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ABSTRACT 
 

ENHANCEMENT OF TRIBOLOGICAL PROPERTIES OF MINERAL 
OIL BY ADDITION OF SORBITAN MONOSTEARATE AND ZINC 

BORATE 
 

The development of modern automobile and engine industries requires 

lubricants that can withstand high temperatures and pressures. Recent advances made in 

the chemistry provide the use of inorganic particles as lubricant additives. Therefore 

inorganic boron-based additives have been the focus of much attention, as they posses a 

good combination of properties, such as wear resistance, friction-reducing ability. In 

this study, the state of art in the field of inorganic particle, zinc borate synthesis and its 

employment in tribology were investigated. The synthesis of zinc borate was achieved 

not just by precipitation, but also production methods such as inverse emulsions. The 

products were characterized by SEM, FTIR, TGA, DSC, EDX. In lubrication part, the 

friction reducing and antiwear ability of the particles as an additive in the mineral oil 

was focused. Sorbitan monostearate was used to cover the surfaces of inorganic 

particles in order to provide better dispersion of additives in the oil. Friction and wear 

behavior of the lubricants were measured by four-ball wear test machine. The effects of 

dispersing agent, zinc borate type as well as surfactant concentration on the tribological 

properties of the lubricants were investigated. Sorbitan monostearate not only 

outperformed as a dispersing agent of inorganic particles, but also it proved to be an 

efficient antiwear agent. The lowest wear scar diameter was obtained by the lubricant 

containing zinc borate synthesized via coordination precipitation method. The addition 

of this sample with the surfactant in the oil reduced the wear scar diameter from 1.402 

mm to 0.550 mm.  
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ÖZET 
 

MİNERAL YAĞLARININ TRİBOLOJİK ÖZELLİKLERİNİN 
SORBİTAN MONOSTEARAT VE ÇİNKO BORAT KATKISI İLE 

GELİŞTİRİLMESİ 
 

Otomobil ve motor endüstrisindeki gelişmeler yüksek sıcaklık ve basınca 

dayanıklı kaydırıcılar gerektirmektedir. Kimya bilimindeki son gelişmeler inorganik 

parçacıkların tribolojide kaydırıcı katkısı olarak kullanılmasını sağlamaktadır. Bor bazlı 

inorganik katkılar sürtünmeyi azaltıcı, aşınma önleyici gibi özelliklerinden dolayı 

çalışmaların odak noktasını oluşturmaktadırlar. Bu çalışmada çinko borat sentezi ve bu 

malzemenin triboloji alanında uygulanması araştırılmıştır. Çinko borat sadece çöktürme 

ile değil, aynı zamanda özel bir üretim yöntemi olan ters emülsiyon tekniği ile de 

üretilmiştir. Parçacıkların tanımlanması SEM, FTIR, TGA, DSC, EDX ile yapılmıştır. 

Kaydırıcılar bölümünde ise, sentezlenen parçacıkların mineral yağ içinde sürtünmeyi ve 

aşınmayı önleyici özellikler sağlayıp sağlamadığı araştırılmıştır. Yağın içine 

sentezlenen parçacıkların yanı sıra bu parçacıkların yüzeyini kaplayan ve yağ içinde 

daha homojen olarak dağılmasını sağlayan sorbitan monostearat da eklenmiştir. 

Kaydırıcıların sürtünme ve aşınma testleri dört top aşınma cihazında yapılmıştır. 

Kaydırıcılarda dispersiyon ajanı, farklı çinko borat türlerinin ve yüzey aktif madde 

derişiminin etkileri tribolojik özellikleri göz önünde bulundurularak değerlendirilmiştir. 

Sorbitan monostearat, sadece dispersiyon ajanı olarak değil aynı zamanda aşınma 

önleyici katkı olarak da kullanılabilineceğini kanıtlamıştır. En düşük aşınma iz çapı 

koordinasyon çöktürme yöntemi ile üretilen çinko boratı içeren kaydırıcıda 

gözlenmiştir. Bu katkının yüzey aktif madde ile saf yağda 1.402 mm olan aşınma iz 

çapını 0.550 mm’ye düşürdüğü belirlenmiştir. 
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CHAPTER 1 

 

INTRODUCTION 

 
Lubrication is an art that has been practiced for thousands of years from the 

early days of the human civilization. The study of lubrication as a science began in the 

17th century with the development of bearings and axles. In the early 21st century, the 

advent of automobiles and steam engines caused the development of modern complex 

lubricants consisting of base oils and chemical additives (Hsu, 2004). Such additives 

include dispersants, surfactants, oxidation inhibitors, and antiwear agents (Smiechowski 

and Lvovich, 2002). Friction and surface damage can be reduced by applying extreme 

pressure and anti-wear additives. These tend to be suphur-, chlorine-, and phosphorous-

containing compounds designed to react chemically with the metal surfaces, forming 

easily sheared layers of sulphides, chlorines or phoshides and thereby preventing severe 

wear and seizure. As an environmental protection measure, the use of chlorine- and 

phosphorous-containing compounds used as lubricant additives has been restricted, and 

so developing new additives that pollute less has therefore become the target 

researchers. Therefore organic and inorganic boron-based additives have been the focus 

of much attention, as they posses a good combination of properties, such as wear 

resistance, friction-reducing ability, oxidation inhibition, low toxicity, pleasant odor and 

compatibility with frictional pairs (Battez et al., 2006; Zheng et al., 1998). Among 

boron compounds, hexagonal boron nitride (BN) has a lamellar crystalline structure, in 

which the bonding between molecules within each layer is strong covalent, while the 

binding between layers is almost entirely by means of weak van der Waals forces. This 

structure is similar to that of graphite and molybdenum disulfide which are highly 

successful solid lubricants, and the mechanism behind their effective lubricating 

performance is understood to be owing to easy shearing along the basal plane of the 

hexagonal crystalline structures (Pawlak et al., 2009; Kimura et al., 1999). In addition 

the employment of hexagonal boron nitride in lubricating oils, metal borates which are 

extraordinary ceramic and functional materials find in use as an antiwear and 

anticorrosion material. In literature, numerous studies have been carried out in recent 
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years on the effects of various metal borate particles as lubricating oil additives on wear 

and friction (Hu and Dong, 1998; Dong and Hu, 1998; Hu et al., 2000). Their 

effectiveness can be related to the formation of a borate glass as a tribochemical film or 

the deposition of particles on the rubbing surface (Varlot et al., 2001). The friction-

reduction and anti-wear behaviors are dependent on the characteristics of nanoparticles, 

such as size, shape, and concentration.  

Water-in-oil inverse emulsions are formed by mixing small amounts of water 

and surfactant with oil. The inverse emulsion droplets consist of a water core 

surrounded by a single layer of surfactant molecules act as micro/nano reactors. These 

reactors are used to synthesize metal, organic and inorganic particles and the excellent 

ability of emulsion-assisted precipitation provides to control the shape and the size of 

the synthesized particles. Moreover, the precipitated particles in emulsions are 

stabilized by the surfactant monolayer which surrounds each microemulsion droplet and 

thereby particle agglomeration is suppressed. In general, two different modes for the 

initialization of the precipitation reaction can be distinguished in emulsions. For the first 

case, one reactant is transported from the continuous phase into the emulsion droplets 

which already contain the other reactant, whereas for the second case, two separate 

emulsions are prepared containing the aqueous solution of the reactants then these two 

microemulsions are mixed. In both operating modes, the two reactants are contacted 

within the emulsion droplets and consequently a chemical reaction starts which is 

followed by particle nucleation and growth (Niemann and Sundmacher, 2010). 

Zinc borate is a synthetic hydrated metal borate. There are various kinds of 

crystalline hydrated zinc borate. These have compositions 4ZnO∙B2O3∙H2O, 

ZnO∙B2O3∙1.12H2O, ZnO∙B2O3∙2H2O, 6ZnO∙5B2O3∙3H2O, 2ZnO∙3B2O3∙7H2O, 

2ZnO∙3B2O3∙3H2O. In these products, B2O3/ZnO mole ratios changes from 0.25 to 5 

and it determines the characteristics of product (Schubert, 1995). The production 

techniques of zinc borate generally include the reaction between zinc source materials 

(zinc oxide, zinc salts, zinc hydroxide) and the boron source materials (boric acid and 

borax) (Nies et al., 1972, Shi et al., 2008; Eltepe et al., 2007). In literature the studies 

have demonstrated that zinc borate is commonly used as flame-retardant filler in 

polyvinylcloride (PVC), polyamides, and epoxy resins. 

This study attempts not only to enhance the tribological properties of mineral oil 

by employment of sorbitan monostearate and zinc borate additives but also to 
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synthesize boron based lubricant additives by precipitation and inverse emulsion 

technique. Moreover, the other objective is to characterize the synthesized particles in 

order to estimate the ranges of application of zinc borate used as a lubricating oil 

additive and to understand the mechanism under the lubrication theory of zinc borate. 

This study also aims to present a new lubrication preparation technique in the field of 

both colloidal systems and nano-size particle preparation since the prepared inverse 

emulsions are directly used as lubricants without any further processes.  

In Chapter 2, wear, friction and lubrication in tribology are introduced. 

Mechanical-dynamic testing methods for lubrication and the types of lubricants are 

defined. Besides them, recent studies related to the preparation and testing of lubricating 

oil additives are reviewed. Chapter 3 summarizes the boron-based lubricating oil 

additives. In Chapter 4, emulsions and the synthesis of nano-sized particles by inverse 

emulsion technique are explained. Chapter 5 includes the production of zinc borate and 

its characterization. Chapter 6 describes the materials used in the production of zinc 

borate samples, experimental procedure of synthesis and the preparation of lubricants. 

This chapter explains the characterization techniques for both zinc borate particles and 

the lubricants, as well. Chapter 7 includes results of zinc borate production by inverse 

emulsion and precipitation techniques and it indicates the tribological characterization 

of the prepared lubricants. 
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CHAPTER 2 

 

TRIBOLOGY, FRICTION, WEAR AND LUBRICATION 

 
Tribology (derived from the Greek tribein, or tribos meaning rubbing) is the 

science of interacting surfaces in relative motion. Even though the term tribology was 

first introduced in 1967 by a committee of the Organization for Economic Cooperation 

and Development and it has been used globally since 1985, early civilizations, 

especially Egyptians developed quite sophisticated tribological devices such as wheels, 

door hinges and wheeled carriages before 2400 BC. After, this science was developed 

by Leonardo da Vinci in the late 15th century by postulating a scientific approach to 

drilling holes (Stachowiak and Batchelor, 2005). 

The study of friction, wear, lubrication and contact mechanics are all important 

parts of tribology. The tribological system consists of four elements; two contacting 

partners, the interface between the two and the medium in the interface and the 

environment.  The variables are the type of movement, the forces involved, temperature, 

speed, and duration of stress. Tribometric parameters such as friction, wear and 

temperature data can be gathered from the stress area. Tribological stress is the result of 

numerous criteria of the surface and contact geometry, surface loading or lubricant 

thickness. Tribological processes can occur in the contact area between two friction 

partners which can be physical and physicochemical (adsorption, desorption), or 

chemical in nature (tribochemistry) and the tribology progress is based on the concept 

of friction as a multi-scale process taking place in the surface layers of solids and 

lubricant under the combined effects of deformation and shear with the simultaneous 

action of chemical reactions, structural and phase transformations in lubricating layer, 

surface films, and adjacent materials (Mang and Dresel, 2001; Myshkin, 2000). The 

factors affecting the tribological properties are summarized as; 
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 Mechanical, physical and chemical properties of the materials 

 Mating conditions 

 Type of processing (heat treatment, plastic forming etc.) 

 Metallic inclusions etc (Leśniewski and Krawiec, 2008). 

Nowadays, tribological studies related to the engineering surfaces at scales 

ranging from atomic and molecular to microscales are gaining importance to understand 

the lubrication theory and predict some of the many challenging problems in the 

fundamental research of tribology. The development of surface force apparatus (SFA), 

scanning tunneling microscope (STM), atomic force microscope (AFM) and friction 

force microscope (FFM) microscopes provides the nanotribological and nanomechanic 

studies needed to find out interfacial phenomena on a small scale and surface 

interactions (Bhushan, 2005; Bhushan, 1999).  

 

2.1. Friction  

 
Friction can be defined as the net resistant force for one surface to move against 

another when two objects are in contact. The coefficient of friction is defined by the 

ratio of the tangential force over the normal force acting on the surface (Ruina and 

Pratap, 2002; Hsu, 1996). Friction occurs in all mechanical systems; bearings, 

transmissions, hydraulic and pneumatic cylinders, valves, brakes and wheels. Friction 

appears at the physical interface between two surfaces in contact. Lubricants such as 

grease or oil are often used but there may also be a dry contact between the surfaces. 

Friction is strongly influenced by contaminations. There is a wide range of physical 

phenomena that cause friction this includes elastic and plastic deformations, fluid 

mechanics and wave phenomena, and material sciences. The coefficient of friction 

(COF), also known as a frictional coefficient or friction coefficient, symbolized by the 

Greek letter μ, is a dimensionless scalar value which describes the ratio of the force of 

friction between two bodies and the force pressing them together and represents the 

friction between two surfaces. Between two equal surfaces, the coefficient of friction 

will be the same. The maximum frictional force, F (when a body is sliding or is in 

limiting equilibrium) is equal to the multiplication of the coefficient of friction with the 

normal reaction force (N) as demonstrated in Equation 1.  
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F =       

Sliding and rolling frictions are the types of kinetic friction and they occur when 

the contact surfaces are moving. Especiall y, sliding friction occurs in a pure sliding 

motion with no rolling and no spin as shown in Figure 2.1. Rolling friction is the 

friction generated by rolling contact. In roller bearings, rolling friction mainly occurs 

between the rolling elements and the raceways, whereas sliding friction occurs between 

the rolling elements and the cage. The main cause of friction in roller bearings is sliding 

in the contact zones between the rolling elements and the raceways. It is also influenced 

by the geometry of the contacting surfaces and the deformation of the contacting 

elements (Figure 2.1) (Mang and Dresel, 2001).  

 

              
   (a)      (b) 

Figure 2.1. Friction of a) sliding and b) rolling 
(Source: Mang and Dresel, 2001). 

 

2.2. Wear  

 
Wear is the loss of material from one or both of the contacting surfaces when 

subjected to relative motion. Film failure impairs the relative movement between solid 

bodies and inevitably causes severe damage to the contacting surfaces. The 

consequence of film failure is severe wear. It is created by the process of abrasion, 

adhesion, erosion, tribochemical reactions, and metal fatigue which are important to 

lubrication technology. The reduction of wear depends on interfacial conditions such as 

normal load, geometry, relative surface motion, sliding speed, surface roughness, 

lubrication and vibration (Zhang et al., 2009). Wear can be measured gravimetrically, 

volumetrically or in terms of area over a period of time or against increasing load and 

there are eight types of wear as indicated in below (Mang and Dresel, 2001). 
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Adhesive wear: It is the result of adhesion between contacting bodies  

Fatigue wear: When the intervening films are partially effective then milder 

forms of wear occur and these are often initiated by fatigue processes due to repetitive 

stresses under either sliding or rolling.  

Abrasive wear: If the film material consists of hard particles or merely flows 

against one body without providing support against another body then abrasive wear 

occurs.  

Erosive wear: It is caused by the impact of particles of solid or liquid against 

the surface of an object. 

Cavitation wear: It is caused by fast flowing liquids. 

Corrosive wear: In some practical situations the film material is formed by 

chemical attack of either contacting body and while this may provide some lubrication, 

significant wear is virtually inevitable. This form of wear is known as corrosive wear. 

Oxidative wear: When atmospheric oxygen is the corroding agent, then 

oxidative wear is said to occur.  

Fretting wear: When the amplitude of movement between contacting bodies is 

restricted to, for example, a few micrometers, the film material is trapped within the 

contact and may eventually become destructive. Under these conditions fretting wear 

may result.  

Jacobson and Hogmark (2009) summarized the surface modifications of the 

surfaces due to its tribological action by four categories (Figure 2.2); 

 Modification of the original surface without any material transfer (Figure 2.2a) 

 Modification of the original surface involving material transfer (Figure 2.2b) 

 Formation of tribofilm or coating on top of the original surface (Figure 2.2c) 

 Wear (loss of particles or atoms from the surface)  (Figure 2.2d) 

 

2.3. Surface Roughness 

  
Two of the most important surface properties are surface roughness and 

topography. The evaluation of surface roughness is of great importance to obtain the 

surface topography for many fundamental problems such as friction, contact 

deformation and conduction. The real surface geometry is so complicated that many 
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parameters according to functionality are used to describe the surface evaluation. In fact 

the roughness parameters can be calculated in either two-dimensional (2D) or three-

dimensional (3D) forms. Among the surface roughness parameters; arithmetic average 

height (Ra) is defined as the average absolute deviation of the roughness irregularities 

from the mean line over one sampling length as shown in Figure 2.3. This parameter is 

easy to define, easy to measure and gives a good general description of height variation 

(Sedlaček et al., 2009). However it is not sensitive to small changes in profile 

(Gadelmawla et al., 2002). The mathematical definition of Ra is indicated as follows; 

 

   
(a) (b) 

   
(c) (d) 

Figure 2.2. The four basic categories of tribological surface modification 
(Source: Jacobson and Hogmark, 2009). 
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Figure 2.3. Definition of the arithmetic average height (Ra) 

(Source: Gadelmawla et al., 2002). 
 

In addition to Ra, maximum height of peaks (Rp) and maximum depth of valleys 

(Rv) are used to define the surface properties. As shown in Figure 2.3. Rp is above the 

mean line within the assessment length, whereas Rv is below the mean line. By using 

Rp and Rv, maximum height of the profile (Ry (Rt) or Rmax) which is defined as the 

vertical distance between the highest peak and the lowest valley along the assessment 

length of the profile can be evaluated (Figure 2.4). This parameter is very sensitive to 

the high peaks or deep scratches (Gadelmawla et al., 2002). 

 

 
Figure 2.4. Definition of parameters, Rp, Rv, Rmax  

(Source: Gadelmawla et al., 2002). 
 

 

2.4. Lubrication  

 
The main purpose of lubrication is to reduce the friction between the interacting 

surfaces in relative motion by introducing a third body called lubricant between them. 

The third body should have very low shear strength so that the mating surfaces do not 
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undergo wear or damage. The effectiveness of the lubricant is measured by its ability to 

prevent wear and reduce friction. This prevention can be achieved by providing a 

protective film or a coating on the surfaces. In literature four different liquid lubrication 

regimes; such as hydrodynamic, elastohydrodynamic (EHD), mixed and boundary 

lubrication regimes are defined depending up on the thickness of lubricant film present 

between the interacting surfaces. These four regimes are clearly understood from the 

Stribeck/Hersey curve in Figure 2.5. Knowing the magnitude of the coefficient of 

friction, the curve allows one to determine the various lubricating regimes in a metal 

forming process. In this figure, h denotes the thickness of the lubricant film and their 

magnitudes are listed in Table 2.1 according to the regimes. In the first portion, where 

the viscosity of the lubricant and the relative velocity of the contacting surfaces are low 

and the interfacial pressure is high, boundary lubrication is observed, in which metal-to-

metal contact is predominant in addition to some lubricant-to-metal contact. Boundary 

lubrication is highly complex, and it involves chemical interactions between the 

contacting surfaces and the liquid lubricant. The lubrication mechanisms depend on the 

load-carrying capacity and limiting frictional temperature, and are controlled by the 

additives in the lubricant, leading to the formation of a low-friction tribofilm by 

physisorption and/or chemisorption (Kim et al., 2000). The transition between the 

elastohydrodynamic and boundary regimes is not sharp, and there exists a region, called 

the mixed lubrication regime, which consists of some elastohydrodynamic and some 

boundary lubrication. Elastohydrodynamic lubrication comes into effect where loads are 

high enough to cause elastic deformation of the surfaces, but speed and viscosity are not 

high enough to produce film thicknesses greater than about 0.25 μm. In this regime, the 

ability of the fluid to develop a lubricant film to support the load is directly related to 

the viscosity of the fluid and the relative speed (Hsu, 2004). The minimum film 

thickness in an elestohydrodynamic lubrication contact is a function of the applied load, 

surface speed and geometry, elasticity of the material and the viscosity and pressure–

viscosity coefficient of the lubricant (Höglund, 1999). Hydrodynamic lubrication is 

characterized by complete separation of the surfaces by a fluid film that is developed by 

the flow of the fluid through the contact region (Sathyan et al., 2009). 
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Figure 2.5. Stribeck/Hersey curve  

(Source: Sathyan et al., 2009) 
 

Table 2.1. Thickness of the lubricant film according to lubrication regimes 
(Source: Sathyan et al., 2009). 

Lubrication Regime h (μm) Deformation 

Hydrodynamic > 0.25 Negligible 

Elastohydrodynamic 0.025-0.25 Elastic 

Mixed 0.0025-0.025 Elastic 

Boundary ≈ 0.0025 Contact, elastic and plastic 

 

2.5. Mechanical-Dynamic Testing Methods for Lubrication 

 
Mechanical-dynamic lubricant testing has become an essential element in the 

development of modern lubricants. In this respect, standardized tribological, 

mechanical-dynamic testers and test methods play a decisive role in the development of 
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lubricants. These testers and test methods include small laboratory instruments and field 

tests under real conditions. The most important test methods, used worldwide by many 

laboratories, are ISO, CEC, ASTM, IP and DIN standards, listed in Table 2.2. The most 

common characterization tool is the tribometer having several configurations such as 

pin-on-disk, ball on flat, and flat on flat, etc. (Hu et al., 2002). 

The four ball geometry was first developed in 1933 and has become one of the 

most widely used wear test procedures. The diagram in Figure 2.6 explains the test 

principle. A roller bearing ball rotates under pressure and at a constant speed on three 

fixed steel balls of the same type in an oil bath or lubricated with a solid lubricant. The 

gradual increase in pressure enables the determination the weld loads, supplies key 

values concerning loadability, or enables the determination of the friction or start up 

behavior in relation to the lubricant. In other words, the test may be used to evaluate the 

friction, extreme pressure and wear-control ability of liquid lubricants or greases in 

sliding contact. The point contact interface is obtained by rotating a 12.7 mm diameter 

steel ball under load against three stationary steel balls immersed in the lubricant 

(Figure 2.6). During these tests, the surface of the ball surface will produce wear 

impressions and the measurements will lead to information on the effects of additives. 

The normal load, frictional force, and temperature can be monitored using software. The 

rotating speed, normal load, and temperature can be adjusted in accordance with 

published ASTM and IP test standards. For evaluating the wear preventive 

characteristics of lubricants, the subsequent wear scar diameters on the balls can be 

measured using a graduated-scale microscope. The wear scar can also be captured using 

an optional digital camera and measured using wear scar analysis software. For 

evaluating the extreme-pressure (load-carrying) capacity of lubricants, the normal load 

at which welding occurs at the contact interface can be recorded (Mang and Dresel, 

2001). 
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Table 2.2. Common model testers and test standards 
(Source: Mang and Dresel, 2001). 

Tester Application Test Method 
Standard test method for wear-preventive characteristics of lubricating fluids ASTM D 4172-88 

Standard test method for wear-preventive characteristics of lubricating grease ASTM D 2266-86 
Standard test method for determination of the friction coefficient of lubricants using the four-ball apparatus ASTM D 5183-95 

Standard test method for measurement of lubricating fluids-  four-ball method ASTM D 2783-88 
Standard test method for measurement of lubricating grease-  four-ball method ASTM D 2596-87 

Standard test method for determination of load carrying capacity and mean hertz load FTMS No 791 b 
Determination of extreme pressure and anti-wear properties of lubricants-four ball apparatus IP 239/85 

Standard test method for lubricants using the Shell four ball apparatus DIN 51350, part 1 
General principles DIN 51350, part 2 

Weld load of liquid lubricants DIN 51350, part 3 
Wear key values of liquid lubricants DIN 51350, part 4 

Weld load of solid lubricants DIN 51350, part 5 
Wear key values of liquid lubricants DIN 51350, part 6 

Four-ball apparatus 

Viscosity shear stability of transmission lubricants-taper roller bearing rig CEC L-45-T-98 
Testing under boundary lubricating conditions with the Brugger lubricant tester DIN 51347, part 1 Brugger test rig 

General principles DIN 51347, part 2 
Reichert friction wear tester Standard test method for determining the pressure compensation capacity VKIS No.6 

Almen Wieland oil tester Standard test method for determining the frictional behavior and pressure loadability 
Internal 

specifications 
Standard test method for the calibration and operation of the Falex block on ring friction and wear tester ASTM D 2714-94 

Standard test method for the extreme pressure properties of liquid lubricants ASTM D 3233-93 Falex tester 
Standard test method for measuring the wear properties of liquid lubricants ASTM D 2670-94 

Tannert slide indicator Standard test method for determining sliding behavior using the Tannert slide indicator DIN 51387, part 1 
Tribological test method using a linear oscillation tester E-DIN 51834, part1 Translatory oscillation 

apparatus Determination of measured friction and wear quantities for lubricating oils E-DIN 51834, part5 
Timken tester Standard test method for measuring the loadability of lubricating greases ASTM D 2509-86 
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Figure 2.6. Schematic diagram of the four ball wear machine 
(Source: Masjuki and Maleque, 1997). 

 

2.6. Lubricants 

 
Lubricants serve an important function in preserving machine components and 

extending machine operating lifetimes of contacts (Erdemir, 2000; Mazuyer et al., 

2001). They are the substances introduced between two moving surfaces to reduce the 

friction and wear between them. The most important function of lubricants is the 

reduction of friction and wear. A lubricant provides a protective film which allows for 

two touching surfaces to be separated, thus lessening the friction between them. 

Moreover, lubricants also perform the following key functions. 

 Keep moving parts apart 

 Transfer heat 

 Carry away contaminants and debris 

 Transmit power 

 Prevent corrosion. 

Mineral oil components continue to form the quantitatively most important 

foundation of lubricants. Petrochemical components and increasingly derivatives of 

natural and harvestable raw materials from the oleo-chemical industry are finding 

increasing acceptance because of their environmental capability and some technical 

advantages. Typically lubricants contain 90% base oil (most often petroleum fractions, 

called mineral oils) and less than 10% additives. Vegetable oils or synthetic liquids such 

as hydrogenated polyolefins, esters, silicone, fluorocarbons and many others are 
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sometimes used as base oils. Additives deliver reduced friction and wear, increased 

viscosity, improved viscosity index, resistance to corrosion and oxidation, aging or 

contamination, etc. The production of simple lubricants normally involves blending 

processes but specialties often require the use of chemical processes such as 

saponification (in the case of greases), esterification (when manufacturing ester base 

oils or additives) or amidation (when manufacturing components for metalworking 

lubricants). Further manufacturing processes include drying, filtration, homogenizing, 

dispersion or distillation (Mang and Dresel, 2001). Apart from the most common 

lubricant oils, different lubricant systems are used such as emulsions. Oil in water 

emulsions are central to water-miscible cutting fluids, rolling emulsions. In these cases, 

the concentrations of these emulsions with water are generally between 1 and 10%. The 

annual consumption of such emulsions in industrialized countries is about the same as 

all other lubricants together (Mang and Dresel, 2001). The next group of lubricants 

systems is water-in-oil emulsion (inverse emulsion). Their most important application is 

in metal forming. These products are supplied ready to use or as dilutable concentrates. 

Grease is one of the most important semi-solid lubricants used in tribosystems. It is 

thickened oil (basic oil).Greases are two phase lubricants with complex structure and 

rheological characteristics (Zhou and Vincent, 1999). The thickeners used for greases 

are based on soaps or other organic and inorganic substances. Special equipment is 

required for their production (Mang and Dresel, 2001). Solid lubricant suspensions 

normally contain solid lubricants in stable suspension in a fluid such as water or oil. 

These products are often used in forging, extrusion and other metal working processes.  

Lubricants are generally composed of a majority of base oil and a minority of 

additives to impart desirable characteristics. Types of lubricants are divided into five 

different groups as indicated below; 

 Gas 

 Liquid (including emulsions and suspensions) 

 Solid 

 Greases 

 Adhesive 
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2.6.1. Gaseous Lubricants 

 
Gaseous lubricants have a much lower viscosity and higher compressibility 

compared to liquid lubricants, but the fluid-film principles apply analogous to gases. 

Some examples for gaseous lubricants are air, technical gases, steam or liquid-metal 

vapours. 

 

2.6.2. Liquid Lubricants 

 
Liquid lubricants may be characterized in many different ways. One of the most 

common ways is by the type of base oil used. Followings are the types of liquid 

lubricants. 

 Lanolin (wool grease, natural water repellent) 

 Water 

 Mineral oils 

 Vegetable (natural oil) 

 Synthetic oils 

 Other liquids. 

Lanolin : A natural water repellent, lanolin is derived from sheep wool grease, 

and is an alternative to the more common petro-chemical based lubricants. This 

lubricant is also a corrosion inhibitor, protecting against rust, salts and acids. 

Water: Water can be used on its own, or as a major component in combination 

with one of the other base oils. Commonly it is used in engineering processes such as 

milling. 

Mineral oil: This term is used to encompass lubricating base oil derived from 

crude oil. The American Petroleum Institute (API) designates several types of lubricant 

base oil identified as: Group I, Group II, Group III, Group IV and Group V. The sulphur 

content and the saturate amount are listed in Table 2.3.  
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Table 2.3. API Base Oil Categories  
(Source: Pulcu, 2008). 

Group Sulphur wt% Saturates % Common base oil 

I >0.03 <90 SN150, SN500 

II 0.03 90 Water-white color oil 

III 0.03 90 Synthetic lubricants 

IV   Polyalphaolefins (PAO) 

V   Pale oils and non-PAO 
synthetics 

 

There are three basic classes of refined mineral oils: 

 paraffinic oils, based on n-alkanes 

 naphthenic oils, based on cycloalkanes 

 aromatic oils, based on aromatic hydrocarbons. 

Vegetable (natural) oils: These are primarily triglyceride esters derived from 

plants and animals. For lubricant base oil use, the vegetable derived materials are 

preferred. Common ones include high oleic canola oil, castor oil, palm oil, sunflower 

seed oil and rapeseed oil from vegetable, and tall oil from animal sources. Many 

vegetable oils are often hydrolyzed to yield the acids which are subsequently combined 

selectively to form special synthetic esters. 

Synthetic Oils: These oils are polyalpha-olefin (PAO), synthetic esters, 

polyalkylene glycols (PAG), phosphate esters, Alkylated naphthalenes (AN), silicate 

esters, ionic fluids (Marsh and Kandil, 2002).  

 

2.6.3. Solid Lubricants 

 
Solid lubricants possess lamellar structure preventing direct contact between the 

sliding surfaces even at high loads. Graphite and molybdenum disulfide particles are 

common solid lubricants. Boron nitride, tungsten disulfide and polytetrafluorethylene 

(PTFE) are other solid lubricants. Solid lubricants are mainly used as additives to oils 
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and greases. Solid lubricants are also used in form of dry powder or as constituents of 

coatings (Donnet and Erdemir, 2004; Zhou and Vincent, 1999). 

 

2.6.4. Viscosity of Lubricants 

 
Viscosity is a measure of the internal friction of a fluid. It is the most important 

physical property of a fluid in the context of lubrication. The viscosity of a lubricant 

varies with temperature and pressure and, in some cases, with the rate at which it is 

sheared (Neale, 1995). For the parallel plate situation illustrated in Figure 2.7, 

coefficient of dynamic viscosity of the lubricant (μ) equals to the ratio of shear stress () 

to the gradient of velocity (U) as expressed in Equation 2.4.  

 

y
U



        (2.4) 

 
Figure 2.7. Lubricant film between parallel plates  

(Source: Neale, 1995). 
 

If the viscosity of a fluid is independent of its rate of shear, the fluid is said to be 

Newtonian. Information on the viscosity of oil fractions and their mixtures is of 

considerable importance for estimating transport properties in petroleum processing 

(Wakabayashi, 1997). In order to reduce the costs of crude oil production, the petroleum 

industry must anticipate crude oil properties and behavior. One of the main properties 

relevant to the choice of equipment and its sizing is viscosity. It is a characteristic 

property of fluids that allows measurement of the forces hindering movement or flow 

when a shear stress is applied. This property is influenced by external conditions such as 

temperature and pressure and internal characteristics of crudes. Measurement of 
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viscosity, modification of this property if needed and testing of oil field behavior can be 

performed by several methods:  

• simulation of production steps with small-scale oilfield equipment; 

• chemical and rheological tests in the laboratory; 

• modelling and prediction (Burg et al., 1997). 

It is found that the mineral lubricating oils and synthetic oils of low molecular 

weight are Newtonian under almost all practical working conditions, whereas greases 

are non-Newtonian.  

 

2.6.5. Market Research for Lubricants 

 
Lubricants today are classified in two major groups: 

 Automotive lubricants 

 Industrial lubricants 

Moreover industrial lubricants can be sub-divided into industrial oils and 

industrial specialties; ie., greases, metalworking lubricants, and solid lubricant films 

(Mang and Dresel, 2001). It is reported that there are about 180 multinational and 

national companies engaged in manufacturing lubricants in 2008 and China is the 

fastest growing lubricants market in the world and second largest market by volume is 

US (ResearchWikis, 2010). Figure 2.8 shows the lubricant demand by region in 2008 

(Klinegroup, 2010). In 2004, 37.4 million tons of lubricants were consumed worldwide 

(53% automotive lubricants, 32% industrial lubricants, including related specialties, 5% 

marine oils, and 10% process oils). Amongst industrial lubricants, 37% were hydraulic 

oils, 7% industrial gear oils, 31% other industrial oils, 16% metalworking fluids, and 

9% greases.  

World demand for lubricants is forecast to advance 2.3% per year to 41.7 

million metric tons at the end of 2010. Growth will be driven by increasing rates of 

motor vehicle ownership worldwide, and rising number of kilometers traveled per 

vehicle. Growth in worldwide manufacturing activity will boost the demand for 

industrial lubricants such as process oils and hydraulic fluids. Among major world 

regions, lubricant demand in the Asia/Pacific region is expected to grow at the fastest 

pace, with the market in China leading overall gains due to ongoing rapid 

industrialization as well as rising car ownership rates. Growth in the mature markets of 
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North America and Western Europe will be well below the global average, due to 

slower economic growth and an increased emphasis on extended drain intervals for 

lubricants. 
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Figure 2.8. Lubricant demand by region in 2008 

(Source: Klinegroup, 2009) 
 

2.6.6. Lubricating Oil Additives 

 
While lubricants for use in internal combustion engines may solely consist of 

one of the above-mentioned oil groups, it is not desirable in practice. Additives to 

reduce oxidation and improve lubrication are added to the final product. The main 

constituent of such lubricant product is called the base oil. While it is advantageous to 

have a high-grade base oil in a lubricant, proper selection of the lubricant additives is 

equally as important. The types of additives used for the preparation of lubricants are; 

 Extreme pressure (EP) additives 

 Anti-wear (AW) additives 

 Friction modifiers 

 Corrosion inhibitors 

 Anti-oxidants 

 Dispersants 

 Detergents 

 Anti-foaming agents 

 Pour point depressant. 
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The additives in lubricating oils tend to overpower the base oil to produce 

desirable characteristics. For these purposes many lubricant additives have been 

improved and their tribological properties are tested. The materials having antiwear and 

extreme pressure functions and used for the modification of the surfaces in the 

lubricating oils can be divided into three basic groups; 

 sulphur-, chlorine-, and phosphorous-containing compounds 

 boron-containing compounds (boric acid, metal borates) 

 zinc containing materials. 

Sulphur-, chlorine-, and phosphorous-containing compounds tend to be designed 

to react chemically with the metal surfaces, forming easily sheared layers of sulphides, 

chlorines or phoshides and thereby preventing severe wear and seizure. However, the 

use of these compounds used as lubricant additives has been restricted due to their 

significant negative impacts on environment. Therefore, developing new additives that 

pollute less has become the target for the researchers. Choundary and Pande, claimed 

that boron-containing lubricants have major tribological advantages, such as antiwear 

efficiency, good film strength, high temperature resistance, and self-lubricating 

properties (Choundary and Pande, 2006; Shen et al., 2000). Among the boron 

compounds, boric acid and boric acid in dry powder form are found as a potential 

environmentally solid lubricant for sliding metal contacts and it is revealed that the 

lubricity of conventional oils and greases can be improved by adding concentrates of 

boric acid. (Erdemir, 1995; Barton et al., 2004; Rao and Xie, 2006; Deshmukh et al., 

2006). Although boric acid ester is liable to hydrolyze, the results demonstrated that the 

friction coefficients were reduced by 10 to over 100% below those of the unmixed 

lubricant itself (Erdemir, 1995). Besides the boric acid, organic and inorganic borate-

based additives have been the focus of much attention, as they posses a good 

combination of properties, such as wear resistance, friction-reducing ability, oxidation 

inhibition, low toxicity, pleasant odor and compatibility with frictional pairs (Zheng et 

al., 1998). Antiwear and antifriction capabilities of metal borates, such as zinc borate, 

magnesium borate, and titanium borate were studied by many researchers (Dong and 

Hu, 1998; Hu et al., 2002; Hu and Dong, 1998). The main idea of the employment of 

borates in lubricating oils is explained as the formation of amorphous film on wear scar 

surface and the reaction of this film with the substrate due to extreme pressure as shown 

in Figure 2.9. Nanoparticle magnesium borate with a particle size of about 10 nm 

produced by ethanol supercritical fluid drying with adsorbing dispersing agent deposits 
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or adsorbs on wear scar surface at first, then forms an amorphous film due to the 

shearing effect. At the same time, the boron containing antiwear film reacts with the 

substrate due to extreme pressure effect. Tribological reactions occurred in the surface 

(Hu et al., 2002). 

 

 
Figure 2.9. A diagram of antiwear mechanism of the magnesium borate 

(Source: Hu et al., 2002). 
 

Besides boron containing materials, zinc containing materials, especially zinc 

oxides, are used as lubricant additive (Wang et al., 2009; Battez et al., 2008). Battez et 

al., examined the antiwear behavior of CuO, ZnO, and ZrO2 nanoparticles in a 

polyalphaolefin (PAO 6) by a block-on-ring tribometer. 20-50 nm diameter 

nanoparticles have been tested as lubricating oil additive and the friction coefficient is 

reduced for the lubricant containing ZnO suspensions (Battez et al., 2008). Another 

study performed by the same researchers disclosed the antiwear behavior of ester based 

dispersing agent (OL 300) in polyalphaolefin (PAO6). Figure 2.10 shows the antiwear 

properties of a number of lubricants including OL300 and/or ZnO suspensions. Wear 

scar diameters using these lubricants were smaller than those obtained with base oil 

(PAO6). However, when 0.3% ZnO nanoparticles were added to PAO6 + 1% OL300 

and PAO6 + 1.5% OL300 lubricants, wear scar diameter increased. In contrast, adding 

0.3% of ZnO in PAO6 + 3% OL300 failed to change the wear scar diameter. The results 

proved that ester based dispersing agent OL300 had an antiwear ability (Battez et al., 

2006).  



 23 

 
Figure 2.10. Results of anti-wear tests of PAO6 + OL300 + ZnO suspensions 

(Source: Battez et al., 2006). 
 

Among these additives nano-sized particles are promising materials for 

lubrication since they offer a better understanding of the interfacial properties of fluid-

solid interfaces. The tribological properties of the nanoparticles as lubricant additives 

are studied and the results show that the addition of the nanoparticles can be used as 

anti-wear and extreme pressure additives with excellent performances since the 

dispersion stability of nanoparticles in base oil is superior to micron particles in 

lubrication systems (Li et al., 2006). A variety of mechanisms has been proposed to 

explain the lubrication enhancement of the nanoparticles suspended in lubricating oil. 

The first is the direct effect of the nanoparticles on lubrication enhancement. The 

nanoparticles suspended in lubricating oil play the role of ball bearings between the 

friction surfaces (Figure 2.11a). In addition, they also make a protective film to some 

extent by coating the rough friction surfaces (Figure 2.11b). The others, mending and 

polishing effects are the secondary effects of the presence of nanoparticles on surface 

enhancement. The nanoparticles deposit on the friction surface and compensate for the 

loss of mass, which is known as mending effect (Figure 2.11c). Furthermore, the 

roughness of the lubricating surface is also reduced by nanoparticle-assisted abrasion, 

which is known as a polishing effect (Figure 2.11d) (Lee et al., 2009). 
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   (a)     (b) 

         
   (c)     (d) 

 
Figure 2.11. Possible lubrication mechanism between the frictional surfaces a) Rolling 

effect b) protective film, c) Mending effect d) Polishing effect (Source: 

Lee et al., 2009).  

 

Wasilewski and Sulek (2006) have chosen paraffin mixtures of sorbitan 

monolaurate and ethoxylated sorbitan monolaurate as lubricant additive since they are 

environment-friendly. Tribological tests of the lubricants are performed using a four-

ball tester and friction coefficients for mixtures of sorbitan monolaurate and ethoxylated 

sorbitan monolaurate in paraffin oil were evaluated. Figure 2.12 indicates the change in 

friction coefficient values with respect to time. 

 

 
Figure 2.12. Friction coefficient vs. time for paraffin oil and for paraffin oil containing 1 

% mixture of sorbitan monolaurate and ethoxylated sorbitan monolaurate 
(Source: Wasilewski and Sulek, 2006). 

 
The base oil containing additive shows stable friction coefficient with increasing 

time. Therefore introduction of the mixture containing ester and its ethoxylated sorbitan 
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monolaurate into the base oil significantly influences the motion of resistance due to 

their strong interaction with surfaces and formation of ordered structures (Wasilewski 

and Sulek, 2006). Moreover, it was reported that ester compounds behave as corrosion 

inhibitors in lubricating oil (Schick, 1966). 

Besides the organic particles, inorganic materials are also used as antiwear 

additive in base oil. Serpentine which describes a common rock-forming hydrous 

magnesium iron phyllosilicate ((Mg,Fe)6Si4O10(OH)8) minerals proves to be an 

effective additive which enhances the tribological properties of the base oil. Yu and 

coworkers tested the tribological properties of diesel engine oil suspended serpentine 

particles having 1m particle size by sliding friction tribotester. Wear resistance ability 

of the oils including different amounts of serpentine particles for various applied loads 

are shown in Figure 2.13.  

 
Figure 2.13. Wear rate of disk specimens under the lubrication of oil with and without 

serpentine particles (Source: Yu et al., 2010). 
 

As presented in Figure 2.13, wear of disk specimens under the lubrication of oil 

with and without serpentine particles increases with increasing the load, accordingly. 

The addition of serpentine particles into the oil decreases the wear of steel. The addition 

of 1.5 wt% serpentine to oil is found most efficient in reducing wear (Yu et al., 2010) 
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CHAPTER 3 

 

BORON COMPOUNDS AS LUBRICATING  

OIL ADDITIVES 

 
Boron-containing compounds, such as boric acid, boric oxide, and other organic 

and inorganic borates have been used for lubrication purposes since they have major 

tribological advantages such as antiwear efficiency, good film strength, friction 

reducing ability, high temperature resistance. Table 3.1. summarizes the studies in 

literature dealing with the addition of boron-based compounds into the  various base 

oils. The tribological tests are generally carried out by four-ball tester to exhibit the 

wear and friction property of the lubricants. All the additives including boron element 

show considerable behavior to reduce the friction coefficient and improve the wear 

property. The typical reasons why boron element shows excellent tribological properties 

are listed as below; 

 It is an electron-deficient non-metallic element 

 It has a layered crystal structure 

 It has a small atomic diameter (1-1.5 Å) 

 It has a high affinity for oxygen 

 It has a vacant p-orbital. 

In this part of the study, the tribological behaviors of boron-based materials are 

explained in detail and the literature of the studies related to the employment of boron 

compounds into the base oil is reviewed. 
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Table 3.1. Studies related to employment of boron based additives in base oil. 

Boron 
Based 

Additives 
Base Oil Dispersing 

Agent 
Type of 

Tribometer Results Reference 

Borate ester Rapeseed  
oil - Four ball 

Friction 
coefficient is 

decreased 

Li et al., 
2010 

Hexagonal 
boron nitride 

Transformer 
oil - KEWAT-6 

Friction 
coefficient is 

decreased 

Pawlak et 
al., 2009 

Magnesium 
borate  

(120-180 
nm) 

Mobilube 
gear - Wear tester 

Wear 
resistance is 

improved 
Friction 

coefficient is 
decreased 

Zeng et al., 
2008 

Barium 
borate  

(20 nm) 
Base oil - Wear tester 

Wear 
resistance is 

improved 
Friction 

coefficient is 
decreased 

Liu et al., 
2008 

Sodium 
borate Water - Four ball 

Poor wear 
performance  

Friction 
coefficient is 

decreased 

Chen et al., 
2008 

Zinc borate 
(50-500 nm) Base oil - Pin-on-disc 

Friction 
coefficient is 

decreased 

Tian et al., 
2006 

Boric acid 
(100 m) 

Transmissio
n oil - Pin-on-disc 

Wear 
resistance is 

improved 

Deshmukh 
et al., 2006 

N-modified 
borate 

(20-500nm) 

Liquid 
paraffin - Four ball 

Wear 
resistance is 

improved 
Friction 

coefficient is 
decreased 

Qiao et al., 
2003 

Magnesium 
borate  

(10 nm) 
500 SN Sorbitol 

monostearate Four ball 

Wear 
resistance is 

improved 
Friction 

coefficient is 
decreased 

Hu et al., 
2002 

 

         (cont. on next page) 
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Table 3.1. (cont.). 

Lanthanum 
borate  

(20-40 nm) 
500 SN Sorbitol 

monostearate Four ball 
Wear resistance 

is improved 
 

Hu et al., 
2000 

Hexagonal 
boron 
nitride 

Mineral oil - Ring-on-
roller  

Eliminate  
fluctuation of 

friction 
coefficient 

Kimura et 
al., 1999 

Zinc borate 
(20-50 nm) 500 SN Sorbitol 

monostearate Four ball 

Wear resistance 
is improved 

Friction 
coefficient is 

decreased 

Dong and 
Hu, 1998 

Titanium 
borate  

(10-70 nm) 
500 SN Sorbitol 

monostearate Four ball 

Wear resistance 
is improved 

Friction 
coefficient is 

decreased 

Hu and 
Dong, 1998 

 

3.1. Hexagonal Boron Nitride 

 
Hexagonal boron nitride (h-BN) has captured attention as a solid lubricant for 

general use due to its easy shearing along the basal plane of the hexagonal crystal 

structure. Many studies in literature indicate the excellent lubricating property of this 

material and they claim that it show very low friction coefficient and slow wear rate 

(Pawlak et al., 2009; Shi et al., 2008; Wood et al., 2005; Kimura et al., 1999).  This 

material  is constructed from layers consisting of a flat or nearly flat network of B3N3 

hexagons and the layers stacked one over the other along the [0 0 1] direction. 

Hexagonal nitride powder produced by spray drying technique is shown in Figure 3.1. 

HBO3, Na2B4O7 and (NH2)2CO were used as raw materials. The crystals had plate-like 

shapes, where the (002) atomic planes of the hexagonal structure of BN align paralleled 

to the particle’s major flat surface. Mean particle sizes of the fully crystallized powders 

could be estimated in the following ranges, 100–400 nm in diameter, and 30–90nm in 

thickness (Shi et al.,2008). Kimura et al. (1999) describes the behavior of hexagonal 

boron nitride when added to oil. A paraffinic mineral oil was used in this study and 

friction with respect to sliding distance was determined by a ring-on-roller tribometer.  

Figure 3.2 shows the examples of friction traces. The addition of 2 wt% hexagonal 
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boron nitride to the oil eliminated the fluctuation of friction coefficient which occurred 

as a result of the poor boundary lubrication and markedly lowered the stationary value 

of friction coefficient. 

 

Figure 3.1. FESEM micrographs of h-BN powder  
(Source: Shi et al., 2008). 
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(a)      (b) 

Figure 3.2. Friction traces of a) lubricated with oil b) lubricated with oil including 2 wt 
% h-BN (Source: Kimura et al., 1999). 

 

3.2. Boric Acid 

 
Boric Acid (H3BO3) is one of the most popular solid lubricants and has excellent 

lubrication properties without calling for expensive disposal techniques. The most 

important characteristics of boric acid for use as a lubricant are that it is readily 

available and environmentally safe. Several studies related to the lubrication properties 
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of boric acid are carried out over the past several decades (Damera and Pasam, 2008; 

Erdemir, 2008; Jallad et al., 2002). These works have primarily focused on the 

performance of boric acid and indicated that boric acid’s unique layered inter-crystalline 

structure made it a very promising solid lubricant material because of its relatively high 

load carrying capacity and low steady state friction coefficient (0.02). In addition, boric 

acid was found to help in reducing friction and corrosion when mixed with cutting and 

grinding fluids during machining processes. However, boric acid alone was found as an 

ineffective lubricant particularly when considering wear. Deshmukh et al. (2006) 

measured the boric acid performance as a lubricant by pin-on disk apparatus. The 

experiments were performed at room temperature and the worn surface of the pin was 

investigated by SEM. Figure 3.3 exhibits the worn surfaces of the pin without a 

lubricant, with boric acid lubricant and transmission fluid including boric acid. The 

boric acid crystal size was 100 m.  The wear volume of the pin were evaluated as 

0.01338, 3.7246, and 0.0033 (mm3) for unlubricated, lubricated with boric acid and 

lubricated transmission oil including boric acid, respectively. The poor wear 

performance of boric acid as a lubricant could be attributed to the fact that without 

replenishment, the boric acid was quickly forced out of the contact interface. 

 

3.3. Borates 

 
In addition the employment of boric acid in lubricating oils, metal borates that 

are extraordinary ceramic and functional materials find in use as an antiwear and 

anticorrosion material (Zeng et al., 2008; Hu et al., 2002; Hu and Dong, 1998; Dong 

and Hu, 1998). Zeng and his colleagues (2008) synthesized single crystalline 

magnesium borate (Mg2B2O5) nanowires with typical diameter of 120-180 nm and 

length about 0.2 mm and they examined its tribological properties by means of friction 

reducing ability. The synthesized nanowires were added to gear lubricant oil and 

lubricating property was tested by terminal face friction apparatus. Figure 3.4 shows the 

effect of magnesium borate nanowires on the friction coefficient of lubricating oil. It 

can be seen that the friction coefficients of the base oil and the oil containing the 

Mg2B2O5 nanowires become larger with the increase of the load. The oil containing 

Mg2B2O5 nanowires gets a smaller friction coefficient than the base oil under the same 

load. The oil containing 5.0 wt% Mg2B2O5 nanowires has the smallest friction 



 31 

coefficient, which indicates that the increase of the content of Mg2B2O5 nanowires in 

the oil can further reduce the friction coefficient.  

In lubrication industry, the lubricants can be water based, therefore water is used 

instead of oil products. Metal borates also have potential use in that kind of products. 

Chen et al. (2008) obtained the wear and friction performances of sodium and 

potassium borates (Na2B4O710H2O and K2B4O75H2O) in water. The antiwear and 

friction properties of the additives were evaluated by four ball tribotester. The 

experimental condition and the results were tabulated in Table 3.2. When sodium borate 

or potassium borates were introduced into water, friction-reducing capacity of water 

was improved, whereas, anti-wear capacity was decreased. The friction reducing ability 

of potassium borate was higher than the sodium borate.  

 

        
   (a)      (b) 

 
(c) 

Figure 3.3. SEM images of the worn surfaces of the pin a) without lubrication b) 
lubricated with boric acid c) lubricated with transmission oil having boric 
acid (Source: Deshmukh et al., 2006). 

 



 32 

 

Figure 3.4. Effect of magnesium borate nanowires on the friction coefficient of 
lubricating oil a) base oil, b) oil containing 1.0 wt.% Mg2B2O5 nanowires 
and c) oil containing 5.0 wt.% Mg2B2O5 nanowires (Source: Zeng et al., 
2008). 

 
Table 3.2. Friction and wear behaviors of borates  

(Source: Chen et al., 2008). 
 

Additive Concentration 
Load 

(N) 

Test Duration 

(min) 

Wear Scar 

Diameter 

(mm) 

Average 

friction 

coefficient 

Distilled water - 59 10 0.46 0.583 

Na2B4O710H2O 2 137 10 0.63 0.463 

K2B4O75H2O 2 137 10 0.59 0.451 

 

Qiao et al. (2003) synthesized N-modified nano/micrometer borate as an oil 

additive by an ultrasonic dispersion and emulsion reaction in the microemulsion phase. 

The tribological properties of N-modified nano/micrometer borate particles 20-50 nm in 

diameter were analyzed by a four-ball tester. It was demonstrated that these borate 

particles decrease the wear scar diameter and when the additive concentration was 0.05 

wt %, minimum wear scar diameter was obtained. Figure 3.5 explains the change in 

wear scar diameter by increasing the additive concentration. 
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Figure 3.5. Effect of concentration of additive on antiwear properties 

(Source: Qiao et al., 2003). 
 

Nowadays, tribological studies related to the engineering surfaces at scales 

ranging from atomic and molecular to microscales are gaining importance to understand 

the lubrication theory and predict some of the many challenging problems in the 

fundamental research of tribology. The development of surface force apparatus (SFA), 

scanning tunneling microscope (STM), atomic force microscope (AFM) and friction 

force microscope (FFM) provides the nanotribological and nanomechanic studies 

needed to find out interfacial phenomena on a small scale and surface interactions 

(Bhushan, 2005; Bhushan, 1999). Surface topography is a key factor affecting the 

function and reliability of a component and the characterization of surface topography 

has become increasingly important in many fields, such as tribology and machine 

condition monitoring. Li and his colleagues synthesized a novel borate ester derivative 

containing benzothiazol-2-yl and disulfide (BTSB) and they examined its tribological 

properties in rapeseed oil by a four-ball tribometer. In order to analyze the morphology 

of the worn surfaces and the extent of the wear, AFM was used and 3D surface 

topographies were obtained as shown in Figure 3.6. It was observed that there were 

more scratches and deeper furrows on the wear scar obtained from the test lubricated by 

rapeseed oil alone than that of rapeseed oil containing 1.5 wt% BTSB additives, which 

indicated that BTSB additives possessed good antiwear ability (Li et al., 2010). 
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(a) (b) 

Figure 3.6. 3D plot of the worn surface lubricated with a) rapeseed oil alone b) rapeseed  
oil containing 1.5 wt% BTSB additives under 392 N (Source: Li et al., 
2010). 

 
Tribological properties of SN 500 base oil containing different types of metal 

borates prepared by ethanol supercritical fluid drying were investigated (Hu and Dong, 

1998; Dong and Hu, 1998; Hu et al., 1999; Hu et al., 2002). The lubricants were 

prepared by adding 0.757 wt % metal borate and 1 wt.% sorbitol monostearate. The 

content of these lubricants, and their tribologic property are given in Table 3.3. The 

wear scar diameters of the worn surfaces were determined by four-ball tribotester under 

294 N. The wear scar diameter of the ball running in base oil was evidently larger than 

that running in the oil with nano-sized metal borates. However, the dispersing agent 

effect on the wear scar diameter was not tested therefore it was not clear to understand 

the antiwear ability of metal borates. Larger wear scar diameter was obtained when zinc 

borate nanoparticles were added to the base oil. Besides them, it was observed that the 

wear scar diameter was reduced by decreasing the particle size of the metal borates, 

accordingly.  

Friction coefficient of the lubricants described in Table 3.3 were measured by a 

HQ-1 block-on-ring tribotester in which the ring was a quenched CrWMn steel ring (Cr: 

0.9–1.2 wt%, C: 0.9–1.05 wt%, W: 1.2–1.6 wt%, Mn: 0.8–1.1 wt%, Si: 0.15–0.35 wt%) 

of 49 mm diameter, 13 mm height, 62 HRC hardness and a surface roughness of 

Ra=0.27 mm, which was rotating against 45 steel block (12.64 mm in breadth) with a 

hardness of 44.8 HRC and a surface roughness of Ra = 0.35 mm. The rotating speed of 

the ring was 1500 rpm; in other words, the friction velocity was 3.85 m/s. It was found 

that oil with nano-sized metal borates gave a smaller friction coefficient than base oil 

(Figure 3.7).  
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Table 3.3. The properties of the lubricants containing metal borates 
(Source: Hu et al., 2000; Hu et al., 1999; Dong and Hu, 1998) 

 

Additive 
Particle 

size (nm) 

Amount of 

additive in base 

oil (wt. %) 

Wear 

Scar Diameter 

(mm) 

Reference 

- - - 0.69 Hu et al., 1999 

Magnesium borate 10 0.757 0.43 Hu et al., 2002 

Lanthanum borate 20-40 0.757 0.46 Hu et al., 2000 

Titanium borate 10-70 0.757 0.48 Hu et al., 1999 

Zinc borate 20-50 0.757 0.62 Dong et al., 1998 

 

       
    (a)      (b) 

Figure 3.7. Effect of a)nano-sized zinc borate b) nano-sized titanium borate on friction 
coefficient of oil (Source: Dong and Hu, 1998; Hu and Dong, 1998). 

 

The enhancement of the wear resistance and load carrying capacity of 500 SN 

base oil by metal borates is explained by the tribochemical reaction formed on the 

surface. Hu and his coworkers (2000) claimed that diboron trioxide and FeB were 

formed on the wear scar surface. These tribochemical reaction products as well as some 

depositions of the metal borate formed a wear resistant film on the rubbing surface, 

which provided the oil with an excellent load carrying capacity. A schematic diagram of 

the wear resistance mechanisms is given in Figure 3.8. First of all, nanoparticle metal 

borate with adsorbing dispersing agent is deposited on the rubbing surface. Then, 

diboron trioxide is formed by the decomposition of the metal borate due to shear effect 
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and extreme-pressure effect. Finally FeB is produced by a further tribochemical reaction 

between the diboron trioxide and substrate iron. These depositions and the 

tribochemical reaction products form a wear resistance film on the rubbing surface, 

which provides the oil with an excellent load carrying capacity. 

 

 
Figure 3.8. Schematic diagram of the wear resistance mechanisms of the lanthanum 

borate (Source: Hu et al., 2000). 

 

The crystal and hydrophobic zinc borate (2B6O11.3H2O) was prepared by a wet 

method using Na2B4O710H2O and ZnSO47H2O as raw materials in situ aqueous 

solution, and oleic acid was used as the modifying agent. TEM images demonstrate that 

the surfactant has an effect on the shape of zinc borate particles as shown in Figure 3.9. 

Pure zinc borate without surfactant presented polyhedral shape with particle size of 

around 50-500 nm, while hydrophobic zinc borate had disc-like shape. The diameters of 

the nanodiscs were from 100 to 500 nm. It was observed that the morphologies 

transform from irregular to regular, indicating that oleic acid adjusted the shape of the 

particles (Tian et al., 2006). The friction coefficient of the base oil with zinc borate 

nanodiscs was measured with MMU-10G pin-on-disc tester, in comparison to the base 

oil and the base oil with the addition of pure zinc borate powder. The results of their 

friction test are shown in Figure 3.10. 
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    a      b 

Figure 3.9. a) TEM image of pure zinc borate particles b) SEM image of the 
hydrophobic zinc borate nanodiscs (Source: Tian et al., 2006). 

 

 

Figure 3.10. Effect of zinc borate nanodiscs and pure zinc borate on friction coefficient 
of the base oil (Source: Tian et al., 2006). 

 

It can be seen that the base oil with zinc borate nanodiscs gives a smaller and more 

stable friction coefficient than the base oil and the base oil with pure zinc borate powder 

since pure zinc borate powder accumulates and cohers in the front of the leading face of 

a steel board and its size is larger, it is hardly dispersed in the base oil. However the 

hydrophobic zinc borate nanodiscs more easily penetrated into the interface of the base 

oil and formed a continuous film in concave of rubbing face, which could decrease 

shearing stress, therefore, gave a low friction coefficient (Tian et al., 2006). 
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CHAPTER 4 

 

EMULSIONS 

 
Emulsions are heterogeneous mixtures of at least one immiscible liquid 

dispersed in another in the form of droplets, the diameters of which are, in general, 

greater than 0.1 m (Myers, 1991). The dispersed liquid is present in the form of 

droplets in the continuous phase (Ulmeanu, 2008). Emulsions are divided into two 

types, water-in-oil and oil-in-water (Ichikawa, 2007). Water-in oil systems (o/w) are 

sometimes called as normal emulsion. Important oil-in-water food emulsions, ones in 

which oil or fat is the dispersed phase and water is the continuous phase, include milk, 

cream, ice cream, salad dressings, cake batters, flavor emulsions, meat emulsions, and 

cream liquors. However, it is also possible to form an inverse or water in oil (w/o) 

emulsion. In an inverse emulsion, the water droplets are dispersed in a continuous phase 

of oil. Many medicinal creams and butter are water in oil emulsions. Schematic 

diagrams of normal emulsion (oil-in-water) and inverse emulsion (water-in oil) are 

given in Figure 4.1. Emulsions are inherently unstable because free energy is associated 

with the interface between the two phases. As the interfacial area increases, either 

through a decrease in particle size or the addition of more dispersed phase material, i.e. 

higher fat, more energy is needed to keep the emulsion from coalescing. Some 

molecules act as surface active agents (called surfactants or emulsifiers) and can reduce 

this energy needed to keep these phases apart (Rosen, 1989). In literature qualitative 

theory behind the emulsion formation is explained on the basis of difference in contact 

angles at the oil-water-emulsifier boundary as shown in Figure 4.2. If oil contact angle 

(measured in the oil phase) at the contact between oil, water, and emulsifier () is less 

than 90°, then the oil surface is concave toward the water, producing a water-in-oil 

emulsion (Figure 4.2a). The emulsifier is more hydrophobic than hydrophilic for this 

case. On the other hand, the water contact angle at the same contact is less than 90°, and 

then the water surface is concave toward the oil, forming an oil-in-water emulsion 

(Figure 4.2b). Therefore, the emulsifier is more hydrophilic than hydrophobic (Rosen, 

1989). 
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    (a)     (b) 

Figure 4.1. Schematic diagram of a) normal emulsion b) inverse emulsion. 
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Figure 4.2. Effect of contact angle on emulsion type  
(Source: Rosen, 1989). 

 

4.1. Emulsifiers and Stabilizers for Emulsions 

 
There are four general classes of materials that can act as emulsifiers and/or 

stabilizers for emulsions. They are common ionic materials, colloidal solids, polymers 

and surfactants. The surfactants adsorb at interfaces, lower the interfacial tension, and 

impose a stabilizing barrier between emulsion drops. Surfactant molecule is formed by 

two parts with different affinities for the solvents. One of them has affinity for water 

(polar solvents) and the other for oil (non-polar solvents) as shown in Figure 4.3a. The 

surfactant molecules are formed by the agglomeration of micelles. A typical micelle in 

aqueous solution forms an aggregate with the hydrophilic head regions in contact with 

surrounding solvent, and the hydrophobic tail regions are in the micelle centre. This 

type of micelle is known as a normal phase micelle (oil-in-water micelle). Inverse 

micelles have the headgroups at the centre with the tails extending out (water-in-oil 

micelle). Figures 4.3b and 4.3c show oil-in-water micelle and water-in-oil micelle, 

respectively. In other words, micelles are like drops of oil in water and reverse micelles 
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are like drops of water in oil. They are approximately spherical in shape. Other phases, 

including shapes such as ellipsoids, cylinders, and bilayers are also possible. The shape 

and size of a micelle are the functions of the molecular geometry of its surfactant 

molecules and solution conditions such as surfactant concentration, temperature, pH, 

and ionic strength (Schick and Fawkers, 1966). 

 

 
         (a) 

     
    ….(b)     ..(c)    

Figure 4.3. The schematic illustration of a) a surfactant b) normal phase micelle c) 
inverse phase micelle. 

 
There are four main types of surfactants used in laundry and cleaning products. 

Depending on the type of the charge of the head, a surfactant belongs to the anionic, 

cationic, non-ionic or amphoteric/zwitterionic family. For anionic surfactants, the head 

is negatively charged. This is the most widely used type of surfactant for laundering, 

dishwashing liquids and shampoos because of its excellent cleaning properties. The 

surfactant is particularly good at keeping the dirt away from fabrics, and removing 

residues of fabric softener from fabrics. The most commonly used anionic surfactants 

are alkyl sulphates, alkyl ethoxylate sulphates and soaps. In solution, the head of 
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cationic surfactants is positively charged. Noninonic surfactants do not have an 

electrical charge, which makes them resistant to water hardness deactivation. The most 

commonly used non-ionic surfactants are ethers of fatty alcohols and sorbitan esters. 

Sorbitan fatty acid ester surfactants are effective reducers of interfacial tension. At the 

oil-water interface the hydrocarbon chains of sorbitan monostearate molecule orientate 

the oil and the sorbitan ring to the aqueous side of the interface. The properties of 

sorbitan monoester surfactants (sorbitan monolaurate, sorbitan monopalmitate, sorbitan 

monostearate and sorbitan monooleate) at air-water and oil-water interfaces were 

studied (Korhonen et al., 2004; Peltonen et al., 2001; Peltonen et al., 2000). The surface 

pressure-molecular area curves of sorbitan monoesters are given in Figure 4.4. In 

comparisons of surface pressure–molecular area curves of Span 60 (saturated) and 80 

(unsaturated), the molecular area of Span 80 is larger than that of Span 60. When stearic 

and oleic acids are compared (Span 60 is a sorbitan ester of stearic acid and Span 80 a 

sorbitan ester of oleic acid), the surface pressure–molecular area curves behave in the 

same way, the molecular area of stearic acid being smaller at the same surface pressure 

compared to that of oleic acid (Peltonen et al., 2000). Figure 4.5. shows the plot of the 

interfacial tension of sorbitan ester surfactants versus their bulk-phase concentrations in 

n-haptane at the water-n-heptane interface. From the interfacial tension measurements 

the following values were calculated: critical micelle concentration (cmc) which were 

the concentration at which micellization started, the interfacial tension at the cmc (cmc), 

surface pressure at the cmc (cmc), area per molecule at the cmc (Acmc). These values 

evaluated for sorbitan monostearate in different alkane solvent are listed in Table 4.1. 

The cmc value increased slightly when the length of the hydrocarbon chain decreased 

(Peltonen et al., 2001). Furthermore, it was obtained that sorbitan monoester surfactants 

had no effect on the interfacial tension of n-hexane against air and the surface tension of 

mineral oil against air did not change after the addition of the sorbitan monoester 

surfactants (Peltonen et al., 2000). This phenomenon was explained by the fact that in 

the absence of a hydrophilic phase there was no driving force for interfacial adsorption 

and multilayer formation.  
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Figure 4.4. The surface pressure-molecular area curves of sorbitan monoesters (T= 

295K) (Source: Peltonen et al., 2000). 

 

 
Figure 4.5. The interfacial tension (mN/m) vs concentration (mol/L) of sorbitan 

monoesters at the water–heptane interface (Source: Peltonen et al., 2001). 
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Table 4.1. Cmc (mol/L), cmc (mN/m), cmc (mN/m), and Acmc (A2) values at the 
different oil phases for sorbitan monoesters (Source: Peltonen, 2001). 

 Pentane Hexane Heptane Octane Nonane Decane Dodecane 
cmc (10-5 

mol/L) 1.6 1.7 1.7 1.8 1.8 1.8 1.9 

cmc (mN/m) 14.4 18.9 19.3 19.8 20.1 21.2 22.4 

cmc (mN/m) 34.0 31.9 31.9 31.9 31.9 31.2 30.5 

Acmc (A2) 38.0 38.0 33.0 31.0 28.0 27.0 30.0 
 

A related rule concerning surfactant structure and the type of emulsion formed is 

related to the solubility of the surfactant in the two liquids. The rule states that the liquid 

in which the surfactant is most soluble will be continuous phase in the final emulsion. 

For example, if the surfactant is more soluble in the oil phase a water-in-oil emulsion 

will result (Myers, 1991). On the other hand hydrophile-lipophile balance (HLB) 

number classifies the surfactants according to their chemical structure by using numbers 

in between 0 and 20 on an arbitrary scale. At the high end of the scale (8-18) lie 

hydrophilic surfactants which posses high water solubility and generally act as good 

aqueous solubilizing agents, detergents and stabilizers for oil-in-water emulsions, 

whereas at the low end (3-6) are surfactants with low water solubility which act as 

solubilizers of waters in oils and good water-in-oil emulsion stabilizers. For noninonic 

surfactants HLB may be calculated from the formula; 

 

HLB=20(1-S/A) (3.1) 

 

where S is the saponification number of the ester and A is the acid number of the acid. 

The HLB value of nonionic surfactant sorbitan monostearate is reported as 4.7, 

indicating a good water-in-oil stabilizer (Myers, 1991).  

 

4.2. Emulsion Preparation 

 
Besides the importance of surfactant type and its concentration, the energy 

needed to produce the droplets play an important role in the formation of emulsion. 

High-speed stirrers and high-pressure homogenizers are preferred to prepare the 



 44 

emulsions (Porras et al., 2008). A water-in-oil emulsion is prepared by homogenizing an 

oil phase and an aqueous phase together in the presence of a suitable oil-soluble 

emulsifier (low HLB number) (Surh et al., 2007). One of the main problems in the 

preparation of the emulsions is the mixing of oil and water phases. Jafari and his 

colleagues have examined the techniques of emulsification in four different groups as; 

 Rotor-stator system 

 High-pressure system 

 Ultrasonic system 

 Membrane system (Jafari et al., 2008). 

The reason for using different emulsification techniques is to produce emulsion 

droplets as small as possible in order to obtain stable systems. Coarse emulsion having 

droplet size between 0.5-100m can be obtained by using rotor-stator system whereas, 

nanoemulsions can be prepared by high pressure system. In a high pressure 

homogenizer, the dispersed and continuous phases are subjected to intense turbulence 

and shear by the conversion of pressure to kinetic energy, thereby leading to breakup of 

the dispersed phase into small droplets. Collisions brought about by the relative motion 

of the droplets lead to their coalescence. The drop size distribution of the emulsion is 

influenced by the rates of breakage and coalescence in the homogenizer during 

emulsion formation  

Jafari et al. (2008) have studied the comparison of different emulsifying devices 

in terms of emulsion droplet size. As it can be seen in Figure 4.6, normal mixer (IKA) 

gives the biggest emulsion droplet size since the forces in this case are shear stresses in 

Laminar flow and it can not cause adequate droplet disruption. Rotor stator system 

(Silverson) is much better than the mixer and it produce 1m emulsion droplet. The 

other emulsification systems, microfluidizer and ultrasound, droplets as small as 500 nm 

are produced. 
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Figure 4.6. Emulsion droplet size distribution for different emulsification method 

(Source: Jafari et al., 2008). 

 

4.3 Emulsion Stability 

 
The term stability is used for practical applications, usually refers to the 

resistance of emulsions to the coalescence of their dispersed droplets. In literature, it is 

indicated that the stability may be sustained by the activation energy much higher than 

the thermodynamic energy difference (Fukishima et al., 2009). The aggregation of 

droplets and the coalescence cause the separation of emulsions into two phases. The rate 

of the coalescence of the droplets in the emulsion depends on a number of factors: 

 The physical nature of interfacial film 

 The existence of an electrical and steric barrier on the droplets 

 The viscosity of the continuous phase 

 The size distribution of the droplets 

 The phase volume ratio 

 The temperature (Rosen, 1989; Elwell et al., 2004).  

The prediction of emulsion stability is very important since it effects the 

formulation, quality control and the technical service of the products (metal working 

fluids, lubricants etc.). There are two mechanisms to achieve emulsion stability; 

electrostatical stabilization and sterical stabilization as shown in Figure 4.7. In many 

oil-in-water emulsions both electrostatic and steric forces play roles in the stability of 
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the emulsions, whereas, a water-in-oil emulsion can be mainly stabilized by the steric 

mechanism because of the low dielectric medium of the continuous oil phase. 

Moreover, it was reported that the emulsions containing nonionic polymeric surfactants, 

the system is stabilized by steric mechanism (Zhao, 2006). 

 

            
    (a)      (b) 

Figure 4.7. Illustration of emulsion stability mechanisms a) Electrostatically stabilized 
b) Sterically stabilized (Source: Zhao, 2006). 

 

4.4. Microemulsions 

 

Depending on the emulsion droplet size, emulsions can be divided into micro 

(10-100 nm), mini (100-1000 nm), and macro (0.5-100 m) emulsions (Jafari et al., 

2008; Zhao et al., 2006; Windhab et al., 2005). Microemulsions were first introduced by 

an English chemist J.H. Schulman in 1950, and he converted the turbid unstable 

emulsions to optically transparent and thermodynamically stable mixtures by adding 

alcohol and called the system as microemulsion. Therefore, the term microemulsion is 

applied to thermodynamically stable systems prepared by emulsifying an oil in aqueous 

surfactant and then adding a fourth component, called a cosurfactant, generally an 

alcohol of intermediate chain length (Palla and Shah, 1999; Lu and Guo, 2009). 

Benzene, water, potassium oleate, and hexanol might be the components of typical 

microemulsion formulation. Light scattering and an assortment of other techniques 

reveal that the resulting system consists of either oil-in-water or water-in-oil dispersions 

with particles having diameters in the 10-100 nm size range (Hiemenz and Rajagopalan, 

1997). The most significant advantages of microemulsion method in the production of 

nanoparticles are better size distribution of particles and the controlling of the shape of 
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particles (Tai and Chen, 2008; Qiu et al., 1999). However, the utilization of great 

amount of surfactant and co-surfactant increases the preparation cost. 

 

4.5. Synthesis of Nano-Sized Particles by Microemulsion 

 
Microemulsion has become important in the synthesis of nanoparticles. 

Synthesis of particles in microemulsion systems can be carried out inside the emulsion 

droplets which act as micro/nano reactors (KeLong et al., 2007). Many researchers have 

studied the synthesis of metal, organic and inorganic nanoparticles in microemulsion 

systems (Capek, 2004; Shi and Weweij, 2005; Zhang et al., 2007, Tai and Chen, 2008, 

Öncül et al., 2008; Adityawarman, 2007) as shown in Table 4.2. The advantages of the 

utilization of microemulsion system in the particle synthesis lie in the fact of the 

controlling the particle size and shape. Also the microemulsion method requires no 

extreme pressure- temperature control, and no special or expensive equipment. Figure 

4.8 illustrates possible qualitative structures that can be formed in the composition 

triangle of the ternary mixture water/oil/surfactant. According to this illustration the 

microstructures can be divided into two main groups. The first one is characterized by 

roughly spherical objects such as micelles and nanodroplets, whereas the second one is 

the aggregates having one, two and three dimensions (Adityawarman, 2007).  

In literature the particles synthesis in microemulsions are achieved by two 

different methods. The first method is called as one-microemulsion method and the 

reaction is carried out by directly adding the aqueous solutions of raw materials into 

single microemulsion. If the reaction is initiated by implementing a triggering agent 

such as pulse radiolysis and laser photolysis into the single microemulsion, it is called 

as energy-triggering one-microemulsion method. The one-microemulsion method is 

driven by the diffusion-based process since the second aqueous solution of the reactant 

diffuses into the droplets containing the first reactant in microemulsion system. The 

second method is called as two-microemulsion method and is based on the mixing of 

two separate microemulsions prepared by the aqueous solutions of the raw materials 

(Adityawarman, 2007). This method relies on fusion-fission events between the 

droplets. The schematic illustrations of these methods are shown in Figure 4.9. 
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Table 4.2. Studies related to synthesis of particles in inverse microemulsions. 

Particle Oil Phase Aqueous  
phase Surfactant Co-

surfactant Reference 

Zinc borate Kerosene 
Na2B4O710H2O 

ZnSO47H2O 
H3BO3 

Span 80 Propanol-2 Köytepe et al., 
2009 

CaAl12O19 Hexane 
Ca(NO3)3∙4H2O 
Al(NO3)3∙9H2O 

 

Poly 
(oxyethylene

) 
nonylphenyl 

ether 

- Chandradass et 
al., 2009 

Copper 
oxide Isooctane CuCl2 

NaOH AOT - Nassar and 
Husein, 2007 

Al2O3 Hexane 
Al (NO3)39H2O 

NH3H2O 
 

Triton X-100 n-buthyl 
alcohol 

Ke-Long et al., 
2007 

BaSO4 Hexane BaCl2 
K2SO4 

Marlipal 
O13/40  Adityawarman 

et al., 2005 

Cu Hexane 
CuSO4 
NaBH4 

 

Sodium 
dodecyl 
sulfate 

isopenthanol Qiu et al., 1999 

ZrO2 n-heptane C8H12O8Zr 
NH3 

Span 40 
Span 80 
Span 85 

Arlacel 83 

- Lee et al., 1999 

 

In literature, various nano-sized inorganic particles such as calcium carbonate, 

barium sulphate, barium hydroxide, aluminum trioxide, zinc borate etc are synthesized 

using inverse microemulsion systems. Niemann and Sundmacher (2010) explained the 

particle formation in two-microemulsion system by three steps which are droplet 

exchange, nucleation and particle growth as shown in Figure 4.10. Droplet exchange 

starts after the mixing of the separate microemulsions. When mixing leads to the 

situation that both reactants appear in significant amounts inside one droplet, nucleation 

can occur. If further droplet exchanges provide new reactants to a droplet containing a 
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particle, this particle can grow. Also it is claimed that the surfactant monolayer protects 

the particles against agglomeration. 

 

 
Figure 4.8. Schematic diagram illustrating the phase behavior of an oil/water/surfactant 

system (Source: Adityawarman, 2007). 

 

     
(a) (b) 

Figure 4.9. Schematic illustrations of the methods of particle synthesis a) Energy 
triggering one-microemulsion method b) Two-microemulsion method 
(Source: Adityawarman, 2007 and Adityatarwan et al., 2005). 

 
Tai and Chen (2008), carried out the synthesis of CaCO3 with different shapes 

and sizes because of their corresponding potential applications. In order to control the 

morphology, habit and size of the particles, inverse microemulsion techniques having 

different  (water/surfactant molar ratio), S (water/oil molar ratio) and R (molar ratio of 

raw materials) were used. The synthesis of CaCO3 consisted of the reparation of two 

inverse microemulsions of CaCl2 and Na2CO3 solutions by mixing isooctane (oil phase), 
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sodium bis(2-ethylhexyl) sulfosuccinate (AOT) (surfactant), and a certain amount of 

aqueous CaCl2 and Na2CO3 solutions. Figure 4.11 indicates SEM images of calcium 

carbonate powders. For these samples, the concentrations of CaCl2 and Na2CO3 were 

0.05 M, and the reaction time was recorded as 30 min. Rod-like particles were 

synthesized when  and S values were adjusted as 15.96 and 3.16, respectively as 

shown in Figure 4.11a. However, spherical powders were obtained for lower  (11.30) 

and higher S (4.65) values as pointed out in Figure 4.11b. 

 

 
Figure 4.10. Particle formation mechanism in water in oil microemulsion 

(Source: Niemann and Sundmacher, 2010). 

 

    
   (a)     (b) 

Figure 4.11. SEM images of CaCO3 particles a) =15.96 S=3.16 b) =11.30 S=4.65 
(Source: Tai and Chen, 2008). 

 

Zinc borate (Zn2B6O113H2O) nanoparticles were prepared by precipitation in 

microemulsion. Microemulsions were prepared by dispersing aqueous phases (boric 

acid, borax decahydrate and zinc sulphate) in continuous oil phase (kerosene) and the 
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stabilization is achieved using Span 80 (sorbitan monooleate) as a surfactant and 

propanol-2 as a co-surfactant. Two microemulsions were mixed under constant stirring, 

allowing the reacting species to come in contact with each other due to dynamic nature 

of the dispersed droplets. The obtained nano-sized particles were characterized and 

XRD pattern of the zinc borate is given in Figure 4.12. The sharp peaks indicate the 

zinc borate particles are crystalline and all the diffraction peaks are consistent with the 

data of JCPDS files No. 21-1473. No characteristic peaks of impurities of the other 

unreacted compounds were observed (Köytepe et al., 2009). 

 

 
Figure 4.12. XRD of Zn2B6O113H2O powders. 

(Source: Köytepe et al., 2009). 

 

4.5.1. Effect of Co-Surfactant in Particle Synthesis in Microemulsion 

 
The formation of a microemulsion requires the presence of a cosurfactant and it 

is also known that addition of cosurfactant can reduce the surfactant concentration in 

microemulsion preparation (Lopez et al., 2004; Luo et al., 2004). In literature, especially 

low molecular weight alcohols, are used for this purpose. Their short hydrophobic chain 

and terminal hydroxyl group is known to enhance the interaction with surfactant 

monolayers at the interface, which can influence the curvature of the interface and 

internal energy. The amphiphilic nature of cosurfactants could also enable them to 

distribute between the aqueous and oil phases. The formation and various 
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physicochemical properties of the microemulsions are influenced by the alkyl chain 

length of alcohol and hydrocarbons (Bayrak, 2004). 

Nanoscale yttrium–barium–copper oxide (Y2BaCuO5) particles were synthesized 

using the emulsion method and the solution method. The basic water-in-oil (w/o) 

emulsion system consisted of n-octane (continuous oil phase), cetyltrimethylammonium 

bromide (cationic surfactant), butanol (cosurfactant) and water. The composition of the 

emulsion system was varied and characterized by measuring the conductivity of the 

solutions and droplet size. The droplet size of emulsion was determined by using the 

dynamic light scattering method (DLS). Without the addition of cosurfactant, no water 

in oil phase was observed, however, the conductivity decreases with the addition of co-

surfactant (butanol). Additionally, it is found that the sizes of droplets reduce due to the 

addition of the co-surfactant as shown in Figure 4.13. Droplet size initially decreases 

with addition of co-surfactant and reaches a limited value and the droplet size is 3.5 nm. 

The droplet size remains almost unchanged with further addition of cosurfactant (Li and 

Vipulanandan, 2007).  

 
Figure 4.13. Effect of co-surfactant concentration on the water droplet size 

(Source: Li and Vipulanandan, 2007). 
 

Charinpanitkul et al. (2005), indicate the effect of co-surfactant type on the size 

and the morphology of ZnS nanoparticles obtained by two microemulsion method. 

Three different alcohols were used as co-surfactant in the microemulsion system and the 

synthesized particles were compared with each other by means of their morphology as 

demonstrated in Figure 4.14. When n-hexanol was employed as a co-surfactant, ZnS 

nanoparticles were obtained as quantum dots with diameters less than 5 nm. These 

quantum dot particles could agglomerate to form secondary particles with larger 
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diameters of between 40–100 nm (Figure 4.14a). However, the utilization of n-pentanol 

might result in ZnS nanorods with some agglomerations as shown in Figure 4.14b. On 

the other hand, ZnS nanotubes with some quantum dot depositing on their surface could 

again be successfully grown when n-butanol was introduced as a cosurfactant in the 

system (Figure 4.14c). 

 

       
(a)    (b)  

 
     (c) 

Figure 4.14. TEM images of ZnS nanoparticles synthesized in microemulsions with a) 
n-hexanol b) n-pentanol c) n-butanol as cosurfactants (Source: 
Charinpenitkul et al., 2005). 
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4.6. Emulsion Lubrication 

 
Oil-in-water emulsions are commonly used in the manufacturing processes, 

particularly, in metalworking fluids such as rolling, cutting, ironing and grinding. The 

oil-in water emulsion systems in these processes are some advantages since they have; 

 Stability against creaming 

 Low cost 

 Fire resistance 

 Corrosion inhibition 

 Ability to remove heat 

 Hydrophobic surfactant film which protects the metal surface (Lu and 

Guo, 2009; Cambiella et al., 2006). 

Therefore, understanding of the tribology of emulsions is of principal 

importance to the application of the emulsions as lubricants (Januszkiewicz et al., 

2004). Yan and Kuroda (1997) have proposed two types of lubrication with emulsions. 

The illustrations related to lubrication are given in Figure 4.15. Figure 4.15a shows the 

thick film type and for this type, the diameters of droplets of the disperse phase are 

smaller than the minimum film thickness, so the droplets suspend in the continuous 

phase in the whole contact area. For the thin film type (Figure 4.15b), the diameters of 

the majority of droplets are larger than the minimum film thickness, thus the droplets 

deform and sandwiched between two solid surfaces at the thin film zone. 

 

 
(a) (b) 

Figure 4.15. The types of emulsion lubrication a) thick film type b) thin film type 
(Source: Yan and Kuroda, 1997). 
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Even though there are some studies dealing with the application of oil-in-water 

emulsion, there are few studies related to the employment of water-in-oil emulsions in 

lubrication processes according to our knowledge. 
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CHAPTER 5 

 

ZINC BORATE 

 
Zinc borates have been typically used as fire retardant additives, smoke and 

afterglow suppressants, char promoters, lubricating oil additives and nonlinear optical 

materials. There are major advantages in using zinc borate because of its high thermal 

stability, no toxicity and low cost (Schubert et al., 2003; Shi et al., 2008). Several 

unique crystalline zinc borates have been developed and are being used. The physical 

properties and the application areas of zinc borate are fundamentally related to its water 

content, size and morphology. The chemical formulations of the most important 

commercial products are 2ZnO∙3B2O3∙3.5H2O, ZnO∙B2O3∙2H2O, ZnO∙3B2O3∙7-7.5H2O, 

2ZnO∙3B2O3∙9H2O, 3ZnO∙2B2O3∙5H2O, ZnO∙B2O3∙1.5H2O, 4ZnO∙B2O3∙H2O, 

2ZnO∙3B2O3 (Gürhan et al., 2009). Extensive research has been carried out in the design 

and preparation of nanostructures with different shapes and sizes because of their 

corresponding novel properties and potential applications. In order to obtain a high 

performance, it is imperative that the morphology and size of the materials should be 

controlled. Even if there are various studies related to the zinc borate synthesis, 

unfortunately, there are few reports on nanosized zinc borate. Table 5.1 summarizes the 

studies related to the production of zinc borate. 

The production techniques of zinc borate generally include the reaction between 

zinc oxide and boric acid or the reaction between aqueous solution of alkali metal 

borate and a water soluble zinc salt (Eltepe et al., 2007; Nies et al., 1972).  
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Table 5.1. Studies related to zinc borate production 

Raw Materials Production Method Product Type Particle 
morphology Reference 

Zinc oxide 
Boric acid Precipitation 2ZnO3B2O33.5H2O Flake-like Li et al., 2010 

Zinc nitrate 
Borax Precipitation 4ZnO∙B2O3∙H2O Nanowhisker Zheng et al., 2009 

Zinc sulphate 
Boric acid Precipitation 2ZnO∙2B2O3∙3H2O Rhombohedral Liu et al., 2009 

Zinc sulphate 
Borax 

Boric acid 

Inverse 
microemulsion Zn2B6O11∙3H2O Undefined Köytepe et al., 2009 

Zinc Sulphate 
Borax 

PEG 300 

Surfactant-assisted 
Hydrothermal 4ZnO∙B2O3∙H2O Lamellar-like Shi et al., 2009 

Zinc oxide 
Zinc sulphate 

Borax 
Precipitation Zn2B6O11∙7H2O Undefined Gao et al., 2009a 

Zinc sulphate 
Borax 

Boric acid 
Precipitation Zn3B10O18∙14H2O Undefined Gao et al., 2009a 

Zinc oxide 
Boric acid Precipitation 2ZnO∙3B2O3∙3.5H2O Undefined Gürhan et al., 2009 

 

(cont. on next page) 
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Table 5.1. (cont.) 

Zinc nitrate 
Borax 

Homogeneous 
precipitation with 

ammonia 
2ZnO∙2.2B2O3∙3H2O Flake-like Ting et al., 2009 

Zinc Sulphate 
Borax Precipitation 4ZnO∙B2O3∙H2O Unidentified Gao et al., 2009b 

Zinc sulfate Borax 
Oleic acid Precipitation Zn2B6O11∙3H2O Nanoplatelet Tian et al., 2006, 

2008 
Zinc Sulphate 

Borax 
PEG 300 

Surfactant-assisted 
Hydrothermal 4ZnO∙B2O3∙H2O Rod-like 

Lamellar-like Shi et al., 2008 

Zinc oxide 
Boric acid 

Homogeneous 
precipitation 

ZnO∙0.3B2O3∙H2O 
ZnO∙0.4B2O3∙1.4H2O Fiber like Ting et al., 2008 

Zinc oxide 
Boric acid 

Rheological phase 
reaction 2ZnO∙3B2O3∙3H2O Plate like Shi et al., 2008 

Zinc oxide 
Boric acid Precipitation 2ZnO∙3B2O3∙3H2O Needle shape Eltepe et al., 2007. 

Zinc oxide 
Boric acid Precipitation 2ZnO∙3B2O3∙3H2O or 

Zn[B3O4(OH)3] 
Undefined Schubert et al., 2003 

Zinc nitrate 
Borax 

Precipitation 
Supercritical fluid 

drying 
Undefined Spherical Hu and Dong, 1998 

Zinc oxide 
Boric acid Precipitation 4ZnO∙B2O3∙H2O Undefined Schubert, 1995 
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5.1. Zinc Borate Production from Zinc Oxide and Boric Acid 

 
Zinc borate having a chemical formula (2ZnO3B2O33H2O) is one of the several 

types of zinc borates. This compound has the unusual property of retaining its water of 

hydration at temperatures up to 290 ◦C. This thermal stability makes it attractive as a 

fire retardant additive for plastics and rubbers that require high processing temperatures. 

It is also used as an anticorrosive pigment in coatings. Zinc borate is produced by 

reaction between aqueous boric acid and zinc oxide in the solid state above 70 oC (Shete 

et al., 2004). Eltepe et al. (2007) developed the synthesis of 2ZnO3B2O33H2O by using 

zinc oxide and boric acid. The synthesis was performed according to the reaction given 

in Equation 5.1. Firstly the boric acid was dissolved in pure water and then zinc oxide 

was added and also zinc borate seed crystals were used. The reaction was carried out in 

closed Schott bottles in two steps by stirring at 60 C for 1.5 h and 90 C for 4 h.  

 

2ZnO(s) + 6H3BO3 (aq)  2ZnO3B2O33H2O (s) + 6H2O  (5.1) 

 

Gao et al. (2009c) synthesized and characterized 2ZnO∙3B2O3∙3H2O by using 

zinc oxide and boric oxide as raw materials at 368 K for 5 days. The FTIR spectrum of 

sample exhibits the following absorption bands in Figure 5.1. The bands at 3204 cm–1 

and 3461 cm–1 are the stretching of O-H. The band at 2520 cm–1 is the O-H stretching 

because of hydrogen bond. The bands at 1249cm–1 and 1189cm–1 might be the in-plane 

bending of B-O-H. The bands at 1409 cm–1, 1299cm–1, and 953 cm–1 are the asymmetric 

and symmetric stretching of B(3)-O, respectively. The bands at 1114cm–1, 1067cm–1, 

860 cm–1 and 800 cm–1 are the asymmetric and symmetric stretching of B(4)-O 

respectively. Additionally, Eltepe and his colleagues (2007) reported that these 

stretching peaks of tetrahedral B(4)-O and trihedral borate groups B(3)-O at the same 

wavelength values. The bands at 745 cm–1 and 658 cm–1 are the out-of-plane bending 

mode of B(3)-O. The band at 546 cm–1 is the bending of B(3)-O and B(4)-O.  
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Figure 5.1. FTIR spectrum of 2ZnO∙3B2O3∙3H2O  

(Source: Gao et al., 2009c). 
 

Another recent study dealing with the synthesis of zinc borate was carried out by 

Li et al. (2010). They prepared hydrophobic nanoflakes having molecular formula of 

2ZnO3B2O33.5H2O by using boric acid and zinc oxide. Besides the raw materials, 

oleic acid was used as a modifying agent. Figure 5.2 implies the XRD pattern of 

hydrophobic zinc borate. All diffraction peaks were quite similar to those of bulk 

2ZnO3B2O33.5H2O. 

 

.  
Figure 5.2. XRD patterns of the hydrophobic zinc borate 

(Source: Li et al., 2010). 



 61 

 

Figure 5.3 demonstrates SEM images of the zinc borates without and with oleic 

acid as the modifying agent. The images showed that oleic acid did not affect the 

morphology and the size of the crystals. Despite that, irregular nanoflakes were formed 

for both cases (Li et al., 2010). 

 

    
   (a)      (b) 

Figure 5.3. SEM images of zinc borate a) without oleic acid b) with oleic acid 
(Source: Li et al., 2010). 

 

5.2. Zinc Borate Production from Zinc Salt and Borax 

 
Zinc borate can also be prepared by forming an aqueous solution of an alkali 

metal borate with a water-soluble zinc salt at least about 70 C. The zinc salt used in 

this process is water soluble, preferably an inorganic zinc salt, such as zinc sulphate, 

zinc bromide, zinc chloride, zinc nitrate etc. The alkali metal borate is generally sodium 

tetraborate, also known as borax (Na2B4O7) or potassium tetraborate (Nies et al., 1972). 

In nature, borax is found as tincal as a mineral and it can be obtained by flocculating 

and separating of impurities and clays from tincal ores.  

In order to prepare zinc borate by using borax and zinc salt, borax solution is 

firstly prepared by considering the solubility of the borax at the temperature of 70oC. 

Then aqueous solution of zinc salt at the same temperature is added into borax solution 

under vigorous mixing. The possible reactions related to the production of zinc borate 

from zinc salts (zinc sulphate and zinc nitrate) and borax decahydrate are shown below 

(Nies et al., 1972); 
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Na2B4O710H2O + ZnSO4  2ZnO3B2O37H2O + 2Na2SO4 + 2H3BO3  (5.2) 

Na2B4O710H2O + ZnSO4  2ZnO3B2O314H2O + 2Na2SO4 + 2H3BO3   (5.3) 

Na2B4O710H2O + ZnSO4  2ZnO3B2O33H2O + 2Na2SO4 + 2H3BO3 +4H2O  (5.4) 

2Na2B4O710H2O + 2Zn(NO3)26H2O  2ZnO3B2O33H2O 

+ 4NaNO3 + 2H3BO3 + 10H2O       (5.5) 

Na2B4O7 10H2O + Zn(NO3)26H2O ZnB4O710H2O + 2NaNO3   (5.6) 

 

As inorganic flame retardants, 4ZnO∙B2O3∙H2O offers significant advantages for 

compounding polymers requiring processing at high temperatures owing to its relatively 

high dehydration temperature (415 °C). However, it is reported that there are some 

difficulties in the employment of zinc borate in polymer matrix since the uniform 

dispersion behavior of the zinc borate powder is poor and it needs to be improved. Shi 

et al. (2009) tried to overcome this problem by using organic compound as templates to 

produce nanostructured materials. Besides the raw materials (zinc sulfate and borax 

decahydrate), polyethylene glycol-300 (PEG-300) was used as a surfactant. This 

surfactant was a non-ionic polymer and has hydrophilic –O- and hydrophobic –CH2-

CH2- on the long chains. The synthesized products in the absence and in the presence of 

PEG-300 are shown in Figure 5.4. The product formed in the absence of PEG-300 only 

consisted of irregular crystals in m range (Figure 5.4a). The effects of PEG-300 on the 

morphology of zinc borate are shown in Figures 5.4b and 5.4c. Leaf-like lamellar 

particles and nanorods were obtained at 90°C, whereas, rod-like nanoparticles were 

formed at higher temperatures.  

Same type zinc borate (4ZnO∙B2O3∙H2O) was produced via one-step 

precipitation reaction in aqueous solution of sodium borate (Na2B4O7∙10H2O) and zinc 

nitrate (Zn(NO3)2∙6H2O) with phosphate ester as the modifying agent. Figure 5.5 

exhibits a set of typical SEM images corresponding to the samples obtained from the 

solution with pH=8.0 at different reaction temperatures for 7 h. Irregular crystals were 

obtained in the absence of modifying agent at 70 °C (Figure 5.5a) and this result is 

consistent with literature (Shi et al., 2009). On the other hand, whiskers were the major 

products when the reaction was controlled with phosphate ester and at 60 °C (Figure 

5.5b) (Zheng et al., 2009).  
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   (a)     (b) 

 
(c) 

Figure 5.4. SEM images of zinc borate obtained at a)90 °C, without PEG-300, b)90 °C 
in the presence of PEG-300, c) 120 °C in the presence of PEG (Source: Shi 
et al., 2009). 

 
The surface characteristics of the zinc borate nanowhiskers materials were 

measured by a contact angle analyzer. Figure 5.6 presents the changes of the contact 

angle containing the unmodified products (without added phosphate ester) and the 

modified products (with added phosphate ester) from the low synthesis temperature to 

the high synthesis temperature. The pure products have the smallest contact angle 

(Figure 5.6d). When the synthesis temperature was enhanced from 30 °C to 70 °C 

(Figure 5.6a-c), the wettability of products was decreased. The reason of this result 

could be explained by the increase in contact angle with increasing temperature 

(Zimmerman et al., 2003). The biggest contact angle was 115.26° when the whiskers 

were synthesized at 70 °C for 7 h. From these results, it was deduced that the contact 

angle increased while the synthesis temperature increased. It was also proposed that the 

hydrophobic products could be easily combined with polymers (Zheng et al., 2009).  
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   (a)      (b) 

Figure 5.5. SEM images of samples prepared at pH = 8 for 7 h: (a) at 70 °C without 
phosphate ester; b) at 60 °C with phosphate ester (Source: Zheng et al., 
2009). 

 
Besides the other production techniques such as precipitation, microemulsion 

techniques, coordination homogenous precipitation method which is developed by Ting 

et al. (2009) was used for zinc borate synthesis. This method requires the employment 

of ammonia in reaction medium and it is relatively simple and inexpensive so that it has 

potential for application in industry. The key factor of the method is how to control the 

chemical reaction in solution and competitive balance. The authors summarize the 

mechanism of the precipitation method with ammonia as follows; firstly, zinc ions react 

with an appropriate coordination agent (ammonia) forming a complex solution. Then 

the complex dissociates to release the metal ions via changing the conditions of the 

solution such as concentration or temperature. Therefore zinc ions reach a certain 

amount which ensures the sedimentation of desired nanoparticles yielding and a 

precipitate is formed in the aqueous solution. A nano-flake-like zinc borate species 

2ZnO2.2 B2O33H2O were prepared for different mixing hours and the morphologies of 

the products are given in Figure 5.7. For 6 and 8 hours mixing periods the products have 

relatively unstable morphology as shown in Figure 5.7a and Figure 5.7b. However, 

when the reaction time prolonged the samples had stable crystals having sizes of around 

100-200 nm. In addition to morphology of the crystals, the functional groups of the 

products were investigated. IR spectra of the products are shown in Figure 5.8. 

According to the spectra, the characteristic peaks of B(3)-O and B(4)-O are observed at 

1343 cm-1 and 1078 cm-1, respectively. The crystal structures of the products were 

determined by XRD analysis and XRD pattern of the products are indicated in Figure 

5.9.  
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   (a)     (b) 

     
   (c)     (d) 

Figure 5.6. Contact angle of samples prepared at pH=8 for 7h: a) at 30 °C with 
phosphate ester; b) at 50 °C with phosphate ester; c) at 70 °C with 
phosphate ester and d) at 70 °C without phosphate ester (Source: Zheng et 
al., 2009). 
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(a)     (b) 

    
(c)     (d) 

Figure 5.7. TEM images of the products having a) 6 , b) 8, c) 12 and d) 15 hours mixing 
periods (Source: Ting et al., 2009). 

 

 

 
Figure 5.8. IR spectra of the products having a) 6 , b) 8, c) 12 and d) 15 hours mixing 

periods (Source: Ting et al., 2009). 
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Figure 5.9. XRD patterns of the products having a)6 , b)8, c)12 and d)15 hours mixing 

periods (Source: Ting et al., 2009). 

 
Amorphous structure is obtained for low mixing times (6 and 8 hours), whereas 

the structure becomes crystalline after 12 and 15 hours. Even tough the authors call the 

products as zinc borate, XRD pattern of the products does not reflect any type of zinc 

borate pointed out in JCPDS cards (Ting et al., 2009; Guan and Deng., 2007).  
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CHAPTER 6 

 

MATERIALS AND METHOD 

 
6.1. Materials  

 
In this study, zinc borate was produced by borax decahydrate (Na2B4O7∙10H2O) 

produced by Etibor (purity 99.9%) and zinc nitrate hexahydrate (Zn(NO3)2∙6H2O) 

(Sigma Aldrich) were used to produce zinc borate. Light neutral oil (SN 150) produced 

by Tüpraş A.Ş., and supplied by Petrofer Company was used as base oil for the 

preparation of inverse emulsions and lubricants. The typical properties of light neutral 

oil are tabulated in Table 6.1. 

 
Table 6.1. Physical properties of light neutral oil  

(Source: Tüpraş, 2010). 

Chemical Composition Hydrocarbon (C20-C50), 
heavy parafinic hydrotreated base oil 

Density @15 C (kg/m3) 0.86-0.89 

Viscosity @100 C (cSt) 5.0-5.7 

Pour point (C) -12 

Boiling point (C) 400-500 

 
Sorbitan monostearate (Span 60, Sigma Aldrich) (C24H46O6) was employed in 

inverse emulsions to stabilize the system and also it was used for the lubricants to 

disperse the inorganic particles in the base oil. In addition to sorbitan monostearate as a 

surfactant, propanol-2 (Merck) was introduced in microemulsions as a co-surfactant. 

Washing liquids to obtain zinc borate particles were methyl ethyl ketone (MEK) 

(Kimetsan), ethanol (Riedel-de Haën), propanol-2 (Merck) and distilled water. In order 

to form the lubricants, different types of zinc borate samples synthesized by different 
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raw materials were added to the mineral oil (Gönen, 2009; Gönen et al., 2009). 

Moreover, Firebrake zinc borate (2ZnO3B2O33.5H2O) was obtained from US Borax 

Inc. and added to mineral oil to understand its lubricating property. The other additives 

used to obtain better dispersion of inorganic particles in mineral oil were Viscobyk 5025 

and Disperbyk 1161 (BYK Chemie). Viscobyk 5025 is a volatile carboxylic acid 

derivative and it improves the wetting and dispersing properties of the materials 

whereas Disperbyk 1161 contains multifunctional deflocculating groups for wetting and 

stabilizing of inorganic solids in oils. The amount of Viscobyk and Disperbyk were 5 

wt% of zinc borate added to lubricants. In addition to boron based lubricants, 

clinoptilolite rich mineral was also used as an additive for the enhancement of 

tribological properties of the light neutral oil. The particle size of the purified 

clinoptilolite is nearly 5 m and it consists of 74.73% SiO2, 12.70 Al2O3, 0.73% Fe2O3, 

7.78 %K2O, 2.00% Na2O, 1.76% CaO and 0.28% MgO by weight. Clinoptilolite rich 

mineral obtained from mineral deposits located in Manisa Gördes region having 2-5 

mm particle size was also used to remove the water content of a lubricant prepared by 

inverse emulsion. The chemical composition of the water adsorber mainly contains 

65.19% SiO2, 12.94% Al2O3, 1.45% Fe2O3, 0.92% Na2O, 3.99% K2O, 1.99% CaO and 

1.39% MgO. 

PVC-zinc borate composite films were formed by using poly vinyl chloride 

(Petkim, PETVİNİL 38/74) and tetrahydrofurane (THF) (Merck) and zinc borates 

obtained by inverse emulsion technique.  

 

6.2. Method  

 
In this part of the study, preparation of inverse emulsions, synthesis of zinc 

borate, lubricant preparation and the characterization techniques used to determine the 

properties of obtained samples will be mentioned. 

 

6.2.1. Preparation of Control Inverse Emulsions  

 
Inverse emulsions were formed by light neutral oil, water and sorbitan 

monostearate. The surfactant amount in the control emulsions were changed between 

0.1-10 wt %. Firstly, the surfactant was dissolved in the oil and mixed with a magnetic 



 70 

stirrer at 70 C, secondly the water was added to oil and finally the emulsion was stirred 

for 2 hours. The mixing of the control emulsions, C1, C2, C3, C4 and C5 was achieved 

by magnetic stirrer, whereas the control emulsion C6 and C7 were mixed by both a 

rotor-stator homogenizer (OMNI GLH) and magnetic stirrer (Yellowline MSH Basic). 

The homogenizer had a variable speed (5000-30000 rpm) and it combined 700 Watt 

with a rotor-stator generator probe of 10 mm diameter. The mixing rates of 

homogenizer and magnetic stirrer were 13500 and 1000 rpm, respectively. The detailed 

preparation conditions of inverse emulsions are listed in Table 6.2. 

 

Table 6.2. The preparation conditions of control inverse emulsion.  

Sample H2O  
wt.% 

Span 60 
wt% 

Mixing 
temperature 

(°C) 

Mixing 
period Mixing 

C1 10 1 25 2h 
Magnetic 

stirrer 

C2 20 1 70 2h 
Magnetic 

stirrer 

C3 10 1 70 2h 
Magnetic 

stirrer 

C4 10 0.1 70 2h 
Magnetic 

stirrer 

C5 10 10 70 2h 
Magnetic 

stirrer 

C6 10 1 70 
10 min 

+ 
2h 

Homogenizer 
+ 

Magnetic 
stirrer 

C7 10 1 70 
2 min 

+ 
2h 

Homogenizer 
+ 

Magnetic 
stirrer 
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6.2.2. Preparation of Zinc Borate Inverse Emulsions by One 
Microemulsion Method 

 

One microemulsion method applied for zinc borate synthesis consisted of light 

neutral oil, non-ionic surfactant sorbitan monostearate and pure water in which borax 

decahydrate and zinc nitrate were dissolved. One water-in oil microemulsions 

containing different amounts of reactants in the aqueous phase were prepared. 1 M 

aqueous borax decahydrate and 1 M aqueous zinc nitrate solutions were added to 

mineral containing sorbitan monostearate at 70 C. The samples were heated at 70 C 

for 2 hours. Table 6.3 shows the amounts of starting materials (by volume) for 

producing the microemulsions and the mixing temperatures and periods. 100 cm3 light 

neutral oil was used for all the samples indicated in Table 6.3. The water content of the 

emulsions was removed by heating the samples at 160 C via water-oil separation 

apparatus in Figure 6.1. The products settled down at the bottom of Schott bottles were 

separated and the oily phase was removed by washing them with methyl ethyl ketone, 

ethanol and water. Then the samples were dried at 110 C in an oven for 2 hours and 

characterized. 

 

Table 6.3.The preparation conditions of inverse emulsions prepared by one 
microemulsion method 

Sample Span 60% 

Zinc 
nitrate 

solution 
% 

Borax 
solution% 

Mixing 
temperature 

(°C) 

Mixing 
period Mixing 

E1 1 5 5 70 2h Magnetic stirrer 

E1-1 1 5 5 160 2h  oil-water 
separation set-up 

E2 1 5 5 70 
2 min 

+ 
2h 

Homogenizer 
+ 

Magnetic stirrer 

E2-1 1 5 5 160 2h oil-water 
separation set-up 

E3 1 2.5 2.5 70 
2 min 

+ 
2h 

Homogenizer 
+ 

Magnetic stirrer 
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Figure 6.1. Water-oil separation apparatus  

 
6.2.3. Preparation of Zinc Borate Inverse Emulsions by Two 

Microemulsion Method 
 

Unlike the one microemulsion method, two microemulsions technique required 

the preparation of two separate inverse emulsions by borax decahydrate and zinc nitrate. 

Compositions of the emulsion system used for the synthesis of zinc borate particles are 

indicated in Table 6.4. 100 cm3 light neutral oil was used for each case. In order to 

obtain zinc borate particles in nano scale, the droplets of the inverse emulsions were 

tried to produce as small as possible. For this reason, different emulsification systems 

such as rotor stator homogenizer and ultrasonic systems were applied for the mixing of 

the inverse emulsions. SU-1 inverse emulsions were prepared by a magnetic stirrer 

(Yellowline MSH Basic) and the rate of mixing was 1000 rpm. After stirring the 

emulsions, both borax decahydrate and zinc nitrate emulsions were put in an ultrasonic 

bath (Everest) at 70 °C for 10 min to disperse particles in continuous phase. Final zinc 

borate emulsion was obtained by mixing these two emulsions and this final emulsion 

was mixed by a magnetic stirrer and ultrasonic bath for 2 hours and 10 min, 

respectively. A rotor-stator homogenizer (OMNI GLH) was used to prepare the SH-1 

inverse emulsions. In this case, the homogenizer was used instead of ultrasonic bath. 
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The final zinc borate emulsion was mixed by a homogenizer and a magnetic stirrer for 2 

minutes and 2 hours, respectively. Besides them, the cosurfactant, propanol-2 was 

employed to the two microemulsion system, and its concentration effect on the 

morphology and the structure of obtained particles were also investigated. The 

compositions of the inverse emulsions (SC-1, SC-2, SC-3 and SC-4) are tabulated in 

Table 6.4. For this case, the molarities of raw materials were decreased from 1 M to 0.1 

M to obtain more stable and transparent emulsions. Same mixing procedure was applied 

to these microemulsions as indicated for SH-1 emulsion. 

The stability of these emulsions was measured by using graduated cylinders 

having 50 cm3 volume. A simple ruler was sticked on the surface of the graduated 

cylinders to observe the height of precipitates. During 20 minutes, the height of the 

precipitate was reported to understand the settling of particles in continuous phase. 

 

.
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Table 6.4. Compositions of the two microemulsions system used for the synthesis of zinc borate particles 

Aqueous Phase 

Emulsion I Emulsion II Sample 

Na2B4O7∙10H2O 
(10 cm3) 

Zn(NO3)2∙6H2O 
(10 cm3) 

Mixing Type Mixing period Surfactant 
(g) 

Co-surfactant 
(cm3) 

SU-1 1 M 1 M 
Magnetic stirrer 

+ 
Ultrasonic bath 

2 h 
+ 

10 min 
1 - 

SH-1 1 M 1 M 
Homogenizer 

+ 
Magnetic stirrer 

2 min 
+ 

2 h 
1 - 

SC-1 0.1 M 0.1 M 
Homogenizer 

+ 
Magnetic stirrer 

2 min 
+ 
2h 

10 30.0 

SC-2 0.1 M 0.1 M 
Homogenizer 

+ 
Magnetic stirrer 

2 min 
+ 
2h 

10 51.5 

SC-3 0.1 M 0.1 M 
Homogenizer 

+ 
Magnetic stirrer 

2 min 
+ 
2h 

10 80.0 

SC-4 0.1 M 0.1 M 
Homogenizer 

+ 
Magnetic stirrer 

2 min 
+ 
2h 

10 102.2 
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6.2.4. Preparation of Zinc Borate by Precipitation Technique 

 
One of the oldest unit operations, precipitation technique was also used to 

synthesize zinc borate. Zinc borate, ZBS-1 was prepared by mixing equal volumes (50 

cm3) of borax decahydrate and zinc nitrate hexahydrate solutions having 1 mol /dm3 

concentration and 1g sorbitan monostearate was added to system as demonstrated in 

Table 6.5. It was mixed at 70 °C by homogenizer and magnetic stirrer for 2 minutes and 

2 hours, respectively. The separation of particles from the aqueous media was achieved 

by using a membrane separation unit, then, the particles were washed with 50 cm3 water 

for three times and they were dried at 110 °C for 2 h in air circulating oven. However, 

the other precipitations of zinc borate in the bulk phase, ZB-3, ZB-6, ZB-12, ZB-15, 

ZB-W-3, ZB-W-6, ZB-W-12, and ZB-W-15 were carried out by homogeneous 

precipitation method which was reported by Ting et al. 0.05 mol zinc nitrate was 

dissolved in 40 cm3 distilled water, then the solution obtained from 0.05 mol borax 

dissolved in 60 cm3 water at 45 °C was slowly poured into it with constant stirring to 

form a homogenous mixture, and then 25 cm3 concentrated ammonia (25 wt.%) was 

added into the system. When the sediment disappeared, the complex solution was added 

into 150 cm3 distilled water, and then the reaction was carried out in open beaker having 

8 cm diameter in water bath under magnetic stirring at 45 °C for 3, 6, 12 and 15h. When 

ammonia started to evaporate the samples, a large amount of white sediment was 

formed again. The precipitate was separated by centrifuge and rinsed with ethanol, then 

dried in a vacuum oven at 40 °C for 12 h. In order to examine the washing effect of 

water, the same samples were washed with water before ethanol (Ting et al., 2009). The 

preparation conditions of homogeneous precipitation method are listed in Table 6.5 and 

the flowchart related to the homogeneous precipitation method is given in Figure 6.2.  

 

 

 

 

 

 

 



 76 

 

Table 6.5. The preparation conditions of zinc borate synthesis in aqueous phase. 

Na2B4O7·10H2O 
Solution 

Zn(NO3)2·6H2O 
Solution Sample 

mol.dm-3 cm3 mol.dm-3 cm3 

Surfactant 
(1 g) 

Ammonia  
(7.20 mol/dm3, 

25cm3 ) 

Stirring 
time (h) 

ZBS-1 1 50 1 50 + - 2 

ZB-3 0.83 60 1.25 40 - + 3 

ZB-6 0.83 60 1.25 40 - + 6 

ZB-12 0.83 60 1.25 40 - + 12 

ZB-15 0.83 60 1.25 40 - + 15 

ZB-W-3* 0.83 60 1.25 40 -  
+ 3 

ZB-W-6* 0.83 60 1.25 40 - + 6 

ZB-W-12* 0.83 60 1.25 40 - + 12 

ZB-W-15* 0.83 60 1.25 40 - + 15 

      * Samples were washed with water and ethanol 
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9000 rpm for 10 min

Washing with ethanol
and water

Drying at 40 C 
for 12h
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0.05 mol
zinc nitrate
40 cm3 H2O
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ZnB4O7(s)

Sediment
disappear

Heating to evaporate
NH3 at 45 C 

for 3, 6,12, 15 h

25 cm3 25% NH3

150 cm3 H2O

Sediment appear
Centrifugation at 

9000 rpm for 10 min

Washing with ethanol
and water

Drying at 40 C 
for 12h

 
Figure 6.2. Flowchart of zinc borate production by homogeneous precipitation 

technique. 
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6.2.5. Preparation of Lubricants 

 
The lubricants except L16 and L17 were prepared via the following method, in 

which sorbitan monostearate was used as a surfactant. Firstly, the sorbitan monostearate 

was dissolved in mineral oil and heated up to 70 °C, secondly, the additives were 

dispersed in the mineral oil. The lubricants were mixed at 150 °C by homogenizer and 

magnetic stirrer for 2 minutes and 2 hours, respectively. The additives used for 100 cm3 

light neutral oil  are listed in Tables 6.6, 6.7, 6.8 and 6.9. As seen from these tables, the 

control lubricants are L1 and L2 which are light neutral oil and light neutral oil with 

surfactant. Commercial zinc borate, Firebrake 2335 (2ZnO3B2O33.5H2O) obtained 

from US Borax Inc was used to prepare L7 and L8 lubricants. Viscobyk and Disperbyk 

(BYK) were added into the lubricants L5, L7 and L8 with the surfactant in the initial 

step in order to obtain better dispersion behavior of inorganic particles. The details of 

the lubricants prepared by commercial zinc borate and other additives are tabulated in 

Table 6.6. The lubricants containing zinc borates prepared by different techniques and 

raw materials were formed as indicated in Table 6.7. L3, L4 lubricants were prepared by 

the zinc borate species synthesized by Gönen (Gönen, 2009), whereas ZBS-1 zinc 

borate which was formed in the presence of surfactant was added to mineral oil to 

obtain L6 lubricant. In order to expose the effect of surfactant concentration in the 

mineral oil on the tribological properties of the oil, the lubricants L11, L12 and L13 

were formed. The amount of the surfactants in L11, L12 and L13 were 1 g, 0.00005 g 

(which was below its critical micelle concentration) and 0.5 g for 100 cm3 light neutral 

oil, respectively. The details of the lubricants prepared by different amount of surfactant 

are shown in Table 6.8. Unlike the other lubricants, L16 and L17 lubricants were 

prepared by only removing water content of the inverse emulsion (E2M) to understand 

whether the synthesized zinc borate particles could directly be used in the emulsion or 

not. Since the water caused harmful effects for corrosion in lubrication systems, the 

water content was tried to remove by two ways, therefore two different emulsions were 

formed. For the first one, the water content was evaporated by heating up to 160 °C via 

water-oil separation apparatus as shown in Figure 6.1 to obtain L16 lubricant, and for 

the second one, 10 g clinoptilolite having 2-5 mm particle size was put in 20 cm3 

inverse emulsion to adsorb the residual water in the emulsion and the zeolites were 

separated from the emulsion after two days and the prepared emulsion was used as the 
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lubricant L17. Moreover, the precipitate (SC-2) which was formed by two 

microemulsion method containing 51.5 cm3 propanol-2 was also dispersed as an 

additive for mineral oil without using any surfactant (L14). The descriptions of 

lubricants prepared using inverse emulsions or the precipitates synthesized by 

emulsions are listed in Table 6.9 and 6.10.  Besides the boron-based additives, 

clinoptilolite rich minerals having average 5 m particle size. was also dispersed into 

the oil and hence L15 lubricant was obtained as presented in Table 6.10. 

 

Table 6.6. The additives of lubricants prepared by commercial zinc borate. 

Lubricant 
Code 

Span 60 
(g) Zinc Borate (g) Viscobyk 

(cm3) 
Disperbyk 

(cm3) 

L1 - - - - 

L2 1 - - - 

L5 1 1g Firebrake 
2335 - - 

L7 1 1g Firebrake 
2335 0.05 - 

L8 1 1g Firebrake 
2335 - 0.05 
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Table 6.7. The additives of lubricants prepared by different types of zinc borate 

Lubricant 
Code 

Zinc Borate 
(g) Explanation Zinc Borate Property 

L3 1g ZBC 

The B2O3/ZnO molar ratio of 2 and 4.7 mol.dm-3 
50 cm3 boric acid and stoichiometric amount of 
ZnO, dried by conventionally, particle size:2-4 

m 

L4 1g ZBE 

The B2O3/ZnO molar ratio of 2 and 4.7 mol.dm-3 
50 cm3 boric acid and stoichiometric amount of 
ZnO, dried by supercritical ethanol, particle size 

20-40 nm 

L6 1g ZBS-1 
1.0 mol.dm-3, 50 cm3 Na2B4O7∙10H2O, 

1.0mol.dm3, 50cm3 ZnN2O6∙6H2O and 1 g Span 
60 dried by conventionally, 

L9 1g ZB-W-6 

0.83 mol.dm-3 60 cm3 Na2B4O7∙10H2O, 1.25 
mol.dm-3 

40 cm3 ZnN2O6∙6H2O and 25 cm3 NH3, 6h 
mixing time 

L10 1g ZB-15 

0.83 mol.dm-3 60 cm3 Na2B4O7∙10H2O, 1.25 
mol.dm-3 

40 cm3 ZnN2O6∙6H2O and 25 cm3 NH3, 15h 
mixing time 

L11 1g ZB-W-12 

0.83 mol.dm-3 60 cm3 Na2B4O7∙10H2O, 1.25 
mol.dm-3 

40 cm3 ZnN2O6∙6H2O and 25 cm3 NH3, 12h 
mixing time 

 

Table 6.8. The additives of lubricants prepared by different surfactant concentration 

Lubricant 
Code 

Span 60 
(g) 

Zinc Borate 
(g) 

Explanation Zinc Borate 
Property 

L11 1 1g ZB-W-12 

0.83 mol.dm-3 60 cm3 
Na2B4O7∙10H2O, 1.25 mol.dm-3 

40 cm3 ZnN2O6∙6H2O and 25 
cm3 NH3, 12h mixing time 

L12 0.00005 1g ZB-W-12 

0.83 mol.dm-3 60 cm3 
Na2B4O7∙10H2O, 1.25 mol.dm-3 

40 cm3 ZnN2O6∙6H2O and 25 
cm3 NH3, 12h mixing time 

L13 0.1 1g ZB-W-12 

0.83 mol.dm-3 60 cm3 
Na2B4O7∙10H2O, 1.25 mol.dm-3 

40 cm3 ZnN2O6∙6H2O and 25 
cm3 NH3, 12h mixing time 
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Table 6.9. The additives of lubricants prepared by inverse emulsions 

Lubricant 
Code 

Light Neutral 
Oil (cm3) Span 60 (g) Inverse emulsion or precipitate (g) 

L14 100 - 0.5 g precipitate obtained by the microemulsion 
containing 51.5 cm3 co-surfactant 

L16 100 - 
Inverse emulsion having 5 wt% aqueous phase 

(E3) and heated up to 160 C 

  

Table 6.10. The additives of lubricants prepared using clinoptilolite rich minerals 

Lubricant 
Code 

Light 
Neutral Oil 

(cm3) 

Span 60 
(g) Inverse emulsion or clinoptilolite (g) 

L15 100 1 Clinoptilolite rich mineral (5 m) 

L17 100 1 
Inverse emulsion having 5 wt% aqueous phase 

(E3) and water content was removed by 
clinoptilolite rich mineral (2-5 mm) 

 

6.2.6. Preparation of PVC-Zinc Borate Composite Films 

 
In order to determine the particle size of zinc borate particles produced by 

inverse emulsion technique, emulsions or precipitates obtained from inverse emulsions 

were dispersed in PVC films by solvent casting. In the formation of PVC-zinc borate 

composite films, 1.2 g polyvinyl chloride (PVC) was dissolved in 30 cm3 

tetarahydrofurane (THF). The suspension was stirred for 4 h by magnetic stirrer. Then 

the films were obtained by adding zinc borate particles into the suspension. The 

compositions of the prepared films are tabulated in Table 6.11. The suspensions 

contained additives poured into the petri dishes to cast the films and they were waited 

for 24 h for evaporation of THF in a fume cupboard. 
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Table 6.11. The compositions of the prepared films 

Sample Additive Additive Amount 

F1 - - 

F2 Light neutral oil having 1wt% Span 60 0.1 cm3 

F3 Inverse emulsion heated up to 160 °C (E1-1) 0.1 cm3 

F4 The bottom precipitate of E1-1 0.1 g 

F5 Inverse emulsion heated up to 160 °C (E2-1) 0.1 cm3 

 

6.3. Characterization 

 
The physico-chemical properties of raw materials (borax decahydrate, zinc 

nitrate, sorbitan monostearate, light neutral oil) and the obtained zinc borate particles 

were identified by Fourier transform infrared spectroscopy (FTIR), Thermal gravimetric 

analysis (TGA), Differential scanning calorimeter (DSC), X-Ray diffraction (XRD), 

Scanning electron microscopy (SEM), elemental analysis (EDX) (Philips XL30 SFEG) 

and CHNS elemental analysis (Leco Corporation St. Joseph MI U.S.A). The zinc borate 

samples produced by precipitation technique were also characterized by analytical 

titration in order to determine boron and zinc contents. 

 

Fourier Transform Infrared Spectroscopy (FTIR) 

Fourier Transform Infrared Spectrometer (Shimadzu 8601) was used to 

determine chemical structure of the raw materials and products. Zinc borate-KBr pellets 

were prepared by mixing 4.0 mg of zinc borate and 196 mg of KBr in an agate mortar 

and pressing the mixture under 8 tons. The FTIR spectra of the liquid samples (light 

neutral oil, lubricants and the emulsions) were measured by dripping a drop on the 

surface of KBr pellets. FTIR analysis of the lubricants which were tested by four ball 

wear test was also performed to understand if the chemical structure of the samples 

were stable or not when they were exposed to four ball wear test. 
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Thermogravimetric Analysis (TGA) 

Thermogravimetric analyses (TGA) were carried out by using Shimadzu TGA-

51. The samples (10-15 mg) were loaded into an alumina pan and heated from room 

temperature to 600 °C at 10 °C.min-1 under N2 flow of 40 mL min-1. 

 

Differential Scanning Calorimetry (DSC) 

DSC was performed on a calorimeter (Shimadzu, DSC 50). The sample (5-10 

mg) was placed in an aluminum pan that was hermetically sealed. For conventional 

DSC measurements, samples were heated from room temperature to 600 °C at a rate of 

10 °C.min-1.  

 

X-Ray Powder Diffraction (XRD) 

XRD was carried out using a X-ray diffractometer (Philips Xpert-Pro). The 

incident CuK radiation at 45 kV and 40 mA with 1.54 Å was used in the analysis. The 

dried sample powders were prepared in a 0.5-mm thick holder. Diffraction patterns 

were used to determine the type of zinc borate samples as well as to understand whether 

the formed samples were amorphous or crystalline. 

 

Analytical Titration 

The B2O3 and ZnO contents of zinc borate samples were determined by 

analytical titration using 0.1 N NaOH and 0.01 mol.dm-3 EDTA, respectively.  

NaOH Solution, 0.1 mol.dm-3 NaOH solution was used in analytical titration to 

determine boric acid content of zinc borate after it was dissolved by 6 M HCl. 

EDTA Solution, 0.01 mol.dm-3 3.80 g of disodium dihydrogen 

ethylenediaminetetraacetate dehydrate was dissolved in 1 dm3 deionized water.  

Buffer Solution, pH 10: 70 g NH4Cl was dissolved in 325 cm3 H2O and 1135 cm3 (25 

wt %) ammonia solution was added and final solution diluted to 2 dm3 by deionized 

water.  

Indicators: Erichrome Black T indicator for Zn titration by EDTA, methyl red for HCl 

titration and phenolphthalein for B(OH)3 by NaOH. 

In the titration, firstly the samples prepared in aqueous phase was dissolved by 6 M HCl 

and completed to 100 cm3 by deionized H2O, secondly, 25 cm3 of that solution was used 

to determine the Zn content with EDTA titration in the presence of Erichrome Black T 
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indicator and a buffer solution of pH 10. Another 25 cm3 of that solution, that contains 

EDTA solution equivalent to zinc ions to prevent the precipitation of Zn with NaOH in 

the solution, was titrated by 0.1 N NaOH solution in the presence of methyl red till 

color changes from pale red to yellow. This first titration is attributed to the 

determination of free H+ ions released by HCl. Mannitol was then added to form a 

complex with boric acid releasing 1 mol H+ per 1 mol of boric acid  and the resulting 

solution was titrated with 0.1 N NaOH solution using phenolphthalein as an indicator 

until color of mixture changes from yellow to deep pink. All the titration experiments 

were performed twice to obtain reliable results. 

 

Particle Size Analysis 

Particle sizes of zinc borate samples were determined using by particle size 

analyzer (Malvern Mastersizer 2000). The samples were dispersed in water by 

sonication for a while, and also calgon surfactant (1 wt%) was added to the zinc borate 

samples washed with water to enhance the dispersion property of the particles. 

 

Optical Microscopy 

The prepared inverse emulsions and lubricants were characterized by optical 

microscopes (Olympus CX31, Olympus CH40 and Olympus BX60M) and the 

microphotographs were taken by a digital camera (Olympus DP25 and Camedia C-

4040). Olympus BX60M was a polarized microscope and the particles could be easily 

seen and the diameters of particles and droplets were evaluated by Olympus DP2-BSW 

program. Besides them, the effect of temperature on the morphology of emulsion was 

examined. C2 control emulsion and E1 zinc borate emulsion were heated up to 160 °C 

on the temperature controlled plate (INSTEC STC 200) and the microphotographs were 

taken at different temperatures. Additionally the worn surfaces of the balls used for 

four-ball tribotester were visualized by an optical microscope (Olympus CH40 and 

Olympus BX60M). The optical microphotographs were taken by a digital camera 

(Camedia C-4040). 

 

Tensiometer and Rheometer 

Surface tension of sorbitan monostearate was measured by KRÜSS digital 

tensiometer (K1OST) and the viscosities of the lubricants at 25 °C were determined by 

Brookfield programmable rheometer (Model DV-III).  
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UV Spectroscopy 

UV spectroscopy (Perkin Elmer Lambda 45) was carried out to obtain the color 

change of the lubricants when they were exposed to four ball wear tester. For all 

lubricant samples, the reference was pure mineral oil. 

 

Four-Ball Wear Test Machine 

Tribological characterization of the lubricants containing zinc borate species was 

performed by a four-ball wear test machine (made by Falex Corp.). Test balls were 

chrome alloy steel, made from AISI standard steel No. E-52100 with a diameter of 12.7 

mm. The test was performed according to ASTM D 4172-94 at 392 N and the test 

duration was 1h. The photographs of the balls and the whole machine are shown in 

Figure 6.3. These tribological tests were carried out at OPET Mineral Oil Factory.  

 

          
 (a) (b) 

Figure 6.3. a) Fixed balls of four-ball wear tester  b) Whole machine of four-ball tester. 

 

Profilometry 

The roughnesses of the worn surfaces were measured by a profilometry 

(Mitutoyo SJ 301). 

 

Cutting of fixed balls  

Fixed balls for samples L1, L2 and L10 were cut with a microcutter (Metkon 

Microcut Precision Cutter) for closer examination of worn surfaces by SEM, AFM and 

microhardness testing. The rotating velocity of the microcutter was 2000 rpm and water 

was used to cool the system. 

 



 86 

Scanning Electron Microscopy (SEM) 

SEM (Philips XL30 SFEG and Zeiss DSM 940) images were used to examine 

the morphology of the raw materials, zinc borate samples and the worn surfaces of the 

balls used in four-ball tribometer. Conductive double sided tape was used to fix the 

particles to the specimen holder before sputtering them with a thin layer of gold. 

However, chrome alloy steel balls were put on the specimen holder of SEM directly 

before the analysis. For L1, L2 and L 10 a closer examination was made. 

 

Microhardness Tester 

The indentation tests were performed to obtain the hardness of the wear surfaces 

of the balls using a digital microhardness tester (TIME HVS-1000). The load and the 

indentation time were 4.9 N and 20 sec, respectively. For each sample three points were 

measured and the average value was considered as the final hardness of the sample. 

 

Atomic Force Microscopy 

The worn surfaces of the balls were also characterized by Multimode Atomic 

Force Microscopy (Digital Instrument, Nanoscope IV). 

 

Commercial Lubricant BOR POWER Characterization 

Commercial lubricant BORPOWER was characterized, as well. In order to 

separate the particles from the oil, the sample was centrifuged and the precipitate was 

washed with methyl ethyl ketene, water and ethanol. The obtained particles were dried 

at 110 °C and they were identified by X-Ray diffraction (XRD), scanning electron 

microscope (SEM), fourier transform infrared spectroscopy (FTIR) as well as elemental 

analysis (EDX). Additionally, the oil was characterized by FTIR. 

 

PVC-Zinc Borate Composite Film Characterization 

The obtained PVC-zinc borate composite films were characterized by optical 

microscopy (Olympus) BX60M, SEM (Philips XL30 SFEG) and EDX (Philips XL30 

SFEG). The mapping of boron, carbon, and zinc elements on the film surfaces were 

achieved by energy dispersive spectrometry (EDX, Philips XL30 SFEG).  
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CHAPTER 7 

 

RESULTS AND DISCUSSION 

 
The results of this study are going to be introduced in four main sections: In the 

first part, the characterization of starting materials is going to be given in detail. In the 

second part, the results obtained from the zinc borate emulsions is going to be 

explained. In the third part, the characterization of zinc borate prepared by precipitation 

technique is going to be discussed, and finally the properties of lubricants are going to 

be shown in the final section.  

 

7.1.  Characterization of Raw Materials 

 
The characterization of raw materials is of great importance to understand the 

properties of the final products and to determine the structure as well as the morphology 

of the obtained particles. The characterization of borax decahydrate and zinc nitrate 

hexahydrate, light neutral oil, sorbitan monostearate was carried out by FTIR 

spectroscopy, thermal gravimetric analysis (TGA), scanning electron microscopy 

(SEM) and elemental analysis (EDX). 

 

Borax Decahydrate and Zinc Nitrate Hexahydrate:  

Figure 7.1 shows FTIR spectra of borax decahydrate and zinc nitrate 

hexahydrate that were used in the zinc borate production. The broad band at 3500 cm-1 

represents the OH groups in water of crystallization for borax decahydrate and zinc 

nitrate hexahydrate. FTIR spectrum of borax decahydrate in Figure 7.1, curve 1 

indicates OH groups’ coordination in borax structure and hydrogen bonding between 

OH groups at 3600-3200 cm-1. The bands at 1695 and 1650 cm-1 is assigned to the H-O-

H bending mode, which shows the sample containing water of crystallization. The 

bands at 1425-1360 cm-1 and 1000-950 cm-1 belong to the asymmetric and symmetric 

stretching vibrations of BO3 group, respectively. The band at 1161 cm-1 indicates the 

vibrations of in-plane bending of B-O-H. The bands at 1145-1045 cm-1 and  837-829 

cm-1 are assigned as the asymmetric and symmetric stretching of BO4 group, 
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respectively. The bands at 781-670 cm-1 are the out-of-plane bending of B-O-H. The 

band at 632 cm-1 is assigned to symmetric pulse vibration of triborate anion. The bands 

at 545 and 460 cm-1 are due to the bending of BO3 and BO4 groups, respectively (Jun et 

al., 1995). The typical asymmetric stretching (), symmetric stretching () of N-O are 

observed at 1390, 1360 cm-1 in Figure 7.1 curve 2. The band at 829 cm-1 belongs to 

asymmetric deformation () of nitrate structure (Biswick et al., 2007).  

SEM images of borax decahydrate are indicated in Figure 7.2. The crystal sizes 

of largest particles are nearly 500 m, whereas the smallest particles have 20 m crystal 

size. The small crystals were embeded on the surface of larger crystals.  

According to chemical formula of borax decahydrate, the weight% of B, O and 

Na elements are 11.31%, 71.35% and 12.07%, respectively. EDX elemental analysis 

was used to determine borax decahydrate composition and the results together with the 

theoretical compositions are listed in Table 7.1. It was revealed that the elemental 

composition obtained from EDX was consistent with those obtained theoretically.  
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Figure 7.1. FTIR spectra of 1) borax decahydrate and 2) zinc nitrate hexahydrate. 



 89 

    
   (a)      (b) 

Figure 7.2. SEM images of borax decahydrate a) 150x b) 1000x magnification. 

 

Table7.1. Chemical composition of borax decahydrate. 

Weight % 
Element 

EDX  Theoretical  

B 10.69 11.31 

O 70.76 71.35 

Na 18.55 18.55 

 

Light Neutral Oil and Sorbitan Monostearate 

FTIR spectra of light neutral oil and sorbitan monostearate are given in Figure 

7.3. FTIR spectrum of the sorbitan monostearate in Figure 7.3, curve 2 confirms all the 

characteristic peaks (at 2850, 2920, 1730, 1467 and 721 cm-1) of the emulsifier related 

to partially fatty acid ester of polyol. The peak at 1730 cm-1 is attributed to C=O of 

esters, whereas the band at 1467 cm-1 shows CH2 bending. On the other hand, FTIR 

spectrum of light neutral oil in Figure 7.3, curve 1 exhibits C-H stretching vibrations of 

hydrocarbons, C-H asymmetric and symmetric vibrations at 2930 and 2860 cm-1, 

respectively.  

Thermal behavior of light neutral oil and sorbitan monostearate determined by 

TGA are given in Figure 7.4. The onset temperature where the light neutral oil starts to 

loose its mass is 228 C, while the surfactant starts to loose its mass at 148 C.  
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For sorbitan monostearate, the endothermic peak at 50 °C is observed due to the 

melting of sorbitan monostearate and the heat of melting is evaluated as -3.50 J/g 

(Figure 7.5). 
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Figure 7.3. FTIR spectra of a) light neutral oil and b) sorbitan monostearate. 
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Figure 7.4. TGA thermogram of 1) light neutral oil 2) sorbitan monostearate. 
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Figure 7.5. DSC curve of sorbitan monostearate. 

 

The morphology of the emulsifier shows that the particles are spherical and they 

are one within the other. The particle size of the largest particle including the smaller 

ones is nearly 500 m. As demonstrated in Figure 7.6b, the wall thickness of the largest 

particle is nearly 20 m.  

 

    
(a) (b) 

Figure 7.6. SEM images of sorbitan monostearate a) 50x b) 1500x magnification. 
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Zinc Borate Additives Used for Lubricant Preparation 

The additives are vital constituents of most lubricant formulations that protect 

the equipment from wear and enable it to operate successfully under heavy loads. In this 

study, different types of zinc borate and clinoptilolite rich mineral were used as 

lubricating oil additives. Besides the zinc borates synthesized in the scope of this work, 

three different zinc borate species were dispersed into the base oil.  

The morphology of these zinc borates are displayed in Figure 7.7. Zinc borate 

particles synthesized by precipitation technique using boric acid and zinc oxide as 

starting materials are in the shape of prism and the diameters of the particles are in the 

range of micro scale (Figure 7.7a). When these particles dried by supercritical ethanol, 

the particle size decreases and both rod-like and broccoli type species are observed 

(Figure 7.7b). SEM image of commercial product (Firebrake 2335) exhibits that the 

nano-sized particles agglomerate (Figure 7.7c) (Gönen, 2009).  

Particle size distribution of zinc borate produced at 90 °C using boric acid and 

zinc oxide is shown in Figure 7.8. It has a bimodal distribution, smaller percent of 

particles has particle diameter lower than 1.0 m and greater percent has particle 

diameter greater than 6 m and volume-weighted mean diameter was found as 5.8 m. 

 

Clinoptilolite Rich Mineral Used for Lubricant Preparation 

The two reasons for the employment of clinoptilolite rich minerals in this study 

are related to the enhancement of tribological properties of mineral oil and the water 

adsorbance property of zeolites. The clinoptilolite rich minerals having average 5 m 

particle size (Figure 7.9) was also used as a lubricating oil additive and the crystal 

morphology of the zeolite was investigated by scanning electron microscope. SEM 

image which is given in Figure 7.10 indicates the classical clinoptilolite family of 

zeolite crystals. In order to adsorb the residual water in the emulsion the clinoptilolite 

rich mineral 2-3 mm particle size was put in inverse emulsion heated up to 160 °C to 

and the zeolites were separated from the emulsion after two days and the prepared 

emulsion was used as a lubricant. 
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   (a)      (b) 

 
(c) 

Figure 7.7. SEM images of a) zinc borate produced at 90 °C using boric acid and zinc 
oxide b) zinc borate produced at 90 °C using boric acid and zinc oxide dried 
by supercritical ethanol and c) commercial zinc borate (Firebrake 2335) 
(Source: Gönen, 2009). 

 

 
Figure 7.8. Particle size distribution of zinc borate produced at 90 °C using boric acid 

and zinc oxide (Source: Gönen, 2009). 
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Figure 7.9. Particle size distribution of clinoptilolite rich mineral used as an anti-wear 

additive in the mineral oil 

 

 

Figure 7.10. SEM images of clinoptilolite rich mineral having 5 m 

 

7.2. Characterization of Inverse Emulsions 

 

7.2.1. Control Emulsions 

 
Microscopes are very useful tools in the observation of emulsions and 

dispersions, and they can provide us a good picture of the structure, shapes and sizes of 

the particles. This part of the study includes the optical microphotographs of the 

prepared emulsions. For water-in-oil emulsions the water droplets are stabilized in the 

apolar solvent (oil) by a surfactant monolayer. The size of these droplets depends only 

on water concentration expressed as the water to surfactant molar ratio W. Water–filled 
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micelles were dispersed in the continuous oil phase as shown in Figure 7.11. Although 

spherical droplets were formed, neither the micelles nor their shapes could be observed 

in these microphotographs which were taken by Olympus CH40. It was reported that 

inverse emulsion droplets are slightly polydisperse which is a thermodynamically 

equilibrium property (Capek, 2004). In this figure, the effect of surfactant concentration 

in the morphology of inverse emulsions is indicated, as well. The emulsions indicated in 

Figure 7.11a, 7.11b, and 7.11c were prepared by magnetic stirrer. In inverse emulsions, 

oil diffusion is high, water diffusion as well as the surfactant mass transfer is low and 

corresponds to smaller water droplets than oil droplets (Koroleva and Yurtov, 2006). 

The water droplets can be seen clearly in Figure 7.11a, whereas, the black and spherical 

droplets in Figure 7.11c are air bubbles which are formed due to mixing. For all 

emulsion samples, droplets are slightly polydisperse. The average droplet diameters 

calculated from the microphotographs are listed in Table 7.2. The average diameters of 

the samples were evaluated taking ten different droplets’ diameter. Therefore Figure 

7.12 was plotted to point out the effect of surfactant concentration on the droplet size. It 

is seen that the average diameter of droplets decreases with increasing the amount of 

surfactant in the oil. 

The utilization of a rotor-stator homogenizer for emulsion mixing reduces the 

diameters of the droplets since rotor knife spins within the tube, creates a pumping 

action, forcing the sample out through the windows in the tube. The microphotographs 

of the control emulsions containing 1 wt% surfactant and prepared by a magnetic stirrer 

and a homogenizer are compared with each other to expose the effect of emulsification 

mixing on the size of the droplets (Figure 7.13). 

In order to find out the temperature effect on the morphology of the control 

emulsions, they were heated up to 160 °C, and the microphotographs of them were 

taken at different temperatures as seen in Figure 7.14.The microphotographs were taken 

by Olympus CHX microscope. It was observed that the air bubbles disappeared when 

the temperature was increased and transparent droplets formed. 

 

 

 

 

 



 96 

50 m50 m

   

 

1m 
50 m

 
(a)      (b) 

 

50 m50 m

 
(c) 

Figure 7.11. The microphotographs of control emulsion having a) 0.1% (C4) b) 1% 
(C3) c) 10% (C5) surface active agent. 

 

Table 7.2. Avarage droplet diameter for control emulsions. 

Control Emulsion Average Droplet Diameter (m) 

C4 51.82 

C3 31.36 

C5 1.02 
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Figure 7.12. Effect of surfactant concentration on the average size of the droplets. 
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   (a)      (b) 

Figure 7.13. The microphotographs of control emulsion having 1 wt % surfactant and 
prepared by a) a magnetic stirrer (C3) and b) a homogenizer (C7). 
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Figure 7.14. The microphotographs of control emulsion having 1% (C3) surface active 
agent at a) 27.9°C, b) 71.8°C, c) 89.8°C, d) 110.8 °C. 

 

7.2.2. Zinc Borate Inverse Emulsions 
 

In this part of the project, the morphological study was performed not only to 

investigate the morphology of the control emulsions, but also to expose dispersion 

property of aqueous phases of borax, zinc nitrate and zinc borate emulsions. For these 

purposes, the transfer of inorganic salt and borax in inverse emulsions were examined 

and the optical microphotographs of the borax, zinc nitrate and zinc borate emulsions 

were taken (Figures 7.15 and 7.16). Figure 7.15 shows two inverse emulsions and the 

obtained zinc borate emulsion. In this figure, these emulsions were produced by mixing 

via magnetic stirrer and ultrasonic bath. The ultrasonic bath helped to reduce the air 

bubbles by means of ultrasonic waves and this disruption destroyed the bubbles. The 

droplet diameter is around 50 μm. The obtained emulsions were waited for 24 h, and it 

was observed that these emulsions were unstable. Rotor-stator homogenizer is used not 
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only to form stable system but also to produce ultrafine particles. The emulsions 

prepared by homogenizer for 10 min are presented in Figure 7.16. Unlike the optical 

microscopy study of the emulsion prepared by ultrasonic bath, the optical microscopy 

study of the prepared inverse emulsions formed by homogenizer was achieved by a 

more developed optical microscope, and the diameters of the droplets were measured. 

The average diameters of the droplets for borax decahydrate and zinc nitrate inverse 

emulsions were found as 2.12 and 10 m, respectively. The average diameter of the 

droplets for the zinc borate emulsion was calculated as 1.40. It was revealed that when 

these two inverse emulsions, zinc nitrate and borax decahydrate were mixed to form 

zinc borate emulsion, the diameter of the droplets which acted as reactors for the 

production of zinc borate decreased. Besides them, it was observed that the droplets 

were slightly polydisperse for all inverse emulsion samples (Figure 7.16).  

 

50 m50 m

   

50 m50 m

 
    (a)     (b) 

50 m50 m

 
      (c)      

Figure 7.15. The microphotograph taken at 25 C of a) borax emulsion b) zinc nitrate 
emulsion c) emulsion containing borax and zinc nitrate and mixed at 70 C 
for 2h (SU-1) by magnetic stirrer and ultrasonic bath. (The 
microphotographs were taken by Olympus CH40 microscope). 
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   (a)      (b) 

 
      (c)    

Figure 7.16. The microphotographs of a) borax emulsion b) zinc nitrate emulsion c) zinc 
borate emulsion (SH-1) (The microphotographs were taken by Olympus 
BX60M microscope). 

 

The temperature effect on the morphology of the inverse emulsions containing 

inorganic particles were investigated by heating them up to 160 °C, and the 

microphotographs of them were taken at different temperatures as seen in Figure 7.17. It 

was observed that the air bubbles disappeared when the temperature was increased and 

transparent droplets formed. The increase in the temperature caused the decrease in the 

size of the droplets since surfactant particles were not dissolved in the emulsion due to 

low temperature.  
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Figure 7.17. The microphotographs of emulsions containing borax and zinc nitrate  (E4) 
and mixed at 70 C for 2h than at a) 27.9°C, b) 59°C, c) 126.4°C, d) 
160.5°C on hot plate (The microphotographs were taken by Olympus 
CH40 microscope). 

 

Emulsion Stability 

The prediction of emulsion stability is of great importance since it effects the 

formulation, quality control and the technical service of the products (metal working 

fluids, lubricants etc.). Unfortunately, the inverse emulsions prepared in this study are 

unstable. The photograph of unstable emulsion containing borax, zinc nitrate and mixed 

at 70 C for 2h (SU-1) by magnetic stirrer and ultrasonic bath is shown in Figure 7.18. 

The particles settled down at the bottom after 1 day. Moreover, the stability of the 

emulsions mixed by homogenizer and magnetic stirrer were investigated and the 

stability of the emulsions was quantified by measuring the thickness of the precipitate 

layer as a function of time. Figure 7.19 presents the zinc nitrate, control and borax 

decahydrate inverse emulsions after the complete precipitation was achieved (after 1 

day). By using data of precipitation experiment, Figure 7.20 was plotted. In this graph, 
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ho indicates the initial height when time is zero. According to stability curves, zinc 

borate emulsion has the highest stability, whereas, instability is observed for the others 

in initial five minutes. 

 

 
Figure 7.18. The photograph of the unstable zinc borate inverse emulsion prepared by 

magnetic stirrer and ultrasonic bath (SU-1). 

 

a b ca b c
   

dd
 

Figure 7.19. The photographs of the unstable a) zinc nitrate b) control c) borax 
decahydrate and d) zinc borate inverse emulsions prepared by magnetic 
stirrer and homogenizer. 
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Figure 7.20. Relative height of the precipitate layer of inverse emulsions prepared by 

two microemulsion technique and mixed with homogenizer and magnetic 
stirrer versus time. 
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Figure 7.21. Diameter of particles prepared by inverse emulsion with respect to time 

 
 

In literature it is implied that the settling velocity is directly proportional to the 

diameter of the particle as shown in the formula below (Alberty, 1997); 
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


9
)(2 2 gr

dt
dx o

      (7.1) 

 

where; 

dt
dx = rate of settling (cm/s) 

o=density of medium (g/cm3) 

= density of particle (g/cm3) 

= viscosity of medium (g/cm.s) 

r= radius of particle (cm) 

g=981 cm/s2 

The diameters of particles in the inverse emulsions were calculated using 

Equation 7.1. The results shown in Figure 7.21 were evaluated for the settling of 

particles within 18 minutes. The oil density and viscosity used for the calculations are 

0.86 g/cm3, and 0.35 Poise (Tüpraş, 2010). The densities of zinc nitrate and borax 

decahydrate and zinc borate aqueous solutions are 1.14, 1.24, and 1.00 g/cm3 

(Wikipedia, 2010 and Chemyq, 2010). The density of zinc borate is 2.85 g /cm3 (Gönen, 

2009). The diameters of the particles calculated from the settling kinetics are not 

consistent with those found by optical microscopy. The diameters presented in Table 

7.3. are enormously larger than the particles observed by optical microscopy. This result 

might be due to fast sedimentation of the particles and the particles became 

agglomerated. Therefore the larger particles settled down in a short time. So data 

derived from the kinetics of settling did not reflect the actual diameter of the particles in 

inverse emulsions. Moreover, the stability of the droplets was examined and the 

pressure difference was calculated considering Young-Laplace Equation as shown 

below; 

 

r
P 2
      (7.2) 

 

where;  

P: Pressure difference (N/cm2) 

: Surface tension of the surfactant (N/cm) 

r: Radius of droplet (cm) 
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The normal stress , is related to the pressure difference across the boundary and the 

thickness of monolayer of droplet as indicated in Equation 7.3. 

 

t
rP

2
.

      (7.3) 

 

where;  

P: Pressure difference (N/cm2) 

t: Thickness of monolayer of droplet (cm) 

The interfacial tension of water and mineral oil having sorbitan monostearate is 

0.00019 N/cm at concentrations higher than critical micelle content (Peltonen, et al., 

2001) and the thickness of monolayer of sorbitan monostearate at the interface between 

water and mineral oil is 2.5x10-7 cm. The calculated pressure difference and normal 

stress values for the droplets are listed in Table 7.3. For different pressure difference 

values, normal stresses of the samples are constant since the normal stress acting on the 

droplet is related to monolayer thickness and the interfacial tension. Therefore it is 

revealed that the pressure difference values greater than 760 N/cm2 the droplets will not 

be stable, they will explode due to the high stresses acting on the walls of the droplets. 

 

Table 7.3. The diameters of the particles and the pressure difference of the micelles. 

Settling between 0-2 min Settling between 2-18 min 

Sample 
Density 
(g/cm3) 

 
Settling 
velocity 
(cm/s) 

Particle 
diameter 

(m) 

P 
(N/cm2)


(N/cm2) 

Settling 
velocity 
(cm/s) 

Particle 
diameter 

(m) 

P 
(N/cm2) 

 
(N/cm2) 

Control 1 0.3 1174 0.006 760 0.575 1809 0.004 760 

Zinc 
nitrate 1.14 1.75 1856 0.004 760 0.5 1037 0.007 760 

Borax 1.24 0.45 873 0.009 760 0.57 1049 0.007 760 

Zinc 
borate 1 5x10-5 15 0.502 760 0.06 240 0.032 760 
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7.2.3. Inverse Emulsion with Co-surfactant 

 
In addition to inverse emulsions, the morphology of the microemulsions 

prepared by addition of propanol-2 as a co-surfactant was examined by optical 

microscopy. The optical microphotographs of borax, zinc nitrate and zinc borate 

emulsions are shown in Figure 7.22, Figure 7.23 and Figure 7.24, respectively. 

According to these microphotographs, five different droplets for each microemulsion 

were fixed and their diameters were measured by Olympus DP2-BSW program. The 

average values of five droplets are tabulated in Table 7.4.  

 

10 m10 m10 m

   
10 m10 m10 m

 
   (a)      (b) 

10 m10 m

   
10 m10 m

 
   (c)       (d) 

Figure 7.22. The microphotographs of borax microemulsion including a) 30.0, b) 51.5, 
c) 80.0 and d) 102.2 cm3 propanol-2. (The microphotographs were taken 
by Olympus BX60M microscope). 
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Figure 7.23. The microphotographs of zinc nitrate microemulsion including a) 30.0, b) 
51.5, c) 80.0 and d) 102.2 cm3 propanol-2. (The microphotographs were 
taken by Olympus BX60M microscope). 

 

Moreover the morphology of zinc borate emulsions containing different amount 

of co-surfactant was examined and the diameter of droplets were determined by 

Olympus DP2-BSW program. The average values of five different droplets are shown 

in Table 7.5. It was observed that there was a tendency in the increment of droplet 

diameter by increasing the concentration of co-surfactant for borax and zinc nitrate 

microemulsions. These results were consistent with literature (Lin et al., 1997). 

However the droplets disappear when the propanol-2 concentration is increased to 80 

and 102 cm3 for zinc borate emulsion as seen from Figures 7.24c and 7.25d. Instead of 

the droplets, lamellar structures appear. 
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(a) (b) 

    
   (c)      (d) 

Figure 7.24. The microphotographs of zinc borate microemulsion including a) 30.0, b) 
51.5, c) 80.0 and d) 102.2 cm3 propanol-2. (The microphotographs were 
taken by Olympus BX60M microscope). 

 

Table 7.4. The average droplet diameter of borax and zinc nitrate microemulsions 
having 10 cm3 aqueous phase, 100 cm3 continuous phase and 0.1 M solution. 

Sample 
Aqueous 

Phase 

Co-Surfactant 

(cm3) 

Average droplet 

diameter (m) 

SC-1-B 30.0 2.05 

SC-2-B 51.5  1.60 

SC-3-B 80.0 2.34 

SC-4-B 

Borax 

102.2  2.58 

SC-1-Z 30.0 1.99 

SC-2-Z 51.5  1.89 

SC-3-Z 80.0 1.75 

SC-4-Z 

Zinc Nitrate 

102.2  2.73 
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Table 7.5. The average droplet diameter of zinc borate microemulsions prepared by 10 
cm3 aqueous phase, 100 cm3 continuous phase, 0.1 M borax and 0.1 M zinc 
nitrate solutions. 

Sample 
Aqueous 

Phase 

Co-Surfactant 

(cm3) 

Average droplet 

diameter (m) 

SC-1 30.0 5.64 

SC-2 51.5  2.32 

SC-3 80.0 2.26 

SC-4 

Zinc Borate 

102.2  2.15 

 

7.3. Characterization of Precipitates Produced by Microemulsion 

 
The precipitates obtained by inverse emulsion and microemulsion techniques 

were characterized. Additionally, the effects of emulsion preparation technique, 

aqueous phase amount dispersed in the continuous oil phase, emulsification technique 

and the employment of co-surfactant into the oil phase on the morphology and the 

structure of the final product were examined. Water-oil separation tube was used to 

remove water by heating the emulsions up to 160 °C.  The reason for the removal of 

water is to separate the zinc borate particles synthesized in the reverse micelles. After 

water removal, oil removal was achieved via microfiltration process. This process is of 

importance in several industries for the separation of water from water-in-oil emulsions 

and the researchers argue that this process is feasible for the removal of oily waste from 

the emulsions (Hu and Scott, 2008). After microfiltration process, the samples were 

washed with methyl ethyl ketone, water and ethanol and dried at 110 °C for 2h.  

 

7.3.1. Effect of Inverse Emulsion Preparation Technique on The 
Properties of Zinc Borates 

 

Both size and shape of particles are of great importance to apply them in 

nanotechnological products. Regarding this, the morphology of the particles prepared in 

inverse emulsion systems was explored. SEM microphotographs of zinc borates 

produced by inverse emulsion at 70C by one and two microemulsions techniques are 
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presented in Figure 7.25. SEM analysis showed that the particles obtained by one-

microemulsion technique had small layers having nearly 1 m thickness, whereas the 

crystals were in the agglomerated form when two-microemulsion technique was used. 

 

    
   (a)      (b) 

Figure 7.25. SEM images of zinc borate produced by a) one-microemulsion b) two-
microemulsion techniques at 70C. 

 

The difference in the structure of these particles was investigated by FTIR. 

Figure 7.26 demonstrates FTIR spectra of zinc borate produced by one-microemulsion 

and two-microemulsion techniques. The spectra include not only the characteristic 

peaks of trihedral borate and tetrahedral borate groups but also the specific peaks of the 

sorbitan monostearate (at 2850, 2920, 1730, 1467 and 721 cm-1). The bands at 3500 cm–

1 are the stretching of O-H, whereas, the bands at 2920 and 2852 cm-1 are the 

characteristics peaks of the sorbitan monostearate. The band at 1047 cm-1 is the 

stretching of B(4)-O, and the peaks between 745-658 cm-1 are belonging to out-of-plane 

bending mode of B(3)-O (Gao et al., 2009c). Although the samples exhibit similar 

spectrum, there are many differences such as the presence of the bands at 1384 cm-1 and 

1640 cm-1 for the sample obtained by two-microemulsion technique. The asymmetric 

stretching of O-NO2 is observed at 1390 cm-1 proving that the sample contains nitrate 

ion due to the insufficient washing with water. The peak at 1640 cm-1 points out that the 

sample contains crystal water. Besides SEM and FTIR analysis, thermal behavior of the 

synthesized products was determined. Figure 7.27 indicates the TGA thermograms of 

the samples prepared by one-microemulsion and two-microemulsion techniques. Both 

types of zinc borate started loose its crystal water at 100 °C. The mass loss of the 
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sample prepared by one-microemulsion technique at 600 °C was found as 36.52%, 

while the mass loss for the sample prepared by two-microemulsion technique was 

30.42% at the same temperature. Additionally the chemical compositions of zinc borate 

particles synthesized by one and two microemulsion technique were determined. The 

elemental compositions of these samples are similar with each other as seen in Table 

7.6. 
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Figure 7.26. FTIR spectra of zinc borate produced by 1) one-microemulsion 2) two-

microemulsion techniques at 70C. 

 

7.3.2. Effect of Aqueous Phase Amount on the Properties of Zinc 
Borates on the Properties of Zinc Borates 

 

The amount of aqueous phase concentration for inverse emulsions is generally 

5-10 wt % of the continuous phase. In order to understand the effect of starting material 

amount on the morphology of the final products, SEM images of the samples prepared 

by one-microemulsion technique having different amount of aqueous phase were 

obtained (Figure 7.28). Zinc nitrate and borax solution had same concentration as 1 M, 

however the first sample contained 10 cm3 aqueous phase, whereas, the second sample 

contained 5 cm3 aqueous phase. According to SEM images, the decrease in the amount 
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of aqueous phase in the mineral oil caused the change in morphology and crystal size. 

So 100-200 nm crystals were observed for lower amount of aqueous phase.  
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Figure 7.27. TGA thermogram of zinc borate produced by 1) one-microemulsion 2) 

two-microemulsion techniques at 70C. 

 

Table 7.6. Chemical composition of zinc borate produced one and two inverse emulsion 
technique. 

wt% Element 
One-Microemulsion  Two-Microemulsion  

B 26.28 22.14 

C 49.57 54.77 

O 13.27 10.81 

N 1.02 1.13 

Zn 9.86 11.16 
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FTIR spectra of these samples are shown in Figure 7.29. The precipitates had 

identical functional groups which were belonging to sorbitan monostearate and zinc 

borate. However, the characteristic peaks of triborate and tetraborate ion between 1200 

and 600 cm-1 were more distinctive for the precipitate formed by 5 wt % aqueous phase. 

 

    
   (a)      (b) 

Figure 7.28. SEM images of the precipitates produced by one-microemulsion technique 
and containing a) 5 wt % b) 10 wt % aqueous phases.  

 

Figure 7.30 indicates the TGA thermograms of the samples prepared by using 

different amounts of raw materials. The mass loss of the sample prepared by 10 wt% 

aqueous phase at 600 °C was determined as 36.52%, while the mass loss for the sample 

prepared 5 wt % aqueous phase was 28.67 % at the same temperature. 
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Figure 7.29. FTIR spectra of the precipitates produced by one-microemulsion technique 

and containing 1) 5 wt % 2) 10 wt % aqueous phases.  
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Figure 7.30. TGA thermograms of the precipitates produced by one-microemulsion 

technique and containing 1) 5 wt % 2) 10 wt % aqueous phases.  
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7.3.3. Effect of Emulsification Technique on the Properties of Zinc 
Borates 

 

The energy needed to produce the droplets play an essential role in the formation 

of emulsion. High-speed stirrers and high-pressure homogenizers are preferred to 

prepare the stable emulsions containing small droplets. The researchers claim that the 

dispersed droplets should be as small as possible not only to obtain stable systems but 

also to synthesize nano-sized particles (Porras et al., 2008). In order to disclose the 

effect of emulsification mixing technique, the morphologies of the sample prepared via 

magnetic stirrer and ultrasonic bath and the sample formed by homogenizer and 

magnetic stirrer were compared (Figure 7.31). Both these precipitates were obtained by 

two-microemulsion technique. Although, the particles were washed with ethanol, the 

oily waste phase could not be taken away as shown in Figure 7.31a and the particles 

embedded in this oily phase. Nevertheless, the particles agglomerated due to the 

insufficient mixing of magnetic stirrer. When the homogenizer was used to mix the 

inverse emulsions both rod-like, and spherical crystals were formed. The diameters of 

spherical particles are changing between 20-30 nm as shown in Figure 7.30b.  

Figure 7.32 demonstrates FTIR spectra of zinc borate produced by two-

microemulsion technique and mixed via a ultrasonic bath and a homogenizer besides a 

magnetic stirrer. In this graph, the bands at 3500 cm–1 is the stretching of O-H, whereas, 

the bands at 2920 and 2852 cm-1 are the characteristics peaks of the sorbitan 

monostearate. The asymmetric stretching of O-NO2 is observed at 1384 cm-1, proving 

that these samples contain zinc nitrate. The peaks related to zinc borate are also 

observed. The band at 1047 cm-1 is the stretching of B(4)-O, and the peaks between 

745-658 cm-1 are belonging to out-of-plane bending mode of B(3)-O (Gao et al., 

2009c).  
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   (a)      (b) 

Figure 7.31. SEM images of zinc borate produced by two-microemulsion technique and 
mixed via a) magnetic stirrer and ultrasonic bath b) magnetic stirrer and 
homogenizer. 

 

7.3.4. Effect of Co-Surfactant on the Properties of Zinc Borates 

 
In addition to the surfactant Span 60 in water-in-oil inverse systems, a fourth 

compound, propanol-2 was introduced to water-in-oil emulsions and the 

microemulsions were formed. Microemulsions are also used as chemical reactors and 

they are one of the most important features, which has to be taken into account for a 

comprehensive study of chemical reactions carried out in this media. In the scope of this 

work, different microemulsions were prepared by changing the concentration of 

propanol-2 while concentration of the oil, surfactant and aqueous phase were kept 

constant. 
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Figure 7.32. FTIR spectra of zinc borate produced by two-microemulsion technique and 

mixed via 1) magnetic stirrer and ultrasonic bath 2) magnetic stirrer and 
homogenizer. 

 

The ternary diagram illustrating the phases of the microemulsion system is 

shown in Figure 7.33. The microemulsions contained 10 g surfactant and 10 cm3 

aqueous phase solutions for 100 cm3 light neutral oil and the co-surfactant concentration 

was changing from 30, 51.5, 80, and 102.2 cm3 propanol-2. The red lines and the blue 

point indicate the composition of the ternary system, which is used for this part of the 

study. According to literature the place where the blue point is located allows to be 

formed inverse micelles with a water core containing the polar head groups and the 

hydrocarbon tails have contact with the oil phase (Adityawarman, 2007). In order to 

understand the co-surfactant effect of the zinc borate properties, the precipitates of the 

microemulsions were characterized. Before the characterization, the particles were 

separated by centrifugation at 9000 rpm for 10 minutes. Figure 7.34 illustrates the phase 

separation after centrifugation process. The microemulsion was separated into three 

phases which are the oil, propanol-2 and the precipitate. The properties of the prepared 

emulsions and the phases appeared after centrifugation processes are indicated in Table 

7.7. It was observed that the separated oil and alcohol phases included colloidal 

particles which were synthesized by microemulsion. Even though the volumes of 

precipitates are high, the obtained dried precipitate amount is very low since the wet 

precipitate contains huge amount of alcohol and water. The expected amount of zinc 
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borate (2ZnO3B2O33H2O) was also evaluated in Table 7.7 considering the reaction 

between borax decahydrate and zinc nitrate expressed in Equation 5.5. 

Water
Light Neutral Oil

Sorbitan Monostearate

0        20       40        60      80         100

100        80       60        40      20           010
0 

   
   

 8
0 

   
   

60
   

   
  4

0 
   

  2
0 

   
   

 0

Water
Light Neutral Oil

Sorbitan Monostearate

0        20       40        60      80         100

100        80       60        40      20           010
0 

   
   

 8
0 

   
   

60
   

   
  4

0 
   

  2
0 

   
   

 0

Water
Light Neutral Oil

Sorbitan Monostearate

0        20       40        60      80         100

100        80       60        40      20           010
0 

   
   

 8
0 

   
   

60
   

   
  4

0 
   

  2
0 

   
   

 0

 
Figure 7.33. Schematic diagram illustrating the composition of oil/water/surfactant 

system. 
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Figure 7.34. Schematic illustration of phase separation after centrifugation of the 

microemulsions. 
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Table 7.7. The volume of phases obtained by centrifugation and the amount of produced samples 

Phase volumes after 
centrifugation (cm3) Microemulsion 

code 
Co-surfactant 
volume (cm3) 

Total volume 
(cm3) 

Oil Alcohol Precipitate 

Wet 
Sample 

(g) 

Dry 
Sample 

(g) 

Expected 
Amount of 
Zinc Borate 

(g) 

SC-1 30.0 150.0 105.00 37.30 7.70 1.24 1.09 0.178 

SC-2 51.5 181.5 96.00 51.50 33.67 1.46 0.14 0.178 

SC-3 80.0 200.0 88.78 76.59 34.63 1.29 0.08 0.178 

SC-4 102.2 222.2 54.31 114.80 53.09 1.43 0.06 0.178 
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Morphology of Precipitates 

SEM images of the precipitates prepared by two-microemulsion method are 

given in Figure 7.35. The morphology of the crystals including 30 cm3 propanol-2 is 

constructed from layers and the disk-like crystals having nano-sized thickness (Figure 

7.35a). However, the spherical crystals are formed by increasing the co-surfactant 

amount in the emulsion (Figure 7.35b). Mean particle sizes of the fully crystallized 

powders could be estimated as; 50–100 nm in diameter, Plate like shapes and layers are 

observed when the co-surfactant amount is increased to 51.50 and 102 cm3 (Figure 

7.35c and 7.35d). 

 

    
   (a)      (b) 

    
(c)      (d) 

Figure 7.35. SEM images of precipitates obtained in micromemulsions including a) 
30.0, b) 51.50 c) 80.0 and d) 102.2 cm3 propanol-2. 

 
Functional Groups of Precipitate, Oil and Alcohol Phases 

FTIR spectra of the obtained precipitates are indicated in Figure 7.36. The peak 

at 1740 cm-1  is due to C=O stretching, the peaks at 1540 and 1398 cm-1 are assigned to 
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antisymmetric and symmetric carboxylate groups (aCOO- and aCOO-), respectively. 

The presence of specific peaks of the carboxylate groups revealed that the surfactant in 

the process was saponified. The functional groups of zinc borate and by product sodium 

nitrate were not observed in FTIR spectra of the precipitate, due to zinc borate’s low 

concentration. The ratio of the absorbance difference at 1745 cm-1 to the absorbance 

difference at 1540 cm-1 were calculated and the lowest value was obtained for the 

precipitate including 80.0 cm3 co-surfactant per 10 g surfactant which demonstrated that 

this sample showed the highest saponification. Further the propanol-2 and oil phases of 

the microemulsions which were obtained after the centrifugation process was 

investigated by FTIR analysis and FTIR spectra of the oil and propanol-2 phases of the 

samples are shown in Figures 7.37 and 7.38, respectively. The FTIR spectra of paraffin 

and propanol-2 phases showed the presence of unchanged surfactant in the phases.  

FTIR spectra of the propanol-2 phases of the samples indicate the characteristic peaks 

of propanol-2. The band between 3500-3000 cm-1 and the band at 3000-2800 cm-1 are 

attributed to –OH and C-H bonding vibrations. Similar to propanol-2 phase, the oil 

phase shows the typical peaks of light neutral oil. The bands at 2930 and 2860 cm-1 are 

related to C-H stretching vibrations. However any characteristic peaks of boron based 

materials can not be detected in these two phases. 
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Figure 7.36. FTIR spectra of the precipitates obtained by microemulsions including 1) 

30.0, 2) 51.50, 3) 80.0 and 4) 102.20 cm3 propanol-2. 
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Figure 7.37. FTIR spectra of the oil phase of microemulsions including 1) 30.0, 2) 

51.50, 3) 80.0 and 4) 102.20 cm3 propanol-2. 
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Figure 7.38. FTIR spectra of the prapanol-2 phase of microemulsions including 1) 30.0, 

2) 51.50, 3) 80.0 and 4) 102.20 cm3 propanol-2. 
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Thermal Behavior of Precipitates 

Thermal behavior of the precipitates obtained in microemulsions was determined 

by both thermogravimetric analysis and differential scanning calorimeter. According to 

TGA analysis result, the samples had only one degradation step as shown in Figure 

7.39. The onset temperature of mass loss and residual mass % at 600 °C are reported in 

Table 7.8. Unlike Span 60, the onset temperatures of the precipitates are changing from 

217 to 273 °C. Moreover the residual mass % values of the precipitates at 600 °C are 

quite different than the value of Span 60. DSC endotherms of the samples are shown in 

Figure 7.40 and 7.41. It is more clearly observed that the precipitates have different 

structure than the surfactant since the surfactant shows endothermic degradation after 

300 oC whereas the precipitates indicate exothermic degradation after this temperature 

which demonstrates a degradation belonging to a compound including oxygen. In order 

to expose the dehydration behavior of the precipitates the temperatures where 

endothermic peaks are observed are determined and the results are listed in Table 7.9. 

Among the samples, the precipitate which includes 40% propanol-2 shows only one 

endothermic peak before 300 oC. However the other products have two different 

melting peaks. The endothermic peak at 67 oC might be the melting point of stearic acid 

(Gönen, 2003), whereas the peak at 124 oC implies the melting of zinc stearate. It may 

be due to absence of organic acid in this sample and the saponification ratio of this 

sample is higher than the others.  

Elemental compositions of the precipitates were determined by EDX analysis. A 

typical EDX spectrum of the precipitate prepared by microemulsion containing 80 cm3 

propanol-2 is indicated in Figure 7.42. The boron content of the samples is between 

10.81% -15.64% by weight, whereas zinc content of the samples is changing from 

2.81% to 6.48% by weight as shown in Table 7.10. The zinc content of the precipitate 

including 40% propanol-2 has higher than the other samples. Also the detected zinc 

amounts of the samples are consistent with the zinc content of the precipitates. 

However, the boron content of the samples was not detected correctly since boron and 

carbon elements overlapped in EDX spectrum. Therefore the samples might have the 

chemical composition of zinc stearate and this result was consistent with the FTIR and 

DSC results. 
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Figure 7.39. TGA thermogram of 1) Span 60, and the precipitates obtained by 

microemulsions including 2) 30.0, 3) 51.50, 4) 80.0 and 5) 102.20 cm3 
propanol-2. 

 
Table 7.8. Onset temperature and residual mass percentages at 600 °C for Span 60 and 

the precipitates obtained in microemulsion. 

Sample Onset temperature (°C) Residual Mass % at 600°C 

Span-60 148 13.61 

SC-1 263 19.88 

SC-2 220 33.94 

SC-3 217 11.93 

SC-4 273 11.37 
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Figure 7.40. DSC curves of 1) Span 60 and precipitates obtained by microemulsions 

including 2) 30.0, 3) 51.5 cm3 propanol-2. 
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Figure 7.41. DSC curves of the precipitates obtained by microemulsions including 4) 

80.0, 5) 102.2 cm3 propanol-2. 
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Table 7.9. Dehydration behavior of the precipitates obtained in microemulsion. 

First Peak Second Peak 
Sample 

Onset 
(°C) 

Endset 
(°C) 

Maximum 
(°C) 

ΔH 
(J/g) 

Onset 
(°C) 

Endset 
(°C) 

Maximum 
(°C) 

ΔH 
(J/g) 

SC-1 58.02 71.96 65.98 -53.89 100.20 126.91 121.83 -50.65 

SC-2 52.62 75.05 62.63 -29.38 104.34 122.19 115.77 -62.24 

SC-3 - - - - 118.41 128.34 123.45 -129.91 

SC-4 54.05 74.28 65.14 -28.31 100.62 121.89 115.91 -50.65 
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Figure 7.42. EDX spectrum of the precipitate obtained by microemulsion including 80 

cm3 propanol-2. 
 

Table 7.10. Elemental composition of the precipitates produced in microemulsion 

Average Weight % 
Element SC-1 SC-3 SC-4 

B 15.64  10.81  13.42 
C 76.46 77.58  79.38 
N  1.16  0.65 1.11  
O  3.41 4.49  3.03  
Zn  3.34  6.48  2.81 

 

The characterization results of the precipitates obtained by microemulsion 

revealed that zinc stearate or stearic acid were formed instead of zinc borate. The 
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microemulsions pH values were measured to explain why zinc borate could not be 

synthesized. The pH values of zinc nitrate, borax decahydrate and zinc borate emulsions 

were found as 4.68, 8.20 and 7.74, respectively. It was understood that the surfactant 

might undergo a change due to the acidic medium and form organic compounds. The 

suggested reaction of the formation of stearic acid after hydrolysis is demonstrated in 

Equation 7.4.  

 

H2O   +     R C

O

O R'
OH-

R C

O
OH   +  R' OH

 (7.4) 

 

where R denotes the stearyl group. The ester group of sorbitan monostearate reacted 

with water and formed stearic acid and alcohol. The stearic acid might react with 

hydroxyl and zinc ions to give zinc stearate as shown in Equation 7.5. 

 

Zn2+O-C

O

ROH    +     OH-     +    Zn2+  R C

O

 (7.5) 

 

 

7.4. Characterization of PVC-Zinc Borate Films 

 
PVC films are generally formed by using a plasticizer or this polymer can be 

dissolved in any polar ethers. Tetrahydrofurane is one of the solvents capable of 

dissolving PVC as well, and is the main ingredient in PVC adhesives. PVC films 

including zinc borate have potential use in flame retardancy application and heat 

stabilization of PVC (Pi et al., 2002; Erdoğdu et al., 2009). In this study, zinc borate 

inverse emulsion was added to PVC-THF solution to determine the particle size of the 

zinc borate particles and to obtain a uniform dispersion in the composite film. The 

optical microphotographs of these films are presented in Figure 7.43. It is observed that 

two phases are obtained in control PVC film and when oil is added to the film 

quadrilateral structure is formed. Besides them, the addition of zinc borate emulsion 

produces spherical droplets having diameters between 1-10μm. These might be the 
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micelles that contain zinc borate. In order to get a better visualization, scanning electron 

microscopy was used and the images in Figure 7.44 were taken. It was observed that 

PVC control film had some particles on the surface due to some impurities of PVC 

(Figure 7.44a). When the bottom precipitate of zinc borate emulsion was added to PVC-

THF solution, the obtained film had more particulate structure because of the dispersion 

of zinc borate particles (Figure 7.44b). The particle size of the zinc borate particles was 

found as 100-200 nm. In Figure 7.44c, spherical droplets having diameters lower than 1 

μm were observed on the surface of PVC film. It was thought that these droplets might 

be the micelles that contain zinc borate. 

PVC control film (F1), PVC film contains the bottom precipitate of zinc borate 

inverse emulsion prepared by magnetic stirrer (F4), PVC film contains zinc borate 

emulsion prepared by homogenizer (F5) were used for elemental analysis. In order to 

find the elemental composition of the control film, the whole area was scanned, while 

the surfaces of particles were scanned for the composite films. The obtained results are 

presented in Table 7.11. Due to the absence of zinc borate in the control film, B, N, Zn 

elements were not detected, but the composite films including zinc borate emulsion 

precipitate and zinc borate emulsion had 22.87% and 21.83% boron element, 

respectively.  
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(e) 

Figure 7.43. The microphotographs of a) PVC film (F1) b) PVC film includes light 
neutral oil containing 1 wt % surfactant (F2) c) PVC film contains zinc 
borate inverse emulsion prepared by magnetic stirrer and heated up to 160 
C (F3) d) PVC film contains the bottom precipitate of zinc borate inverse 
emulsion prepared by magnetic stirrer (F4) e) PVC film contains zinc 
borate emulsion prepared by homogenizer (F5). 
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(a) (b) 

 
(c) 

Figure 7.44. The SEM images of a) PVC film (F1) b) PVC film contains the bottom 
precipitate of zinc borate inverse emulsion prepared by magnetic stirrer 
(F4) c) PVC film contains zinc borate emulsion prepared by homogenizer 
(F5). 

 

Table 7.11. The chemical composition of PVC-zinc borate composite films 

Samples 

PVC control 
film 

PVC film contains the 
bottom precipitate of zinc 

borate emulsion (F4) 

PVC film contains zinc 
borate emulsion prepared 

by homogenizer (F5) 

 
Element 

Wt% Wt% Wt% 
C 58.93 60.37 67.57 
O 1.03 4.22 1.48 
Cl 40.04 8.49 6.55 
B 0 22.87 21.83 
N 0 1.81 1.53 
Zn 0 2.25 1.06 
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In order to understand whether the dispersed particles on the PVC-zinc borate 

composite films were zinc borate or not, boron, zinc and carbon elements mappings 

were achieved by energy dispersion of X-ray (EDX). The mapping results of these 

elements are shown in Figures 7.45, 7.46 and 7.47. From Figures 7.45a, 7.46a and 

7.47a, it can be seen that elements boron, zinc and carbon are well dispersed on the 

surface of the films including zinc borate inverse emulsion, but their contents are 

different. The existence of the elements boron and zinc indicates that the dispersed 

particles on the PVC films might be zinc borate. When the precipitated part of the 

emulsion was added to PVC suspension, it was expected that this film would present 

high concentration of zinc borate compared to the one including the emulsion. 

However, the number of green shiny spots which demonstrate the concentration of zinc 

element (Figure 7.46b) is lower than the one in Figure 7.46a. Also this unexpected 

result might be due to the film sample placed on the sample holder. The sample could 

not reflect the whole film since there might be a heterogeneous dispersion of the 

particles on the film surface. The map of carbon element is presented in Figure 7.47 and 

it implies that the films have high concentration of carbon element which exactly 

corresponds with PVC, sorbitan monostearate and mineral oil. 

 

    
(a) (b) 

Figure 7.45. Boron mapping of a) PVC film contains zinc borate inverse emulsion 
prepared by magnetic stirrer and heated up to 160 C (F3) and b) PVC 
film contains the bottom precipitate of zinc borate inverse emulsion 
prepared by magnetic stirrer (F4). 
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(a)      (b) 

Figure 7.46. Zinc mapping of a) PVC film contains zinc borate inverse emulsion 
prepared by magnetic stirrer and heated up to 160 C (F3) and b) PVC film 
contains the bottom precipitate of zinc borate inverse emulsion prepared by 
magnetic stirrer (F4). 

 
 

    
(a)      (b) 

Figure 7.47. Carbon mapping of a) PVC film contains zinc borate inverse emulsion 
prepared by magnetic stirrer and heated up to 160 C (F3) and b) PVC 
film contains the bottom precipitate of zinc borate inverse emulsion 
prepared by magnetic stirrer (F4). 

 

7.5. Zinc Borate Synthesis in Aqueous Phase 

 
The dispersion stability of lubricating oil additives play a major role in the 

preparation of lubricants. In literature it is implied that the dispersion property of 

nanoparticles in base oil is superior to micron particles in lubrication systems (Hu et al., 

1999). Therefore, it is important to study lubricating oil additives of nanoparticles 

considering low cost in the production method. The preparation methods generally can 



 133 

be classified as solid, gas, and liquid methods. Liquid methods, including the 

precipitation method, hydrothermal treatment, spray drying, spray thermal 

decomposition, freeze drying, the microemulsion method, the phase transfer technique, 

and supercritical fluid drying, were widely used. In this part of the study, conventional 

precipitation technique and coordination homogeneous technique were used to 

synthesize zinc borate in aqueous phase. Surface modifier, Span 60 was used with the 

raw materials in the conventional aqueous phase precipitation, whereas ammonia was 

required for the coordination homogeneous precipitation technique. 
 

7.5.1. Zinc Borate Synthesis via Precipitation 

 
In literature it was indicated that the transfer of the structure from a variety of 

organic templates (e.g. PEG, PVP, CTAB etc.) to the inorganic product allowed for the 

formation of otherwise unattainable inorganic structures (Shi et al., 2009). However, 

there is no study dealing with preparation of zinc borate in the presence of sorbitan 

monostearate. Therefore, in the scope of our research, it was aimed to produce zinc 

borate via precipitation method in the presence of a surface modifier. The zinc borate 

particles were characterized by FTIR, TGA, DSC, SEM and EDX analysis.  

SEM images of zinc borate produced in the presence of sorbitan monostearate 

are shown in Figure 7.48. Micron sized prismatic crystals as well as lamellar-like 

crystals are observed in Figure 7.48. Closer inspection reveals that the lamellar-like 

crystals are the conglomeration of lots of rods having 500 nm thicknesses. According to 

elemental analysis of the prepared zinc borate, it contains both carbon and hydrogen 

elements (Table 7.12). The presence of carbon element for the sample formed by 

precipitation technique arises from the sorbitan monostearate and the C% (1.91%) 

demonstrates that this sample contains 2.85% sorbitan monostearate since 1 gram of this 

surfactant includes 67 %C element by weight. On the other hand, the water content of 

the sample is 26.02% in accordance with its hydrogen element content and this value is 

close to water content of 2ZnO∙3B2O3∙7H2O type zinc borate which is reported by 

Briggs (Briggs, 2001). Particle size distribution of zinc borate produced in the presence 

of sorbitan monostearate is indicated in Figure 7.49. The volume weighted mean 

particle diameter of the sample is 27.71 m. The FTIR spectrum of zinc borate prepared 

via precipitation technique in the presence of sorbitan monostearate is shown in Figure 
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7.50 and it exhibits both the specific peaks of the surfactant and the zinc borate having 

seven moles of crystal water (2ZnO ∙3B2O3 7H2O). The characteristic peaks of zinc 

borate are assigned referring the literature (Gao et al., 2009c). The band at 1047 cm-1 is 

the stretching of B(4)-O, and the peaks between 745-658 cm-1 are belonging to out-of-

plane bending mode of B(3)-O. The decrease in the intensity of the specific peaks of the 

surfactant (at 2850, 2920 cm-1) reveals that the sorbitan monostearate is partially 

removed from the samples during the washing process. Figure 7.51 shows the XRD 

pattern of the zinc borate produced via precipitation technique in aqueous medium. The 

presence of peaks with high intensity shows that product has a crystalline structure. The 

major peaks in XRD pattern of zinc borate are observed at 13.07°, 17.58°, 19.66°, 

25.54°, 26.38°, 27.04°, 29.42° and 36.97° 2 values. When these values were compared 

with those in the JPDS database, it was implied that the specific peaks were consistent 

with those of Zn(B3O3(OH)5)∙H2O. In literature this type of zinc borate was also defined 

as 2ZnO∙3B2O3∙7H2O (Eltepe et al., 2007). Moreover, no other crystalline phases can be 

detected, which is indicative of pure 2ZnO∙3B2O3∙7H2O obtained under the current 

synthetic conditions. All the diffraction peaks can be perfectly indexed to 

2ZnO∙3B2O3∙7H2O. (JPDS PDF File Number 721789). TGA thermogram of zinc borate 

indicates that mass loss of the sample is 22.08% due to the removal of water of 

crystallization (Figure 7.52). In accordance with the elemental analysis, the sample 

contained 2.85% sorbitan monostearate. The water loss of the surfactant was 53% 

according to its TGA thermogram. Therefore the mass loss of the surfactant for this 

amount was evaluated as 1.52%. The remaining mass loss (20.56%) was due to the 

condensation of hydroxyl groups of zinc borate sample. 20.56% is close to the value 

indicating the water content of the sample evaluated from elemental analysis. Therefore 

all the characterization results imply that 2ZnO∙3B2O3∙7H2O is formed when borax 

decahydrate and zinc nitrate are used at 70 °C in the presence of the surfactant. 

Moreover, DSC curve of the product is given in Figure 7.53. For sorbitan monostearate, 

the endothermic peak at 50 °C is observed due to the melting of sorbitan monostearate 

and the heat of melting is evaluated as 3.50 J/g. Also, the peaks between 100-200 °C are 

related to evaporation of free water. The endotherms of zinc borate samples show the 

removal of interstitial water and the dehydration energy for the zinc borate prepared by 

precipitation technique is 172.22 J/g. The dehydration energies for the zinc borate 

produced via the same technique by using zinc oxide and boric acid were between 385.7 
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and 457.3 J/g (Gönen, 2009). The difference in the energies was observed since the 

condensations of B-OH groups in zinc borate structures were different. 

 

    
(a) (b) 

Figure 7.48. SEM images of zinc borate produced in the presence of sorbitan 
monostearate a) 1500x b) 5000x magnifications. 

 

Table 7.12. Elemental composition of zinc borate 

Element Av. Wt % 
C 1.91 
H 2.89 
N 0 
S 0 
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Figure 7.49. Particle size distribution of zinc borate produced in the presence of sorbitan 

monostearate. 
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Figure 7.50. FTIR spectrum of zinc borate produced via precipitation technique in the 

presence of sorbitan monostearate. 
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Figure 7.51. XRD pattern of zinc borate produced via precipitation technique in the 

presence of sorbitan monostearate. 
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Figure 7.52. TGA thermogram of zinc borate produced via precipitation technique in 

the presence of sorbitan monostearate. 
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Figure 7.53. DSC curve of zinc borate produced via precipitation technique in the 

presence of sorbitan monostearate. 
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7.5.2. Synthesis of Zinc Borate via Coordination Homogeneous 
Precipitation Technique 

 
Homogeneous precipitation technique was developed by Ting et al. (2009) and 

this method provided information to produce nano-sized zinc borate particles. The 

mechanism of this precipitation method is explained by the equations below; firstly, 

zinc nitrate and borax decahydrate dissociates to its ions in the solutions according to In 

Equation 7.6, borax dissolves in aqueous phase according to form tetra borate anion 

[B4O5(OH)4]2- and sodium cation In Equation 7.7, zinc nitrate dissolves to produce zinc 

cations and nitrate anions. The formed polyborate anions and zinc cations precipitate 

when mixed together as shown in Equation 7.8. Zn[B4O5(OH)4] (s) react with ammonia, 

forming a complex solution coexisting with precipitator borax in solution 1. Borate 

sediments are formed in the solution when the zinc ions reach a certain amount. 

Because the metal ions and the precipitator are dispersed in the solution 

homogeneously, thus the precipitation reaction of metal ions and precipitator can reach 

molecular level, which ensures the sedimentation of desired nanomaterials yielding and 

separating out homogeneously from the solution. The precipitation mechanism based on 

the formation of Zn(NH3)4
2+

(aq) complex, therefore a few Zn2+ ions present in the 

solution which inhibits the enlargement of the zinc borate crystals and provides to 

produce nano-sized particles. However at higher pH values (10-12) Zn2+ ions reacts 

with OH- and NO3
- ions to form zinc hydroxyl nitrate. The possible reaction is shown in 

Equation 7.15. 

 

Zn(NO3)26H2O     →    Zn2+ + 2NO3
- + 6H2O (solution 1)   (7.6) 

 

Na2B4O7∙10H2O     →    2Na+
(aq) + B4O5(OH)4 2-

(aq) + 8H2O (l) (solution 2)  (7.7) 

 

Zn2+
(aq) + B4O5(OH)4 2-

(aq)       →     Zn[B4O5(OH)4] (s)   (7.8) 

 

Solution 1 + Solution 2        →         Zn[B4O5(OH)4] (s) + yH2O  (7.9) 

 

Zn[B4O5(OH)4] (s) + 4NH3 (l)         →     Zn(NH3)4
2+ (aq) + B4O5(OH)4 2-

(aq)   (7.10) 
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Zn(NH3)4
2+ (aq)     →      Zn2+

(aq)    +   4NH3 (g)    (7.11) 

 

B4O5(OH)4
2-

(aq) + Zn2+
(aq) + H2O(l)     Zn[B4O5(OH)4]∙H2O(s)  (7.12) 

 

Zn[B4O5(OH)4]∙H2O(s) + 2H2O(l)    Zn[B3O3(OH)5] H2O(s) + B(OH)3(s) (7.13) 

 

Zn[B3O3(OH)5] H2O(s)    Zn[B3O3(OH)5](s) + H2O(l)     (7.14) 

 

5Zn2+ + 8OH- +2NO3
- + 2H2O    Zn5(OH)8(NO3)2H2O(s)    (7.15) 

 

The streams defined in the production of zinc borate by coordination 

homogeneous precipitation are shown in Figure 7.54, while the amounts of main 

components of the streams are indicated in Table 7.13. F1, F2, F4 and F6 streams show 

the amounts of main components at inlet. The predicted amounts of NH3, B and Zn 

element in F7 stream are also displayed. F8 stream indicates the removal of ammonia 

and water by heating and it is assumed that all of the ammonia is removed at the end of 

15 h. The obtained dried sample after 15 h mixing is found as 2.36 g. In Table 7.13 the 

amounts of B and Zn in F11 stream show that this sample includes 0.31 g and 0.62 g B 

and Zn, respectively. The efficiency of this process is calculated as 48.94% considering 

the number of moles of zinc at inlet and outlet.  

 

F1

F2

F10

Mixing Mixing Mixing Evaporation

Washing and
Drying

F8

F7F5

F6F4

F3

F9

F11

F1

F2

F10

Mixing Mixing Mixing Evaporation

Washing and
Drying

F8

F7F5

F6F4

F3

F9

F11  
 

Figure 7.54. Streams in zinc borate production by coordination homogeneous 
precipitation. 

 
 



 140 

Table 7.13. The amount of stream and the amounts of main components in the streams. 

Amounts of main components  

in the streams , g  
Stream 

Code 
Stream Amount 

NH3 B Zn 

F1 Borax solution 30 cm3 - 1.08 - 

F2 Zinc nitrate solution 20 cm3 - - 1.63 

F4 NH3 solution (25%) 12.5 cm3 2.85 - - 

F6 H2O 75 cm3 - - - 

F7 

Zn(NH3)42+ 

B4O5(OH)42- 
2NaNO3 

H2O 

137.5 cm3 2.85 1.08 1.63 

F8 H2O + NH3 116 cm3 2.85 - - 
F11 Dried solid 2.36 g - 0.23 0.80 

 

The pH values of the aqueous solutions were recorded with respect to time for 

different periods. The results are shown in Figures 7.55 and 7.56. At the end of 3, 6, 12 

and 15 hours pH values are 8.79, 8.22, 6.55 and 5.29, respectively. Table 7.14 

demonstrates the amount of wet and dry samples at the end of 3, 6, 12 and 15 hours. 

When the mixing period is increased it is seen that the dry amount of the samples 

increases, accordingly. The difference between the amounts of wet samples washed 

with only ethanol and the samples washed with both ethanol and water is related to the 

amount of NaNO3 formed in the solution. However it is removed from the solution by 

washing with water. The amounts of removed NaNO3 are 0.4, 0.27, 0.51, and 5.85 g for 

the samples stirred for 3, 6, 12 and 15 hours, respectively.  

In order to calculate the moles of water evaporated from the solution with 

respect to time, the whole amount removed from the solution was assumed as only 

water since ammonia had low concentration in the solution. Water removed from 8 cm 

diameter beakers. Figure 7.57 demonstrates the evaporation of water with respect to 

time. When the time was increased, the amount of water evaporated from the solution 

increased, accordingly. 
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Figure 7.55. pH change of zinc borate aqueous solutions with respect to time. 
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Figure 7.56. pH change of zinc borate aqueous solutions with respect to time. 
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Table 7.14. Amount of zinc borate produced by precipitation method 

Weight (g) 

Volume of 
ammonia and 

water 
removed 

from sample 
(cm3) 

Wet sample Dry 
sample 

Sample 

Run 
1 

Run 
2 

Run 
1 

Run 
2* 

Predicted  
amount of 

2ZnO·3B2O3·7H2O 

Run 
1 

Run 
2 

ZB-3h 2.12 1.72 0.99 0.68 12.42  15 17 

ZB-6h 5.26 4.99 2.52 2.20 12.42 35 36 

ZB-12h 6.61 6.10 3.12 2.96 12.42 95 93 

ZB-15h 10.61 4.76 4.52 2.36 12.42 107 116 
* These samples were washed with both water and ethanol before drying. 
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Figure 7.57. Water and ammonia evaporation with respect to time. 

 

SEM images of zinc borate produced in the presence of ammonium in aqueous 

phase are shown in Figures 7.58 and 7.59. When the mixing period is low (3 and 6 h) 

nano-sized crystals as well as sub-micron sized spherical crystals are observed (Figure 

7.58a and Figure 7.59b). It is revealed that the crystal sizes of nano-sized particles and 

sub-micron particles are nearly 30 nm and 400 nm, respectively. However, the crystals 
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become larger with the prolonged mixing time and spherical agglomerated crystals are 

formed as shown in Figure 7.58c. Unlike other samples, the product obtained after 15 h 

mixing time has rod-like crystals as indicated in Figure 7.58d. Furthermore the 

morphologies of the products washed with not only ethanol but also water are 

investigated and SEM images of the samples are given in Figure 7.59. It is observed that 

sub-micron sized crystals are still present in SEM images, whereas a few nano-sized 

crystals are observed on the surface of larger crystals. It may occur due to the washing 

of samples with water; hence water peels off the nano-sized crystals from the surface of 

the sub-micron sized crystals. Even if the samples shown in Figure 7.58d and 7.59d 

have same mixing periods, rod-like morphology is not obtained for the product washed 

with water. Spherical agglomerated crystals are formed and this result again arises from 

the washing effect of water. Water washing dissolves the precipitated NaNO3. For 0.05 

moles of zinc nitrate 0.1 mol sodium nitrate is obtained. So the amount of sodium 

nitrate in 100 cm3 water is 8.5 g. The solubility of sodium nitrate at 40 oC is 102 g/100 

cm3 water (Wikipedia, 2010). Therefore it is understood that sodium nitrate crystals are 

not formed in the solution.  

The particle size distributions of zinc borate samples produced by coordination 

homogeneous precipitation technique and washed with only ethanol are given in Figure 

7.60. Both sub-micron and micron sized particles are observed from the figure. The 

volume-weighted mean particle diameter of zinc borate particles are found as 14.37, 

18.35, 21.24 and 25.02 m for 3, 6, 12 and 15 hours, respectively. It is inferred that the 

particle size of the sample increases by increasing mixing time, accordingly. 

Furthermore, these results are in good agreement with the results obtained from SEM. 

Figure 7.61 displays the particle size distributions of zinc borate samples produced by 

coordination homogeneous precipitation technique and washed with both ethanol and 

water. The volume-weighted mean particle diameter of zinc borate particles are found 

as 16.78, 18.93, 18.22 and 22.36 m for 3, 6, 12 and 15 hours, respectively. 
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   (a)       (b) 

    
   (c)       (d) 

Figure 7.58. SEM images of zinc borate obtained in aqueous phase after a) 3, b) 6 c) 12 
and d) 15 hours and washed with only ethanol 

 

The FTIR spectrum of zinc borate prepared via precipitation technique in the 

presence of ammonium in aqueous phase is shown in Figures 7.62 and 7.63. They 

exhibits the specific peaks of zinc borate having seven moles of crystal water 

(2ZnO∙3B2O3∙7H2O). The characteristic peaks of zinc borate are assigned referring the 

literature (Goa et al., 2009; Ting et al., 2009). The band at 3300 cm−1 is attributed to O–

H stretching vibration whereas the band at 1634 cm−1 is assigned to the H–O–H bending 

mode, which shows that the compound contains crystal water. All the samples exhibit 

the similar characteristics, but the sample having 15 h mixing period and washed by 

only ethanol has more clear peaks in its spectrum. The asymmetric stretching of O-NO2 

is observed at 1384 cm-1, proving that these samples contain nitrate ion. The band at 

1050 cm-1 is the stretching of B(4)-O, and the peaks between 745-658 cm-1 are 

belonging to out-of-plane bending mode of B(3)-O. The characteristic peaks of B(3)-O 
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are also observed at 1343 cm-1. The peaks intensities also do not increase with mixing 

time.  

 

    
   (a)      (b) 

    
   (c)       (d) 

Figure 7.59. SEM images of zinc borate obtained in aqueous phase after a) 3, b) 6 c) 12 
and d) 15 hours and washed with ethanol and water. 

 

The thermal behavior of the products is investigated using TGA and DSC 

measurements in the temperature range of 25–600 ◦C. It can be found that the samples 

start to loose their mass immediately as shown in Figures 7.64 and 7.65. Residual 

masses at the end of 600 oC are listed in Table 7.15. Mass losses of the samples are 

changing from 9.48% to 13.89%. In literature it is revealed that water loss of zinc borate 

having formula 2ZnO∙3B2O3∙3H2O is 12.69% which is close to the values of the 

samples obtained in aqueous phase (Schubert et al., 2003). DSC endotherms of the 

samples exhibit endothermic peaks at different temperature that may be due to different 

types of crystal water desorption. Also the endothermic peaks at 300 oC in Figures 7.66 

and 7.67 show the degradation of nitrate ion. Table 7.16 reports the dehydration 
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behavior of the samples and the first endothermic peaks of the samples related to 

removal of interstitial water from the products and the water formed from the 

condensation of OH groups (Figure 7.66 and Figure 7.67). 
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Figure 7.60. Particle size distribution of zinc borate particles prepared by homogeneous 

precipitation and washed with only ethanol. 
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Figure 7.61. Particle size distribution of zinc borate particles prepared by homogeneous 

precipitation and washed with both ethanol and water. 
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Figure 7.62. FTIR spectra of zinc borate obtained in aqueous phase after 1) 3, 2) 6 3) 12 

and 4) 15 hours and washed with only ethanol. 
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Figure 7.63. FTIR spectra of zinc borate obtained in aqueous phase after 1) 3, 2) 6 3) 12 

and 4) 15 hours and washed with ethanol and water. 
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Figure 7.64. TGA thermogram of zinc borate obtained in aqueous phase after 1) 3, 2) 6 

3) 12 and 4) 15 hours and washed with ethanol. 
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Figure 7.65. TGA thermogram of zinc borate obtained in aqueous phase after 1) 3, 2) 6 

3) 12 and 4) 15 hours and washed with ethanol and water. 
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Table 7.15. Residual mass percentages at different temperatures for zinc borate samples 
prepared by precipitation in aqueous phase 

Residual Mass % at temperature level 
Sample 

100 C 200 C 400 C 600 C 

ZB-3 97.23 90.21 87.21 85.00 

ZB-6 98.66 93.27 90.60 88.52 

ZB-12 97.27 90.82 86.84 85.14 

ZB-15 98.45 89.55 85.16 80.83 

ZB-W-3 97.63 92.59 91.67 90.52 

ZB-W-6 97.81 91.25 88.07 85.24 

ZB-W-12 96.93 90.42 85.72 82.93 

ZB-W-15 97.34 91.76 87.36 86.11 
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Figure 7.66. DSC curves of zinc borate obtained in aqueous phase after 1) 3, 2) 6 3) 12 

and 4) 15 hours and washed with ethanol. 
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Figure 7.67. DSC curves of zinc borate obtained in aqueous phase after 1) 3, 2) 6 3) 12 

and 4) 15 hours and washed with ethanol and water. 

 

The XRD study shows that the structure of the products washed with ethanol 

transform from amorphous to crystal phase with increasing reaction time (Figure 7.68). 

The samples mixed for 3, 6 and 12 hours are amorphous and they do not indicate any 

tendency to be crystal. However the mixing time is increased to 15 hour, the sample 

becomes crystal. The XRD pattern of the crystal sample shows both the characteristic 

peaks of sodium nitrate and zinc borate. The XRD peaks belong to sodium nitrate are 

shown by star according to JCPDS data of 80-813. The presence of sodium nitrate in 

this sample is due to the washing of the sample only with ethanol. When these products 

are washed with water as well as ethanol, the crystal structure of the sample mixed for 

15 h is disappeared and the product exhibits amorphous structure as shown in Figure 

7.69. However the solubility of sodium nitrate at 40 C is found as 102 g/100 cm3 and 

this value is significantly higher than the amount of sodium nitrate formed in the 

solution. These results are not consistent with literature since Ting et al. (2009) 

demonstrate that zinc borate samples having 12 and 15 hours mixing time are 

crystalline.  

 

 



 151 

 

Table 7.16. Thermal behavior of the zinc borates obtained in aqueous phase 

First Peak Second Peak 
Sample 

Onset (°C) Maximum 
(°C) 

Endset 
(°C) ΔH (J/g) Onset (°C) Maximum 

(°C) 
Endset 
(°C) ΔH (J/g) 

ZB-3 5.47 100.83 263.46 -97.14 504.43 545.69 582.27 -61.59 

ZB-6 42.74 100.36 235.10 290.26 495.44 534.46 575.23 -45.61 

ZB-12 5.31 99.92 236.45 -326.42 496.01 519.04 529.30 -4.90 

ZB-15 106.89 139.82 166.18 -484.42 298.27 309.79 316.18 -12.67 

ZB-W-3 33.05 100.59 204.70 -163.72 520.58 582.54 580.78 -10.67 

ZB-W-6 10.97 94.57 230.43 -220.17 504.43 538.45 582.27 -61.59 

ZB-W-12 48.91 98.21 162.34 -190.99 309.71 521.50 313.86 -1.68 

ZB-W-15 40.42 102.18 233.26 -304.98 245.55 296.39 365.92 -42.98 
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Figure 7.68. XRD pattern of zinc borate obtained in aqueous phase after 1) 3, 2) 6 3) 12 

and 4) 15 hours and washed with ethanol. 
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Figure 7.69. XRD pattern of zinc borate obtained in aqueous phase after 1) 3, 2) 6 3) 12 

and 4) 15 hours and washed with ethanol and water. 

 

The elemental composition of the products synthesized in aqueous phase is 

obtained by analytical titration technique, CHNS elemental analysis and EDX analysis. 
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Table 7.17. shows the ZnO % and B2O3 % contents of the zinc borate samples 

determined by conventional titration technique. B2O3/ZnO molar ratio of zinc borates 

produced in aqueous phase at different mixing periods is changing between 0.683 and 

0.764, except the sample having 15 hours mixing period and washed with only ethanol. 

B2O3/ZnO molar ratio of this sample is found as 0.958. Water content of zinc borate 

samples was determined by subtracting the summation of B2O3 % and ZnO % from 

unity. According to their ZnO %, B2O3 % and H2O % contents, the molecular formula 

of the products are evaluated. CHNS elemental analysis is carried out not only to expose 

the nitrogen content of the sample but also to understand if the nitrate ions are removed 

from the samples by washing of water or not. The results are tabulated in Table 7.18. It 

is demonstrated that the nitrogen content of the products are changing from 1.13 to 2.66 

and this content slightly decreases when the products are washed with water. The 

presence of carbon in the samples may be due to the CO2 adsorption of the samples 

from the air. Besides, analytical titration and CHNS analysis, EDX analysis is also 

performed to determine B, Zn, O, N contents of the samples and the results are given in 

Table 7.19. Boron content increases with increasing mixing period for the samples 

washed with only ethanol and the B% is reached its highest concentration for the 

sample having crystal structure (ZB-15). Nitrogen contents of the products determined 

by EDX analysis are greater than the values found by CHNS analysis, but it is in the 

range of accuracy of EDX analysis. When the B2O3/ZnO mol ratio values obtained from 

EDX analysis and analytical titration are compared with each other, it is observed that 

lower B2O3/ZnO mol ratio values are evaluated by EDX analysis results. 

The H2O weight % evaluated by different analysis are tabulated in Table 7.20. 

CHNS elemental analysis results show that H2O% of the synthesized products are 

changing from 17.91 to 20.79 which is close to 19.25 indicating the water loss 

belonging to zinc borate (ZnO∙B2O3∙2H2O) having two moles of crystal water (Briggs, 

2001). However, the H2O% content of the samples evaluated by CHNS results are 

moderately different than the content of H2O % obtained by TGA analysis. The H2O 

wt% of the samples found by TGA analysis reveals that H2O % are between 9.48 and 

19.17. In literature the water content of 2ZnO∙3B2O3∙3H2O and ZnO∙B2O3∙2H2O are 

indicated as 12.69% and 19.25%, respectively. Therefore, the synthesized samples 

having lower water content might be 2ZnO∙3B2O3∙3H2O, whereas the samples containing 

higher water content might be ZnO∙B2O3∙2H2O 
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Table 7.17. ZnO, B2O3 content, and B2O3/ZnO molar ratio of the products determined 
by chemical analysis. 

Weight % Sample ZnO B2O3 
B2O3/ZnO 
mol ratio Molecular formula 

ZB-3 43.26 30.77 0.711 3ZnO∙2B2O3∙9H2O 

ZB-6 42.99 27.73 0.692 3ZnO∙2B2O3∙9H2O 

ZB-12 40.07 30.43 0.764 3ZnO∙2B2O3∙10H2O 

ZB-15 32.48 30.94 0.958 ZnO∙B2O3∙6H2O 

ZB-W-3 44.81 31.27 0.683 3ZnO∙2B2O3∙9H2O 

ZB-W-6 42.28 30.94 0.736 3ZnO∙2B2O3∙9H2O 

ZB-W-12 43.78 30.95 0.734 3ZnO∙2B2O3∙8H2O 

ZB-W-15 42.36 31.78 0.755 3ZnO∙2B2O3∙9H2O 

 

Table 7.18. Elemental composition and water content of the products measured by 
CHNS elemental analysis. 

Average wt% 
Sample C H N H2O 

ZB-3 0.56 2.22 2.22 19.98 

ZB-6 0.24 2.31 2.18 20.79 

ZB-12 0.31 2.14 1.13 19.26 

ZB-15 0.25 2.18 2.66 19.62 

ZB-W-3 0.43 1.99 1.19 17.91 

ZB-W-6 0.44 2.15 2.13 19.35 

ZB-W-12 0.39 1.99 1.77 17.91 

ZB-W-15 1.51 2.30 2.02 20.70 

 

The zinc borate precipitation techniques used in this study were compared with 

each other by considering their efficiencies. The efficiencies of the techniques were 

calculated using the produced amount of zinc content of the samples. Table 7.21 

presents the input moles of zinc and output moles of zinc. The efficiency of the 

precipitation technique in the presence of surfactant is found as 30.14%, whereas the 

efficiencies of the samples prepared by coordination homogeneous precipitation are 

changing between 14.97% and 63.67%. However the efficiency of the precipitation 
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technique carried out by boric acid and zinc oxide was close to 100% in literature 

(Eltepe et al., 2007). 

 

Table 7.19. Elemental composition, and B2O3/ZnO molar ratio of the products 
determined by EDX analysis. 

Average wt% 
Sample 

B N O Zn B2O3/ZnO 
mol ratio 

ZB-3 2.77 5.30 41.09 50.84 0.16 

ZB-6 3.94 5.25 41.57 49.24 0.24 

ZB-12 6.82 3.72 40.65 48.81 0.42 

ZB-15 15.29 5.14 48.61 30.96 1.01 

ZB-W-3 8.10 5.08 38.81 48.00 0.55 

ZB-W-6 7.05 4.54 39.19 49.22 0.44 

ZB-W-12 8.84 4.13 41.35 45.67 0.54 

ZB-W-15 7.61 4.21 43.29 44.90 0.47 

 

Table 7.20. H2O weight percentages evaluated by TGA and CHNS elemental analysis. 

H2O weight % 
Sample 

TGA analysis CHNS analysis 

ZB-3 15.00 19.98 

ZB-6 11.48 20.79 

ZB-12 14.86 19.26 

ZB-15 19.17 19.62 

ZB-W-3 9.48 17.91 

ZB-W-6 14.76 19.35 

ZB-W-12 17.07 17.91 

ZB-W-15 13.89 20.70 
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Table 7.21. Efficiencies of zinc borate production techniques. 

Sample Production Technique 
Output moles of 

zinc in zinc 
borate 

Efficiency % 

ZBS-1 Precipitation in the 
presence of Span 60 30.14 30.14 

ZB-W-3 Homogeneous 
precipitation 14.97 14.97 

ZB-W-6 Homogeneous 
precipitation 45.70 45.70 

ZB-W-12 Homogeneous 
precipitation 63.67 63.67 

ZB-W-15 Homogeneous 
precipitation 49.12 49.12 

 

7.6. Lubricants  

 
Lubricants are essentially composed of one or more base oils representing at 

least 85% of the formulation. The most commonly used base stocks are mineral oils, 

complex mixtures of hydrocarbons that are produced from petroleum crude by various 

processing steps and involve three main chemical families, i.e. paraffins, naphthenes 

and aromatics (Haus et al., 2004). It is well established that pure petroleum base oil 

does not meet all the requirements of the mother engines and equipments. The usual 

solution of this problem is the addition of certain compounds which are capable of 

improveming the properties of base oil. Especially, antiwear and extreme pressure 

additives are essential for lubricants to protect the equipment from wear and enable it to 

operate successfully under heavy loads.  

In this study, light oil belonging to mineral oils family was used as the base oil 

and its tribological properties were tried to enhance by mainly boron-based additives. 

Another inorganic material, clinoptilolite rich mineral was tested to understand if it had 

antiwear property or not. An organic material sorbitan monostearate was also employed 

in the lubricants to obtain a better dispersion of inorganic particles. In the scope of the 

project, the effects of dispersing agent, zinc borate type, surfactant concentration on the 

tribological properties of the mineral oil were investigated. The lubricants containing 

zinc borate particles were compared with a commercial product called as BOR 

POWER. BOR POWER is one of the lubricants in the market that can be used in all 
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transport vehicles with 4-stroke engines. The characterization of this lubricant was 

performed since it was claimed that it contained boron material so what kind of boron 

source it included became the important question for our work considering the 

parallelism between this commercial product and ours. Therefore both BOR POWER 

oil and the particles obtained by separating the oily phase were identified. 

In literature, there is no study related to the employment of water-in-oil 

emulsions in lubrication processes according to our knowledge. However, oil-in-water 

emulsions are widely used in metal forming applications to provide lubrication and 

cooling when high temperature prevent use of neat oil products or the high speed 

operation necessitate an efficient removal of heat (Lu and Guo, 2009; Januszkiewicz et 

al., 2004). Therefore, it was aimed to examine the inverse emulsions containing zinc 

borate particles whether they could be used directly as lubricants or not. Consequently, 

the prepared inverse emulsion (E3) was also tested to present a new lubrication 

preparation technique in the field of both colloidal systems and nano-size particle 

preparation.  

Although there are many studies related to the utilization of clinoptilolite rich 

mineral in separation processes or the thermal stability of polymers (Tıhmınlıoğlu and 

Ülkü, 1996; Atakul et al., 2005) there is no research about the employment of zeolites in 

mineral oil to enhance the tribological behavior of base oil. This lack of literature 

motivated us to prepare lubricants containing clinoptilolite rich mineral. The 

tribological property of this lubricant was also analyzed. Moreover, clinoptilolite 

particles having 2-3 mm diameter was used as water adsorber in inverse emulsion which 

was tested as a lubricant.  

In addition the tribological behavior of the lubricants, their morphology, 

functional groups, and viscosities were also investigated. 

 

7.6.1. Optical Microscopy Study of Lubricants 

 
Inorganic materials possess many special physical and chemical properties, and 

it is anticipated that these materials as oil or grease additives will provide a well bonded 

boundary film to the steel surfaces which will enable it to work at high temperature and 

extremely high load. The dispersion of the inorganic particles is of great importance in 

order to be used as lubricating oil additives. For this reason, the surfaces of the additives 
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are generally modified or surface active agents are used in mineral oil (Huang et al., 

2006; Xue et al., 1997). So as to demonstrate the dispersion properties of the additives, 

the optical microphotographs of the prepared lubricants were taken.  

 

Effect of dispersing agent on the morphology of the lubricants 

The inorganic additives were not used alone to form lubricants. The surfactant, 

sorbitan monostearate was employed to cover the surfaces of inorganic additives and to 

provide a better dispersion of the particles in the mineral oil. Additionally, BYK 

products are examined to understand if they play a significant role in the dispersion of 

the particles or not. Figure 7.70 indicates the optical microphotographs of the base oil, 

base oil with surfactant and the lubricants prepared by commercial zinc borate 

(Firebrake 2335). The average diameters of the particles listed in Table 7.22 were 

measured by Olympus DP2-BSW program considering five different particles or 

droplets. The microphotograph of the mineral oil without any additive (Figure 7.69a) 

shows only an air bubble, whereas, the microphotographs of the oil with additives 

exhibit the particles are polydisperse in the mineral oil. Unlikely, the spherical 

morphology of sorbitan monostearate obtained by SEM (Figure 7.6), the 

microphotograph of the mineral oil including sorbitan monostearate shows that the 

particles of this surfactant are rod-like shape. The average length of these rod-like 

particles was calculated as 5.55 m (Figure 7.70b). The microphotograph of the 

lubricant with commercial zinc borate particles shows the particles having 5.55 m 

average diameter. When Viscobyk 5025 and Disperbyk 1161 are added to mineral oil 

with commercial zinc borate, the average diameters of the particles are found as 5.44 

and 1.80 m, respectively. The addition of Disperbyk into the base oil results a low 

degree of smaller particles, but they tend to agglomerate Viscobyk enhances the 

colloidal stability of the system compared to Disperbyk chemical as shown in Figure 

7.70d and 7.70e.  
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(a) (b) 

    
   (c)      (d) 

 
(e) 

Figure 7.70. The microphotographs of a) base oil (L1), b) base oil with sorbitan 
monostearate (L2) and the lubricants containing c) commercial zinc 
borate and sorbitan monostearate (L5) d) commercial zinc borate, 
sorbitan monostearate and Viscobyk e) commercial zinc borate, sorbitan 
monostearate and Disperbyk. (The microphotographs were taken by 
Olympus BX60M microscope). 
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Table 7.22. Average particle diameters of dispersed phase containing commercial zinc 
borate in mineral oil. 

Additives 
Sample 
Code 

Base 
Oil 

(cm3) Span 60 (g) 
Zinc Borate (g) 
2ZnO3B2O33.5H2

O 

Dispersing 
agent 

Average 
diameter of 

particles 
(m) 

L1 100 - - - - 

L2 100 1 - - 5.55 

L5 100 1 1 - 4.00 

L7 100 1 1 Viscobyk  
(0.05 cm3) 5.44 

L8 100 1 1 Disperbyk 
(0.05 cm3) 1.80 

 

 

Effect of zinc borate type on the morphology of the lubricants 

In the scope of this study, different types of zinc borate species were synthesized 

by different techniques and raw materials. These zinc borate particles were dispersed 

into the mineral oil and their morphology was analyzed by optical microscopy as shown 

in Figure 7.71. By taking the average diameter of five different particles displayed on 

the microphotographs, the average particle diameters were determined. Table 7.23 

indicates the types of inorganic additives and their average diameters within the oil. 

When the zinc borate species produced from boric acid and zinc oxide and dried 

conventionally was used as an additive for oil, it was observed that the particles 

agglomerate and form larger particles (Figure 7.71a). The average diameter of the 

particles is 2.84 m and this value is in good agreement with particle size of the zinc 

borate species as shown in Figure 7.8. On the other hand, the microphotograph of the 

lubricant including zinc borate particles prepared by supercritical drying is cloudy and 

the observation of the particles is very difficult since it has nano-sized crystals and the 

microscope allows displaying particles in micron-sized (Figure 7.71b). The shape of the 

zinc borate particles prepared in the presence of the surfactant totally differs from the 

others except the shape of sorbitan monostearate. The morphology of these particles 

also shows rod-like structure (Figure 7.71c). When the zinc borates synthesized with 

coordination homogeneous precipitation method in the presence of ammonia and mixed 
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for 6, 15 and 12 hours were added into the mineral oil, average diameters were found as 

0.95, 3.06 and 1.67 m. It was revealed that the particle size was increased by 

increasing mixing time as shown in Figures 7.71d, 7.71e, and 7.71f. This is consistent 

with the results of SEM analysis of the zinc borates produced in the presence of 

ammonia. 

Effect of surfactant concentration on the morphology of the lubricants 

The surfactant concentration in the mineral oil was examined by decreasing the 

amount of sorbitan monostearate from 1g to 0.00005 g which was below its critical 

micelle concentration. The microphotographs of these samples are demonstrated in 

Figure 7.72 and the average diameters of the droplets are listed in Table 7.24. The 

average diameters of the particles are increased with the increasing surfactant 

concentration, accordingly.  

 

Clinoptilolite rich mineral as lubricant additive  

In this part of the study, clinoptilolite rich mineral having 5 m particle size was 

used as a lubricating oil additive and the lubricant morphology was also investigated by 

optical microscopy. Figure 7.73 indicates the microphotograph of the lubricant 

containing clinoptilolite rich mineral. From this microphotograph, the average diameter 

of the particles was found as 1.19 m. 
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(a) (b) 

    
(c)      (d) 

    
(e) (f) 

Figure 7.71. The microphotographs of the lubricants containing surfactant and zinc 
borate produced by a) zinc oxide and boric acid and dried by 
conventionally (ZBC) b) zinc oxide and boric acid and dried by 
supercritical ethanol (ZBE) c) borax decahydrate, zinc nitrate and Span 
60 (ZBS-1) d) borax decahydrate, zinc nitrate and ammonia mixed for 6h 
dried washed by water and ethanol e) borax decahydrate, zinc nitrate and 
ammonia mixed for 15 h washed by only ethanol f) borax decahydrate, 
zinc nitrate and ammonia mixed for 12 h washed by water and ethanol. 
(The microphotographs were taken by Olympus BX60M microscope). 



 163 

Table 7.23. Average particle diameters of dispersed phase containing different types of 
zinc borate in mineral oil. 

Sample 
Code 

Type of  
Zinc Borate  

 

Average 
diameter of 

particles (m) 

L3 ZBC 2.89 

L4 ZBE 1.61 

L6 ZBS-1 3.57 

L9 ZB-W-6 0.95 

L10 ZB-15 3.06 

L11 ZB-W-12 1.67 

 

 

Inverse emulsions as lubricant  

Even though the lubricant preparation in industry consists of the addition of 

organic or inorganic materials into the base oil, this study aims to use the inorganic 

boron based particles synthesized in the inverse micelles without separating them from 

the continuous phase. As a result, the inverse emulsion was heated up to 160 C to 

remove water from the emulsion. Figure 7.74 presents the microphotograph of the 

inverse emulsion prepared by one-microemulsion technique (E3). It is observed that the 

droplets have tendency to agglomerate and this explains why the stable inverse 

emulsions can not be obtained. The average diameter of the droplets is 1.81 m. 
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   (a)      (b) 

 
(c) 

Figure 7.72. The microphotographs of the lubricants containing zinc borate produced by 
borax decahydrate, zinc nitrate and ammonia mixed for 12 h and a) 
0.00005 g, b) 0.1 g, c)1 g surfactant (The microphotographs were taken by 
Olympus BX60M microscope). 

 
 
Table 7.24. Average particle diameters of dispersed phase containing different amount 

of surfactant in mineral oil. 

Additives Sample 
Code 

Base Oil 
(cm3) 

Span 60 (g) Zinc Borate  
 

Average 
diameter of 

particles (m) 

L12 100 0.00005  ZB-W-12 1.06 

L13 100 0.1 ZB-W-12 1.49 

L11 100 1 ZB-W-12 1.67 
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Figure 7.73. The microphotograph of the lubricant containing surfactant and 

clinoptilolite rich mineral (The microphotograph was taken by Olympus 
BX60M microscope). 

 
 

 
Figure 7.74. The microphotograph of the inverse emulsion (E3) heated up to 160 C 

(The microphotograph was taken by Olympus BX60M microscope) 

 

7.6.2. Surface Tension and Viscosities of Lubricants 

 
Surface Tension  

Liquid properties, such as surface tension, hydrophile–lipophile-balance (HLB), 

viscosity, and density, are known to affect the ability of a liquid to wet a solid (Kim et 

al., 2000). However, systematic research on this subject has been limited to adsorption 

of surfactants on inorganic surfaces. Surface tension is a phenomenon caused by the 

cohesive forces between liquid molecules. It is an effect within the surface film of a 

liquid that causes the film to behave like an elastic sheet. Commonly it is measured in 

mN/m or mJ/m2 depending on how it is defined. The knowledge of surface tension is 

useful for many applications and processes as the surface tension governs the chemical 
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and physical behavior of liquids. It can be used to determine the quality of numerous 

industrial products such as paints, ink jet products, detergents, cosmetics, 

pharmaceuticals, lubricants, pesticides and food products (Lee et al., 2009). In this part 

of the study, how the surface tension of the mineral oil was affected with the addition of 

the surfactant was examined. The average value of the mineral oil (L1) surface tension 

was found as 31.7 mN/m at 25 C, this value decreased to 31.0 mN/m by adding the 

sorbitan monostearate in the base oil (L2) at the same temperature. Furthermore, the 

surface tension of the mineral oil was 31.6 mN/m at 70 C, whereas, the oil including 

sorbitan monostearate was evaluated as 26.8 mN/m at the same temperature. 

Consequently, it was understood that the surfactant used for the preparation of the 

inverse emulsions and the lubricants rarely decreased the surface tension of the mineral 

oil. This result was consistent with literature (Peltonen and Yliruusi, 2000). The 

addition of the surfactant into the water decreased the surface tension of the water from 

70.1 mN/m to 68.9 mN/m. 

 

Viscosity 

Viscosity is defined as a measurement of resistance to flow and is a key physical 

property of lubricants. It must be high enough to provide proper lubricating films while 

avoiding excessive friction losses. The viscosity of complex organic mixtures such as 

oils and fuels is strongly dependent on the size (Wakabayashi, 1997), shape and 

chemical composition of their different constituents, and on the molecular interactions 

(Burg et al., 1997). Industrial lubricating oils are generally measured at 40° C and 

results are reported as centiStokes (cSt) or centiPoise (cP).  

 

Effect of dispersing agent on the viscosity of the lubricants 

The viscosities of the lubricants containing commercial zinc borate were 

measured at 40 °C and the results are shown in Figure 7.75. The viscosity of the mineral 

oil was measured as 29.50 cP (33.52 cSt) and this value was consistent with the 

literature value of light neutral SN-150 mineral oil which is 35 cSt. When the sorbitan 

monostearate and zinc borate additive were added to mineral oil, the viscosities of these 

lubricants significantly increase. However a slight decrease is observed for the 

viscosities of lubricants containing Viscobyk 5025 and Disperbyk 1161 since they 

include viscosity depressants. Moreover, the shear rate-shear stress characteristics of the 

lubricants are shown in Figures 7.76. Even though these curves indicate that the 
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rheologies of the lubricants have some deviations from the linearity, the viscosity values 

are constant and these fluids can be accepted as Newtonian fluids. Considerable 

decreases in the viscosities of all the lubricants between 60-70 1/sec are observed as 

shown in Figures 7.76. This means that apparent viscosity falls over shear rate and the 

original viscosity is restored.  

 

Effect of zinc borate type on the viscosity of the lubricants 

The lubricants having different types of zinc borate species have similar 

viscosity values in the range of 32.00-32.74 cP as shown in Figure 7.77. The lubricants 

containing zinc borate produced from zinc oxide and boric acid and dried 

conventionally and the zinc borate synthesized in the presence of surfactant decreases 

the viscosity when compared with the mineral oil with surfactant. Also, the shear rate-

shear stress characteristics of the lubricants are shown in 7.78. Similar to previous 

samples, the viscosity values are constant and these fluids can be accepted as Newtonian 

fluids.  
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Figure 7.75. Viscosity of the mineral oil and the lubricants containing commercial zinc 

borate. L1: mineral oil; mineral oil with L2: sorbitan monostearate, L5: 
sorbitan monostearate and commercial zinc borate, L7: sorbitan 
monostearate, commercial zinc borate and Viscobyk 5025, L8: sorbitan 
monostearate, commercial zinc borate and Disperbyk 1161. 
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Volume fractions of the suspended particles were also calculated in this study 

considering Einstein’s viscosity theory. The volume fraction of the suspended particles 

 in the oil was found by using Equation 7.16.  

 

 5.21r           (7.16) 

 

where; 

r is relative viscosity and it is the ratio of dispersion viscosity to the viscosity of liquid 

dispersant. The calculated relative viscosities and the volume fractions of the suspended 

particles for the lubricants are listed in Table 7.25. When sorbitan monostearate and 

zinc borate prepared by supercritical ethanol was added to mineral oil, highest volume 

fraction was obtained since this type of zinc borate had the lowest particle size, hence 

the particles suspended in the mineral oil. 
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Figure 7.76. Shear rate-shear stress characteristics of the mineral oil, the mineral oil 

with surfactant and the lubricants prepared by commercial zinc borate. L1: 
mineral oil; mineral oil with L2: sorbitan monostearate, L5: sorbitan 
monostearate and commercial zinc borate, L7: sorbitan monostearate, 
commercial zinc borate and Viscobyk 5025, L8: sorbitan monostearate, 
commercial zinc borate and Disperbyk 1161. 
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Figure 7.77. Viscosity of the mineral oil, mineral oil with surfactant, and the lubricants 

prepared by different zinc borate additives. Mineral oils with sorbitan 
monostearate and zinc borate L3: produced from boric acid and zinc oxide, 
dried by conventionally, L4: produced from boric acid and zinc oxide, 
dried by supercritical ethanol, L6: produced in the presence of sorbitan 
monostearate. 
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Figure 7.78. Shear rate-shear stress characteristics of the lubricants prepared by 

different zinc borate additives. Mineral oils with sorbitan monostearate 
and zinc borate L3: produced from boric acid and zinc oxide, dried by 
conventionally, L4: produced from boric acid and zinc oxide, dried by 
supercritical ethanol, L6: produced in the presence of sorbitan 
monostearate. 

 

 

Table 7.25.Volume fractions of the suspended particles in the mineral oil 

Lubricant 
Code Pa.s) Pa.s r 

L1 0.030 0.030 1 0 

L2 0.033 0.030 1.110 0.042 

L3 0.032 0.030 1.085 0.034 

L4 0.033 0.030 1.108 0.043 

L5 0.032 0.030 1.094 0.037 

L6 0.032 0.030 1.083 0.033 

L7 0.030 0.030 1.028 0.011 

L8 0.031 0.030 1.039 0.016 
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7.6.3.  Functional Groups of Lubricants 

 
FTIR spectrometry is a fast nondestructive analytical method used for the 

assessment of physical and chemical properties of the lubricants and base oils. It is 

suitable not only for detection of the additives but also determination of degradation and 

oxidation. The FTIR spectra of all the lubricants before the utilization of them in the 

tribological test were obtained. The FTIR spectra of the mineral oil and the oil heated up 

to 160 °C for the preparation of L1 lubricant is given in Figure 7.79. The spectra of 

these products exhibit the specific peaks of mineral oil. The band at 2928 cm-1 is the 

stretching vibrations of hydrocarbons, whereas the band at 2854 cm-1 is related to the 

asymmetric stretching of –C-H. Besides them, the peak at 1464 cm-1 and 1377 cm-1 are 

attributed to the –CH2 and –C-H symmetric vibrations of hydrocarbons. When the oil 

was heated the spectrum of the mineral oil did not change, which indicated that no 

degradation occurred after the heating of the oil. Furthermore, oxidation peaks (1715-

1719 cm-1) are not observed when the oil is exposed to four ball wear test. 
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Figure 7.79. FTIR spectra of 1) mineral oil and 2) mineral oil heated up to 160°C 3) 

mineral oil after four ball wear test.  
 

The samples having sorbitan monostearate and zinc borate additives are 

displayed through Figures A.1-A.6 in Appendix A. In these spectra the band at 1700 
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cm-1 is one of the characteristic peak of sorbitan monostearate and it shows the presence 

of carbon oxygen double bond. Furthermore, the specific bands for CH bends appear at 

approximately 1000 cm-1 for the in-plane bends and at about 675 cm-1for the out-of-

plane bend. For all of the lubricants except L1 and L2 lubricants, the characteristic 

peaks of zinc borate are detected and they are assigned referring to the literature (Goa et 

al., 2009c). The band at 1047 cm-1 is the stretching of B(4)-O, and the peaks between 

745-658 cm-1 are belonging to out-of-plane bending mode of B(3)-O. In addition to zinc 

borate and the surfactant characteristic peaks, the peak at 2350 cm-1 is assigned to the 

carbon dioxide and nitrogen in the air and this band can be seen either a positive or a 

negative peak for all the samples. All these spectra revealed that the structure of the 

lubricants did not change when they were exposed to four ball wear test. 
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Figure 7.80. FTIR spectra of L15 lubricant containing sorbitan monostearate and 

clinoptilolite rich mineral 1) before and 2) after four ball wear test. 

 

Unlike the lubricants including zinc borate, L15 lubricant prepared by the 

addition of clinoptilolite rich mineral in the mineral oil exhibits the characteristics peaks 

of natural zeolite. The peaks at 450 and 609 cm-1are assigned to the internal and external 

Si(Al)-O double ring, respectively. H2O bending vibration is detected at 1627 cm-1, 

whereas the peak related to the H-bonded O-H stretching are observed at 3400 cm-1 as 

shown in Figure 7.80 (Breck, 1974). The presence of the characteristic peaks of natural 

zeolite indicates that clinoptilolite rich mineral oil suspends in the mineral oil. 
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7.6.4. Color Change of Lubricants 

 
In this part of the study, the colors of the lubricants before and after four ball 

wear tests were determined by UV spectroscopy in the visible region. As shown from 

Figure 7.81, the lubricants prepared by the addition of sorbitan monostearate and zinc 

borate are yellow color, whereas the lubricant (L15) containing zeolite is grey. The 

lubricants prepared by the removing of water content from the inverse emulsions are 

orange.  

 

 

Figure 7.81. The photographs of the prepared lubricants. Mineral oils with sorbitan 
monostearate and L9: zinc borate produced by coordination 
homogeneous precipitation, mixed for 6 h. L10: zinc borate produced by 
coordination homogeneous precipitation, mixed for 15 h, L11: zinc 
borate produced by coordination homogeneous precipitation, mixed for 
12 h., L12:, 0.00005 g sorbitan monostearate and zinc borate mixed for 
12 h. L13: mineral oil, 0.1 g sorbitan monostearate and zinc borate, L14: 
precipitate obtained by inverse emulsion having 30% propanol-2, L15: 
clinoptilolite rich mineral, L16: inverse emulsion of which water was 
removed by water, L17: inverse emulsion of which water was removed 
by clinoptilolite rich mineral. 

 

UV spectrum of mineral oil is shown in Figure 7.82 and it is observed that there 

is an increase in the absorbance at 400-450 nm. The UV spectra of the lubricants 

containing only sorbitan monostearate and, sorbitan monostearate and zinc borate 
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prepared by coordination homogeneous technique, mixed for 15 h are indicated in 

Figure 7.83 and 7.84, respectively. The UV spectra of the other lubricants are displayed 

in Figure B.1-B.6 in Appendix B. The differences in the absorbances at 450 nm for all 

the lubricants are exhibited in Figure 7.85. It was revealed that the absorbances of the 

lubricants which were exposed to four ball wear test increased since the additive 

particles were crushed into the small pieces as a result of the high load during the test 

and accordingly, they suspended in the oil. 
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Figure 7.82. UV spectrum of mineral oil (L1) after four ball wear test. 
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Figure 7.83. UV spectrum of L2 lubricant containing only sorbitan monostearate 1) 

before and 2) after four ball wear test. 
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Figure 7.84. UV spectrum of L10 lubricant containing sorbitan monostearate and zinc 

borate prepared by coordination homogeneous technique and mixed for 15 
h 1) before and 2) after four ball wear test. 
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Figure 7.85. Absorbance differences of the lubricants at 450 nm. L1: mineral oil, 

mineral oil with L2: sorbitan monostearate, L9: zinc borate produced by 
coordination homogeneous precipitation, mixed for 6 h. L10: zinc borate 
produced by coordination homogeneous precipitation, mixed for 15 h, 
L11: zinc borate produced by coordination homogeneous precipitation, 
mixed for 12 h., L12: 0.00005 g sorbitan monostearate and zinc borate 
mixed for 12 h. L13: 0.1 g sorbitan monostearate and zinc borate, L14: 
precipitate obtained by inverse emulsion having 30% propanol-2, L15: 
clinoptilolite rich mineral, L16: inverse emulsion of which water was 
removed by water, L17: inverse emulsion of which water was removed by 
clinoptilolite rich mineral. 

 

7.6.5.  Tribological Properties of Lubricants 

 
There have been many investigations on the tribological properties of lubricants 

with different inorganic particles added (Dong and Hu, 1998; Hu and Dong, 1998; 

Battez et al., 2006; Yu et al., 2010). A large number of papers have reported that the 

addition of particles to base oil is effective in reducing wear and friction. This part of 

the study attempts to explore the tribological behavior of synthesized boron based 

particles, clinoptilolite rich mineral in the mineral oil. The tribological property of the 

inverse emulsion is examined, as well. The results are given in order considering the 

effects of dispersing agent, zinc borate type, as well as surfactant concentration on the 

tribological properties of the lubricants. Among the tribotesters used for the 
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determination of wear and friction properties of the lubricants, a four ball wear test 

machine was used in order to reveal the effect of inorganic particles in the anti-wear and 

friction-reduction abilities. The outputs of the four ball tester indicated the optical 

microscopy microphotographs and the friction and the wear test results conducted at 

120060 rpm and under a constant load of 392 N. A computer connected to the four ball 

tribometer provided the visualization and evaluation of the friction coefficient and wear 

scar diameter of the fixed balls used in the four ball tribometer. The special software 

evaluated the mean scar diameter for the three fixed balls and mean friction coefficient 

value considering one hour rotating period.  

 

Effect of dispersing agent on the tribological properties of the lubricants 

Since stabilization of commercial zinc borate particles in the mineral oil was 

resolved by the addition of a dispersing agent or the use of a surface modification 

preparation technique, their effect on the tribological property of the mineral oil was 

obtained by a four ball tribometer. Figures 7.86 and 7.87 exhibit typical output of the 

results measured by four ball tribometer and evaluated by lubricant diagnostics 

program. The left side of the figures shows the friction coefficient of the samples with 

respect to time, whereas, the right side displays the optical microphotograph of one of 

the fixed balls used in the four-ball wear tester. As seen in Figure 7.86, the friction 

coefficient of the mineral oil without any additive fluctuates with time and the mean 

friction coefficient of the base oil is 0.099. The wear scar of the ball rotated in mineral 

oil is extremely large and the average wear diameter of the sample is 1.402 mm. When 

the sorbitan monostearate was introduced into the oil as a dispersing agent, the friction 

coefficient became more stable than the mineral oil and it decreased with increasing 

time. The tests of other lubricants have similar outputs indicated in Figures 7.86 and 

7.87. The measured friction coefficient and wear scar diameter values of the lubricants 

are shown in Figure 7.88 and 7.89, respectively. According to friction coefficient values 

in Figure 7.88, the employment of zinc borate, sorbitan monostearate and other 

additives has scarce effect on the reduction of friction coefficient. However, it can be 

seen that the lubricating oils with additives give a smaller and more stable friction 

coefficient than pure mineral oil. Stable friction coefficient of the oil with additive can 

be explained in that at a given concentration, the particles more easily will penetrate 

into the interface with mineral oil and form continuous film in concave of rubbing face 

which can decrease shearing stress, therefore, give low friction coefficient. The wear 
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scar diameters on the surfaces of the balls, running in the mineral oil with additives are 

smaller than that running in the mineral oil. For the anti-wear test, when sorbitan 

monostearate is added to the mineral oil the worn scar diameter is decreased by 53.21% 

as compared to the mineral oil without any additives. The anti-wear mechanism of the 

surfactant is attributed to its strong interaction with surfaces and formation of ordered 

structures (Wasilewski and Sulek, 2006). On the other hand, the lubricants containing 

zinc borate species have improving effect on the anti-wear ability of the mineral oil. 

However the friction could not be enhanced by these additives. Among these lubricants, 

the best result for anti-wear ability is obtained for the lubricant containing commercial 

zinc borate and Viscobyk (L7). The wear scar diameter is reduced by 54.92% for L7 

lubricant as compared to the mineral oil (L1) (Figure 7.89).  

 

 
Figure 7.86. The wear and friction behavior of the mineral oil (L1). 
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Figure 7.87. The wear and friction behavior of the mineral oil having sorbitan 

monostearate (L2). 
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Figure 7.88. Friction coefficient of the mineral oil, mineral oil with surfactant and the 

lubricants containing commercial zinc borate. L1: mineral oil, mineral oil 
with L2: sorbitan monostearate, L5: sorbitan monostearate and commercial 
zinc borate, L7: sorbitan monostearate, commercial zinc borate and 
Viscobyk 5025, L8: sorbitan monostearate, commercial zinc borate and 
Disperbyk 1161. 
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The wear resistance mechanism of the lubricant including additives is due to the 

deposition of particles on the worn surface which may decrease the shearing stress and 

strong attachment of the tribofilms to the steel surfaces, thus improving the tribological 

properties. 

 

Effect of zinc borate type on the tribological properties of the lubricants 

Boron compounds have been reported to be effective extreme pressure and anti 

wear additives (Zheng et al., 1998; Dong and Hu, 1998; Hu and Dong, 1998; Erdemir, 

1995). Especially metal borates are often used as lubricating oil additives. In order to 

explore the antiwear efficiency of the synthesized zinc borates the lubricants prepared 

by using different types of zinc borate species were tested in the four ball machine. 

Figure 7.90 shows the wear and friction behavior of mineral oil having sorbitan 

monostearate and zinc borate synthesized by coordination homogeneous precipitation 

technique, mixed for 15 h and washed by water and ethanol. It was observed that the 

wear scar diameter was lower than the diameter of the ball lubricated with pure mineral 

oil. 
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Figure 7.89. Wear scar diameter of the mineral oil, mineral oil with surfactant and the 

lubricants containing commercial zinc borate.L1: mineral oil, mineral oil 
with L2: sorbitan monostearate, L5: sorbitan monostearate and commercial 
zinc borate, L7: sorbitan monostearate, commercial zinc borate and 
Viscobyk 5025, L8: sorbitan monostearate, commercial zinc borate and 
Disperbyk 1161. 
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Figure 7.90. The wear and friction behavior of the mineral oil having sorbitan 

monostearate and zinc borate synthesized by coordination homogeneous 
precipitation technique, mixed for 15 h and washed by water and ethanol. 

 

Figures C.1, and C.2 exhibit typical output of the friction and wear analysis 

results in Appendix C. The friction coefficient and the wear scar diameter of the 

samples are shown in Figure 7.91 and Figure 7.92, respectively. Zinc borate species 

produced by coordination homogeneous precipitation and mixed for 6, 12 and 15 hours 

displayed an insufficient effect to decrease the friction coefficient. However, the friction 

coefficient of the lubricant contained the zinc borate (ZB-15) decreased with increasing 

time. This type of zinc borate exhibited crystal structure and unlike the other samples 

(ZB-W-6 and ZB-W-12) the morphology of this type of zinc borate showed rod-like 

crystals. As a consequence, the mechanism of the apparent anti wear action of this zinc 

borate could be explained by the crystals of the sample. The crystals might have layered 

structure with interlayer bonds. Such a structure caused the formation of tribofilm on 

the metal surface. The lowest wear scar diameters were obtained when zinc borate 

obtained by homogeneous precipitation (ZB-W-12) was introduced into the base oil. 

The wear resistance mechanism of the lubricants including additives is due to the 

deposition of zinc borate particles on the worn surface which may decrease the shearing 

stress, and strong attachment of the tribofilms to the steel surfaces, thus improving the 

tribological properties. The scar diameter was reduced by 60.77% for lubricant 

containing zinc borate obtained by homogeneous precipitation and mixed for 12 h as 

compared to the mineral oil (L1). The other types of zinc borate did not have any 
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significant effect to reduce the wear when compared with the mineral oil having 

surfactant (L2). 
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Figure 7.91. Friction coefficient of the mineral oil, mineral oil with surfactant and the 

lubricants containing different types of zinc borate. L1: mineral oil, 
mineral oil with L2: sorbitan monostearate and L3: zinc borate produced 
from boric acid and zinc oxide, dried by conventionally, L4: zinc borate 
produced from boric acid and zinc oxide, dried by supercritical ethanol L6 
zinc borate produced in the presence of sorbitan monostearate, L9: zinc 
borate produced by coordination homogeneous precipitation, mixed for 6 
h. L10: zinc borate produced by coordination homogeneous precipitation, 
mixed for 15 h, L11: zinc borate produced by coordination homogeneous 
precipitation, mixed for 12 h 
 

Effect of surfactant concentration on the tribological properties of the lubricants 

By so far the tribological test of the lubricants revealed that the surfactant played 

a major role in the enhancement of the antiwear and friction reducing properties. The 

amounts of the surfactant in the previous samples were constant as 1 g which was 

significantly larger than the critical micelle concentration. So as to understand the effect 

of surfactant concentration on the tribological properties of the mineral oil, the 

lubricants were formed by changing the surfactant amount, while the same type zinc 

borate (ZB-W-12) were dispersed in the oil. The friction and behavior of the lubricants 

having 0.00005 g, 0.1 g and 1 g surfactant are shown in Figures C.3, C.4, and C.2 in 
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Appendix C, respectively. It was observed that the friction coefficient became stable by 

increasing the amount of surfactant. The wear scar diameters of the lubricants increased 

when the surfactant concentration was decreased. The results are explicitly shown in 

Figures 7.93 and 7.94. When the lubricants having only surfactant (L2) and  the one 

containing same amount of surfactant (1 g) and also zinc borate particles (L11) were 

compared with each other, it was revealed that the lubricant containing also zinc borate 

(ZB-W-12) had the ability to decrease the wear scar diameter as seen in Figure 7.94. 
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Figure 7.92. Wear scar diameter of the mineral oil, mineral oil with surfactant and the 

lubricants containing different types of zinc borates. L1: mineral oil, 
mineral oil with L2: sorbitan monostearate and L3: zinc borate produced 
from boric acid and zinc oxide, dried by conventionally, L4: zinc borate 
produced from boric acid and zinc oxide, dried by supercritical ethanol L6 
zinc borate produced in the presence of sorbitan monostearate, L9: zinc 
borate produced by coordination homogeneous precipitation, mixed for 6 
h. L10: zinc borate produced by coordination homogeneous precipitation, 
mixed for 15 h, L11: zinc borate produced by coordination homogeneous 
precipitation, mixed for 12 h 

 
 

It was understood that zinc borate particles caused the decrease in the wear scar 

diameter. The highlighted part of the tribological results is the exposure of the 

surfactant effect in the enhancement of anti-wear ability of the mineral oil. In literature 

studies related to the employment of metal borate particles with a surfactant claim that 
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zinc borate develops the tribological properties of the mineral oil. However, the 

researchers do not notice or consider the effect of the surfactant on the tribological 

results (Dong and Hu, 1998 and Hu and Dong, 1998). But in this study it was explored 

that the introduction of the mixture containing ester the base oil shows stable friction 

coefficient with increasing time. This might be due to the strong interaction of 

surfactants with surfaces, formation of ordered structures (Wasilewski and Sulek, 2006). 

Besides them, when the surfactant concentration was used higher than the critical 

micelle concentration, the surfactant covers the surfaces and enables to improve the 

tribological characteristic of the base oil. 
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Figure 7.93. Friction coefficient of the mineral oil, mineral oil with surfactant and the 

lubricants containing zinc borate synthesized by homogeneous 
precipitation and mixed for 12 h and different amount of surfactant. L12: 
0.00005 g sorbitan monostearate, L13: 0.1 g sorbitan monostearate, L11: 
1g sorbitan monostearate. 
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Figure 7.94. Wear scar diameter of mineral oil, mineral oil with surfactant and the 

lubricants containing zinc borate synthesized by homogeneous 
precipitation and mixed for 12 h and different amount of surfactant. L12: 
0.00005 g sorbitan monostearate, L13: 0.1 g sorbitan monostearate, L11: 
1g sorbitan monostearate. 

 
 

Clinoptilolite rich mineral as lubricant additive and water adsorber in inverse 

emulsion 

Among the inorganic materials used as antiwear additives, clinoptilolite rich 

mineral was tested in two ways. Firstly, clinoptilolite with 5 m particle size was 

dispersed in the mineral oil and it was investigated whether it had antiwear ability or 

not. The test result is indicated in Figure C.7 in Appendix C. The friction coefficient 

value of the sample is almost stable and the average friction coefficient is 0.080, 

whereas the average wear scar diameter is 0.613 mm. Therefore the wear scar diameter 

is reduced by 6.70% for this lubricant as compared to the mineral oil containing 

surfactant. This result proved that clinoptilolite rich minerals could also be used as 

antiwear additives in the base oils. In literature, the mechanism responsible for the 

improvement of tribological properties of base oil by inorganic mineral is explained by 

the formation of a protective layer with smoother and harder surface on rubbed metal 

surface. These super lubricious oxide layers on the worn ferrous surfaces enhanced the 

tribological properties of the mineral oil (Yu et al., 2010). 
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Secondly, the water adsorber property of clinoptilolite rich mineral was 

examined by adding clinoptilolite rich minerals having 2-3 mm particle size in the in the 

inverse emulsion. The inverse emulsion containing clinoptilolite particles were kept for 

two days for the adsorption of water from the inverse emulsion .The lubricant obtained 

after the separation of clinoptilolite particles (L15) was tested by the four ball 

tribometer. Figure C.8 in Appendix C shows the friction and wear behavior of this 

sample. The friction coefficient value of the sample is almost stable and the average 

friction coefficient is 0.080, whereas the wear scar diameter is 0.565. 

 

7.6.6.  Characterization of the Worn Surfaces  

 
The wear scar surfaces of the balls after the tests with lubricants were 

characterized by optical microscope, and SEM. The surface roughnesses of the scars 

were measured and the elemental analysis was also carried out by EDX in order to 

understand the lubrication mechanism. 

 

Effect of dispersing agent on the worn surfaces  

The optical microscope microphotographs of worn surfaces of both rotating and 

fixed balls were obtained for all the lubricants. The microphotographs of the balls 

lubricated with pure mineral oil, oil with surfactant and the lubricants containing 

commercial zinc borate are shown in Figures between 7.95 and 7.99. The worn surfaces 

of the rotating balls show continuous scars around the balls while the worn surfaces of 

the fixed balls exhibit circular and ellipsoid structures. Since the anti-wear performance 

of the pure mineral oil is very poor, the wear scar area of the balls lubricated with 

mineral oil are larger than the others. The addition of dispersing agent in the mineral oil 

enhances the worn surfaces since the trace of the worn surfaces of the fixed balls 

lubricated with Disperbyk displays circular scar, whereas the others show ellipsoid 

shape scars. 
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   (a)      (b) 

Figure 7.95. The optical microphotographs of the worn surfaces of a) rotating ball b) 
fixed ball lubricated with mineral oil without any additive (L1). 
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   (a)      (b) 

Figure 7.96. The optical microphotographs of the worn surfaces of a) rotating ball b) 
fixed ball lubricated with mineral oil including sorbitan monostearate (L2). 

 

In order to obtain more detailed information of the worn surfaces of the steel 

balls, the morphology of the surfaces of the fixed balls were examined by SEM. The 

SEM images of the fixed ball surfaces are shown in Figure 7.100-Figure 7.104. Even 

though these SEM images are similar to those obtained by optical microscopy, more 

particular visualization can be obtained by SEM. As shown in Figure 7.100, severe wear 

is observed for the ball lubricated with mineral oil without any additives and small 

hollows take place due to the poor lubrication property of the mineral oil and protective 

film can not be produced on the rubbing surfaces. The worn scar depths decrease by the 

addition of sorbitan monostearate into the mineral oil (Figure 7.101). It verified the anti-

wear action of the surfactant and its enhancement of the load carrying capacity. As 
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esters are polar molecules, they tend to migrate to metal surfaces and form physical 

bonds with surfaces. This result is in agreement with literature which indicates the anti-

wear action of sorbitan ester surfactants (Wasilewski et al., 2006). 
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   (a)      (b) 

Figure 7.97. The optical microphotographs of the worn surfaces of a) rotating ball b) 
fixed ball lubricated with mineral oil including sorbitan monostearate and 
commercial zinc borate (L5). 
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   (a)      (b) 

Figure 7.98. The optical microphotographs of the worn surfaces of a) rotating ball b) 
fixed ball lubricated with mineral oil including sorbitan monostearate, 
commercial zinc borate and Viscobyk (L7). 

 

When the balls lubricated with commercial zinc borate, few scratches on the 

steel surface was observed (Figure 7.102). Less worn and much smoother surface was 

obtained by using Viscobyk 5025 than that lubricated with mineral oil including 

Disperbyk 1161 (Figures 7.103 and 7.104). It is revealed that Viscobyk has a potential 
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use as an anti-wear agent, while Disperbyk has friction-reducing property since they are 

the carboxylic acid esters. In literature it is stated that organic acid may react with metal 

surface to form chemical adsorbed or reacted boundary film which improves the 

tribological characteristic of the oil (Xue et al., 1997). 
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Figure 7.99. The optical microphotographs of the worn surfaces of a) rotating ball b) 

fixed ball lubricated with mineral oil including sorbitan monostearate, 
commercial zinc borate and Disperbyk (L8). 

 

 

    
   (a)      (b) 

Figure 7.100. SEM images of the worn surface of the steel ball lubricated with mineral 
oil (L1) a) 65x and b) 1000x magnification. 
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   (a)      (b) 

Figure 7.101 SEM images of the worn surface of the steel ball lubricated with mineral 
oil including sorbitan monostearate (L2) a) 65x and b) 1000x 
magnification. 

 

    
   (a)      (b) 

Figure 7.102. SEM images of the worn surface of the steel ball lubricated with mineral 
oil including sorbitan monostearate and commercial zinc borate (L5) a) 
120x and b) 1500x magnification. 

 
 

The chemical composition of the worn surfaces formed between two rubbing 

bodies in the presence of the lubricants were determined since it was the first key area to 

look at in searching for factors that affected the lubricants’ anti-wear performance. 

However, these kinds of analysis were extensively carried out by X-ray photoelectron 

spectroscopy (XPS), and Auger electron spectroscopy (AES) in literature (Nicholls et 

al., 2005; Xue et al., 1997). However, only EDX analysis was used to determine the 

composition of the worn surfaces in this study. After wear tests, the steel balls were 

rinsed with ethanol and the chemical composition of the worn surfaces were analyzed. 
The results are listed in Table 7.25. The balls used for the wear experiments are chrome 
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steel balls including chromium, phosphate, manganese, silicon and sulphur. The carbon, 

chromium and silicon weight percent of these balls in literature (Leśniewski and 

Krawiec, 2008) are 1.10%, 1.30% and 0.35%, respectively. The EDX spectra of the 

unworn and worn surfaces of the balls are displayed in Figure 7.105. When the ball 

lubricated with zinc borate a small peak related to boron element appeared in EDX 

spectrum as shown in Figure 7.105b. 

 

    
   (a)      (b) 

Figure 7.103. SEM images of the worn surface of the steel ball lubricated with mineral 
oil including sorbitan monostearate, Viscobyk 5025 and commercial zinc 
borate (L7) a) 120x and b) 1000x magnification. 

 

 

    
(a)      (b) 

Figure 7.104. SEM images of the worn surface of the steel ball lubricated with mineral 
oil including sorbitan monostearate, Disperbyk 1161 and commercial 
zinc borate (L8) a) 120x and b) 1000x magnification. 
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According to the results in Table 7.26, the carbon weight percentage of the 

samples are significantly higher than the balls indicated the presence of mineral oil and 

/or the surfactant deposit on the worn surface. The oxygen weight percentages of the 

samples are between 2.62-8.00% and these high values arise from the mineral oil and 

sorbitan monostearate. Besides them, this analysis reveals that the boron and zinc 

elements are also adsorbed by the surfaces; therefore, the tribological properties of the 

mineral oil can be improved.  
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Figure 7.105. EDX spectra of a) unworn surface of the ball b) worn surface of the ball 
lubricated with mineral oil having commercial zinc borate (L5). 

 
In this part of the study, the roughness values of the worn surfaces of the test 

balls are measured to investigate the correlation between roughness parameters and 

wear. Average surface roughness (Ra) gives very good overall description of height 

variations but it is not sensitive on small changes in profile. The measured roughness 

values of the fixed balls (Ra) lubricated with mineral oil, mineral oil with surfactant and 

the lubricants containing  commercial zinc borate are given in Figure 7.106 whereas, the 
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measured roughness values of the rotating balls are indicated in Figure 7.107. 

According to these three fixed balls, minimum surface roughness is obtained when the 

balls lubricated with the lubricant (L7) including commercial zinc borate and Viscobyk. 

Besides them, the maximum roughness depth which refers to Ry is measured both for 

the fixed and rotating balls. Maximum roughness depth values indicate the peak to 

valley distance for each sample. Similar to the average surface roughness results, the 

minimum peak to valley distances are measured for the fixed and rotating balls when 

they are lubricated with the lubricant (L7) including commercial zinc borate and 

Viscobyk and the lubricant (L6) including zinc borate produced in the presence of the 

surfactant, respectively as shown in Figure 7.108 and 7.109.  

 

Table 7.26. Elemental composition of the worn surfaces lubricated mineral oil, mineral 
oil with surfactant and the lubricants containing commercial zinc borate. 

Av.wt.% 

Element Unworn L1 L2 L5 L7 L8 

C 5.09 16.47 14.73 14.48 7.96 10.65 

O 0.87 7.13 8.00 5.16 7.81 12.2 

Fe 90.50 75.77 74.31 68.48 72.26 63.74 

Si 0.32 0.40 0.66 0.41 0.40 0.53 

Cr 0.50 0.06 0.16 0.30 0.24 0.28 

Mn 1.49 0.00 0.00 0.69 0.91 0.95 

S 0.19 0.00 0.43 0.44 0.38 0.39 

P 0.17 0.00 0.00 0.21 0.22 0.37 

Ni 0.63 0.17 0.24 0.00 0.00 0.00 

Ca 0.47 0.00 1.49 0.16 4.72 5.36 

B 0 0.00 0.00 7.48 3.45 4.93 

Zn 0 0.00 0.00 0.97 0.64 0.60 
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Figure 7.106. The surface roughness of the fixed balls lubricated with mineral oil, 

mineral oil with surfactant and the lubricants containing commercial zinc 
borate. L1: mineral oil; mineral oil with L2: sorbitan monostearate, L5: 
sorbitan monostearate and commercial zinc borate, L7: sorbitan 
monostearate, commercial zinc borate and Viscobyk 5025, L8: sorbitan 
monostearate, commercial zinc borate and Disperbyk 1161. 
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Figure 7.107. The surface roughness of the rotating balls lubricated with mineral oil, 

mineral oil with surfactant and the lubricants containing commercial zinc 
borate. L1: mineral oil; mineral oil with L2: sorbitan monostearate, L5: 
sorbitan monostearate and commercial zinc borate, L7: sorbitan 
monostearate, commercial zinc borate and Viscobyk 5025, L8: sorbitan 
monostearate, commercial zinc borate and Disperbyk 1161. 
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Figure 7.108. Maximum height of the fixed balls lubricated with mineral oil, mineral oil 

zinc borate with surfactant and the lubricants containing commercial zinc 
borate. L1: mineral oil; mineral oil with L2: sorbitan monostearate, L5: 
sorbitan monostearate and commercial zinc borate, L7: sorbitan 
monostearate, commercial zinc borate and Viscobyk 5025, L8: sorbitan 
monostearate, commercial and Disperbyk 1161. 
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Figure 7.109. Maximum height of the rotating balls lubricated with mineral oil, mineral 

oil with surfactant and the lubricants containing commercial zinc borate. 
L1: mineral oil; mineral oil with L2: sorbitan monostearate, L5: sorbitan 
monostearate and commercial zinc borate, L7: sorbitan monostearate, 
commercial zinc borate and Viscobyk 5025, L8: sorbitan monostearate, 
commercial zinc borate and Disperbyk 1161. 
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Effect of zinc borate type on the worn surfaces 

In order to characterize the worn surfaces of the balls run in the lubricants 

having different types of zinc borate in the four ball machine, the optical 

microphotographs of the worn surfaces of both fixed and rotating balls were obtained as 

shown in Figures 7.110, 7.111 and 7.112. The worn surfaces of the rotating balls show 

continuous scars around the balls while the worn surfaces of the fixed balls exhibit 

circular and ellipsoid structures. Among these samples, the worn scar diameter of the 

fixed ball lubricated with the lubricants containing zinc borate synthesized in the 

presence of surfactant is lower than the others. Furthermore the continuous scars around 

the rotating ball of this sample are not as severe as the others. 
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   (a)      (b) 

Figure 7.110. The optical microphotographs of the worn surfaces of a) rotating ball b) 
fixed ball lubricated with mineral oil including sorbitan monostearate 
and zinc borate dried by conventionally (L3). 
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   (a)      (b) 

Figure 7.111. The optical microphotographs of the worn surfaces of a) rotating ball b) 
fixed ball lubricated with mineral oil including sorbitan monostearate 
and zinc borate dried by supercritical ethanol (L4). 
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   (a)      (b) 

Figure 7.112. The optical microphotographs of the worn surfaces of a) rotating ball b) 
fixed ball lubricated with mineral oil including sorbitan monostearate 
and zinc borate produced in the presence of sorbitan monostearate (L6). 

 

The detailed investigations of the worn surfaces of the balls are given in Figures 

7.113- 7.118. Even if the wear scar diameter of the worn surface lubricated with zinc 

borate conventionally dried is larger than the value of surface lubricated with zinc 

borate dried by supercritical ethanol, the deeper worn scars are observed as shown in 

Figures 7.113 and 7.114. This may be explained by not all nanoparticles prepared by 

supercritical fluid drying being coated by the surfactant and therefore colliding and 

sticking can be taken place to form larger particles, which act as abrasive bodies. The 

zinc borate prepared in the presence of the surfactant also enhances the anti-wear 

property of the mineral oil and lower scar depth might be due to the rolling effect of the 
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zinc borate particles which has lamellar-like morphology (Figure 7.115). Moreover, the 

lubricant (L6) including zinc borate produced in the presence of the surfactant shows a 

considerable decrease when compared with balls lubricated only with light neutral oil. 

When the balls are lubricated with lubricants containing zinc borate particles 

synthesized by coordination homogeneous precipitation technique, wear scars exhibit 

circular structure and the existence of these zinc borate particles in the mineral oil make 

the wear scar smoother than the pure mineral oil does as shown in Figures 7.116, 7.117 

and 7.118. In literature, it is suggested that the antiwear ability of metal nanoparticles at 

a low applied load is attributed to the formation of deposition films on the worn surface, 

which can reduce the adhesive wear during the tribological process (Sun et al., 2010).  

 

    
   (a)      (b) 

Figure 7.113. SEM images of the worn surface of the steel ball lubricated with mineral 
oil including sorbitan monostearate and zinc borate dried by 
conventionally (L3) a) 120x and b) 1000x magnification. 
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   (a)      (b) 

Figure 7.114. SEM images of the worn surface of the steel ball lubricated with mineral 
oil including sorbitan monostearate and zinc borate dried by supercritical 
ethanol (L4) a) 120x and b) 1000x magnification. 

 

    
   (a)      (b) 

Figure 7.115. SEM images of the worn surface of the steel ball lubricated with mineral 
oil including sorbitan monostearate and zinc borate produced in the 
presence of sorbitan monostearate (L6) a) 120x and b) 1000x 
magnification. 
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   (a)      (b) 

Figure 7.116. SEM images of the worn surface of the steel ball lubricated with mineral 
oil including sorbitan monostearate and zinc borate produced by 
homogeneous precipitation and mixed for 6 h (L9) a) 120x and b) 1500x 
magnification. 

 

    
   (a)      (b) 

Figure 7.117. SEM images of the worn surface of the steel ball lubricated with mineral 
oil including sorbitan monostearate and zinc borate produced by 
homogeneous precipitation and mixed for 15 h (L10) a) 120x and b) 
1500x magnification. 
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   (a)      (b) 

Figure 7.118. SEM images of the worn surface of the steel ball lubricated with mineral 
oil including sorbitan monostearate and zinc borate produced by 
homogeneous precipitation and mixed for 12 h (L11) a) 120x and b) 
1500x magnification. 

 

The chemical composition of the worn surfaces formed between two rubbing 

bodies in the presence of the lubricants were obtained, as well. The results are listed in 

Table 7.27. The balls used for the wear experiments are chrome steel balls including 

chromium, phosphate, manganese, silicon and sulphur. When the balls lubricated with 

the lubricants with zinc borate, the boron weight percentages of the samples are between 

0.51-14.84%. This might be the reason of the enhancement of wear surfaces by these 

lubricants. It was suggested that boron elements were adsorbed by the surfaces and 

therefore the tribological properties of the mineral oil could be improved. 
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Table 7.27. Elemental composition of the worn surfaces lubricated mineral oil, mineral oil with surfactant and the lubricants 

containing different types of zinc borate 

Mass % Element 
Unworn L1 L2 L3 L4 L6 L9 L10 L11 

C 5.09 16.47 14.73 3.95 7.44 3.86 10.63 7.95 12.41 
O 0.87 7.13 8.00 3.25 4.00 2.62 21.24 6.07 5.20 
Fe 90.50 75.77 74.31 90.08 85.89 82.98 41.92 59.96 58.93 
Si 0.32 0.40 0.66 0.57 0.35 0.67 1.88 0.74 0.87 
Cr 0.50 0.06 0.16 0.25 0.25 0.31 1.33 1.70 2.07 
Mn 1.49 0.00 0.00 0.00 0.00 1.06 1.44 1.24 1.50 
S 0.19 0.00 0.43 0.51 0.50 0.37 0.67 0.69 0.76 
P 0.17 0.00 0.00 0.00 0.00 0.40 0.68 0.48 0.48 
Ni 0.63 0.17 0.24 0.20 0.16 0.00 4.37 4.47 3.90 
Ca 0.47 0.00 1.49 0.42 0.29 2.86 0.49 0.55 0.53 
B 0 0.00 0.00 0.00 0.51 4.14 13.85 14.84 12.14 
Zn 0 0.00 0.00 0.78 0.60 0.73 1.49 1.42 1.21 
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The measured roughness values of the fixed balls (Ra) lubricated with mineral 

oil, mineral oil with surfactant and the lubricants containing different types of zinc 

borate species are given in Figure 7.119 whereas, the measured roughness values of the 

rotating balls are indicated in Figure 7.120. The lubricant (L9) including zinc borate 

produced by coordination homogeneous precipitation shows a considerable decrease 

when compared with balls lubricated only with light neutral oil. Besides them, the 

maximum roughness depth which refers to Ry is measured both the fixed and rotating 

balls as seen Figures 7.121 and 7.122. The minimum peak to valley distances are 

measured for the fixed and rotating balls when they are lubricated by the lubricant (L9) 

and the lubricant (L6), respectively. 
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Figure 7.119. The surface roughness of the fixed balls lubricated with mineral oil, 

mineral oil with surfactant and the lubricants containing commercial zinc 
borate. L1: mineral oil, mineral oil with L2: sorbitan monostearate and 
L3: zinc borate produced from boric acid and zinc oxide, dried by 
conventionally, L4: zinc borate produced from boric acid and zinc oxide, 
dried by supercritical ethanol L6 zinc borate produced in the presence of 
sorbitan monostearate, L9: zinc borate produced by coordination 
homogeneous precipitation, mixed for 6 h. L10: zinc borate produced by 
coordination homogeneous precipitation, mixed for 15 h, L11: zinc 
borate produced by coordination homogeneous precipitation, mixed for 
12 h. 
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Figure 7.120. Surface roughness of the rotating balls lubricated with mineral oil, 

mineral oil with surfactant and the lubricants containing different types 
of zinc borate. L1: mineral oil, mineral oil with L2: sorbitan 
monostearate and L3: zinc borate produced from boric acid and zinc 
oxide, dried by conventionally, L4: zinc borate produced from boric acid 
and zinc oxide, dried by supercritical ethanol L6 zinc borate produced in 
the presence of sorbitan monostearate, L9: zinc borate produced by 
coordination homogeneous precipitation, mixed for 6 h. L10: zinc borate 
produced by coordination homogeneous precipitation, mixed for 15 h, 
L11: zinc borate produced by coordination homogeneous precipitation, 
mixed for 12 h. 

 

Effect of surfactant concentration on the tribological properties of the lubricants 

The wear-scar morphology of the balls running in the lubricant (L12) including 

zinc borate and 0.000005 g sorbitan monostearate and in the lubricant (L13) with 0.1 g 

sorbitan monostearate are given in Figures 7.123 and 7.124, respectively. The 

magnification of the image shown in Figure 7.123a is higher than the magnification of 

Figure 7.124a since the wear scar diameter of the ball lubricated with the lubricant 

(L12) is larger than the diameter of the ball lubricated with the lubricant (L13). These 

figures inferred that the amount of surfactant in light neutral oil could not form a 

deposition film on the friction contacting region when its concentration was too low. On 

the contrary, when the surfactant concentration was high, the particles might form 

abrasive grain wear. 
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Figure 7.121. Maximum height of the fixed balls lubricated with mineral oil, mineral oil 

with surfactant and the lubricants containing different types of zinc borate. 
L1: mineral oil, mineral oil with L2: sorbitan monostearate and L3: zinc 
borate produced from boric acid and zinc oxide, dried by conventionally, 
L4: zinc borate produced from boric acid and zinc oxide, dried by 
supercritical ethanol L6 zinc borate produced in the presence of sorbitan 
monostearate, L9: zinc borate produced by coordination homogeneous 
precipitation, mixed for 6 h. L10: zinc borate produced by coordination 
homogeneous precipitation, mixed for 15 h, L11: zinc borate produced by 
coordination homogeneous precipitation, mixed for 12 h. 

 
 

The measured roughness values of the fixed balls (Ra) lubricated with the 

lubricants containing different amount of surfactant concentration are given in Figure 

7.125 whereas, the measured roughness values of the rotating balls are indicated in 

Figure 7.126. It was observed that the surface roughness increased when the 

concentration of sorbitan monostearate in the mineral oil was decreased. The maximum 

height which refers to Ry is measured both the fixed and rotating balls as seen Figures 

7.127 and 7.128. In the case of rotating balls, the highest surface roughness and depth 

values were obtained for the ball lubricated with L11 lubricant containing zinc borate 

synthesized homogeneous precipitation technique and 1 g surfactant.  
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Figure 7.122. Maximum height of the rotating balls lubricated with mineral oil, mineral 

oil with surfactant and the lubricants containing different types of zinc 
borate. L1: mineral oil, mineral oil with L2: sorbitan monostearate and 
L3: zinc borate produced from boric acid and zinc oxide, dried by 
conventionally, L4: zinc borate produced from boric acid and zinc oxide, 
dried by supercritical ethanol L6 zinc borate produced in the presence of 
sorbitan monostearate, L9: zinc borate produced by coordination 
homogeneous precipitation, mixed for 6 h. L10: zinc borate produced by 
coordination homogeneous precipitation, mixed for 15 h, L11: zinc 
borate produced by coordination homogeneous precipitation, mixed for 
12 h 

 

    
   (a)      (b) 

Figure 7.123. SEM images of the worn surface of the steel ball lubricated with mineral 
oil including 0.000005 g g sorbitan monostearate and zinc borate 
produced by homogeneous precipitation and mixed for 12 h (L12) a) 65x 
and b) 1500x magnification. 
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   (a)      (b) 

Figure 7.124. SEM images of the worn surface of the steel ball lubricated with mineral 
oil including 0.1 g sorbitan monostearate and zinc borate produced by 
homogeneous precipitation and mixed for 12 h (L13) a) 120x and b) 
1500x magnification. 
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Figure 7.125. The surface roughness of the fixed balls lubricated with mineral oil 

containing zinc borate prepared by coordination homogeneous technique, 
mixed for 12 h and different amount of surfactant. L12: 0.00005 g 
sorbitan monostearate L13: 0.1 g sorbitan monostearate and, L11: 1g 
sorbitan monostearate. 
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Figure 7.126. Surface roughness of the rotating balls lubricated with mineral oil 

containing zinc borate prepared by coordination homogeneous technique, 
mixed for 12 h and different amount of surfactant. L12: 0.00005 g 
sorbitan monostearate, L13: 0.1 g sorbitan monostearate, L11: 1g 
sorbitan monostearate.  
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Figure 7.127. Maximum height of the fixed balls lubricated with mineral oil containing 

zinc borate prepared by coordination homogeneous technique, mixed for 
12 h and different amount of surfactant. L12: 0.00005 g sorbitan 
monostearate, L13: 0.1 g sorbitan monostearate, L11: 1g sorbitan 
monostearate.  

 



 209 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Unworn L1 L2 L12 L13 L11

Lubricants

M
ax

im
um

 H
ei

gh
t, 

R
y 

( 
m

)

  
Figure 7.128. Maximum height of the rotating balls lubricated with mineral oil, 

containing zinc borate prepared by coordination homogeneous technique, 
mixed for 12 h and different amount of surfactant. L12: 0.00005 g 
sorbitan monostearate, L13: 0.1 g sorbitan monostearate, L11: 1g 
sorbitan monostearate.  

 

Lubricants from precipitate of inverse emulsion and inverse emulsions as 

lubricants 

The wear scar morphologies of the steel balls after running in the lubricants L14 

and L16 are given in Figures 7.129 and 7.130, respectively. The grooves indicated that 

the wear scar did not result from plastic deformation but from evident wear. The worn 

surface of the ball lubricated with inverse emulsion is smoother of the surface lubricated 

with the lubricant (L14) indicating that inverse emulsion had anti-wear ability. 

Furthermore the surface roughness and the maximum height values of the balls were 

measured. The average surface roughness of the ball lubricated with the precipitate of 

the inverse emulsion having 30% propanol-2 was found as 0.129 m, whereas the 

average surface roughness of the ball running in the inverse emulsion heated up to 160 

C was measured as 0.110 m. The maximum height values of the balls lubricated with 

the lubricant containing the precipitate prepared by inverse emulsion and the inverse 

emulsion were found as 0.584 and 0.654 m, respectively. The smaller surface 

roughness indicated lower friction between contact balls. The ball running in the inverse 
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emulsion had lower surface roughness value than the other, revealing that inverse 

emulsion could influence reduction of friction. 

 

    
   (a)      (b) 

Figure 7.129. SEM images of the worn surface of the steel ball lubricated with mineral 
oil including the precipitate of the inverse emulsion having 30% 
propanol-2 (L14) a) 65x and b) 1500x magnification. 

 

   
   (a)      (b) 

Figure 7.130. SEM images of the worn surface of the steel ball lubricated with inverse 
emulsion of which water content was removed by heating up to 160 C 
(L16) a) 302x and b) 3726x magnification. 

 

Clinoptilolite rich mineral as lubricant additive and water adsorber in inverse 

emulsion 

SEM image of the worn surface of the balls lubricated with the lubricant 

containing clinoptilolite rich mineral is indicated in Figure 7.131. Even if the wear scar 

of the sample exhibits circular structure, severe grooves are obtained on the surface. 

Figure 7.132 displays the worn surface of the ball lubricated with the inverse emulsion 
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of which water content was removed by clinoptilolite rich mineral. When this sample 

was compared with the inverse emulsion of which water content was removed by 

heating, it was observed that the scar transformed to circular structure from the ellipsoid 

structure indicating the decrease in the wear scar diameter.  

Furthermore the surface roughness and the maximum height values of the balls 

were measured. The average surface roughness of the ball lubricated with the lubricant 

containing clinoptilolite rich mineral was found as 0.114 m, whereas the average 

surface roughness of the ball running in the inverse emulsion of which water content 

was removed by clinoptilolite rich mineral was measured as 0.140 m. The maximum 

height values of the balls lubricated with the lubricant containing clinoptilolite rich 

mineral and inverse emulsion of which water content was removed by clinoptilolite rich 

mineral were 0.606 and 0.384, respectively.  

 

    
   (a)      (b) 

Figure 7.131. SEM images of the worn surface of the steel ball lubricated with the 
lubricant containing clinoptilolite rich mineral (L15) a) 120x b)1500x. 
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   (a)      (b) 

Figure 7.132. SEM images of the worn surface of the steel ball lubricated with inverse 
emulsion of which water content was removed by clinoptilolite rich 
mineral a) 302x and b) 3726x. 

 

Surface Hardness 

The hardness of worn surfaces is an important component of friction and wear 

and has a significant influence on the magnitude of the friction and on the wear of the 

surfaces. Besides SEM and roughness analysis, indentation test was carried out to 

obtain the hardness of the worn surfaces of the steel balls. The average Vickers hardness 

value of the unworn surface was found as 709 Hv (equivalent to 61 HRC). This value is 

consistent with literature value of 52100 steel which is 59-61 HRC. The average 

Vickers hardness values of the balls lubricated with mineral oil (L1), mineral oil with 

surfactant (L2) and the lubricant including zinc borate synthesized by homogeneous 

precipitation and mixed for 15 h (L10) were 677, 688 and 618 Hv as shown in Figure 

7.133. The hardness of the worn surface lubricated with mineral oil containing 

surfactant is larger than that of the worn surface lubricated with pure oil. This result 

might be due to the migration of polar groups to the metal surface and formation of 

physical bonds with surfaces. However, the addition of zinc borate particles in the 

mineral oil decreases the hardness of the worn surface, considerbly. It might be due to 

the formation of a soft thin layer on the surface and this layer can deform easily. 

Therefore the load applied per unit area is decreased by increasing the contact area 

between the moving bodies. Hence the wear of the surfaces can be decreased (Yu et al., 

2008).  
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Figure 7.133. The hardness of the worn surfaces of the steel ball lubricated with mineral 

oil (L1), mineral oil with surfactant (L2) and the lubricant (L10) 
containing zinc borate prepared by homogeneous precipitation and 
mixed for 15 h. 

 

Surface Topography 

The morphology of unworn and worn surfaces were examined by AFM. The 

topographical images of the samples are shown in Figures 7.134, 7.135, 7.136. The 

corresponding average surface roughness were determined by two dimensional images 

and the results are tabulated in Table 7.28. The images inferred that a new phase was 

not obtained on the rubbed surfaces. The obtained scars and pits are visible on the 

surfaces as shown in Figures 7.134, 7.135 and 7.136. The agglomeration of particles on 

the pit in Figure 7.134 might be the deposition film on the friction contacting area. 

Figure 7.135 exhibits much smoother surface and this subtle difference in the 

morphology can enhance the wear property. The corresponding average surface 

roughness of the samples for 5x5 m2 are lower than the values obtained by the 

profilometry since the the areas scanned by AFM are significantly smaller than the area 

scanned by profilometer.  
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   (a)      (b) 

Figure 7.134. AFM a) three dimensional b) two dimensional images of the worn surface 
lubricated with mineral oil (L1). Image size: 5x5 m2. 

 

         
(a)      (b) 

Figure 7.135. AFM a) three dimensional b) two dimensional images of the worn surface 
lubricated with mineral oil with sorbitan monostearate (L2). Image size: 
5x5 m2. 
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(a)      (b) 

Figure 7.136. AFM a) three dimensional b) two dimensional images of the worn surface 
lubricated with mineral oil with sorbitan monostearate and zinc borate 
prepared by coordination homogeneous precipitation, mixed for 15 h 
(L10). Image size: 5x5 m2. 

 

Table 7.28. Average surface roughness of the surfaces measured from AFM topographic 
images. 

Sample Average surface roughness, Ra (nm) 

Unworn 35.37 

L1 27.10 

L2 35.63 

L10 27.60 

 
The fixed balls lubricated with mineral oil (L1), mineral oil and sorbitan 

monostearate (L2), the lubricant containing sorbitan monostearate and zinc borate 

prepared by homogeneous precipitation, mixed for 15 h (L10) were cut with a 

microcutter for closer examination of worn surfaces by SEM. The morphologies of the 

worn surfaces are shown in Figure 7.137. When the rubbed surfaces lubricated with L2 

and L10 lubricants were compared with the samples which were not exposed to cutting 

process (presented in Figures 7.01a nd 7.117a), some deformation on the surface of the 

fixed balls were observed. Therefore, a detailed EDX analysis was carried out analysis 

to explore the differences of the elemental composition of unworn, worn and deformed 

surfaces. For the fixed ball lubricated with the lubricant including both sorbitan 

monostearate and zinc borate particles (Figure 7.137c), the areas corresponded to the 
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unworn, worn and deformed surfaces were pointed out by white, red and green frames, 

respectively. The chemical composition of these surfaces was investigated and the 

results were tabulated in Table 7.29. It was observed that the mass percentage of oxygen 

element was higher for the deformed surface indicating the oxidation of the surface. 

This might be due to the cutting process since water was used to cool the system. 

Moreover, the mass percent of iron decreased for the worn and deformed surfaces. 

When the boron mass percentages of the worn and unworn surfaces were compared, it 

was revealed that the boron mass percentage was higher for the worn surface. It might 

be due to the presence of embedded zinc borate additive on the worn surface. 

 

    
(a) (b) 

 
(c) 

Figure 7.137. SEM images of the worn surface after cutting of the steel ball a) 
lubricated with mineral b) oil with sorbitan monostearate and c) lubricant 
containg sorbitan monostearate and zinc borate produced by 
homogeneous precipitation and mixed for 15 h  
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Table 7.29. Elemental composition of the worn surfaces lubricated with the lubricant 
including both sorbitan monostearate and zinc borate particles 

Mass% 

Element Unworn surface Worn surface Deformed surface 

C 4.75 18.48 38.42 

O 1.68 8.43 13.48 

Fe 80.26 56.17 21.03 

Si 0.80 0.43 0.75 

Cr 1.40 1.31 0.64 

Mn 2.01 0.71 0.64 

S 0.35 0.24 0.36 

P 0.62 0.14 0.19 

Ni 2.59 1.05 0.89 

Ca 0.17 0.24 0.55 

B 5.39 10.76 21.42 

Zn 0.00 2.25 1.63 

 

7.7. BOR POWER Characterization 

 
BOR POWER is one of the lubricants in the market that can be used in all 

transport vehicles with 4-stroke engines. Among the other lubricants, the 

characterization of this lubricant was performed since it is claimed that it contains boron 

material so what kind of boron source it includes becomes the important question for 

our work considering the parallelism between this commercial product and ours. 

Therefore both BOR POWER oil and the particles obtained by separating the oily phase 

were identified. The morphology of the particles is constructed from layers and the 

disk-like crystals have nano-sized thickness as shown in Figure 7.138. The elemental 

analysis of this sample reveals that this material includes boron, nitrogen and carbon 

elements as shown in Table 7.30 and Figure 7.139. The average weight % values of 

boron and nitrogen elements were found as 26.72 and 42.75, respectively. When these 

values were used to calculate the moles of boron and nitrogen elements, it was indicated 

that the sample contained 2.47 moles of boron and 3.05 moles nitrogen. This result 
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implied that one mole of boron corresponded to practically one mole nitrogen which 

was consistent with the elemental composition of boron nitride. Before separating the 

particles from this commercial product, its FTIR spectrum was obtained as indicated in 

Figure 7.140. The spectrum exhibits the specific peaks of mineral oil. The peak at 1464 

cm-1 and 1377 cm-1 are attributed to the –CH2 and –C-H symmetric vibrations of 

hydrocarbons. The band at 2928 cm-1 is the stretching vibrations of hydrocarbons, 

whereas, the band at 2854 cm-1 is related to the asymmetric stretching of –C-H. Even 

though the mineral oil does not consist a proper peak at 729 cm-1, a band is observed in 

FTIR spectrum of BOR POWER oil. This extra peak is compared with the FTIR 

spectrum of BOR POWER particles. In Figure 7.41, two strong characteristic 

absorption bands near 1375 and 819 cm-1 are observed, which are close to the reported 

specific peaks of hexagonal boron nitride. The peak around 1380 cm_1 results from the 

in-plane TO models of the sp2-bonded BN, while the peak centered at 819 cm_1 can be 

attributed to the B–N–B bonding vibrations (Shi et al., 2008). The XRD pattern implies 

that this sample has high crystallinity and the major peak is observed at 2 26 (Figure 

7.142). The other peaks of this sample are observed at 43, 50, 55, 71 and 75°. 

According to this XRD diagram is basically in agreement with the reported values of 

hexagonal boron nitride. The characterization of BOR POWER shows that the additive 

used in the mineral oil is hexagonal boron nitride which has captured attention as a solid 

lubricant for general use due to its easy shearing along the basal plane of the hexagonal 

crystalline structure. 

 

   
   (a)      (b) 

Figure 7.138. SEM images of BOR POWER particles a) 5000x and b) 12000x 
magnification. 
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Table 7.30. Elemental composition of BOR POWER analysis. 

Element Mass % 

B 26.72 

C 33.87 

N 42.75 
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Figure 7.139. EDX spectrum of  BOR POWER particles. 
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Figure 7.140. FTIR spectrum of BOR POWER lubricant. 
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Figure 7.141. FTIR spectrum of particles separated from BOR POWER lubricant. 
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Figure 7.142. XRD pattern of particles separated from BOR POWER lubricant. 
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The result of four ball test of BOR POWER is shown in Figure 7.143. The 

friction coefficient is not stable during the wear test. At the end of fifteen minutes, the 

friction coefficient reaches to 0.12. The average wear scar diameter is measured as 

0.645. 

 

 

Figure 7.143. The wear and friction behavior of BOR POWER lubricant. 

When the tribological behavior of BOR POWER is compared with the lubricants 

prepared in the scope of this study, it was obtained that the mean friction coefficient 

values of all the lubricants except pure mineral oil (L1) are smaller than the value of 

BOR POWER. Even though when the balls lubricated with BOR POWER, it decreased 

the wear of the balls as compared to pure mineral oil, this lubricant was not as effective 

as the lubricants containing 1 g surfactant and zinc borate particles. It was concluded 

that especially the lubricants containing zinc borates synthesized by coordination 

homogeneous precipitation were superior to BOR POWER by means of antiwear 

ability. 
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CHAPTER 8 

 

CONCLUSIONS 

 
The increasing interest of petrochemical industries on improving the 

performance of their products (lubricants, greases, gasoline, among others) has been 

simultaneously generating great incentives to develop additives that are able to supply 

the commercial demand of the competitive industrial markets. For tribology 

applications, particles as additives in base oil have been investigated widespreadly. 

Among these additives, nano-sized particles are promising materials for lubrication 

since they offer a better understanding of the interfacial properties of fluid-solid 

interfaces and the dispersion stability of nanoparticles in base oil is superior to micron 

sized particles. The tribological behavior of light neutral oil was tried to enhance by 

zinc borate additives and the focus of this work arised from the production of zinc 

borate particles as small as possible for lubrication. 

Precipitation reactions are widely used in particle technology, however this 

technique usually leads to particles on micrometer scale. A number of process 

conditions and physical mechanisms such as mixing effects, particle agglomeration 

limit and the nanomaterial production. In this study, these problems in the production 

technology were tried to overcome with the investigated inverse emulsion technique. 

The effects of inverse emulsion preparation technique, initial aqueous phase 

concentration in emulsions, mixing rate, co-surfactant addition on the morphology and 

the structure of the precipitates were examined. The crystal size of the precipitate was 

found as 100-200 nm when the initial amount of aqueous phase was 5 wt% for one-

microemulsion technique. The employment of a rotor-stator homogenizer for emulsion 

mixing reduced the diameters of the droplets since rotor knife spinned within the tube 

and created a pumping action. Therefore, both rod-like and spherical crystals having 20-

30 nm were obtained by two-microemulsion technique with the help of homogenizer. 

However, the use of a fourth component, a co-surfactant, did not prove to be a useful 

technique for nanomaterial production. Moreover, it increased the cost and the 

complexity of the production technique and instead of zinc borate, only zinc sterate and 

stearic acid were formed as the precipitate. 
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Two type of precipitation techniques were developed in aqueous medium to 

prepare zinc borate particles for lubrication. The first one is related to the employment 

of a surface modifier (sorbitan monostearate) in the reaction medium. All the 

characterization results implied that 2ZnO∙3B2O3∙7H2O was formed when borax 

decahydrate and zinc nitrate are used at 70 °C in the presence of the surfactant. The 

morphology of the zinc borate presented micron sized cubic and prismatic crystals as 

well as lamellar-like crystals. The second one was coordination homogeneous technique 

which was carried out in the presence of ammonia. It was revealed that the crystal sizes 

of nano-sized particles and sub-micron particles are nearly 30 nm and 400 nm, 

respectively. Contrary, the crystals became larger with the prolonged mixing time and 

spherical agglomerated crystals were formed. FTIR spectra verified the specific peaks 

of zinc borate having seven moles of crystal water (2ZnO∙3B2O3∙7H2O). The XRD 

study showed that the structure of the products washed with ethanol transformed from 

amorphous to crystal phase with increasing reaction time. The samples mixed for 3, 6 

and 12 hours were amorphous and they did not indicate any tendency to be crystal. 

However when the mixing time was increased to 15 hour, the sample became crystal. 

The XRD pattern of the crystal sample displayed both the characteristic peaks of 

sodium nitrate and zinc borate. When these two precipitation techniques were compared 

with each other considering the efficiencies, the efficiency of the precipitation in the 

presence of the surfactant (32%) was higher than the efficiency (2.16%) of 

homogeneous precipitation. 

The focus of this study is the applicability of the produced zinc borate particles 

and inverse emulsions serving to lubrication purposes. The lubricants prepared by the 

addition of synthesized particles were tested in a four-ball wear test machine. Effects of 

dispersing agent, zinc borate type, surfactant concentration on the friction reduction and 

antiwear behavior of mineral oil were investigated. It was revealed that sorbitan 

monostearate not only outperformed as a dispersing agent of inorganic particles, but 

also it proved to be an antiwear agent. Viscobyk 5025 also had a positive effect on the 

reduction of wear scar diameter. The wear scar diameter was decreased by 54.92% for 

the lubricant containing Viscobyk 5025 as compared to pure mineral oil. Zinc borates 

produced by coordination homogeneous precipitation displayed an insufficient effect to 

decrease the friction coefficient, but they decreased the wear scar diameter. The friction 

coefficient of pure mineral oil was found as 0.099, whereas the value for the lubricant 

containing zinc borate particles synthesized by homogeneous precipitation and mixed 
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for 12 h was 0.085. This sample decreased the wear scar diameter from 1.402 mm to 

0.550 mm. The highlighted part of the study is the exposure of the employment of 

inverse emulsions as lubricants. When the water content of inverse system was removed 

(by heating or adsorption of water by clinoptilolite rich mineral), they could be used as 

lubricants and they decreased the wear scar diameter from 1.402 mm to 0.596 mm. This 

production process required the synthesis of particles within the continuous phase, 

hence the problems related to nanoparticle production such as separation of particles 

from the solution, dispersion of the particles in the oil were overcome.  

Another inorganic material, clinoptilolite rich mineral was also used as a 

lubricant additive and tribological test of this lubricant showed that clinoptilolite based 

lubricant was as effective as boron-based lubricants in the enhancement of wear. 

The characterization of worn surfaces of the balls lubricated with different 

lubricants were carried out by SEM and it was verified the antiwear action of surfactant. 

The polar molecules tended to migrate the metal surfaces and formed physical bonds 

with surfaces. Minimum surface roughness value was observed by the lubricant 

containing zinc borate in the presence of surfactant. The antiwear mechanism of zinc 

borate particles might be due to the deposition of particles on the worn surface. The 

tribological properties of the lubricants prepared in the scope of this study were 

compared with a commercial product named BOR POWER. The characterization of the 

additive dispersed in this lubricant indicated that, it was hexagonal boron nitride. This 

lubricant could not sustain a stable friction coefficient. 

This study presents extensive laboratory techniques to characterize the 

synthesized anti-wear additives and prepared lubricants. It also forwards the potential 

employment of inverse emulsions as lubricants which are important for cost saving and 

environmental purposes. A novel application area of clinoptilolite rich mineral for 

lubrication application is proposed, as well. 
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APPENDIX A 

 

FTIR SPECTRA OF LUBRICANTS 
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Figure A.1. FTIR spectrum of L2 lubricant containing only sorbitan monostearate 1) 

before 2) after four ball wear test. 
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Figure A.2. FTIR spectra of L10 lubricant containing sorbitan monostearate and zinc 

borate prepared by coordination homogeneous precipitataion and mixed 
for 15 h 1) before and 2) after four ball wear test. 
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Figure A.3. FTIR spectrum of L11 lubricant containing sorbitan monostearate and zinc 

borate prepared by coordination homogeneous precipitataion and mixed 
for 12 h 1) before and 2) after four ball wear test. 
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Figure A.4. FTIR spectrum of L12 lubricant containing 0.00005 g sorbitan 

monostearate and zinc borate prepared by coordination homogeneous 
precipitataion and mixed for 12 h 1) before and 2) after four ball wear 
test. 
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Figure A.5. FTIR spectrum of L13 lubricant containing 0.1 g sorbitan monostearate and 
zinc borate prepared by coordination homogeneous precipitataion and 
mixed for 12 h 1) before and 2) after four ball wear test. 
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Figure A.6. FTIR spectrum of inverse emulsion heated up to 160 C (L16) 1) before and 

2) after four ball wear test. 
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APPENDIX B 

 

UV SPECTRA OF LUBRICANTS 
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Figure B.1. UV spectra of the lubricant containing sorbitan monostearate and zinc 

borate synthesized by coordination homogeneous precipitation technique, 
mixed for 6 h 1) before four ball wear test 2) after four ball wear test. 
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Figure B.2. UV spectra of the lubricant containing sorbitan monostearate and zinc 

borate synthesized by coordination homogeneous precipitation technique, 
mixed for 12 h 1) before four ball wear test 2) after four ball wear test. 
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Figure B.3. UV spectra of the lubricants containing 0.00005 g sorbitan monostearate 

and zinc borate synthesized by coordination homogeneous precipitation 
technique, mixed for 12 h 1) before four ball wear test 2) after four ball 
wear test. 
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Figure B.4. UV spectra of the lubricant containing 0.1 g sorbitan monostearate and zinc 

borate synthesized by coordination homogeneous precipitation technique, 
mixed for 12 h 1) before four ball wear test 2) after four ball wear test. 
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Figure B.5. UV spectra of the lubricant containing precipitate obtained by the 

microemulsion having 30% propanaol-2 1) before four ball wear test 2) 
after four ball wear test. 
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Figure B.6. UV spectra of the lubricant containing sorbitan monostearate and 

clinoptilolite rich mineral 1) before four ball wear test 2) after four ball 
wear test. 
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APPENDIX C 

 

WEAR AND FRICTION BEHAVIOR OF LUBRICANTS 

 

 

Figure C.1. The wear and friction behavior of the mineral oil having sorbitan 
monostearate and zinc borate synthesized by coordination homogeneous 
precipitation technique, mixed for 6 h and washed by ethanol. 
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Figure C.2. The wear and friction behavior of the mineral oil having sorbitan 
monostearate and zinc borate synthesized by coordination homogeneous 
precipitation technique, mixed for 12 h and washed by water and ethanol. 

 

 

Figure C.3. The wear and friction behavior of the mineral oil having sorbitan 
monostearate and zinc borate synthesized by coordination homogeneous 
precipitation technique, mixed for 12 h and washed by water and ethanol. 
and 0.00005 g sorbitan monostearate. 
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Figure C.4. The wear and friction behavior of the mineral oil having sorbitan 
monostearate and zinc borate synthesized by coordination homogeneous 
precipitation technique, mixed for 6 h and washed by water and ethanol. 
and 0.1 g sorbitan monostearate. 

 

 

Figure C.5. The wear and friction behavior of the inverse emulsion of which water 
content was removed by heating up to 160 oC. 
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Figure C.6. The wear and friction behavior of the lubricant containing the precipitate of 
the microemulsion having 30% propanol-2. 

 

 

Figure C.7. The wear and friction behavior of the mineral oil having sorbitan 
monostearate and clinoptilolite rich mineral. 
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Figure C.9. The wear and friction behavior of the inverse emulsion of which water 
content was removed by clinoptilolite rich mineral. 
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