systematical, 

methodological improvements especially for building envelope and installation systems 

(Özel, 2008). Regarding the insufficiencies and consumption patterns in Turkish 

building stock, energy efficiency improvements require a methodological approach to 

decrease the energy consumption through buildings. With the aim to achieve 

improvement measures that will help increasing energy efficiency, it is essential to 

define the set of applications to determine the existing energy performance of the 

building, and to suggest available interventions, to evaluate these interventions and to 

define criteria for final decision-making. 

Within building and construction sector in Turkey, the preventative measures for 

energy efficiency are not incorporated in the processes of design, production, and 

service. On the other hand, the strategies for reducing energy consumption in buildings 

became inputs of design and refurbishment in European Countries (Chiedwuk, 2002). A 

significant portion of existing building stock is not energy-efficient in Turkey, since 

misapplications and unawareness on the building standards cause buildings to have 

inefficient energy conservation values (Oral, G K, Unpublished). Building stock in 

Turkey requires great attention in terms of energy- efficiency because of the factors 

stated above. Besides, Turkey should adapt its legislations to the European Union 

process. Directive 2002/91/EC on the Energy Performance of Buildings, defines an 

explicit frame on the methodology to determine (a) the energy performance of 

buildings, (b) the minimum performance requirements for new buildings, and (c) the 

minimum performance requirements for renovation of buildings (EPBD, 2002). As the 
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legislation indicates its frame, it is essential to say that energy retrofitting should be 

done by renovating the building envelope and adapting heating/cooling installations up-

to-date. 

However, buildings are a complex and unique systems composed of physical, 

functional, and environmental characteristics. In cases where energy performance 

evaluation and/or retrofitting is necessary, it is crucial to apply methodological 

approaches which cover a holistic state of view, combined with national/international 

regulations and certifications. In Turkey, several regulations are being accredited with 

European Union regulations; yet there is still lack of methodology in terms of energy 

performance monitoring and energy-efficient improvements of buildings. Figure 5 

summarizes the problem in the framework of building, procedure and methodology. 

 

 

 

Figure 5. Problem statement 

Energy-efficient building retrofit research presupposes a variety of potentials for 

Turkish building stock and overall energy-efficiency measures in Turkey. The 

retrofitting projects in buildings may contribute significantly to decrease energy 

consumption for heating and cooling of buildings and thus to increase the thermal 

performance of these buildings. Additionally, as the indoor environmental quality 

improves, the occupant health, performance, and occupancy patterns evolve. Energy-

efficient building retrofit projects provide a variety of potentials, which might feasibly 
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be applied throughout a sensitive methodology, and may lead the development of new 

methodologies, technologies, and systems. 

Therefore this dissertation focuses on the necessity to formulate appropriate 

methodologies for energy-efficient improvements for the building envelope, particularly 

for public buildings in Turkey. The reasons for targeting public building stock can be 

listed as follows: 

• Typical the plan arrangement, especially use of cell-office system provides a 

level of generalization in evaluation. 

• Design and construction are completed through bidding process and in general 

the least bidder becomes the contractor. As a result, workmanship and detailing 

is negatively affected during construction process.  

• Energy efficiency improvements in public buildings may offer collaborative 

approaches between policy makers, experts and end-users. 

• Further demonstrations of energy efficiency improvements in public buildings 

can be a powerful tool to raise public awareness in terms of energy-efficient 

improvements of public buildings.  

 

1.1.2. Aim and Scope of the Study 

 
The dissertation “A method on energy-efficient retrofitting for existing building 

envelopes” aims to define a methodology for energy-efficient retrofitting of existing 

public building envelopes (roof, facades, floor on ground), which should be a guide for 

any further-planned retrofitting  actions for Turkish public building stock. The proposed 

methodology is constructed from a set of applications, which can be assigned regardless 

of case-specific building characteristics (such as physical properties of building 

envelope, climate etc.). 

Energy-efficient retrofitting of existing buildings is a complex system, where all 

building system and characteristics, environmental constraints differ from one building 

case to another. The necessity to develop a methodology, which helps to determine the 

certain weights affecting the energy consumption patterns of a unique building, is an 

inevitable task. However, the research area is wide in terms of limitations, information, 

and interrelations of complexity of retrofitting phenomena. Thus, besides the main aim 
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of this dissertation several complementary aims can be suggested, in means of defining 

the scope of the study. These are: 

• To exploit the crucial relationships in terms of energy consumption patterns 

between building, building element and installation design. 

• To emphasize the necessity for regulations and control systems in building 

design in terms of energy efficiency. 

• To assess the degree of degradation (effects of moisture or air leakage etc.) or 

insufficiency (misapplications through building design) in energy performance 

of a building. 

• To establish the relationships between the investment costs for an energy-

efficient retrofitting project and their payback in comparison with the expected 

decrease in energy bills. 

• To attract the attention to the importance of energy savings (in annual heating 

and cooling energy loads) after retrofitting. 

• To point out the importance of the quality of indoor environmental conditions.  

• To raise the awareness of the authorities (public and private), and building 

inhabitants on the need to achieve optimization in energy consumption in the 

building sector. 

 

1.2. General Definitions 

 
This section of the chapter endeavors to present a small glossary for the terms 

and concepts which will be mentioned throughout the thesis. The following definitions 

of terms and concepts rank respectively from broader concepts to more specific ones.  

 

1) Energy Performance of Buildings:  

In Directive on the Energy Performance of Buildings 2009/91/EC of the 

European Parliament, energy performance of buildings is defined as the amount of 

energy consumed or estimated for standardized use of the building, including heating, 

hot water heating, cooling, ventilation and lighting. Additional indicators which effect 

the energy performance of a building are insulation, installation characteristics, design 

and positioning in relation to climatic aspects, solar exposure and influence of 

neighboring structures, energy generation, and indoor climate (EPBD, 2002). As a 
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summary it is possible to state that energy performance of buildings is a numerical 

indicator which takes the energy consumption in consideration and expresses the level 

of performance of a building. For instance, CEN/TC 89 Thermal performance of 

buildings and building components asserts an overall indicator called “energy 

performance indicator (EP)” which represents (a) primary energy, (b) CO2 emissions 

and (c) delivered energy (CEN/TC89, 2006). 

 

2) Energy-Efficiency in Buildings: 

ASHRAE Applications Handbook 1999 defines energy-efficiency in buildings 

as the result of a set of improvements to obtain energy conservation within an energy 

management program. For existing buildings, energy conservation components are 

listed as existing building thermal performance upgrading and energy-efficiency 

improvement (ASHRAE, 1999). In the Energy Efficiency in Buildings Part B Booklet 

energy-efficiency is described as a part of the building procurement process, which can 

represent a long-term commitment to energy bills (CIBSE, 2004). Another report 

declares that there is great potential for energy conservation in building sector and 

energy-efficiency interventions are only economic and practical when a building is 

retrofitted or newly erected (IEE, 2003). According to the definitions above, it is clear 

that energy-efficiency is directly related with the opportunities and precautions taken to 

decrease life-cycle energy use of building. 

 

3) Thermal Performance of Buildings:  

The definition of the concept can be summarized as a calculated outcome of heat 

gain and loses (from installations, solar exposure and other heat generators), heat 

capacity of the building components and their heat transfer characteristics (CIBSE, 

2003; CEN/TC89, 2006). Buildings are expected to attain the defined minimum level of 

thermal performance measures, defined by local, national or international standards.  

 

4) Thermal Comfort:  

In ASHRAE Fundamentals Handbook 1997, thermal comfort is defined as 

condition of mind, which expresses satisfaction with the thermal environment. The 

indoor environmental measures should be calculated and controlled so that occupants' 

comfort is assured (CIBSE, 2006). Theoretically, three forms of heat transfer 

(conduction, convection, and radiation) should result in thermal neutrality to be able to 
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mention complete satisfactory with thermal comfort. However, in practice, many 

buildings do not reach this neutrality level, therefore additional service systems are 

required to maintain levels of thermal comfort (ASHRAE, 1997). 

 

5) Energy Audit:  

The concept of “energy auditing” usually refers to assess the energy consumed 

in a building’s all end uses by evaluating the existing data of consumption or utility 

bills. In broader explanation, it is the collected set of data to be analyzed and interpreted 

for determining the energy performance of a building or complex. Energy audit is 

carried out mostly before improvements for energy efficiency are started. It is regarded 

as a diagnostic tool to assess the existing level of energy performance of a building. 

Energy auditing may have different levels of detail. An overall energy audit refers to a 

quick audit with the collection of previous years’ utility bills. Instead of diagnosing 

special problematic points in the building, this type of audit helps to evaluate the overall 

energy consumption patterns of a building. Detailed energy audit targets the end-use 

consumption patterns of all building services (heating, cooling, ventilation, lighting and 

equipment energy use), climatic variables and occupancy patters as well. This kind of 

audit usually lasts for a full year covering all seasonal periods. Besides the consumption 

data, indoor environmental quality is also monitored. Data analysis from a detailed 

energy audit may suggest the problematic components of a building in scope of energy 

performance measures (CRES, 2000; Anıl Ahuja, 2004). 

 

6) Building Envelope:  

Building envelope can be defined as a skin, which separates the indoor 

environment from the outdoor environment and is expected to establish thermal 

comfort, visual comfort and acoustic comfort (Oral, Yener, & Bayazit, 2004), which 

consists of the opaque elements (exterior walls), glazing and windows, the roof and the 

ground floor slab. Thermo-physical characteristics of these elements of the building 

envelope are essential parameters in determining the overall energy performance of a 

building where most of the heat loses and heat gains occur through the building 

envelope, and these characteristics depend on several parameters such as thickness, 

density, heat conduction coefficients, presence of a cavity, and presence of insulation 

layers (Yannas, 1994; Oral, Yener, & Bayazit, 2004; Lollini, Barozzi, Fasano, Meroni, 

& Zinzi, 2006). 
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7) Building Installation Systems:  

Mechanical, electrical and sanitary systems can be regarded as the main building 

installation systems. Mechanical systems are utilized to provide indoor thermal comfort 

conditions at the pre-designed or user-required thermal comfort level. These mechanical 

systems may include heating systems, cooling systems, ventilation systems, and 

building automation systems (Brown & DeKay, 2000). In addition to the mechanical 

systems, sanitary services are important in terms of efficient distribution of hot water, 

utilization of rain water etc. (Hens, 2002). Finally it is important to introduce electrical 

services as a part of building installation systems, where lighting and equipment are 

directly related with the efficiency of electricity installations. 

 

8) Retrofitting:  

The concept is simply defined as “to provide (a jet, automobile, computer, or 

factory, for example) with parts, devices, or equipment not in existence or available at 

the time of original manufacture” or “to install or fit (a device or system, for example) 

for use in or on an existing structure, especially an older dwelling” (Dictionary, 2007).  

Both definitions points out that, a system constructed with the preliminary equipment 

and systems may require an additional support or system that can be integrated to the 

existing state to provide more efficient outcomes of that system. Retrofitting is a 

combined concept in terms of constituting all the individual concepts that are defined in 

the previous section. Decision-making process for a building retrofitting requires first 

an energy audit, and then determination of building energy performance and finally 

formulating a retrofitting approach. 

 

1.3. Conclusion 

 
Regarding the insufficiencies in Turkish building stock, energy efficiency 

improvements require a methodological approach to decrease the energy consumption 

through buildings. With the aim to achieve improvement measures that help increasing 

energy efficiency, it is essential to define the set of applications to determine the 

existing energy performance of the building, and to suggest available interventions, to 

evaluate these interventions and to define criteria for final decision-making. In the 

following chapters, dissertation provides a case study for the formulated methodology 
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for energy-efficient retrofitting of public buildings, whereas the main aim of this 

dissertation is to define a methodology for energy-efficient retrofitting of existing public 

building envelopes, which should be a guide for any further-planned retrofitting actions 

for Turkish public building stock.  
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CHAPTER 2 

 

LITERATURE REVIEW 

 
Literature review on the background of energy-efficient retrofitting of buildings 

will be evaluated in this chapter. Following sections of the chapter covers the following 

organization in presenting the background studies on the research area: (a) an overall 

analysis of the literature on building energy performance and energy-efficient 

retrofitting, (b) a focus on directives and regulations on building energy performance 

both in international and national context, and (c) energy performance and energy-

efficient retrofitting studies in Turkey. 

The literature on the research area which is reviewed in this chapter is presented 

in a chronological and comparative manner. The aim is to depict the level of research 

conducted in international and national field. The shortcomings and/or outstanding 

activities are potential research areas respectively to take as a model and/or to fulfill the 

gaps with further studies. Especially with the section concerned on research and 

regulative activities in Turkey, the problem statement of the dissertation will be 

supported explicitly.  

The first section of the literature review starts from the broad actions and 

research & development activities concerning primarily energy-efficiency, energy 

performance and energy-efficient retrofitting of buildings. The section aims to review 

all collaborative, co-operative actions in the research area, and then individual scientific 

research which is significant in the area and their categorical approaches will be 

evaluated in detail. The second section of the literature review focuses more on the 

directives and regulations in international and national context. The third section aims to 

illustrate the state-of-the-art in Turkey, after reviewing international research activities. 

Finally, the fourth section a conclusive analysis of the literature review will be 

presented. 
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2.1. Literature Review on Energy Performance and Energy-Efficient  

Retrofitting of Buildings 

 

2.1.1. Research Activities 

 
The very first attention on energy conservation issues dates back to early 1970’s, 

to the period when the first oil crisis stroke world agenda. The oil prices increased 

drastically and this price inflation caused oil to be one of the most valuable resources in 

the world (Barsky & Kilian, 2004). With this unexpected outbreak, reduction of fossil 

fuel consumption and their environmental impacts became a concern of discussions.  

Sustainability was first introduced, in 1987 with the Brundtland Report of the 

World Commission on Environment and Development. The well-known statement of 

the report: “the development that meets the needs of the present without compromising 

the ability of the future generations to meet their own needs” summarize the idea of 

sustainability in very general limits. Brundtland Report also promotes use of renewable 

energy sources and their utilization in the application of heating and cooling 

mechanisms in all possible energy-consuming systems (Brundtland, 1987). The report 

led to the first Earth Summit - the UN Conference on Environment and Development - 

at Rio de Janeiro in 1992. Agenda 21 was the production of this conference, which 

addressed sustainability, conservation of resources, and environmentally sensitive 

actions (Agenda21, 1992). 

As global actions such as Brundtland Report, Agenda 21 emphasized the vitality 

of sustainable development, many assemblies, conferences and development studies 

accelerated in 1990’s. In 1997 The Kyoto Protocol, a treaty of United Nations 

Framework Convention on Climate Change (UNFCCC) put forward the act of 

developing national programs to reduce greenhouse gas emissions. Greenhouse gases 

such as carbon dioxide influence the energy balance of the atmosphere and cause global 

warming, a significant change in climate with increase of average temperatures (UN, 

1998).  

Consequently, the cycle caused by combustion of non-renewable energy 

sources, release of carbon dioxide and global warming becomes crucial in sustainability 

point of view. Therefore, with above protocols and acts, all nations are expected to 

decrease non-renewable resource consumption as much as possible, and facilitate these 
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resources more in non-energy use (such as production of plastics etc.), and render the 

amount of greenhouse emissions to lower levels to protect climatic balance of the 

world. 

A further act emerged in 16 December 2002 European Parliament 2002/91 /EC 

on the Energy Performance of Buildings Directive (EPBD). The directive states that, 

increased energy efficiency through all sectors represents an important part of the 

policies and measures needed to fulfill Kyoto Protocol requirements, thus good levels of 

energy conservation and environmental protection became fundamental requirements of 

the European Union and the candidate countries. Therefore, research on energy-

efficiency of building sector, became a focus of the institutes, research centers in 

European Countries (EPBD, 2002). The directive suggests the following key issues in 

Article 1 to be achieved in design of the new buildings and improvement of the existing 

buildings: 

• The necessity of a general framework for a methodology to calculate integrated 

energy performance of buildings in national or regional levels. 

• The application of minimum requirements for energy performance for new 

buildings 

• The application of minimum requirements on the energy performance of large 

existing buildings that are subject to major renovation. 

• The necessity for energy certification of building. 

• The necessity of regular inspection of heating, cooling and ventilation systems, 

and particularly the assessment of heating installations older than 15 years old 

(EPBD, 2002). 

With the global key issues listed, it is possible to denote that energy 

performance of buildings became significant for EU countries, to fulfill the 

requirements of Kyoto Protocol, to achieve major energy savings in building sector and 

thus to decrease carbon dioxide emissions. As the directive emphasizes, one of the main 

concern of all EU countries put effort in defining a methodology for determination of 

energy performance of buildings. European Union, as the major medium offering 

energy efficiency policies and programs, advances the context of energy efficiency in 

buildings, which is promising in terms of policy making, potentially a considerable 

portion of the world population to contribute these policies, and the support of 
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technological improvements in energy-efficient knowledge and systems (Janssen, 

2004).  

Besides European Union actions, a very effective collaboration of twenty-eight 

industrialized countries, International Energy Agency (IEA, founded in 1974) is an 

autonomous agency which is linked with the Organization for Economic Co-operation 

and Development (OECD). The global focuses of IEA can be summarized as energy 

resources, technologies, efficiency, and statistics. IEA promotes scientific research and 

development activities on the mentioned focuses. The IEA (International Energy 

Agency) Energy Conservation in Buildings and Community Systems 

(ECBCS) Programme is a research and development program which started in late 

1970s. Main aim of the program is to promote research activities with a life span of 3 to 

4 years. The results of these research & development projects are published named as 

“annexes”. In further parts of the literature review the research belonging to this 

program will be referred as IEA Annexes (IEA, 2008).  

In 1989, THERMIE Programme was introduced and the intention of the 

program was to present energy-efficiency through demonstration projects. The target 

sector was industry, and the aim of the program was (a) to improve energy efficiency in 

demand and supply sectors, (b) to promote extensive utilization of renewable energy 

sources, (c) to encourage cleaner use of fossil fuels, and (d) to optimize utilization of the 

EU's oil and gas resources. In 1993, THERMIE Programme coupled with JOULE 

Programme of EU, and since then the program is known as JOULE/THERMIE 

Programme, which aims to encourage activities in the field of clean and efficient energy 

technologies. The Programme, with seventy-three sub-research reports and publications 

on rational use of energy, clean and renewable energy technologies, lasted until 1998 

(THERMIE, 2009; JOULE/THERMIE, 2009). 

In October 1991, SAVE Programme focusing on non-technical measures on 

energy efficiency was initiated by European Union, and lasted until 1995. SAVE 

Programme was dedicated extensively to encourage energy efficiency and energy-

saving behavior in industry, commerce, transport and domestic sector through policy 

measures, information, and demonstrative actions and the founding of local and regional 

energy management agencies (SAVE, 2005). Consequent to this programme, SAVE II 

was adopted by the Council in December 1996 (96/737/EC) for between 1996 and 

2000. In February 2000 SAVE was integrated into the Energy Framework Programme 

which consists of three different programs during period 1998 and 2002. In 2005, 
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European Commission prepared a report for the evaluation of SAVE and SAVE II 

Programmes (SAVE II, 2009). The report concludes with the following key points, 

which efficiently summarizes both the aim and outcomes of these two long-term 

programmes: 

• To stimulate energy efficiency measures in all sectors.  

• To encourage investments in energy conservation by public and private 

consumers and by industry 

• To create framework conditions for improving the energy intensity of end-use 

consumption. (Projects such as labeling, methodologies, networks etc.) (SAVE 

II, 2009). 

Parallel to above projects, CADDET (Center for the Analysis and Dissemination 

of Demonstrated Energy Technologies), a center supported by collaboration of IEA and 

OECD, started research activities conducted on energy-efficiency, energy saving in 

buildings, and energy management, and on energy-efficient retrofitting of buildings. In 

October 1992, CADDET published Analyses Series No. 8 Learning from experiences 

with Energy Efficient Retrofitting of Office Buildings, followed by Analyses Series No. 

18 Learning from experiences with Energy Efficient Retrofitting of Residential 

Buildings in March 1996. These two analyses reports were both focusing on the concept 

of energy-efficient retrofitting. 

CADDET Analyses Series No. 8 aims to explain possible retrofit procedures for 

office buildings since commercial buildings -office buildings in particular- exemplify 

higher energy consumption than residential buildings. The analyses report focuses on 

two main factors to be evaluated when retrofitting or refurbishment of an office building 

is necessary: (1) levels of current energy use - which can be detected through an energy 

audit and (2) reliable estimates of future savings after the implementation of a 

retrofitting/refurbishment procedure (Abel, Aronson, Jagemar, & Nilsson, 1992). The 

report has a clear methodology which aims to determine the existing situation of the 

building by energy auditing, then to propose refurbishment options including the most 

important factors related to a building's energy efficiency and then to assess the 

outcomes of these options by simulation and cost control including net present value 

(NPV) and simple pay back model. Through this methodology, the research targets 

different office buildings in three different climates from Stockholm (Sweden), 

Washington (USA), Kagoshima (Japan) (Abel, Aronson, Jagemar, & Nilsson, 1992). 
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The second CADDET report, Analyses Series No.18 aims to establish an 

information ground for residential property owners, administrators, tenants and 

governments to increase the awareness of the advantages of retrofitting the residential 

stock. The primary factors evaluated in retrofitting of residential buildings are the 

quality, age, structure of the building, existence of an acceptable indoor climate, and 

cost of energy supplied to a building. The main concern of the report can be 

summarized as decreasing energy usage in residential buildings by improving thermal 

efficiency and indoor comfort levels of that building (Nilsson, Aronsson, & Gusten, 

1996). The analysis follows a brief methodology starting with the determination of the 

current condition of the existing residential buildings. Then proposes a retrofitting 

system for the envelope and installation systems, which is configured according to the 

necessity of the level of intervention the building requires. The interventions can be 

either on the building envelope or on the installation systems, or both. The next step 

requires measurements on the retrofitted buildings and the comparison of the initial and 

retrofitted values. Finally, the economics of retrofitting is evaluated in terms of 

investment and payback (Nilsson, Aronsson, & Gusten, 1996) 

Complementary two projects from JOULE III Programme of 3rd and 4th 

Framework Programs of the European Union, EPIQR (Energy Performance and Indoor 

Environmental Quality Retrofit) and the following research action TOBUS (Tool for 

Selecting Office Building Upgrading Solutions) are important in terms of offering a 

decision-making methodology for building retrofits and computer software for 

diagnosis of the existing building conditions. EPIQR focuses on residential buildings, 

whereas the scope of TOBUS is office buildings (Allehaux & Tessier, 2002). 

In detail, EPIQR is a two-year European research project (1998-2000), involving 

seven research institutions, with the objective to evaluate physical state of degradation 

of building elements and services, with respect to energy performance, energy 

consumption, and the indoor environmental quality. It is a methodology and a software 

tool for building audit, to describe the existing state of a residential building (older than 

20 years) particularly on the construction and function of the building elements (such as 

envelope, mechanical installations, sanitary), energy consumption patterns, and quality 

of the indoor environment (TOBUS, 2007; Balaras, Droutsa, Argiriou, & 

Asimakopoulos, 2000; Bluyssen & Cox, 2002). The methodology in EPIQR (1998-

2000) is constructed with following steps: (1) diagnosis stage in which the building 

element deteriorations are determined and corresponding refurbishment necessities are 
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described, (2) processing occupant questionnaire results statistically to highlight the link 

between the occupant complaints and necessary refurbishment works, (3) calculation of 

energy balance of the building according to the European prEN832 method, (4) 

computational refurbishment scenario that allows the user to build up different 

alternatives, including investment information, and (5) reporting the present state of the 

building and its energy balance and the expected results of refurbishment scenarios 

(Flourentzos, Droutsa, & Wittchen, 2000). 

TOBUS follows a similar methodology as EPIQR which aims to offer a tool for 

the evaluation of retrofitting needs of office buildings to estimate the refurbishment 

costs that meet the needs of improved energy performance and indoor environmental 

conditions. TOBUS software evaluates buildings in four major subject areas such as, the 

physical state of degradation of building elements, functional obsolescence of building 

services, energy consumption, and indoor environmental quality. This evaluation itself 

constitutes the exact elements of a decision-making process for refurbishment of office 

buildings (Caccavelli & Gugerli, 2002; Brandt & Rasmussen, 2002). 

IEA ECBCS Annex 36 - Retrofitting in Educational Buildings - REDUCE 25 

Case Study Reports from 10 different Countries is one of the examples to these research 

projects which focus on the retrofitting actions on educational buildings from 1999 to 

2003. The aim of the Annex is to develop a tool for the education sector in order to take 

the correct actions during retrofitting projects. The research report argues that there is a 

lack of understanding in what has to be done when a retrofitting project should be 

proposed, and ineffective decisions can be given during the retrofit process. Therefore, 

the research proposes a common methodology for the estimation of integrated energy 

performance of buildings and the minimum standards, which should be applied for the 

construction of a new educational building or renovation of existing educational 

buildings (Erhorn, Mroz, Mørck, Schmidt, Schoff, & Thomsen, 2008; Kluttig, Erhorn, 

& Mørck, 2003). 

Annex 36 focuses on the interventions on building envelope, heating systems, 

ventilation systems, solar control and shading, cooling techniques, lighting and 

electrical appliances and the management of the listed features. With a broad range of 

factors, the research compromises a holistic building retrofitting approach. Additionally 

a tool called Energy Concept Adviser (ECA) was introduced by Annex 36, which has 

been developed to provide advice on energy-efficient retrofit measures for the use of 

decision makers (Mørck & Erhorn, 2003). 
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BRITA in PuBs (Project Framework 6-Bringing Retrofit Innovation to the 

Application of Public Buildings) started in 2000 and ongoing within EU 6th Framework 

Programme, is based on decision-making models to consider financial mechanisms in 

European Union member countries for low energy retrofit of public buildings. Initially, 

the project determines eight case retrofits of different types of public buildings (such as 

colleges, cultural centers etc.) in four European regions (North, Central, South, East). 

Subsequently, the research concerns on socio-economic approach that focuses on the 

necessities in real project planning, financing strategies, the development of design 

strategy, and a quality control-tool box to secure a good long-term performance of 

buildings and systems (Citterio, et al., 2005; Kaklauskas, Zavadskas, & Raslanas, 

2005). The aim of the project is to increase the market penetration of innovative and 

effective retrofit solutions to improve energy efficiency and promoting the 

implementation of renewable technologies, with moderate additional costs.   The 

technology applications include measures at the building envelope like improved 

insulation and high-efficient windows, advanced ventilation concepts like hybrid 

systems, integrated supply technologies like combined heat and power units, energy-

efficient lighting and integrated solar application (Citterio, et al., 2005). 

The consequent Programme launched by EC is the Energy Framework 

Programme (1998-2002) which accommodates three sub-programmes (a) ALTENER II, 

(b) SAVE II, and (c) SYNERGY. This governing programme introduces two other 

programmes except SAVE. First one is ALTENER, operated between 1993 and 1997, 

aimed to increase the use and market share of renewable energy technologies. 

Conceptually, the programme was non-technical similar to SAVE, with the purposes to 

encourage activities in renewable energy utilization in all sectors. The second is the 

SYNERGY Programme (1998-2002), which aims to create dialogue and exchanges of 

information on energy policy. Unlike the other two component programs of the Energy 

Framework Programme, SYNERGY is more general in terms of its concern on policy 

making (CORDIS, 2002). The Energy Framework Programme has been superseded by 

the Intelligent Energy - Europe Programme (ManagEnergy, 2009a). 

ManagEnergy, an umbrella initiative of European Commission started in March 

2002, with the objective to provide support for the actors working on energy efficiency 

and renewable energies at the local and regional level. It is an important tool as a 

database for all European Union actions concerning energy, and useful in terms of 

finding partners for projects from different organizations and/or agencies 
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(ManagEnergy, 2009b). This umbrella initiative covers Intelligent Energy - Europe 

Programme, Sixth Framework Programme (FP6), Seventh Framework Programme 

(FP7), and other thematic programs of European Union initiatives. For instance, Eco-

Buildings Program, an energy demonstration proposal of European Commission, which 

aims to develop innovative approaches for the design, construction, and operation of 

new and retrofitted buildings is a part of ManagEnergy and projects developed under 

this program are based on combination of two approaches: to reduce energy demand for 

heating, cooling and lighting and to supply energy necessary for heating and cooling 

and lighting efficiently (preferably based on renewable energy sources) (Ecobuildings, 

2007; TUBITAK, 2007). Several projects such as BRITA in PuBs, DEMOHOUSE, 

ECO-Culture, SARA, and CONCERTO are components of the Eco-Buildings Program.  

Another International Energy Agency annex, IEA ECBCS Annex 32 - Integral 

Building Envelope Performance Assessment, presented in 2003, aims to formulate a 

methodology for performance assessment to guide the initial design and the evaluation 

process of building envelopes by realizing significant energy savings and environmental 

and indoor comfort benefits. It is composed in two principal subtasks. Subtask A 

proposes a rational strategy for optimizing building envelopes by a comprehensive 

assessment methodology based on performance criteria. Subtask B is designed to test 

and evaluate the methodology proposed in Subtask A by case studies (Hendriks & 

Hens, 2000; Svendsen, Rudbeck, Stopp, & Makela, 2000).  

Less acknowledged, however important research activities are also worth 

mentioning in the review. Such as DEMOHOUSE (Design and Management Options 

for improving the energy performances of Housing), an FP6 project, started in 2004 and 

ongoing. The core argument of the project is that only 2% of existing building stock is 

renewed annually and there exists a great potential of reduction of energy consumption 

based on non-renewable energy sources and integrating renewable energy sources in the 

operation of buildings. The project focuses on developing a decision-making tool, as 

well as other projects conducted in this research area (Kaan & Koene, 2005). 

INTEREB (Integrated Energy Retrofitting in Buildings) is a collaborative 

project of four countries (Italy, France, Poland, and Bulgaria) with a content to meet the 

requirements of EC’s Directive on Energy Performance of Buildings (Berardi, et al., 

2005). The aim of INTEREB is to promote energy retrofitting measures within 

residential building retrofit (INTEREB, 2007; Berardi, et al., 2005). The project reviews 

the existing situation in four countries with regard to energy consumption measures 



23 
 

through building sector, the residential building typologies, country specific laws and 

regulations and their effect on the expected energy conservation through retrofitting 

actions. The methodology can be summarized in steps as; determination of building 

stock characteristics, definition of case and area specific retrofit intervention 

alternatives, determination of size and characteristics of thermal insulation and retrofits, 

calculation of final heat transmission coefficient (U-value), evaluation of potential 

energy savings, and finally evaluation of necessary investments to carry out the 

measures. Necessary adaptations originating from changing circumstances in four 

different countries are included in the methodology (Berardi, et al., 2005). 

 

2.1.2. Publications 

 
Besides the research activities reviewed in the previous section, it is necessary to 

quote significant publications, independent or from collaborative studies in the last 

decade. Once more, the review follows a chronological flow in reference, and 

introduces the main methodological aspects briefly. 

In 2000 Jaggs and Palmer published a paper concerning EPIQR methodology, 

emphasizing the necessity to reduce energy consumption of apartment buildings in 

Europe. The publication summarizes the main aspects EPIQR focused on, which are 

indoor environmental quality (IEQ), energy use, costs and retrofit measures. It is 

claimed that EPIQR methodology has the capacity to suggest suitable retrofitting 

scenarios for different building components (Jaggs & Palmer, 2000).  

Likewise, Caccavelli and Gugerli (2002) and Wittchen and Brandt (2002) 

discussed TOBUS methodology in terms of its characteristic on decision-making 

process for energy-efficient retrofitting. Diagnosis and actions are the two main 

components in TOBUS methodology that provide the range of degree of degradation for 

building elements and refurbishment and upgrading options. According to Caccavelli 

and Gugerli (2002), a multi-criteria decision-making coupled with owner opinion and 

expert intuition is the key concept of the methodology in defining a retrofitting strategy 

for public buildings. The publication emphasizes the importance of the strength gained 

with multi-criteria decision-making methodology, and the essentiality of a structured 

diagnosis to observe energy-efficient retrofitting as a holistic process covering 
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deterioration, functional obsolescence, energy consumption and indoor environmental 

quality (IEQ). 

In 2002, another publication by Flourentzou and Roulet, concentrates on EPIQR 

methodology and denotes the importance of multi-criteria methodologies, instead of 

systematic approaches which usually depends on the free and intuitive choices of the 

expert (Flourentzou & Roulet, 2002). 

Dascalaki and Santamouris (2002) pointed out the necessity of energy audits, 

building energy monitoring, and the potentials of retrofitting scenarios in regard to 

OFFICE Project funded by EU. The paper provides an analytical description of the 

Project, particularly covering the types of possible retrofitting scenarios such as: (a) 

actions to improve envelope of the building, (b) actions for reduction and/or elimination 

of air conditioning systems, (c) actions to decrease artificial lighting consumption, and 

(d) actions for improving efficiency of building installation systems. All scenarios are 

defined with possible sub-interventions, which can be applied independently or as 

packages according to the relative measures and financial possibilities. Similarly, 

Hestnes and Kofoed (2002) focuses on the same project (OFFICE) emphasizing the 

comparison of retrofitting measures according to the above listed scenarios which were 

applied to case buildings from different European Countries. As a conclusion, an 

estimation of total energy savings was assessed, which reports that the improvements on 

10 case buildings would result to rank the retrofitted buildings in the same category 

with new buildings in terms of regulatory limitations. 

A study focusing on retrofitting potential of residential buildings by Al-Ragom 

(2003) suggests the necessity of retrofitting measures for residential buildings which are 

older than 15 years old in Kuwait with hot and arid climate. To point out the optimal 

retrofitting scenario, several envelope retrofitting proposals were produced including 

glazing improvements, different wall and/or roof insulations and their combinations. 

The evaluation of these proposals were made according to their thermal performance 

and cost benefit analysis in Kuwaiti context. As a result the study suggests the possible 

energy savings through residential sector with efficient retrofitting measures. 

In 2004, Rey defined the notion of a retrofitting strategy as a set of interventions 

formed by a consistent architectural attitude (interventions on the building envelope) 

and technical optimizations (interventions on the installation systems) in the publication 

“Office building retrofitting strategies: multi-criteria approach of an architectural and 

technical issue”. Rey identifies three main types of retrofitting strategies: (a) the 
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stabilization strategy (STA), as a set of interventions that do not fundamentally modify 

the building elements or its appearance, (b) the substitution strategy (SUB), as the 

complete change of building envelope thus the appearance of the building, and (c) the 

double-skin façade strategy (DSF) as a strategy which partially stabilizes existing 

building envelope but adds a new glass skin. For evaluation of these strategies the 

author defines a set of criteria as follows: (1) environmental criteria: annual energy use, 

annual electricity use, annual emissions (2) socio-cultural criteria: thermal comfort, 

acoustic comfort, visual comfort, (3) economic criteria: renovation costs, annual 

maintenance costs. Rey evaluates all strategies corresponding to all criteria with a 

mathematical algorithm to conclude the research for selection of best possible 

retrofitting scenario (Rey, 2004). 

A different study by Botsaris and Prebezanos (2004) aims to propose a method 

for certification of energy consumption of a building through thermal energy audit. The 

method simply builds itself upon temperature differences between indoor and outdoor, 

occupant behavior, to simulate heat losses of a building in mathematical interpretation. 

Kaklauskas, Zavadskas, and Raslanas (2005) propose a multiple criteria analysis 

for the realization of an efficient building retrofitting in correspondence with all the 

unique factors that affect a building. The authors suggest a multi-variant design for 

retrofitting proposals with a wide range of intervention options (window, wall, roof 

improvements etc.) and evaluate these options according to both qualitative and 

quantitative criteria (such as cost, aesthetics, comfort, quality, etc.). The study is 

important in terms of serious integration of qualitative criteria and the number of 

alternatives evaluated in the model. 

Another article from Verbeeck and Hens (2005) develops a methodology to 

evaluate the cost and benefit for retrofitted dwellings. The research focuses on the 

analysis of the degree of retrofitting, whether obtaining the maximum thermal comfort 

conditions through retrofitting is economically viable. Therefore, a set of parameters are 

defined to assess the weights of the interventions to be done in order to retrofit a 

building. This systematic approach aims to define a retrofitting strategy with limited 

investment, to obtain economic benefit at long term and thus the implementation of the 

energy saving interventions can be spread over time, starting from the most essential. 

Diakaki, Grigoroudis, and Kolokotsa (2008) discuss that, for improvement of 

energy efficiency in buildings through decision-making process, it is essential to 

evaluate many available options for achieving targeted savings without the need for 
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simulation, multi-criteria decision analysis techniques, etc. The authors propose a 

feasibility approach for glazing types, insulation types and their combinations, with a 

multi-objective approach. However, in conclusion it is stated that when energy-efficient 

improvement is the main problem, in real world there are difficulties contradicting the 

methodology. The authors as well denote that the research needs more detailed 

investigations, in terms of generalizing the approach to be a stand-alone tool for 

facilitating in energy-efficient improvements of buildings. 

A recent publication by Juan, Gao, and Wang (2009) treat the problem in a 

different systematical approach, which first sets the criteria to be achieved then defines 

the sub-criteria under these main criteria group, and finally proposes assessment items 

in detail. The main criteria set in the research are sustainability of the site, energy 

efficiency, water efficiency, materials and resources, and indoor environmental quality. 

An example for sub criteria under the group of energy efficiency can be summarized as 

improvement of openings, thermal and moisture protection etc. More in detail the 

assessment items belong to these sub-criteria can be listed as orientation and area of 

openings, solar shading, daylight etc. To execute this decision-making proposal, it is 

necessary to score each assessment item in the existing situation and in the improved 

situation. The overall improved score helps to evaluate the effect of improvements on 

the total consumption.  

 

2.1.3. Critical Evaluation of the Literature Review 

 
Up to this point of the review, collaborative and/or individual research activities 

are assessed in detail. The review itself points out that a wide range of research on 

energy performance and energy-efficient retrofitting in building sector became 

significant for the last 20 years. The studies mentioned above are outstanding research 

examples that help to demonstrate the common concerns on the subject and can be 

broadened. 

For a critical evaluation of the literature review it is necessary to summarize the 

common components evaluated in the literature. 

• Determination of the necessity to retrofit existing buildings: The question of 

how to determine the necessity for energy-efficient retrofitting is a common 

question in almost all research quoted in the previous sections. The answers to 
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this question range from walkthrough diagnosis of a building to extensive 

energy performance audits. Whichever tool is used, the determination should 

cover to highlight the existence of lack of indoor thermal comfort and 

environmental quality, high energy bills, high maintenance costs etc. 

(Zavadskas, Kaklauskas, & Kvederyte, 2004). It is necessary to keep in mind 

that energy-efficient retrofitting is not only a precaution taken against decreasing 

energy consumption, as well has impacts on ecology, social life and work 

performance.  

• Evaluation of quantitative and qualitative factors: The evaluation of the occupant 

perception of indoor thermal properties should be gathered through qualitative 

surveys to support the quantitative results gathered by energy audit 

measurements in the building subject to a retrofitting action (Butala & Novak, 

1999). 

• Defining a methodology for energy-efficient retrofitting of buildings: The main 

concern of reviewed literature on energy-efficient retrofitting of buildings is to 

formulate methodology for buildings, where influences on each building may 

depend on different parameters and effects from its context. It is clear that 

developing an optimal methodology is still the main problem of this research 

area. 

• Generation of retrofitting scenarios: Buildings are complex systems with 

architectural, mechanical, environmental, and social aspects. Therefore, 

generation of retrofitting scenarios is one of the main issues the literature 

focuses on, with the question of how to generate effective scenarios. This 

question is answered in some cases with the expertise and intuition of the 

decision maker, however to obtain a more scientific approach it is necessary to 

provide a ground for retrofitting alternatives in the frame of expected outcomes 

and weight of factors that affect these outcomes. 

• Codes and Standards: For each context, the codes and standards should lead a 

base design scenario, if not fulfilled by the subject building. In case of 

inadequacy it is necessary to follow appropriate international guidelines to 

contribute for evolution of national/regional standards.  
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The general shortcomings in literature on energy-efficient retrofitting of existing 

buildings can be summarized as: 

• Perception of indoor thermal comfort and occupancy patterns should be 

surveyed in detail for assessment of a discomfort and relatively the energy 

consumption patterns. 

• The methodology for energy-efficient retrofitting is a contextual issue where 

climate, occupant needs, regulations, and building physics change from context 

to context, hence it is necessary to adopt applied methodologies or create 

appropriate approaches. 

• Many of the research activities are in demonstrative level with a support of 

policy makers and/or stakeholders, however realization of energy-efficient 

retrofitting of buildings need to be generalized in all building sectors to achieve 

targeted energy savings and to decrease CO2 emissions as required in Kyoto 

Protocol. 

 

2.2. Directive and Regulations on Building Energy Performance 

 
In this section, the purpose is to review the directives, regulations and related 

implementations on energy performance and efficiency of buildings. The first part 

focuses on the current state in EU countries, specifically on Directive on Energy 

Performance of Buildings (2002/91/EC) of European Commission and its realization in 

different countries. The second part concentrates on Turkey, considering similar 

directives and regulations that mandate the energy performance and efficiency measures 

in buildings. 

 

2.2.1. European Directives and Regulations 

 
Energy Performance of Buildings Directive (2002/91EC) of the European 

Parliament and of the Council is the major umbrella document that legally binds the 

improvement activities for energy efficiency in buildings. The directive aims to propose 

a framework with two main key issues. The first one is the protection of the 

environment and natural resources, and the second one is decreasing energy 
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consumption through building sector to reduce energy demand of the EU countries 

(EPBD, 2002). 

To achieve these two main key issues, the Directive declares that there is certain 

necessity for methodological calculation of energy performance of buildings and 

development of standards directly considering building energy use and systems. The 

Directive focuses on renovation of existing buildings as well as energy-efficient new 

building designs. With a total of 16 articles the Directive sets energy performance 

criteria for buildings in regard to physical characteristics and building services (EPBD, 

2002). 

In Article 1 main objectives of the Directive is listed as follows: 

• the general framework for a methodology of calculation of the integrated energy 

performance of buildings; 

• the application of minimum requirements on the energy performance of new 

buildings; 

• the application of minimum requirements on the energy performance of large 

existing buildings that are subject to major renovation; 

• energy certification of buildings; and 

• regular inspection of boilers and of air-conditioning systems in buildings and in 

addition an assessment of the heating installation in which the boilers are more 

than 15 years old. 

Article 2 gives definitions on the general concepts regarding energy performance 

of buildings. The following two articles (Article 3 and 4) denote the importance of 

formulating a methodology on national/regional level, in respect to standards and norms 

in Member State legislation, and the importance of setting energy performance 

requirements (EPBD, 2002). 

Articles 5 and 6 (respectively for new and existing buildings) point out the 

building systems and components where necessary measures for minimum energy 

performance should be taken.  Consequent article emphasizes the necessity of energy 

certificates for buildings, which are mandatory for construction, sales or renting (Article 

7). The certificates differ for residential and commercial/public buildings, and their 

validity differs, however cannot exceed 10 years. Additionally the range of indoor 

temperatures and climatic factors should be included in the certificate reports (EPBD, 

2002). 
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The focus of articles 8 and 9 is on building installation systems. Article 8 

particularly targets heating installations and propose regular inspection of boilers which 

are especially run by non-renewable liquid or solid fuels. On the other hand, Article 9 

requires regular inspection of air conditioning systems. Consequently, as Article 10 

suggests the necessity of independent qualified and/or accredited experts, Article 11 

emphasizes complementary measures referring to renovation should be proposed as 

general incentives for further energy efficiency measures. Besides the applicative 

actions provided in the previous articles, Article 12 promotes the necessity to inform 

building users about energy performance through community campaigns and programs. 

The following latter 4 articles focus on the dissemination and application of the 

framework (EPBD, 2002). 

In summary, as a result of the efforts in improving energy performance and 

energy efficiency in buildings since early 1990’s, with the announcement of EPBD 

member states became responsible for implementing energy performance evaluation 

method and necessary preventative measures. To see the processes in implementation of 

EPBD, it is possible to make a country-specific evaluation in respect to achieved levels 

on development of regulations, standards and methodologies emphasized by the 

Directive. For this evaluation eight member countries of the European Union can be 

reviewed to make an assessment for implementation of EPBD. 

In Austria, before the implementation of the EPBD, The Energy Action 

Programme was started in 1993, aiming to provide energy efficiency measures and 

reduce country’s energy consumption intensity. The programme has been executed in 

nine autonomous provinces, achieving a goal of 70.000 energy performance certificates 

during the period until EPBD was in action. However, with EPBD, these certificates 

require revision. Therefore Austria announced OIB Directive 6 (Osterreichisches 

Institut für Bautechnik) parallel to EPBD, and since January 2009 revised energy 

certificates became mandatory for building construction, sales or renting. Austrian 

norms suggest energy performance indices for new and existing buildings, and the 

calculation procedures for energy demand is based on CEN Standards. Experts in 

energy performance of buildings are being accredited through special training courses. 

In general, the country aims to reduce energy consumption through buildings, 1 % per 

year and render CO2 emissions by 4 million tons per year. Additionally, the 

establishment of a national standard for energy certificates is well advanced (Jilek, 

2008; Janssen, 2004) 
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In Belgium, three different regions apply EPBD requirements individually. 

Flemish Region is more advanced in terms of necessary measures. The insulation 

measures were standardized with K55 standard in 1991 and Walloon Region approved 

this standard in 1997. Prior to EPBD, the country targeted to implement measures to 

improve energy efficiency with a national programme in 1994 and the major concern 

was reduction of CO2 emissions. In 2001, the goals were revised and the target 

reduction in greenhouse gas emissions aimed for 2008-2012 period was 7.5 % less than 

1990 levels. The country started implementing EPBD in 2004. The calculation 

procedure is according to CEN Standards and energy certification of buildings is active 

in the country. Energy performance requirements are defined in national standards as K-

value which corresponds to overall thermal insulation of a building envelope and E-

value which corresponds to energy performance level of a building. The evaluation of 

energy performance for residential buildings became feasible for home owners, with 

freely accessible simplified software defined according to the regulations in Belgium. In 

the beginning of 2009 inspections of boilers and air-conditioning systems started by 

qualified technicians (Roelens, Piers, & Fourez, 2008; Janssen, 2004) 

Denmark published the Action Plan for Energy in 1996, and revised this plan in 

the beginning of 2005 with the principle to prioritize EU initiatives. In June 2005, 

Denmark endorsed a new law on Energy Savings in Buildings as an implementation of 

EPBD. The Danish calculation procedure is based on “SBI-Direction 213: Energy 

Demand in Buildings”, including thermal bridges, solar gains, natural ventilation, 

lighting, boiler efficiency etc. Requirements for new and existing buildings are 

integrated to Danish Building Regulations with the objective to achieve goals EPBD 

proposed. Energy certificate of buildings cover new constructions, sales and renting of 

buildings and is given by trained energy consultants who are as well responsible for 

determining energy saving measures in immediate and extensive feasible energy saving 

measures. Energy labels are valid for only five years in residential sector. Since 2006, 

Denmark aims to decrease energy requirements by 25 to 30% in the best possible period 

and a further decrease of 25% is proposed until 2020 (Aggerholm, 2008; Janssen, 

2004). 

France announced a national energy efficiency plan in 2000 with the aim to 

reduce greenhouse gas emissions, energy consumption and enhance the use of 

renewable energy. Consequent to EPBD, France published a program law defining the 

scope of energy policy with the purpose of transferring EPBD requirements into French 
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legislation in 2005. In 2006, both calculation procedures and requirements for new and 

existing buildings were revised by building codes and standards. Certifications cover 

energy consumption and the greenhouse effect of this consumption of buildings. 

Inspection of installation systems are still under regulative discussions (Roger, 2008; 

Janssen, 2004) 

 In Germany, EPBD aspects started being implemented by Energy Saving 

Regulation (Energieeinsparverordnung) in 2002. Calculation methodology, new 

building and refurbishment measures became obligatory with this regulation. However, 

energy certification and inspection of installations requirements were integrated into 

Energy Saving Regulation 2007. The necessity of re-arranging the level of calculation 

and measure requirements in accordance with certification and inspections were 

completed in 2008 and set in action with the 2009 version of the Regulation. Germany 

plans to revise the Regulation in 2012 along with the realization level of its level of 

implementation and effectiveness (Schettler-Köhler, 2008). 

Greece regulated the process of setting regulations in line with EPBD in terms of 

design and inspection principles only in the beginning of 2009. Development of 

calculation procedures, building requirements, building certification, and inspection of 

installation systems is an ongoing procedure (Sofronis, 2008; Janssen, 2004). 

Italy set goals of energy efficiency and conservation with National Energy Plan 

(NEP’98) in 1998. EPBD accreditation started with a first Legislative Decree in 2005 

and revised several times until 2008. Integration of calculation methodologies and 

minimum requirements for cooling installation systems is yet incomplete in 

Legislations. Italy aims to fill the gaps on calculation methods and regulations and 

additionally integrate the use of renewable energy and monitoring system for energy 

certification of buildings (Antinucci, 2008). 

In Netherlands, energy conservation was regarded high priority since Second 

Memorandum on Energy Performance in 1993. EPBD implementations where 

integrated into “Decree Energy Performance of Buildings (BEG) and Regulation on 

Energy Performance of Buildings (REG) in 2006. Since the beginning of 2008, energy 

performance certificates are obligatory in case of building sales or rent. Calculation 

methodology for new buildings is Energy Performance Standard (EPN) which is in use 

since 1995. For existing buildings Energy Performance Advice (EPA) is simplified and 

enhanced and in use since 2006. Inspection of boilers and air conditioning systems are 
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fully implemented and community campaigns on overall energy issues promote the 

consumer information and awareness (van Ekerschot & Heinemans, 2008). 

From the review of these eight countries it is possible to point out that EPBD as 

an umbrella document legalizes the main energy efficiency measures in buildings. 

Several EU countries are more developed in implementing and achieving the results of 

these measures, while a number of countries are still in progress of accrediting the 

national regulations and legislations. Prone to these efforts of EU countries, the goals on 

reduction of energy consumption, greenhouse gas emissions and energy-efficient 

rehabilitation of the building stock are closer accomplishments that are probable to 

conclude in success. 

 

2.2.2. Turkish Directives and Regulations 

 
Turkey, as the main context of the dissertation, became mostly dependent on 

importing energy sources (72%), since utilization of renewable energy sources is still 

limited with the lack of necessary regulations and expertise, and non-renewable sources 

are under risk of exhaustion. Thus, the energy need of Turkey has been increasing since 

1980s (Figure 6) and Turkey started to import oil and gas from other countries. In 

addition, Figure 7 indicates that Turkey is mainly fossil fuel dependent as the primary 

energy source (MENR, 2007). 

 

Figure 6. Total energy consumption in Turkey 1980-2006  
(Source: MENR 2007) 
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Figure 7. Primary energy resource consumption in Turkey 1980-2006  
(Source: MENR 2007) 

Turkey has a relatively young building stock, largely dated between 1950 and 

2008, and building energy related regulations were not applied properly until the year 

2000. Misapplications in building design and construction are based either on unskilled 

workers or lack in control mechanisms. In most cases, climatic considerations were 

disregarded during design phase. Coupled with the idea of “invest less/build more”, 

serious energy related problems are observed during service life of buildings. 

On the other hand, Turkey has diverse climatic conditions through the country. 

In general, coastal parts of Turkey have milder climates with cool and rainy winters and 

hot and dry summers. The rest of Turkey has severely cold winters and extremely hot 

and dry summers (TSMS, 2009). These diverse climatic conditions require different 

building energy efficiency regulations, which could serve as a base guide in building 

design. 

Turkey started taking measures on energy consumption in 1970s, due to the 

increasing trend in energy consumption; however the regulation that concerns building 

stock came in 1984, as “Regulation on Fuel Efficiency in Existing Buildings through 

Thermal Insulation and Reduction of Air Pollution”. However, in 1984 there was no 

standardization for thermal insulation in buildings, which caused this regulation to be 

inapplicable in most cases. Only in 1989, the Turkish Standard 825 – Thermal 

Insulation in Buildings was set in action. In 1998, the standard was revised by dividing 
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Turkey in four climatic zones and with a static method to calculate annual energy 

demand for heating. Recent version of TS 825 that became mandatory in June 14th, 

2000, targets decreasing heating energy demand and calculation of energy saving 

potentials in buildings.  Therefore, an evaluation in this framework points out that in 

Turkey, building stock dating before year 2000, commonly lack thermal and moisture 

insulation. The buildings that date back before year 2000 consume more energy for 

heating and cooling, and require systematical, methodological improvements especially 

for building envelope and installation systems. In Figure 8 it is possible to see the 

statistics of Ministry of Energy and Natural Resources (MENR) on the average energy 

consumption of buildings as per cent in total, which is almost very high with a ratio of 

40%. This high pattern of energy consumption in buildings is directly related to lack of 

thermal insulation, inefficiency of heating and cooling systems, disregarding 

environmental and climatic factors in building design etc.  

In this context where residential & commercial building sector holds nearly 40% 

of the whole energy consumption, there is significant need to decrease energy 

consumption for heating, cooling, and lighting of buildings and thus to increase the 

thermal performance of these buildings. Additionally, as the indoor environmental 

quality improves, occupant health, performance, and occupancy patterns evolve. 

Therefore, it is possible to say that obtaining energy efficiency in buildings provide a 

variety of potentials, which might feasibly be applied throughout a sensitive 

methodology, and may lead the development of new methodologies, technologies, and 

systems (Bolattürk, 2006; Gökçen, 2007). 

 

 

 

Figure 8. Energy use by end-sector in Turkey in 2006  
(Source: MENR 2007) 
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Parallel to the revisions and mandatory application of TS 825, in 1997 a project 

was started by EIEI (General Directorate of Electrical Power Resources) and 

TURKSTAT (Turkish Statistical Institute), which can be addressed as the very first 

attempt to document the energy consumption in different sectors. The project has two 

parts, one based on building sector and the other based on transportation sectors. The 

aim of the part, which focuses on building sector, is to establish a statistical database of 

the relationships between the structural properties, insulation levels, installation 

systems, consumption levels, and climate relationship of existing buildings (EIEI, 

2008). This project is the first auditing project through the large building stock of 

Turkey. The statistical results have been published by TURKSTAT in 2001. Another 

ongoing survey, which started in 1997, is titled as “Measures for Decreasing Energy 

Consumption of Public Buildings”. This survey targets all governmental public 

buildings (municipalities, governmental offices, university buildings etc.) and requires 

reports for the annual energy consumption for each building every year in May since 

1998. The survey is going on and the current database is constituted by EIEI. Efforts 

point out that a level of awareness in decreasing energy consumption in buildings 

became an agenda of policy makers and stakeholders in Turkey (EIEI, 2008).  

In November 2002, a project titled “Efficient Use of Energy in Buildings” 

started in the framework of the technical collaboration between Turkey and Germany 

(EIEI, 2008). This project piloted the city of Erzurum, Turkey. The aims of this project 

are, to decrease the amount of imported energy and CO2 emissions by utilization of 

energy efficiency in buildings, to raise community consciousness on utilization of 

energy efficiency in buildings, to decrease the necessary energy for heating of a volume 

by taking necessary measures, to provide an applicable methodology for other regions 

of Turkey through the experiences gathered in the pilot city Erzurum (Buyruk, 2005). 

Through the project, “Efficient Use of Energy in Buildings”, three 

demonstration buildings in Erzurum and one in Ankara were monitored for an energy 

audit. After the audit, the necessary retrofitting actions were taken and the monitoring of 

the buildings continued. The project expects around 50% of decrease in energy 

consumption for demonstration buildings (Buyruk, 2005). 

Latter to these standardization efforts and research activities Energy Efficiency 

Law has been accepted and constituted in February 22, 2007. First article states that aim 

of this law is to increase energy efficiency for prevention of over consumption, 

decreasing the effects of energy consumption on the economy and protection of the 



37 
 

environment. This law obliges energy certificates for building projects for the first time 

for Turkish construction sector. Energy certificates should include minimum 

information about the building’s energy need, insulation characteristics, and efficiency 

of heating & cooling installations (EEL, 2007; Hepbaşlı, 2007). Due to implementation 

of this law, decrease of energy consumption is aimed in different sectors.   

Subsequent to the release of EPBD in 2002, EU countries started accrediting 

their standards and directives according to EPBD as the responsibility of membership to 

the union. Turkey as a candidate country is expected to fulfill this responsibility, in case 

of approved membership. Except for the policy making point of view, the common 

action on energy performance of buildings is a great potential in terms of contributing 

the sustainability of environmental systems. In this regard, two regulations have been 

released in Turkish Official Paper in 2008.  

The first one released in October 25th, 2008 is the “Regulation on Increasing 

Efficiency in Utilization of Energy Resources and Energy” (2008). Overall, this 

regulation aims to organize fundamentals and practices on efficient use on energy. The 

scope of the regulation covers to promote activities and research on energy efficiency 

and management, energy audits, waste management and renewable energy technologies. 

The regulation introduces the concepts such as of building management, energy 

certificate, energy auditor and auditor certificate. Thus, requirements of EPBD are met 

in terms of regulating building energy performance evaluations and certifications, by 

means of trained energy consultants. 

The second regulation is the “Energy Performance of Buildings Regulation 

(BEP)” published in the Official Paper in December 5th, 2008. The main aims of this 

regulation are as follows: 

• To define energy performance calculation procedures for buildings, in regard to 

climatic context, indoor thermal requirements, spatial requirements and cost 

effectiveness. 

• To classify buildings according to their primary energy use and CO2 emissions. 

• To define energy performance requirements for new and existing buildings 

which require major renovation. 

• To evaluate the utilization of renewable energy technologies for buildings. 

• To inspect performance of building installation systems 
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• To define the framework and its execution for energy performance criteria of 

buildings (BEP, 2008). 

With these aims, the regulation fulfills the responsibility of adapting the 

requirements of EPBD and is significant in terms of being a regulation that addresses 

national and international standards that corresponds to specific building energy-related 

sub-topics (BEP, 2008). 

As BEP defines set of criteria regarding EPBD requirements, there is still a 

fundamental requisite for defining specific energy performance calculation methods for 

different building types. Consequently, a work group from Chamber of Architects and 

Engineers (MMO) published the “Standard Methodology for Evaluation of Energy 

Performance in Residential Buildings (KEP-SDM)” in June 2008. This methodology 

aims to focus specifically on residential buildings in Turkey, in terms of calculating the 

annual energy demand and annual CO2 emissions, which provides information for 

energy certificates of these buildings. Calculation procedure is based on EN and ISO 

standards, concerning static (seasonal and monthly) and dynamic (basic hourly and 

detailed hourly) calculation methods (Toksoy, Arısoy, Gökçen, Mobedi, Yaman, & 

Kuzgunkaya, 2008). 

Hence, it is important to provide calculation methodologies for different 

building types (office buildings, educational buildings, healthcare facilities etc.) The 

gaps in Turkish energy performance studies yet have potential to be researched. 

 

2.3. Conclusion 

 
As a concluding part to this chapter, it is necessary to summarize the findings of 

the literature review with comparison of EU countries and Turkey in terms of 

application of EPBD requirements, primary energy consumptions and CO2 emissions. 

In Table 1, the recent condition for reviewed EU Countries and Turkey is 

presented according to the implementation of main highlights in EPBD. Additionally, 

the table presents the existence of previous measures concerning energy efficiency, CO2 

emission reductions, and utilization of renewable energy technologies, before the 

announcement of EPBD in 2002.  

It is clear that Turkey has a moderate level of implementation of EPBD 

requirements. The methodological approach providing energy certificates for new 
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buildings and existing buildings has to be prepared by Turkey. On the other hand 

inspection of heating and cooling installation systems should be promoted and 

announced as mandatory, in accordance with the qualified energy expert trainings. 

 

 

Table 1. Comparative checklist for implementation of EPBD  

Countries 
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Austria X X X X X X X X X X 
Belgium X X X X X X X X X X 
Denmark X X X X X X X X X X 

France X X X X   X X       
Germany X X X X X X X X X X 
Greece X     X X X         
Italy X     X   X X X     

Netherlands X X X X X X X X X X 
Turkey X X X X   X X X     

 

 

Table 2. Average primary energy and CO2 emissions in EU Countries and Turkey 

Countries Population in 
2009 

Average Total Primary 
Energy (Quadrillion Btu) 

Average CO2 Emissions (Million 
Metric Tons of CO₂) 

Production Consumption Total from Fossil Fuel 
Consumption 

Austria 8.355.260 0,501 1,534 76,39 
Belgium 10.754.528 0,496 2,751 147,58 
Denmark 5.532.531 1,215 0,879 59,13 

France 65.073.482 5,134 11,445 417,75 
Germany 81.882.342 5,247 14,629 857,6 
Greece 11.260.402 0,407 1,487 107,7 
Italy 60.200.060 1,222 8,069 468,19 

Netherlands 16.584.600 2,651 4,137 260,45 
Turkey 71.517.100 1,172 3,907 235,7 
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Figure 9. Average primary energy and CO2 emissions in EU Countries and Turkey 
(Source: EIA 2009) 

Another comparison can be done according to produced and consumed total 

primary energy and CO2 emissions of selected EU countries and Turkey (Table 2 and 

Figure 9). The statistics are retrieved from Energy Information Administration of 

Official Energy Statistics of U.S. Government (EIA, 2009). The data on primary energy 

consumption and CO2 emissions are averages of long terms (27-28 years). It is observed 

that energy and emission amounts should be evaluated according to the population and 

level of industrialization of the countries. According to the data, it is possible to state 

that Turkey consumes more energy, on daily function of buildings and facilities, less on 

industry and transport as a developing country. For instance, Netherlands, with a highly 

industrialized context, almost has one fifth of Turkish population, hence consumption 

amount is very close to Turkey. In a future projection of Turkey processing her 

development fully, the levels are likely to evolve close to contexts of France and 

Germany, which have closer populations. Therefore, it is necessary to take urgent 

precautions to limit energy use through buildings and facilitate the use of energy to 

industry and transportation. 

As a result, the literature review points out the potential of building energy 

efficiency measures in Turkey after a detailed analysis of the level of research that is 

being conducted in European Countries. Turkey as a developing country with a 

moderately uncontrolled construction sector until the 1990’s, particularly of thermal 
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characteristics of buildings, comprises a future of research in building physics and 

particularly in energy-efficient retrofitting of existing buildings. 

More specifically, energy-efficient retrofitting/refurbishment of buildings 

accommodate numerous variables. Since the topic occupies a significant place in 

energy-efficiency research, it is essential to emphasize the importance of why to retrofit 

in Turkish building stock context.  

• To decrease energy consumption of the Turkish building stock, particularly for 

heating, cooling and lighting of buildings, thus contribute overall energy saving 

in the country. 

• To emphasize the potentials of energy saving in the building sector, thus 

decrease CO2 emissions and offer healthier environments for future generations. 

• To raise the public and private sector awareness and the building investors’ and 

contractors’ responsibility on energy-efficiency and indoor environmental 

quality. Thus, all intermediating actors in building construction (owner, 

contractors, inhabitants etc.) will be able to establish the communication 

between the cost of consumed energy and the indoor environmental conditions. 

• To stress the importance of the regulations and laws on energy efficiency and 

building insulation 

Therefore, for further steps of this research, the objectives will be derived from 

the conclusion of this literature review for energy efficiency in buildings. The models 

and methodologies that are being studied and formulated in European Countries may 

represent a base, a starting point to construct a substantial approach and methodology 

for Turkish context. 
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CHAPTER 3 

 

METHODOLOGY 

 
As a broad research area, energy-efficient retrofitting accommodates numerous 

variables and is a complex process. Since the main aim of the dissertation is to define a 

methodology for energy-efficient retrofitting of existing public building envelopes, this 

chapter focuses on the application of this methodology through a case-study application. 

The main framework will be summarized in this introductory section. Following 

sections will cover the steps for execution of the proposed methodology.  

To formulate a methodology on energy-efficient retrofitting of existing public 

building envelopes, the main steps should be defined in broad outlines as follows: 

• To identify the requirement for energy-efficient retrofitting of a building 

• To conduct a detailed energy monitoring of the building 

• To examine the energy performance of the building through simulation, 

calculations and standards 

• To generate appropriate retrofitting strategies according to the results of the 

examinations on existing performance of the building and to apply these 

strategies with the help of the most convenient analysis tool applied in previous 

step. 

• To evaluate the results of the energy-efficient retrofitting strategies under 

constraints of energy performance and investment/benefit criteria, to assess the 

best appropriate retrofitting strategy. 

Course of the main steps is summarized in Figure 10. As seen in the figure, key 

emphasis of the methodology is energy performance assessment of an existing building, 

both in initial and retrofitted state. This assessment helps to define the necessity of a 

retrofitting intervention and to what extent these retrofitting measures should be taken. 

Additionally, energy performance assessment provides the evaluation of a building 

according to performance indicators, before and after the retrofit interventions. The 

flowchart can simply be summarized as a set of applications concerning the physical 

and thermal characteristics of a building. For the performance assessment of existing 

buildings, envelope characteristics, climatic conditions, installation systems and 
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building use and occupancy are the criteria in consideration. This evaluation facilitates 

generation of retrofitting strategies, which may accommodate interventions as a 

synthesis of multi-criteria decisions. The range of retrofitting strategies may alter 

according to the levels of physical, functional, mechanical obsolescence in the building 

that is subjected to a retrofitting action. Consequent to application of retrofitting 

scenarios, their effect on the energy performance of the building can be evaluated. 

According to the performance and cost benchmarks and the results can be investigated 

to understand whether sufficient level of improvement in energy performance is 

attained. In case of insufficient results the decisive parameters in the steps of the 

methodology may be altered and once more be executed to obtain better levels of 

performance. 

 

 

 

Figure 10. Theoretical relationships and course of the proposed methodology 

According to this broad theoretical framework, the methodology is detailed in 

following steps: 

1. Building energy performance analysis and determination of the accurate analysis 

tool 

2. Generation of appropriate retrofitting strategies 
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3. Evaluation of the retrofitting strategies 

4. Optimization of the most applicable retrofitting strategy  

 

Case study method is selected to apply these steps of the projected methodology. 

Therefore a case building is selected in the campus area of Izmir Institute of 

Technology, due to evaluation of five buildings in the campus area, in regard to the 

consumption patterns and physical characteristics (Güçyeter, 2009). 

 

 

 

Figure 11. Energy performance analysis and determination of the accurate tool 

Figure 11 presents the flowchart of the first step of the methodology. In the first 

step of the methodology, the main aim is to assess the energy performance of the 

existing case building via different tools for energy performance analysis, and determine 

the accurate tool for further analysis of retrofitting proposals. The case building is 

monitored for a total of 15 months, covering two heating and one cooling season. The 

monitoring data is accepted as the most realistic data set which presents the actual 

indoor temperature and humidity levels and energy consumption levels. The analysis of 

the monitoring data presents the monitoring data set. Thus, energy performance 

monitoring is accepted as a tool to determine the energy performance of the case 

building. The other tools facilitated in this step of the methodology is building energy 

simulation and building energy performance standards. For building energy simulation 
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EDSL Tas software is used and the outputs of the simulation are considered as the 

simulation data set. Building energy performance standard evaluation is applied 

according to TS 825 and the results of the analytical calculations present the calculation 

data set.  

The results of these data sets are evaluated according to the performance 

monitoring data, with same parameters such as indoor temperature, kilowatts of energy 

use per meter square etc. The error margins for both simulation and standard calculation 

results are compared to monitoring data. This comparison points out the evaluation tool 

which has a better interpretation of the real conditions of the existing case building. In 

the further steps of the methodology, the execution of the more precise tool and its error 

margins are derived to assess a realistic retrofitting strategy. 

The second step of the methodology comprises the generation of retrofitting 

strategies which support the integrated design and evaluation of building envelope 

alternatives that assure better quantitative levels of thermal mass and transmittance. The 

main aim in generating these retrofitting strategies is to realize the decrease in energy 

consumption of the building while increasing or maintaining the indoor thermal comfort 

parameters (Svendsen, Rudbeck, Stopp, & Makela, 2000). 

Retrofitting existing building envelopes is an important intervention and it is 

relatively complicated than designing a new building envelope. The constraints on 

envelope retrofitting are directly related to environmental, technical and aesthetical 

realities of an existing building and its context. Therefore the optimal type of retrofit 

should be formulated and applied in consideration with these aspects to the every 

specific case building (Svendsen, Rudbeck, Stopp, & Makela, 2000).  

The necessity to propose different strategies for evaluation targets optimization 

of a retrofitting solution rather than evaluating different envelope system performances. 

For instance, retrofitting of an existing exterior wall element may be implemented by 

various insulation types; however there exists a wide range of material and thickness 

options. Therefore there is certainly a requirement to construct different strategies to 

assess the best possible strategy under economical and indoor environmental 

constraints. 

In this study, different levels of retrofit interventions on the building envelope, 

ranging from basic to complex, are proposed to generate retrofitting strategies for the 

case building. Interventions specifically cover some common individual measures 

which fit the minimum U-values required in Turkish Standard 825 – Thermal Insulation 
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in Buildings (TS 825). In regard to the limitations of TS 825, each strategy has to fulfill 

the requirements for each building envelope element. Figure 12 summarizes this second 

step of the methodology and classification of retrofitting strategies. The strategies are 

proposed in a systematic approach, each time built upon the previous strategy, hence 

modified by additional/replaced interventions. Therefore, it is possible to assert that 

“Minor Intervention” represents basic requirements of TS 825. Consequent two 

intervention sets propose addition and/or replacement of different possible energy 

saving interventions for the building envelope. 

 

 

 

Figure 12. Generation of retrofitting strategies. 

 

Figure 13. Comparative evaluation of retrofitting strategies 

The third step, specifically the evaluation of retrofitting strategies, intends to 

evaluate the energy performance of the proposed envelope retrofitting strategies (Figure 
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13). The retrofitting strategies are evaluated with the best accurate evaluation tool, 

which is determined in the first step of the methodology. Comparative evaluation of the 

retrofitting strategies is conducted according to the following parameters: 

• Indoor thermal comfort 

• Annual energy consumption 

• Retrofitting investment/payback analysis 

 

 

 

Figure 14. Optimization of a single retrofitting strategy 

In the fourth and latter step of the methodology, the evaluation outcomes are 

optimized consistent with the requirements of comfort, consumption and cost (Figure 

14). A thorough assessment of a single retrofitting strategy, which is to be applied to the 

case building, is finalized in this step.  

According to the defined steps, the following sections cover a demonstrative 

realization of the methodology.  

 

3.1. Building Energy Performance Analysis and Determination of the 

Accurate Analysis Tool 

 
The current preliminary part of the methodology targets to analyze and 

demonstrate following aspects of the study: 

• To introduce the case building, in terms of criteria that are influential of energy 

performance 
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• To demonstrate the building energy performance monitoring results 

• To determine and compare the energy performance of the building via different 

analysis tools 

• To assess the differences between tool predicted and measured energy 

performance parameters 

• To select an analysis tool, which offer the best accuracy, for further modeling of 

the generated retrofitting scenarios 

The following sub-sections of the first part of the methodology cover the listed 

aspects respective to the order as presented above. 

 

3.1.1. Introduction and Investigation of the Case Building 

 

3.1.1.1. General Building Characteristics and Location 

 
Medico Building in Izmir Institute of Technology Campus Area is designed to 

accommodate predominantly office functions and started its service in June 2007. 

Constructed as a concrete structure with filled in brick walls, the building has a square 

symmetrical plan with a square atrium. It is a two storey building with four vertical 

circulation zones. Four wings of the building are designed as each oriented towards one 

direction. The normal of the north facing facade has an angle of 8.09° clockwise (Figure 

15, Figure 16).  

 

 

 

Figure 15. Aerial view of MEDICO Building  
(Source: Google Earth 2009) 
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Figure 16. View of MEDICO Building (west & south facades) 

The information on the location, orientation and environmental aspects are listed 

in Table 3. As seen in Figure 16, northern and eastern facades face an elevated ground 

level (approximately three-storey height). This height in the landscape does not cause 

any shadows on the building facades during hours of solar exposure. 

 

 

Table 3. Building information 

Location Latitude 38°19'15.91” 
Longitude 26°38'26.86” 

Orientation North Facade Angle of 8.09° (CW) 

Environment Open land 
Free from shadow effect of close structures, trees etc. 

 

 

Table 4. General characteristics of the case building 

Floor area (m2) 5540  
Floor height (m) 3,6 
Volume (m3) 19944 
Surface area of the facades (m2) 3515 
Roof area (m2) 2824 
Glazing area (m2) 816,2 
Glazing ratio (%) 23,2 
Compactness (Atot/Vtot) 0,32 

 

 

In Table 4 general characteristics of the case building are represented. The 

building has a glazing ratio of 23,2%, which is higher than the limit glazing area of 12% 

defined by TS 825. Glazing ratio is calculated with a simple proportion of total surface 
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area of glazing to the total surface area of opaque walls (Atot glazing / Atot opaque walls) (TS 

825, 2008). The technical drawings (floor plans and elevations) are presented in Figure 

17 to Figure 26. According to the general characteristics of the building presentedin this 

part, it is possible to assess that square plan organization and almost equivalent 

treatment of the facades indicate that environmental design criteria for the building were 

neglected during design phase. Particularly, identical treatment of north and south 

facades emphasize this assessment, where south façade is subject to large amounts of 

solar exposure during summer period, hence north façade receives no direct sun. In 

addition, square plan organization causes higher number of spaces to be exposed to 

north and south directions. 

 

 

 

Figure 17. Ground floor plan 
(Source: OCW 2007) 



51 
 

 

Figure 18. First floor plan  
(Source: OCW 2007) 

 

Figure 19. North facing exterior facade 

 

Figure 20. South facing exterior façade 

 

Figure 21. West facing exterior façade 
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Figure 22. East facing exterior façade 

 

Figure 23. North facing interior façade 

 

Figure 24. South facing interior façade 

 

Figure 25. West facing interior façade 

 

Figure 26. East facing interior façade 
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3.1.1.2. Building Envelope 

 
Building envelope can be defined as a skin, which separates the indoor 

environment from the outdoor environment and is expected to establish thermal 

comfort, visual comfort and acoustic comfort (Oral, Yener, & Bayazit, 2004). Thermo-

physical characteristics of these elements of the building envelope are essential 

parameters in determining the overall energy performance of a building where most of 

the heat loses and heat gains occur through the building envelope (Yannas, 1994; Oral, 

Yener, & Bayazit, 2004; Lollini, Barozzi, Fasano, Meroni, & Zinzi, 2006). Main 

building envelope parts defined as (a) exterior walls, (b) floors, (c) roof, and (d) glazing. 

In addition to the main classification of building envelope components, surfaces 

that are in contact with unheated volumes in a building are considered as envelope 

components, whereas heat losses occur through these building parts as well.  

For the case building, the envelope components are evaluated according to their 

construction principles and heat transfer coefficients (U-value). As construction 

principle, the two storey building is constructed as a concrete structure with filled in 

brick walls. Floor and roof slabs are reinforced concrete. Glazing elements are built in 

exterior brick walls.  

The formulas and constants that are used in analytical calculations are listed in 

equations 3.1 to 3.4, where, d is material thickness in meters, λ
 
is thermal conductivity 

(W/mK), R is thermal resistance (m2K/W), eh  is the exterior convection coefficient with 

a value of 23 W/m2K, ih  is the interior convection coefficient with a value of 8 W/ m2K, 

and U is the overall heat transfer coefficient (W/m2K). In the following part of this 

section thermal properties and section details of the case building are presented. 

 

λ
d

=R       (3.1) 

 

eh
1R e =      (3.2) 
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ih
1Ri =      
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=      (3.4) 

 

1) Exterior Walls  

Two different exterior wall types are observed in the case building, which 

intermediate between heated volumes and external environment. First type is exterior 

clinker brick wall and second is the load bearing reinforced concrete walls. 

Additionally, on the eastern façade a retaining wall exists, which is in contact with 

ground with almost half storey height.  

 

a) Exterior Clinker Brick Wall 

In the case building, exterior clinker brick walls are constructed as fill-in walls 

where there is necessity to build between concrete columns and beams. A single clinker 

brick has the dimensions of 215x102x65 millimeters. The wall is constructed in two 

layers of brick, with an air cavity of 11 millimeters in between, originating from the 

dimensions of the brick module and construction principle (Figure 27).  

In Table 5, the layers of the exterior clinker brick wall and the thermal properties 

of each layer are presented. Since there is no thermal insulation in the wall section, U-

value of the wall composition (1,531 W/m2K) is larger than the limit value of 0,70 

W/m2K, which TS 825 proposes for the climatic zone the building is located. 

 

 

 

Figure 27. Section and construction principle of exterior clinker brick wall 
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Table 5. Thermal properties of exterior clinker brick wall 

Exterior Clinker Brick Wall 

Layer Material Width 
(mm) 

Conductivity 
(W/mK) 

Convection 
Coefficient 

(W/m2K) 

Density 
(kg/ m3) 

Specific Heat 
(J/kgK) 

Inside Paint 1 999,00 0,001 0,001 0,00 
2 Gypsum Lime Plaster 20 0,46 0,001 1200,000 1008,00 
3 Clinker brick 102 0,70 0,001 2000,000 940,00 
4 Air cavity 11 0,01 0,001 0,000 0,00 

Outside Clinker brick 102 0,70 0,001 2000,000 940,00 
Flow Direction U-value (W/m2K) R-value (m2K/W) 

Horizontal 1,531 0,653 
 

 

b) Exterior Reinforced Concrete Wall 

The second type of exterior walls in the case building is the reinforced concrete 

wall. Considerably large amount of wall envelope surface has reinforced concrete walls. 

There is no application of insulation materials; the section is a single layer of reinforced 

concrete with plaster on both sides (Figure 28).  

 

 

 

Figure 28. Section of the exterior reinforced concrete wall 
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Table 6. Thermal properties of exterior reinforced concrete wall 

Exterior Reinforced Concrete Wall 

Layer Material Width 
(mm) 

Conductivity 
(W/mK) 

Convection 
Coefficient 

(W/m2K) 

Density 
(kg/m3) 

Specific 
Heat 

(J/kgK) 
Inside Paint 1 999,00 0,001 0,001 0,00 

2 Gypsum Lime Plaster 20 0,46 0,001 1200,000 1008,00 

3 Reinforced Concrete 
Wall 350 2,00 0,001 2400,000 950,00 

4 Cement Plaster 30 1,20 0,001 2000,000 1008,00 
Outside Paint 1 999,00 0,001 0,001 0,00 

Flow Direction U-value (W/m2K) R-value (m2K/W) 
Horizontal 2,418 0,413 

 

 

In Table 6, the layers of the exterior reinforced concrete wall and the thermal 

properties of each layer are presented. There is no thermal insulation in the wall section. 

Therefore, U-value of the wall composition (2,418 W/m2K) is larger than the limit value 

of 0,70 W/m2K, which TS 825 proposes. Additionally, column and beam structures of 

the building are constructed with the same principle as reinforced concrete walls. 

 

c) Exterior Retaining Wall 

Exterior retaining wall is constructed on ground floor, on the eastern façade, and 

is in contact with ground with half storey height. Retaining wall is an exterior wall for 

unheated spaces, therefore has minor influence on the interior comfort. The wall section 

is presented in Figure 29 and in Table 7 the thermal properties are presented. 

 

 

 

Figure 29. Section of the exterior retaining wall 
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Table 7. Thermal properties of exterior retaining wall 

Exterior Retaining Wall 

Layer Material 
Width 
(mm) 

Conductivity 
(W/mK) 

Convection 
Coefficient 

(W/m2K) 
Density 
(kg/m3) 

Specific 
Heat 

(J/kgK) 
Inside Lime Cement Plaster 30 1,00 0,001 1800,000 830,00 

2 
Reinforced Concrete 

Wall 200 2,00 0,001 2400,000 950,00 

3 
Waterproof 

Bituminous Layer 3 0,13 0,001 1055,000 1332,00 

4 
Lightweight Concrete 

Brick 200 0,25 0,001 800,000 1008,00 
5 Cement Plaster 30 1,20 0,001 2000,000 1008,00 

Outside Paint 1 999,00 0,001 0,001 0,00 
Flow Direction U-value (W/m2K) R-value (m2K/W) 

Horizontal 0,879 1,138 
 

 

2) Interior Walls 

a) Interior Brick Wall 

The interior wall type investigated here is the interior separator walls which 

intermediate between heated and heated-unheated volumes in the building. All interior 

walls are constructed with brick and plaster on both sides (Figure 30) and its thermal 

properties are presented in Table 8. TS 825 standard limits R-values for building 

elements in contact with unheated volumes. The standard asserts that the R-values for 

such building parts should be equal or larger than 0,8 m2K/W. According to this 

restriction the interior brick walls of the case building are appropriate to the standard 

with an R-value of 0,923 m2K/W. 

 

 

 

Figure 30. Section of interior brick wall 
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Table 8. Thermal properties of interior brick wall 

Interior Brick Wall 

Layer Material 
Width 
(mm) 

Conductivity 
(W/mK) 

Convection 
Coefficient 

(W/m2K) 
Density 
(kg/m3) 

Specific 
Heat 

(J/kgK) 
Inside Paint 1 999,00 0,001 0,001 0,00 

2 
Gypsum Lime 

Plaster 20 0,46 0,001 1200,000 1008,00 

3 
Vertical Hollow 

Brick 190 0,33 0,001 1400,000 820,00 

4 
Gypsum Lime 

Plaster 20 0,46 0,001 1200,000 1008,00 
Outside Paint 1 999,00 0,001 0,001 0,00 

Flow Direction U-value (W/m2K) R-value (m2K/W) 
Horizontal 0,923 1,084 
 

 

3) Floors  

a) Concrete Floor on Ground 

On ground level the floor is constructed as a concrete floor on ground and there 

is no thermal insulation applied in the construction. Layers that compose the structure 

and their thermal properties can be seen respectively in Figure 31 and Table 9. Concrete 

floor on ground has a U-value of 1,059 W/m2K, which is higher than the limit U-value 

(0,70 W/m2K) proposed by TS 825 (2008). 

 

 

 

Figure 31. Section of concrete floor on ground 
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Table 9. Thermal properties of concrete floor on ground 

Concrete Floor on Ground 

Layer Material 
Width 
(mm) 

Conductivity 
(W/mK) 

Convection 
Coefficient 

(W/m2K) 
Density 
(kg/ m3) 

Specific 
Heat 

(J/kgK) 
Inside Artificial Stone Tiles 30 1,20 0,001 2000,000 900,00 

2 Cement Mortar 10 1,30 0,001 2000,000 1008,00 
3 Cement Screed 20 1,30 0,001 2000,000 1000,00 

4 
Waterproof Bituminous 

Layer 6 0,13 0,001 1055,000 1332,00 
5 Reinforced Concrete 150 2,00 0,001 2400,000 950,00 

Outside Gravel Ground Fill 300 0,52 0,000 2000,000 1800,00 
Flow Direction U-value (W/m2K) R-value (m2K/W) 

Downward 1,059 0,944 
 

 

b) First Level Concrete Floor 

First level has a concrete floor, finishing with artificial stone tiles. It is as well 

the ceiling of the ground floor with a cavity for installation systems and a suspended 

gypsum ceiling. Therefore the first level floor section is evaluated as a total section 

which services both levels. In Figure 32 the section is presented, and the thermal 

properties of this section are shown in Table 10. TS 825 requirement for transitional 

constructions between heated and unheated volumes is to have R-values higher than 

0,80 m2K/W (Table 10). First level floor cannot achieve this requirement for spaces in 

contact with unheated volumes.  

 

 

 

Figure 32. Section of the first level concrete floor 
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Table 10. Thermal properties of the first level floor 

First Level Floor 

Layer Material 
Width 
(mm) 

Conductivity 
(W/mK) 

Convection 
Coefficient 

(W/m2K) 
Density 
(kg/m3) 

Specific 
Heat 

(J/kgK) 
Inside Gypsum Board Ceiling 12 0,22 0,001 900,000 1200,00 

2 Installation Cavity 300 0,01 1,950 0,000 0,00 
3 Reinforced Concrete 150 2,00 0,001 2400,000 950,00 
4 Concrete Deck 50 1,50 0,001 2000,000 900,00 
5 Cement Mortar 10 1,30 0,001 2000,000 1008,00 

Outside Artificial Stone Tiles 30 1,20 0,001 2000,000 900,00 
Flow Direction U-value (W/m2K) R-value (m2K/W) 

Upward  1,903 0,526 
Downward 1,370 0,730 

 

 

4) Flat Roof  

The case building has a concrete flat roof with 5 centimeters thick extruded 

polystyrene thermal insulation material (XPS). Roof finishing is artificial stone tiles, 

and it is a load bearing roof cover. Figure 33 presents the section of the flat roof. 

Additionally, the U-value of the flat roof is very close to the requirement of TS 825 for 

specified climatic zone (Uroof= 0,447 W/m2K< Ureq= 0,45 W/m2K) (Table 11).  

 

 

 

Figure 33. Section of the flat roof 
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Table 11. Thermal properties of the flat roof 

Flat Roof 

Layer Material 
Width 
(mm) 

Conductivity 
(W/mK) 

Convection 
Coefficient 

(W/m2K) 
Density 
(kg/m3) 

Specific 
Heat 

(J/kgK) 
Inside Gypsum Board Ceiling 12 0,22 0,001 900,000 1200,00 

2 Installation Cavity 300 0,01 1,950 0,000 0,00 
3 Reinforced Concrete 150 2,00 0,001 2400,000 950,00 
4 Concrete Deck 50 1,50 0,001 2000,000 900,00 
5 Waterproof Bituminous 

 
6 0,13 0,001 1055,000 1332,00 

6 XPS Board Insulation 50 0,03 0,001 30,000 1400,00 
7 Concrete Deck 50 1,50 0,001 2000,000 900,00 
8 Cement Mortar 10 1,30 0,001 2000,000 1008,00 

Outside Artificial Stone Tiles 30 1,20 0,001 2000,000 900,00 
Flow Direction U-value (W/m2K) R-value (m2K/W) 

Upward  0,447 2,238 
 

 

5) Glazing 

The glazing system of the case building consists of aluminum frames with 

thermal break and double glazing with air cavity. Thermal properties of the double 

glazing are presented in Table 12. However glass surfaces occupy almost 85 to 90 % of 

the whole window/door area. Therefore, in consideration with U-value of the frame 

elements (aluminum with thermal break), the U-value is obtained from TS 2164 – 

Turkish Standard on Regulation on Heating Installation Design. The U-value that 

corresponds to the type of frame and glazing in the case building is assumed as 3 

W/m2K. Limit U-value from TS 825 is 2,4 W/m2K, thus it is possible to assert that 

existing U-value of glazing components exceeds the requirement of the standard. 

 

 

Table 12. Thermal properties of double glazed glass surfaces 

Double Glazing (Window/Door) 
Layers Thickness (m) Thermal Conductivity (λ value) (W/mK) R-Value (m2K/W) 

Glass 
 

0,006 0,18 0,033 
Air Cavity 0,012 0,294 0,041 
Glass 

 
0,006 0,18 0,033 

 R-Valuetotal 0,107 
U-Valuetotal 3,624 
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3.1.1.3. Building Installation Systems 

 
The building has heating, cooling and ventilation systems designed to 

acclimatize the indoor environment and to maintain indoor air quality. All systems for 

acclimatization and ventilation are located in the installation room located in the eastern 

part of the ground floor. The installation systems and their specifications are reviewed 

briefly under headings of heating installation, external weather compensation system, 

cooling installation, and ventilation unit. 

 

1) Heating Installation 

The heating system of the case building consists of two boilers with different 

capacities. The larger boiler has the capacity of 400.000 Kcal/h and the smaller boiler’s 

capacity is 250.000 Kcal/h (Table 13). There are two combustion units which burn the 

fuel and retrieve to the boilers. Energy source to run the heating system is fuel oil which 

is stored in a storage tank with a capacity of 18000 liters.  

The boiler type used in the case building is non-condensing. Non-condensing 

boilers are less efficient than condensing boilers. It is necessary to prevent long term 

condensation presence in the boilers to maintain efficiency. The boilers function only 

for heating purposes, there is no central hot water heating system connected to these 

boilers. 

 

 

Table 13. Characteristics of the heating installations 

 Boiler 1 Boiler 2 

Capacity (Kcal/h) 400.000 200.000 

Capacity (KW) 465 290 

Efficiency (%) 87,00 84,00 
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Figure 34. Schematic drawing of the boilers  
(Source: OCW 2009) 

The heated water in the boilers is transferred to the main aspiration pump with a 

maximum temperature of 90°C (Figure 34). Hot water heats the clean air in the 

ventilation unit and then is serviced to the spaces for conditioning. Distribution of 

heated air through insulated pipes (polyethylene, 1 cm) finalizes in convective ceiling 

type fan coils in the spaces. In spaces where there is no necessity for cooling, the 

heating emitters are panel radiators. All fan coils in the building function with a 

thermostat system with winter, summer, and on/off controls. 

 

2) External Weather Compensation System 

External weather compensation system for boilers started to function in the 

winter of 2008-2009 with the reason to control the boiler temperature according to the 

exterior temperature. The automation system functions on the principal of adjusting 

boiler temperatures according to exterior temperature swings. With the compensation 

system, the heating systems have the opportunity to function continuously, with lower 

set temperatures during occupancy hours of the building. Since the building does not 

cool down to exterior temperatures, the spaces reach to the required temperatures 

quicker and the heating system fuel consumption depends on weather conditions and the 

lesser amount of time indoor spaces reach up to the set point temperatures. 

Water temperature of boilers, return water temperature, and exterior air 

temperature is recorded with 5 minutes interval and the data is accessible through a web 

page for monitoring. 
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3) Cooling Installation 

Cooling installation of the case building is an air-cooled liquid chiller with heat 

recovery system. For heat recovery systems, refrigeration is the primary purpose and 

chiller control is based on chilled water cycle. Heat generated by the condenser is 

rejected in the system installed for the case building (Carrier, 2008). The system is 

composed of a chiller and a condenser tank (Figure 35). Evaporator temperature of the 

chiller is 12°C for entering and 7°C for leaving, which is compliant with related 

certifications (such as EuroVent). In Table 14, characteristics of the cooling system are 

presented.  

 

 

   

Figure 35. Chiller and condenser of the cooling installation 

Table 14. Characteristics of the cooling system 

 Cooling System 
Net Cooling Capacity (KW) 536 

Power Input (KW) 196 
Heat Recovery Capacity (KW) 344 

Evaporator Shell and tube type 
Condensers Copper tubes 

 

 

4) Air Handling Unit (Ventilation System) 

Air handling unit (AHU) in the case building functions both with heating and 

cooling installations. The system works with the principle of collecting and mixing 

outdoor air with the air returning from the building space. The air mixture is then cooled 
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or heated, after which it is discharged into the building space through the duct systems 

designed to facilitate acclimatized air through convective ceiling fan coils. The technical 

properties of the ventilation system can be seen in Table 15.  

Two different air handling units are designed for ground (AHU-1) and first floor 

(AHU-2). For each air handling unit there are main parts of the system: 

• Outside and Return Air Fans: Outside air fan  unit provides intake of outside air 

into the system, where the return unit provides a part of the indoor exhaust air 

back into the system and outlets the remaining exhaust air. 

• Mixing Unit: The portion of indoor exhaust air from the return fan and intake of 

outside air is mixed in the mixing and exhaust section of the system.  

• Bag Filter, Supply Air Fan and Heating and Cooling Coils: In the next step the 

air mixture is filtered before entering the supply air fan. Supply air fan pressures 

air through the heating or cooling coil. When passing through heating coil, the 

air mixture is heated by hot water supply from the boiler and similarly when 

passing from the cooling coil, the air mixture is cooled by chilled water supplied 

from the chiller. The acclimatized ventilation air is then charged into the duct 

system. 

Table 15. Technical properties of air handling units 

  AHU-1 AHU-2 
Exhaust Fan Air Flow (m3/h) 3600 5220 
Intake and Supply Air Flow (m3/h) 10900 13400 
Filter EU4 Viscotecs EU4 Viscotecs 
Cooling Coil Capacity (KW) 105 121 
Heating Coil Capacity (KW) 122 150 
Cold Water Regime (°C) 07/12 07/12 
Hot Water Regime (°C) 90 /70 90 /70 

 

 

3.1.1.4. Building Comfort Ranges 

 
The building comfort ranges in the case building are as follows: 

• Offices     Winter: 22 (±2) °C 

Summer: 24 (±2) °C 

• Classrooms    Winter: ±22 (±2) °C 

Summer: 24 (±2) °C 
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• Storage Spaces   Winter: No Conditioning 

Summer: No Conditioning 

• Laboratories    Winter: 20 (±2) °C 

Summer: 24 (±2) °C 

• Circulation    Winter: 20 (±2) °C 

Summer: 26 (±2) °C 

 

3.1.1.5. Building Schedules and Occupancy 

 
The building is occupied by academic and administrative staff and students. Due 

to the variable presence of the students, it is not possible to asses a definite occupancy 

for the building. However, the building is occupied by office and laboratory users which 

are approximately 90. It is possible to assert that the building services between 100 and 

200 people including the students.  

The building is occupied in weekdays between 08:30 and 17:30. Regarding this 

schedule, further energy performance evaluations concerning occupancy will be 

conducted between 08:00 and 18:00, whilst heating and cooling systems as well 

perform. The building is unoccupied on national holidays and weekends. Several 

academic staff uses the building in the weekends or evenings, however they are not the 

majority of the occupants.  

 

3.1.2. Energy Performance Analysis of the Case Building via Different  

Analysis Tools and Comparison of the Results 

 
The first step of the methodology, which is summarized as building energy 

performance analysis and comparison of the results to determine the most accurate 

analysis tool, is comprehensively explained in this section. Important considerations, 

limitations and sequential processes involving the different energy performance analysis 

methods are presented thoroughly to provide a methodology for further research. 

The first step of the methodology includes following evaluations and 

considerations: 
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• Analysis of the results for energy performance monitoring of the case building: 

Results are presented according to indoor comfort conditions, energy 

consumption and indoor environmental response to weather conditions. 

• Analysis of results for energy performance simulation of the case building: 

Simulation results are presented concerning indoor comfort conditions, energy 

consumption and indoor environmental response to exterior climatic conditions.  

• Analysis of results for energy performance calculation of the case building 

according to Thermal Insulation Standard in Buildings (TS 825, 2008): 

Calculation results are evaluated with respect to energy consumption. 

• Comparison of analysis results for different tools and definition of error margins: 

With the aim to predict the accuracy of simulation and calculation results, all 

analysis results are compared to energy performance monitoring results. 

Therefore, considering the monitoring results as the most realistic data set, this 

evaluation offers the possibility to define the deviation of simulation and 

calculation results from the monitoring results. This deviation is named as the 

error margin of an analysis tool in comparison to the monitoring results. 

Additionally, the following parts of this section intend to denote the necessary 

equipment, method and tools to utilize in energy performance analysis of buildings 

along with the above stated analysis steps. 

 

3.1.2.1. Energy Performance Monitoring of the Case Building 

 
Energy performance monitoring can be defined as a set of measurements to 

gather field data which provide realistic and empirical information of actual energy 

performance of a building (ASHRAE, 1999). In literature energy performance 

monitoring may as well be referred as energy audit (CRES, 2000). However it is 

necessary to keep in mind that energy audits may have different levels of significance 

between walkthrough (simple) audits and comprehensive (detailed) audits. Energy 

performance monitoring best corresponds to comprehensive audits where the 

monitoring period covers minimum annual field data retrieval. CIBSE Guide H: 

Building Control Systems defines energy performance monitoring as a powerful tool to 

control and reduce energy consumption. The guide couples monitoring concept with 

targeting and defines its functions as (1) control of current energy consumption by 
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performance monitoring and comparison of the consumption levels to benchmarks and 

(2) improvements in the efficiency of energy consumption through setting future targets 

(CIBSE, 2000). Therefore, energy performance monitoring is conducted with the aims 

to determine: 

• Energy end use: Monitors to assess characteristics of specific energy end uses in 

building. Detailed data on end uses are measured. It helps to estimate the loads 

by end use and rate the energy performance of the building. 

• Specific technology assessment: Monitors specific equipment or technologies 

that affect building energy consumption, such as building envelope, major end 

uses, and installation systems. 

• Saving measurement and verification (M&V): Monitors to assess proper 

equipment and systems which have the potential to generate predicted energy 

savings through post retrofit measures and to evaluate the energy savings after 

the retrofit. 

• Building operation and diagnostics: Monitors to indicate physical and/or 

operational characteristics that affect energy use in relation with operation and 

maintenance such as air tightness, indoor air quality, and system problems 

(ASHRAE, 1999). 

According to the type of monitoring defined by ASHRAE, the energy 

performance monitoring characterized for this dissertation aims to propose a monitoring 

strategy which falls into the specific technology assessment, where the monitoring 

activity aims to assess specifically the influences of building envelope on energy 

consumption and end-uses. The main steps in designing the energy performance 

monitoring are derived from CIBSE Guide H, and can be listed as: (1) data collection, 

(2) data analysis and results, (3) action (CIBSE, 2000). 

The energy performance monitoring of the case building started in January 2009 

and ended in March 2010 covering 15 full months of monitoring. In the following 

sections first two the steps of monitoring application is explained in detail, under the 

above stated flow of monitoring steps. The third part which is defined as action 

indicates the determination of evaluation tools and designation of retrofitting strategies 

and is explained in further sections. 
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3.1.2.1.1. Data Collection for Energy Performance Monitoring 

 
The 15 months long monitoring of the building (12 months for evaluation and 3 

months for data control) includes the measurement applications presented in Table 16. 

The measurements conducted during the moitoring period are: temperature and 

humidity measurements from sample volumes, electricity consumption, fuel 

consumption, microclimatic data, and CO2 emissions of the heating installation of the 

building. 

Detailed continuous measurement of indoor and outdoor temperature is 

necessary for obtaining more accurate results to assess the indoor environmental 

profiles in the building (Santamouris, 2005). Therefore, indoor temperature and 

humidity is monitored with HOBO U12 Temperature and Humidity Data Loggers in 10 

minutes interval (Figure 37). The accuracy of temperature measurement is ±0,35°C and 

of humidity measurement is ±2,5%.  

 

 

Table 16. Monitored building energy performance parameters  

Monitored Building Energy 
Performance Parameters 

Measurement 
Period 

Measurement 
Interval 

Typical 
Use 

Measurement 
Equipment 

Indoor Temperature  Sequential / 
Continuous  10 minutes Diagnostics Data loggers 

Indoor Humidity Sequential / 
Continuous  10 minutes Diagnostics Data loggers 

Electricity Consumption Sequential / 
Continuous  Daily Energy Use Power 

Analyzer 

Fuel Consumption Manual 
Readings Daily Energy Use Flow meter 

M
ic

ro
cl

im
at

ic
 D

at
a 

Outdoor Temperature 

Sequential / 
Continuous 10 minutes 

Diagnostics 

Microclimatic 
Weather 
Station 

Outdoor Humidity 
Global Horizontal 
Solar Radiation 
Wind Speed 
Wind Direction 

Cloudiness Continuous Daily 
Macroclimatic 

Weather 
Station 

CO2 Emission Once   Diagnostics 

Combustion 
Gas 

Measurement 
Equipment 
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Monitoring of indoor temperature and humidity is conducted in sample volumes. 

These volumes are determined according to the following criteria: 

• Orientation of the space 

• Volume of the space 

• Possibility to cover volumes with similar/different functions for further 

comparisons 

In Table 17 and Table 18 total number of data loggers and their distribution 

among building levels and spaces is presented. Similar volumes in different orientations 

were selected for locating the data loggers (Figure 36). The corner volumes in both 

floors are equipped with loggers. Only on ground floor, east facade corner volumes 

were neglected, since both are installation spaces with large volumes, and are not 

heated. Instead two storage spaces with different volumes are selected for ground floor. 

Another example for sampling spaces is on the west wing, ground floor, on both sides 

of the dilatation wall with similar volumes. Every wing of the building is being 

monitored on sides both facing exteriors of the building and the atrium. 

 

 

Table 17. Data loggers installed in the case building 

Number of HOBO U12 Data Loggers 

Total  35 

On Ground Floor 25 

On First Floor 10 

 

 

Table 18. Distribution of data loggers 

Number of HOBO U12 Data Loggers 

In Office Spaces 18 

In Laboratory Spaces 4 

In Classrooms 4 

In Circulation Spaces 3 

In Clinic Spaces 3 

In Storage Spaces 2 

In Common Spaces (Canteen) 1 
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Figure 36. Data logger locations in the case building 

   

Figure 37. Data loggers in different spaces (classroom, office, and corridor) 

Temperature and humidity data loggers (HOBO) are placed between 1.50 and 

1.70 meters, aligned with the center of the space, avoiding exterior walls to remove the 

effects of irradiative temperature differences and avoiding direct solar exposure (Ghisi 

& Massignani, 2007; Fuller, Zahnd, & Thakuri, 2009). 

Electricity consumption is monitored on both of the electricity boards for 

common use and cooling unit. On both boards, Power Analyzer MPR63 is installed, and 

configured for data logging every 15 minutes interval. The accuracy of the analyzer for 

electrical current is 0,5% and for electrical power is 1%. Daily electricity loads for 
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equipment and cooling is monitored and calculated from the logger in units of KW from 

the power analyzer recordings for further analysis.  

The heating system of the building runs on fuel combustion. To monitor the 

amount of fuel consumed by the system on daily basis two flow meters are installed on 

the pipes before the burner unit of the system. The flow meter is a standard one, 

Aquametro Contoil VZE 15 RC, with a measurement type of accumulative volume of 

the consumed fuel. The accuracy of the flow meters is ± 1% of the actual value. The 

fuel is heated to 50 to 60°C in the pre-heater depot to increase the viscosity of fuel. 

Consumption is monitored between these levels of pre-heated state; therefore it is 

necessary to consider the density of fuel in this temperature benchmark.  

Micro-climatic data is monitored in the campus area with a DAVIS Vantage 

Pro2 weather station. Climatic data on outdoor temperature, outdoor humidity, global 

horizontal solar radiation, wind speed and wind direction is measured by the weather 

station with 10 minutes interval. The measurement ranges and the accuracy of each 

external weather component is presented in Table 19. Cloudiness index is retrieved 

from macro-climatic main weather station of Izmir (TSMS, 2009). 

 

 

Table 19. Weather data monitored in IZTECH campus area 

 
Measurement Range and Unit Accuracy 

Outdoor Temperature 0-60°C ± 0,5°C 

Outdoor Humidity 0-100% ± 3% 

Global Horizontal 
Solar Radiation 

0-1800 W/m2 ± 5% 

Wind Speed 
1-67 m/s 

± 5% 
3-241 km/s 

Wind Direction 0-360° 4° 

 

 

 

 

 



73 
 

3.1.2.1.2. Data Analysis and Results for Energy Performance  

Monitoring 

 
Monitoring data for the case building is analyzed according to following 

comparative criteria: 

• Evaluation of hours outside design temperature for winter and summer during 

occupancy. 

• Evaluation of indoor – outdoor temperature differences according to orientation 

and type of volumes. 

• End use electricity and fuel consumption analysis. 

 

1) Evaluation of Monitored Indoor Temperature Profiles: 

Indoor temperature monitoring results are presented according to the evaluation 

of hours outside design temperature for winter and summer. Occupancy hour data is 

analyzed for this evaluation. The hourly temperature and humidity averages are 

calculated from monitoring data with 10 minutes interval, for the occupancy period 

between 08:00 and 18:00 hours for specific weekly workdays, which results in a total of 

2520 occupancy hours in a year. The ratio of hourly temperature averages to the total 

hours of occupancy is presented in the following charts according to heating, cooling 

and non-conditioning periods. The monitored spaces are indicated in following analysis 

as Z17, Z21, Z33 etc. for ground floor and 101, 115, 131 etc. for first floor. The spaces 

which are acclimatized by heating and cooling systems during monitoring period are 

included for analysis. 

Figure 38 presents the percentage of measured indoor temperatures below 

design temperature (20°C) during occupancy hours. The analysis covers the months of 

heating season (January, February, March and December 2009) and non-conditioned 

months (April and May 2009). According to the analysis, the graph points out that north 

oriented spaces distinctly have larger ratios of hours below comfort range (almost an 

average of 40 to 45 percent). The result indicates that north oriented spaces fail to attain 

indoor temperature levels since the building envelope is not adequately insulated.  
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          Figure 38. Ground floor – Percentage of measured indoor temperatures below design  
                           temperature (20°C) during occupancy hours 

The dissimilar results for south oriented spaces originate from solar gains 

through the building envelope which affect the indoor environment temperature profile. 

Analysis of east and west oriented spaces as well denote a considerable ratio of hours 

below comfort range, which is directly in relation with the relatively low angles of solar 

inclination of winter sun and the decrease of solar gains. In April and May 2009 non-

conditioned season, north oriented spaces are roughly 33 % below comfort range. 

 

 

 

  Figure 39. First floor – Percentage of measured indoor temperatures below design temperature  
                   (20°C) during occupancy hours 
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Monitored spaces in the first floor are as well analyzed according to the 

percentage of measured indoor temperatures below design temperature (20°C) during 

occupancy hours (Figure 39). The analysis of first floor data demonstrates that there is 

almost a similar case for every orientation. North oriented spaces have an average of 

35%, in south oriented part of the building a single large space exists and it has 22%, 

east oriented spaces have an average of 40 %, and west oriented spaces have an average 

of 39 % of hours outside design comfort range in heating season. East and west spaces 

have very close percentages of hours outside comfort range. East spaces are in contact 

with unheated zones in the ground floor, therefore heat losses occur towards these zones 

from non-insulated floor. Additionally east and west oriented spaces have less solar 

gains during winter months.  

North oriented spaces in the first floor have better conditions compared to 

ground floor analysis (Avfirst=33% < Avground=48%). The reason for the better average 

of hours below design temperature is the heat loss from concrete ground on floor is 

eliminated and the roof of the building has an acceptable heat transfer coefficient, 

therefore first floor is only subject to heat losses from façade structure. 

During April and May, the non-conditioned period, east and west oriented 

spaces illustrate an improvement in indoor temperatures, since the solar gains become 

more prominent. In contrary north oriented spaces demonstrate a poorer indoor 

temperature profile, since the heating systems are turned off. 

Figure 40 presents the analysis of the percentage of measured indoor 

temperatures over design temperature (26°C) for cooling period. The results show that 

east and west oriented spaces have large percentages of hours exceeding 26°C during 

cooling season, which cause high cooling loads. In the west oriented spaces the 

difference of Z01 percentages originates from the area of the heat loss surface and the 

orientation, where the space is exposed to exterior air towards north with a reinforced 

concrete wall.  
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 Figure 40. Ground floor – Percentage of measured indoor temperatures over design temperature 
                  (26°C) during occupancy hours 

South oriented spaces Z40 and Z42 are supplied with standalone air conditioners 

in addition to the central cooling system; therefore the indoor temperatures are lower 

than the set point of Z21. Analysis of north oriented spaces summer months illustrate 

the least out of range percentages, where solar gains have no affect on indoor 

temperatures.  

 

 

 

   Figure 41. First floor – Percentage of measured indoor temperatures over design temperature 
                    (26°C) during occupancy hours 
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In Figure 41, parallel analysis results for first floor spaces are presented. The 

percentage of measured indoor temperatures over design temperature (26°C) for south 

east and west oriented spaces are very high, during the cooling season. For the north 

oriented spaces, the lowest results around 56% of hours over design temperature are 

attained. South and east oriented spaces in the first floor have higher percentages of 

hours over design temperature, vastly originating from overheating from the roof 

structure.  

October and November profiles for both ground floor and first floor analysis 

show that the percentage of hours over design temperature is relatively small in regard 

to the decrease in outdoor temperatures, while the cooling system functions for lesser 

periods (Figure 40,Figure 41). 

 

2) Evaluation of Monitored Indoor Response to Outdoor:  

Indoor temperature and humidity parameters are examined in response to the 

fluctuations of outdoor parameters and are presented merely by monitoring data 

gathered from sample monitored volumes. The analysis is carried out according to 

orientation and the volume of the monitored spaces, regarding heating and cooling 

seasons. Table 20 (pp. 78-79) indicates the monitored spaces according to their exterior 

exposure, occupancy, and spatial characteristics. This classification yields the sub-sets 

of spaces which are evaluated according to outdoor temperature and humidity results. 

 Fluctuations of indoor temperature and humidity for two identical north 

oriented spaces in occupancy and volume in January 2009 is presented in Figure 42 

(p.80). Indoor temperature for space 142 (first floor) is higher than Z15 (ground floor) 

in many instances, although both spaces have the heating system functioning. 

The graph in Figure 43 (p.80) presents two sample spaces with the same volume 

and occupancy and their respond to exterior temperature and humidity levels. During 

July 2009, cooling system run in both spaces and monitored temperature fluctuations for 

these spaces are similar in trend, different in average values, which can be interpreted as 

an effect of solar gains from roof structure and different thermal comfort perception of 

the occupants. 
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Table 20. Exposure, occupancy, and spatial characteristics of monitored spaces 

 Zones 

M
ain O

rientation 

Exposure Length 
to M

ain 
O

rientation 

Exposure A
rea 

to M
ain 

O
rientation 

Secondary 
O

rientation 

Exposure Length 
to Secondary 
O

rientation 

Exposure A
rea 

to Secondary 
O

rientation 

Tertiary 
O

rientation 

Exposure Length 
to Tertiary 
O

rientation 

Exposure A
rea 

to Tertiary 
O

rientation 

A
rea of 

W
indow

s on  
Exposed 
Surfaces 

O
ccupancy 

A
rea 

H
eight 

V
olum

e 

U
se 

(m) (m2)   (m) (m2)   (m) (m2) (m2) # of people (m2) (m) (m3) 

Z01 West 6,90 26,22 North 6,89 26,18 -------- -------- -------- 6,84 1,00 48,79 3,80 185,40 Office 
Z03 West 3,40 12,92 -------- -------- -------- -------- -------- -------- 3,42 3,00 23,80 3,80 90,44 Office 
Z04 West 6,90 26,22 South 2,82 10,72 -------- -------- -------- 10,26 3,00 23,09 3,80 87,74 Office 
Z06 West 6,90 26,22 North 3,46 13,15 -------- -------- -------- 10,26 -------- 23,80 3,80 90,44 Office 
Z09 West 3,40 12,92 -------- -------- -------- -------- -------- -------- 3,42 1,00 22,51 3,80 85,54 Office 
Z12 West 3,30 12,54 South 6,90 26,22 -------- -------- -------- 3,42 -------- 22,75 3,80 86,45 Office 
Z13 -------- -------- -------- -------- -------- -------- -------- -------- -------- -------- -------- 0,00 -------- -------- Corridor 
Z14 East 16,60 63,08 North 2,20 8,36 South 2,20 8,36 11,80 4,00 78,85 3,80 299,63 Office 
Z19 -------- -------- -------- North 9,25 35,15 South 9,25 35,15 45,88 -------- 84,48 3,80 321,02 Corridor 
Z17 North 3,40 12,92 -------- -------- -------- -------- -------- -------- 3,42 2,00 27,53 3,80 104,61 Office 
Z15 North 4,53 17,21 West 8,10 30,78 -------- -------- -------- 6,84 3,00 36,65 3,80 139,27 Office 
Z21 South 3,40 12,92 -------- -------- -------- -------- -------- -------- 3,42 2,00 24,13 3,80 91,69 Office 
Z23 South 4,53 17,21 West 7,10 26,98 -------- -------- -------- 6,84 1,00 33,19 3,80 126,12 Office 
Z26 East 6,68 25,38 -------- -------- -------- -------- -------- -------- 5,50 -------- 50,00 3,80 190,00 Storage 
Z30 East 3,25 12,35 -------- -------- -------- -------- -------- -------- -------- -------- 24,60 3,80 93,48 Storage 
Z33 West 16,60 63,08 North 2,20 30,10 -------- -------- -------- 13,68 12,00 89,60 3,80 340,48 Canteen 
Z35 -------- -------- -------- North 9,25 35,15 South 9,25 35,15 45,88 -------- 84,48 3,80 321,02 Corridor 
Z37 North 3,40 12,92 -------- -------- -------- -------- -------- -------- 3,42 1,00 23,30 3,80 88,54 Laboratory 
Z39 North 4,53 17,21 West 7,10 26,98 -------- -------- -------- 6,84 1,00 32,38 3,80 123,04 Patient Watch 

 
           (cont. on next page) 78 
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          Table 20. (cont.) 

 Zones 

M
ain O

rientation 

Exposure 
Length to M

ain 
O

rientation 

Exposure A
rea 

to M
ain 

O
rientation 

Secondary 
O

rientation 

Exposure 
Length to 
Secondary 
O

rientation 

Exposure A
rea 

to Secondary 
O

rientation 

Tertiary 
O

rientation 

Exposure 
Length to 
Tertiary 

O
rientation 

Exposure A
rea 

to Tertiary 
O

rientation 

A
rea of 

W
indow

s on  
Exposed 
Surfaces 

O
ccupancy 

A
rea 

H
eight 

V
olum

e 

U
se 

(m) (m2)   (m) (m2)   (m) (m2) (m2) # of people (m2) (m) (m3) 

Z40 South 4,53 17,21 East 8,10 30,78 -------- -------- -------- 6,84 2,00 35,84 3,80 136,19 Emergency 
Room 

Z42 South 8,13 30,89 West 8,10 30,78 -------- -------- -------- 10,26 2,00 65,80 3,80 250,04 Dental Clinic 
101 West 6,85 26,03 North 10,50 39,90 -------- -------- -------- 14,36 5,00 72,45 3,80 275,31 Laboratory 
103 West 6,90 26,22 South 2,40 9,12 -------- -------- -------- 10,26 1,00 47,60 3,80 180,88 Office 
105 West 6,90 26,22 North 2,40 9,12 -------- -------- -------- 10,26 1,00 47,60 3,80 180,88 Office 
109 West 3,30 12,54 South 6,90 26,22 -------- -------- -------- 3,42 1,00 22,75 3,80 86,45 Office 
111 East 5,85 22,23 South 2,15 8,17 -------- -------- -------- 3,42 1,00 27,50 3,80 104,50 Office 
115 North 8,13 30,89 West 7,90 30,02 -------- -------- -------- 10,26 3,00 64,20 3,80 243,96 Laboratory 
117 South 4,53 17,21 West 6,90 26,22 -------- -------- -------- 6,84 1,00 32,25 3,80 122,55 Laboratory 
121 East 3,30 12,54 North 6,90 26,22 -------- -------- -------- 3,42 2,00 22,70 3,80 86,26 Office 
127 East 12,98 49,32 -------- -------- -------- -------- -------- -------- 6,84 -------- 63,50 3,80 241,30 Laboratory 
132 West 8,20 31,16 South 2,15 8,17 -------- -------- -------- 10,26 Not Known 56,17 3,80 213,45 Classroom 
131 East 6,90 26,22 South 10,50 39,90 -------- -------- -------- 14,36 Not Known 72,43 3,80 275,23 Classroom 
143 South 16,45 62,51 East 8,10 30,78 West 8,10 30,78 20,52 Not Known 133,23 3,80 506,27 Laboratory 
140 North 3,40 12,92 -------- -------- -------- -------- -------- -------- 3,42 2,00 24,14 3,80 91,73 Office 
142 North 4,53 17,21 West 7,10 26,98 -------- -------- -------- 6,84 2,00 33,19 3,80 126,12 Office 

79 
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              Figure 42. North oriented spaces temperature and relative humidity fluctuations 
                               (January-monitoring data) 

 

                    Figure 43. North oriented spaces temperature and humidity fluctuations 
                                     (July-monitoring data) 
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In Figure 44, two sample west oriented spaces are analyzed according to the 

indoor temperature and humidity profiles in January 2009. In the previous analysis it is 

noticed that selected spaces have similar profiles for winter and summer hours outside 

design temperature range and their volumes and glazing areas are identical; however 

surface area for heat loss differ in two spaces. First floor office (109) has a large 

reinforced concrete wall facing south. Therefore the general trend of higher indoor 

temperatures in Z09 occurs. 

West oriented spaces Z09 and 109 have more steady temperature and humidity 

fluctuations in July 2009. 109 have higher indoor temperature trend compared to Z09. 

The effect of south facing reinforced concrete and overheating from the roof surface is 

dominant in this higher indoor temperature profile (Figure 45).  

Several comparisons between monitored spaces and orientations can be obtained 

from monitoring data and can be investigated for zone specific assessments. The results 

of this evaluation can be summarized as follows: 

• North oriented spaces have poorer indoor temperature profiles compared to other 

orientations during heating season. The reason for indoor temperature problems 

in north oriented spaces originates mostly from the lack of thermal insulation in 

building envelope parts.  

• Area of heat loss surfaces and the alteration in their structure (especially 

reinforced concrete walls) affect the indoor temperature profiles in all spaces. 

• First floor spaces are largely affected by overheating during summer. The 

percentage of hours over design temperature is relatively high compared to 

ground floor spaces. 

• Ground floor spaces present lower indoor temperatures during heating period 

due to the heat losses from the non-insulated concrete floor on ground. 
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               Figure 44. West oriented spaces temperature and relative humidity fluctuations 
                                (January-monitoring data) 

 

               Figure 45. West oriented spaces temperature and relative humidity fluctuations 
                                (July-monitoring data) 
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3) Evaluation of Monitored Energy Consumption: 

 Electricity consumption is monitored with two power analyzers. Figure 36 

presents the monthly total electricity consumption of the building starting from June 

2007. Cooling system in the building started functioning in August 2008 and can 

distinctively be seen as an accumulative result to standard electricity use in the building. 

As a result, electricity consumption of the building has an increasing trend in 2009 

when compared to previous years of occupancy. The highlighted part in the graph 

represents 2009 and in Figure 46, monthly electricity consumption regarding utility and 

cooling end-use are presented. 

 

 

 

Figure 46. Total electricity consumption of the case building  
(Source: OCW 2009) 

 

Figure 47. Monthly electricity consumption in 2009  
(Source: OCW 2009) 
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According to the results from Figure 47, it is possible to make the following 

assumptions: 

• Minimum electricity consumption is in April, with 18997 KWh, which can be 

accepted as a base value for all utilities such as lighting and equipment. 

• Particularly for December-January and July-August, the excessive part of 

electricity consumed more than the assumed limit of 18997 KWh can be 

regarded as a sum of standalone heating and cooling appliances which function 

on utility electrical system and the electrical power to run the heating system. 

 

The framework of above assumptions gives an annual consumption breakdown 

for utilities and cooling electricity consumption. Cooling energy consumption is the 

annual electricity consumption solely on room cooling and is assumed as the total value 

for the sum of cooling unit consumption and standalone coolers (Table 21). 

 

 

Table 21. Monitored electricity consumption (utilities and cooling) 

Monitored Electricity Consumption in 2009 
End Use kWh 

Utility Electricity Consumption 270132 
Cooling Electricity Consumption 57282 

 

 

 Heating system functioned for 16 weeks (week 2-12 and week 48-52) during 

2009. During 2009, fuel consumption is monitored by daily manual recordings and 

during 2010 the monitoring is conducted with flow meters installed to both of the 

boilers of the heating system. 2010 consumption data is collected to ensure the accuracy 

of 2009 consumption data. Additionally, daily data for boiler outlet water temperatures 

are obtained from the external weather compensation system (Figure 48). According to 

Figure 48 boiler temperatures respond to exterior temperature fluctuations. With lower 

exterior temperatures the boilers respond to higher heating temperatures.  
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Figure 48. Boiler temperatures for exterior weather compensation 

 

Figure 49. Fuel consumption of the case building during heating season 2009-2010 
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thermostat settings to higher temperatures, which cause the heating system to 

switch off less; even the exterior temperature is high. Once the building is 

cooled down with the effect of external temperature it takes an amount of time 

for the thermal mass of the envelope components to balance their heat storage 

capacity (Manioglu & Yılmaz, 2006). 

• Indoor surface temperatures: Since the U-value of the sections are high in the 

existing situation the indoor surface temperature differences for envelope 

components are relatively higher than any insulated mass wall system. 

Irradiative effects of indoor surface temperatures may cause occupant thermal 

discomfort which results in adjustment of thermostat controls of the heating 

system (Fanger, 1970). 

These results indicate that fuel consumption and boiler compensation 

adjustments indicate that functioning and consumption pattern of the heating system is 

not only dependent on exterior temperature fluctuations, influence of building envelope 

and occupant perception is as well important on end use consumption. 

To be able to make a high accuracy prediction for the heating consumption of 

the case building for 2009 heating season an artificial neural network model (ANN) is 

used to predict daily consumption from known boiler temperatures and exterior weather 

parameters (Güçyeter & Günaydın, 2010). The cumulative result of consumption can be 

seen in Table 22. These results are very close to the recorded purchase for fuel oil by 

OCW (2009). 

 

 

Table 22. Monitored fuel consumption in 2009  

Monitored Fuel Consumption in 2009 
Months kWh 

January 29823 
February 27388 
March 22815 
December 25533 

Total 105559 
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3.1.2.2. Energy Performance Simulation of the Case Building 

 
EDSL Tas Building Energy Simulation program is used for the energy 

performance modeling of the case building. The program’s validity is tested by the 

following authorities and pointed as an accurate simulation program: 

• Dynamic Simulation Modeling (DSM) test based on based on “CIBSE TM33: 

2006 - Test for software accreditation and verification” 

• Building Energy and Environmental Modeling (BEEM) tests based on “CIBSE 

Applications Manual AM11: 1998 Building Energy and Environmental 

Modeling” 

• HVAC equipment performance tests as required by ASHRAE 140-1 (2004). 

• Compliance with EN ISO 13791 “Thermal performance of buildings -- 

Calculation of internal temperatures of a room in summer without mechanical 

cooling -- General criteria and validation procedures” (EDSL, 2009). 

The software is a response factor based dynamic simulation tool, with a 3D 

design interface, databases on thermo physical properties of building elements, weather 

data, building schedules.  

Time-step length of the calculations is hourly and offers a preconditioning time 

for the building simulation to include the thermal mass effect to the first simulation day. 

The program includes external solar radiation with separate treatment of direct and 

diffuse and internal solar distribution is calculated for each time-step during the 

simulation of the model. 

For internal surfaces, the software uses separate convection and radiation 

networks, rather than combined convection and radiation coefficients, which helps to 

assess heat exchange between surfaces and the enclosed air. Additionally, external 

convection coefficients are calculated according to wind speed and temperature data at 

each time-step. 

Heating and cooling load calculations, annual energy demand, hourly indoor 

temperature, humidity and surface temperature profiles, natural and mixed mode 

ventilation requirements, and daylight analysis are outputs of the EDSL Tas software. 

The software has different interfaces to complete the energy performance 

analysis and a macro tool to assess parameters and/or systems such as plant sizing and 
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thermal comfort etc. The composition of the simulation model for the case building is 

explained along to these interfaces in this section.   

In 3D Modeler interface of EDSL Tas, the case building is modeled according to 

the following main considerations: 

• Definition of general building features: Latitude, longitude, orientation, and 

close environmental attributes defined in section 3.1.1.1. 

• Definition of building elements and characteristics depending on their 

architectural features: Exterior walls, interior walls, floors, roof and glazed areas 

are identified in the 3D model with respect to their major characteristics that are 

effective on building energy performance. For instance the exterior walls are 

defined in two different characteristics to represent exterior clinker brick walls 

and exterior reinforced concrete walls. The differentiation of exterior walls can 

be seen in Figure 50. 

• Definition of zones in the case building: In general, zoning of the building for 

thermal performance analysis is planned according to their similarities in heating 

and cooling profiles. The number of zones defined in the simulation model is 

parallel to the actual divisions of the building, since a comparison of monitoring 

and simulation data is conducted in this study. The final 3D model for 

performance simulation is completed with 104 individual zones. 

 

 

 

Figure 50. 3D model of the case building in EDSL Tas 3D Modeler  
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The second and the main interface of EDSL Tas is the Building Simulator, 

where all attributes in relation with energy performance are identified. These attributes 

can briefly be summarized as follows: 

• Calendar: This module in the interface is concerned with defining the calendar 

for a whole year that the dynamic simulation is run. The calendar specifies the 

day type for every day of the year, for utilization in scheduling conditioning, 

internal conditions, air flow rates, etc. The day types defined for the case 

building can be listed as: Weekday/Workday, Weekday/Schooldays, Saturday, 

Sunday, Public Holidays. All day types present different characteristics, for 

instance Weekday/Schooldays covers Weekday/Workday as office work 

continues, and additionally helps to define the days in a year when students are 

occupying the case building (EDSL, 2009). 

• Weather Data: For the case building location, the monitored weather data is 

incorporated in the software by weather data module. Weather data contains for 

whole year hourly information on parameters in Table 23. Existing monitored 

weather data from the campus is converted as an appropriate set of data and 

entered to the weather database of the software in a tabular format, with hourly 

average values (EDSL, 2009). 

 

 

Table 23. Weather data parameters for EDSL Tas 

Hourly weather variables Details 

Global Radiation (W/m2) Total solar radiation intensity on a horizontal plane. 

Diffuse Radiation (W/m2) Diffuse sky radiation intensity on a horizontal plane. 

Cloud Cover (0-1) 
A number varying from 0 for a clear sky to 1 for overcast 
conditions. This quantity is used to estimate long-wave sky 
radiation during simulation. 

Dry Bulb Temp. (C) The dry-bulb temperature as measured in a Stephenson screen. 

Relative Humidity (%) The relative humidity as measured in a Stephenson screen. 

Wind Speed (m/s) The wind speed measured at a height of 10 meters above the 
ground 

Wind Direction (°-
Clockwise) 

The direction from which the wind blows (degrees clockwise of 
north). 
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• Constructions: In setting up the 3D model, building elements were assigned as 

walls, floors and ceilings.  In Building Simulator application, constructions are 

applied to these pre-set building elements.  Constructions define the material 

composition and thermal properties and are retrieved from the building element 

compositions in section 3.1.1.2 (EDSL, 2009). 

• Schedules: Schedules are set up to control the timing of the occupancy, internal 

gains, thermostat values, aperture types (for instance, opening and closing period 

of a window), ventilation regimes etc. In EDSL Tas, schedules are designed as a 

time-series of 0's and 1's, one value for each hour of the day. The value 0 

denotes that certain gain, loss or regime do not contribute/effect the energy 

balance of an indoor space, simply they do not function. On the contrary, the 

value 1 denotes that in an indoor space a certain gain, loss or regime do exist and 

contribute the energy balance of the indoor environment (EDSL, 2009). An 

example schedule used in the simulation model can be seen in Table 24. 

 

 

Table 24. Schedule examples used in EDSL Tas building simulation 

Schedule 
Name Office 

Hours 
Classroom 

Hours Unoccupied Hours 24 Hours 
Hour 
0-1 0 0 1 1 
1-2 0 0 1 1 
2-3 0 0 1 1 
3-4 0 0 1 1 
4-5 0 0 1 1 
5-6 0 0 1 1 
6-7 0 0 1 1 
7-8 0 0 1 1 
8-9 1 1 0 1 

9-10 1 1 0 1 
10-11 1 1 0 1 
11-12 1 1 0 1 
12-13 1 0 0 1 
13-14 1 1 0 1 
14-15 1 1 0 1 
15-16 1 1 0 1 
16-17 1 1 0 1 
17-18 1 1 0 1 
18-19 0 0 1 1 
19-20 0 0 1 1 
20-21 0 0 1 1 
21-22 0 0 1 1 
22-23 0 0 1 1 
23-24 0 0 1 1 
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• Internal Conditions: In the internal conditions module, energy gains and losses 

within a zone are described. Additionally specification of environmental control 

with thermostat settings and emitter characteristics, infiltration and ventilation 

are controlled in this module (EDSL, 2009).  Table 25 presents several 

parameters used for internal conditions in modeling the case building. Varying 

thermostat control ranges are applied to different zones as a result of monitoring. 

Thermostat control ranges differ between 20°C (±2) to 22°C (±2) for heating 

period and 24 (±2) to 26 (±2) for cooling period. The building is considered as a 

building with low air-leakage, with infiltration rates differing between 0,2 to 0,3 

ach. Lighting gains vary between 2 and 8 W/m2 according to the function of the 

space. Lighting schedules and durations vary as well, depending on spatial 

function. Equipment gains are assumed due to the present equipment density in 

each space. 

 

 

Table 25. Internal condition parameters applied for EDSL Tas model 

Internal Conditions 

  
Set points (°C) 

Heating (Min) Cooling (Max) 

Thermostat Control 

Offices 22 (±2) 24 (±2) 
Classroom 22 (±2) 24 (±2) 
Laboratories 20 (±2) 24 (±2) 
Circulation 20 (±2) 26 (±2) 

Infiltration Rate (ach) 
0,2 - 0,3 

Lighting  Gain (w/m2) 
2-8 

Occupancy  Metabolic Rate (W/person) 
120 

Equipment Variable 
 

 

Major parameters in building energy simulation are summarized above. 

Subsequent to application of these parameters, the building simulation is run in the 

Building Simulation interface of the software. Third interface of the software is the 

Results Viewer, in which the hourly dynamic simulation results are stored. The 

interface allows to create different output sets with the results, such as indoor 

temperatures (dry bulb, radiant and resultant), indoor relative humidity, sensible loads, 
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latent loads, and different surface filters (interior and exterior surface temperatures, 

amount of solar radiation on envelope surfaces etc.) (EDSL, 2009). 

Simulation data stored in the Results Viewer interface can further be processed 

in Excel macros to explore certain sets of results and present them in tabular or 

graphical formats or to carry out further calculations. Annual loads, indoor temperature 

frequencies, thermal comfort (PMV &PPD), peak loads, and plant sizing and simulation 

are the important macros embedded in the software. 

The simulation results can be briefly summarized in this section to point out that 

the tool is applicable for an evaluation, and necessary steps to complete this evaluation 

are executed.  

 

1) Evaluation of Simulated Indoor Temperature Profiles: 

Similar to monitoring results, a simple analysis of hours outside comfort range 

can be presented for the spaces that are monitored. The total annual occupancy hours 

(2520) and comfort ranges are evaluated with the identical approach for monitoring 

evaluation.  

 

 

 

          Figure 51. Ground floor – Percentage of simulated indoor temperatures below design  
                           temperature (20°C) during occupancy hours 
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 Figure 52. First floor – Percentage of simulated indoor temperatures below design temperature 
                  (20°C) during occupancy hours 

Simulation results for ground floor indicate that north oriented spaces have 

significant percentage of hours (35 %) outside comfort range during heating season. For 

the months April and May, percentage of hours outside comfort range is higher for 

north oriented spaces than spaces on other directions (Figure 51). First floor percentages 

of simulated indoor temperatures below comfort range can be seen in Figure 52. 

Average percentages for north, south, east and west oriented spaces are respectively 

33%, 16%, 29 and 32%. 

 

 

 

Figure 53. Ground floor – Percentage of simulated indoor temperatures over design temperature 
                  (26°C) during occupancy hours 
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  Figure 54. First floor – Percentage of simulated indoor temperatures over design temperature 
                   (26°C) during occupancy hours 

In Figure 53 and Figure 54cooling period analysis for percentage of simulated 

indoor temperatures over design temperatures are presented. For both storeys there is 

high level of hours over design temperature of the building. Average percentage of 

hours exceeding design temperatures for ground floor is approximately 50 % and for 

first floor the average is around 68 % which are relatively high. Further evaluations for 

simulation results and comparisons of simulation data with monitoring data are 

accessible in section 3.1.2.4.  

 

2) Evaluation of Simulated Indoor Response to Outdoor: 

The evaluation of simulation data for indoor environment parameter response to 

outdoor fluctuations (temperature and relative humidity) is presented with a similar 

manner to monitoring results. 

Simulated fluctuations of indoor temperature and humidity for two identical 

north oriented spaces in occupancy and volume in January 2009 is presented in Figure 

55. The results present similar fluctuations to monitoring data, and indoor temperature 

and relative humidity profiles for space 142 (first floor) is higher than Z15. 

The graph in Figure 56 indicates simulation results from two sample spaces with 

same volume and occupancy and covers July 2009 with cooling system functioning in 

both spaces. Simulation results provide very similar trends for temperature and relative 

humidity fluctuations where in monitoring there are certain deviations for the analysis 

of same spaces and periods. The reason of this deviance between measurement and 
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simulation can be interpreted as an effect of difference in occupancy tendencies related 

to thermal comfort. 

In Figure 57 (p.96), simulated indoor temperature and humidity values of two 

west oriented spaces (Z09 and 109) are presented according to outdoor fluctuations. 

Both spaces have very close trends and fluctuations in response to exterior climate.  

During July 2009, Z09 and 109 have minor fluctuations for temperature and 

humidity, due to outdoor parameters. 109 have higher indoor temperature trend 

compared to Z09. The effect of south facing reinforced concrete and overheating from 

the roof surface is dominant in this higher indoor temperature profile (Figure 58, p.97).  

The similarity of simulation results support the findings drawn from monitoring 

results, hence an additional point of concern arises, which is the effect of changes in 

occupancy and occupant control may cause distinctions between measured and 

simulated results. This concern is one of the important aspects, which necessitate 

calibration of the simulation model, which is explained in further sections. 

 

 

 

              Figure 55. North oriented spaces temperature and relative humidity fluctuations 
                               (January-simulation data)  
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              Figure 56. North oriented spaces temperature and relative humidity fluctuations 
                               (July-simulation data)  

 

              Figure 57. West oriented spaces temperature and relative humidity fluctuations 
                               (January-simulated temperatures)  
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              Figure 58. West oriented spaces temperature and relative humidity fluctuations 
                               (July-simulated temperatures) 
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30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

5

10

15

20

25

30

35

08:00:00
01.07.2009

08:00:00
08.07.2009

08:00:00
15.07.2009

08:00:00
22.07.2009

08:00:00
29.07.2009

R
el

at
iv

e 
H

um
id

ity
 (%

)

Te
m

pe
ra

tu
re

 (°
C

)

West oriented spaces temperature and relative humidity fluctuations (July)

Z09 Indoor Temperature (°C) Exterior Dry Bulb Temperature (°C)

109 Indoor Temperature (°C) Exterior Relative Humidity (%)

Z09 Indoor RH (%) 109 Indoor RH (%)



98 
 

 

Figure 59. Simulated annual loads 

 

Figure 60. Simulated monthly loads for heating and cooling 
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ventilation systems and regimes if exists, and the specifications on installation systems. 

These specifications are summarized in Table 26.  

 

 

Table 26. Installation system characteristics used in plant simulation 

 

Installation System Specifications 
Efficiency 

(%) 
Capacity of 
Total (%) 

Distribution Efficiency 
(%) 

Heating 
System 

Boiler 1 87,00 60,00 90,00 Boiler 2 84,00 40,00 

Cooling System COP (%) 
Capacity of 
Total (%) 

Distribution Efficiency 
(%) 

2,3 100,00 95,00 
 

 

In addition to annual, monthly and/or hourly consumption parameters, plant 

simulation macro provides results such as CO2 emissions, consumption breakdown, and 

cost if unit prices for energy sources are given.  

Monthly consumption results obtained from are presented in Figure 61. It is 

noticeable that there is a certain deviation for electricity consumption/cooling demand 

rendition (Figure 60). This deviation originates from the performance of the cooling 

system COP and distribution efficiency, which results in lower electricity consumption 

in kWh when compared to annual demand for cooling. 

 

 

 

Figure 61. Simulated monthly resource consumption 

0

20000

40000

C
on

su
m

pt
io

n 
(k

W
h)

Monthly Resource Consumption

Fossil Electricity



100 
 

Figure 62 presents the annual energy consumption breakdown in kilowatt-hours 

according to the space conditioning, lighting and installation end uses. Space heating 

and system fans (AHU and ceiling type fan coils) have the first two larger shares, 

respectively 113768 kWh (%31,54) and 84883kWh (%23,54). Space cooling has the 

third largest share with 52129 kWh (%14,45). The total annual energy consumption for 

the above end uses is 360659 kWh, which results in 32,56 kWh/m3 and 105,63 kWh/m2 

for the conditioned space and volume of the case building.  

In Figure 63, CO2 emissions by energy end use breakdown are available in 

kgCO2. Total annual emission of the building is 126,2 tonCO2. System fans, space 

heating and space cooling has the largest shares, respectively 35,8 tonCO2 (%28,39), 

30,1 tonCO2 (%23,89), and 22,0 tonCO2 (%17,43). 

General results of the energy performance simulation results for the case 

building is summarized and in section 3.1.2.4 these results are compared to monitoring 

data comprehensively. 

 

 

 

Figure 62. Simulated annual energy consumption breakdown 

 

Figure 63. Simulated annual CO2 emissions 
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3.1.2.3. Energy Performance Evaluation of the Case Building 

According to TS 825 

 
The calculations for the case building according to TS 825 – Thermal Insulation 

in Buildings (2008) are completed to obtain the existing buildings energy performance 

evaluation according to this standard. The calculation methodology of the standard is in 

monthly time-steps and the building is processed as a single volume in these 

calculations. The results denote only the annual heating load of the building as a 

performance measure, hence ignores the cooling loads.  

The standard defines four climatic zones in Turkey, with different levels of 

annual heating load requirements and U-values. Izmir is in the first zone, with a 

Mediterranean climate, where hot and humid summers and cool winters are typical 

characteristics. TS 825 accept degree-day method and uses solar radiation and exterior 

temperature from reference year weather data according to these climatic regions.  

Following evaluation according to TS 825 is subject to the requirements of the first 

climatic zone (TS 825, 2008). Necessary parameters for TS 825 calculation can be listed 

as follows: 

1) Area to Volume Ratio (A/V):  

This ratio is the main decision factor of TS 825 in defining the benchmark 

energy demand levels a building may require. The surface area of the volumes exposed 

to exterior space or unheated volumes are accepted as the heat loss surfaces and the area 

in this ratio is defined by the total area of these surfaces. Volume of the building refers 

to the total heated volume. The ratio A/V is used to assess the maximum annual heating 

load in units of kWh/m2 or kWh/m3. The difference of units originates from the net 

floor height. In cases where floor height do not exceed 2,60 meters, heating load is 

calculated according to the heated floor area of the building and in cases where the net 

floor height exceeds this limit the calculation is done according to heated volume of the 

building. In our specific case, net floor height is 3,60 meters therefore the annual 

heating load is calculated in units of kWh/m3. A/V ratio calculation is 0,61 m-1 for the 

case building, given the following parameters in Table 27. 
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Table 27. Parameters for heated spaces in the case building  

Parameters of the case building 
Heat Loss Surface Area (A, m²) 6743,19 
Heated Floor Area (m2) 3414,24 
Heated Volume (V, m3) 11075,56 
A/V (m-1) 0,61 

 

 

2) Calculation Design Parameters:  

This set of parameters include the indication of climatic zone, type of building 

for indoor set temperatures, air change rate (for case building ventilation system 

parameters), and definition of internal gains as normal or high. Table 28 indicates these 

design parameters for the case building. All parameters are assumptions of TS 825 

according to classification of climatic considerations, building types and regulations. 

 

 

Table 28. TS 825 Calculation design parameters 

Calculation Design Parameters for TS 825 
Climatic Region 1 
Indoor Design Temperature (°C) 22 
Air change rate per hour (nh) 0,8 
Internal Gains Normal (for schools, office buildings) 

 

 

3) Building envelope characteristics:  

Building envelope characteristics are defined on component level (wall, roof, 

glazing etc.) with U-value parameters and heat loss surface area exposed to exterior and 

unheated volumes. Table 29 presents the calculations for building envelope components 

adjacent to unheated volumes, thus subject to heat loss. Additionally, to assess the 

overall heat loss of the building ventilation heat losses are calculated and included in the 

total heat loss of the building. 
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Table 29. U-values and heat loss surface area for building envelope components. 

Building Envelope 
Component 

Existing  
U-value 

(W/m²K) 

Limit  
U-value 

(W/m²K) 

Heat Loss 
Surface Area 

(A, m²) 

Heat Loss 
(AxU or 
0,5xAxU, 

W/K) 
Exterior Double Layer 

Clinker Brick Wall 1,531 0,700 728,42 1115,21 
Exterior Reinforced Concrete 

Wall 2,418 0,700 811,76 1962,84 
Concrete Floor on Ground 1,059 0,700 1508,00 798,49 

Flat Roof 0,447 0,450 1906,00 851,98 
Glazing 3,000 0,450 703,81 2111,43 

Interior Wall in Contact with 
Unheated Volume 0,923   718,20 331,45 

Interior Floor in Contact with 
Unheated Volume 1,370   420,3 287,91 

Envelope Losses (HT, Total) 7459,30 

Ventilation Losses (Hv=0,33. nh.Vh, (Total) 3095,25 

 Total Losses 10554,55 

 

 

4) Glazing Area, Orientation and Solar Gains:  

Solar gains are calculated for the case building according to the parameters in 

Table 30. 

 

 

Table 30. Glazing characteristics according to the orientation of heated volumes 

Glazing Area for Heated Volumes (m²) Shading Coefficient 
(ri) 

Solar Transmission 
Factor (g-value) 

North Total 198,16 0,85 0,75 
South Total 200,68 0,85 0,75 
East Total 94,13 0,85 0,75 
West Total 210,84 0,85 0,75 

 

 

According to the above defined parameters, monthly heating load can be 

calculated via Table 31. The equations and parameters in the calculation procedure are 

explained in the relevant order. 
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Table 31. Heating load calculation of the case building by TS 825 

Months 

Heat Loss Heat Gain 
Monthly 

Gain/Loss 

Ratio 

Gain Utilization 

Factor 
Heating Load Specific 

Heat Loss 

Temperatur

e 

Difference 
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(kJ) 

January 

10554,55 

11,30 119306 

17720 

15547 33267 0,28 0,96 150.975.398 

February 12,39 130764 19759 37479 0,29 0,94 165.081.887 

March 10,54 111237 24341 42061 0,38 0,85 130.438.606 

April 0,00 0 27845 45565 0,00 0,00 0 

May 0,00 0 32691 50411 0,00 0,00 0 

June 0,00 0 34498 52218 0,00 0,00 0 

July 0,00 0 33547 51267 0,00 0,00 0 

August 0,00 0 31070 48790 0,00 0,00 0 

September 0,00 0 25592 43312 0,00 0,00 0 

October 0,00 0 20145 37865 0,00 0,00 0 

November 7,15 75418 14885 32605 0,43 0,86 0 

December 8,74 92281 13538 31258 0,34 0,96 107.607.594 

  Qannual=SQm 554.103.485 

104 
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The first column value specific heat loss (H) is the value calculated in Table 29. 

It is a sum of envelope and ventilation losses and accepted as a monthly value for total 

heat loss of the building. The second column contains the average temperature 

differences for the climatic zone of Izmir. The values are given for each climatic zone in 

the Appendix 2 in TS 825. The third column calculates the monthly heat losses 

according to the given indoor outdoor temperature difference with the equation 3.5. 

 

)-H(Q eimloss, ΘΘ=     (W)  (3.5) 

 

For this study, the climatic parameters are accepted as the monitoring year data, 

2009. Monthly average temperatures (°C) for 2009 are used for the calculation, to be 

able to make further comparisons between different calculation methodologies and 

monitoring data. Figure 64 presents the trend of monthly average temperatures between 

monitoring year and present meteorological data for the case area. It can be observed 

that 2009 monthly average temperatures slightly differ from the five year averages of 

the climatic data. Additionally, it is possible to assert that 2009 winter is a milder season 

when compared to the five year averages, and will be evaluated in further steps of the 

research. 

 

 

 

Figure 64. Monthly average temperatures for 2009 and 2005-2009 averages 

Internal gains are calculated with a postulation in TS 825. There is an 
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buildings are defined as spaces with normal level of internal gains) for the case building 

therefore equation 3.6 is used to calculate internal gains, where, iφ  is the internal gains 

and An is the floor area which equals to 0,32*Vheated. 

 

ni A5×≤φ     (W)  (3.6) 

 

For the calculation of solar gains, the standard proposes average horizontal solar 

radiation values (W/m²) of all directions for the climatic zone of the building. Equation 

3.7 is used for the calculation of solar gains, where; ms,φ is the monthly solar gain, mir ,  is 

the shading coefficient of the glazing in direction i, mig ,  is the solar transmission factor 

of the glazing in direction i, miI ,  is the average horizontal monthly solar radiation from 

direction i, glazingA   is the total glazing area on direction i. 

 

∑ ×××= glazingmimimims AIgr ,,,,φ   (W)  (3.7) 

 

The values for shading, transmission coefficients are selected from the range the 

standard offers, according to the specific characteristics of the building. Finally, in the 

sixth column monthly gains are calculated by addition of monthly internal gains and 

solar gains. Monthly gain loss ratio is calculated in the seventh column, with equation 

3.8, where; γ  is the monthly gain/loss ratio, mi,φ is the monthly internal gains, ms,φ  is the 

monthly solar gains, H  is the total losses, mi,Θ  is the monthly average indoor 

temperature, md ,Θ  is the monthly average outdoor temperature. If this ratio is equal to or 

larger than 2,50, no heating load calculation is done for that month. 

 

       )(
)(

,,

,,

mdmi

msmi

H Θ−Θ×

+
=

φφ
γ    (-)  (3.8) 

 

In the eighth column gain utilization factor is calculated with equation 3.9, 

where; mη  is the gain utilization factor and mγ  is the monthly gain/loss ratio. The 
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necessity to use this factor is to render the effect of solar and internal gains since these 

gains might vary dependent on different factors.  

 

                  
)/1(1 mem

γη −−=    (-)  (3.9) 

 

In the last column total monthly heating load is calculated by equation 3.10. The 

gains are subtracted from the losses to retrieve the necessary heat load in one second 

and then multiplied with 86400 seconds and 22 days. The weekends are eliminated from 

the calculation since the building is not utilized in the weekends.  

 

[ ] tHQ msmimeim ×+−Θ−Θ= )()( ,, φφη   (kJ)   (3.10) 

 

As a result the annual heating load for the building is calculated as 554.103.485 

kJ. The next step after this calculation is to check the heating load result to the 

requirement of the standard. Since the floor height in the building is larger than 2,60, 

volumetric assessment is applied for the case building. Calculated annual heating load is 

converted to kilo-watt hours, and is 154.041 kWh. Equation 3.11 is the volumetric ratio 

of this annual heating load. 

 

               heated

annual

V
Q

Q =      (kWh/m³)    (3.11) 

 

The result yields a value of 13,91 kWh/m³ for the case building. However, if the 

limit value is calculated according to the first climatic zone by equation 3.12, the result 

yields a lower limit. The limit for this building is 11 kWh/m³. 

 

        
4,3)1,14( +×=

V
AQdesign       (kWh/m3,year)    (3.12) 

 

The standard defines an energy efficiency index for buildings according to this 

limit value when following energy levels are fulfilled: 

• C Type – Standard Building )99,0( designannual QQ ×≤ = 10,89 kWh/m3,year 
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• B Type – Energy-efficient Building )90,0( designannual QQ ×≤ = 9,90 kWh/m3,year 

• A Type – Low Energy Building )80,0( designannual QQ ×≤ = 8,80 kWh/m3,year 

As a result following conclusions are drawn from the evaluation of energy 

performance analysis of the case building: 

• The exterior heat loss surfaces of the building have higher U-values than the 

limit values proposed by the standard, therefore there is a necessity of 

improvement of thermal transmission coefficients in the building envelope. 

• Interior surface temperature and indoor temperature differences are more than 

3°C for external double layer brick walls, external reinforced concrete walls, and 

for concrete floor on ground in winter months. The temperature differences 

should be less than 3°C to limit irradiative effects of the interior surface 

temperatures 

• Figure 65 presents the calculated heat loss from building envelope. Exterior 

concrete walls, concrete floor on ground, glazing elements and exterior double 

layer clinker brick wall are the major heat loss surfaces in the case building.  

 

 

 

Figure 65. Calculated heat loss from building envelope components 
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3.1.2.4. Comparison and Definition of the Error Margins between 

Analysis Tools 

 
Energy performance of an existing building can be evaluated via different tools 

as utilized in the previous three sections. However, every evaluation tool has a level of 

inaccuracy since energy performance is a complicated physical process between the 

existing building characteristics (envelope, orientation etc.), environmental effects 

(climate, shading etc.), and occupancy patterns. Therefore it is possible to assert that 

evaluation tools may predict the reality with different levels of accuracy, since it is 

challenging to replicate the real context that the existing building responds to all 

environmental and occupancy factors (Pan, Huang, Wu, & Chen, 2006). Decision on 

which tool is more appropriate depends on strength of the tool to interpret various 

inputs, and translation of these input information into a reliable set of output data. Since 

decision on the most appropriate tool depends on comparison, specific to this study, it is 

necessary to make essential adjustments to be able to compare results of these tools. 

Applied adjustments to evaluation tools are explained in this section in detail. 

In this part of the study, main concern is to determine the energy performance 

evaluation tool and expected error margin for this tool. The reason behind this concern 

is based on the thesis methodology, to accurately evaluate proposed retrofitting 

strategies with a specific evaluation tool. Therefore, the following sub-sections cover 

discussions on the accuracy of evaluation tools, simulation and analytical calculation. 

The discussions are based on statistical error analysis to have a common ground on 

comparison.  

To be able to conduct reasonable comparisons for the evaluation tools, 

monitoring data is accepted as the base data set, which corresponds to the real energy 

performance respond for the case building. Section 3.1.2.1 explains the results of 

building energy monitoring in detail. Monitoring data is the main consistent data set in 

this study, since it is the assessment of the energy performance of the case building with 

a whole year building data documentation. All physical phenomena involved with 

energy performance takes place under the real influences of parameters, therefore it is 

possible to appraise that monitoring results represent the most accurate results. 

Adjustments applied to monitoring data involve only calibration of measurement 

equipment and integration of the accuracies (±) to the measurement data. Therefore 
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monitoring data set is accepted as the base data set that as well qualifies the adjustments 

for the other evaluation tools. Only with this qualification characteristic of monitoring 

data, other evaluation tools can be adjusted to attain higher accuracies. In the following 

sub-sections, accuracy of simulation and calculation methods and final evaluation are 

presented. 

 

3.1.2.4.1. Simulation Accuracy - Calibration 

 
Existing situation of the case building is simulated with the building energy 

simulation software EDSL Tas v9.1 as introduced in section 3.1.2.2. Usually dynamic 

building energy simulation tools such as EDSL Tas yield results that deviate from the 

real conditions with an error margin depending on the algorithm of the software 

integrated as a calculation methodology and way of handling extensive parameter sets 

that affect the energy performance of a building in reality (Clarke, Strachan, & Pernot, 

1993).  

To define this error margin, comparison with the monitoring data becomes 

necessary. However it is essential to decrease this error margin to the extent that is 

possible, with a procedure which is addressed as calibration of a building energy 

simulation model. Various methods are applied for calibration of simulation models, 

ranging from monthly to hourly calibration methods, depending on the data retrieved 

from monitoring measurements. However, there is no absolutely defined calibration 

approach; hence there are methods to increase the accuracy of the model. These models 

are emphasized in different standards and research. The major standards that define 

calibration procedures and benchmarks are ASHRAE Guideline 14-2002 Measurement 

of Energy and Demand Savings (ASHRAE, 2002), International Performance 

Measurement & Verification Protocol - Concepts and Options for Determining Energy 

and Water Savings Volume I (IPMVP, 2001), and Measurement and Verification for 

Federal Energy Projects Version 3.0 (M&V, 2008).  

According to the standards mentioned in the previous paragraph, computer 

simulation for energy performance assessment is a powerful tool, that allows to model 

the building and mechanical systems in order to predict building energy use both before 

(in existing situation) and after the application of ECMs (Energy conservation 

measures), retrofit measures. Precision of the model is ensured by using monitoring data 
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to depict the existing situation and/or retrofitting measures. Therefore saving and cost 

estimations for retrofitting/conservation measures become available when precisely 

constructed simulation models constructed models are used (ASHRAE, 2002; IPMVP, 

2001; M&V, 2008).  

Calibration techniques are not specifically explained in these standards, since 

each simulation model may need to calibrate different data set/sets to achieve necessary 

levels of accuracy. Most common calibration procedures are hourly and monthly data 

calibration. Hourly/monthly end-use data are utilized to confirm the calibrated model 

consistency (ASHRAE, 2002). On the other hand calibration parameters are based on 

other operating data than the end-use. Calibration parameters may include indoor set 

point temperatures, occupancy, weather data, schedules and efficiencies for 

installations, ventilation, and infiltration (IPMVP, 2001; Bou-Saada, 1994).  

In this study, employed calibration parameters can be listed as: 

• Hourly indoor temperature data (8760 hourly monitored data)  

• Schedules 

• Infiltration rates (assumed) 

• Ventilation rates (assumed)  

Additionally, the steps in calibrating the simulation can be listed as follows: 

• Integration of assumed parameters to the simulation model and run the hourly 

dynamic simulation. 

• Examination of hourly simulation results, according to their level of accuracy for 

indoor space temperatures and relative humidity levels. 

• Comparison of simulated energy consumption and demands with monitored 

monthly data. 

• Revision of the calibration parameters in the first step according to the analyses 

conducted in steps two and three, to achieve predicted results reasonably close to 

monitored data (IPMVP, 2001; M&V, 2008). 

According to the method with stated characteristics, the calibrated simulation 

model is assumed to be the closest interpretation of the actual behavior of a building, 

yet is expected to yield a certain range of error in the margins defined by ASHRAE 14-

2002 (2002), IPMVP (2001) and M&V (2008). In this research main purpose of 

attaining best calibration for the simulation model is based on the concentration of the 

study on predicting further effects of proposed retrofitting measures in section 3.3.  
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As the base model was established it was recognized that there is large amount 

of discrepancy between indoor environment values for the monitored zones. To achieve 

the most accurate model re-calibration, the simulation model is run 13 times by 

changing one parameter at a time, with the purpose to obtain a coherent model between 

indoor environment and load/consumption data. The final model results are presented 

briefly in this section to point out the accuracy of the model.  

The results for the calibrated model can be presented in two steps as the 

calibration method is set up. For the second step, hourly comparison of simulated indoor 

resultant temperature to monitored indoor temperatures results are presented in             

Table 32. All zones are evaluated with a full year hourly (8760 hours) comparison, 

investigating their correlation and hourly error. Correlation is a linear analysis aiming to 

simplify the level of hour to hour correspondence of simulated and measured 

temperatures without focusing on the error margins. Error analysis on the other hand, 

intends to check the deviation of simulated temperatures from monitoring data. Root 

mean square error (RMSE) and mean bias error (MBE) analyses are used to determine 

the error between simulated and measured hourly indoor temperatures. Equation 3.13 

and 3.14 show the formulas for RMSE and MBE, where, N  is the number of 

observations, maT  is the average measured temperatures for N observations, sT  is the 

simulated hourly temperatures and mT  is the measured hourly temperatures. 

 

    

5,0
2)((1)100( 
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As seen in Table 32, linear correlation coefficients (R) for simulated and 

monitored hourly indoor temperatures for each zone range between 0,84 and 0,98. 

Approximately 86% of the correlation coefficients are between 0,90 and 0,98. The 

correlation yields an approximate R value of 0,90 for all zones data (8760 hours for 

each of 34 zones).  

Percentage of root mean square error (RMSE) presents the percentage of 

deviation, therefore the level inconsistency of the model for a single zone. Percentage 
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RMSE values range between 6,84% and 12,89%, and the value for all zones data is 

9,78%, which can be interpreted as the simulation model consistency for the indoor 

temperature profiles is 90,22% (Table 32).  

 

 

            Table 32. Comparison between simulated and measured indoor hourly temperatures 
                            (8760 hours) 

Comparison between simulated and measured indoor  
hourly temperatures (8760 hours) 

Zones Correlation 
Coefficient (R) RMSE (%) MBE (%) RMSEvalue(°C) 

z15 0,93 8,87 1,86 1,86 
z17 0,93 8,26 -2,83 1,87 
z23 0,89 9,52 1,38 2,14 
z21 0,87 9,09 -3,85 2,15 
z39 0,91 11,25 -0,20 1,99 
z37 0,86 9,50 -0,21 2,09 
z42 0,84 11,25 -2,99 2,63 
z01 0,91 10,00 1,17 2,26 
z03 0,89 11,85 3,38 2,76 
z04 0,92 10,27 5,08 2,34 
z06 0,98 11,10 8,12 2,47 
z09 0,89 8,78 -0,35 2,11 
z12 0,97 8,31 -2,20 1,85 
z14 0,95 7,43 3,26 1,64 
z26 0,93 12,60 -6,02 2,69 
z30 0,96 10,33 0,19 2,17 
z33 0,92 11,55 6,78 2,61 
z35 0,88 11,33 6,07 2,48 
z13 0,95 9,27 6,71 1,98 
z19 0,92 10,36 6,35 2,25 
115 0,95 6,84 -0,45 1,53 
117 0,95 6,99 2,63 1,56 
142 0,90 8,97 1,12 2,03 
140 0,86 8,81 -0,98 2,00 
143 0,92 8,52 0,14 2,09 
101 0,94 10,58 6,77 2,29 
103 0,94 12,89 9,83 2,94 
105 0,92 11,21 6,84 2,61 
109 0,91 10,78 -6,03 2,59 
111 0,94 7,24 1,98 1,64 
132 0,92 12,53 8,77 2,85 
131 0,89 9,63 1,02 2,10 
127 0,96 11,26 -3,59 2,52 
121 0,96 7,99 -5,03 1,82 
Average 0,92 9,86 1,61 2,20 
All Zones 0,90 9,78 1,38 2,20 
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Percentage of mean bias error MBE for the comparison of simulated and 

monitored hourly indoor temperatures represents the systematic error which is a 

constant residue amount in all observations. MBE result predicts an overestimation if 

the value is positive and underestimation if the value is negative. Strength of estimation, 

therefore the model prediction is higher if both positive and negative values are close or 

equal to zero. In Table 32, the values for MBE range between -6,03% and 9,83%, and 

for all zones the value is 1,38%. According to these values for 24% of the monitored 

zones the simulation model underestimated indoor temperatures, for 15 % of the 

monitored zones there is a very strong estimation and for 53% there exists 

overestimation.   

RMSE values (°C) correspond to the standard deviation between simulated and 

monitored hourly indoor temperatures. Values range between Percentage RMSE 1,53 

°C and 2,94 °C and the value for the totality of the zones is 2,20 °C.  

 

 

 

Figure 66. Frequency of error between simulated and monitored hourly indoor temperatures  

In addition to standard deviation values of the model the frequency of errors all 

compared hourly indoor temperatures (8760 hours for each of 34 zones) are presented in 

Figure 66. The graph indicates that there is roughly a normal distribution of errors and 

the confidence level is 0,99 for the distribution of errors between simulated and 

monitored hourly indoor temperatures.  
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Simulated heating energy consumption of the building is as well compared to 

monitored monthly end-use data. Monthly simulation and monitoring data are presented 

in Table 33 and Figure 67. As a general trend, the simulation model estimates monthly 

consumption values with a higher deviation than the monitoring values for four heating 

months in 2009.  

Percentage of root mean square error (RMSE) for comparison of simulated and 

monitored values yields a result of 11,24%. This value represents the inconsistency of 

simulation model in predicting the monthly consumption values. In other words, the 

model is 88,76 % accurate in predicting the monthly heating energy consumption of the 

building. Additionally percentage of mean bias error (MBE) is 7,78 %, which 

corresponds to the ratio of overestimation of monthly heating energy consumption by 

the simulation model. This result supports the trend in Figure 67. The RMSE value is 

2965,19 kWh, a standard deviation value for simulation predictions. 

 

 

Table 33. Monthly comparison of simulated and monitored heating energy consumption 

Monthly Comparison of Simulated and 
Monitored Heating Energy Consumption in 2009 

Month Simulated Heating Energy 
Consumption (kWh) 

Monitored Heating Energy 
Consumption (kWh) 

January 32235,28 29823,42 

February 32577,70 27388,43 

March 24176,78 22814,81 

April 0,00 0,00 

May 0,00 0,00 

June 0,00 0,00 

July 0,00 0,00 

August 0,00 0,00 

September 0,00 0,00 

October 0,00 0,00 

November 0,00 0,00 

December 24778,35 25533,50 

Total 113768,11 105559,16 
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Figure 67. Monthly comparison of heating energy consumption for simulation and monitoring 

Simulated cooling energy consumption of the building is evaluated in a similar 

manner and related data are presented in Table 34 and Figure 68. Monthly simulation 

results predict lower consumption values when compared to monitoring values for 

cooling season in 2009.  

RMSE (%) for comparison of simulated and monitored values offer a result of 

13,67%, which helps to make the assumption that this value refers to the inconsistency 

between monthly simulation data and monitoring data. Therefore it is possible to assert 

that simulation model is only 86,33 % accurate when monthly cooling energy 

consumption values are compared to monitoring values.  

MBE for the same comparison is -9,00 %, which suggests that the magnitude of 

simulation prediction is below monitoring values as seen in Figure 68. The RMSE value 

is 1956,94 kWh, a standard deviation value for simulation predictions. 
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Table 34. Monthly comparison of simulated and monitored cooling energy consumption 

Monthly Comparison of Simulated and 
Monitored Cooling Energy Consumption in 2009 

Month Simulated Cooling Energy 
Consumption (kWh) 

Monitored Cooling Energy 
Consumption (kWh) 

January 0,00 0,00 

February 0,00 0,00 

March 0,00 0,00 

April 0,00 0,00 

May 0,00 0,00 

June 9488,57 9936,00 

July 19788,57 23628,00 

August 15405,46 15872,00 

September 7446,81 7846,00 

October 0,00 0,00 

November 0,00 0,00 

December 0,00 0,00 

Total 52129,41 57282,00 
 

 

 

Figure 68. Monthly comparison of cooling energy consumption for simulation and monitoring 

As necessary comparisons are completed, it is essential to check their reliability 

according to the benchmarks defined by ASHRAE (2002), IPMVP (2001), and M&V 
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calibrated simulation of the case building. The error margins are higher for hourly 

calibration techniques, since calibration to monthly data is more holistic in comparison 

to hourly data and should be more precise in results.  

The case building is calibrated with monitored hourly indoor temperatures and 

their effects on the results for monthly energy consumption. Therefore the calibration 

benchmark for the case building is hourly values. The guidelines and standards do not 

define benchmark values for indoor temperature consistency; however it is possible to 

assume for the case building that simulated and monitored hourly temperatures are 

strongly consistent (Table 35).  

Error analysis for monthly heating energy consumption between simulated and 

monitored data fits in the hourly calibration acceptable values defined by the guidelines. 

MBE value 7,78 % is lower than the benchmark defined as ±10% and RMSE value 

11,24% is lower than the defined value of 30%. Similarly, error analysis for monthly 

heating energy consumption provides a MBE value of -9,00% and 13,67% both lower 

values than defined benchmarks. 

As a result it is possible to assert that heating and cooling energy consumption 

precision of the calibrated simulation model fits well in the defined error margins, and 

can be used as a calibrated model to apply necessary retrofitting interventions in the 

next section. 

 

 

Table 35. Acceptable values for simulation calibration 

Calibration Benchmarks 

Calibration Type 
Acceptable Value* 

ASHRAE (2002) IPMVP (2001) M&V (2008) 
MBE RMSE MBE RMSE MBE RMSE 

Hourly ±10% 30% - 10-20% ±10% 30% 
Monthly ±5% 15% ±20% - ±5% 15% 

* Lower values indicate better calibration (M&V, 2008) 

Case Building Hourly 
Calibration with 

Indoor Environment 
Parameters 

Indoor 
Temperature 

Heating Energy 
Consumption 

Cooling Energy 
Consumption 

MBE 1,38% 7,78% -9,00% 
RMSE 9,78% 11,24% 13,67% 
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3.1.2.4.2. TS 825 Accuracy 

 
In section 3.1.2.3, TS 825 – Thermal Insulation in Buildings (2008) is introduced 

and utilized for energy performance evaluation of the case building. However, it is 

necessary to remind once more that the calculation methodology of the standard is a 

static method in monthly time-steps and the building is processed as a single volume for 

calculations. Calculation methodology only covers monthly/annual heating load of the 

building as a performance measure and ignores the cooling loads.  

Monthly heating load calculated by TS 825 methodology can be compared to 

monthly monitoring data, since they represent the most accurate results. The 

adjustments/calibrations applied to the calculation methodology are as follows: 

• The calculation methodology is based on degree-day method and utilizes the 

difference between monthly exterior temperature averages and indoor set point 

temperature. Generally reference year data is used in TS 825 calculations. For 

this study, to have a common ground for comparison, 2009 weather data is used 

in TS 825 calculations. 

• Monthly calculation methodology handles the month as 30 days. For this study 

only the number of workdays is integrated in the calculation.  

 

 

 

Figure 69. Monthly comparison of heating energy consumption for calculation and monitoring 
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The result of a similar error analysis compared to monitoring data yields large 

percentage error for RMSE and MBE, respectively 49,77% and 45,93%. Deviations 

between monthly TS 825 predicted and monitored heating energy consumption is 

presented in Figure 69. The results indicate that there is a very large gap in prediction of 

monthly energy consumption for TS 825. The reason behind this imprecision may be:  

• Assumed static internal and solar gains  

• Disregarded building schedule and occupancy patterns 

As a result it is possible to assert that TS 825 calculation methodology fails to 

predict close consumption patterns to the monitored data, due to the static calculation 

methodology in monthly-time steps. 

 

3.1.2.4.3. Result: Determination of Energy Performance Evaluation  

Tool 

 
The main concern of this section is solely describes as an evaluation to 

determine the appropriate energy performance analysis tool and define its error margins 

for further evaluation of proposed retrofitting strategies in section 3.3. Up to here 

accuracy evaluation for the energy performance analysis tools suggested obvious 

distinction between results. Therefore in this sub-section, previously completed analyses 

are recapitulated. 

Annual heating and cooling loads for all evaluation methods including 

monitoring results are presented in Figure 70. Monitored and simulated annual heating 

and cooling energy consumption for 2009 indicates that the results are close with 

reasonable deviations. However TS 825 calculation results have a large deviation when 

compared to monitoring and simulation. In Table 36, the obvious deviation between TS 

825 and simulation results are presented due to completed error analysis  

As presented in section 3.1.2.4.1, the error analysis results show that calibrated 

simulation approach fulfill the requirements of related guidelines with 7,78% MBE for 

annual heating energy consumption and -9,00% MBE for annual cooling load. On the 

other hand, calculation methodology of TS 825 highly overestimates the heating loads 

almost with 50 %. 
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Figure 70. Comparison of annual heating and cooling loads for different evaluation tools 

Table 36. RMSE and MBE values for simulation and calculation results 

  
Simulated (EDSL Tas) Calculated (TS 825) 
MBE RMSE MBE RMSE 

Annual Heating 
Energy Consumption 
(kWh) 

7,78% 11,24% 45,93% 49,77% 

Annual Cooling 
Energy Consumption 
(kWh) 

-9,00% 13,67%   

 

 

As a result, it is reasonable to establish the utilization of calibrated simulation 

approach as a building energy performance evaluation tool. Use of calibration 

simulation approach offers following advantages: 

• To evaluate the effect of different retrofitting strategies through the calibrated 

model 

• To evaluate effects of individual interventions that compose a retrofitting 

strategy 

• To forecast savings and costs offered by retrofitting strategies 
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3.2. Assessment of Retrofitting Strategies 

 
Retrofitting strategies mainly aim to improve the energy performance and indoor 

environmental quality of a building. To generate an efficient building envelope 

retrofitting scenario, it is necessary to control one, combination or all of the following 

thermal characteristics: a) reduction of transmission, b) reduction of infiltration and 

ventilation losses and c) reduction or increase of solar gains through the envelope 

(Dascalaki & Santamouris, 2002). As a following step, it is necessary to define the sub-

measures which can be structured as components of the retrofitting strategies to be 

generating, aiming solely the building envelope improvement. The set of possible sub-

measures can be listed as follows: thermal insulation of opaque elements, improvement 

of insulation standard of window panes, reduction of infiltration rate, use of mass walls 

or ventilated walls, use of reflective solar shading systems etc. (Hestnes & Kofoed, 

2002). 

Many studies deal with the question of structuring retrofitting strategies. The 

major decisive criterion is assumed as the existing performance of the building.  Thus 

the retrofitting scenarios can be generated according to the requirements the building 

performance analysis proposes. However, there is a certain necessity to define an 

approach in generating retrofitting strategies, since the number of alternatives is 

numerous and the main concern is to identify the strategies those are expected to be 

more efficient and dependable in long term. With the great extent of varieties for 

retrofitting strategies, the decision maker has to consider the environmental, energy, 

financial and social factors to attain the most reliable solution (Diakaki, Grigoroudis, & 

Kolokotsa, 2008). 

In general there are two approaches to generate retrofitting strategies. The first 

approach is to diagnose the existing building and pre-define several alternative 

strategies, which are evaluated through simulation. The result of this approach is usually 

dependent on the experience and vision of the decision-maker for retrofitting strategies 

(Dascalaki & Santamouris, 2002; Diakaki, Grigoroudis, & Kolokotsa, 2008). 

An example to the first approach is the OFFICE Project, which was 

implemented as an EU project, which proposes detailed evaluation in generation of 

retrofitting strategies. Three levels of activities are suggested by OFFICE Project: 
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• Individual retrofitting measures: such as improvement of insulation, use of 

shading devices, reducing air change rates, and improved heating cooling 

systems. These measures can be implemented independently according to the 

necessity the performance analysis proposes. 

• Combinations of retrofitting measures in following categories: a) building 

envelope improvements, b) use of passive cooling techniques, c) lighting 

improvements, and d) HVAC improvements 

• Combination of all retrofitting measures, covering building envelope 

improvements, using passive cooling techniques, lighting and HVAC 

improvements (Hestnes & Kofoed, 2002; Dascalaki & Santamouris, 2002). 

The second approach is based on decision-making methodologies, where multi-

objective optimization through retrofitting strategies is the main aim. Kaklauskas, 

Zavadskas, and Raslanas (2005) proposed a methodology which can be an example for 

multi-objective optimization for retrofitting strategies. All possible interventions in 

component level (such as insulation measures, replacement of windows etc.) are 

grouped in a decision-making matrix which leads to different levels of building 

retrofitting strategies through evaluating the weights of each intervention, in terms of 

significance, utility degree and priority. The results of such an approach allow making a 

retrofitting strategy assessment considering all building related aspects (economy, 

comfort, performance etc.). The number of interventions designed on component level 

is high and comprehensive in terms of pinpointing the strengths and weaknesses of any 

pre-designed retrofitting strategy. 

Different approaches in defining retrofitting strategies try to establish a rational 

way of strategy assessment in regard to the existing condition and flexibilities the case 

building offer. The framework for generating retrofitting strategies for this dissertation 

is formulated in regard to these two approaches (1) diagnose and pre-define retrofitting 

strategies and (2) multi-objective optimization of retrofitting strategies. Since the 

dissertation focuses on retrofitting the building envelope, it is specifically a set of 

individual retrofitting measures, where improvements of building envelope components 

are investigated in detail. In the evaluation and optimization part of a single retrofitting 

scenario the set of retrofitting measures proposed in generated strategies are optimized 

to conclude with a final retrofitting strategy assessment. 
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To generate retrofitting strategies for the demonstrative case building study, the 

main aims are as follows: 

• To define a base level of retrofit intervention which interferes minimum with 

indoor use, mainly through application of exterior insulation 

• To propose further interventions which help decreasing energy consumption and 

CO2 emissions  

• To determine the level of necessary set of interventions for a specific retrofitting 

strategy regarding indoor environment, energy consumption, and investment. 

 Consequently, it is necessary to define design decision parameters and the 

strategy approach for generating more accurate retrofitting alternatives. 

 

3.2.1. Parameters for Energy-Efficient Envelope Retrofitting Strategies 

 

3.2.1.1. Qualitative Design-Decision Parameters 

 
Generation of retrofitting strategies requires case specific design-decisions. The 

structural, architectural aspects and the limitations for intervention to the building 

envelope are subject to consideration in decision-making. Therefore it is necessary to 

define the key parameters and limitations for retrofitting interventions for a building 

subject to retrofitting. For Medico building as case study, the general design decisions 

and limitations can be listed as follows: 

• No fundamental change (such as replacement) in the structural elements of the 

building (concrete beams, columns, and reinforced concrete walls) 

• Minimum change in architectural appearance of the building.  

• Decision to maintain existing envelope elements with approximate thermal 

transmittance values to the limit values by TS 825. 

The aim of the retrofitting strategies has to be coherent with these design 

decisions to maintain feasibility of applications. The possible interventions on envelope 

component level should be identified in terms of maximum feasibility of the 

application. On envelope component level following assessments can be made: 
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1) Opaque Components of the Building Envelope: 

For built in brick walls of the case building, the level of intervention may vary 

from maintaining the existing wall composition and additions of external insulation to 

tearing down filled in walls and constructing a new wall system. The degree of 

intervention to the indoor environment gets superior when the design decision tends to 

extend to demolishment and rebuilding. The feasibility of application becomes a 

questionable matter, since the existing layer of walls may provide a mass wall layer and 

can be utilized for additional thermal improvements 

All the envelope components built in reinforced concrete are structural elements 

of the building. As a principle the structural elements of the building is kept intact, 

hence enhanced with necessary thermal retrofitting measures. 

External retaining wall constructed in the ground floor of east façade is not in 

contact with heated volumes in the existing use of the building. A set of improvement 

may be proposed for future utilization and acclimatization of these spaces. 

The retrofitting measures for concrete floor on ground is a less feasible, hence a 

necessary intervention. Any retrofitting measure for the concrete floor on ground results 

in indoor space occupancy to be interrupted, since the retrofitting measures have to be 

applied by removal of the existing floor finishing up to concrete floor deck and then the 

application of necessary levels of thermal insulation and floor finishing. 

Existing flat roof of the building is the single building envelope component with 

a thermal transmittance close to the requirements of TS 825. Thus, the roof may 

optionally be re-insulated as an additional retrofitting measure or preferably may be 

kept intact.  

 

2) Transparent Components of the Building Envelope: 

Glazing system of the building is cast in window/door components composed of 

aluminum frame with thermal break and double glass pane (6-12-6) with air cavity. The 

glazing components can be retrofitted in two ways, depending on the necessary level of 

intervention: either with replacement of glass panes or with frame and pane 

replacement. For the case building replacement of glass panes is feasible, sealing of 

frame elements is a supplementary measure to reduce infiltration. 
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Table 37. Scale of intervention and feasibility on building envelope component level 

Building Envelope 
Components Scale of Intervention 

Feasibility 
Affects 

Indoor Use 
Maintains Original 

Structure 
Yes No Yes No Partial 

O
PA

Q
U

E
 C

O
M

PO
N

E
N

T
S 

Exterior 
double layer 
clinker brick 
walls 

Ex
te

rio
r I

ns
ul

at
io

n 

Mass Wall Improvement: 
Utilizing the existing mass 
wall and exterior thermal 
insulation measures with 
exterior finishing 

  X X 

    
Ventilated Cavity Wall 
Improvement: Utilizing 
the existing mass wall and 
exterior thermal insulation 
measures with exterior 
finishing 

  X X 

    
Replacement of walls with 
a new Cavity Wall: 
Rebuilding of the exterior 
wall as a barrier  wall. 

X   

  

X 

  

Exterior 
reinforced 
concrete 
walls and 
structural 
elements Ex

te
rio

r I
ns

ul
at

io
n 

Mass Wall 
Improvement:Utilizing the 
existing mass wall and 
exterior thermal insulation 
measures with exterior 
finishing 

  X X 

    
Ventilated Cavity Wall 
Improvement:Utilizing the 
existing mass wall and 
exterior thermal insulation 
measures with exterior 
finishing 

  X X 

    

External 
retaining 
wall In

te
rio

r 
In

su
la

tio
n Mass Wall Improvement: 

Retrofitting with a 
capillary active material - 
calcium silicate board for 
interior insulation  

X 

  

X 

    

Concrete 
floor on 
ground In

te
rio

r 
In

su
la

tio
n Insulation Improvement: 

Application of a thermal 
insulation layer on the 
concrete deck 

X 

      

X 

Flat roof 

Ex
te

rio
r 

In
su

la
tio

n 

Insulation Improvement: 
Replacement of the 
existing insulation 

  X 
    

X 

T
R

A
N

SP
A

R
E

N
T

 
C

O
M

PO
N

E
N

T
S 

Glazing 
System 

R
ep

la
ce

m
en

t 

1. Replacement of double 
glass panes with Low-e 
glazing                                                      
2. Replacement double 
glas panes with Low-e 
glazing + Replacement of 
frames 

  X 

    

X 
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Table 37 presents a range of qualitative design-decisions for building envelope 

on component level regarding the scale of intervention and feasibility of application. 

Structural and aesthetical aspects for the building should be evaluated as well on 

intervention to envelope components.  

The selection of the scale of intervention for building components is mainly 

based on the maintaining the existing qualities of the building but enhancing the thermal 

characteristics with necessary retrofitting measures. Therefore the following 

assessments in generating strategies are the results of the qualitative design-decision 

parameters: 

• Maintaining the existing characteristics of the built in brick walls, improvement 

with different applications of external insulation and exterior finishing. 

• Maintaining the existing structural system and improvement with different 

applications of external insulation and exterior finishing. 

• Providing minimum insulation level for concrete floor on ground. 

• Evaluating the possible savings with re-insulation of existing flat roof. 

• Evaluating the possible savings with interior insulation of exterior retaining wall 

• Evaluating the possible savings with replacement of double glass panes with 

low-e glazing and replacement of frames. 

 

3.2.1.2. Quantitative Design-Decision Parameters 

 
Since the limitations and qualitative design decisions are assessed in the 

previous section, it is necessary to denote the quantitative parameters in decision of 

retrofitting strategies. Quantitative parameters that are effective on the retrofitting 

strategies can be summarized as: 

• Type of insulation material 

• Insulation thickness 

• Cost of insulation material 

• Cost of energy consumed for heating and cooling. 

The parameters listed above are evaluated through a method for determination of 

optimum insulation thickness for building elements. Several studies were conducted to 

assess optimum insulation thickness that offers the minimum cost for insulation 

investment and maximum energy savings. The optimization is simply based on local 
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degree-days, and life-cycle cost analysis of insulation materials and both methods are 

briefly introduced in this section. 

Fundamentally degree-day method presumes the heating and cooling periods 

and loads based on exterior temperature. For heating season, heating degree days 

(HDD) are calculated with equation 3.15, and for cooling season, cooling degree days 

(CDD) are calculated with equation 3.16 (ASHRAE, 2005). 

 

        
∑ −=×
days

ohbalhbal tttHDD )()( ,,             (3.15) 

 

        
∑ −=×
days

ocbalcbal tttCDD )()( ,,             (3.16) 

 

Equations 3.15 and 3.16 introduce two balance temperatures tbal,h and tbal,c for 

heating and cooling periods. Balance temperatures present the levels of exterior 

temperature where heating and cooling is necessary. For this specific study,  tbal,h is 

15,6°C, where heating system starts functioning as outdoor temperature goes roughly 

below this value and correspondingly, tbal,c is determined as 24°C. The notation to 

indicates the average daily exterior temperature. Thus, DDs are calculated for each day, 

according to the difference between these balance temperatures and average daily 

temperatures and their sum for heating and cooling seasons provide the HDD and CDD 

values (ASHRAE Fundamentals, 2005). For this study HDD and CDD are calculated 

for the case area with an average weather year data calculated from recordings between 

2005 and 2009. Table 38 presents the parameters for degree day calculation and 

HDD/CDD values. 

 

 

Table 38. Balance temperatures and degree days for the case area  

Temperature (°C) 
tbal,h 15,60 
tbal,c 24,00 

Temperature (°C-days) 
HDD 729,86 
CDD 224,22 
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Optimum insulation thicknesses for different retrofitting interventions on the 

building envelope can be calculated according to their life-cycle cost analysis. Since 

heat losses occur from building envelope elements (walls, roof, floors etc.) the 

calculation is based on heat losses per unit area of envelope elements. Following 

equations are derived from several studies conducted for different climatic regions of 

Turkey (Bolattürk, 2006; Bolattürk, 2008; Gölcü, Dombaycı, & Abalı, 2006; Özel, 

2008).  

Heat loss from per unit area of an envelope component is calculated with 

equation 3.17, where U  is the overall heat transfer coefficient, balT  is the balance 

temperature and oT  is the mean daily outside temperature. A parallel equation to 

calculate the annual heat loss can be written as in 3.18, where Aq  is annual heat loss 

from unit area of the envelope component and DD  is the degree-days. The multiplier 

86400  denotes the seconds in a day. 

 

        )( obal TTUq −×=               (3.17) 

: 

  UDDqA ××= 86400              (3.18) 

 

Annual energy requirement AE due to heat loss Aq  can be formulated as 

equation 3.19, where sη  is the efficiency of the heating or cooling system. 

 

s
A

UDDE
η

××
=

86400
                  (3.19) 

 

 Heat transfer of an envelope element with insulation layer can be extended as in 

equation 3.20, where iR  and oR  are convection coefficients (m2K/W), respectively for 

inside and outside, wR  is the resistance of the wall structure except the insulation layer. 

insR  is the thermal resistance (m2K/W) of the insulation layer and is calculated by 

equation 3.21, where x  is the thickness and k  is the thermal conductivity (W/mK) of 

the insulation layer. 
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)(
1

oinswi RRRR
U

+++
=              (3.20) 

 

                k
xRins =               (3.21) 

 

Equation 3.22 can be re-written using Rtw as a total thermal resistance of the 

envelope element, excluding the insulation layer. 

 

         )(
1

instw RR
U

+
=              (3.22) 

 

Finally, equations 3.23 and 3.24 are obtained, yielding annual heating load ( AE

) and annual fuel consumption ( fAm ) respectively, where LHV  is the lower heating 

value of the consumed fuel (J/kg, J/m3 or J/kWh). 

 

      
stw

A

k
xR

DDE
η×+

×
=

)(

)86400(
             (3.23) 

 

stw

fA

LHV
k
xR

DDm
η××+

×
=

)(

86400             (3.24) 

 

 Up to here the calculation method provides the results for annual heating/cooling 

load and the amount of energy consumed to compensate this load. The latter step is to 

integrate the life-cycle cost analysis to consider the total cost of energy consumption 

and it is correlation with different insulation thicknesses. Total heating cost for N years 

is evaluated as present value, which includes interest rate ( i ) and inflation rate ( g ), and 

adjusted according to expected inflation. Interest rate adjusted for inflation rate r is 

given by following formulas for the cases; 
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• If 
)1(
)(,

g
girgi

+
−

=>  and 

• If 
)1(
)(,

i
igrgi

+
−

=< . Equation 3.25 is used to determine the present value (PV), 

where N  is the lifetime for insulation materials 

 

      
N

N

rr
rNPV

)1(
1)1(

+×
−+

=              (3.25) 

 

Additionally, in case gi = , present value is calculated as in equation 3.26. 

 

)1( i
NPV
+

=               (3.26) 

 

 Therefore, annual cost for heating ( AC ) can be determined from equation 3.27, 

where fC  is the cost for consumed fuel type (TL/kg, TL/m3 or TL/kWh). 

 

stw

f
A

LHV
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xR
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C
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=

)(

86400
             (3.27) 

 

Cost of insulation ( insC ) can be calculated by equation 3.28, where iC  is the 

cost of insulation material (TL/m3) and x is the insulation thickness (m). 

 

xCC iins ×=               (3.28) 

 

 Total cost ( tC ) for an insulated envelope component is given by equations 3.29 

and 3.30. 

 

xC
PVCC

i

A
t ×

×
=              (3.29) 
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 Optimum insulation thickness is obtained from equation 3.30 by the derivative 

of tC  with respect to x  in equation 3.31. 
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The parameters for this study, which are used in equation 3.31 are listed in the 

following tables. Table 39 introduces the envelope components that are subject to 

retrofitting interventions with different finishing options. For optimization of insulation 

thicknesses for retrofitting strategies of building elements, section interventions are pre-

assessed to calculate their R-values without the insulation layer.  

 

 

Table 39. R-values for possible retrofitting interventions on building envelope components 

Thermal Properties of Possible Interventions  
(Excluding the Insulation Layer) 

Exterior Clinker Brick Wall R-Value 
Finishing with Plaster 0,697 
Finishing with Brick Cladding 0,721 
Finishing with Wooden Facade Cladding 0,896 

Exterior Concrete Wall R-Value 
Finishing with Plaster 0,44 
Finishing with Brick Cladding 0,464 
Finishing with Wooden Facade Cladding 0,64 

Floor on Ground R-Value 
Finishing with Tiles 0,944 
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Table 40. Parameters for optimum insulation thickness calculation 

Parameters Values Units 

Degree Days HDD 729,86 °C-days 
CDD 224,22 °C-days 

Fuel Types Fuel Oil (Cf, heating) 4,13E+07 J/m3 
Electricity (Cf, cooling) 3,60E+06 J/kWh 

Insulation Types 
Extruded Polystyrene (XPS) 0,030 W/mK 
Expanded Polystyrene (EPS) 0,035 W/mK 
Mineral Wool (MW) 0,040 W/mK 

Prices in 2009 

Fuel Oil  2,050 TL/kg 
Electricity  0,280 TL/kWh 
Extruded Polystyrene (XPS) 225,00 TL/m3 
Expanded Polystyrene (EPS) 160,00 TL/m3 
Mineral Wool (MW) 218,00 TL/m3 

Economic Parameters in 
2009 

Inflation Rate (g) 0,0653   
Interest Rate (i) 0,1438   
Adapted Interest Rate (r) 0,0737   
Lifetime (n) 10 years 
Present Value (PV) 6,9054   

 

 

In Table 40, the calculation parameters are listed. All information on prices and 

economic parameters are gathered from the corresponding institution databases (CBRT, 

2009; MPWS, 2009; SHELL, 2009)  

Optimum insulation thickness is completed for both HDD and CDD values and 

for all pre-proposed retrofitting interventions. Calculation results are presented in Figure 

71 and Figure 72. The results in these figures cover the insulation intervention for 

exterior clinker brick wall, finishing with plaster for heating and cooling degree-days 

respectively. For this evaluation XPS (Extruded Polystyrene Board) is used as the 

insulation material as an example for how results are obtained. Both graphs present the 

calculation results in regard to their costs for different insulation thicknesses. It is 

observed that fuel cost ( fC ) decreases exponentially as the insulation thickness 

increases. On the other hand, insulation cost ( insC ) increases linearly as insulation 

thickness increases. The total cost )( insft CCC +=  therefore, presents a parabolic 

function, and the optimum insulation thickness is determined on this parabola as the 

limit thickness value up to the total consumption decreases.  
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       Figure 71. Optimum XPS thickness for exterior clinker brick wall with plaster finishing 
                        for HDD 

 

       Figure 72. Optimum XPS thickness for exterior clinker brick wall with plaster finishing 
                        for CDD 

The optimum insulation thicknesses determined for exterior clinker brick wall 

(plaster finishing) indicate that heating season requires larger thicknesses to decrease 

consumption which originates from heat losses per unit area. On the contrary, in cooling 

season the same wall section requires less insulation thickness, since increasing thermal 

mass may cause an adverse effect on the cooling loads. Figure 73 presents this 

differentiation between seasonal requirements and additionally provides information on 
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thickness efficiencies of different insulation materials. According to this comparison for 

insulation thickness requirements, the larger thickness should be chosen to compensate 

both seasonal requirements. Additionally it should be noted that EPS (Expanded 

Polystyrene Board) requires higher thicknesses when compared to XPS (Extruded 

Polystyrene Board) and MW (Mineral Wool) according to life-cycle cost analysis. 

 

 

 

Figure 73. Optimum thickness for different insulation materials 

 

Figure 74. Payback period for insulation materials for HDD 
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Figure 75. Cost savings for insulation materials for HDD 

Payback period and cost savings for different insulation materials are presented 

in Figure 74 and Figure 75. According to these analyses it is possible to assert that: 

• Payback periods of different insulation materials are considerably close up to 40 

mm’s of thickness 

• Payback periods increase for XPS and MW as the insulation thickness increases.  

• Cost savings are high for EPS due to low unit cost. XPS and MW at same 

thicknesses have close trends for cost savings. 

• Both payback periods and cost savings point out the optimum insulation 

thicknesses at their maximum/minimum of the parabolic curve 

Considering all results, the insulation material for this specific study is selected 

as XPS (Extruded Polystyrene Board). The determined optimum thicknesses for 

different retrofit interventions and their payback period per cubic meter can be seen in 

Table 41. The reasons for selecting XPS as the insulation material can be listed as: 

• Has a lower thermal conductivity (0,030 W/mK) (EPS = 0,035 W/mK and MW 

= 0,040 W/mK) 

• Provides optimum results with lower thicknesses (Figure 73) 

• Has lower payback periods for low thicknesses (Figure 74) 

• Provides optimum savings with lower thicknesses (Figure 75) 
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Table 41. Determined optimum thicknesses and payback period for XPS 

Constructions 
Optimum 
Insulation 

Thickness (m) 

XPS 
Thickness 

(m) 

Payback 
Period 
(years) 

Exterior Clinker Brick Wall R-Value HDD CDD 
Finishing with Plaster 0,697 0,036 0,017 0,040 2,64 
Finishing with Brick Cladding 0,721 0,035 0,016 0,040 2,78 
Finishing with Wooden Facade 
Cladding 0,896 0,030 0,011 0,030 3,81 
Exterior Concrete Wall R-Value   
Finishing with Plaster 0,44 0,043 0,024 0,050 1,75 
Finishing with Brick Cladding 0,464 0,043 0,024 0,050 1,82 
Finishing with Wooden Facade 
Cladding 0,64 0,037 0,018 0,040 2,51 
Floor on Ground R-Value   
Finishing with Tiles 0,944 0,028 0,009 0,030 4,32 

 

 

Additionally it is necessary to summarize the selection on exterior insulated 

finishing systems. As seen in Table 41 there is a slight difference of R-values, optimum 

thicknesses and payback periods between a plaster finishing and clinker brick cladding 

for both exterior wall types. Therefore, regarding the aesthetical considerations, the 

interventions will be designed reliable to the existing appearance of the building. 

Insulation and plaster finishing is proposed as the minimum level of intervention for 

existing reinforced concrete walls and insulation and brick cladding finishing is 

proposed as the minimum level of intervention for existing brick walls. Ventilated 

cavity and wooden façade finishing option appears as an intervention with better R-

values. These types of wall constructions are known to have better performance in 

decreasing sensible cooling loads (Naboni, 2007). With the low U-values and effect of 

cooling loads, ventilated cavity application is proposed as an advanced intervention to 

the exterior wall types. 

As a result it is possible to consider that as an exterior insulation material XPS is 

advantageous with optimum thicknesses and various finishing and wall composition 

alternatives. These results will be evaluated to assess their benefits for indoor 

environmental conditions, heating/cooling loads, energy end use, CO2 emissions, and 

retrofitting investment. Following section focuses on assessment of energy-efficient 

envelope retrofitting strategies and optimum insulation thickness values will be 

integrated to the proposed strategies. 
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3.2.2. Assessment of Energy-Efficient Envelope Retrofitting Strategies 

 
According to the above stated qualitative and quantitative parameters the 

retrofitting strategies are classified in this section. The main aim is to define a set of 

coherent interventions on the envelope, with adequate levels of retrofitting measures in 

consideration to qualitative and quantitative parameters for the case building. The 

design of the strategies starts from a minor level and integrates and/or replaces one or 

two set of supplementary intervention on building envelope components when defining 

the next level of intervention. By this approach, three different coherent levels of 

interventions are defined as retrofitting strategies. Figure 76 explains this coherent 

relationship and degree of intervention designed for the level of intervention for the 

retrofitting strategies 

 

 

 

Figure 76. Degree of intervention for three coherent strategies 

Three levels of retrofitting strategies suggest following characteristics, if 

reviewed in detail. Other interventions are retrieved from the previous level (moderate 

level of intervention). Table 42 presents these characteristics in regard to scale of 

intervention. 

Minor Level of Intervention: Defines a base intervention level, which focuses on 

the opaque and glazed building envelope elements, without interfering indoor use of the 

building. The retrofitting of opaque surfaces is solely with addition of optimum levels 

MAJOR LEVEL OF INTERVENTION

Concrete 
Floor on 
Ground 

Insulation

MODERATE LEVEL OF INTERVENTION

Integration 
of 

Ventilated 
Facade 

Retrofitting

MINOR LEVEL OF INTERVENTION

Exterior Insulation + Replacement of  
Glazings
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of external insulation and cladding which is reliable to the aesthetical existing 

appearance of the building.  

Moderate Level of Intervention: Keeps the previous decision for exterior 

reinforced concrete wall in the first strategy. Proposes a replacement of retrofitting 

intervention for filled in brick walls with an insulation layer, a ventilated cavity and a 

wooden façade cladding. In addition to the replacement of glazing in the minor level 

strategy, in this level, replacement of frames are as well evaluated. 

Major Level of Intervention: Majorly integrates insulation intervention to 

concrete floor on ground. Additionally, replacement of the exterior reinforced wall 

retrofitting intervention with a ventilated cavity and wooden façade cladding system is 

as well evaluated in this level. Other interventions are retrieved from the previous level 

(moderate intervention). 

 

 

 Table 42. Characteristics of proposed retrofitting strategies in scale of intervention 

 
MINOR 

INTERVENTION 
MODERATE 

INTERVENTION 
MAJOR 

INTERVENTION 

EXTERNAL 
CLINKER 

BRICK WALL 

40 mm XPS Insulation / 
Finishing with Clinker 
Brick (U-value= 0,487 

W/m²K) 

30 mm XPS Insulation / 
Ventilated Cavity / 

Finishing with Wooden 
Facade Cladding (U-
value= 0,527 W/m²K) 

30 mm XPS Insulation / 
Ventilated Cavity / 

Finishing with Wooden 
Facade Cladding (U-

value= 0,527 W/m²K)* 

EXTERNAL 
BRICK WALL 

50 mm XPS Insulation / 
Finishing with 

Insulating Plaster (U-
value= 0,475 W/m²K) 

50 mm XPS Insulation / 
Finishing with 

Insulating Plaster (U-
value= 0,475 W/m²K)* 

40 mm XPS Insulation / 
Ventilated Cavity / 

Finishing with Wooden 
Facade Cladding (U-
value= 0,507 W/m²K) 

GLAZING 

Replacement of Double 
Glass Panes with Low-e 

Double Glass (U-
value=1,643 W/m²K) 

Replacement of Double 
Glass Panes with Low-e 

Double Glass (U-
value=1,643 W/m²K) + 
Replacement of Frames 
with high thermal break 

Replacement of Double 
Glass Panes with Low-e 

Double Glass (U-
value=1,643 W/m²K) + 
Replacement of Frames 

with high thermal break* 

FLAT ROOF X X X 

FLOOR ON 
GROUND X X 

30 mm XPS Insulation / 
Finishing with Tiles  (U-

value= 0,514 W/m²K) 
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Above proposed retrofitting strategies are explained according to their 

specifications in the following sections. The methodology then continues with 

implementation of these strategies through the calibrated simulation model. In addition, 

the main idea behind the implementation of retrofitting strategies is constructed by 

application of each intervention than evaluating their effects on consumption to be able 

to derive the sensitivities of the simulation model to each individual intervention in a 

strategy. 

 

3.2.2.1. Specifications for Minor Level of Intervention 

 
Minor level of intervention is based on exterior insulation of opaque surfaces 

and replacement of glazing panes with double glazed low-e panes. In this strategy, the 

first intervention is applied to the existing exterior brick wall structures which in current 

situation have a U-value of 1,531 W/m2K. The retrofitting intervention for exterior 

brick wall alters this U-value to 0,487 W/m2K. The layers of the construction can be 

seen in Table 43. For the retrofitting intervention of this building envelope component 

XPS insulation is used with an optimum thickness of 40 millimeters, calculated in 

section 3.2.1.2. The exterior finishing is chosen as clinker brick cladding, with the 

purpose to maintain the architectural appearance of the case building. 

 

 

     Table 43. Thermal properties of exterior clinker brick wall retrofitted with XPS insulation 
                      and brick cladding finishing 

XPS Insulation + Brick Cladding Finishing 

Layer Material 
Width 
(mm) 

Conductivity 
(W/mK) 

Convection 
Coefficient 

(W/m2K) 
Density 
(kg/m3) 

Specific 
Heat 

(J/kgK) 
Inside Paint 1 999,00 0,001 0,001 0,00 

2 Gypsum Lime Plaster 20 0,46 0,001 1200,000 1008,00 
3 Clinker brick 102 0,70 0,001 2000,000 940,00 
4 Air cavity 11 0,01 0,001 0,000 0,00 
5 Clinker brick 102 0,70 0,001 2000,000 940,00 
6 Cement Plaster 20 1,20 0,001 2000,000 1008,00 
7 XPS Board Insulation 40 0,03 0,001 30,000 1400,00 
  Fixing Plaster 10 0,72 0,001 1680,000 837,00 

Outside Brick Cladding 30 0,81 0,001 1760,000 920,00 
Flow Direction U-value (W/m2K) R-value (m2K/W) 

Horizontal 0,487 2,054 
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The second individual intervention of this strategy is applied to the external 

reinforced concrete walls of the case building. The existing U-value for reinforced 

concrete wall is shifted from 2,418 W/m2K to 0,475 W/m2K, with the application of 

XPS insulation material and exterior plaster finishing. The thickness for XPS insulation 

is calculated as optimum thickness, 50 millimeters. Retrofitting measures are applied to 

the existing construction from exterior. The details are presented in Table 44. 

 

 

         Table 44. Thermal properties of exterior reinforced concrete wall retrofitted with XPS 
                         insulation and plaster finishing 

XPS Insulation + Plaster Finishing 

Layer Material 
Width 
(mm) 

Conductivity 
(W/mK) 

Convection 
Coefficient 

(W/m2K) 
Density 
(kg/m3) 

Specific 
Heat 

(J/kgK) 
Inside Paint 1 999,00 0,001 0,001 0,00 

2 Gypsum Lime Plaster 20 0,46 0,001 1200,000 1008,00 

3 
Reinforced Concrete 

Wall 350 2,00 0,001 2400,000 950,00 
4 Cement Plaster 30 1,20 0,001 2000,000 1008,00 
5 XPS Board Insulation 50 0,03 0,001 30,000 1400,00 
6 Insulating Plaster 10 0,37 0,001 1300,000 837,00 

Outside Paint 1 999,00 0,001 0,001 0,00 
Flow Direction U-value (W/m2K) R-value (m2K/W) 

Horizontal 0,475 2,107 
 

 

To conclude, the third intervention of the first strategy is the replacement of 

standard exterior double glazed panes (3,00 W/m2K). The proposed replacement for the 

glazing panes is a low-e air filled double glazed pane with a U-value of 1,643 W/m2K. 

Glazing properties for low-e panes are presented in Table 45. Additionally it is 

necessary to emphasize the placement of low-e coating. Since the cooling loads are 

higher for the case building, the glazing is chosen with a low-e coating on the outer 

pane’s cavity facing surface.  
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Table 45. Glazing replacement with low-e panes 

Low-e Glazing Parameters 

Light Transmittance 0,797 
Reflectance 0,144 

Solar Energy 

Direct Transmittance 0,353 
Direct Reflectance 0,244 
Direct Absorptance 0,403 
Total Transmittance (G value) 0,429 

Shading Coefficients 
Short Wavelength 0,406 
Long Wavelength 0,087 
Total 0,493 

U-value 1,643 W/m2K 

 

 

3.2.2.2. Specifications for Moderate Level of Intervention 

 
In the second retrofitting strategy (moderate level of intervention) previous 

measure for external reinforced concrete walls is maintained. However, the measure 

taken for the exterior brick wall is altered with a ventilated cavity and wooden cladding 

finish. The intervention is lower in U-value (0,527 W/m2K) when compared to the 

previous measure, yet still fulfills the standard requirement (TS 825, 2008) with a lower 

value than 0,70 W/m2K. The intention on employment of a ventilated cavity wall is to 

investigate the capability of such system on reduction of cooling demand. Thermal 

properties of ventilated cavity wall can be seen in Table 46 

The second measure in this strategy is an addition to the replacement of glazing 

coupled with replacement of frames. In the existing situation the building has metal 

(aluminum) frame with 20 mm thermal break. Aluminum is highly conductive (U-value 

= 5,6W/m2K) and even with thermal break the values are only between 1,9 and 3,5 

W/m2K. Therefore, replacement of aluminum frames with vinyl frames is proposed for 

this strategy. The selected vinyl frame is 70 millimeters, including five insulation filled 

hollow chamber. The U-value of the frame component is calculated as 1,40 W/m2K, 

which is a very close value to the low-e glazing U-value. 
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     Table 46. Thermal properties of exterior clinker brick wall retrofitted with XPS insulation, 
                     ventilated cavity and wooden façade cladding 

XPS Insulation + Ventilated Cavity + Wooden Façade Cladding  

Layer Material 
Width 
(mm) 

Conductivity 
(W/mK) 

Convection 
Coefficient 

(W/m2K) 
Density 
(kg/m3) 

Specific 
Heat 

(J/kgK) 
Inside Paint 1 999,00 0,001 0,001 0,00 

2 Gypsum Lime Plaster 20 0,46 0,001 1200,000 1008,00 
3 Clinker brick 102 0,70 0,001 2000,000 940,00 
4 Air cavity 11 0,01 0,001 0,000 0,00 
5 Clinker brick 102 0,70 0,001 2000,000 940,00 
6 Cement Plaster 20 1,20 0,001 2000,000 1008,00 
7 XPS Board Insulation 30 0,03 0,001 30,000 1400,00 

8  Ventilated Cavity 30 0,00 1,950 0,000 0,00 
Outside Wooden Cladding 6 0,14 0,001 640,000 1420,00 

Flow Direction U-value (W/m2K) R-value (m2K/W) 
Horizontal 0,527 1,896 

 

 

3.2.2.3. Specifications for Major Level of Intervention 

 
Major level of intervention is the most extensive retrofitting strategy evaluated 

in this research. Different than the previous strategy, first altered intervention is 

employed to exterior reinforced concrete wall. In the first and second strategy, exterior 

reinforced concrete wall is evaluated with an improvement of XPS insulation and 

plaster finishing. In this strategy, the effect of ventilated cavity application for existing 

reinforced concrete wall similar to brick wall construction. The U-value for the first 

intervention is 0,507 W/m2K and the thermal properties are in Table 47. 

The second and final individual intervention designed for major level of 

retrofitting strategy is improvement of concrete floor on ground. The existing structure 

has a U-value of 1,059 W/m2K. In the first two strategies, the improvement of concrete 

floor on ground is not evaluated due to the flexibility of TS 825 (2008), which states 

that only one of the building elements may exceed the limit U-value if all other building 

elements are compatible. In the major level of intervention, the effects of ground floor 

insulation are evaluated. The improvement is proposed by removing the existing layers 

until the waterproof layer, making necessary maintenances, than application of XPS 

insulation and finishing layers. U-value of the proposed improvement is 0,514 almost 

half of the existing value. The construction layers are presented in Table 48. 
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        Table 47. Thermal properties of exterior reinforced concrete wall retrofitted with XPS  
                        insulation, ventilated cavity and wooden façade cladding  

XPS Insulation + Ventilated Cavity + Wooden Façade Cladding 

Layer Material 
Width 
(mm) 

Conductivity 
(W/mK) 

Convection 
Coefficient 

(W/m2K) 
Density 
(kg/m3) 

Specific 
Heat 

(J/kgK) 
Inside Paint 1 999,00 0,001 0,001 0,00 

2 Gypsum Lime Plaster 20 0,46 0,001 1200,000 1008,00 

3 
Reinforced Concrete 

Wall 350 2,00 0,001 2400,000 950,00 
4 Cement Plaster 30 1,20 0,001 2000,000 1008,00 
5 XPS Board Insulation 40 0,03 0,001 30,000 1400,00 
6 Ventilated Cavity 30 0,00 1,950 0,000 0,00 

Outside Wooden Cladding 6 0,14 0,001 640,000 1420,00 
Flow Direction U-value (W/m2K) R-value (m2K/W) 

Horizontal 0,507 1,973 
 

 

Table 48. Thermal properties of concrete floor on ground retrofitted with XPS insulation 

Floor on Ground 

Layer Material 
Width 
(mm) 

Conductivity 
(W/mK) 

Convection 
Coefficient 

(W/m2K) 
Density 
(kg/m2) 

Specific 
Heat 

(J/kgK) 
Inside Artificial Stone Tiles 30 1,20 0,001 2000,000 900,00 

2 Cement Mortar 10 1,30 0,001 2000,000 1008,00 
3 Cement Screed 20 1,30 0,001 2000,000 1000,00 
4 XPS Board Insulation 30 0,03 0,001 30,000 1400,00 

5 
Waterproof Bituminous 

Layer 6 0,13 0,001 1055,000 1332,00 
6 Reinforced Concrete 150 2,00 0,001 2400,000 950,00 

Outside Gravel Ground Fill 300 0,52 0,000 2000,000 1800,00 
Flow Direction U-value (W/m2K) R-value (m2K/W) 

Downward 0,514 1,944 
 

 

3.3. Comparative Evaluation of the Generated Retrofitting Strategies 

 
The retrofitting strategies are designed and defined in the previous section. In 

this section the strategies are simulated with the previously calibrated simulation model. 

Each level of intervention is evaluated with simulation of every individual measure 

separately or coupled with a previous one to determine their impartial and/or coupled 

effects on the indoor environment parameters, heating and cooling loads of the building, 

to provide ground for the sensitivity analysis of these measures in section 3.4.1. After 
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evaluating measures and their effects on consumption outputs, each strategy is 

simulated in specified levels of intervention, including the defined measures. The 

individual measures and strategies are coded for simplicity of identification in 

evaluation of the simulation results (Table 49). 

Evaluation of a single strategy is based on determination of the weights of 

applied measures on every retrofitting strategy. Therefore, following sub sections 

provide evaluation results for each of the individual measure and each retrofitting 

strategy.  

 

 

Table 49. Codes for individual measures and strategies 

Strategy Code Individual Measure Code 

Minor Level of 
Intervention S1 

Exterior brick wall + XPS insulation + 
brick cladding S1A 

Exterior concrete wall + XPS insulation + 
plaster S1B 

Replacement of glazing with low-e S1C 

Moderate 
Level of 

Intervention 
S2 

Exterior brick wall + XPS insulation + 
ventilated cavity + wooden facade 
cladding 

S2A 

Replacement of glazing with low-e 
S2B Replacement of frames with insulated 

vinyl frame 

Major Level of 
Intervention S3 

Exterior concrete wall + XPS insulation + 
ventilated cavity + wooden facade 
cladding 

S3A 

Concrete floor on ground + XPS 
Insulation S3B 

 

 

3.3.1. Evaluation for Performance of Retrofitting Strategies 

 
The calibrated simulation results for case building represent the actual energy 

performance of the building for year 2009. Any energy conservation measure therefore 

has to be evaluated in comparison to the results of the base case, to determine the 

efficiency of that measure on the energy performance of the case building. Several 

parameters are used in this section for this comparative evaluation and are listed as 

follows: 
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• Indoor temperature and humidity comparison for sample spaces on different 

orientations for peak heating and peak cooling day 

• Comparison of heating and cooling load and consumption  

Compliant with above comparisons, individual measures and retrofitting 

strategies are evaluated in the following sub-sections.  

 

3.3.1.1. Evaluation of Minor Level of Intervention 

 
Evaluation of minor level of intervention strategy (S1) is conducted on the 

simulation results of each individual measure and the strategy itself, which is composed 

of all measures. Analysis results for the first retrofitting strategy are presented in the 

following sub-sections, mainly focusing on the previously stated evaluation parameters. 

 

3.3.1.1.1. Indoor Temperature and Relative Humidity  

 
Assessment of indoor temperature and relative humidity differences between 

base case calibrated simulation model, simulated individual measures for the first 

strategy, and simulation of the strategy as a whole are presented in this section. The aim 

is to clarify direct effect of proposed energy saving measures on the indoor environment 

parameters. Orientation of spaces and peak heating/cooling days are the main means in 

representing changes in indoor temperature and relative humidity. Sample space from 

different orientations are selected to elucidate the changes in indoor parameters due to 

varying in retrofitting measures, and explained comprehensively. Peak heating and 

cooling days (February 23 and July 27) are obtained from the monitored weather data of 

2009 as a mean daily temperature, respectively 5,43 °C and 28 °C.  In the following 

paragraphs, the results of peak day evaluation are presented for sample spaces. 

Sample north oriented space–Zone 115: A laboratory space (zone 115) is 

presented as a sample space for north orientation.  Heat loss surfaces for this space is 

external brick wall (28,63 m2), glazed areas (10,26 m2) oriented north, and a side façade 

of external concrete wall (30,89 m2) oriented west. In Figure 77 and Figure 78, indoor 

temperature and relative humidity comparisons for peak heating day are presented 

respectively. Each graph includes monitored exterior temperature, monitoring results, 
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simulated base case results, and simulated retrofitting intervention results for the 

specific date.  

 

 

 

    Figure 77. Minor level of intervention – north oriented space indoor temperature comparison 
                     on peak heating day 

 

         Figure 78. Minor level of intervention – north oriented space indoor relative humidity 
                          comparison on peak heating day 
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Several conclusions can be drawn from the analyses and are as follows: 

• Simulated results for the base case during peak heating day provide lowest 

indoor temperature and highest relative humidity profiles due to lack of any 

energy efficiency measures in the existing situation of the case building.  

• Via application of individual measure S1A (Exterior brick wall + XPS insulation 

+ brick cladding), indoor temperature increase around 0,7°C and 0,3°C 

respectively during unconditioned and conditioned hours on peak heating day in 

2009. Relative humidity decreases around 2 %, only during unconditioned hours, 

depending on the increase in indoor temperature. 

• S1B (Exterior concrete wall + XPS insulation + plaster) provides an increasing 

shift in indoor temperatures during unconditioned hours, approximately 2,50 °C 

for the peak heating day and around 0,8 to 1°C during conditioned hours. On the 

other hand, relative humidity decreases around 6 to 7% during unconditioned 

hours. 

• Via the improvement S1C (Replacement of glazing with low-e) peak heating day 

indoor temperature and relative humidity profiles indicate no  improvement for 

north oriented spaces where solar gains do not exist.  

• Application of the retrofitting strategy (S1) covering all indicated individual 

measures provide enhanced temperature and relative humidity results for indoor 

environment, when compared to base case and all individual measure results. 

During unconditioned hours increase in indoor temperature is around 3,2 °C and  

decrease in relative humidity is around 8,5%. During conditioned hours increase 

in indoor temperature and relative humidity is around 1,2 °C and 6,5 % 

respectively. 
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    Figure 79. Minor level of intervention – north oriented space indoor temperature comparison 
                     on peak cooling day 

 

          Figure 80. Minor level of intervention – north oriented space indoor relative humidity 
                           comparison on peak cooling day 
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Figure 79 and Figure 80 (p.149) presents peak cooling day results (indoor 

temperature and relative humidity) for minor level of intervention strategy and its sub 

measures. The results can be interpreted as: 

• Base case results indicate that during unconditioned hours the indoor 

temperature fluctuates is around 32°C. The indoor temperature fluctuation of 

base case results has the highest values when compared to individual measure 

and strategy results.  

• S1A (Exterior brick wall + XPS insulation + brick cladding) provides a decrease 

in indoor temperatures, approximately 0,3 °C during unconditioned hours and a 

very slight decrease of 0,1 °C during conditioned hours in comparison to base 

case results. With the application of S1A, there is only a negligible increase in 

relative humidity for peak cooling day in 2009. 

• By means of S1B (Exterior concrete wall + XPS insulation + plaster) similar 

improvements similar to S1A are obtained for indoor environment. 

• Improvement S1C (Replacement of glazing with low-e) offers a decrease in 

indoor temperatures around 0,8 °C during unoccupied hours and 0,4 °C for 

conditioned hours when compared to base case. Relative humidity increases 

approximately 1,6% for all hours during peak cooling day 2009.  

• Retrofitting strategy (S1) as a set of individual measures provide a decrease in 

indoor temperatures of 1,7 °C and 0,7 °C, respectively for unconditioned and 

conditioned hours during peak cooling day in 2009. Relative humidity values 

increase around 3,8 % only during unconditioned hours and remains same for 

conditioned hours. 

 

Sample south oriented space–Zone Z42: A medical office is selected as an 

example for south orientated spaces.  Heat loss surface for the specific zone is 20,63 m2 

for external brick wall and 10,26 m2 glazed area oriented south. There is significant heat 

loss from the west oriented external concrete wall (30,78 m2). Figure 81 and Figure 82 

provides indoor temperature and relative humidity comparisons for peak heating day in 

2009. Results of the analysis are: 

• Simulation results for the individual retrofitting measure S1C (Replacement of 

glazing with low-e) point out the lowest indoor temperature and highest relative 

humidity profiles. In comparison to base case results the retrofitting measure 
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cause the peak heating day indoor temperatures to decrease around 0,5 °C. In 

parallel, relative humidity increase as a function of decreasing temperature 

profile, with an approximate value of 2,0 %. 

• S1A (Exterior brick wall + XPS insulation + brick cladding) provides an 

increase of indoor temperatures around 0,4°C during unconditioned hours. The 

increase is less for conditioned hours and is around 0,2 °C for peak heating day 

in 2009. Relative humidity decreases around 1,2 %, only during unconditioned 

hours. 

• Via the individual measure S1B (Exterior concrete wall + XPS insulation + 

plaster) 2,2 °C increase is obtained for indoor temperatures during unconditioned 

hours and 0,8 °C for conditioned hours. Due to increase in temperature relative 

humidity decreases approximately 5,7 % during unconditioned hours. 

• The retrofitting strategy (S1), including all measures, offer improved 

temperature and relative humidity results for indoor environment, in comparison 

to base case and individual measure results. During unconditioned hours 

increase in indoor temperature is around 1,9 °C and  decrease in relative 

humidity is around 6%. During conditioned hours increase for indoor 

temperatures is approximately 0,6 °C and relative humidity indicates no change. 

 

 

 

   Figure 81. Minor level of intervention – south oriented space indoor temperature comparison 
                    on peak heating day 
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         Figure 82. Minor level of intervention – south oriented space indoor relative humidity  
                           comparison on peak heating day 

 

   Figure 83. Minor level of intervention – south oriented space indoor temperature comparison 
                    on peak cooling day 
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          Figure 84. Minor level of intervention – south oriented space indoor relative humidity  
                           comparison on peak cooling day 

In Figure 83 and Figure 84 peak cooling day results for indoor temperature and 

relative humidity in a south oriented zone is presented. The following conclusions can 

be drawn from this analysis: 

• Similar to north oriented space, in south oriented space base case results indicate 

highest indoor temperature fluctuations between 30°C and 31°C and are the 

highest values when compared to individual measure and strategy results.  

• Via measure S1A (Exterior brick wall + XPS insulation + brick cladding) 

approximately 0,3 °C of decrease is obtained during unconditioned hours and a 

very slight decrease of 0,1 °C during conditioned hours in comparison to base 

case results. Relative humidity increase has a negligible value for peak cooling 

day in 2009. 

• S1B (Exterior concrete wall + XPS insulation + plaster) provide negligible 

improvement in indoor environment parameters. 

• Measure S1C (Replacement of glazing with low-e) offers a decrease in indoor 

temperatures around 0,8 °C during unoccupied hours and 0,4 °C for conditioned 

hours when compared to base case. There is 1,3% increase in relative humidity 

values for peak cooling day 2009.  
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• For south space, retrofitting strategy (S1) provide a decrease in indoor 

temperatures around 1,1 °C and 0,6 °C, respectively for unconditioned and 

conditioned hours during peak cooling day in 2009. Relative humidity values 

increase around 2,5 % only during unconditioned hours and remains equal to 

base case values for conditioned hours. 

 

Sample west oriented space–Zone Z04: A typical office space is evaluated as an 

example for west orientated spaces.  West exposure of the space is composed of 

external brick wall (15,69 m2) and glazed area (10,26 m2). Secondary exposure of the 

space is oriented towards south is constructed from external brick wall (10,72 m2). 

Concrete elements that cause heat loss surfaces are only the load bearing structure and 

act as thermal bridges. In Figure 85 and Figure 86 comparison results for indoor 

temperature and relative humidity during peak heating day in 2009 are presented. The 

analysis provides following outcomes: 

• S1C (Replacement of glazing with low-e) gives the lowest indoor temperature 

and highest relative humidity profiles in comparison to base case results. The 

retrofitting measure is responsible for a decrease around 0,6 °C for day indoor 

temperatures during peak heating day. Thus, relative humidity increase as a 

function of decreasing temperature profile, with a value around 1,4 %. 

• Retrofitting measure S1A (Exterior brick wall + XPS insulation + brick 

cladding) provides an increase of indoor temperatures around 0,9°C during 

unconditioned hours and 0,4 °C during conditioned hours, when compared to 

base case results. Relative humidity decreases around 2,0 %, only during 

unconditioned hours. 

• S1B (Exterior concrete wall + XPS insulation + plaster) causes negligible 

improvements both for indoor temperature and humidity results. 

• Strategy S1 provides slightly improved temperature and relative humidity results 

for indoor environment, in comparison to base case and individual measure 

results. During unconditioned hours the improve in indoor temperatures is 

around 0,4 °C and  decrease in relative humidity is around 0,8%. During 

conditioned hours the increase in indoor temperatures results are approximately 

0,3 °C and relative humidity indicates no change. 
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     Figure 85. Minor level of intervention – west oriented space indoor temperature comparison 
                      on peak heating day 

 

          Figure 86. Minor level of intervention – west oriented space indoor relative humidity  
                           comparison on peak heating day 
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    Figure 87. Minor level of intervention – west oriented space indoor temperature comparison 
                     on peak cooling day 

 

           Figure 88. Minor level of intervention – west oriented space indoor relative humidity  
                            comparison on peak cooling day 

20,00

22,00

24,00

26,00

28,00

30,00

32,00

34,00

00
:0

0:
00

01
:0

0:
00

02
:0

0:
00

03
:0

0:
00

04
:0

0:
00

05
:0

0:
00

06
:0

0:
00

07
:0

0:
00

08
:0

0:
00

09
:0

0:
00

10
:0

0:
00

11
:0

0:
00

12
:0

0:
00

13
:0

0:
00

14
:0

0:
00

15
:0

0:
00

16
:0

0:
00

17
:0

0:
00

18
:0

0:
00

19
:0

0:
00

20
:0

0:
00

21
:0

0:
00

22
:0

0:
00

23
:0

0:
00

Te
m

pe
ra

tu
re

 (°
C

)

Peak Cooling Day (July 27, 2009) - Indoor Temperature Comparison for Zone Z04

Exterior Temperature (°C) Measured Indoor Temperatures (°C)

Base Case Simulated Indoor Temperatures (°C) S1A Simulated Indoor Temperatures (°C)

S1B Simulated Indoor Temperatures (°C) S1C Simulated Indoor Temperatures (°C)

S1 Simulated Indoor Temperatures (°C)

10,00

30,00

50,00

70,00

00
:0

0:
00

01
:0

0:
00

02
:0

0:
00

03
:0

0:
00

04
:0

0:
00

05
:0

0:
00

06
:0

0:
00

07
:0

0:
00

08
:0

0:
00

09
:0

0:
00

10
:0

0:
00

11
:0

0:
00

12
:0

0:
00

13
:0

0:
00

14
:0

0:
00

15
:0

0:
00

16
:0

0:
00

17
:0

0:
00

18
:0

0:
00

19
:0

0:
00

20
:0

0:
00

21
:0

0:
00

22
:0

0:
00

23
:0

0:
00

H
um

id
ity

 (%
)

Peak Cooling Day (July 27, 2009) - Indoor RH Comparison for Zone Z04

Exterior Relative Humidity (%) Measured Indoor Relative Humidity (%)

Base Case Simulated Indoor Relative Humidity (%) S1A Simulated Indoor Relative Humidity (%)

S1B Simulated Indoor Relative Humidity (%) S1C Simulated Indoor Relative Humidity (%)

S1 Simulated Indoor Relative Humidity (%)



157 
 

Figure 87 and Figure 88 (p.156) present peak cooling day results for indoor 

temperature and relative humidity in a west oriented zone. Conclusions drawn from the 

analysis are: 

• For west oriented space, base case indicate highest indoor temperature 

fluctuations between 33°C and 34°C and are the highest values when compared 

to individual measure and strategy results.  

• Via measure S1A (Exterior brick wall + XPS insulation + brick cladding) 

approximately 0,7 °C of decrease is obtained during unconditioned hours and a 

very slight decrease of 0,5 °C during conditioned hours in comparison to base 

case results. Relative humidity increase is around 1,0 % for peak cooling day. 

• S1B (Exterior concrete wall + XPS insulation + plaster) provide insignificant 

improvement in indoor environment parameters. 

• S1C (Replacement of glazing with low-e) provides approximately 1,7 °C 

decrease in indoor temperatures during unoccupied hours and 0,8 °C during 

conditioned hours when compared to base case. There is 4,6 % increase in 

relative humidity values due to increasing temperature profiles.  

• Retrofitting strategy (S1) provide a decrease in indoor temperatures around 2,4 

°C and 1,0 °C, respectively for unconditioned and conditioned hours during peak 

cooling day for a west oriented space. Relative humidity values increase around 

2,5 % only during unconditioned hours and remains equal to base case values for 

conditioned hours. 

 

Sample east oriented space–Zone 121: An office space oriented to east and is 

evaluated as an example to compare indoor temperature and relative humidity profiles 

with respect to applied individual measures and the first retrofitting strategy. The 

exposed surface is composed of external brick wall (5,70 m2) and glazed area (6,84 m2). 

Side elevation of the space is oriented north and constructed as a concrete wall with a 

heat loss surface area of 26,22 m2. In Figure 89 and 90 (pp. 158-159) comparison results 

for peak heating day in 2009 are presented. The analysis provides following outcomes: 

• S1C measure (Replacement of glazing with low-e) gives lowest results 

significantly close to base case results when lowest indoor temperature and 

highest relative humidity profiles are compared.  
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• S1A (Exterior brick wall + XPS insulation + brick cladding) improves indoor 

temperatures around 0,5°C during unconditioned hours and 0,2 °C during 

conditioned hours in comparison to base case results. Relative humidity 

decreases around 1,5 %, only during unconditioned hours. 

• Via application of S1B (Exterior concrete wall + XPS insulation + plaster) 3,0 

°C improvement is obtained for indoor temperatures during unconditioned 

hours. Improvement for conditioned hours is around 1,2°C. On the other hand 

relative humidity values decrease by 8,7 % during unoccupied hours due to 

application of the individual measure. 

• Strategy S1 provide increased indoor temperature profiles in comparison to base 

case and individual measure results. During unconditioned hours the improve in 

indoor temperatures is around 3,6 °C and  decrease in relative humidity is 

around 10,2 %. During conditioned hours the increase in indoor temperatures 

results are approximately 1,4 °C and relative humidity indicates no change. 

 

 

 

     Figure 89. Minor level of intervention – east oriented space indoor temperature comparison 
                      on peak heating day 
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         Figure 90. Minor level of intervention – east oriented space indoor relative humidity  
                          comparison on peak heating day 

 

     Figure 91. Minor level of intervention – east oriented space indoor temperature comparison 
                      on peak cooling day 
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           Figure 92. Minor level of intervention – east oriented space indoor relative humidity  
                            comparison on peak cooling day 

Figure 91 and Figure 92 present peak cooling day results for indoor temperature 

and relative humidity. The conclusions of the analysis are: 

• For west oriented space, base case indicates highest indoor temperature 

fluctuations around 31°C and lowest relative humidity profile. 

• Measure S1A (Exterior brick wall + XPS insulation + brick cladding) offer 

approximately 0,2 °C of decrease is for indoor temperatures during 

unconditioned hours. The decrease during conditioned hours in comparison to 

base case results is insignificant. Relative humidity increase is around 0,5 % for 

peak cooling day. 

• S1B (Exterior concrete wall + XPS insulation + plaster) provide an improvement 

for indoor temperature profile with a decrease 0,3 °C during unconditioned 

hours. The increase in relative humidity is very small and around 0,6%. 

• S1C (Replacement of glazing with low-e) provides approximately 0,4 °C 

decrease in indoor temperatures during unoccupied hours and 0,2 °C during 

conditioned hours when compared to base case. There is 0,6 % increase in 

relative humidity values, which is a very insignificant value. 
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• Via application of the retrofitting strategy (S1) provide a decrease in indoor 

temperatures around 1,1 °C and 0,5 °C, respectively for unconditioned and 

conditioned hours during peak cooling day for a west oriented space. Relative 

humidity values increase around 2,3 % only during unconditioned hours and 

remains equal to base case values for conditioned hours. 

 

Thus far, numeric results are presented for peak heating and cooling days; 

however it is necessary to summarize these results to establish the relationship of the 

interventions with the shifts in indoor environment parameters. The results are 

presented in Table 50 

According to Table 50, in comparison to base case simulation results, the 

deviations for peak heating and cooling days via individual measures and minor level of 

intervention strategy, following assessments can be done specific for each measure: 

 

1) Measure S1A (Exterior brick wall + XPS insulation + brick cladding):  

Improvement of exterior brick wall with 40 mm XPS insulation and brick 

cladding results with an average of 0,58 °C increase for indoor temperature on a peak 

heating day during unconditioned period and 0,26°C increase for conditioned period. 

The outcome of this improvement for peak cooling day is lower, with an average of 

0,32 °C decrease for indoor temperatures during unconditioned hours. Due to increasing 

thermal mass for the specific building envelope component, the improvement becomes 

considerably effective for winter indoor temperatures, moreover presents a slight effect 

on summer indoor temperatures. Relative humidity deviations are inversely proportional 

to the changes in temperature, especially in unconditioned hours. It is possible to state 

that measure S1A has an average effect both on heating and cooling period indoor 

temperature profiles. 

 

2) Measure S1B (Exterior concrete wall + XPS insulation + plaster): 

Improvement of exterior reinforced concrete walls with 50 mm XPS insulation 

and plaster finishing provides an average of 2,37 °C increase for indoor temperature on 

a peak heating day during unconditioned period and 0,97°C increase for conditioned 

period. The higher increases in temperature are for north and east oriented spaces, 

where solar gains are considerably less effective. West oriented space is neglected in 

this result since there is no major reinforced concrete surface for the zone which acts as 
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a heat loss surface. The improvement for indoor temperatures during peak heating day is 

significant, and the measure itself contributes to indoor environment parameters for 

heating season. Additionally, there is a very slight decrease of indoor temperatures 

(around 0,2°C) due to the application of S1B during peak cooling day. As a result, 

insulation improvement for reinforced concrete surfaces a significant effect on both 

heating period indoor temperature profiles. 

 

 

   Table 50. Comparison results for individual measures and minor level of intervention strategy 
                    – deviations for peak heating and cooling days 

Applied 
Intervention Day Type Parameters 

Orientation 

North South West East 

S1A 

Peak 
Heating 

DTU (°C) 0,63 0,40 0,86 0,44 
DTc (°C) 0,27 0,19 0,38 0,19 
DRHU (%) -1,58 -0,56 -2,05 -1,44 

Peak 
Cooling 

DTU (°C) -0,27 -0,25 -0,54 -0,22 
DTc (°C) -0,08 -0,07 -0,14 -0,07 
DRHU (%) 0,53 0,57 0,98 0,47 

S1B 

Peak 
Heating 

DTU (°C) 2,18 1,95 0,07 2,98 
DTc (°C) 0,90 0,81 0,02 1,21 
DRHU (%) -1,81 -4,53 -0,17 -8,67 

Peak 
Cooling 

DTU (°C) -0,28 -0,02 0,00 -0,28 
DTc (°C) -0,08 0,03 0,00 -0,07 
DRHU (%) 0,53 0,05 0,00 0,59 

S1C 

Peak 
Heating 

DTU (°C) -0,12 -0,54 -0,61 -0,06 
DTc (°C) -0,09 -0,41 -0,36 -0,06 
DRHU (%) 0,27 1,93 1,40 0,13 

Peak 
Cooling 

DTU (°C) -0,84 -0,67 -1,67 -0,36 
DTc (°C) -0,40 -0,42 -0,75 -0,23 
DRHU (%) 1,71 1,44 3,14 0,75 

S1 

Peak 
Heating 

DTU (°C) 2,90 1,90 0,28 3,58 
DTc (°C) 1,15 0,63 0,03 1,43 
DRHU (%) -6,90 -4,51 -0,81 10,20 

Peak 
Cooling 

DTU (°C) -1,67 -1,17 -2,39 -1,08 
DTc (°C) -0,68 -0,55 -0,96 -0,46 
DRHU (%) 3,46 2,62 4,62 2,33 

 

 

3) Measure S1C (Replacement of glazing with low-e):  

Replacement of double glazed panes with low-e glazing provides an average of 

0,9 °C decrease for indoor temperature on a peak cooling day during unconditioned 
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period and 0,45°C increase for conditioned period. The highest decrease in indoor 

temperature is obtained in the evaluation of south space (1,67°C) due to long periods of 

exposure to solar radiation during peak cooling day. Contrary to the improvements 

during peak cooling day, indoor temperatures as well decreased around 0,3 °C during 

peak heating day, which is not desirable. This is a result of low-e coating position in the 

glazing panes, and their reflective effects for solar energy, which turns out to be an 

unutilized gain during winter period. Therefore it is possible to assert that, replacement 

of low-e glazing contributes a decrease for indoor temperatures during cooling period, 

however causes winter indoor temperatures as well.  

 

4) Retrofitting Strategy S1 (Minor Level of Intervention):  

Measures are applied as a set that constitutes the first retrofitting strategy. The 

results present an average of 2,17 °C increase for indoor temperature on a peak heating 

day during unconditioned period and 0,81°C increase for conditioned period. It is 

observed that the interaction of all measures present a very close result to the best 

increase obtained by S1B. On peak cooling day, an average decrease of 1,58°C is 

achieved for indoor temperatures during unconditioned period, which is a very close 

result to S1C. It is possible to affirm that the strategy is balanced with the application of 

all individual measures together and able to attain good levels of indoor temperature 

parameters when compared to the simulated base case and individual retrofitting 

measures. 

The evaluation of individual measures and retrofitting strategy can be supported 

with the analysis in Figure 93. The analysis represents the change in maximum and 

minimum performance values obtained in the hourly simulation model. These 

maximum and minimum values are obtained from the simulation model without 

considering any zone or orientation properties. According to the graph it is possible to 

support the previous findings from orientation and peak day analysis. For instance, 

maximum temperatures decrease significantly with the application of S1, and there is a 

parallel decrease for cooling loads. Furthermore, S1C causes minimum temperatures to 

decrease vaguely, however increases the maximum heating load due to limitation of 

solar gains during winter period. Better results are obtained for all parameters with the 

application of a combined improvement approach S1 (minor level of intervention). 
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              Figure 93. Performance values of simulation results for individual measures and 
                               minor level of intervention 

It is essential to emphasize that sample volumes do not represent all volumes, 

since there are different influential factors on indoor parameters, such as presence of 

less heat loss surface area. However, the examples are useful in terms of indicating the 

indoor responses to the improvements and/or improvement sets as strategies. Holistic 

evaluation of the improvements is thus presented in the following subsection, with 

respect to load and consumption patterns of the building. 

 

3.3.1.1.2. Loads and Consumption  

 
The comparison of loads and consumption values for the whole building 

simulation results are evaluated in this section with the purpose to determine the 

efficacy of individual measures (S1A, S1B and S1C) and the proposed retrofitting 

strategy (S1). Figure 94 and Figure 95 present the comparison of simulated annual loads 

for retrofitting measures to the simulated annual loads and consumption.  
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Figure 94. Comparison of simulated annual loads for base case and minor level of intervention  

 

            Figure 95. Comparison of simulated annual energy consumption for base case and  
                             minor level of intervention 

The analysis results can be evaluated as: 

1) Measure S1A (Exterior brick wall + XPS insulation + brick cladding) results in 

14 % reduction on annual heating loads, and 0,2% increase in cooling loads 

which is negligible. The measure is effective on heating loads for whole building 

retrofit assessment and contributes a decrease of 12% in annual heating energy 

use. 

2) Measure S1B (Exterior concrete wall + XPS insulation + plaster) has similar 

results to S1A when results for heating load reduction is compared. The 

reduction is 12% and the annual heating energy consumption decreases by 10%. 
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In addition, annual cooling loads increase via S1B 4% and the energy consumed 

for cooling increases vaguely, by 2%. The individual measure provides 

efficiency for heating energy consumption of the building. 

3) Measure S1C, replacement of double glazed panes with low-e glazing effect 

both annual heating load and energy use for heating to increase by 12%. On the 

contrary, this measure has a significant improvement with a decrease of 25% in 

annual cooling load of the building. This decrease on annual cooling load 

reflects on the end use consumption with a decrease of %18.  The measure 

provides efficiency for cooling energy performance of the building however has 

an inverse effect on the heating energy performance. 

4) Retrofitting strategy S1 (minor level of intervention), as a set of all measures, 

provide a reduction of 15 % in annual loads, which reflect on annual energy use 

as 11%. Annual cooling load and annual cooling energy consumption are 

reduced as well, with proportions of 24% and 20% respectively. 

 

3.3.1.2. Evaluation of Moderate Level of Intervention 

 
Evaluation of moderate level of intervention strategy (S2) is conducted on the 

simulation results of each individual measure and the strategy composed of these 

measures. The minor level of intervention is retrieved from previous analysis including 

measures, which offer best results on heating and cooling loads for the first strategy, 

and is denoted as S1´. Introduced measures for this strategy will be applied as an 

addition or replacement to S1´, which includes S1B (Exterior concrete wall + XPS 

insulation + plaster) and S1C (Replacement of glazing with low-e). 

Individual measures that constitute the retrofitting strategy, S2 - moderate level 

of intervention are S2A, which is an improvement for exterior clinker brick walls with 

30 millimeters of XPS insulation, 30 millimeters of ventilated air cavity and wooden 

façade cladding with a U-value of 0,527 W/m2K. This improvement is a replacement for 

the S1A in the previous strategy. S2B is an additional improvement to S1C, by 

replacement of glazing frames with insulated vinyl frames, U-value = 1,40 W/m2K 

(Section 3.2.2.2). 

The analysis results for retrofitting strategy S2 (moderate level of intervention) 

are presented in the following sub-sections. For simplicity, the evaluation of indoor 
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temperature and humidity profiles is not presented on detailed graphical basis hence on 

tabular basis as in section 3.3.1.1.1. 

 

3.3.1.2.1. Indoor Temperature and Relative Humidity  

 
Indoor temperature and relative humidity differences between the base case 

calibrated simulation results, individual measures and the strategy composed with these 

measures are evaluated in this section. The aim is to present the effects of these 

measures on the indoor environment parameters.  

The evaluation is conducted parallel to the previous strategy in regard to 

orientation and peak heating/cooling days, to investigate the changes in indoor 

temperature and relative humidity. Identical spaces are used for the same peak heating 

and cooling days (February 23 and July 27) in 2009. Table 51 presents the comparison 

results, based on the deviations for indoor temperature and relative humidity 

parameters. Results for S1´ are presented in this table as well, to define the pre-accepted 

interventions retrieved from the previous strategy.  

According to comparisons in Table 51, following assessments can be made on 

each individual measure and the strategy: 

 

1) Measure S2A (Exterior brick wall + XPS insulation + ventilated cavity + 

wooden facade cladding):  

S2A, which is a replacement measure for S1A (40 millimeters of XPS insulation 

and brick cladding finishing), requires 30 millimeters XPS insulation as determined 

with an optimum insulation thickness evaluation in section 3.2.1.2. With the addition of 

S2A to S1´, indoor temperatures for peak heating day increases with an average of 2,12 

°C (<2,17°C of S1) during unconditioned hours and 0,79°C (<0,81°C of S1) during 

conditioned period. For peak cooling day, average decrease for indoor temperatures is 

1,57 °C (<1,58°C of S1) during unconditioned hours and 0,66°C (=0,66°C of S1) for 

conditioned hours in comparison to base case simulation results. The deviation of 

indoor temperature results for S1 and S2A are very close, despite the increase of U-

value of S2A measure (from 0,487 W/m2K to 0,527 W/m2K. Decreased insulation 

thickness is well compensated with the ventilated cavity, which acts as a buffer barrier 

for exterior weather. Ventilated cavity itself does not contribute to heating load 
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reduction but helps to decrease applied insulation thickness (Naboni, 2007). It is 

possible to state that measure S2A coupled with S1´ has a balanced indoor temperature 

adjustment close to results of S1. 

 

 

       Table 51. Comparison results for individual measures and moderate level of intervention  
                       strategy – deviations for peak heating and cooling days 

Applied 
Intervention Day Type Parameters 

Orientation 
North South West East 

S1' 

Peak 
Heating 

DTU (°C) 2,07 1,36 -0,54 2,92 
DTc (°C) 0,80 0,37 -0,34 1,15 
DRHU (%) -1,37 -3,48 1,23 -8,56 

Peak 
Cooling 

DTU (°C) -1,29 -0,83 -1,68 -0,78 
DTc (°C) -0,55 -0,45 -0,75 -0,35 
DRHU (%) 2,93 1,81 3,15 1,64 

S2A 

Peak 
Heating 

DTU (°C) 2,85 1,86 0,23 3,54 
DTc (°C) 1,13 0,61 0,01 1,41 
DRHU (%) -3,48 -4,84 -0,69 -10,12 

Peak 
Cooling 

DTU (°C) -1,66 -1,17 -2,38 -1,08 
DTc (°C) -0,68 -0,55 -0,95 -0,46 
DRHU (%) 3,83 2,60 4,59 2,31 

S2B 

Peak 
Heating 

DTU (°C) 2,14 1,42 -1,10 2,97 
DTc (°C) 0,82 0,39 -0,61 1,17 
DRHU (%) -1,56 -3,67 1,06 -8,67 

Peak 
Cooling 

DTU (°C) -1,27 -0,82 -2,08 -0,77 
DTc (°C) -0,55 -0,45 -1,04 -0,35 
DRHU (%) 2,90 1,77 3,23 1,62 

S2 

Peak 
Heating 

DTU (°C) 2,92 1,93 0,30 3,59 
DTc (°C) 1,16 0,64 0,04 1,43 
DRHU (%) -3,68 -5,04 -0,87 -10,25 

Peak 
Cooling 

DTU (°C) -1,65 -1,15 -2,36 -1,06 
DTc (°C) -0,68 -0,55 -0,95 -0,46 
DRHU (%) 3,80 2,56 4,54 2,29 

 

 

2) Measure S2B (replacement of glazing frames with insulated vinyl frames): 

S2B as an additional measure to S1´, which only intervenes by replacement of 

existing aluminum thermal break frames with insulated vinyl frames.S2B provides an 

average of 1,36 °C increase for indoor temperature on a peak heating day during 

unconditioned period and 0,44°C increase for conditioned period in comparison to base 

case results. On peak cooling day, decreases for indoor temperatures in comparison to 
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base case are 1,24 °C and 0,60 °C, respectively during unconditioned and conditioned 

hours. Slight temperature deviations are observed for north, south and east spaces 

around 0,06°C, when compared to S1´ results, which indicates that insulated vinyl 

frames has a minor influence on indoor environment parameters.  

 

3) Retrofitting Strategy S2 (Moderate Level of Intervention): 

S2 (moderate level of intervention), which is proposed with additional measures 

of S2A and S2B to S1´ presents an average of 2,19 °C (>2,17°C of S1) increase for 

indoor temperature on a peak heating day during unconditioned period and 0,82°C 

(>0,81°C of S1) increase for conditioned period, in comparison to base case results. An 

average decrease of 1,56°C (<1,58°C of S1) is achieved for indoor temperatures during 

unconditioned period and 0,66°C (=0,66°C of S1) during conditioned hours, on peak 

cooling day. There is a negligible difference for indoor temperature deviations of S2 and 

S1, although U-value for the exterior clinker brick wall improvement has increased and 

the effect of insulated vinyl frames are proved to have a minor influence. 

 

 

 

              Figure 96. Performance values of simulation results for individual measures and 
                               moderate level of intervention 
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Further evaluation of individual measures and retrofitting strategy can be 

maintained with the analysis in Figure 96, which represents the change in maximum and 

minimum performance values obtained from the hourly simulation model. The analysis 

helps to support the general findings for the above comparison of indoor temperature 

and humidity. If base case and S1 results are considered as main comparison 

benchmarks and where S1´ only integrates exterior concrete wall insulation and 

replacement of glazing with low-e, it is possible to make the following assessments: 

• Individual measure S2B which integrates replacement of existing frames with 

insulated vinyl frames as an addition to S1´ points out that there is no significant 

change for all parameters in Figure 96. 

• Individual measure S2A is applied as an addition to S1´, via substituting 

previous exterior brick wall improvement of 40 millimeters XPS insulation and 

brick cladding, with 30 millimeters XPS insulation, ventilated cavity and 

wooden façade cladding. The results are very close between S1and S2A.  

• Retrofitting strategy S2 (moderate level of intervention) has close values 

obtained by strategy S1 (minor level of intervention), despite the higher U-value 

of ventilated cavity intervention and replacement of existing frames. 

 

As a result it is possible to assert that the comparison between base case, 

retrofitting strategy S1 (minor level of intervention) and S2 (moderate level of 

intervention) presents results that both strategies offer improvements for the indoor 

environment parameters, hence not significant differences.  

 

3.3.1.2.2. Loads and Consumption  

 
In this part of the evaluation, moderate level of intervention simulation results 

are investigated, on the basis of annual loads and consumption to determine the effects 

of individual measures and the retrofitting strategy as a whole. The comparison set 

includes simulation results for base case, S1, S1´, individual measures S2A and S2B (as 

an addition to S1´), and S2 (moderate level of intervention).Figure 97 and Figure 98 

present comparison results for these simulation results and can be evaluated as follows: 

1) Measure S2A (S1´ + exterior brick wall improvement with 30 millimeters XPS 

insulation, ventilated cavity and wooden façade cladding) provides 14 % 
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reduction on annual heating loads, and 24% in cooling loads, in comparison to 

simulated base case results. Cutback on energy consumption is 10% for heating 

and 20% for cooling in comparison to base case. Annual loads and consumption 

values are very close to S1, even though the measure applied for external brick 

walls is altered with a ventilated cavity application, which has a higher U-value. 

The measure provides a similar efficiency with higher U-value and lower 

insulation thickness due to application of a ventilated cavity wall. 

 

 

 

           Figure 97. Comparison of simulated annual loads for base case and moderate level of 
                             intervention 

 

           Figure 98. Comparison of simulated annual energy consumption for base case and 
                            moderate level of intervention 
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2) Measure S2B (S1´ + replacement of existing frames with insulated vinyl frames) 

offers no improvement on heating loads when built up with S1´. The effect of 

measures that constitute S1´ is more effective on the result, therefore the 

evaluation of insulated vinyl frames provide no significant reduction on heating 

and cooling loads. 

3) Retrofitting strategy S2 (moderate level of intervention), as a set of all individual 

measures, provide a reduction of 16 % (>15% reduction by S1) in annual 

heating loads, which reflect on annual energy use as 11% (=11% reduction by 

S1). Annual cooling load and cooling energy consumption are reduced as well, 

by 24% and 20% respectively and equal to the reductions achieved by S1. 

 

3.3.1.3. Evaluation of Major Level of Intervention 

 
Major level of intervention strategy (S3) is evaluated according to simulation 

results of each individual measure and the strategy composed of these measures. 

Measures that are preserved from moderate level of intervention are denoted as S2´. 

Measures established for this strategy are applied as an addition or replacement to S2´, 

which includes S2A (Exterior brick wall + XPS insulation + ventilated cavity + wooden 

facade cladding) and S2B (Replacement of glazing with low-e + replacement of frames 

with insulated vinyl frames). 

First individual measure that constitutes retrofitting strategy S3 is S3A, which is 

an improvement for exterior concrete walls with 40 millimeters of XPS insulation, 30 

millimeters of ventilated air cavity and wooden façade cladding with a U-value of 0,507 

W/m2K (Section 3.2.2.3). This improvement is a replacement for the S1A , applied in 

the previous two strategies. S3B is as well an additional improvement, for concrete floor 

on ground, by adding 30 millimeters of XPS insulation and attaining a U-value of 0,514 

W/m2K (Section 3.2.2.2). The analysis results for retrofitting strategy S3 (major level of 

intervention) are presented in the following parts.  

 

3.3.1.3.1. Indoor Temperature and Relative Humidity  

 
Simulation results for major level of intervention (S3) and individual measures 

that are included in this strategy are evaluated according to indoor temperature and 
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relative humidity deviations from base case result. Identical spaces are used with the 

previous two strategies. Table 52 presents the comparison results, based on the 

deviations for indoor temperature and relative humidity parameters. Simulation results 

for S2´ are presented in as well, to define the pre-accepted interventions retrieved from 

the previous strategy.  

 

 

   Table 52. Comparison results for individual measures and major level of intervention strategy 
                   – deviations for peak heating and cooling days 

Applied 
Intervention 

Day 
Type Parameters 

Orientation 

North South West East 

S2' 

Peak 
Heating 

DTU (°C) 0,53 -0,13 0,23 0,39 
DTc (°C) 0,18 -0,21 0,01 0,13 
DRHU (%) -1,73 0,95 -0,70 -1,32 

Peak 
Cooling 

DTU (°C) -1,14 -0,96 -2,35 -0,60 
DTc (°C) -0,50 -0,50 -0,95 -0,31 
DRHU (%) 2,63 2,11 4,53 1,26 

S3A 

Peak 
Heating 

DTU (°C) 2,92 1,95 0,31 3,57 
DTc (°C) 1,15 0,64 0,04 1,42 
DRHU (%) -8,67 -5,08 -0,90 -10,20 

Peak 
Cooling 

DTU (°C) -1,53 -1,08 -2,36 -0,92 
DTc (°C) -0,63 -0,52 -0,95 -0,39 
DRHU (%) 3,53 2,40 4,45 1,97 

S3B 

Peak 
Heating 

DTU (°C) 0,67 0,62 1,31 0,49 
DTc (°C) 0,23 0,14 0,44 0,17 
DRHU (%) -2,15 -1,43 -3,22 -1,62 

Peak 
Cooling 

DTU (°C) -1,15 -0,99 -2,03 -0,63 
DTc (°C) -0,51 -0,55 -0,92 -0,32 
DRHU (%) 2,65 2,29 3,92 1,32 

S3 

Peak 
Heating 

DTU (°C) 3,18 3,19 1,44 3,75 
DTc (°C) 1,26 1,19 0,49 1,50 
DRHU (%) -9,37 -8,38 -3,51 -10,66 

Peak 
Cooling 

DTU (°C) -1,56 -1,16 -2,04 -0,96 
DTc (°C) -0,64 -0,57 -0,02 -0,41 
DRHU (%) 3,60 2,68 3,93 2,07 

 

 

According to comparisons in Table 52, following assessments can be made on 

each individual measure and the strategy: 
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1) Measure S3A (Exterior concrete wall + XPS insulation + ventilated cavity + 

wooden facade cladding):  

S3A is a replacement for S1B (50 millimeters of XPS insulation and plaster 

finishing), which requires 40 millimeters XPS insulation (Section 3.2.1.2). Due to 

addition of S3A to S2´, indoor temperatures for peak heating day increases with an 

average of 2,19 °C (=2,19°C of S2) for unconditioned hours and 0,81°C (<0,82°C of 

S2) for conditioned period. For peak cooling day, the average reduction for indoor 

temperatures is 1,47 °C (<1,56°C of S2) for unconditioned hours and 0,62°C (<0,66°C 

of S2) for conditioned hours in comparison to base case simulation results. The 

deviation of peak heating day indoor temperature results for S2 and S3A are close, 

despite the increase of U-value of S3A measure (from 0,475 W/m2K to 0,507 W/m2K of 

S1B). However a decrease is observed in peak cooling day indoor temperatures, 

especially for north and east oriented spaces.  

2) Measure S3B (concrete floor on ground + XPS insulation): 

S3B is an additional measure to S2´, which only intervenes by improvement of 

concrete floor on ground with 30 millimeters XPS insulation. S3B provides an average 

of 0,77 °C increase for indoor temperature on a peak heating day during unconditioned 

period and 0,25°C increase for conditioned period in comparison to base case results. It 

is necessary to notice the effects of this measure in comparison to S2´. The 

improvement is almost three times larger than the improvement offered by S2´ which 

does not include exterior concrete wall improvement. On peak cooling day, decreases 

for indoor temperatures in comparison to base case are 2,11 °C and 1,20 °C, 

respectively during unconditioned and conditioned hours. The decrease of indoor 

temperatures for peak cooling day is high due to no insulation measures for external 

concrete walls with lower thermal mass. Non-insulated concrete walls cause an 

irradiative cooling effect especially when oriented to north and east.  

3) Retrofitting Strategy S3 (Major Level of Intervention): 

S3 presents an average of 2,89 °C (>2,19°C of S2) increase for indoor 

temperature on a peak heating day during unconditioned period and 1,11°C (>0,82°C of 

S2) increase for conditioned period, in comparison to base case results. Average 

decrease of 1,43°C (<1,56 °C of S2) is achieved for indoor temperatures during 

unconditioned period and 0,41°C (<0,66°C of S2) during conditioned hours, on peak 

cooling day. There is significant difference for indoor temperature deviations of S3 and 

S2 for peak heating day, which is an apparent result of improved measures for concrete 
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floor on ground. On the other hand, slight decrease between peak cooling day indoor 

temperature deviations is a result of increased thermal mass, yet the measures of S3 

provide decrease in peak cooling day indoor temperatures. 

Figure 99 presents the deviations of maximum and minimum performance 

values obtained from the hourly simulation model, due to changing measures and 

strategies. Via Figure 99 it is possible to sustain the general findings of the above 

comparison on indoor temperature and humidity. For comparison of parameters in this 

figure, base case and S2 results are accepted as benchmarks. On the other hand S2´ is 

the transitional parameter set derived from S2 which only integrates exterior concrete 

wall insulation and ventilated cavity replacement and concrete floor on ground 

insulation addition. According to Figure 99, it is possible to make the following 

assessments: 

• Highest reduction on maximum cooling loads is obtained by S2 and individual 

measures applied in major level of retrofitting strategy (S3) does not have 

significant effect on cooling loads. 

• In comparison to all previously evaluated measures and strategies, S3 provides 

highest decrease in maximum heating loads and peak increase for minimum 

indoor temperatures.  

 

 

 

     Figure 99. Maximum and minimum performance values of simulation results for individual  
                      measures and major level of intervention 
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Comparison between base case, retrofitting strategy S3 (major level of 

intervention) provides best indoor temperature deviances for peak heating day than S1 

and S2 (minor and moderate level of intervention). Peak cooling day results decrease 

due to the increase in thermal mass via the measure S3B – insulation improvement of 

concrete floor on ground. 

 

3.3.1.3.2. Loads and Consumption  

 
Supplementary to indoor environmental parameter comparison, major level of 

intervention simulation results should be examined according to annual loads and 

consumption to determine the effects of individual measures and the retrofitting strategy 

as a whole. The comparison set includes simulation results for base case, S2–minor 

level of intervention, S2´-retrieved measures from the second strategy, individual 

measures S3A and S3B (as an addition to S2´), and S3 – major level of intervention.  

 

 

 

Figure 100. Comparison of simulated annual loads for base case and major level of intervention 
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          Figure 101. Comparison of simulated annual energy consumption for base case and 
                             major level of intervention 

Figure 100 and Figure 101 present comparison results for these simulation 

results and can be evaluated as follows: 

1) S3A (S2´ + exterior concrete wall improvement with 40 millimeters XPS 

insulation, ventilated cavity and wooden façade cladding) results in 16 % 

reduction on annual heating loads, and 23% in cooling loads, in comparison to 

simulated base case results. The result is very close to the result obtained by S2 

(moderate level of intervention), with only changing improvement measure for 

external concrete walls from plaster finishing to ventilated cavity and wooden 

façade cladding, with decreased insulation thickness from 50 millimeters to 30 

millimeters. Reduction on energy consumption is 11% for heating and 19% for 

cooling in comparison to base case. Annual load and consumption values are 

very close to S2, even though the measure applied for external concrete wall 

walls is altered with a ventilated cavity application, which has a higher U-value. 

As a result it is possible to assert that the measure provides a similar efficiency 

with higher U-value and lower insulation thickness due to application of a 

ventilated cavity wall. 

2) Retrofitting strategy S3 (major level of intervention), as a set of all individual 

measures, provide a reduction of 28 % in annual heating loads, which reflect on 

annual energy use as 22 %. Annual cooling load and cooling energy 

113768

52129

88948

42038

0

20000

40000

60000

80000

100000

120000

140000

Space Heating Consumption Space Cooling Consumption

C
on

su
m

pt
io

n 
(k

W
h)

Comparison of Annual Energy Consumption

Base Case S2 S2' S3A S3B S3



178 
 

consumption are reduced as well, by 22 % and 19 % respectively and larger than 

reductions obtained by previous strategies  

 

3.3.2. Results for Energy Performance Evaluation of Retrofitting  

Strategies 

 
Thus far, each individual measure and retrofitting strategy is evaluated according 

to indoor environment, annual loads and consumption parameters. In this section the 

results for retrofitting strategies are summarized in comparison to calibrated base case 

model, to determine the finalized efficiencies with the application of the retrofitting 

strategies. Broader comparisons are presented in this section, through evaluations that 

are based on previous parameters for indoor environment and annual loads.  

 

3.3.2.1. Indoor Environment Parameters 

 
In the previous section, the analysis of indoor environment parameters is 

conducted through peak heating and cooling day analysis on sample spaces. In this 

section a different evaluation is conducted in regard to temperature frequency analysis 

and thermal comfort.  

The frequency analysis aims to demonstrate the hourly temperatures outside 

comfort range for the whole building. Temperature set points for the building are 

defined in Section 3.1.1.4 and range between 22 (±2) °C for winter and 24 (±2) °C for 

summer period. Therefore, the set point temperatures provide a minimum of 20°C and a 

maximum of 26 °C, for the evaluation to be conducted outside these limits. All 

conditioned spaces are evaluated for this analysis, during the occupancy hours for all 

year, which is 2520 hours and includes free running and conditioned periods. The 

analysis is performed for calibrated base case simulation model and applied retrofitting 

strategies simulation models (S1, S2 and S3). Figure 102 presents the variation between 

base case and retrofitting strategies, for frequency of hours outside comfort range.  
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Figure 102. Comparison for frequency of hours outside comfort range for indoor temperatures 

According to Figure 102 it is possible to make the following assumptions: 

• The major indication of the analysis is the high percentage of hours over 26 °C 

for west oriented spaces, with a value of 32,00%. Via application of S1 (minor 

level of intervention), this value decreases to 21,42%. This improvement is due 
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measure.  
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20 °C. Via application of S1, the ratio drops to 8,60% and of S2 to 8,49%. Best 
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increases the thermal mass of the building via insulation of concrete floor on 

ground. Similar results for S3 can be observed for different orientations.  
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• Despite the decreasing insulation thickness introduced with ventilated cavity 

application for exterior clinker brick wall in retrofitting strategy S2, there is no 

significant change between results of S1 and S2.  

Second indoor parameter evaluation is carried out by PMV-PPD indices 

introduced by Fanger (1970). PMV (personal mean vote) and PPD (predicted 

percentage of dissatisfied) indices aim to determine the comfort level of the indoor 

environment. Indoor environment thermal comfort is a combined result of six different 

parameters which are; 1) metabolism rate , 2) clothing level, 3) air temperature, 4) mean 

radiant temperature, 5) air velocity and 6) relative humidity. PMV is a seven degree 

scale which is ranged as follows; [+3] is hot, [+2] is warm, [+1] is slightly warm, [0] is 

neutral, [-1] is slightly cool, [-2] is cool, and [-3] is cold. PPD is a percentage scale 

which represents the percentage of dissatisfied due to PMV results (Fanger, 1970). The 

parameters used in PMV calculation can be seen in Table 53. 

 

 

Table 53. PMV calculation parameters 

PMV Calculation Parameters 

Metabolic Rate (met) 1,2 

External Work (W/m²) 0 

Air Velocities (m/s) 0,15 - 0,30 

Clothing Values (clo) (0,65-1,00) – (0,50-0,75) 
 

 

Metabolic rate defined in Table 53 is the rate for a person who does light work 

such as office work. External work is accepted as zero for this evaluation which is a 

measure for rate of work, in W/m2, which is being done by the occupants of the room. 

Air velocities are defined with a minimum and maximum, which represent the assumed 

lower and upper speed of the air flow in the room. Clothing values accepted for heating 

period is between 0,65 and 1,00 which refers to a light office clothing to a suit clothing. 

For cooling period clothing is accepted with lower value range of 0,50 to 0,75. PMV 

values are calculated, according to changes in the indoor environment, using the lower 

air speed and upper clothing value and using the upper air speed and the lower clothing 

value to represent the occupant behavior for changing the airflow and clothing to 

achieve the highest comfort levels (EDSL, 2009). 
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PMV evaluation is carried out according to the frequency of the indices for the 

periods when the building is conditioned during winter and summer. For PMV results 

are accumulated according to their frequency for winter from 1st to 90th day and 335th to 

365th day (total occupancy hours of 860 for a single space), and for summer from 161st 

to 273rd day (total occupancy hours of 790 for a single space). The evaluation for 

heating and cooling periods is presented in Figure 103. The results in this figure 

represent the orientation based average PMV values obtained from conditioned spaces. 

The results indicate that for base case, thermal perception of indoor environment for 

occupants is close to neutral (0), due to space conditioning. However, it is possible to 

observe that there is a tendency towards (+1) warm during summer period. 

Additionally, perception of indoor environment for winter period for occupants of base 

case deviates from (0) neutral, almost with an average value of 0,20 PMV. Due to 

application of retrofitting strategies, PMV values shift closer to (0) neutral level. Best 

average PMV indices are obtained by S3, while S1 and S2 present close results. 

In addition to average PMV indices, cumulative frequency distributions for 

PMV indices are presented in Figure 104 and Figure 105. The analysis is carried out for 

all spaces, except conditioned circulation and services. In Figure 104, cumulative 

frequencies for PMV are presented during heating season. 12,14 % of the results 

indicate the thermal sensation of the environment is almost cool (-1,0 ≤ PMV < -0,5) , 

where 73,71 % of the results are closer to neutral sensation of the environment (-0,5 ≤ 

PMV < 0). Due to application of S1, S2 and S3 the PMV value between -1,0 and -0,5 

decreases respectively to 4,73 %, 4,67 %, and 3,15 %. For S1 and S2, PMV values 

between -0,5 and 0 remain close to the base case simulation results, where the results 

for S3 decreases to 70,84 %. PMV values between 0 and +0,5 which indicate a warm 

perception of the thermal environment close to neutral, increases to 20,62 %, 20,75%, 

and 25,81%, for S1, S2 and S3 respectively, where base case results are 13,35%. The 

results indicate that there is a shift to more neutral and warm perception of thermal 

comfort for occupants via the application of retrofitting strategies.  
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Figure 103. Average PMV comparison for base case and retrofitting strategies 

 

Figure 104. Comparison for cumulative frequencies of PMV – Heating period 

 

Figure 105. Comparison for cumulative frequencies of PMV – Cooling period 
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Similar to heating period evaluation, Figure 105 presents the cumulative 

frequency for PMV results during cooling period. The most significant indication of the 

analysis for cooling period is the large shift of PMV values from warmer perception to a 

cooler perception for base case results due to application of retrofitting measures. Base 

case analysis indicates a large percentage of hours between neutral (0) and warm (+1), 

where only 5,52 % is perceived between cool (-1) and neutral (0). Due to application of 

retrofitting measures approximately 50 % of hours are perceived between cool (-1) and 

neutral (0). It is obvious that this result originates from an individual measure common 

to all retrofitting strategies, glazing replacement with low-emissivity window panes. 

Therefore, not solely the strategies, hence an individual measure provides a shift to 

more cool and neutral perception of thermal comfort for occupants. 

As well as achieved improvements on indoor environment during occupancy, 

free running periods and unoccupancy hours have significant improvements as 

presented in section 3.3. A large portion of energy is consumed during a start up of a 

conditioning system to obtain the set point temperature for the spaces. Therefore main 

savings originate from day start for heating and cooling consumption. Due to increase in 

thermal mass, indoor temperatures during unoccupancy period increase. This results in a 

decreasing temperature difference between a state of non-conditioned and conditioned 

periods for a space. This decrease in deviation of indoor temperatures for occupancy 

and unoccupancy periods provides energy savings for space conditioning.  

 

3.3.2.2. Annual Energy Consumption 

 
Annual energy consumption evaluation is carried out with the aim to compare 

energy consumption for space conditioning for calibrated base case simulation and 

retrofitting strategies. The evaluation is previously conducted in evaluation of each 

retrofitting strategy. In this section a holistic comparison only for major strategies will 

be evaluated. 
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  Figure 106. Comparison of annual energy consumption for space conditioning – base case and 
                      retrofitting strategies 

Figure 106 presents the annual energy consumption for space heating and 

cooling for the calibrated base case simulation model, and applied retrofitting strategies 

S1 (minor level of intervention), S2 (moderate level of intervention), and S3 (major 

level of intervention). Due to application of S1 and S2, decrease in space heating 

consumption is obtained with 10,64 % and 11,12 % respectively. Retrofitting strategy 

S3 offers an annual reduction in heating energy consumption by 21,82%, which is the 

best level reduction achieved. Reductions in space cooling consumption is close for all 

three of the retrofitting strategies with the values 19,76%, 19,60%, and 19,36%, 

respectively for S1, S2, and S3. According to the results of simulated retrofitting 

strategies, S3 has the most significant reduction in total with a reduction of 34911 kWh. 

When compared to base case results, the total consumption for space conditioning 

decreases by 21,04 %. It is possible to assess that in the consideration of annual 

consumption reduction S3 is the most energy-efficient retrofitting strategy proposed for 

the case building.  

 

3.4. Optimization of the Final Retrofitting Strategy 
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building to each measure may not result with the expected level of efficiency or may 

require high level of investment costs that may not be compensated in a short payback 

period. Therefore it is necessary to optimize a strategy in regard to offered efficiency, 

return on investments as savings for energy consumption.  

In this section sensitivity of each individual measure on annual end-use energy 

consumption is evaluated in comparison to base case simulation results. The savings for 

annual energy consumption is normalized with respect to the error margins (MBE) 

determined in section 3.1.2.4.1. Due to application of these error margins, simulated 

savings for each individual measure is normalized, hence become more realistic in 

comparison for their savings return on investment. In the first sub-section, the 

sensitivity of the individual measures on annual consumed energy for heating and 

cooling end-uses is investigated. The second sub-section covers the investment / pay 

back analysis for each individual measure, similarly in comparison to the savings in 

space conditioning costs. In the third sub-section, a final optimized retrofitting strategy 

is determined with regard to investment and saving costs.  

 

3.4.1. Sensitivity of Individual Measures on Annual End-Use 

Consumption 

 
The sensitivity of each individual measure on annual energy consumption is 

investigated with the purpose to determine the weights of these measures for the 

obtained efficiency. Figure 107 presents the effects of each individual measure on 

annual energy consumption in comparison to base case annual consumption results. In 

addition, Table 54 presents the individual measures, applied insulation thickness for 

these measures, heat loss surface area for the measures, and percentage efficiencies 

and/or inefficiencies obtained due to application of these measures. 
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      Figure 107. Percentage difference of space heating and cooling consumption to base case 
                         results for each measure 
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This occurrence can be explained in accordance with the potential irradiative cooling 

effect of not insulated concrete walls. Larger thermal mass due to insulating concrete 

wall causes an increase in mean radiant indoor surface temperatures, which effects 

space cooling consumption to increase by a minor amount. Overall annual energy 

savings is -6,46 %. 

 

 

          Table 54. Properties of individual measures and difference on annual consumption in  
                          comparison to base case 

Individual 
Measure 

U-value 
(W/m2K) 

Insulation 
Thickness 

(mm) 

Heat Loss 
Surface 

Area (m2) 

Difference in 
Heating 

Consumption 
(%) 

Difference in 
Cooling 

Consumption 
(%) 

Total 
Difference in 

Annual 
Consumption 

(%) 

brick wall + 
insulation + 
brick cladding 

0,487 40 831,85 -12,03% -1,15% -8,61% 

concrete wall + 
insulation + 
plaster 

0,475 50 921,85 -10,24% 1,81% -6,46% 

low-e glazing 1,643  - 504,96 12,41% -18,49% 2,70% 
insulated vinyl 
frames 1,40  - 76,44 -0,95% 0,28% -0,56% 

brick wall + 
insulation + 
cavity + wooden 
cladding 

0,527 30 831,85 -11,42% -1,25% -8,23% 

concrete wall + 
insulation + 
cavity + wooden 
cladding 

0,507 40 921,85 -10,41% 2,17% -6,45% 

concrete floor 
on ground + 
insulation 

0,514 30 3414,24 -8,48% 0,89% -5,54% 

 

 

3) Low-e glazing: 

The measure is significant in terms of providing the most drastic changes for 

annual heating and cooling loads among all measures. Due to placement of low-e 

coating in the interior surface of the outer pane, solar gains are reduced. This reduction 

in solar gains provide a cutback of 18,49 % in annual cooling energy consumption when 

compared to base case simulation results. However, the reduction in solar gains during 

heating season results in an undesired increase in annual heating energy consumption, 

with a value of 12,41 %. Therefore, for total annual energy consumption there occurs no 

savings, on the contrary an increase of 2,70  % when compared to base case model. 
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4) Insulated vinyl frames: 

The individual measure provides the less significant effects on both heating and 

cooling annual energy consumption in comparison to base case results. There is a total 

reduction of 0,56 % on annual energy consumption for space conditioning, in 

comparison to base case results. 

 

5) Brick wall + insulation + cavity + wooden cladding: 

The individual measure proposes a U-value of 0,527 W/m2K with an optimized 

insulation thickness of 30 millimeter. The measure is a variation for brick wall 

improvement and has a higher value in comparison to insulation + brick cladding 

option. Due to the measure, there is 11,42 % and 1,25% savings for heating and cooling 

consumption respectively. A higher U- value results in the savings to slightly decrease 

for heating consumption and increase in cooling consumption. Total decrease obtained 

by this measure for annual consumption in comparison to base case is 8,23%, a very 

close result to the previous measure for brick wall improvement.  

 

6) Concrete wall + insulation + cavity + wooden cladding: 

Concrete wall improvement with insulation, cavity and wooden façade cladding 

provides a U-value of 0,507 W/m2K with an optimized insulation thickness of 40 

millimeters. The measure contributes to annual heating energy consumption with a 

reduction of 10,41 %. However, an increase of 2,17 % is observed for annual cooling 

energy consumption. Overall annual savings are 6,45% for this specific measure. Close 

results are observed with the insulation + plaster option, despite a lower U-value.  

 

7) Concrete floor on ground + insulation: 

The improvement measure for concrete floor on ground with a U-value of 0,514 

W/m2K and an insulation thickness of 30 millimeters provide a 8,98 % of decrease in 

annual heating energy consumption. The improvement results in an very minor increase 

in cooling loads, with a value of 0,89%, which is a result of increasing thermal mass. 

Total annual savings in energy consumption due to application of this measure is 

5,54%. 

Consequently, it is possible to assess that, two different retrofitting strategies for 

opaque envelope elements (brick wall and concrete wall) have very close savings and 

should be evaluated due to investment analysis. Frame improvement can be neglectable 
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according to the insignificant improvements offered. Glazing improvement cannot be 

considered as an effective measure without the compensation of any other measure 

which helps decreasing annual heating energy consumption. In the following section 

investment / payback evaluation is presented to be able to determine the most effective 

strategies which constitute the optimized final retrofitting strategy. 

 

3.4.2. Investment / Payback Analysis 

 
A simple investment / payback evaluation for individual measures are carried 

out with the purpose to evaluate the return of construction costs for an individual 

measure in regard to the cost savings obtained from reduced energy consumption. The 

cost evaluation is based on NPV (Net Present Value) calculation to determine the 

payback period (years) of investment costs (De Troyer, 2008).  

Prior to starting cost evaluation, achieved savings and/or increases in annual 

end-use energy consumption values are normalized with the error margins determined 

in the simulation calibration approach in section 3.1.2.4.1. Calibrated simulation 

accuracy for the base case is defined by mean bias error (MBE) for heating energy 

consumption, which is determined as 7,78%, and indicates an overestimation of annual 

heating energy consumption. Annual cooling energy consumption is underestimated by 

the calibrated base case simulation model with an MBE of -9,00%. These error margins 

are integrated in the simulated consumption values to obtain more realistic savings 

and/or increase in consumption to acquire more accurate cost analysis results. Table 55 

presents the normalized consumption values for simulation results of individual 

measures. Furthermore, for each individual measure, differences for annual energy 

consumption in comparison to normalized base case results are presented in this table. 

Since the simulated consumption results for individual measures are obtained it 

is possible to conduct the cost analysis based on NPV approach. To be able to define the 

investment costs, necessary construction steps are defined and documented in Table 56. 

The unit prices for necessary interventions are obtained from the annual parameters 

defined by the Turkish Ministry of Public Works and Settlement (MPWS, 2009) for 

year 2009, to be able to make a coherent comparison on an annual basis that covers 

resource prices and construction prices in the period the simulation models are 

evaluated. 
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Table 55. Normalized consumption values for simulated individual measures 

Simulated Base 
Case and 
Individual 
Measures 

Annual Energy 
Consumption 

(kWh) 
MBE 
(%) 

Normalized Annual 
Energy 

Consumption (kWh) 

Difference for 
Annual 

Consumption in 
Comparison to 

Normalized Base 
Case (kWh) 

Heating  Cooling  Heating Cooling Heating Cooling 

Base Case 113768 52129 

7,
78

%
 

-9
,0

0%
 

104917 56821   

brick wall + 
insulation + brick 

cladding 
100084 51528 92298 56165 12619 656 

concrete wall + 
insulation + 

plaster 
102113 53074 94169 57850 10748 -1029 

low-e glazing 127890 42493 117940 46318 -13023 10503 

insulated vinyl 
frames 112689 52276 103922 56981 995 -160 

brick wall + 
insulation + 

cavity+ wooden 
cladding 

100772 51479 92932 56112 11985 709 

concrete wall + 
insulation + cavity 

+ wooden 
cladding 

101928 53262 93998 58056 10919 -1235 

concrete floor 
insulation 104115 52594 96015 57328 8902 -507 
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Table 56. Construction costs for individual retrofitting measures 

Exterior Brick Wall Insulation, Finishing with Brick Cladding 

Application 
Price 
(TL) Unit 

Applied (Area, 
Volume or Unit) Unit Price (TL) 

Plaster 5,00 TL/m2 831,85 m2 4159,23 
Fixing of XPS 5,00 TL/m2 831,85 m2 4159,23 
XPS (40 mm) 225,00 TL/m3 33,27 m3 7486,61 
Plaster Net 0,40 TL/m2 831,85 m2 332,74 
Fixing Plaster 0,49 kg 4991,07 kg 2445,62 
Brick Cladding 
(215X65X30mm) 0,45 TL/unit 55000,00 unit 24750,00 

TOTAL 43333,42 

Exterior Concrete Wall Insulation, Finishing with Plaster 

Application 
Price 
(TL) Unit 

Applied (Area, 
Volume or Unit) Unit Price (TL) 

Fixing of XPS 5,00 TL/m2 831,85 m2 4159,23 
XPS (50 mm) 225,00 TL/m3 46,09 m3 10370,79 
Plaster Net 0,40 TL/m2 831,85 m2 332,74 
Plaster Finishing (Colored) 9,23 TL/m2 921,85 m2 8508,65 

TOTAL 23371,40 

Low-e Glazing 

Application 
Price 
(TL) Unit 

Applied (Area, 
Volume or Unit) Unit Price (TL) 

6+12+6 mm Low-e pane 66,50 TL/m2 504,96 m2 33579,77 
TOTAL 33579,77 

Insulated Vinyl Frames 

Application 
Price 
(TL) Unit 

Applied (Area, 
Volume or Unit) Unit Price (TL) 

6+12+6 mm Low-e pane 12,56 m 955,44 m2 12000,30 
TOTAL 12000,30 

Insulation for Concrete Floor on Ground 

Application 
Price 
(TL) Unit 

Applied (Area, 
Volume or Unit) Unit Price (TL) 

Removal of Existing Layers 15,38 TL/m3 51,213525 m3 787,66 
Fixing of XPS 5,00 TL/m2 831,85 m2 4159,23 
XPS (30 mm) 225,00 TL/m3 24,96 m3 5614,95 
Concrete Deck 4,58 TL/m2 3414,235 m2 15637,20 
Floor Finishing 17,00 TL/m2 3414,235 m2 58042,00 

TOTAL 84241,03 
 

          (cont. on next page) 
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   Table 56. (cont.) 

Exterior Brick Wall Insulation, Cavity, Wooden Facade Finishing 

Application 
Price 
(TL) Unit 

Applied (Area, 
Volume or Unit) Unit Price (TL) 

Plaster 5,00 TL/m2 831,85 m2 4159,23 
Fixing of XPS 5,00 TL/m2 831,85 m2 4159,23 
XPS (30 mm) 225,00 TL/m3 24,96 m3 5614,95 
Wooden facade cladding 
(with structure) 37,50 TL/m2 831,85 m2 31194,19 

TOTAL 45127,59 

Exterior Concrete Wall Insulation, Cavity, Wooden Facade Finishing 

Application 
Price 
(TL) Unit 

Applied (Area, 
Volume or Unit) Unit Price (TL) 

Fixing of XPS 5,00 TL/m2 831,85 m2 4159,23 
XPS (40 mm) 225,00 TL/m3 33,27 m3 7486,61 
Wooden facade cladding 
(with structure) 37,50 TL/m2 921,85 m2 34569,29 

TOTAL 46215,12 
 

 

NPV calculation helps to estimate the difference between the present value (PV) 

of an investment cost in the future and the cash flows obtained due to this investment. In 

other words, NPV is the sum of all values in a predicted lifetime, with respect to 

parameters such as compound interest, growth rate etc. (De Troyer, 2008). For this 

study, investment cost is the construction cost and cash flows are the savings obtained 

in consumption by application of individual measures. Monetary statistics such as 

interest rate, inflation rate are obtained from Central Bank of the Republic of Turkey 

website (2009). Additionally, statistics on price growth on fuel and electricity is 

retrieved from Energy Market Regulatory Authority (EMRA, 2009). The rates used in 

NPV calculation are presented in Table 57. 

 

 

Table 57. Economic parameters used in NPV calculation 

Economic Parameters 
Inflation Rate 0,065 
Interest Rate 0,144 

Adapted Interest Rate 0,074 
Lifetime (years) 15,000 
Growth rate fuel 0,290 

Growth rate electricity 0,099 
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The results of the NPV analysis for each individual measure are presented 

graphically in Figure 108 to Figure 114 (pp.193-195). The parameters presented in the 

graphs are: (1) the change in present value of investment in years, due to compound 

(adapted) interest rate, (2) the change in total energy savings, due to growth rate of 

energy prices, and (3) the change of return on investment in years, which is the 

difference between present value of investment cost and growing value of savings for 

energy costs.  

 

 

 

Figure 108. Return on investment for brick wall with brick cladding 

 

Figure 109. Return on investment for concrete wall with plaster finishing 

-50000

0

50000

100000

150000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
os

t (
TL

)

Pay Back Period (years)

Return on Investment Analysis  for Brick Wall Improvement with XPS 
Insulation and Brick Cladding

Investment Cost Total Energy Savings Return on Investment

-40000
-20000

0
20000
40000
60000
80000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
os

t (
TL

)

Pay Back Period (years)

Return on Investment Analysis  for Concrete Wall Improvement with 
XPS Insulation and Plaster Finishing

Investment Cost Total Energy Savings Return on Investment



194 
 

 

Figure 110. Return on investment for low-e glazing 

 

Figure 111. Return on investment for insulated vinyl frames 

 

Figure 112. Return on investment for brick wall with wooden façade cladding 
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Figure 113. Return on investment for concrete wall with wooden façade cladding 

 

Figure 114. Return on investment for insulated concrete floor on ground 

In Figure 108 to Figure 114, the time series indicator line for return on 

investment presents the payback period at the point where intersects the payback period 

axis. Payback period is the term in years, which points out the time period that the 

savings on energy consumption compensates the investment cost which is facilitated for 

the individual measure in year zero. The results from the graphs for cost analysis can be 

summarized in Table 58.  
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Table 58. Payback periods obtained by NPV analysis for individual measures. 

Individual Measure Investment 
Cost (TL) 

Annual Saving (TL) 
Total Annual 
Saving (TL) 

Payback 
Period by 

NPV 
(years) 

Fuel Electricity 

brick wall + insulation + 
brick cladding 43333 2282 184 2465 9,05 
concrete wall + insulation 
+ plaster 23371 1943 -288 1655 7,75 
low-e glazing 33580 -2355 2941 586 - 
insulated vinyl frames 12000 180 -45 135 13,04 
brick wall+insulation+ 
cavity+ wooden cladding 45128 2167 199 2366 9,34 
concrete wall + insulation 
+ cavity+wooden cladding 46215 1974 -346 1628 9,81 
concrete floor insulation 84241 1610 -142 1468 12,25 

 

 

According to Table 58, following conclusions can be drawn: 

• The most cost effective measure, when applied individually, is the concrete wall 

improvement with insulation and plaster finishing. The cost for energy savings 

may compensate the investment cost applied for this measure. The payback 

period is 7,75 years, a high rate of return, however when the lifecycle of the 

retrofit improvement is considered as 10 to 20 years, the measure contributes 

solely in energy saving cost for the remaining period. Similar measure for 

concrete brick wall with insulation, cavity and wooden façade cladding provides 

higher investment, lower savings and higher payback period. 

• Brick wall insulation and finishing with brick cladding is the second 

advantageous measure among all individual measures. Payback period for the 

measure is 9,05 years and the measure provides the largest annual savings. 

Investment cost of the measure is lower than the similar measure which 

facilitates cavity and wooden façade cladding, and provides larger savings. 

• Individual measure for replacement of glazing with low-e panes provides no 

payback, since the measure causes an increase in annual fuel consumption. 

However it is necessary to evaluate this measure with supplementary opaque 

construction measures to evaluate its effects. 

• Replacement of frames with insulated vinyl frames offer the highest payback 

period in between all individual measures. The annual savings obtained by this 

measure is as well low. 
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• Individual measure for concrete floor on ground with application of insulation 

has a very large investment cost due to the large surface area of application and 

necessity to remove specific layers of the existing construction (Table 56). 

Therefore the payback period is higher when compared to annual savings 

obtained due to application of this measure. 

As a result, it is possible to assess that all individual measures are applicable if 

there is no limitation on the budget; there is no necessity to compensate the investment 

costs in a predicted time period. However, for this study, a more optimized approach 

will be evaluated to balance economy, efficiency and ecology parameters. In the next 

sub-section assessment of the final retrofitting strategy is introduced. 

 

3.4.3. Assessment of the Final Retrofitting Strategy 

 
In the light of all investigated parameters concerning indoor environment, annual 

energy consumption and cost analysis for different retrofitting options and individual 

measures, a final optimized retrofitting strategy including following measures is 

assessed: 

1) Brick wall improvement with insulation and brick cladding: 

(a) provides shorter payback period (section 3.4.2) 

(b) provides larger decrease in annual energy consumption (section 3.4.1) 

(c) provides increase in indoor temperatures (section 3.3.1.1.1) 

2) Concrete wall improvement with insulation and plaster finishing 

(a) provides shorter payback period (section 3.4.2) 

(b) provides good level of decrease in annual energy consumption and less 

increase on cooling energy consumption (section 3.4.1) 

(c) provides good levels of increase in indoor temperatures (section 3.3.1.1.1) 

(d) has lower investment costs, when compared to the parallel measure with 

insulation, cavity and wooden façade cladding (section 3.4.1). 

3) Replacement of glazing with low-e panes 

(a) provides high level of decrease in cooling loads (section 3.4.1) 

(b) increase in heating loads caused by the individual application of the measure 

is compensated with increasing thermal mass due to opaque surface 

improvements (section 3.3.1.2.2 and 3.3.1.3.2). 
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4) Replacement of frames with insulated vinyl frames 

(a) due to lower investment cost for the individual measure, it is integrated in 

the optimized strategy to ensure the applicability of low-e glazing and 

detailing the retrofitted façade components as a whole (Verbeeck & Hens, 

2005). 

Individual measure for concrete floor on ground improvement is discarded with 

the reason of long payback period and non-feasibility of the application since there is 

large interruption for functioning of workspace in the case building. 

The optimized model is simulated with the same calibrated simulation approach 

to determine the savings in annual energy consumption, payback period of the 

investment costs. The findings and analysis of the optimized final retrofitting strategy is 

presented in Chapter 4, as a result of the applied methodology in this chapter. 
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CHAPTER 4 

 

FINDINGS AND ANALYSIS 

 
In this chapter, the final results and analysis for simulation model of the 

optimized final retrofitting strategy are presented, in comparison to calibrated base case 

model. The purpose is:  

• To determine annual savings in energy consumption  

• To determine annual CO2 emission reduction  

• To determine improvement in indoor environment parameters 

• To determine the payback period for investment costs for the case building in 

response to the optimized retrofitting strategy. 

The approaches in conducting above determinations are parallel to the 

methodological tools utilized in various phases of the methodology in Chapter 3. 

 

4.1. Annual Savings in Energy Consumption of the Case Building 

 
Comparison between base case calibrated model and optimized final retrofitting 

strategy indicates decrease in heating and cooling loads all occupied spaces in the case 

building (including unconditioned circulation spaces, wet spaces etc.) Annual heating 

demand of the case building is reduced by 17,05 % due to the measures applied with 

optimized retrofitting strategy. Annual cooling load reduction is higher, with a value of 

23,60%. Whole building annual load reduction results with a percentage of 20,83. 

Figure 115 presents the changes in annual loads as a result of optimized retrofitting 

strategy. 
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Figure 115. Comparison of annual loads for base case and optimized retrofitting model 

Annual energy consumption results for conditioned spaces are compared for 

calibrated base case and optimized retrofitting strategy simulations (Figure 116). 

Results present reductions for annual energy consumption as an outcome of optimized 

retrofitting strategy. The annual energy consumed for space heating decreases by 12,32 

% in comparison to base case results. Annual cooling energy consumption reduction is 

19,42 % due to the application of optimized retrofitting strategy. Annual energy 

efficiency obtained is 24133 kWh which corresponds to an annual decrease of 14,55% 

in comparison to base case simulation results. 

 

 

 

            Figure 116. Comparison of annual energy consumption for base case and optimized  
                               retrofitting model 
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In comparison to the start of this study, where no insulation exists in the building 

envelope it is proven that improved building envelope elements provide savings in 

energy consumption, thus provide efficiency. It is possible to assess that optimized 

retrofitting strategy with the pre-determined optimum thicknesses is beneficial in terms 

of reduction of energy consumption of the building by 14,55 %. Similar studies point 

out a range between 13 to 30 % improvements in overall annual energy consumption, 

depending on different pre-determined measures (Dascalaki & Santamouris, 2002; 

Hestnes & Kofoed, 2002; Al-Ragom, 2003; Eskin & Türkmen, 2008). 

 

4.2. Annual Reduction of CO2 Emissions for the Case Building 

 
In addition simulation estimated savings in annual energy consumption, 

optimized retrofitting strategy helps to achieve a total annual reduction of CO2 

emissions of 19,27 %, when compared to the existing situation (base case model) of the 

building. Reduced heating energy consumption results in a decrease in CO2 emissions 

due to fuel combustion, by 12,32 %. On the other hand CO2 emissions that originate 

from annual space cooling consumption decrease by 28,80 % (Figure 117). 

 

 

 

Figure 117. Change in annual CO2 emissions due to optimized retrofitting strategy 
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retrofitting strategies is to decrease energy consumption and contribute reduction of 

CO2 emissions. This specific study only focuses on improvement of building envelope 

as a component of energy-efficient retrofitting; therefore the reduction in CO2 emissions 

is limited. However, there is a large potential to render greenhouse gas emissions 

originated from building functions, such as promotion of efficient artificial lighting, 

natural ventilation, integration of renewable energy technologies for space heating and 

cooling etc. 

 

4.3. Improvement in Indoor Thermal Environment for the Case  

Building 

 
Both simulations for base case calibrated model and optimized retrofitting 

strategy model, frequency analyses are conducted to demonstrate the hourly 

temperatures outside comfort range for the whole building. Temperature set points for 

both simulations range between 22 (±2) °C for winter and 24 (±2) °C for summer 

period, as calibrated according to one full year monitoring of sample spaces. These set 

point temperatures provide a minimum of 20°C and a maximum of 26 °C, and these 

temperature limits are used as frequency benchmarks. The analysis covers all occupancy 

hours for the year 2009, which is 2520 hours and includes free running and conditioned 

period. Figure 118 presents the improvement in indoor temperature percentage of 

frequencies below and over the defined limit indoor temperatures (20°C and 26°C).  

It is observed that for each specific orientation, the optimized retrofitting 

strategy provides improved (decreased) percentage frequencies below 20°C and over 

26°C. For instance, relatively high percentage of indoor temperatures below 20°C for 

east oriented spaces, decreases almost with an average of 50,00 %. This result indicates 

that there is good level of improvement in indoor temperatures. A different pattern can 

be seen for west spaces, 32,00 % of hours over 26°C decreases to a level of 22,01 %, 

due to application of optimized retrofitting strategy. In summary, it is possible to assess 

that for each orientation, there is good levels of improvement for indoor temperature 

profiles, accumulating more in the temperature set point ranges measured during 

monitoring period. 
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       Figure 118. Comparison for frequency of hours outside comfort range for base case and  
                          optimized retrofitting strategy models 
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13,63%

4,63%
8,86%

4,92% 4,74%
2,07%

16,06%

8,13%
10,43%

4,37%

16,96%

8,86%

32,00%

22,01%
17,67%

10,81%

0%

5%

10%

15%

20%

25%

30%

35%

Base Case Optimized 
Model

Base Case Optimized 
Model

Base Case Optimized 
Model

Base Case Optimized 
Model

North (13 Spaces) South (11 Spaces) West (18 Spaces) East (13 Spaces)

Frequency of Hours Outside Comfort Range for Indoor Temperature (°C)

<20°C >26°C



204 
 

 

Figure 119. Comparison of PMV prediction for base case and optimized retrofitting strategy 

Above comparison can be supported via Figure 120 and Figure 121. Cumulative 
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As a result, it is possible to state that indoor thermal environment benefits from 

the optimized retrofitting strategy, especially for occupant thermal perception of indoor 

environment. 

 

 

 

   Figure 120. Comparison of cumulative frequencies of PMV during heating period – base case  
                      and optimized retrofitting model 

 

   Figure 121. Comparison of cumulative frequencies of PMV during cooling period – base case  
                      and optimized retrofitting model 
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4.4. Investment / Payback Analysis for the Optimized Retrofitting 

Strategy 

 
In section 3.4.2, the basic approach for investment / payback analysis is 

explained in detail. Optimized retrofitting strategy is evaluated with the similar 

approach, and the results are presented in this section as an important parameter to 

estimate the future savings due to a retrofitting investment.  

Investment / payback analysis of the optimized retrofitting strategy for the case 

building is presented in Table 59 and Figure 122. Annual heating and cooling 

consumption savings are normalized with the defined error margins in section 3.1.2.4.1. 

Total investment cost for the optimized strategy is 112.285 Turkish Liras. Total annual 

savings achieved due to reduced energy consumption via the retrofitting strategy is 

5244 Turkish Liras. According to the total present values of investment and savings, the 

payback period for the investment is determined as 11,55 years. 

 

 

Table 59. Investment, savings and payback period for optimized retrofitting strategy 

Individual 
Measure 

Investment 
Cost (TL) 

Annual Saving (TL) Total 
Annual 

Saving (TL) 

Payback 
Period by 

NPV 
(years) 

Fuel Electricity 

Optimized Model 112.285 2155 3090 5244 11,55 

 

 

 

Figure 122. Return on investment analysis for the optimized retrofitting strategy 
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In general, energy efficiency improvements in the building envelope are costly. 

In literature for office building retrofitting strategies, payback periods for holistic 

envelope improvements are long, however permissible due to energy savings, 

improvement in indoor environment, reduction of CO2 emissions etc. (CRES, 2000). 

For the case building, the retrofit measures are assumed to have a lifecycle of minimum 

20 years (Rey, 2004), due to mild climatic and environmental conditions. Therefore, 

11,55 years of payback period is promising, where parallel studies have similar payback 

periods (Dascalaki & Santamouris, 2002; Hestnes & Kofoed, 2002; Al-Ragom, 2003). 

Table 60 presents the annual present values for investment and total energy saving 

costs. The table once more indicates the payback period. Moreover, the savings 

achieved after the payback period is relatively high according to the scenario of 

increasing fossil energy costs in the close future.  

 

 

Table 60. Annual present values for investment and total energy saving costs 

Years Investment 
Cost (TL) 

Fuel Cost 
(TL) 

Electricity 
Cost (TL) 

Total Energy 
Savings (TL) 

Return on 
Investment 

(TL) 
0 -112285 2155 3090 5244 - 
1 -104579 2776 3394 6170 -98408 
2 -97401 3578 3728 7306 -90096 
3 -90717 4610 4095 8706 -82011 
4 -84491 5941 4499 10440 -74051 
5 -78692 7655 4942 12597 -66095 
6 -73291 9865 5429 15293 -57998 
7 -68261 12712 5963 18675 -49586 
8 -63576 16380 6551 22931 -40646 
9 -59213 21107 7196 28303 -30910 

10 -55149 27199 7905 35104 -20046 
11 -51364 35049 8683 43732 -7632 
12 -47839 45164 9539 54702 6863 
13 -44556 58198 10478 68676 24120 
14 -41498 74994 11510 86504 45006 
15 -38650 96637 12644 109281 70631 
16 -35997 124526 13890 138416 102419 
17 -33527 160465 15258 175722 142195 
18 -31226 206775 16761 223535 192309 
19 -29083 266450 18412 284861 255779 
20 -27087 343347 20225 363572 336486 
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4.5. Results 

 
An optimized retrofitting strategy developed according to the methodology 

executed in Chapter 3 results with following outcomes: 

• Reduction of annual energy consumption is around 15 %, which is a good level 

of achievement in consideration to designed individual measures based on 

optimum insulation thickness. Use of larger insulation thicknesses may be more 

beneficial, yet more expensive. 

• Annual CO2 emissions are reduced by 19,27%, 10049 kgCO2 per annum, only 

due to reductions in annual heating and cooling loads. 

• Due to the application of the optimized retrofitting strategy, there is perceivable 

improvement in the indoor thermal environment. 

• Payback period of the strategy is 11,55 years, which is long, yet may become 

profitable after the payback period due to the increasing energy costs over a 

decade.   
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CHAPTER 5 

 

CONCLUSION 

 
Since the energy crisis in 1970s, reduction of fossil energy consumption became 

a point of concern, which evolved nowadays into a worldwide action, with the aim to 

preserve the remaining natural resources, to utilize renewable energies and protect the 

balance of the environment. Consequently, buildings which are responsible for a large 

portion of world energy consumption, turned out to be a centre of attention with their 

great potential in conserving energy, and that they necessitate improvements to reduce 

consumption, to become sustainable over their lifetime, or even produce and utilize 

clean energy. With these aims, many research actions and initiatives were taken, to 

improve energy efficiency in buildings (Chapter 2).  

Measures which are defined to construct new buildings in an energy-efficient / 

sustainable approach are feasible and possible, in presence of well defined regulations 

and experienced control mechanisms. However, for existing buildings the process to 

obtain energy efficiency is a more complex task, where numerous parameters are 

involved as explained in the introductory part of this research.  

Hence, the dissertation “A method on energy-efficient retrofitting for existing 

building envelopes” is structured with the aim to define a methodology for energy-

efficient retrofitting of existing public envelopes, which should be a guide for any 

further-planned retrofitting actions for Turkish building stock. In regard to this aim, the 

approach of the dissertation is demonstrated through a case study. The complex set of 

applications in determination of energy performance of buildings, definition of 

retrofitting strategies, and evaluation of these strategies demand a systematic approach, 

which is addressed as a “method” in this study, are thoroughly executed via the defined 

steps of the suggested methodology in Chapter 3. Therefore, in this last chapter, the 

main steps that constitute the methodology is summarized, in regard to the suggested 

evaluation parameters: energy, environment and cost. Additionally, shortcomings of the 

research and potential further research areas are discussed, to provide ground for 

advanced and essential improvements for the formulated and evaluated methodology. 
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5.1. The Methodology 

 
The aim in constructing this methodology is to be able to define a coherent set of 

retrofitting actions for existing building envelopes, which results in reduction in energy 

consumption, CO2 emissions and improvement in indoor thermal performance. Since 

existing buildings account for a large portion of energy consumed, there is certain 

necessity to retrofit existing buildings to become more energy-efficient, however the 

limitations of feasibility of application and cost-effectiveness are the major problems 

that are faced during decision-making process of a retrofitting approach. Through the 

methodology this study proposes, it becomes possible to evaluate different retrofitting 

approaches for buildings either in an overall optimized strategy covering several 

building components, or selection of retrofitting alternatives a single building 

component. Therefore, to be able to optimize a retrofitting strategy and/or to decide 

application of individual retrofitting measures, a systematically layered methodology is 

proposed in view of the following main considerations, which are the basis this study is 

built on:  

• Diagnostics: To evaluate the existing energy performance of a case building 

• Assessment of improvements: To formulate the optimum applicable retrofitting 

strategy with the aim to limit energy consumption to a lesser extent, thus reduce 

CO2 emissions. 

• Performance: Any measure and/or set of measures proposed should be evaluated 

in regard to performance parameters which involve indoor environment, annual 

energy consumption and investment cost/payback period of the proposed 

retrofitting strategy. 

 

The methodology itself is a decision-making process, with detailed steps that fit 

in the above stated fundamental concepts. Therefore, it is possible to summarize these 

fundamental concepts with reference to implementation of the proposed methodology 

through a case study, which is comprehensively explained in Chapter 3. The steps of the 

methodology are: 
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1) Determination of the energy performance of the case building: It is essential to 

determine the existing energy performance of a building prior to any retrofitting 

design decisions. The level of necessary improvements is directly related to the 

existing state of the building, thus a thorough understanding of how the building 

responds to environmental factors, climate, user requirements, occupancy 

patterns etc. is necessary prior to an energy-efficient retrofit of a building 

envelope. Therefore, following evaluations and analysis are completed for the 

case building. These highlights of these steps are valid to any further 

employment of the methodology: 

• Determination of necessary building information can be completed via following 

analysis (Section 3.1.1) 

- Documentation of the site analysis of the building with respect to its  

location, orientation, altitude and environmental characteristics. 

- Collection of architectural and mechanical information, through blueprints 

for the building including architectural and mechanical drawings, 

construction details that include the composition of building envelope layers. 

- Inspection of building installation systems, to provide information on their 

technical characteristics and operating schedules. 

- Inspection of the building, to determine functional characteristics of different 

spaces, to document occupancy patterns and schedules that the building 

functions along with. 

• An energy performance monitoring of the building which is subject to 

retrofitting intervention, which covers minimum 12 months (better if possible 

for 24, 36 or 48 months) is necessary to determine the actual response of the 

building to its context (Section 3.1.2.1): 

- Indoor environmental parameters: Indoor temperature and relative humidity 

should be monitored continuously with 10 minutes interval. The data set of 

these parameters reflects the actual response of the building during the 

monitoring period. 

- Energy consumption: Energy end uses for heating, cooling and utilities 

should be monitored minimum with monthly intervals. Best is to monitor the 

end use consumptions hourly, to be able to compare the dynamic response of 

the building to changing parameters (such as weather data, change in set 

point temperatures, occupancy etc.) 
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- Efficiencies of installations: The efficiencies of installations especially used 

for indoor acclimatization (heating and cooling) is directly related to the 

consumption patterns and CO2 emissions. 

- On site or very approximate monitoring of the weather data: Microclimatic 

weather data provides higher accuracy in determination of existing energy 

performance of a building. Therefore, it is necessary to monitor the 

microclimate for higher accuracy in predicting the existing energy 

performance of a building. Monitored weather data should cover the 

minimum parameter data set of (1) exterior dry bulb temperature (°C), (2) 

exterior relative humidity (%), (3) global horizontal solar radiation (W/m2), 

(4) wind speed (m/s), (5) wind direction (degrees), and (6) cloudiness / 

clearness index. Additionally measurement of diffuse solar radiation is 

highly beneficial if necessary equipment is available. 

• Due to collection of building information and monitoring data for a minimum of 

12 months, the energy performance of the existing building can be evaluated 

through analytical calculations, dynamic calculation methodologies proposed by 

different standards, or through simulation models. Selection of the evaluation 

tool is important and can be chosen according to following  design decisions:  

- A performance evaluation tool which will be employed in determination of 

the energy performance of the case building can be chosen due to expertise 

of previous applications 

- In case of no previous expertise, each tool can be executed and then 

evaluated for their accuracy in comparison to the long term monitoring data 

gathered from the building. The tool with the highest accuracy of real 

conditions can be assigned for energy performance evaluation of the case 

building (Section 3.1.2.4). 

 

2) Determination of error margins of energy performance analsis tools: Error 

margins between energy performance predictions of employed performance 

tools and monitoring results is a necessary step to closely forecast  effects of 

further energy conservation measures. Since no prediction tool is completely 

accurate, it is necessary to define a case specific error margin for the accuracy of 

the prediction tool (Section 3.1.2.4). This error margin can be utilized for 

normalization of simulation results for further evaluation of improvements 
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through the selected tool. In case of selection of a simulation tool, it is necessary 

to process a calibrated simulation model. This calibrated simulation model is 

best obtained with simulating the existing performance of the building, which is 

addressed as base case simulation model. The discrepancy between calibrated 

simulation model and the monitoring data may provide the level of inaccuracy 

between simulation and measurement. 

 

3) Assessment of energy-efficient retrofitting strategies: Consequent to the 

selection of the appropriate energy performance analysis tool and definition of 

its error margins for a specific case building, it becomes possible to address the 

obsolescence and insufficiencies in the building envelope, which directly 

influences indoor thermal comfort energy consumption, and CO2 emissions of 

the building. Therefore necessary retrofitting interventions should be assessed 

according to the previous analysis conducted on the building. The main 

parameters in assessment of retrofitting strategies for a building envelope 

improvement are mainly based on (1) reduction of transmission losses, (2) 

reduction or increase of solar gains through the envelope, and (3) reduction of 

infiltration and ventilation losses. Generally all retrofitting initiatives are taken 

with the necessity to improve minimum one or more of these measures. 

However, the main problem is the diagnostic and decision on which 

improvements are necessary (Section 3.2.1). Therefore: 

• The extensive set of information collected in the previous step of the 

methodology is evaluated to diagnose the necessary improvements in a holistic 

perspective (necessity for insulation improvements for all building envelope 

elements or specific elements such as necessity for replacement of existing 

glazing etc.) 

• Qualitative aspects of the building such as existence of fundamental change in 

structure of the building (replacement of the structural elements etc.), 

requirement for minimum change in architectural appearance of the building, 

interruption occupancy of the building should be evaluated in decision-making 

should be evaluated (Section 3.2.1.1). 

• Quantitative decisions on the level of insulation measures to determine an 

appropriate thickness for each improvement defined for building envelope 

elements may be necessary to avoid over or underestimation of the insulation 
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thicknesses. This measure will provide efficiency in limiting number of trials for 

determining appropriate insulation thickness in testing performance of energy 

conservation measures. Additionally, optimization of insulation thickness helps 

to avoid over-insulated building parts, which may result in high investment costs 

(Section 3.2.1.2). 

• All assessed retrofitting strategies should be evaluated either on individual 

measure basis or as strategies compiled with these measures (Section 3.3). The 

main parameters for the evaluation of efficiency of these measures are: 

- Indoor environmental parameters 

- Annual energy consumption 

- Investment / payback evaluation. 

• An optimization is necessary for a single retrofitting strategy due to the 

performance criteria obtained by above parameters. Beneficial measures on 

annual energy consumption and indoor environment may be utilized together to 

construct a final optimized retrofitting strategy. Cost analysis is as well a vital 

determinate in this optimization step (Section 3.4). 

 

4) Evaluation of the final optimized retrofitting strategy: Optimized retrofitting 

strategy should be evaluated with the pre-determined evaluation tool and the 

final findings and analysis of the proposed final strategy should be documented 

in terms of annual energy savings, indoor environment and retrofitting 

investment and payback due to energy savings. As a result, the applied 

methodology is valid in terms of (1) diagnosing the energy performance of an 

existing building, (2) determination of an error margin between prediction and 

monitoring of the existing energy performance of the building, (3) evaluation of 

assessed retrofitting measures and strategies, and (4) evaluating the performance 

of an optimized retrofitting strategy.  

 

The steps of this methodology are common to several measurement and verification 

guidelines defined by different authorities in the world, which are concerned on energy-

efficient building diagnosis and refurbishment (ASHRAE, 2005; ASHRAE, 2002; 

CRES, 2000; IPMVP, 2001; M&V, 2008). Hence, in regard to previously emphasized 

insufficiencies for Turkish building stock and energy-efficiency regulations, the 

methodology is proven to be applicable for energy-efficient envelope retrofits for 
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existing buildings. The methodology proposes a set of steps that can be applied to 

different retrofitting decisions, without the constraints of unique building 

characteristics. The potential of simulation tools in comparison to analytical calculations 

is as well proven as a strong component of the methodology, since a response factor 

based dynamic simulation tool has close capability to replicate actual building energy 

performance. Therefore, even in design phase the use of simulation models would help 

to render the inefficient design decisions.  

Overall, the study indicates the obsolescence in buildings, caused by inefficient 

applications, disregarded efficiency measures, and environment responsive design 

decisions, and proposes the applicability of retrofit measures, in regard to improvement 

in indoor thermal comfort, reduction in annual energy consumption, reduction in CO2 

emissions and evaluates the investment of energy-efficient envelope retrofitting actions. 

The methodology has the potential to be utilized for evaluation of the building envelope 

retrofits in an integrated perspective. 

 

5.2. Shortcomings of the Dissertation 

 
The scope of this study may yield shortcomings when a comprehensive 

evaluation of building energy performance is considered. The dissertation solely deals 

with energy-efficient improvement of building envelope, which is one of the aspects of 

energy efficiency in buildings. However, other energy consumption end-uses in a 

building such as artificial lighting, mechanical ventilation, heating and cooling 

installations may be subject to retrofitting improvements to promote the obtained 

efficiency due to envelope retrofits. Thus, the energy performance of a building may be 

improved in a holistic perspective.  

Especially, efficiency measures for heating and cooling installations could be 

improved or renewable energy technologies could be integrated to endorse the reduction 

of fossil fuels and CO2 emissions. 

Additionally, an uncertainty analysis for monitoring results could be useful in 

terms of more accurate assessment of existing performance measures. The uncertainty 

analysis may as well be useful on calibration of the simulation model, to decrease the 

error margins between monitoring and simulation data. Therefore simulation results for 

a retrofitting strategy can be normalized to more realistic results.  
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Therefore, further research can be developed with respect to these shortcomings. 

Several possibilities on future research can be summarized as follows: 

• Retrofits on artificial lighting can be integrated to reduce consumption costs. 

• A hybrid ventilation regime can be proposed for the building via integration of 

natural ventilation to the existing mechanical ventilation. The measure surely 

reduces energy consumption due to ventilation, thus contribute the overall 

energy consumption of the building. 

• Utilization of renewable heating and cooling systems could be integrated to the 

retrofitted building, and their effect on energy performance could be evaluated. 

 

5.3. Concluding Remarks 

 
The dissertation “A method on energy-efficient retrofitting for existing building 

envelopes” is structured on the aim to define a methodology for energy-efficient 

retrofitting of existing public building envelopes (roof, facades, floor on ground), which 

should be a guide for any further-planned retrofitting  actions for Turkish public 

building stock.  

The emphasis on the necessity of a methodology for energy-efficient building 

retrofits is one of the major keystones of the study. EPBD regulations, which are 

announced as mandatory for all member and candidate countries is a binding process 

which needs to be fulfilled. Simply even the requirement of an energy certificate is a 

massive problem for existing Turkish building stock, where insulation measures are 

only applied for a uncertain portion of the building stock, which are built in the last 

decade.  

Due to the BEP directive which became obligatory in 2008, construction sector 

took initiative to insulate existing buildings with stereotypical exterior thermal 

improvement actions, as a newly introduced profitable area of construction works. 

However, even BEP is unable to define a dynamic calculation methodology to identify 

the energy responses of a building to numerous parameters such as environmental 

factors, climatic considerations etc. Therefore, there is still a necessity to define a 

systematic approach for energy-efficient retrofitting of existing envelopes. 

Therefore this study proposes a methodology which is capable of integrating 

dynamic responses of a building for energy performance. The methodology may be 
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utilized to fill the gap for Turkish regulations, and calculation methodologies for 

determination of energy performance of existing buildings. Via the application of this 

methodology, thermal improvement of existing buildings may become more than a 

coincidence proposed by common contractors of the building sector.  

Conscious decision-making for retrofitting strategies is of vital importance, 

where the investment costs are high and payback periods are long for these 

improvements. Therefore there is a certain requirement of precise determination the 

optimum measures, along to a coherent calculation methodology or retrofitting strategy.  

In addition, the research targets the public buildings with the reasons to provide 

demonstrative retrofitting interventions, which may help to raise the awareness of the 

community on the benefits of energy-efficient retrofitting of existing buildings. Public 

buildings may be a medium to communicate with the society to introduce the necessity 

of energy-efficient buildings. 

On the other hand, the methodology is flexible in terms of application to 

different buildings with different typologies and architectural aspects. Demonstrative 

case study building which is evaluated in Chapter 3 supports this argument with a large 

open atrium in the middle and with large heat loss surface are when compared to a more 

enclosed building. Therefore it is possible to assess that the methodology can be applied 

to different buildings with different typologies and architectural aspects. It is a flexible 

methodology which can be applied for residential buildings as well with the integration 

of different facilities (such as domestic hot water). 

As a result, the study fills the gap of a guideline for energy-efficient retrofitting 

of existing buildings and provides potential of integrating different needs and measures 

to different steps of the methodology. 
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