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ABSTRACT 

 

MODELING THE EFFECTS OF LAND USE CHARACTERISTICS ON 

MODE CHOICE FOR HOME – BASED WORK TRIPS:  

THE CASE OF ISTANBUL 
 

The cities in Turkey have been facing some of the same problems that European 

and North American cities have, including traffic congestion, traffic accidents, and air 

pollution. To overcome this situation, both local and central administrators who make 

urban policies and city planners have tended to optimize Land Use and Transportation 

Interaction (LU&T). In recent years, some new concepts concerning urban planning 

have suggested that shaping travel demands can be used as a tool to overcome these 

problems. The most common objectives of this concept are to reduce motorized trips 

and to promote public transit in metropolitan areas. To achieve these objectives, 

understanding the probable effects of land use on mode choice is crucial. However, the 

effects of land use on mode choice have never been answered fully, in Turkey. This 

dissertation empirically explores the relationship between travel mode choice and land 

use by employing different mode choice models for home - based work (HBW) trips in 

Istanbul at aggregate and disaggregate levels. The focus of this study is to understand 

how land use characteristics affect home - based work mode choice in the case of 

Istanbul. In this study, logit models and Bayesian Belief Networks (BBNs) are used to 

identify and quantify the effects of land use on travel mode choice at both levels. 

Empirical data were obtained from 2006 Household Travel Survey prepared for 2007 

Istanbul Transportation Master Plan Study. The model results show that land use 

variables are statistically significant at both levels. The inclusion of land use variables 

increases models‟ explanatory level. 
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ÖZET 

 

EV - UÇLU Ġġ YOLCULUKLARI ĠÇĠN ARAZĠ KULLANIM 

KARAKTERĠSTĠKLERĠNĠN TÜR SEÇĠMĠ ÜZERĠNE ETKĠLERĠNĠN 

MODELLENMESĠ: ĠSTANBUL ÖRNEĞĠ 
 

Ülkemiz kentleri, Avrupa ve Kuzey Amerika‟daki kentlerde görülen trafik 

sıkıĢıklığı, trafik kazaları ve hava kirliliği gibi bazı problemlerin benzerleri ile karĢı 

karĢıya kalmaktadır. Bu durumun üstesinden gelebilmek için gerek kentsel politikalar 

üreten yerel ve merkezi yöneticiler gerekse kent plancıları arazi kullanım ile ulaĢım 

etkileĢimini (LU&T) eniyilemeye (optimize) yönelmiĢlerdir. Son yıllarda kent planlama 

ile ilgili bazı yeni anlayıĢlar, seyahat taleplerinin biçimlendirilmesinin bu problemlerin 

üstesinden gelmede bir araç olarak kullanılabileceğini önermektedirler. Bu anlayıĢın 

temel hedefleri, büyük kentsel alanlarda motorlu araçlarla yapılan seyahatleri azaltmak 

ve toplu taĢımayı geliĢtirmektir. Bu objektiflere ulaĢmak için, arazi kullanımın tür 

seçimi üzerindeki olası etkilerinin anlaĢılması önemlidir. Ancak, tür seçimi üzerinde 

arazi kullanımın etkileri Türkiye‟de tam olarak cevaplanmamıĢtır.  Bu tez, ev - uçlu iĢ 

(HBW) yolculukları için Ġstanbul‟da “seyahat tür seçimi” ve “arazi kullanım” arasındaki 

iliĢkinin farklı tür seçim modelleri uygulayarak ampirik olarak toplu ve bireysel 

düzeyde incelenmesidir. Bu çalıĢmanın odağı, Ġstanbul örneğinde arazi kullanım 

karakteristiklerinin ev - uçlu iĢ yolculuk tür seçimini nasıl etkilediğini anlamaktır. Bu 

çalıĢmada, lojit modeller ve Bayesian Belief Networks (BBNs), seyahat tür seçimi 

üzerinde arazi kullanımın etkilerini her iki düzeyde tanımlamak ve ölçmek için 

kullanılmaktadır. Deneysel data, 2007 Ġstanbul UlaĢım Master Plan çalıĢması için 

hazırlanan 2006 Hanehalkı Anketinden temin edilmiĢtir. Model sonuçları, arazi 

kullanım değiĢkenlerinin her iki düzeyde istatistiksel olarak anlamlı olduklarını 

göstermektedir. Arazi kullanım değiĢkenlerinin ilave edilmesi, modellerin açıklama 

düzeyini arttırmıĢtır. 
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CHAPTER 1 

 

INTRODUCTION 

 

The common problems in the cities are traffic congestion, air pollution, 

automobile dependency, uncontrolled development, and decentralization of jobs that 

need to structure a link between land use and transportation (LU&T). Therefore, interest 

in land use and transportation relationship has gained popularity in recent years. In 

Europe, U.S., and also Asian cities, the most common land use and transportation policy 

is to reduce the number of motorized trips and encourage the use of public transport. In 

Western world, many policy makers and planners propose some land use strategies such 

as high density development, smart growth, new urbanism, transit oriented 

development, and mixed land use as a solution of those problems. It is intended that 

these land use policies are used to create changes in travel behavior. The logic behind 

these solutions is to create a land use pattern that provides improved accessibility to 

choices for housing, employment, retail, and other opportunities but with less demand 

for motorized trips. These are main agenda for urban planning over the last two 

decades. To achieve this objective, spatial configuration of land use in terms of planning 

and design should be integrated into the modeling process in urban transportation 

planning. However, since the relationship between LU&T has complex and 

multidimensional, the relationship is not well enough understood in the World and 

especially in Turkey. There is a lack of empirical support for the existence of an 

association in the case of the cities of Turkey. Also, the question of whether land use 

characteristics affect travel behavior has never been fully answered. Main reason for 

this lack of empirical study has been the unavailability of empirical data such as 

household travel surveys and land use data. This subject is important for developing 

land use policies aimed at reducing motorized trips in metropolitan areas in developing 

countries. In U.S. and Europe, land use planning and urban design concepts have been 

used as a powerful tool for shaping travel demand. On the other hand, there is ongoing 

argument whether or not this relationship is important for explaining travel behavior, 

even in developed countries. 
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Travel behavior consists of several aspects: mode choice, route choice, trip 

chaining, vehicle-miles traveled (VMT), commuting time, etc. (Cervero and Kockelman 

1997, Zhang 2004, Coevering and Schwanen 2006). This study focuses only on mode 

choice for home - based work (HBW) trips as one aspect of travel behavior. Mode 

choice itself is a distinct area of traditional four - step transportation modeling. In 

existing literature, it is suggested that three classes of variables affect mode choice: 

socioeconomic characteristics of travelers, characteristics of the journey, and 

characteristics of the transport facility (Ortuzar and Willumsen 2006). Since the effects 

of land use attributes on travel behavior are complex, potential land use indicators in 

and around trip origin and destination remains unanswered. In empirical studies, land 

use variables are generally omitted from modeling process, except for density variable. 

However, density and other factors as mentioned above cannot capture the all effects of 

land use on travel behavior. Therefore, a research question arises as whether land use 

attributes affect mode choice or not at aggregate level and disaggregate level? 

After 1990s, studies have focused on measuring the effect of land use 

characteristics on mode choice. In spite of growing interest and voluminous empirical 

literature, many issues needs to be explored. Firstly, there is no consensus about the 

factors affecting travel behavior. The empirical findings are mixed since complex and 

multi-dimensional relationship between land use and mode choice make analyzing 

difficult (reviewed by Crane 2000). For example, Stead (2001) found that both land use 

and socioeconomic characteristics influence travel pattern. However, socioeconomic 

characteristics explain more of the variation in travel patterns than land use. Cervero 

(2002) found that land use characteristics improved model‟s predictability although not 

as significantly. In this study, the influence of urban design was more modest than land 

use. Zhang (2004) found that land use has an independent influence on mode choice like 

Cervero (2002) and Cervero and Kockelman (1997). In addition, most studies suggest 

that mixed land use, walk - friendly urban development, high density, and transit 

accessibility reduce motorized trips and travel distance. On the other hand, Ewing et al. 

(1996) found no significant relationship between total trip frequencies and land use. 

Crane and Crepeau (1998) and Rodriguez et al. (2006) did not found enough evidence 

on the relationship between neighborhood design and travel behavior change. Ewing 

and Cervero (2001) suggested that the association between the built environment 

characteristics and travel behavior is statistically significant, but the association has 
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limited links. Despite the conflicting results, socioeconomic and land use factors 

affecting travel demand require further and comprehensive empirical studies. 

In terms of urban planning, it has been suggested that land use factors (or built 

environment) have been thought to influence travel demand along three principal 

dimensions: density, diversity, and design (Kockelman 1997, Cervero and Kockelman 

1997, Cervero 2002). The general hypotheses in previous studies are that higher 

densities and mixed land use are thought to decrease motorized trips. They are 

positively correlated with transit choice and non motorized trips. Density is a common 

measure in empirical studies. It assumes that people who lived in higher density areas 

use more transit (public transportation) and non - motorized modes because of parking 

problems, good access to transit service, and congestion problem. However, land use 

and transportation system attributes have been often treated as exogenous variables in 

travel demand analysis. The models may ignore the effects of these attributes that may 

play important role in residential location decisions. Although recent studies still have 

suggested that land use attributes may affect mode choice behavior, it cannot be said 

that there is a consensus on the degree of the impacts. Some empirical studies found a 

correlation between land use and mode choice. However, questions remain regarding 

strength and direction of the relationship. Another issue is that which land use 

characteristics influence travel behavior has not been adequately explained. 

Several weaknesses of the existing studies still remain. One of them is that many 

empirical studies have been motivated by urban design approaches such as new 

urbanism and transit oriented development. These design concepts are assumed as a 

way of shaping aggregate and disaggregate travel demand in the USA and Europe. 

These design philosophies are new for the cities in developing countries. From the 

perspective of developing countries, cities mainly have been developed by lack of urban 

design concepts and planning decisions. In addition, land use (or urban form) data can 

not readily be available and measured. On the other hand, expensive public transit 

investments are more common in developed part of the world than those of developing 

countries. Rail transit networks are not widespread in comparison to developed 

counties. Therefore, rail modes cannot be an alternative mode for each zone in 

developing countries. 

Mode choice models calibrated with disaggregate data are used to explain 

individuals‟ behaviors while the aggregate models analyze to predict the zonal shares of 
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trips by different travel modes. In the existing literature, empirical analysis of mode 

choice is generally based on discrete choice models developed from consumer choice 

theory (Domencich and Mc Fadden 1975, Ben Akiva and Lerman 1985). Multinomial 

logit (and conditional logit) models are the most used and preferred probabilistic choice 

models up to now. Since probit models need computational effort, logit models have 

been used increasingly in mode choice studies, especially with disaggregate data. 

However, the assumption of independence of irrelevant alternatives (IIA) is an 

important restriction for the application of discrete choice models. In mode choice 

studies, alternative approaches that are more flexible than discrete choice models are 

needed to develop. For example, soft computing methods do not suffer some statistical 

assumptions. The application of soft computing methods for modeling and analyzing 

transport systems is new and unexplored in comparison with discrete choice models. 

Among soft computing methods (neural networks, fuzzy logic, neuro-fuzzy, and genetic 

algorithms), bayesian belief networks (BBNs) are rather new approach for dealing with 

decision problems under uncertainty. Traditional methods can not adequately explain 

the complex relationships. Therefore, new methods may provide more information 

under uncertainty and complex problem domains for city planners. 

Even though the authors studying the mode choice have reached varying results 

in their findings, the urban environments they were analyzing shared certain similarities. 

In the existing literature, these urban settings mostly took place in the developed 

economies. North-American cities dominate the literature: Los Angeles Area 

(Cambridge Systematics 1994), Seattle Area (Frank and Pivo 1994, Frank, et al. 2007), 

San Francisco Bay Area (Cervero and Kockelman 1997, Kitamura, et al. 1997, 

Kockelman 1997, Cervero and Duncan 2002, Bhat and Guo 2007), Portland (Rajamani, 

et al. 2003), Maryland (Cervero 2002), and New York City (Chen and McKnight 2007). 

The Greater Dublin Area in Ireland (Commins and Nolan 2010), Hong Kong (Zhang 

2004), and The Netherlands (Schwanen, et al. 2004, Limtanakool, et al. 2006) are the 

other urban environments analyzing the connection between land use and travel 

behavior in developed countries. There is noteworthy effort to analyze the relationship 

between land use and travel behavior in disaggregate analysis. For example, at 

disaggregate level, Zhang (2004) and Cervero (2002) found that land use variables 

improved disaggregate model‟s explanatory power. The significance of land use and 

urban form characteristics vary among the cases. However, there is no enough evidence 
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at aggregate level. Little attention has been given to the analysis of zonal behaviors with 

different empirical models. Also, empirical studies have been made at either aggregate 

or disaggregate levels. To date, there have been few empirical studies analyzing and 

comparing the potential effects of land use on travel demand for both levels at the same 

time. Therefore, the aim of the study is to expand the understanding of the relationship 

between land use and mode choice by accounting for alternative approaches to choice 

models at aggregate and disaggregate levels in the case of Istanbul, Turkey, so as to 

achieve a better understanding of the effects of land use on mode choice. The study 

explores this research by offering a comparative empirical study on the performance of 

two different type models: Logit Models and Bayesian Belief Networks. 

 

Under this framework, the objectives of the study are: 

1. To examine the relationship between land use and travel mode choice with the 

application of the traditional (conventional) and alternative methods with respect to the 

usefulness of their information provided when estimating and forecasting travel 

behavior in terms of mode choice. 

2. To explore how the effects of land use on mode choice may differ at both 

aggregate and disaggregate level. 

 

In the content of the study, the measure of land use pattern is defined in terms of 

three core dimensions of spatial configuration in the city: density, diversity, and 

accessibility like Cervero and Kockelman (1997). Main hypothesis of the study is that 

land use characteristics affect mode choice decisions for home - based work trips in 

Istanbul at aggregate and disaggregate levels. In addition, this study aims to test 

following sub-hypotheses in Istanbul. 

 

SH-1. Adding land use variables to the models at aggregate and disaggregate levels 

improves the model‟s explanatory power. 

SH-2. Alternative methods (BBNs) are superior to traditional (conventional) models 

(logit models) in mode choice modeling at both levels. 

 

The following sub-hypotheses associated with land use variables are derived 

from the relationship between mode choice and land use in Istanbul are tested: 
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H.1. Population density is positively correlated with walking and transit mode choice. 

H.2. Employment densities are positively correlated with motorized trips. 

H.3. Diversity positively correlates with walk and transit mode choice. 

H.4. Transit access increases the choice of transit mode. 

H.5. Commuters whose trip origin and destination point is in the same zone are more 

likely to choose non-motorized alternatives. 

 

In order to achieve the objective of the study, firstly, academic research focusing 

this relationship between mode choice and land use is reviewed. It is not paid enough 

attention to this subject, especially in developing countries and soft computing methods. 

There is a lack of empirical studies in Turkey, while the findings of empirical studies in 

the world are not generalized. Because of this reason, this study seeks to answer the 

following questions in Istanbul: 

 

- Is there a statistically significant association between land use characteristics 

and travel pattern in terms of mode choice? 

- Which land use attributes show statistically significant with mode choice and 

to what extent at aggregate and disaggregated levels? 

- What are the similarities and differences for the relationship between LU&T in 

comparison with Western cities? 

 

To have a comprehensive understanding to the influence of land use on mode 

choice, the study examines the relationship based on some dependent variables: 

 

 The likelihood of using different modes (walk, car, service, and transit), 

 The likelihood of traveling according to aggregate and disaggregate mode 

choice. 

 

The contribution of the study to the existing literature is two-fold. First, new 

models, baseline category logit and BBNs, are introduced to explore the effects of land 

use attributes on mode choice at both levels. The methods are expected to provide more 

information under uncertainty and missing data in transportation applications. Such an 

alternative model can predict the choice probabilities as well as mode choice decisions 
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that may be affected by land use policies. Second, from a methodological framework, 

this study presents a methodology for simultaneously and comparatively modeling the 

LU&T interaction for both levels. Data used in this study is based on 2006 Household 

Travel Survey conducted by the Transportation Department of the Metropolitan 

Municipality of Istanbul. This survey was prepared for 2007 Istanbul Transportation 

Master Plan. Response rate in this study is 263,768 people in 70,888 households. In the 

content of the study, the models are calibrated using aggregate and disaggregate data. 

The final data set for disaggregate models contain 116992 home - based work trips 

while zonal (aggregate) level sample includes 406 travel analysis zones. In Istanbul, 451 

travel analysis zones are determined for 2007 Transportation Master Plan. In aggregate 

models, 45 zones are excluded from the models due to lack of land use data and few 

household survey studies for these zones. In order to test performance comparisons of 

the models, the data used in aggregate and disaggregate models is partitioned into two 

subsets, randomly: training and testing sets. Training sub-datasets are used to develop 

the models and testing sub-datasets that are not used in training process, are used to 

accuracy and performance comparisons of the models. Training data include 80% of 

total data while testing data include 20% of total data. The aggregate models are based 

on non OD (origin-destination) - based data whereas disaggregate models are based on 

OD data. In line with previous studies, logit models (MNL and Baseline Category 

Logit) are used as a traditional (conventional) model while BBNs are used as an 

alternative method to mode choice. SAS and Limdep - Nlogit programs for baseline 

category logit and multinomial logit models are used to estimate model parameters. 

Belief Network (BN) PowerConstructor and Hugin Researcher (Version 7.1) softwares 

are used to construct the network and estimate model parameters at both levels in 

Bayesian Belief Networks. 

This study has six parts. Chapter 2 introduces a review of the literature. After 

that, modeling approach is discussed in Chapter 3. Chapter 4 presents description of 

data source and processing. This is followed by a presentation of the model results in 

Chapter 5. The study ends with conclusion in Chapter 6. 

 

 

 



8 

 

CHAPTER 2 

 

LITERATURE REVIEW 

 

In mode choice analysis, spatial configuration of land use may be an important 

factor for explaining individual behavior. However, land use characteristics can be still 

neglected in empirical studies. Since the relationships between land use and 

transportation are complex and multidimensional, the probable effects of land use vary 

considerably from case to case. Many empirical studies need to be explored in different 

urban settings. Therefore, the focus in this stage shifted to analyze the effects of land 

use (built environment or urban form) in recent years. In this chapter, firstly, traditional 

four - step modeling is discussed in Section 2.1. After that, land use and mode choice 

relationship are presented in Section 2.2. The section provides information about the 

pattern of travel demand in developing countries. The section also includes the different 

formulations used in measuring land use characteristics and empirical applications 

focusing this interaction. Alternative approaches to traditional methods are described in 

Section 2.3. Soft computing methods used in travel demand modeling are discussed in 

this section. The methods used for performance comparisons of different mode choice 

models and the algorithms used in the model estimation are described in Section 2.4 and 

Section 2.5, respectively. 

 

2.1. Review of The Four - Step Models and Land Use - Transportation 

Models 

 

In 1950s, city planners and civil engineers firstly developed urban transportation 

models. The four - step model as seen in Figure 2.1 (or known as the urban 

transportation modeling system) has been used increasingly in transportation modeling 

up to now. The classic four - step transportation modeling system is applied for a zoning 

and network system. The system needs detailed empirical data that are obtained from 

mainly travel surveys (e.g., household travel surveys, roadside surveys, modal surveys, 

etc.). Urban Transportation Modeling System (UTMS) consists of four major and 

sequent stages (Meyer and Miller 2001, Ortuzar and Willumsen 2006). 
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Figure 2.1. The urban transport modeling system 

(Source: Meyer and Miller 2001) 

 

1. Trip Generation Models are used to predict the number of trips produced by 

and attracted to each zone in a study area. This first step predicts total flows or total 

daily travel for each zone in a study area. Regression models, cross classification, and 

discrete choice models can be used in modeling trip generation. 

2. Trip Distribution Models are used to predict spatial pattern of trip. The 

models can be called as destination choice model. In this stage, a trip table (origin-

destination matrix) is used for showing number of trip ends and trips generated 

estimated by trip generation models between each zone in the study area. Gravity model 

and growth factor models are used mainly in this stage. 
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3. Mode Choice Models predict the percentage of travelers using each of the 

travel modes for particular types of trips. Another goal is to predict the share of number 

of trips according to the modes available to the given travelers. Discrete choice models 

are common methods in mode choice analysis. 

4. Trip Assignment Models deal with the assignment of the predicted traffic 

flow on a network minimum path (all or nothing) assignment, stochastic methods, and 

congested assignment are commonly used traffic assignment techniques. 

 

The four stage modeling is a sequential decision process. The usage of 

transportation models successfully encouraged the development of land use models. 

Lowry‟s study (1964) is one of the most known models. “The principle use of a Lowry - 

type model is to allocate a fixed amount of population and employment to zones of a 

region, given known locations of some of that employment and the transportation 

characteristics of the region” (Horowitz, et al. 2004, 167). The four stage modeling has 

been criticized recently. In the last twenty five years, integrated land use - transport 

models, microsimulation models of urban land use - transportation, and activity - based 

methods have been used and developed. Integrated models aim to analyze urban 

policies that might have impacts on land use and transportation. In other words, 

integrated models aim to predict of land use - travel patterns and their interactions 

(Timmermans 2003). Most of these models are aggregate models, except UrbanSim and 

urban areas are divided into the zones (Hunt, et al. 2005, Wegener 2004). There is a still 

considerable interest among planners in integrating land use and transport planning in 

order to assist in reducing car based travel and obtain sustainable development. In 

recent years, many land use and transportation models
1
 regarding LU&T such as 

BOYCE, ITLUP, MEPLAN, TRANUS, UrbanSim, and POLIS have been developed. 

One of the alternative approaches in travel demand modeling is activity - based travel 

demand modeling. This approach is based on modeling the entire activity associated 

with trip making instead of the modeling for each trip purpose in the four stage model 

(Meyer and Miller 2001). Activity - based approach assumes that travel decisions are 

activity based. The model includes several subclasses of econometric model systems: 

                                                             
1 Land Use and Transportation Modeling is discussed in detail in Hensher et al. (2004) and Pickrell 

(1999). Acitivity based approach is discussed in detail in Hensher et al. (2004) and Hensher and Button 

(2000). 
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trip - based systems, tour-based systems, and daily schedule system (Bowman and Ben - 

Akiva 1997). 

 

2.2. Land Use and Mode Choice Relationship  

 

2.2.1. The Pattern of Travel Demand in Developing Countries 

 

For developed countries, travel behaviour and its relationship to land use has 

been the subject of the debate for urban transportation problems. Some land use policies 

such as compact development, TOD, and mixed land use are solution to the problems 

based on high level of private car usage. However, much remains to be learned about 

how land use characteristics affect travel behaviour for developing countries. Lack of 

coordination between land use and transportation cause serious transportation problems 

such as congestion and traffic accidents in developing countries. 

Travel behaviour is generally measured in terms of trip time, mode choice, trip 

length, and route choice in empirical studies. In the content of this study, mode choice is 

focus of the study. Mode choice behaviour in developing countries are rarely 

investigated with respect to location (spatial configuration of the cities). There is a lack 

of empirical studies on this issue (criticized in Table 2.2 – 2.3). From the perspective of 

developing countries, urban transportation problems can be analyzed under four 

headings: congestion, deteriorating environment, safety and security, and declining 

public transportation for the poor people (Gwilliam 2003). These problems are highly 

based on rapid motorization process. Researchers have focused the effects of 

motorization process in the literature related to developing countries. For example, 

Dargay and Gately (1999) estimates the effect of income elasticities (the growth in per 

capita income) for national car and vehicle ownership for OECD countries and a 

number of developing economies including China, India, and Pakistan. The study found 

that car and vehicle ownership for the lower income countries (China, India, and 

Pakistan) will grow about twice as rapidly as per-capita income. Senbil et al. (2007) 

found that income has stronger effect on car ownership than motorcycle ownership. 

Income elasticity was estimated to be 1.75 for the Asian whole region. It means that one 

percent increase in income causes a 1.75 percent increase in passenger cars per thousand 
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population. Therefore, it seems that income distribution is the most important 

determinant for explaining motorization. 

 Gakenheimer (1999) found that cars per 1000 population are positively 

correlated with the annual income of the top 20% of population of the low income 

developing countries such as Bangladesh, India, Pakistan, and Colombia. Baker et al. 

(2005) analyzed the factors affecting the demand for transport services by the poor who 

live in Mumbai, India. The study found that poor household made fewer trips than 

wealthier. The main mode is walking for poor households. 66% of commuters in poor 

households take walk or bicycle whereas over 30% of poor households take rail and bus 

for commuting. Poor households wanted to shorten travel distance due to high cost and 

travel time. The highest frequency for commute distance is 1-2 km whereas higher 

income workers are willingness to travel longer distance. The poor workers are highly 

commuting by walking while they take rail mode for commute distance with 5 km or 

more. For the highest income groups, the motorcycles and cars are the main commute 

mode. In Mumbai, public transit is important factor in mobility for the poor and the 

middle class. “rail remains the main mode to work for 23% of commuters, while bus 

remains the main mode for 16% of commuters. The modal shares for bus are highest for 

the poor in zones 1-3 (21% of the poor in zone 2 take the bus to work) while rail shares 

are highest for the poor in the suburbs” (Baker, et al. 2005, 46). 

Hyodo et al. (2005) analyzed urban travel behavior characteristics of 13 cities
2
 

using by household interview survey data. 

 

 Bicycle trips are biggest in Chengdu, the bicycle being a major mode in China. In Tokyo and 

Hiroshima, the bicycle is an important access mode to train stations and for short trips. The 

bicycle is not as important in the other cities due perhaps to the hot weather, culture, and others. 
About 30% - 40% of all trips is done by “walking” for Belem, Managua, Chengdu, Damascus, 

and Phnom Penh. The motorcycle is an important mode in KL, Phnom Penh, and Tripoli 

(Hyodo, et al. 2005, 34). 

 

The World Bank (2002) suggested that most developing countries have fewer 

than 100 cars per 1000 people, compared with 400 or more per 1000 people in 

developed countries. The main mode for Hong Kong is public transportation. 48.3% of 

                                                             
2 The cities are Tripoli (Lebanon), Phnom Penh (Cambodia), Damascus (Syria), Manila (Philippines), 

Chengdu (China), Managua (Nicaragua), Belem (Brazil), Bucharest (Romania), Cairo (Egypt), Jakarta 

(Indonesia), KL (Malaysia), Tokyo (Japan), Hiroshima (Japan). 
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total work trips is made by buses and minibuses while 25% of total work trips were 

made by Mass Transit Railway (MTR) in Hong Kong in 2001 (Lau and Chiu 2004). 

Vasconcellos (2005) analyzed transportation conditions for the years between 

1967 and 1997 in Sao Paolo, Brazil. The study found that work trips decreased from 

50% in 1967 to 41% in 1997. Regarding the change in the use of motorized transport 

modes, from 1967 to 1997, the share of private modes (auto and taxi) have increased 

while public transportation modes (train, subway, and bus) have decreased. However, 

walking is the main mode for all trips. On the other hand, the number of auto trips per 

person firstly increased from 1967 to 1977 while the rate has stabilized since 1977. The 

number of public transportation trips per person increased from 1967 to 1977 while the 

rate has decreased since 1977. Liu (2006) analyzed travelers‟ choice behavior for work 

trip in Shanghai. The study found that income is important variable for work trip mode 

choice decisions. Individuals with higher income levels tend to commute by taxi more 

than bicycle and bus. 

The rise in population and motorization is common problem for developing 

countries. For example, in Malaysia, the number of registered motor vehicles increased 

by 8,321,517 from 1990 to 2003 (Nurdeen, et al. 2007). Although vehicle ownership 

and usage is growing rapidly, private modes have a lower commuter mode share than 

public transport modes in developing countries. Public transit is the main mode for 

urban vehicular trips, approximately 75% of urban vehicular trips (Gakenheimer 1999). 

In spite of higher use of public transportation, the use of rail modes among public 

transportation is still lower-level. One of the problems related to urban transportation in 

developing countries is poor service quality of the public transit (Senbil, et al. 2005, 

Alpizar and Carlsson 2003). “Although the vast majority of trips depend on public 

transportation in most cities services suffer from poor financial conditions, inadequate 

passenger capacity, low network integration, slow operating speeds, and deteriorating 

physical conditions” (Gakenheimer and Zegras 2004, 162). The other one is that most 

urban public transit is hihghly road based (World Bank 2002). For example, public 

transportation in the city of Karachi and Pakistan that reached a population 14 million in 

2004 is mainly based on road-based. The city is developing without a rail based mass 

transit system. In China, India, and Malaysia, the automobile sector is the biggest 

economic sector while in US and Europe policies aims to decrease the share of private 

modes and motorized travel distance. Nonmotorized (walking and cycling) modes play 
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dominan role as a main mode for all trips in developing countries. For example, the 

share of walking is between 25 and 50 percent of trips in the major Indian cities and 50 

percent of all trips in major African cities (World Bank 2002). On the other hand, in 

Hanoi (Vietnam) and Ouagadougou (Burkina Faso), motorcycles play a predominant 

role in 1990s (Vasconcellos 2001). Nowadays, motorization is dominated by 

motorcycles in Ho Chi Minh City, Vietnam. The share of motorcycles is 78% of 

journeys in the city. In fact, motorcycle usage have become the major mode due to low 

cost and effectiveness whereas public transportation is not highly used due to poor 

service labels and conditions. (Santoso and Tsunokawa 2005). In Asian cities, high 

levels of motorcycle ownership is common fact because buying a motorbike is cheaper 

than others (Senbil, et al. 2006). The major modes in the city of Addis Ababa (Ethiopia) 

are buses and taxis that are used for public transportation (Gebeyehu and Takano 2007). 

In Asia, the share of motorcycle mode is more than automobiles. In Taiwan, The 

motorcycle ownership per square kilometer is 302.8 whereas this rate is only 0.4 in 

America (Lai and Lu 2007). 

Gakenheimer (1999) suggest that mobility and accessibility are declining in 

most of the large cities of developing countries, depending on the high level of 

congestion. An important issue in transportation in the world is environmental 

discussions. The most known solutions to this problem that have been hihghly discussed 

in sustainable transportation are to reduce automobile dependence, to increase the share 

of public transportation and non-motorized modes, and to develop land use policies 

such as mixed use, transit-oriented community, and higher density development. For 

example, Pucher and Renne (2003) examined the variations in travel behavior such as 

travel mode and mobility levels using by 2001 National Household Travel Survey 

(NHTS) in US. According to the results of the study, the share of private car for walk 

trips increased from 66.9% in 1960 to 87.9% in 2000 whereas the share of public transit 

for the same period decreased from 12.6% to 4.7%. For walk trips, this rate decreased 

from 10.3 in 1960 to 2.9 in 2000. In total, non-motorized modes (walking and 

bicycling) as a commuting mode was 3.3% in 2000. Also, auto‟s share for daily travel 

(all trip purposes) is high level. The share of auto for daily travel in the United States 

increased from 81.8 in 1969 to 86.4% in 2001. In the same period, the share of transit 

decreased from 3.2 to 1.6 while the share of walk mode is 8.6 in 2001. Another 

important issue is rise in work travel distance. Average travel distance to work in US 
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increased from 9 miles in 1975 to 11.6 in 1995 (Hanson 2004). Average travel time to 

work in US increased from 21.7 minutes in 1980 to 22.4 minutes in 1990, and to 24.3 

minutes in 2000 (Horner 2004). “In 2001 the average journey to work covered twelve 

miles and took twenty – four minutes. By 2005 the mean travel time to work in the USA 

was twenty – five minutes” (Pacione 2009, 265). Regarding developing countries, the 

average trip length in Delhi increased from 5.4 km in 1970 to 8.5 km in 1993. The 

average travel time in the city increased from 30 minutes in 1985 to 44.34 minutes in 

1993. The average trip lengths as minutes are 12.40 for Mumbai, 7.30 for Chennai, and 

6.70 for Bangalore in 1993. The average trip times (minutes / kilometre) are 33.37 for 

Mumbai, 21.62 for Chennai, and 17.60 for Bangalore in 1993. According to the 

statistics for both developed and developing countries, people are willingness to travel 

longer distances for home - based work trips. 

In U.S., important finding for mode choice is that the share of public transit for 

all trip purposes have decreased. The share of transit mode decreased from 3.2% in 

1969 to 1.6% in 2001. The share of walk mode decreased from 9.3% in 1969 to 8.6% in 

2001 for all trip purposes. For work trips, the share of public transit in total work trips 

have declined from 12.6% in 1960 to 4.7% in 2000 in the United States (Pucher 2004). 

The detailed mode split for developing countries are presented in Table 2.1. 

The development and planning in many cities of North America and Europe is 

integrated with rail transit system. For example, Stockholm is one of the best example 

for this integration between rail rail-transit systems and urban development. “Half of the 

city’s 750,000 inhabitants live in satellite communities linked to the urban core by a 

regional rail system” (Pacione 2009, 276). In the city, 53 percent of workers live in 

satellite new towns commute by rail (Pacione 2009). “In the USA the Bay Area Rapid 

Transit (BART) system in San Francisco CA carries more than half of all CBD – bound 

work journeys” (Pacione 2009, 271). 

Srinivasan and Rogers (2005) analyzed differences in travel behavior between 

two different locations where low-income residents lived in the city of Chennai (India). 

The one group of households lived close to the city center (Srinivasapuram) while the 

others lived close to the periphery (Kannagi Nagar). According to the survey, residents 

highly used non-motorized transport and transit for conducting both work and non-work 

activity. Also, work trips include 56% of trips made by persons in both locations. The 

share of work related activity and shopping trips are 19% and 23%, respectively. 
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Regarding mode choice, In Srinivasapuram, the major mode share was for walk 

including 69% of trips while in Kannagi Nagar, the major mode was bus including 50% 

of trips. In sum, location has a significant effect for explaining travel behavior, even for 

low-income residents of Chennai. “Poor people typically make only one-third to one-

half as many motorized trips per capita as the non-poor”(Gwilliam 2003, 10). 

 

Table 2.1. Mode split in selected developing country cities 

(Source: adapted from the studies of Srinivasan et al. (2007), Srinivasan and 

Rogers (2005), VTPI (2010), Chang and Wu (2008), Vasconcellos (2005), Zhao (2010)) 

Cities 

Mode Share (%) 

Public 

Transportation 

Private 

Modes 

Non-Motorized 

Modes 

Karachi (1987) 57 31 12 

Karachi (2004) 52 48 0 

Chennai (India) 39.53 54.09 6.32 

Bangalore 45 29 27 

Bishkek 80 12 8 

Cebu 96 4 0 

Colombo 77 17 6 

Mandaluyong 45 39 16 

Dhaka 33 6 61 

Naga 58 38 4 

Phnom Penh 25 70 5 

Hohhot 2 6 92 

Melbourne 43 56 2 

Taipei 30.58 61.06 8.36 

Sao Paulo 

(in 1997) 

50.8 47.3 0.9 

Yizhuang 23.7 40.6 35.7 

Wangjing 20.4 49.7 29.9 

 

More vehicles on the roads and longer commuter distance have created urban 

transportation problems. The most important debates to challenge transportation 

problems have been continued on urban commuting associated with land use policies, 

especially in developed countries. Modeling commuting flows has become important in 

urban policy and regional science (McArthur, et al. 2010, Ruwendal and Nijkamp 

2004). Also, commuting pattern in the cities is one of the main causes of traffic 

congestion. It is assumed that commuting pattern is an indicator of urban spatial 
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structure (Sohn 2005). Commuting behavior is related to three markets: labor, housing, 

and transportation. Therefore, it plays important role on urban economic models 

developed by Alonso (1964), Muth (1969), and Mills (1972) (Rouwendal and Nijkamp 

2004). 

In addition, some typologies related to the spatial pattern of commuting flows 

have been developed. Analyzing commuting pattern is described on these typologies. 

According to a known typology in the literature, commuting flows have five different 

ways as seen in Figure 2.2 (Plane 1981, Pacione 2009, 266): 

 

 

Figure 2.2. Typology of commuting flows 

(Source: Plane 1981) 

 

Type 1: within central city movements are trips made by workers who both live and 

 work within the city‟s legal boundaries. 

Type 2: inward commuting encompasses both the traditional commuters from suburbs 
 and metropolitan villages to central cities, plus those workers living in one central city 

 who commute to another. 

Type 3: reverse commuting is composed of workers residing in the central city who 
 work anywhere outside that city‟s boundaries. 

Type 4: lateral commuting takes place within the commuter range of the city but both 

 work place and residence locations are outside the central city. 
Type 5. Cross-commuting flows are those entering or leaving the central city‟s 

 commuter zone, meaning that only the workplace or residence is located inside the 

 urban field. 
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Van der Lann (1998) and Schwanen et al. (2001) used a typology of daily urban 

systems. According to this typology, there are four types of functional daily urban 

systems: central, decentral, cross - commuting, and exchange - commuting. In addition, 

when considering the relationship between spatial structure and commuting behavior, 

the value of commuting travel time, mode choice, and commuting distance may be 

potential indicator of the relationship. In this study, mode choice behavior for home - 

based work trips are analyzed as an indicator of commuting behavior in Istanbul. 

 

2.2.2. Measuring Land Use Characteristics 

 

In existing literature, the factors influencing mode choice are divided into three 

groups (Wright and Ashford 1989, Ortuzar and Willumsen 2006): 

 

1. The socioeconomic characteristics of traveler (income, car ownership, household 

structure, etc.), 

2. The characteristics of travel mode (travel time, monetary cost, convenience, 

security, comfort, etc.), 

3. The characteristics of journey (trip purpose and time of the day). 

 

It is seen that land use attributes are omitted from this list. Also, the factors as 

summarized above cannot be expected to capture fully the effects of land use attributes. 

However, spatial configuration of land use (built environment) may be potential 

determinant of mode choice. Therefore, an empirical gap has occurred to test whether 

land use attributes are significant determinant of mode choice and also to what extent. 

This question brings two important tasks to researchers. One is that how land use 

attributes can be measured and entered into the models. The other one is to use 

alternative approaches that better explain the relationship between mode choice and 

land use may give better results than conventional models. 

There is a growing interest in the relationship between built environment and 

travel behavior in recent years as a way of shaping travel demand. Therefore, some 

urban planning policies and urban design philosophies such as new urbanism and transit 
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oriented development have gained popularity. These design concepts have common 

objectives as follows (Cervero and Kockelman 1997): 

 

 Reduce the number of motorized trips ( as called trip degeneration), 

 Increasing the share of non motorized trips, 

 Reducing travel distances and increasing vehicle occupancy levels or 

encouraging shorter trips or transit, para transit etc. 

 

A key task is to define and analyze the effect of land use characteristics (or built 

environment) on travel decisions. Although there are several empirical studies 

investigating the relationship between land use and travel behavior, the results of the 

studies are mixed about the significance and the extent of the relationship. In this stage, 

one of first important contributions comes from Kockelman‟s study. Kockelman (1997) 

proposed some measures of land use pattern such as accessibility, land use balance, 

diversity, density, and dissimilarity index of land use mixture. Cervero and Kockelman 

(1997) suggested that the built environment influence travel demand along three 

dimensions (3Ds): density, diversity, and design. In addition to this, accessibility 

measure can be an important indicator of land use pattern and urban form. It is 

suggested that these dimensions can be used for achieving design objectives. For 

example, “underlying the New Urbanist movement is a belief that designing 

neighborhoods, communities, and regions to be more compact and walkable will result 

in increased pedestrian activity, increased transit use, and decreased reliance on the 

private auto” (Reilly and Landis 2002, 2). 

In measuring of land use characteristics (or built environment), population 

density, employment density, and job density are commonly used variables in the 

literature (Cervero and Kockelman 1997, Coevering and Schwanen 2006, Buchanan, et 

al. 2006, Limtanakool, et al. 2006, Newman and Kenworthy 1999, Zhang 2004). 

Density variable has been one of the most significant land use variables influencing 

travel behavior. Density is defined as the number of persons (or employment) per 

hectare. It is measured at metropolitan level in general. Empirical studies suggests that 

people living in high density areas makes less vehicle travels and they use public 

transport or walk mode (Maat, et al. 2005). Newman and Kenworthy (1989, 1999) 

examined this relationship in 46 cities worldwide. They studied auto - oriented land use 
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for urban travel. They found a negative correlation between density and private auto 

use. They showed this relationship by a logarithmic curve. Coevering and Schwanen 

(2006) investigated the correlations between land use and travel for 31 cities in Europe, 

Canada, and the USA. They found that higher population density decrease the share of 

car trips and increase the share of walking / bicycling. Several critics have challenged 

Newman and Kenworthy‟s conclusions (Gomez – Ibanez 1991, Pickrell 1999). These 

critics suggest that income, household size, gasoline prices, automobile taxation, and 

transportation technology are related factors to automobile use. To determine the effects 

of urban density on automobile dependency, one should carefully specify the 

relationships among density, other important variables (e.g., income), and travel 

behavior. Automobile use is related not only density, but also income and otfer factors. 

In the literature, different density measures have been defined such as intersection 

density, bus stop density, and park and ride density (Frank, et al. 2007), but common 

density measures are population density and employment (or job) density at trip origins 

and destinations. In addition to job and population density, other density measures used 

in empirical studies are worker density (per sq mile number of workers), housing 

density (per sq mile housing units), road density (per sq mile road length), intersection 

density (per sq mile number of intersections), and overall density ((residents+jobs)/area) 

(Lin and Long 2008, Ewing, et al. 2004). 

Diversity presents the degree of land use mixture. In other words, it represents 

spatial heterogeneity. Two indexes are highly used: land use mix (dissimilarity index) 

and land use balance (entropy index
3
). It assumes that more balance induce transit use 

and non drive alone travel. Entropy index provide a measure for the degree of balance 

across land use types (Kockelman 1997). Entropy measure has been used in different 

settings such as suburban employment centers (Cervero 1989), municipalities of 

Netharlands (Limtanakool, et al. 2006), Boston (Zhang 2004), Motgomery County, 

Maryland (Cervero 2002). Greenwald (2006) used housing balance and employment 

(economic) entropy indices for indicating the degrees to which a transportation analysis 

zone (TAZ) is in balance in terms of housing stock and diverse in economic activity. In 

some empirical studies, a different balance measure has been used. This balance is 

                                                             
3 Entropy index as a land use balance measure is estimated as )ln(/)ln( JPP

j jj . Where Pj 

presents the proportion of developed land in the jth use type. J is the number of land use categories. The 

mean entropy ranges from 0 (homogeneity) and 1 (heterogeneity). The details for this formulation is 

found in the studies of Kockelman (1997) and Cervero and Kockelman (1997). 
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called as jobs - housing balance (JHB). Jobs - housing balance represents the spatial 

relationship between the number of jobs and housing units within a given geographical 

area (Peng 1997). This balance is a planning tool that the local governments want to 

achieve a balance between the number of jobs and housing units. “If planners designed 

communities with mixed uses, placing some jobs near residences, perhaps many more 

persons would be able to walk, use transit or carpool to work” (Boarnet and Crane 

2001, 10). The benefits of jobs - housing balance are (SCAG 2001): 

 

- Reduced congestion and commute times, 

- Air quality benefits, 

- Economic and fiscal benefits, 

- Quality of life benefits. 

 

Jobs - housing imbalance (or spatial mismatch) causes to increase long distance 

work trips, higher automobile dependency, and more vehicle miles traveled (Cervero 

1996). Several formulations of measuring the jobs - housing balance have been used in 

empirical studies. The most used formulation is the ratio of the number of employees to 

the number of households in a geographical area (Cervero 1989, 1991). Another 

formulation for jobs - housing balance is formulated as following (Cervero 1996): 

 

dareemployethecitywhosidentnumberofre

thecityrnumberofwo
dresidentsstoemployeratioofjob

sin

sinker  (2.1) 

 

According to the findings of the empirical studies related to this variable, if jobs 

- housing balance occurs, people may want to live and work in the same area. It can be 

expected that long trips would be avoided (Cervero 1989, Sultana 2002, Wang and Chai 

2009). For example, Sultana (2002) highlighted the fact that jobs - housing imbalance is 

an important determinant for longer commuting. The study found that job - rich areas 

tend to longer commuting times than areas of balanced JHB ratios. Also, employed 

residents living in housing - rich areas have longer commuting times than areas with 

balanced JHB ratios in Atlanta. Zhao et al. (2010) found that the jobs - housing balance 

has significant implications for commuting time in Beijing. Peng (1997) found that 
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there is a non-linear relationship between the jobs - housing balance and commuting 

patterns in terms of vehicle miles travelled (VMT) per capita and trip length in Portland. 

A simple formulation for JHB is presented as below: 

 

ii

ii

PE

PE
 (2.2) 

 

Where E presents employment size and P is the population size at the relative 

zone. This value ranges from 0 to 1. 1 represents a pure nonresidential area or 

residential area while 0 indicates a balance between employment and population. 

Dissimilarity Index (Land Use Mix) as another type of diversity index presents 

proportion of dissimilar land uses within a tract. The index is based on distinct land use 

types. Different land use mix formulations can be used. One of the most known types of 

land use mix formulation is computed by the land use composition as seen in Equation 

2.3. It varies between 0 and 1 (Rajamani, et al. 2003, Bhat and Guo 2007). 
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DiversityLandUseMix  (2.3) 

 

Where T=r+c+i+o, and r represent zonal hectares in residential use, c is zonal 

hectares in commercial use, i is zonal hectares in industrial use, and o is zonal hectares 

in other uses. A value of 0 means the land in metropolitan area has a single use and a 

value of 1 represents perfect mixing among land uses. 

Design variables are associated with site, street, and block design in a 

neighborhood. For example, Cervero and Kockelman (1997) measured the variables of 

street design as predominant pattern of the street such as regular grid, proportion of 

intersections, number of blocks, number of dead ends and cul de sacs. On the other 

hand, site design variables were measured by proportion of commercial, retail, and 

service parcels with front and site lot parking. Also, under design category, one measure 

group is related to pedestrian and cycling provisions. They are proportion of blocks with 

sidewalks, street trees, bicycle lanes, and proportion of intersections with signalized 
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controls, averages of block face length, sidewalk width, and bicycle lanes per developed 

acre. Ratio of sidewalks miles to road miles can be used for design variable (Cervero 

2002). Since urban design philosophies aims to stimulate the use of public 

transportation, urban form characteristics may affect the choice of travel mode (Cervero 

and Gorham 1995, Frank and Pivo 1994). For example, Snellen et al. (2002) studied 

neighborhood characteristics including urban form typologies, transportation network 

types, and local - street network type for the cities in The Netherlands. The measuring 

of these design variables needs parcel level and Geographic Information System (GIS) 

data. It is very difficult to obtain design variables for the cities in developing countries. 

Accessibility has long been identified as a key factor in urban theory. The 

previous studies by Alonso (1964), Muth (1969), and Mills (1972) have modeled a 

mono - centric city. Theory assumed that all the employment took place at the city 

center. Commuting time would be key determinant of the city rent curve. For example, 

savings in commuting time can be measured by monitoring the changes in a city rent 

curve. Many empirical studies have analyzed the effects of accessibility based on 

transportation investments in the city (detailed discussion Celik and Yankaya 2006, 

Yankaya 2004). In empirical studies, different accessibility measures have been used 

such as regional accessibility measure, recreation accessibility (Pinjari, et at. 2007), job 

and labor force accessibility (Cervero 2002, Cervero and Kockelman 1997) or 

proximity/distance  variables to urban centre or transportation infrastructure such as a 

nearest transit station (Limtanakool, et al. 2006, Stead 2001, Zhang 2004). A common 

accessibility index in the studies is estimated as follow (Kockelman 1997): 

 

j
ij

j

tf

A
ityAccessibil

)(
 (2.4) 

 

Where Aj is attractiveness of zone j and tij is travel time from zone i to j. Another 

known form of the accessibility index is based on gravity type functional form. 

 

J

j

jijmim RCfA *)(  (2.5) 
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In this equation, f (Cijm) represents friction factor between zones i and j by mode 

m. Rj is employment in zone j, while J is the total number of travel zones (Levinson and 

Kumar 1995, Rajamani, et al. 2003). 

 

2.2.3. Empirical Applications for Measuring The Influence of Land 

 Use on Mode Choice 

 

Interest in analyzing travel behavior has undergone considerable development in 

recent years. Table 2.2
4
 represents several empirical studies focused on the relationship 

between and land use. In spite of growing interest and voluminous empirical literature, 

many issues needs to be explored. The main issues are summarized as follows: 

1. There is no consensus about the findings for the relationship between land use and 

mode choice. For example, Cervero and Kockelman (1997), Cervero (2002), and 

Zhang (2004) found that land use has an independent influence on mode choice 

while Crane and Crepeau (1998) and Rodriguez et al. (2006) did not find enough 

evidence. Although some studies found a correlation between land use and mode 

choice, questions remain regarding strength and direction of the relationship. 

Another issue is that which land use characteristics influence travel behavior has 

not been adequately explained. 

2. In existing literature as summarized in Table 2.2 and Table 2.3, many empirical 

studies have been conducted in North-American and European cities (Frank and 

Pivo 1994, Frank, et al. 2007, Cervero and Kockelman 1997, Kitamura, et al. 1997, 

Kockelman 1997, Cervero and Duncan 2002, Bhat and Guo 2007, Rajamani, et al. 

2003, Cervero 2002, Chen and McKnight 2007, Zhang 2004, Crane and Crepeau 

1998, Limtanakool, et al. 2006, Coevering and Shwanen 2006). In Hong Kong 

(Zhang 2004) and Asia (Lin and Yang 2009), there is also enough evidence to 

support the hypothesis. In line with previous studies for Turkey, the effects of land 

use on mode choice has been ignored. There is no evidence of any significant 

relationship to support the main hypothesis of the thesis. 

3. In existing literature, evidence derived from empirical studies belongs to either 

aggregate or disaggregate analysis. Empirical studies combining and analyzing 

                                                             
4 The more detailed discussion is included in TRB Special Report 282 (2005). 
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aggregate and disaggregate data together are rather limited. The effect of land use 

variables may change the scale of analysis. 

4. In many studies, land use variables were not tested independently from other 

factors. Cervero (2002) and Zhang (2004) tested the marginal influence of land use 

and model‟s explanatory power by an expanded model. 

5. Aggregate behavior is a result of individual choices in zones. The modeling 

aggregate choice behavior is highly related to individual choice. In the basis of 

individual choice theory, all decisions are probabilistic. According to the type of 

choice data, probability models may be applied to aggregate or disaggregate data. 

The models calibrated with disaggregate data is used to explain individuals‟ 

behaviors while the aggregate models analyze to predict the zonal shares of trips by 

different travel modes. Contrary to the disaggregate models, the aggregate models 

require characteristics of travel zones (average auto ownership, average income, 

etc.) and characteristics of o-d pair such as travel time. In existing literature, 

academic research is still heavily focused on disaggregate modeling for analyzing 

travel behavior (Zhang 2004, Cervero 2002, Pinjari 2007). These empirical 

literature stems from works of Domencich and McFadden (1975) and Ben Akiva 

and Lerman (1985). The disaggregate modeling is still widely preferred. 

 

Empirical analysis of mode choice is mainly based on discrete choice model 

(Domencich and Mc Fadden 1975, Ben Akiva and Lerman 1985). The random 

component in MNL model is assumed to be independent and identically distributed with 

Gumbel distribution (McFadden 1974). However, the assumption of independence of 

irrelevant alternatives is an important restrictive for the application of discrete choice 

models (logit and probit models) into the modeling of choice behavior. Generalized 

extreme value models such as Nested Logit Model relax IIA assumption. Multinomial 

logit and conditional logit models are the most used and preferred probabilistic choice 

models up to now. Since probit models need computational effort, logit models have 

been used increasingly in mode choice studies, especially with disaggregate data. 

Despite some empirical evidence, traditional models cannot adequately exhibit this 

complex relationship. For example, Lin and Yang (2009) suggest that structural 

equation modeling is an appropriate technique for analyzing complex systems. On the 

other hand, discrete choice models suffer from some statistical assumptions such as 
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independence of irrelevant alternatives (IIA). Soft computing methods do not suffer this 

assumption. Alternative approaches may be more flexible than discrete choice models. 

Also, in mode choice studies, alternative models are less used with aggregate data. 

There has been little empirical attention paid to analyze the effect of land use 

characteristics on mode choice by using soft computing methods. Among the soft 

computing methods, artificial neural networks (ANN) have been widely used in mode 

choice studies while genetic algorithm (GA) and bayesian belief networks (BBNs) are 

less used methods. New algorithms in soft computing methods can be tested to increase 

model performance. 

One of the important issues in empirical studies is residential self - selection 

factor. It assumes that some households may prefer to live a neighborhood with good 

transit service facilities. Cervero and Duncan (2002) analyzed self - selection factor by 

constructing a nested logit model in San Francisco Bay Area. The study found that 

residential location and commute choice are jointly related decisions among station-area 

residents. 

Empirical studies in general analyzed the effects of land use on travel behavior 

in metropolitan areas. There are quite a few studies that have been done in small areas 

such as neighborhoods (Crane 2000, Pan, et al. 2009, Lin and Long 2008). Therefore, 

neighborhood characteristics may play an important role on travel behavior. However, 

neighborhood refers a spatial unit. In the literature, land use generally refers to built 

environment for various functions such as residential, commercial, industrial, natural 

areas while urban form includes design of the city. 

To seperate out the influence of land use characteristics on mode choice, the 

effects of socioeconomic and travel characteristics should be analyzed independently of 

land use characteristics. Multivariate analyses may allow analyst to do so. In sum, 

despite the significant accumulation of empirical studies, many issues require further 

empirical studies including new models. 
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Table 2.2. Summary of the literature review related with mode choice and land use relationships 

Case Study Data Type 
Land Use (or Built Environment) Variables 

Tested 
Relationships significantly Empirical Model 

 

Cervero and Kockelman  

(1997), 

San Francisco Bay Area. 

 

Disaggregate Data,  

OD based  

 

Population density, employment density, 

accessibility to jobs, dissimilarity index. 

 

- Mixed use and pedestrian friendly 

designs encourage non-motorized travel. 

 

Binomial logit for 

work and non-work 

trips. 

 

Cervero (2002), 

Maryland. 
 

 

Disaggregate Data,  

OD based  
 

Gross density, job accessibility land use 

diversity, ratio of sidewalk miles to road miles, 

labor force accessibility 
 

 

Binomial logit and 

multinomial logit for 
all trip purposes.  

Cervero and Duncan 

(2002), 

San Francisco Bay Area. 

 

Disaggregate Data 

 

Workplace distance to rail station, job 

accessibility index, neighborhood density 

 

 
Nested logit for 

commute trips. 

Zhang (2004),  

Boston and Hong Kong. 

 

 

Disaggregate Data,  

OD based  

 

Distance to nearest train station, population and 

job density, % non-culde sac, land use balance, 

public parking supply.  

 

 

- Land use has an independent influence 

on mode choice. 

- Goodness of fit of the models 

improved after the inclusion of land use 

variables.  

MNL model and 

Nested Logit Model 

for hbw trips 

 

Limtanakool et al. (2006), 

Randstad, Holland.  

 

 

Disaggregate Data,  

OD based  

 

Population density, land use balance, local and 
national specialization index for services and 

urban center (core cities or suburban, type of 

municipality, availability of a train station. 

  

 

- Population density and the provision 

of transport services have a statistically 
significant effect on mode choice.  

- Commuters are more likely to travel 

by train when traveling to a workplace 

with consumer services, urban facilities, 

and other activities nearby. 

 

Binary logit model 
for commute, 

business, and leisure 

trips. 

 

                      (cont. on next page) 
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Table 2.2. (cont.) 

 

Buchanan et al. (2006), 

Christchurch New Zealand. 

 

 

Aggregate Data, 

OD based. 

 

 

 

Population density,  

Employment density,  

Distance from the CBD. 

 

- Population density was not statistically 

significant variable as was distance from 

CBD. 

 

Stepwise multiple 

regression 

 

Pinjari et al. (2007), 

San Francisco Bay Area. 

 

 

 
Disaggregate Data,  

OD based. 

  

 

Household density, employment density, land 

use mix, recreation accessibility, street block 

density. 

 

- Built environment attributes can 

indeed significantly impact commute 

mode choice behavior. 

 

Joint flexible 

econometric model  

 

 

Frank et al. (2007), 

Central Puget Sound (Seattle). 

 

Disaggregate data, 

OD based. 

 

Bike and transit intersection density, land use 

mix, retail area floor area. 

 

- Land use mix, retail density and street 

connectivity measures proved 

significant for modes.  

 

Logit model for 

home-based work 

and home-based 

other trips.  

 

Lin and Long (2008), 

the cities in USA. 

 
 

Aggregate data. 

 
 

Neighborhood type (Urban elite, rural, 

suburban wealthy, etc.) 

 
 

- Transit availability at place of 

residence tends to increase the transit 

mode. 

- Urban residents made higher 
percentages of transit, walk, and bicycle 

trips than the suburban and rural 

counterparts. 

Descriptive analysis, 

ANOVA, 

hierarchical 
modeling. 

 

Rajamani et al. (2003), 

Portland. 

 

Disaggregate and 

Aggregate data, 

Non OD based. 

Land use mix, park area, accessibility index, 

population density, percentage of culde sac. 

- Mixed use planning promotes walking 

behavior. 

- Traditional neighborhood street design 

encourages walking mode. 

MNL for non work 

 

Çelikoğlu (2006), 
Istanbul. 

Aggregate data, OD 
based. - - 

Binary logit. 
 

Bonnel (2003), France. 

Aggregate Data 

OD based. 

 

Density (population + jobs) of zone 

 
 

Binary logit model 

 

                        (cont. on next page) 
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Table 2.2. (cont.) 

Schwanen and Mokhtarian 

(2005),  

San Francisco Bay Area. 

 

Disaggregate data 

 

Neighborhood indicators. 

 

- Neighborhood type dissonance is 

statistically significantly associated with 

commute mode choice. 

  

MNL model for 

commute mode 

choice. 

 

Schwanen et al. (2001),  

The Netherlands.  

 

 

 

Disaggregate data 

 

 

 

  

Urbanization levels (core cities, suburbs, and 

growth centers) 

 

 

 

 

- Deconcentration of urban land use to 

suburban locations and new towns 
almost certainly promotes the use of the 

private car for all purposes. It also leads 

to less use of public transport as well as 

of cycling and walking. 

 

- Decentralized and exchange 

commuting urban systems seem to 

promote public transport and biking.  

 

MNL model for 

work, shopping, and 

leisure trips.  

 

 

 

 

Coevering and Schwanen 

(2006), 

The major cities in Europe, 

Canada, and the USA. 

 

Aggregate data 

 

 

Population density, employment density, ratio 

of transit to road supply, parking places in 

CBD, population centrality.  

 

 - A higher population density is 

associated with a smaller share of the 

car and more walking/bicycling.  
- A good provision of public transport 

relative to road infrastructure and a 

lower number of public parking places 

in the CBD stimulate the share of public 

transport commutes.  

Multiple regression 

models. 

 

 

Lin and Yang (2009), 

Taipei, Taiwan. 

 

Aggregate data 

 

 

Building and emp. density, Housing-Job, 

Housing-Retail, road density, grid network, bus 

stop density, distance to metro station, transit, 

motorcycle,  and car access.  

 

- Density is negatively associated with 

car use (private modal split). 

- Mixed land use increases private 

modal split and a pedestrian – friendly 

built environment significantly reduces 

private modal split.   

Structural equation 

modeling 

 

Cervero and Gorham (1995), 

San Francisco and Los Angeles. Aggregate data 
 

Residential density and neighborhood type. 
 

-  Neighborhood type (1:Transit and 0:Auto)  
is a significant predictor. 
- Density has a significant effect on transit 
commuting in both transit and auto 
neighborhood. 

Matched pair 

analysis (regression 
analysis) for 

commuting trips. 

29
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Table 2.3. Summary of the literature review related with mode choice and land use relationships for developing countries 

Case Study Data Type Land Use (or Built Environment) Variables tested Relationships significantly Empirical Model 

Hamed and Olaywah (2000) 

Amman, Jordan. 
Disaggregate 

Travel distance to work, Station distance, and work 

and home location 

Bus, servis taxi, and private car commuters 

have different travel patterns. 

MNL model for 

commuters‟ decisions. 

Srinivasan and Rogers (2005) 
Chennai, India. 

Disaggregate Location variable (close to the city center or not) 

- Differences in accessibility to employment 
and services have a strong effect on travel 
behavior. 

- Residents in the centrally located settlement 
were more likely to use non-motorized 
modes for walk and bicycle travel than the 
peripherally located residents. 

Binary Logit Model for 

mode choice and trip 
frequency. 

Wan et al. (2009) 
Huaibei, China. 

Disaggregate O/D 
based. 

Residential density,  
commercial use ratio. 

In the higher residential density and 
commercial use ratio areas, the possibilities 
of commuters use public transport and 
motorcycle mode increase. 

MNL model for 
commute mode choice. 

Zhao et al. (2010) 
Beijing, China. 

Disaggregate 
Jobs-housing balance, population density, and 
transportation infrastructure-based accessibility. 

- Jobs-housing balance has a statistically 
significant and negative relationship with 
commuting time. 
- High and middle population density have a 
negative effect on commuting time, but not 
significantly.  

Multiple Linear 
Regression for 
workers‟ commuting 
time. 

Zegras (2010), 
Santiago de Chile. 

Disaggregate O/D 
based 

Live in apartment, Dwelling unit density, Diversity 
index, 4-way intersections per km, Distance to CBD. 

- Diversity index has a negative effect on 
household motor vehicle choice. 
- Households living further from the CBD 
have a higher likelihood of owning motor 
vehicles. 
- Dwelling unit density, diversity index, and 

4-way intersections per km did not play 
significant role on automobile use. 
- Distance to CBD and metrostations have a 
strong association with vehicle use.  

MNL model for 

household motor 
vehicle choice and 
Regression model for 
detecting the effects of 
built environment on 
automobile use.   

Senbil et al. (2007) 
Jabotek (Indonesia), Kuala 
Lumpur (Malaysia), and Manila 
(Philippines). 

Disaggregate 
Distance to city center, land use diversity, ratio of 
commercial / residential /undeveloped land use, 
residential density, job density, length of all roads. 

Density variables have not significant effect 
on motorcycle ownership levels, but the ratio 
of commercial land use have. Road supply 
has a significant effect on car ownership. 

Bivariate ordered 
probit model of 
household motocycle 
and car ownership. 
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Boarnet and Crane (2001) proposed a typology (see Table 2.4) for organizing 

the empirical studies that have focused on travel and land use. In empirical studies, 

different types of travel outcome measures can be used for dependent variable: trip 

frequencies (number of trips), total miles traveled, mode choice, commute length, 

cumulative person miles traveled, trip lengths (distance and time). Empirical studies as 

reviewed above have some limitations in analyzing land use and mode choice. Many 

studies included some land use measures, but they did not allow separating out the 

effect of land use on travel from socioeconomic and travel variables. A few studies have 

recognized the magnitude of land use effects and tested the variations of land use effects 

on mode choice for different travel purposes (Cervero 2002, Cervero and Kockelman 

1997, Zhang 2004). Zhang (2004), Cervero (2002), and Cervero and Kockelman (1997) 

found that land use has an independent influence from travel time and monetary costs 

on mode choice. 

 

Table 2.4. A typology for the relationship between urban form and travel 

(Source: adapted from Boarnet and Crane 2001) 

Travel Outcome 

Measures 

Urban Form and 

Land Use Measures 

Method of 

Analysis 

Other Distinctions 

and Issues 

1. Total miles traveled 
(e.g., vehicle miles 

traveled) 

1. Density 1. Simulation 
1. Land use and urban 

design 

2. Number of trips 2. Land use mix 

2. Description of 

observed travel 
behavior in 

different settings 

(e.g., commute 
length by city size) 

2. Composition of trip 

chains and tours 

2. Car ownership 3. Traffic calming 
 

3. Use of aggregate 

versus subject-
specific data 

3. Mode  
4. Street and circulation 

pattern 

3. Multivariate 

statistical analysis 

of observed 
behavior 

 

4. Congestion 
   

5. Commute length 

5. Jobs – Housing 

Balance and / or land 
use balance 

  

6. Other commute 

measures (e.g., 
speed, time) 

6. Pedestrian features 
  

7. Difference by 

purpose (e.g., work 
vs. non-work) 
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Method of analysis is categorized under three groups: simulation, descriptive, 

and multivariate techniques. Among these, simulation methods cannot provide guidance 

about the effects of land use on travel behavior. Multivariate analysis includes 

regression and logistic regression analysis. As seen in Table 2.2, logit models (or 

logistic regression) are widely used in mode choice studies. Binary Logit and 

Multinomial Logit models have been the most preferred methods (Pan, et al. 2009, 

Srinivasan 2002, Vega and Reynolds-Feighan 2008). Empirical analysis of home - 

based work (or commuting) trips can be performed by means of a Nested Logit and 

Probit models (De Palma and Rochat 2000, Cervero and Duncan 2002, Zhang 2004, 

Vega and Reynolds-Feighan 2006, Jou, et al. 2010). In addition to these approaches, 

structural equation modeling, soft computing methods, and activity based models are 

alternative methods for analyzing the relationship between travel demand and land use. 

Model calibrations are generally based on OD based data. Studies analyzing mode 

choice empirically collect data from several sources. Empirical analysis may focus on 

different trip purposes: work and nonwork trips (e.g., home - based school and home - 

based other). The analysis of commuting trips is dominant in existing literature 

(Limtanakool, et al. 2006, Zhang 2004, Cervero 2002). 

Main data source are generally trip records drawn from household travel survey 

data, census, regional inventories, and field surveys. For example, Cervero and 

Kockelman (1997) used a digital database which belongs to the Association of Bay 

Area Governments on dominant land uses for hectare grid cells in San Francisco region. 

Travel surveys provide much information about variables. Travel data (e.g., mode, trip 

length), personal data (e.g., age, gender, education), and household data (e.g., income) 

can be obtained from travel surveys. Also, travel data may include information about 

geographical location of origin and destination of all trips. In some studies, quasi - 

experimental design data can be used (Snellen, et al. 2002). The origin and destination 

locations derived from travel survey data can be matched and integrated using with GIS 

based land use database. Land use attributes are measured in defined buffer zone such 

as one kilometer area. Design data obtained from field surveys (e.g. block length), and 

regional maps (e.g. proportion of intersections). Household travel surveys are generally 

cross-sectional data that presents the information about household‟s characteristics at 

the same point of time. 
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The mode split studies are made by trip purposes: commute, business, leisure 

etc. Under the category of trip purposes, the probability of an individual choosing an 

alternative (travel modes) is used as dependent variable of the models. In this situation, 

common research question is how the effect of land use may vary for different trip 

purposes? Some studies focused only the effects of urban form on travel behavior for 

work and nonwork trips (Pan, et al. 2009, Rajamani, et al. 2003). 

Zhang (2004) found that the inclusion of land use variables into the mode choice 

models improved the goodness of fit of the models. In Boston for work trips, higher 

population densities at trip origin and destination is positively correlated with 

commuting by transit or non - motorized trips while for non work trips, population 

density is not significant factor. Increasing in employment density is positively 

relationship taking non driving modes. However, this variable is not significant for 

people‟s decisions for work trips in Boston. In Hong Kong, higher population and job 

densities at origin and destination increase the share of transit and nonmotorized modes 

for commuting trips. Job density is significant in Hong Kong while population density 

is not. In Boston, entropy of land use balance had no influence on mode choice for work 

trips. 

Chen et al. (2008) examined the effects of density in mode choice decisions in 

home - based work trips, using the data collected in the New York Metropolitan Region. 

The study used two - equation system. The study found that employment density at 

work is more important role than population density. 

Lin and Long (2008) used five travel measures: number of trips per household, 

mode share, average travel distance and time per trip, and vehicle miles of travel (VMT) 

to compare 10 different neighnorhood types on household travel and vehicle use. They 

found that transit availability increase transit mode shares regardless of household 

automobile ownership and income level, job - housing tradeoffs. Urban residents choose 

transit, walk, and bicycle trips more than suburban and rural counterparts. 

Buchanan et al. (2006) found that as the city has expanded, the effects of urban 

structure upon model choice have become important factor. In this study, distance from 

the CBD play significant role for predicting modal split. Population and work density 

was not strong variable as did distance from the CBD. Limtanakol et al. (2006) found 

that travelers living in high density areas tend to use the car less frequently in The  

Netherlands. Population density and availability of railway stations at origin and 
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destination have a statistically significant effect on mode choice for work trips. At the 

destination point, land use balance and density is positively correlated with train use. 

Ewing et al. (2004) found that density and job mix were not significant in choosing 

travel mode to school. Rajamani et al. (2003) found that mixed uses and higher 

residential densities encourage walking and transit mode for nonwork travel. 

Lin and Yang (2009) studied urban form impacts on travel demand using 

structural equation modeling in Taipei at aggregate level. They found that density is 

negatively correlated with private mode split. Mixed land use increases private mode 

split whereas a pedestrian friendly built environment significantly reduces private mode 

split. Jou et al. (2010) used multinomial probit modeling for analyzing commuters‟ 

mode-switching behavior from private transport to public transport in Taipei. The study 

found that private commuters were more likely to switch to mass rapid transit than to 

bus and that auto commuters are generally more likely to switch to public modes than 

are motorbike commuters. If commuter homes are far away from workplaces, 

commuters are not likely to switch to public modes due to higher commuting time. 

Pan et al. (2009) studied the influence of urban form on travel behavior in four 

neighborhoods of Shangai using logistic regression for work and non-work trips. They 

found that urban form affects travelers‟ choice after the effects of socioeconomic 

characteristics are controlled. For example, pedestrian / cyclist friendly urban form 

increase the choice of non-motorized trips. Srinivasan (2002) examined the effects of 

neighborhood characteristics on mode choice for work and non-work tour using 

multinomial logit model in Boston. Commercial residential mix and balance are 

statistically significant and positive for non-auto trips in the work tour. 

Vega and Reynolds-Feighan (2008) examined that how the spatial distribution 

of employment affects travel behavior in Dublin region across the sub-centers using 

binary logit model at aggregate level. Employment density is negatively correlated with 

car use and significant. Demand for car and public transport depends on the spatial 

distribution of employment. Travel attributes (time and cost) have an important effect 

on the choice of travel mode. An interesting development is that increase in sub-

employment centers tend to switch from public transport to car use due to low transport 

costs (Vega and Reynolds-Feighan 2008). 

Cervero and Wu (1997) studied the influence of land use environments on 

commuting choices in U.S. metropolitan areas using the 1985 American Housing 
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Survey. They found that neighborhood densities have a stronger influence than mixed 

land uses except for walking and bicycling. 

Abane (2010) examined travel behaviour of the commuters in four metropolitan 

areas in Ghana at disaggregate level using by Multinomial Logit Model. According to 

the empirical data, in all the metropolitan areas, the most frequently used modes are 

trotro
5
 (71.4%) and taxis (15.9%). Commuters are more likely to choose trotros and 

taxis due to perceived good behaviour of drivers and the availability of these modes. 

Zegras (2010) aimed to answer the question: “What role might Santiago‟s built 

environment play in household automobile ownership and use” using by Multinomial 

Logit Model. The study found that income play important role on the household vehicle 

ownership decision. Regarding built environment characteristics, household in the zones 

with a higher diversity index have a lower probability of owing vehicles. A more 

gridded street has a negative effect on owning motor vehicles. For household 

automobile use, distance to the metro stations significantly affect household auto use. 

Living within 500 metres of a metro reduces car ownership. Dwelling unit density, 

diversity index, and four-way intersections per km have not significant effect on 

automobile use. 

Kutzbach (2009) examined the motorization process (car and bus) in developing 

countries. The results of the study suggested that income inequality may increase 

motorization at low income scales, and reduce motorization at higher income scales. 

According to the study, this result in abrupt variations for motorization. Population 

growth and commute distance increase car use and rapid motorization. 

Srinivasan et al. (2007) investigated mode choice decisons among commuters in 

the Chennai city in India. The study found that individuals with vehicles are much more 

sensitive to travel times of public transportation modes. For short work trips including 

travel distance lower than 8 km, the sensitivity to public transportation costs is largest 

among all modes. If work distance increases beyond 8 km, the sensitivity to two-

wheeler cost declines by more than two-fold. It means that a unit change in cost variable 

has a smaller influence on mode choice. 

                                                             
5 Trotro is an inexpensive public transportation ( public minibuses) in Ghana for short and long journeys. 
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Alpizar and Carlsson (2003) studied the determinants of mode choice decisions 

for work trips in Costa Rica. The study found that travel time (bus and car) and travel 

cost for car alternative are the most important determinants of mode choice. 

Gebeyehu and Takano (2007) found that increase in income tends to decrease 

the choice of bus mode whereas increase in household size tend to increase the 

probability of choosing buses. Higher waiting time for bus increase the probability for 

choosing a taxi. Bus frequency is the most important determinant of public 

transportation mode choice. 

Hamed and Olaywah (2000) analyzed the factors that influence the commuters‟ 

travel related decisons (the morning departure time to the workplace and type of after 

work activities). The results suggest that travel distance to the work has a significant 

influence on commuters‟ departure time decisons. Increase in the distance to the work 

place affect bus and servis taxi commuters to depart early. Home and work locations 

have differential impacts on commuters‟ morning departure time decisons and type of 

after work activity. 

Wan et al. (2009) analyzed the impact of land use variables on commute trip 

mode choice in China. After the inclusion of land use variables, model performance 

improved. Increase in residential density in origin encouraged the commuters choose 

public transport and motorcycle mode whereas increase in commercial use ratio at the 

origin increase the share of the same modes. 

Zhao et al. (2010) analyzed the impact of the jobs - housing balance on urban 

commuting in Beijing using by multiple linear regression. The study found that jobs-

housing balance has a statistically significant and negative effect on individual worker‟s 

commuting time. In other words, increase in JHB reduce reduce commuting time. The 

effect of this variable on commuting time is stronger than population density. 

Wang and Chai (2009) analyzed the differences in commuting behavior between 

the commuters living in houses provided by Danwei and those living in houses in 

Beijing, China. The commuters for Danwei are more likely to be working and living in 

the same district. They rely on non-motorized modes. The study suggests that more 

balanced jobs - housing balance cause shorter commuting trips and icrease in the usage 

of non-motorized modes. 

Alpkokin et al. (2005) analyzed the impacts of polycentric employment growth 

on urban commuting pattern in Istanbul using by travel surveys during the years 1985 
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and 1997. According to the results of the study, commuting times and average morning 

peak hour trip time declined over this period due to opening the second Bosporus 

Bridge and the multicentric growth of the city. The car usage in 1997 for the 

employment centers in Istanbul ranged from 38% in Eminonu to 45% in Sarıyer. 

Kaldo (2005) examined the relationship between urban density and car usage for 

commuting trips in the cities that is densely built-up areas, in Japan. The main mode for 

commuting trips is car including 45.4% of residents. 33.2% of residents used motorized 

modes (bus, train and other types) whereas 9.5% of residents is walking mode. The 

study found that there was a strong correlation between driving to work and population 

density. In other words, people who live in the cities with lower population densities 

were more likely to take car journeys to work. 

Senbil et al. (2006) examined the effect of land use characteristics on motorcycle 

ownership and its use in Jabotabek metropolitan area in Indonesia at disaggregate data 

using the tobit model and the ordered probit model. The study found that the ratio of 

commercial land use and land use diversity decrease motorcycle use while 

socioeconomic and demographic characteristics promote motorcycle ownership and its 

use. Also, it is found that the supply of public transport decrease motorcycle use. 

Regarding transportation system characteristics, accessibility to rail station and road 

supply increase motorcycles ownership. Distance from the city center has negative 

effect on motorcycle ownership and its use. 

Senbil et al. (2009) studied the relationship between residential location, vehicle 

ownership, and mobility in two metropolitan areas of Asia, Kei-Han-Shin area of Japan 

and Kuala Lumpur area of Malaysia using structural equation modeling. The study 

found that land use mix decreases auto ownership in Kei-Han-Shin. For Kuala Lumpur, 

public transit access increases auto ownership. Households with more autos in Kei-Han-

Shin are located away from the city center. Bicycles generally are used for shopping and 

to access public transit. 

The empirical studies discussed in this section have some limitations. Firstly, 

several studies have used typical logit formulation: multinomial and binary logit 

models. The analyzing of mode choice at aggregate level with land use characteristics 

has not paid enough attention. Second, the magnitude of land use effects still remains 

unexplored at zonal level although a few exceptions at disaggregate level exist (e.g. 

Cervero and Kockelman 1997, Zhang 2004). Furthermore, empirical studies have rarely 
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focused on mode choice problems in the cities of developing countries. Making 

progress in handling these limitations, an alternative approach is proposed to classical 

logit models. The relationship between land use and travel mode choice is investigated 

with baseline category logit models at aggregate level. 

 

2.3. Alternative Approaches to Discrete Choice Models: Soft 

 Computing Methods 

 

The use of soft computing methods in the field of transportation is rather new 

and unexplored in comparison with discrete choice models. Most of the soft computing 

applications have been based on fuzzy logic and neural networks. The share of the 

empirical studies that are based on fuzzy logic and neural networks in traffic and 

transportation studies is around 72% in 2004 (Avineri 2005). Among soft computing 

methods, Bayesian belief networks are rarely used in transportation modeling. In this 

section, soft computing methods and Bayesian belief networks in mode choice 

modeling are discussed. 

 

2.3.1. Soft Computing Methods in Travel Demand Modeling 

 

The presented study intends to compare performance of mode choice models. 

Discrete choice models, especially logit models have been the workhorse for empirical 

analysis. However, soft computing methods have emerged as an alternative approach to 

conventional models in travel demand modeling and transport economics, over the last 

15 years. Relative literature suggests that soft computing methods may need less 

information about problem domain. However, they may give more information and 

better model performance than conventional approaches. For this reason, soft 

computing methods can be more suitable and robust models than conventional models. 

In this part of the literature review, soft computing literature in mode choice modeling 

has been discussed over empirical studies. These studies represented in Table 2.5 have 

been pioneer of soft computing approaches to conventional models in mode choice 

modeling. The important point is that the research question, how land use attributes 

affect mode choice, generally has been ignored. In other words, the potential effects of 

land use characteristics generally are still ignored. 
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Nijkamp et al. (1996, 1997) analyzed the impact of high speed train in Italy 

using logit and neural network model at aggregate level. Nijkamp et al. (2004) studied 

interregional European freight transport flows by comparing discrete choice models 

(logit and probit) and the neural network at aggregate level. Abdelwahab and Sayed 

(1999) introduced neural networks to behavioral choice modeling to analyze U.S. 

freight transport market at disaggregate level. Hensher and Ton (2000) compared neural 

networks and nested logit models for commuter mode choice at disaggregate level in the 

Australian cities. They did not find enough evidence to recommend that ANN is better 

than Nested Logit models. Cantarella and Luca (2005) analyzed mode choice for 

commuting trips within the Italian region of Veneto using Multi Layer Feed Forward 

Network (MLFFN) and random utility models (multinominal and nested logit models) 

at disaggregate level. Vythoulkas and Koutsopoulos (2003) studied modeling discrete 

choice behavior using fuzzy set theory, approximate reasoning, and neural networks in 

The Netherlands at disaggregate level. Celikoglu (2006) studied radial basis function 

neural network and generalized regression neural network in Istanbul using only time 

and cost input variables at aggregate level for home-based work (HBW) trips. Xie et al. 

(2003) compared the capability and performance of data mining methods (decision trees 

and neural networks) and multinomial logit (MNL) models for work trips in San 

Francisco Bay Area at disaggregate level. Demir and Gercek (2006) studied mode 

choice behavior in urban passenger transportation using with soft computing methods 

(fuzzy logic, neural networks, and neuro-fuzzy logic) and binary logit in EskiĢehir. 

Torres and Huber (2003) performed BBNs to trip generation as a function of 

socioeconomic variables for home - based work trips at disaggregates level using with 

1996 Dallas Household Travel Survey. The study used found that accessibility variables 

have causal links with the trip generation variables. Janssens et al. (2006) examined the 

predictive capabilities of decision tree and Bayesian networks for modeling individual 

choice in The Netherlands. Scuderi and Clifton (2005) investigated the relationship 

between mode choice and land use using with BBNs in Baltimore metropolitan area at 

disaggregate level. The study found that the strongest relationships for mode choice are 

the availability of a private car, the driver status, age, and how empty the land-space 

looks around the point of origin. Household size, income, and number of commercial 

spaces are the least influential variables associated with mode choice. The performance 

of BBNs in the study was not measured. 
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Empirical studies mentioned above found that soft computing methods 

outperform conventional models. On the other hand, Hensher and Ton (2000) did not 

found enough evidence about which approach is better. Xie et al. (2003) found that data 

mining methods (decision tree and neural networks) are slightly better performance than 

MNL. Nijkamp et al. (2004) found that the predictive performance of ANN is higher 

than that of logit model. Cantarella and Luca (2005) found that ANN outperformed 

random utility models. Celikoglu (2006) found that the performance of neural networks 

is higher than multivariate linear regression. In the majority of these studies using 

alternative approaches, land use variables were omitted from the input variables and 

travel characteristics (time and cost) only entered into the models. Also, neural 

networks, fuzzy logic, and hybrid approaches are common models in travel demand 

modeling. Different algorithms and hybrid approaches can be tested in future studies. 

Therefore, better performance and low error term can be obtained. Bayesian belief 

networks are one of the alternative methods that rarely used in mode choice modeling. 

 

 

 



Table 2.5. Literature review of empirical studies employing soft computing methods used in mode choice 

Case Study Data Type Empirical Models Compared Variables 
Land Use 

Characteristics 

Hensher and Ton (2000), 

in six Australian cities. 

Commute Mode Choice, 

Disaggregate Level. 

Artificial Neural Networks 

(ANN), Nested Logit Models. 

Travel Characteristics (Cost 
and Time), Socieconomic and 

level of service (LOS) 

attributes, and ASC. 

Not included. 

Vythoulkas and 
Koutsopolos (2003), 

in The Netherlands. 

Analyzing choice behavior 
between rail and car, 

Disaggregate Level. 

Fuzzy Logic, Neuro-Fuzzy, 

and Binary Logit Models. 

Cost, Time, and Rail Access 

Time. 
Not included. 

Nijkamp, Reggiani, and 

Tritapepe (2004). 

European Freight Flows, 

Aggregate Level. 

ANN, Probit, and Logit 

Models. 
Distance and Cost Not included. 

Cantarella and Luca (2005), 
two cases in Italy. 

 

Commuter trips. 

Disaggregatye Level. 
ANN and MNL Models. 

Travel Characteristics (Cost 

and Time), socieconomic and 

level of service (LOS) 
attributes, ASC 

Whether 
destination zone 

is inside the 

urban center or 
not (only used in 

logit models). 

Celikoglu (2006),  

in Istanbul. 

 

Home-based work trips. 

Aggregate Level 

Neural Networks, Linear 

Regression, and Binary Logit 

Models. 

Time and Cost. Not included. 

Demir and Gercek (2006), 
in Eskisehir. 

Mode choice for different 

income group,  

Disaggregate Level 

ANN, Fuzzy Logic,Neuro-
Fuzzy, and MNL Models. 

Time, Cost, and 
Socioeconomic Attributes. 

Not included. 

Scuderi and Clifton (2005), 

in Baltimore metropolitan 
region. 

Disaggregate Level 
Only Bayesian Belief 

Networks. 

Socioeconomic 

Characteristics. 

Population 
density, road 

density index, 

commercial, 
industrial, 

vacant land 

rates. 

41
 



2.4. The Methods for Performance Comparison of Mode Choice 

Models 

 

The measure of the ability of a statistical model how well it fits observed data is 

goodness of fit statistics that are quantitative indicators for the difference between 

observations and predictions. Goodness of fit statistics provides a useful comparison of 

the accuracy with two or more models (Fotheringham and Knudsen 1987). Each 

statistical model may include different goodness of fit statistics. In the content of the 

study, different statistical models are estimated at aggregate and disaggregate levels. 

Also, one of the hypotheses is that soft computing methods are superior to logit models 

in mode choice modeling at both levels. In order to make performance comparisons of 

selected models correctly, there are many methods that are used for comparing the 

predictive ability (performance) of the soft computing methods. 

One of the most useful methods for performance comparison is based on error 

estimations. Error estimations are derived from the difference between values predicted 

by a statistical model (ŷi) and actual values (yi). Standardized root mean square error 

(SRMSE), root mean square error (RMSE), and mean squared error (MSE) are 

represented as follows (Nijkamp, et al. 1996, Fotheringham and Knudsen 1987): 
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According to the equations above, there is a relationship between different 

formulations as seen below: 
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MSERMSE  (2.9) 

and 

y

RMSE
SRMSE  

 

(2.10) 

 

 

Where ŷi is the probability of selecting mode i, yi is the actual choice of mode i 

and n represents the number of alternatives in the choice set. Nijkamp et al. (1996, 

2004) compared the performance of logit and neural network models in terms of 

models‟ applicability in the European freight flows. The average relative variance 

(ARV) is used as a statistical indicator of performance. Average relative variance is 

defined as (Nijkamp 2004, Fischer and Gopal 1994): 
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Where y is the observed probability, y
*
 presents probability, predicted by the 

adapted model. Canterarella and Luca (2003, 2005) tested performance of multinomial 

logit and neural network models by means of mean square error function (MSE). MSE 

represents error between observed and simulated mode choice probabilities. Celikoglu 

(2006) used the root mean square error (RMSE) and the coefficient determination (R
2
) 

for performance comparisons of logit, neural network, and linear regression models. 

Hensher and Ton (2000) used a prediction success table which is a format for 

comparing the prediction capability of nested logit and ANN models. This evaluation 

measure presents predicted share less observed share for every mode of travel and the 

weighted percent correct and weighted success index. The performance test of discrete 

choice models (logit and probit) and soft computing methods can be analyzed by using 

success rates (% correctly predicted) of the models (Abdelwahab and Sayed 1999, 

Sayed and Razavi 2000, Vythoulkas and Koutsopoulos 2003). Succes rate of the models 

is obtained from a contingency table (crosstab or confusion matrix). Contingency table 

represents predicted choice outcomes for a test sample set versus the actual choice 

outcomes. Contingency table also provides information about overall error rate. 

Andrade et al. (2006) used the root mean square error (RMSE) and the mean absolute 
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error (MAE) measure to compare model performance between multinominal logit and 

neurofuzzy models. Tortum et al. (2008) compared the performance of logit model, 

multiple regression model, neural networks, and neuro-fuzzy inference systems using 

root mean square error and correlation coefficient. Demir and Gercek (2006) studied to 

identify best performance measures to compare binary logit and soft computing 

methods (artificial neural networks, fuzzy logic, and neuro-fuzzy logic) for modeling 

mode choice in urban passenger transportation in EskiĢehir. The performance measures 

used in the study are R
2
, % correctly predicted, kappa statistics, and ROC curve. 

Another potential technique can be Receiver Operating Characteristics Curves 

(ROC). The curve method has been used in different areas such as predicting 

multilateral credit risk (Tang and Chi 2005) and in biomedical and psychophysical 

applications (Türe, et al. 2005, Dirican 2001, Jaimes, et al. 2005, Phibanchon, et al. 

2007). The area under the ROC curve (AUC) is an important index of a general measure 

of features of the underlying distribution of forecasts. 

In the content of the study, performance analysis between logit and Bayesian 

belief networks is made. However, there is a lack of empirical studies associated with 

Bayesian belief networks in travel demand modeling in existing literature. Therefore, 

the methods for performance comparisons need to be determined. Error estimations and 

crosstab may be used as an indicator for performance comparisons. 

 

2.5. Model Estimation Algorithms 

 

The dependent variable in mode choice studies, Pi, can take an infinite number 

of values. In other words, dependent variable is a probabilistic. Therefore, ordinary least 

square method is not suitable for discrete choice models. In the calibration or estimation 

of discrete choice models, maximum likelihood estimation (MLE) is the most preferred 

statistical method to estimate model parameters (θ1,θ2,…,θk). It is defined that “a 

maximum likelihood estimator is the value of the parameters for which the observed 

sample is most likely to have occurred” (Ben Akiva and Lerman 1985, 20). The logic 

behind the estimation is a searching for the maximum value of a likelihood function or 

parameter values that maximize the likelihood function. The maximum likelihood 

procedure selects those estimates that maximize the probability of the observed sample 

(Ramanathan 1998). The maximum likelihood function is written as follows: 
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Where x is a random variable, θ is the parameter (or coefficients). f(x/θ) is the 

probability density. The value for L is the highest will be chosen. 

Maximum likelihood estimators are consistent, asymptotically efficient, and 

asymptotically normal, and asymptotically unbiased (Kennedy 1981, Ramanathan 

1998). The method can deal with complex data due to its robustness. MLE is especially 

used for small sample properties, but some econometric assumptions such as normal 

distribution for disturbance term limit the use of MLE. Also, its computational difficult 

is an another limitation. However, many types of software include this estimation. MLE 

is an iterative procedure. In this estimation process, Newton-Raphson‟s method can be 

used. 

 

 

 

 

 

 

 

 



CHAPTER 3 

 

MODELING METHODOLOGY 

 

Mode choice model is the third step of traditional four - step transportation 

modeling. In this stage, discrete choice models have been extensively used. Discrete 

choice models are derived under the assumption of utility – maximizing behavior. 

Theoretical contributions of the models comes from psychology (e.g., Marschak 1960) 

and econometry (e.g., Ben Akiva and Lerman 1985, Domencich and McFadden 1975, 

Manski 1973, Luce 1959). Different assumptions for the error terms give rise to 

different discrete choice models such as logit and probit models. 

The goal of this study is to explore the effects of land use characteristics on 

mode choice behavior and make the performance comparison of mode choice models 

(Logit and BBNs) in Istanbul. Both aggregate and disaggregate models are estimated in 

the content of the study. Individual choice theory and existing literature provide domain 

knowledge for selecting explanatory variables. Some of these variables have been used 

in the study, including socioeconomic characteristics, travel characteristics, and 

population density. However, for this study, this guidance is not enough, since the 

number of empirical studies about this subject in the case of developing countries is 

very few. Several land use variables are entered into the models instead of using 

standard variable set used in mode choice studies. Many of these variables have never 

been used in mode choice modeling studies in the case of developing countries. Also, 

baseline category logit and Bayesian Belief Networks in mode choice studies have been 

rarely used in mode choice studies. The remainder of this chapter is organized as 

follows. Firstly, theoretical background of the models is discussed briefly in Section 

3.1. The section introduces theories of individual choice behavior that are used in the 

formulation of traditional choice models. Discrete choice models are presented in 

Section 3.2. Section 3.3 introduces Bayesian Belief Networks (BBNs). After that, 

empirical mode choice models including research design - methodology and the model 

structure of the models are presented in Section 3.4. 
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3.1. Theoretical Background 

 

The empirical analysis of mode choice in this study applies discrete choice 

model (MNL), baseline category logit model, and bayesian belief networks (BBNs). 

They are all models that are currently being used in probabilistic choice. Discrete choice 

modeling has been highly used in transportation modeling for the last fourty years. The 

probabilistic choice models such as discrete choice models are based on economic 

consumer choice theory (Ben Akiva and Lerman 1985, Domencich and McFadden 

1975). In general, mode choice in transportation modeling is evaluated in consumer 

choice theory. The neoclassic economic theory suggests that a decision maker is able to 

compare two alternatives in the choice set. In consumer theory, utility plays an 

important role in the determining the behavior of individuals. Random utility theory is 

more suitable with consumer theory. Next section introduces random utility theory and 

individual choice behavior. 

 

3.1.1. Individual Choice Behavior and Random Utility Theory 

 

Choice is an important factor of the modeling of individual behavior. Choise 

itself is a complex process. A choice is conceptualized as an outcome of a sequential 

decision making process that include following steps (Ben Akiva and Lerman 1985, 

31): 

 

1. Definition of the choice problem, 

2. Generation of alternatives, 

3. Evaluation of attributes of the alternatives, 

4. Choice,  

5. Implementation. 

 

On the other hand, choice theory includes following elements (Ben Akiva and 

Lerman 1985, 32): 

 

1. Decision maker, 

2. Alternatives, 
3. Attributes of alternatives, 

4. Decision rule. 
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A decision maker may be an individual or a household. An individual, called as 

consumer in micro economy, is defined as traveler (commuter) in mode choice analysis. 

Decision makers choose among a set of alternatives like consumer. Decision makers 

may face different choice situations (alternatives). The set of alternatives is called as 

choice set in theories of individual choice behavior. Choice set is defined as following 

characteristics (Train 2003, 15): 

 

1. Alternatives must be mutually exclusive from the decision maker‟s perspective. 

Choosing one alternative necessarily implies not choosing any of the other alternatives. The 

decision maker chooses only one alternative from the choice set. 

2. The choice set must be exhaustive, in that all possible alternatives are included. The 

decision maker necessarily chooses one of the alternatives. 

3.  The number of alternatives must be finite. The researcher can count the alternatives and 

eventually be finished counting. 

 

The attractiveness of the alternatives in a choice set is evaluated by a set of 

attribute values that are measured as ordinal or cardinal (Ben Akiva and Lerman 1985). 

Attributes of alternatives might be generic (e.g., travel time and travel cost) or 

alternative specific (modal preference) attributes. The set of alternatives (choice set) 

may influence choice probabilities. From the selection of an alternative, individuals may 

have different tastes or different level of satisfaction. Assume that commuters choose 

between driving a car and using public transit, choice between car and public transit is 

determined by a comparison of the attributes of the alternatives and individuals. Since 

commuters may have different income levels (or budget constraints) and live different 

residential locations, the preferences of commuters may vary substantially. In choice 

analysis, an analyst must to decide on how to measure the factors that affect a decision 

maker‟s preference for car over public transit or vice versa. The choice between two 

different alternatives should be determined by a comparison of the attributes of the 

alternatives. Therefore, it must be found a way of measuring a decision maker‟s 

preferences (Hensher, et al. 2005). Preferences of commuters are evaluated by assigning 

a numerical score to each combination of the attributes. Numerical scores
6
 are used to 

quantify the preferences of decision makers. The selection from the choice set is the 

alternative preferred by a decision maker. This selection requires a decision rule or 

behavioral rule. In existing literature, the most common rule (or numerical measure) is 

                                                             
6 Numerical score is referred to as “level of satisfaction”, in psychology while it is called “level of utility” 

in economics (Hensher, et al. 2005). 
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utility (Ben Akiva and Lerman 1985). Attractiveness of alternatives is formulized as a 

utility function. Therefore, the utility of each alternative represents a measure of 

preferences for that alternative. This means that decision maker assigns a utility value to 

each of the alternatives in the choice set. For the commuter mode choice example, it is 

expected that commuter will select the alternative with the highest utility (Ben Akiva 

and Lerman 1985). This preference is based on the combination of the attributes of 

alternatives that provides the highest utility to decision maker. Decision maker tries to 

maximize the level of satisfaction. Thus, this behavioral rule is called as “utility 

maximizing behavior” (Hensher, et al. 2005). In random utility theory, a decision maker 

is always assumed to select utility – maximizing alternative. 

In theory, measurement of choice is based on different assumptions: 

deterministic choice and stochastic choice. Deterministic choice is a linear choice 

function, V(i), of the demand and supply variables. The deterministic choice function is 

written as follows (Kanafani 1983): 

 

IiXAiV ii ,)(  (3.1) 

 

Where Xi presents a vector of demand and supply variables influencing choice 

and Ai is a vector of parameters representing the effect of each variable. The decision 

rule for a deterministic choice model is as follow (Kanafani 1983): 

 

)](max[)( iVjV  (3.2) 

 

According to this utility function, decision maker chooses the alternative with 

highest utility level. The theory assumes that individual facing same alternatives will 

choose the same choice over time. It means that decision makers having similar 

socioeconomic characteristics make the same choices when faced with the same 

alternatives. However, deterministic choice is accepted as unrealistic for real life 

situations due to three primary reasons as follows: 

 

Three primary reasons suggest that a stochastic model of choice may be preferable. One is that 

the behavior of individuals may not always follow the rational rules of choice exactly and that 

the idiosyncrasies of traveler behavior cannot be anticipated in a deterministic model. The 

second is that it is usually not possible to include in the choice function V(.) all the variables that 
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can possibly influence choice. If such a function were possible, it would no doubt be so 

complicated as to render it impractical. The third reason is that the typical potential traveler is 

not likely to have perfect information about the transportation system and the alternatives it 

offers (Kanafani 1983, 122). 

 

It is more realistic that a choice function is accepted as a random function that 

produces probabilities for given variables in a choice set. It means that the attributes of 

the alternatives are perceived differently by decision makers. Stochastic choice models 

have been widely used in travel demand modeling. 

Choice probabilities are affected by the attributes of the alternatives. In other 

words, the attractiveness of the alternatives is represented in terms of a vector of 

attribute values (Ben Akiva and Lerman 1985). However, some attributes of alternatives 

cannot be known or measured such as comfort, security and convenience. These 

unobserved attributes may be an important part of choice analysis. 

 

The behavioral basis of individual choice theory presumes that all decisions are probabilistic, 

and that they are derived from a comparative evaluation of utilities. The probability or likelihood 

a specific alternative will be chosen by an individual is based on the utility associated with that 

alternative. The utility of the alternative is composed of its attributes. In making a choice among 

the available alternatives, an individual is assumed to assesses the attributes of each alternative. 

Based on this assessment, a utility value is assigned to each of the alternatives (Taaffe, et al. 

1996, 342). 

 

In this stage, an important contribution to discrete choice models comes from 

random utility theory that is more suitable with consumer theory (Domencich and 

McFadden 1975, Ben Akiva and Lerman 1985). The theory assumes that (Ortuzar and 

Willumsen 2006, 223): 

 

1. Individuals belong to a given homogeneous population,… act rationally and possess 

perfect information, i.e. they always select that option which maximizes their net personal 

utility…. 

2. There is a certain set A={A1,…..,Aj,…..AN} of available alternatives and a set X of 

vectors of measured attributes of the individuals and their alternatives. 

3. Each option AA j  has associated a net utility Ujq for individual q. The modeller, 

who is an observer of the system, does not possess complete information about all the elements 

considered by the individual making a choice; therefore, the modeler assumes that Ujq can be 

represented by two components: 

- a measurable, systematic or representative part Vjq which is a function of the measured 

attributes x; and 

- a random part εjq which reflects the idiosyncrasies and particular tastes of each 

individual, together with any measurement or observational errors made by the modeller. 
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In random utility theory, individuals are accepted as a rational decision maker. 

Rational decision maker maximize utility relative to his/her choices. The choice set may 

be different for individuals since all the alternatives in the choice set may not be 

available to all individuals. For example, car alternative cannot be suitable for a 

decision maker without driving license. In other words, the alternative that is selected 

provides the highest utility in comparison to other alternatives. However, a choice 

analyst may not measure directly attributes. Therefore, the utilities are treated as 

random variables due to four distinct sources of randomness that were identified by 

Manski (1973) (Ben Akiva and Lerman 1985, 56): 

 

1. Unobserved attributes, 

2. Unobserved taste variations, 

3. Measurement errors and imperfect information, 

4. Instrumental (or proxy) variables. 

 

The utility assigned to each alternative depends on the characteristics (or 

attributes) of alternatives and also individuals. It must be recognized that the utilities 

derived from the attributes of alternatives are not known to the analyst with certainty. 

Because of this, in this theoretical framework, random variables are taken into account 

in the utility function by an analyst. An important contributions to random utility theory 

belonged to Marschak (1960) who provided a derivation from utility maximizing and 

McFadden (1974) who developed the utility function as a function of a vector of 

attributes, socioeconomic characteristics, and unobserved vector containing all the 

attributes of the alternatives and characteristics of the individual which analyst are 

unable to measure. Decision makers are assumed to have perfect discriminating 

capability, but sources of randomness limit information about an individual‟s utility. 

Therefore, the choice analyst has less information than decision maker. In this 

framework, the uncertainty is taken into account with a random variable. After defining 

a set of observed and unobserved influences of the attributes on individual choice 

behavior, the utility function of an alternative that an individual associates with 

alternative i in the choice set is expressed as (Ben Akiva and Bierlaire 1999, McFadden 

1974, Train 2003). 

 

iii VU  (3.3) 
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Where Vi represents the deterministic (or systematic) part of the utility, and ε is 

the random term which is usually used to refer to the unobserved influences as error. 

Choice probabilities are based on the assumptions about the random term, sometimes 

known as error term. It captures the uncertainty. Ui is the overall utility of an 

alternative. Therefore, the random utility of an alternative is represented by a sum of 

systematic (or representative) component and random component. As mentioned above, 

this utility is known to the decision maker, but not known by the analyst. This utility 

function represents the measure of the level of satisfaction that individuals derive from 

their choices. Attributes of alternatives and socioeconomic status of individuals affect 

the magnitude of utility functions (Papacostas and Prevedovros 1993). Utility of a travel 

mode for a given trip should be measured by the total bundle of attributes (Oppenheim 

1995). Utility function is expressed as follows: 

 

),,( itiii SXUU  (3.4) 

 

Where Ui represents the utility of the ith alternative, Xt is a vector of observed 

attributes of ith alternative. St is a vector of observed socioeconomic characteristics of 

individuals while εi is random component of utility. The assumption for random utility 

theory is that individuals are assumed to choose the utility - maximizing alternatives. 

From the perspective of decision makers, a decision maker compares all possible 

alternatives in the choice set (U1, U2,…,Ui,. ..,Uj) and one alternative with highest utility 

will be chosen such as Ui. Therefore, the probability of an alternative i which is chosen 

by decision maker from a choice set is greater than or equal to the choice probability of 

alternative j. The probability that decision maker n chooses alternative i is written as 

follows (Ben Akiva and Lerman 1985, Train 2003): 
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The last equation means that the probability of individual n choosing alternative 

i is equal to the probability that the difference in the random utility of alternative j and 

alternative i is less than or equal to difference in the representative utilities of the 

alternatives. Different discrete choice models are derived from different assumptions 

about the distribution of the random component as explained below (Section 3.2). 

 

3.2. Discrete Choice Models 

 

Discrete choice models have been a popular method in travel demand modeling. 

The models are commonly used to analyze decision makers‟ choices among two or 

more discrete alternatives. In other words, discrete choice models are used to estimate 

the probability that a decision maker chooses a particular alternative in a choice set 

relate to the attributes of alternatives and decision makers. 

Individual choices among a finite set of alternatives may indicate a huge amount 

of variability. “This variability, often referred to as heterogeneity, is in the main not 

observed by the analyst. The challenge is to find ways of observing and hence 

measuring this variability, maximizing the amount of measured variability (or observed 

heterogeneity) and minimizing the amount of unmeasured variability (or unobserved 

heterogeneity)” (Hensher, et al. 2005, 62). Therefore, a theoretical framework is 

obtained from the theories of individual choice behavior including probabilistic choice 

theory and random utility theory. Different logit models are derived from different 

assumptions about random component of the utility function. Multinomial logit, binary 

logit, conditional logit, binary probit, multinomial probit, and mixed logit are the types 

of discrete choice models. Multinomial and binary logit models have been used widely 

due to estimation easiness up till now. 

 

3.2.1. Derivation of a Choice Model: Logit and Probit Models 

 

After definition of the utility function, how the functions of representative utility 

(Vi) and random utility (εi) are to be represented is important. From the perspective of an 

analyst, he or she does not observe decision maker‟s utility. Random term (εi) capture 

the factors affecting utility, but are not included in Vi. Since the representative utility 
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(Vi) includes observed (or measured) factors, a functional form can be derived. In 

general, representative component of utility is expressed as a linear function in which 

each attribute is a linearly weighted by a coefficient to account for relative attribute‟s 

marginal utility input that is (Hensher, et al. 2005): 

 

)(........)()()( 3322110 KiKiiiiiiiii xfxfxfxfV  (3.8) 

 

Where β1i is the weight (or parameter) associated with attribute X1 and 

alternative i, β0i is a parameter not associated with any of the observed and measured 

attributes, called the alternative - specific constant, which represents an average the role 

of all the unobserved sources of utility (Hensher, et al. 2005). In addition to a linear 

function, a logarithmic form or quadratic form can be used. An analyst does not know 

anything about random component of the utility. It means that any numerical value 

cannot be assigned to random component. “The best place to start is to recognize that 

each individual will have some utility associated with an alternative that is captured by 

the unobserved component. Across the sample of individuals, each person will have 

such data. That is, there will exist a distribution of such unobserved sources of utility 

across the sampled population” (Hensher, et al. 2005, 76). In this stage, in order to 

derive an operational random utility model, an analyst needs to make some assumptions 

about the joint probability distribution of the full set of disturbances. Randomness in 

utility function is highly associated with a way of capturing information in random 

component. Since choice analysts do not have any idea about numerical value to 

assigned to it, some specific distributions of the random component are applied under 

assumptions. It might be thought as some structure applications on εnj. “Once a 

particular distribution of the random component has been selected, the analyst is well 

on their way to having all the necessary data to derive a choice model” (Hensher, et al. 

2005, 83). Also, different assumptions about the distribution of the random component 

(unobserved portion) of the utility function lead to derive different choice models such 

as logit and probit models. 

Logit models are the most widely used discrete choice models. If the dependent 

variable is dichtomous or represented by a dummy variable (e.g., 1 for taking public 

transport to work and 0 for drive to work), classic estimation methods such as least 

square methods must not be used. In other words, regression models breaks down. 
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Because the value of dependent variable represents a probability measure for which the 

realized value is 0 or 1. It is expected that the predicted value of the dependent variable 

is interpreted as the probability that an individual makes a travel decision on mode 

choice. These models whose dependent variable takes a binary form are called as linear 

probability model (or binary choice models) (Ramanathan 1998). In this situation, 

probabilistic distribution is needed to lie inside 0-1 interval. 

Logit models are convenient model for studying the determination of categorical 

variables. Logistic model is used to find the probability of an event occurring. Its 

functional form is expressed as (Ramanathan 1998): 

 

x
P

P
Ln

1
 (3.9) 

 

Where P represents the probability of an event (between 0 and 1), α and β are 

parameters (or coefficients). X is an independent variable. ε is an unobserved random 

variable (the error term). If applying first exponentiating both sides, probability of an 

event (P) which represents the predicted probability that an event occurs is rewritten as 

(Ramanathan 1998): 
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When there are many independent variables, the logistic model can be written as 

follow (Gujarati 1995): 
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This equation is called as the cumulative logistic distribution function and 

provide information about the choice of a travel mode. Z represents linear combination 

of parameters. In other words, Z represents the relative attractiveness of a travel mode. 

If P gives the probability of an event, the probability of an event not occurs is 

represented by (1-P). It is written as (Gujarati 1995): 
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Ze
P

1

1
1  (3.12) 

 

or this equation equals to that (Gujarati 1995): 
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When taking the natural log of the equation, the following formula is obtained as 

seen in the following equation. This model can be estimated by ordinary least squares. 
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Where L is called as the logit (or logit model). In this model, the coefficient β2 

measures the change in L for a unit change in X. In other words, β represents the relative 

importance of each of the explanatory variables (X). Logit model assumes that the log of 

odds ratio is linearly related to X (Gujarati 1995). On the other hand, in order to predict 

mode choice of an individual, the utility function is transformed into a probability using 

the logit model. 

In discrete choice analysis, multinomial logit and binary logit models have been 

used widely in travel demand modeling. In general, if there are only two alternatives, 

binary logit model is used. If there are more than three alternatives, multinomial logit 

models are used. Multinomial logit model is derived from the assumption that random 

residuals (or error term), εni, is identically and independently distributed extreme value. 

This distribution is known as Gumbel and type I extreme value. The density for random 

component of the utility is written as (Train 2003): 
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Under this assumption that random term (εi) is logistically distributed, the choice 

probabilities for alternative i is given by (Domencich and McFadden 1975, Ben Akiva 

and Lerman 1985, Train 2003): 
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This equation is known as multinomial logit model
7
. It represents logit 

probabilities. The model is derived from the assumption that εn =  εjn - εin. The choice 

probabilities for all alternatives in the choice set must sum to one. It means that decision 

maker can select only one alternative. The logit probability is sigmoid and S shaped as 

seen in the Figure 3.2. On the other hand, probit model is derived from the assumption 

that error terms (or unobserved components of the utility) are distributed jointly normal 

(Train 2003, Ben Akiva and Lerman 1985). The logistic and normal density functions 

are seen in the Figure 3.1 and Figure 3.2. Logit analysis (or logit regression) is different 

from classic regression models, but there may be some similarities. 

 

Unlike regression, the logit model permits of a specific economic interpretation in terms of 

utility maximization in situations of discrete choice. Among economists this confers a higher 
status on the model than that of a convenient empirical device. And there is a subtle distinction 

in that the ordinary regression model requires a disturbance term which is stuck on to the 

systematic part as a necessary nuisance, while in the logit model the random character of the 

outcome is an integral part of the initial specification. Together with the probit model, the logit 

model belongs to the class of probability models that determine discrete probabilities over a 

limited number of possible outcomes (Cramer 2003, 1). 

 

On the other hand, both models present causal relationships between dependent 

variable and independent variables, and also permits of all sorts of extensions and of 

quite sophisticated variants. 

 

                                                             
7 In the multinomial logit model, explanatory variables contain only characteristics of individuals while 

the conditional logit model is used when choice – specific data is available. In other words, alternative – 

specific variables are entered into the conditional logit model. 
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Figure 3.1. Density functions for probit and logit models 

 

 

Figure 3.2. Cumulative distribution function for probit and logit models 

 

One of the most important properties that restrict the use of multinomial logit 

model is the independence from irrelevant alternatives (IIA). As mentioned above, an 

analyst does not know and observe all the attributes of the alternatives in a choice set. 

Because of this reason, an analyst treats to utility as random, but a decision maker 

knows systematic and unobservable components of the utility derived from choosing an 

alternative. It can be suspected that alternatives in the choice set may share common 
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unobserved attributes such as comfort and convenience. This situation increases 

correlation pattern. Shared unobserved attributes among alternatives cause to correlation 

in a choice set. Logit models cannot take into account these patterns. IIA property 

assumes that the ratio of the choice probabilities of any two alternatives is unaffected by 

the systematic utilities of other alternatives (Ben Akiva and Bierlaire, 1999). After 

introduction of a new mode to the choice set, the ratio of market share must not be 

affected by the new mode. This situation appears when unobserved attributes of the 

alternatives in the choice set are identical. The ratio of logit probabilities for any two 

choices (i and j) is as follows (Train 2003): 
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IIA requires that, all else being equal, an individual‟s choice between two 

alternatives is unaffected by other choices
8
. In existing literature, there are several tests

9
 

that are used for checking the assumption of IIA such as Hausman and McFadden test 

proposed by Hausman and McFadden (1984) and Small and Hsiao test (Cheng and 

Long 2007). Generalized Extreme Value (GEV) models are developed to capture the 

correlations among alternatives, when all correlations are not zero. GEV models are an 

extension of multinominal logit models. One of the most known GEV model is nested 

logit model. The nested logit model firstly was proposed by Ben Akiva (1973) to 

capture the correlation pattern in the choice set. The Nested Logit (NL) model assumes 

that there may be a probability that alternatives may share information about 

unobserved attributes. In other words, information for random component (εi) is 

possibly expected to be correlated or similar for some alternatives. For example, some 

unobserved attributes such as comfort and convenience may be the same for bus, train, 

and subway alternatives as seen in the Figure 3.3. This cannot be observed by an 

analyst. In the NL model, the alternatives sharing unobserved attributes are partitioned 

                                                             
8 The most known example for IIA property is blue-bus-red bus paradox that is discussed in Ben Akiva 

and Lerman (1985) and Train (2003). 

9 The tests for IIA property are discussed in Greene (2003) and Train (2003). 
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into subsets. The subsets are called as nests for removing the IIA property. In addition 

to GEV models, probit model does not suffer from IIA property. The main assumptions 

for discrete choice models are summarized in Table 3.1. 

 

Table 3.1. Discrete choice models 

(Source: adapted from SAS User Guide: The MDC Procedure 2008) 

Model Type Assumption for Random (Error) Term 

Multinomial Logit 
Type I Extreme Value 

Independent and identical 

Multiomial Probit 
Multivariate Normal Distribution 

Correlated and non-identical 

Nested Logit 
Generalized Extreme Value 

Correlated and identical 

Mixed Logit 
Type I Extreme Value 

Independent and identical 

HEV Models 
Heteroscedastic Extreme Value 

Independent and non-identical 

 

 

 

 

 

 

 

Figure 3.3. Two - level nested logit model 

 

Random utility theory presents theoretical framework for discrete choice 

models. Discrete choice models are used when individuals have to select an option from 

a finite set of mutually exclusive and exhaustive alternatives. Discrete choice model 

assumes that “the probability of individuals choosing a given option is a function of 

their socioeconomic characteristics and the relative attractiveness of the option” 

Mode Choice 

Auto Transit 

Bus Train Subway Carpool Auto 

Alone 
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(Ortuzar and Willumsen 2006, 220). The probability of an alternative that is chosen 

from a choice set is defined as the probability that it has the highest utility among a set 

of possible alternatives (McFadden 1974). 

 

3.3. Bayesian Belief Networks (BBNs) 

 

Bayesian belief networks (also called as causal probabilistic networks, causal 

nets, and probabilistic graphical networks) provide a statistical tool for dealing with 

uncertain and complex domains. The development of BBNs was started during the 

1990s in parallel with the development of softwares such as Netica and Hugin. BBNs 

that were developed in the fields of artificial intelligence and machine learning is a 

graphical representation of probabilistic relationships among a large number of 

variables in a problem domain (Pearl 1988, Jensen 2001). BBNs is a probabilistic 

model. The networks are based on probability theory developed by Thomas Bayes. 

Bayes networks allow researchers to do probabilistic inference. They have been applied 

to many problems, ranging from environmental modeling and management to pattern 

recognition and classification, medical diagnoses (Bromley, et al. 2005, Lee, et al. 2003, 

Kahn, et al. 1997, AktaĢ, et al. 2007), operational risk management in banks (Cornalba 

and Giudici 2004) to resource planning and management. Therefore, bayesian networks 

have become a popular method in recent years for handling uncertainty in complex 

domains. However, the application of BBNs into transportation modeling is rather 

limited. 

 

3.3.1. General Terminology in Bayesian Belief Networks  

 

BBNs provide a graphical model (DAG) representing dependencies and 

independencies among the variables in terms of conditional probability distributions 

(CPTs) (Alpaydin 2004). BBNs consist of two components: a directed acyclic graph 

(DAG, qualitative part) and conditional probabilities (CPT, quantitative part) for each 

variable in a problem domain (Pearl 1988, Torres and Huber 2003). It is considered that 

conditional probabilities are model parameters. The degree of the relationship is 

expressed quantitatively by probabilistic terms. The networks are used to assess cause 
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and effect relationships among the variables. BBNs consist of following properties 

(Jensen 2001, 19): 

 

1. A set of variables and a set of directed edges between variables. 

2. Each variable has a finite set of mutually exclusive states. 

3. The variables together with the directed edges form a directed acyclic graph (DAG). 

4. To each variable A with parents B1,……,Bn, there is attached the potential table P(A \ 

B1,……,Bn). 

 

This network has its own terminology. According to this terminology, a directed 

acyclic graph (DAG) as a structural part of the network is denoted by N (G, P). Where 

the graph G represents vertices V (a set of nodes) and edges (or arrows) between nodes. 

P represents a set of conditional probability distributions. In other words, bayesian 

belief networks are directed acyclic graphs in which each variable is represented by a 

node (or variable), and causal relationships are denoted by an edge. The values of the 

nodes in the network are represented by states. There are arrows (or edge) between 

nodes. An arrow represents a causal relationship between two nodes. The direction of an 

arrow indicates the direction of causality. The meaning of an edge drawn from node B 

to node C is that node B has a direct influence on node C as seen in Figure 3.4. It means 

that child nodes are conditionally dependent upon their parent nodes. Conditional 

probability tables (node C) show how one node influences another. When two nodes are 

joined by an edge, the causal node is called the parent of the other node. Therefore, 

changes in the states of any variable may cause changes in the states of other variables. 

This change is highly related with the strengths of dependencies between variables. The 

dependencies (or the strength of the influences) among variables are represented by 

conditional probability tables (CPT). Each node has a conditional probability table 

(CPT). Conditional probabilities may represent likelihoods based on prior information 

or past experience. 

In sum, a Bayesian network N(G, P) represents a joint probability distribution. 

Joint probability distribution is the probabilities of each of the combinations of states of 

the nodes in a bayes network. For a probability distribution, P(X), over a set of variables 

X={X1,…..,Xn}, the joint probability distribution P(X) = P(X1,….Xn) is the product of all 

potentials specified in bayes network. The chain rule of probability for bayes network 

is as follow (Jensen 2001). 
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In this equation, pa(Xi) is the parent set of Xi. The chain rule for Bayesian 

networks are extracted from conditional independence property. BBNs represent joint 

probability distributions by means of DAGs which represents the dependencies and 

independencies among variables in a domain as well as the conditional probability 

distributions of each variable, given its parents in the graph (Neapolitan 1990). Each 

conditional probability distribution, P(Xi \ pa(Xi)) includes a set of rules (Kjaerulff and 

Madsen 2008). For Bayesian networks, the chain rule property is explained by the 

Markov assumption (or Markov Condition). Chain rule yields a joint probability table 

for modeling purpose. 

 

 

 

 

 

 

 

 

Figure 3.4. A directed acylic graph (DAG). 

 

According to the Figure 3.4, prior probabilities P(A) and P(B) and also 

conditional probabilities P(C \ A, B), P(E \ C), P(D \ C), P(F \ E), and P(G \ D, E, F) 

must be determined. The relationship between nodes and their parents are represented 

by conditional probability tables. CPT represents prior distributions (prior probability). 

These distributions (or prior information) are called as beliefs. Prior probability, (P(A) 

and P(B) for Figure 3.4) can be used when no other information is available (Lee and 

Abbott 2003). However, new information can be obtained for the states of the nodes. An 

advantage of Bayesian Belief Networks is to compute posterior probability distributions 

A B 

C 
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when new information is available about a current situation. New information about a 

current situation of the nodes is called as evidence. BBNs allow an analyst to enter a 

probability for evidence information of a node. When evidence is entered into the 

network, it will change the states of other variables. Examples of Bayesian belief 

network with DAG and CPT are shown in Figure 3.5 and Figure 3.6 for mode choice 

and marketing research.  

 

 

Figure 3.5. A bayesian network with CPT for a mode choice problem 

(Source: Janssens, et al. 2006) 

 

Figure 3.5 represents that the nodes, “Number of Cars, “Gender”, and “Driving 

License” are parents of the node, “Mode Choice”. It means that mode choice is the child 

of the nodes, “Number of Cars”, “Gender”, and “Driving License” (Janssens, et al. 

2006). The network indicates that gender, Driving License, and number of cars directy 
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influence mode choice. In order to get the prior probabilities for the node, “Mode 

Choice”, bayes‟ rule is used and written as follows: 
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Figure 3.6. A bayesian network with CPT for a marketing research  

(Source: Nadkarni and Shenoy 2001) 

 

 According to Figure 3.6, all of the links in the network are causal. Product life 

cycle (C) and market leadership (L) directly affect the rate of product. In this sample, 

the nodes, C and L are the parents of the node, “Rate of Product” (R). The node, 

“Market Dynamics” is the parent node of “Product Life Cycle”. 

If many nodes are dependent in the network, computations may become 

difficult. In this situation, this can be done by means of probabilistic inference 

algorithms that are included in some softwares such as Hugin and Netica softwares. 
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3.3.2 Conditional Probability and Bayes Theorem 

 

Theoretical background of Bayesian belief networks comes from Bayes‟ 

Theorem. Bayes theorem relates conditional and marginal probabilities of random 

events. The theorem is used for calculating posterior probabilities given data (or 

observations). In this stage, firstly, conditional and marginal probability as a basic 

concept of bayesian analysis is explained. After that, bayes‟ theorem is explained. 

Conditional Probability means that if the events A and B are dependent, it is gained 

information about P(A) if the information that event B has occurred is known. The 

statement for conditional probability is that “Given the event B, the probability of the 

event A is x”. This statement is written as P (A\ B) = x (Jensen 2001, Lynch 2007). The 

theorem states simply: 
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This equation can be rewritten as: 
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P(A, B) = P(B, A) gives the equation 3.21. This equation yields the Bayes‟ rule. 

Bayesian Belief Networks are based on the work of the mathematician and theologian 

Rev. Thomas Bayes, who worked with conditional probability theory in the late 1700s 

to discover a basic law of probability, which was then called Bayes‟ rule. Marginal 

probability of event A, P(A), is computed as the sum of the conditional probability of A 

under all possible events Bi (Lynch 2007): 
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Where P(A) is the prior probability or marginal probability of event A. It is 

„prior‟ in the sense that it does not take into account any information about B. P(A | B) 
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which means “the probability of event A, given event B”, is the conditional probability 

of A, given B. It is also called the posterior probability because it is derived from or 

depends upon the specified value of B. P(B | A) is the conditional probability of B, 

given A. P(B) is the prior or marginal probability (sometimes called as unconditional 

probability) of event B. The probability of an event A occurring is expressed with prior 

or unconditional probability. If there is evidence about relevant that event, this 

probability becomes posterior (or conditional) probability. According to the theorem, a 

conditional probability for event A given event B is equal to the conditional probability 

of event B given event A, multiplied by the marginal probability for event A and divided 

by the marginal probability for event B (Lynch 2007). With this formulation, the theory 

provides an opportunity for calculating the probability of interest. In Bayesian 

terminology, marginal probabilities such as P(B) or P(A) represents prior information of 

events in the domain. This information may come from previous researches and expert 

knowledge. This information is used in estimating posterior probabilities. This 

probability is called as posterior probability. It can be repeated in the next step as prior 

probability to estimate a new posterior probability. In other words, once new 

information is available, the conditional probability of P(A\B) that means the probability 

of A, given B will changed in the network. 

 

3.3.3. Inference in Bayesian Networks 

 

Inference in a statistical analysis, sometimes called as probabilistic inference, is 

important for making predictions and decision making. Bayesian networks as one of 

recent advances in artificial intelligence provide a powerful tool for making inferences 

in decision making process. “Probabilistic inference refers to the process of computing 

the posterior marginal probability distributions of a set of variables of interest after 

obtaining some observations of other variables in the model” (Nadkarni and Shenoy 

2001, 484). Inference in a Bayesian network is based on the evidence propagation. 

Bayes networks in general are used to find posterior distribution of variables given 

evidence. It is called as probabilistic inference in bayes networks. As mentioned before, 

bayesian networks is a specification of a joint probability distribution of several 

variables in terms of conditional distributions for each variable in the network (Pearl 
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1988). Efficiency of the inference in bayesian networks is highly related with the 

structure of the DAG. 

Bayesian analysis provides an efficient tool for reasoning under uncertainty. 

Reasoning under uncertainty needs the task of computing the updated beliefs in 

(unobserved) events given observations on other events such as evidence (Kjaerulff and 

Madsen 2008). Bayes theorem provides a practical application for statistical inference. 

Bayes networks performs bayes‟ theorem to problems. Inference in bayesian networks 

means computing posterior beliefs given evidence. However, in real life applications, 

inference is accepted as an NP - hard task. There are some inference methods used in 

bayesian inference: markov chain monte carlo, query - based inference, arc reversal, and 

message points in junction trees. All of these methods work with inference algorithms, 

but these algorithms are worst case nonpolynominal time and the problem of 

approximate inference is NP - hard. (Neapolitan and Jiang 2007). If the structure of 

bayes network is simply, inference can be simple. Also, the result of inference 

algorithm is based on the structure of a bayes network. Therefore, some softwares such 

as Netica and Hugin have been developed for this purpose. The softwares provide users 

to automate the process of inference. 

 

3.3.4. Learning Bayesian Networks From Data 

 

Bayesian networks are defined as graphical representation (or graphical 

structure) for the probabilistic relationships among random variables. It allows doing 

probabilistic inference with the variables in a problem domain. In this stage, bayes‟ 

theorem is used for probabilistic inference and to compute the conditional probability 

distribution among the variables. However, conditional probabilities in a large amount 

of variables cannot be computed easily by applying of a standard bayes‟ theorem. For 

this reason, bayesian networks were developed to do inference correctly, and to 

compute conditional probabilities in an acceptable amount of time. 

After deciding which variables and their states that are used in the model, a 

researcher meets two tasks in data mining process using bayesian networks. The first 

stage is to construct of a bayesian network. In other words, bayesian network structure 

(DAG) must be defined. The resulting DAG represents a set of dependence and 
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independences causal relationships among the variables. The second stage is to 

assessment the prior and conditional probabilities. It can be defined as parameters. 

These tasks in the existing literature are called as learning bayesian networks from 

data. It means to define the optimal structure and local probability distributions given 

data (Heckerman 1996). Learning means that the task of finding a generic model of 

empirical data (Pearl 1988). “Up to until the early 1990s the DAG in a Bayesian 

network was ordinarily hand-constructed by a domain expert then the conditional 

probabilities were assessed by the expert, learned from data, or obtained using a 

combination of both techniques” (Neapolitan and Jiang 2007, 111). Therefore, since the 

construction bayesian networks from domain experts can be considered as a labor-

intensive task, many algorithms for learning bayesian networks from data have been 

developed. In general, learning in bayesian networks from data traditionally is 

comprised of two subtasks: Structural Learning and Parameter Learning. It must be 

noted that in bayesian analysis, DAG means the structure of a network and the 

conditional probability distributions are defined as model parameters. In this section, 

learning methods and algorithms as a data mining tool are discussed. 

 

3.3.4.1. Structure Learning  

 

Structure Learning includes the task of inducing the structure (DAG) of a 

bayesian network from data. “Structure learning determines the dependence and 

independence of variables and suggests a direction of causation, in other words, the 

placement of the links in the network” (Janssess, et al. 2006, 24). As mentioned above, 

bayesian network can be typically constructed from expert knowledge. This method 

builds the structure of a bayesian network manually. Learning bayesian network with 

these methods can be difficult for complex domain. However, correct structure must be 

defined to estimate model parameters. In the structure learning phase, there are mainly 

two different approaches (Steck and Tresp 1999): Constrained based and Search-and-

Score Algorithms. These two methods differ from each other. The task for searching 

for a good network structure needs efficient learning algorithms which can find close to 

optimum solutions in a reasonable amount of time because the number of possible 

networks is super - exponential in the number of nodes. Therefore, it is not easy to test 
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all search space entirely without algorithms. The size of possible DAGs is a function of 

the number of nodes G(n) and it grows super-exponentially with the number of nodes in 

the graph (Kjaerulff and Madsen 2008, Scuderi and Clifton 2005). Firstly, Robinson 

(1977) suggested a formulation for calculating the number of DAGs, f(n), including n 

variables. Table 3.2 shows the relationship between number of nodes and the number of 

possible DAGs. 
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Where n is the number of nodes in BBNs. According to this formulation, f(0)=1 

and f(10)=4,2.10
18

. Therefore, searching all possible structures for the optimal network 

becomes very difficult. Table 3.2 represents the relationship between the number of 

nodes and possible DAGs. 

 

Table 3.2. Number of directed acyclic graphs as a function of the number of nodes (G) 

(Source: Scuderi and Clifton 2005) 

G(n) DAGs 

1 1 

2 3 

3 25 

4 543 

5 29,281 

6 3,781,503 

7 1.1x10
9
 

8 7.8x10
11

 

9 1.2x10
15

 

10 4.2x10
18

 

 

The finding an optimal solution for DAG is defined as an NP-hard problem. Due 

to the complexity of this estimation, learning algorithms (constrained based and search 

and score algorithms) have been developed. In search and score approach, learning 

Bayesian network structure can be considered as an optimization problem. The 

algorithms search for the best model structure from empirical data using a scoring 

metric. The main idea is to search in the space of all possible bayesian networks (or 
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DAGs) trying to find the network with optimal score (Abellan, et al. 2006). Different 

scoring criteria can be used for evaluating the structure. The approach aims at 

maximizing a scoring function by means of heuristic search algorithms which can 

determine a bayesian network close to optimum. These algorithms in search and score 

method can be divided into two groups (Steck 2001, Scuderi and Clifton 2005): a local 

search algorithm (e.g. Hill Climbing) a global search algorithm (e.g., Markov Chain 

Monte Carlo). One of the most popular approaches in search and score strategy is K2 

algorithm developed in 1992 by Cooper and Herskovitz. K2 algorithm tries to optimize 

scoring function. K2 algorithm searches over a data set for a bayesian network structure 

that maximizes the probability of the structure given the data. “It starts by assuming that 

a node lack parents after which in every step it adds incrementally that parent whose 

addition most increases the probability of the resulting structure. K2 stops adding 

parents to the nodes when the addition of a single parent can not increase the 

probability” (Larranaga, et al. 1996, 913). 

Hill Climbing Algorithm, Genetic Algorithm, Markov Chain Monter Carlo 

Algorithm, Tabu Search, Naive Bayes, and Tree Augmented Naive Bayes (TAN) are 

learning algorithms that based on search and score method. The search algorithms as 

mentioned above are implemented using by local score metrics (Witten and Fank 2005, 

Bouckaert 2008). These algorithms evaluate the structure of a bayesian network as a 

representation of a set of data. Quality measure of a given network is based on some 

criteria (measures). Two popular measures for evaluating the quality of a network are 

the Akaike Information Criteria (AIC) and the Minimum Description Length (MDL) 

criteria. These measures provide score metrics that is used within search algorithms 

(Witten and Fank 2005). 

 

KLLAICscore  

 

N
K

LLMDLscore log
2

 

(3.26) 

 

(3.27) 

 

Where K is the number of parameters, LL is log-likelihood and N represents the 

number of instances (or records) in the data (Witten and Frank 2005). In the constrained 

based approach, the graph (DAG) of a bayesian network is considered as an encoding of 
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a set of conditional dependence and independence relations (CIDRs). Then, structure 

learning is the task of identifying a DAG structure that best encodes a set of CIDRs 

from a set of CIDRs derived from the data by statistical tests (Madsen, et al. 2003, 

Kjaerulff and Madsen 2008). In the constrained based structure learning, validity of 

independence relationships needs to be tested by statistical hypothesis tests. In this 

stage, χ
2
 test or likelihood G

2
 test statistic under the null hypothesis can be used to test 

and decide independence given subsets of other variables. For example, in the case of 

marginal independence testing
10

 for X and Y variables, the hypothesis to be tested is as 

follow (Kjaerulff and Madsen 2008): 

 

The null hypothesis, H0: P(X, Y) = P(X) P(Y), i.e., X  pY 

The alternative hypothesis, H1: P(X, Y) ≠ P(X) P(Y). 

(3.28) 

(3.29) 

 

In comparison with search and score approaches, constrained based approaches 

have some advantages. “Constrained based approach does not suffer from getting stuck 

at local optima unlike the search strategies aimed at optimizing a scoring function. For 

the same reason, equivalent DAG are not a particular problem for constrained – based 

algorithms” (Steck 2001, 38). Also, they do not require any prior knowledge. They are 

computationally easy. There are mainly two different algorithms for structure learning 

in constrained-based approach: The PC algorithm and the NPC (Necessary Path 

Condition) algorithm. PC algorithm was developed by Peter Spirtes and Clark Glymour 

(1991). The main idea behind this is to derive a set of conditional independence and 

dependence statements (CIDRs) by statistical tests. PC algorithm in learning of the 

structure of bayesian network performs four main steps (Madsen, et al. 2003): 

 

1. Statistical tests for conditional independence between each pair of variables. 

2. Identifying the skeleton of the graph induced by the derived CIDRs. 

3. Identifying colliders. 

4. Identifying the derived directions or directions of all edges. 

 

                                                             
10 The statement X ╨ Y is often referred to as marginal independence between X and Y (Kjaerulff and 

Madsen 2008). 
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PC algorithm has been proven under the assumptions of infinite data sets. If data 

sets are finite, PC algorithm can not find the best DAG which represents all CIDRs 

because of deriving too many conditional independence statements (Madsen, et al. 

2003). In this situation, NPC algorithm which is an extension of the PC algorithm 

should be preferred. NPC algorithm brings a criterion of a Necessary Path Condition as 

a solution. It is suggested for solving of the problems of constrained based learning 

algorithms (i.e. PC algorithm). It is developed by researchers at Siemens in Munich 

(Steck 2001, Steck and Tresp 1999). NPC algorithm like PC algorithm tries to generate 

a skeleton derived through statistical tests for conditional independence. 

The NPC algorithm is based on a criterion of the necessary path condition. 

There may be inconsistencies among the set of CIDS. Uncertain links result in appear 

the ambiguous regions. The NPC algorithm allows the researcher to specify uncertain 

links that need to be directed by user (Kjaerulff and Madsen 2008, Hugin GUI Help 

2010). On the other hand, the user or an expert is offered to resolve ambiguous regions. 

Users can decide the direction of undirected links. 

 

3.3.4.2. Parameter Learning 

 

After a satisfactory dependence is constructed by structure learning algorithms 

(i.e. PC or NPC algorithms), the parameters of the model that encodes the strengths of 

the dependences among variables are estimated. A Bayesian network is determined by a 

graph, G, and a set of parameters. Graph represents qualitative component, while 

parameters represent how the states of a given a node depend on the states of the parents 

of this node. Structure learning algorithm provided a graph representing the nodes and 

their dependencies. After that, parameter learning is to learn prior conditional 

probability distributions given graphical structure and data. In other words, parameter 

learning is to estimate the values of the parameters (probabilities) from data 

corresponding to a given DAG structure. In a Bayesian network (or graph), a CPT 

P(A/B1,….,Bn) has to attached to each variable A with parents B1,………,Bn. If A has no 

parents, unconditional probabilities P(A) must be specified. Like structure learning, 

parameters of the model can be determined by expert knowledge. The other and 

efficient method is to use a learning algorithm. 



 

 

74 

One of the most used parameter algorithms is the Estimation-Maximization 

algorithm (EM) for estimating the conditional probability distributions in database. EM 

algorithm developed by Lauritzen (1995) includes two steps: the expectation E step and 

the maximization M step. The algorithm performs iteratively. “The EM algorithm is 

well-suited for calculating maximum likelihood (ML) and maximum a posterior (MAP) 

estimates in the case of missing data” (Kjaerulff and Madsen 2008, 206). E and M steps 

are iterated until convergence or a limit on the number of iterations (threshold) is 

reached. When the difference between the log-likelihoods of two consecutive iterations 

is less than or equal to the log-likelihood threshold (δ) times the log-likelihood. The 

value of δ can be chosen by researcher (i.e. δ=0, 0001) (Kjaerulff and Madsen 2008). 

Conditional probabilities are estimated from database by an Expectation - 

Maximization (EM) algorithm. As mentioned above, the algorithm performs iteratively 

calculates maximum likelihood estimates for the parameters of the model given the data 

and the Bayesian network structure of the model. The advantage of this algorithm is to 

provide an opportunity to handle missing observations (Spiegelhalter, et al. 1993, 

Laurizen 1995, Heckerman 1996). In sum, searching for a Bayesian network that 

represent (best) dependence relationships in a data set is difficult because of the large 

number of possible DAG structure. The task of searching for a good network structure 

can be found if the right metric is used for scoring (Witten and Frank 2005). 

Shaughnessy and Livingston (2005) suggested that when using a search and score 

algorithm over the space of possible graphs to produce a causal network, the choice of 

scoring function (i.e. Bayesian metric) is much more important than the choice of search 

method in determining the resulting DAG. 

 

3.4. Empirical Mode Choice Models 

 

3.4.1. Research Design and Methodology 

 

As explained in Section 3.1, the theories of individual choice behavior provides 

detailed information about decision making process. A major improvement in travel 

demand modeling is the development of disaggregate travel demand models based on 

discrete choice models (Ben Akiva and Lerman 1985). Discrete choice models derived 
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from Random Utility Models can be made at aggregate and disaggregate levels 

according to data source. Especially, multinominal logit model is the most dominant 

model for travel behavior analysis during the last 25 years, but in recent years, soft 

computing methods have also been used in travel demand analysis. In existing 

literature, academic research have heavily focused on disaggregate modeling for 

analyzing travel behavior (Zhang 2004, Cervero 2002, Pinjari 2007). In the case of the 

cities in Turkey, there is an empirical gap at both aggregate level and disaggregate level 

in empirical mode choice studies. Therefore, there is not enough evidence about the 

factors affecting mode choice decisions in Turkey, especially in terms of land use 

characteristics. 

It is possible to classify mode choice models into two categories: disaggregate 

and aggregate models. This study includes the modeling of individual behavior 

(disaggregate) and zonal (aggregate) behavior. At the disaggregate level, the study aims 

to explain individuals‟ behaviors for selection of a particular travel mode while the 

aggregate models used in the study analyze to predict the zonal shares of trips by 

different travel modes and examine how zonal attributes affect travel mode choice in 

Istanbul. Contrary to the disaggregate models, the aggregate models require 

characteristics of travel zones in terms of zonal averages (e.g., average household 

income, the number of cars per 1000 people, and average household size). 

The presented study includes two different goals. One is to test whether the land 

use characteristics affect mode choice decisions or not at both levels. The other one is to 

compare the performance of traditional (logit) models and alternative model (BBNs) in 

mode choice analysis at both levels. To achieve the aim of the thesis, the research 

framework of the study is shown in Figure 3.7. The research design used in this study 

summarized as follows: 

 

1. Problem definition within the context of the travel demand modeling, 

2. Comprehensive literature review. 

3. Discussing the research methods, empirical results, data and data sources, variables, 

and empirical models used in the empirical studies. 

4. Defining a study area: The boundaries of Istanbul Metropolitan Municipality are 

chosen as a case study. 
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5. Data gathering: 2006 Household Travel Survey and zonal land use data including 

zonal averages of socioeconomic characteristics and the size of different land use types. 

6. Data manipulation: Preparing the appropriate data structures for logit models and 

BBNs. 

7. Testing different model formulations. Choosing the best model and its specification 

best fit to the data. 

8. Running the models. 

9. Performance comparison and evaluating of the model results. 

10. Deriving out the general conclusions for existing situation and future studies. 

 

In order to compare the performance of different models (traditional and 

alternative method) at both levels, the database is divided into two sub sets: training 

data set and testing data set. Training data set is used for building a model (or 

developing the model) while testing data set that was not used in the training process is 

used for comparing the predictive ability of the models. If statistical performance of 

multinomial logit and probit models are similar, logit model is generally used because 

of its computational easiness. In this case, multinomial logit model (MNL) is selected as 

a discrete choice model due to similar performance with probit model in disaggregate 

level. 

Limdep Nlogit Version 4.0 and SAS softwares are used to estimate logit models 

whereas Belief Network (BN) PowerConstructor and Hugin Researcher 7.1 are used to 

estimate and compile bayesian belief networks. Hugin and BN PowerConstructor are 

software programs including learning algorithms. 
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In transportation planning, urban areas (or city region) are divided into analysis 

zones. They are called as “travel analysis zones” (TAZ). These zones are expected to 

exhibit homogeneous land use and population structure. Also, it is expected that the 

zones generate equivalent daily traffic. A journey between travel zones is called trip. In 

2006 Household Survey Data in Istanbul, a trip was defined as all types of motorized 

mobility and walk mobility that do not come back to origin within 15 minutes. Trips are 

divided into four categories by trip purpose
11

: home - based work (HBW), home - based 

school (HBS), home - based other (HBO), and non home - based trips (NHB). If origin 

or destination of trips is at home and other point is at work, this trip is called as home 

based work trip. Non home - based trip means that a trip does not start or end at home 

while home - based school trip means that a trip starts at home and end at school. Home 

based other trip means that origin or destination of a trip at home, the other point of the 

trip is not at work and school. In the content of the study, mode choice models are 

calibrated by only home - based work trips (HBW) at both aggregate and disaggregate 

level. 

In the calibration of transportation demand modeling prepared for 2007 Istanbul 

Transportation Master Plan, four main modes were determined. In the case, mode 

choice models at both levels are estimated by the four main modes: walk, auto, service, 

and transit as seen in the Figure 3.8. Mode related variables describing the alternatives 

to the travelers (e.g., travel time and travel cost) were only estimated by these four main 

modes in TRANSCAD. In this case, choice set includes mainly these modes due to the 

data availability. According to this aggregation, walk mode includes walk and bicycle. 

Car mode includes auto drive alone, auto shared ride, taxi and motorcycle. Public 

transportation (sometimes known as public transit or mass transit) aims to serve only 

public in opposition to private modes. In Istanbul, there are several public transportation 

modes. Public transit modes include dolmuĢ, minibus, public bus, private bus, metro, 

light metro, tram, funicular, ferry, sea bus, sea motor, suburb train, and other vehicles. 

Service mode includes only personnel service vehicles. 

 

 

                                                             
11 Trip purpose sometimes can be categorized as work trips, shopping trips, social-recreation trips, and 

business trips. Detailed discussion is included in Meyer and Miller (2001). 



 

 

79 

 

 

 

 

 

Figure 3.8. Travel modes in Istanbul 

 

The empirical analysis of mode choice in Istanbul includes baseline category 

logit model and bayesian belief networks at aggregate level while multinomial logit 

model (discrete choice model) as a traditional (conventional model) and bayesian belief 

networks as an alternative approach are used at disaggregate level as seen in Figure 3.7. 

Following models are developed in the content of the study at both levels: 

 

1. Conventional (logit) models using all input variables with different model 

specifications. 

2. The models using selected input variables with statistically significant are 

determined. In empirical studies, these are called as the most efficient or the 

best conventional models. 

3. Bayesian Belief Networks (BBNs) as an alternative method using most efficient 

input variables and different algorithms is constructed by train data set. 

4. Performance analysis provides information about how well the predictions of 

the models match the observations using with test data set. 

 

For conventional models, the models are estimated firstly for all possible input 

variables, and then in order to find the smallest possible number of input variables, 

models are re-run. For each run, some variables whose have low explanation levels (low 

t statistics) are excluded from the data set. After several model runs, most efficient 

models are found. The study pay enough attention to that these attempts will not result 

in reducing performance of the models. Model calibration process for soft computing 

method (BBN) is performed in Hugin and BN PowerConstructor while the process for 
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conventional models (logit models) is performed in Limdep (Nlogit Version) and SAS. 

ArcGis software is used for measuring spatial data. The origin and destination locations 

derived from 2006 Household Travel Survey for Istanbul are matched and integrated 

into a geographic information system (GIS) based land use database. 

The models are estimated using two sets of data separately and mainly for base 

model and expanded model. While the base model include variables typically 

considered in the analysis of mode choice (socioeconomic and travel characteristics), 

expanded model includes land use variables with other independent variables in the 

base model. It is expected that this separation provide information about the marginal 

impacts of land use on mode choice exactly. This approach provides information to 

make comparison of previous studies in the literature. 

 

3.4.2. Variables 

 

Firstly, the factors influencing mode choice in Istanbul are classified into three 

groups: socioeconomic characteristics, travel characteristics (time and monetary cost), 

and spatial configuration of land use at disaggregate level. At aggregate level, since a 

non origin and destination based mode choice model is estimated, trip characteristics 

(time and cost) are not entered into the models. At disaggregate level, disaggregate 

models based origin – destinations (OD) are calibrated. Therefore, the variables entered 

into the models differ from each other. Before empirical mode choice models are 

presented, it is worthwhile to explain how and which land use characteristics enter into 

the models. In this stage, existing literature provide guidance about the relationship. For 

example, Kockelman (1997) suggested four measures of land use: entropy index of land 

use balance, dissimilarity index, accessibility, and density. Cervero and Kockelman 

(1997) suggested that built environment is defined in terms of three core dimensions 

(3Ds): density, diversity, and design. Among these dimensions, design variables needs 

urban form data at parcel level such as pedestrian and cycling provision and site design 

variables. Urban form and design variables are omitted from the models due to lack of 

empirical data in Istanbul. As mentioned before, there is no evidence for the relationship 

between travel demand and land use in Istanbul. The selection of model variables began 

by collecting represents from previous empirical studies. Several land use variables are 
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determined by existing literature. For example, density and land use mix are common 

land use measures. However, different formulations can be applied to obtain these 

variables. Moreover, some of land use variables and their formulations highly depended 

on the data availability. In sum, land use variables in the content of the study are 

classified into three categories: density, diversity, and accessibility for aggregate and 

disaggregate models. Main reason for this classification is data availability and the other 

one is to make comparisons of the results with the previous studies. 

On the other hand, one of the common problems in logit and regression analysis 

is multicollinearity which occurs when there are strong relationships (or dependency) 

among the explanatory variables. In the presence of multicollinearity, standard errors 

may have large values. Also, correct effects of the explanatory variables cannot be 

detected. For diagnosing multicollinearity, some diagnostic measures are used: the 

correlation coefficients for all pairs of explanatory variables, tolerance and variance 

inflation of explanatory variables. Following Kennedy (1981), the explanatory variables 

whose correlation coefficients smaller than 0.7 among explanatory variables, are 

entered into the models. The model variables are selected using stepwise method at 

aggregate level. Many model specifications are tested to find the best model. From a set 

of explanatory variables, only 14 variables (8 for land use characteristics and 6 for 

socioeconomic characteristics) are entered into the aggregate models. At the 

disaggregate level, there are 12 variables in total. However, land use variables are 

measured at both origin and destination. With alternative specific variables, discrete 

choice models include 26 model parameters in the expanded form. Final model 

variables are explained in Table 3.3. The difference between model variables and their 

formulations for aggregate and disaggregate models are summarized in Table 3.4 and 

Table 3.5. 
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Table 3.3. Variables used in the empirical models 

Variable Set Labels Empirical Models 

A. Socieconomic Variables:   

Household Income (HHINC) both 

Number of Cars in Household (NCAR) both 

Number of Company cars in Household (CCAR) disaggregate 

House Ownership (HOWNR) aggregate 

Household Size (HHSIZE) aggregate 

The Zonal Average of Worker (WRKR) aggregate 

Driver‟s License (DRL) disaggregate 

The Presence of Akbil Card (unlimited or not) 
(AKBIL) 

 (SAKBIL) 
disaggregate 

B. Travel Time and Cost 

(Generic Variables): 
  

Travel Time (in minutes) (TT) disaggregate 

Travel Costs (as monetary) (TC) disaggregate 

C. Land Use Variables:   

C.1. Density   

Employment / Population Density (EPDENS) aggregate 

Population Density (PDENS) both 

Industrial Employment Density (IEDENS) aggregate 

Commercial Employment Density (CEDENS) aggregate 

Commercial and Industrial Area Density (CIDENS) aggregate 

C.2. Diversity   

Jobs - Housing Balance
12

 
(JHB and 

EWDENS) 
both 

Land Use Mix (Dissimilarity Index) (LUMIX) aggregate 

C.3. Accessibility   

Transit Accessibility (TRACC) both 

Other Land Use Variables
13

:   

Intra-Zonal Travel (INTRA) disaggregate 

Zonal Area (AREA) aggregate 

                                                             
12 In the content of the study, two different formulations are used to estimate JHB ratio in order to make 
comparisons with the existing literature. 

13 Since these variables cannot be categorized under three-category for land use, the variables are tested 

independently in the models. 
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The variables characterizing the socioeconomic characteristics of individuals or 

travel zones differ according to the aggregate (zonal) and disaggregate data. At 

aggregate (zonal) level, the variables include zonal averages while the disaggregate 

model variables represent individual characteristics. Socioeconomic variables are 

income (hhinc), the presence of driver license (drl), the presence of akbil card type 

(sakbil and akbil), car ownership (ncar), company car (ccar), household size (hhsize), 

house ownership (hownr), zonal average of worker (wrkr). Among the variables, the 

presence of driver license (drl), the presence of akbil card and unlimited akbil card 

(akbil and sakbil), and transit accessibility (tracc) are used as dummy variables (1 or 

0). The magnitudes and the signs of these variables depend on the choice of travel 

mode. For example, it is expected that three dummy variables (akbil, sakbil, and tracc) 

are positively correlate with transit mode. In addition to these variables, a variable 

(intra) is created for disaggregate OD - based models that measure trips which begin 

and end in the same travel zone. It is measured as dummy variable for walk mode. 

A total of two generic variables characterizing the attributes of alternatives 

(mode related variables) is used: travel time (tt) and travel cost (tc). Travel time is 

measured in minutes whereas travel cost is measured in Turkish Lira (TL). 

Theoretically, as travel time and cost increases, travelers prefer alternatives with lower 

time and cost. Therefore, the expected sign of the generic variables are negative, 

indicating a disutility. 

The variables at aggregate level are household income (hhinc), house ownership 

(hownr), car ownership (ncar), worker rate (wrkr), household size (hhsize), the size of 

zonal area (area), employment / population density (epdens), industrial employment 

density (iedens), population density (pdens), commercial employment density (cedens), 

commercial & industrial area density (cidens), jobs - housing balance (jhb), land use 

mix (lusemix), and transit accessibility (tracc). There is no correlation problem among 

the variables. 

The variables at disaggregate level are household income (hhinc), the number of 

cars in household (ncar), the number of company cars in household (ccar), the presence 

of driver license (drl), the presence of akbil card (sakbil - akbil) used in public 

transport in Istanbul, travel time (tt) and travel cost (tc) for each mode, and land use 

variables. Land use variables characterizing the origin and destination are employed in 

the empirical analysis. These variables are population density (pdens), employment / 
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worker ratio (ewdens) as an indicator of jobs - housing balance, and the presence of 

transit access (sea or metro) in relative travel zone (tracc). In addition, there is a 

variable (intra) implying the trips which begin and end in the same traffic zone as 

dummy variable. 

Regarding the land use variables, all of the land use variables are estimated at 

zonal level. The variables characterizing density are population density (pdens), 

employment per population density (epdens), industrial employment density (iedens), 

commercial employment density (cedens), and commercial & industrial area density 

(cidens). Employment / population density (epdens) is estimated by dividing total 

employment by population in that zone. Industrial employment density (iedens) 

presents the ratio of industrial employment to the size of each travel zone as hectare. 

Commercial employment density (cedens) is estimated by dividing total commercial 

employment by the total size of each zone. On the other hand, commercial and 

industrial area density (cidens) is found by dividing the total of commercial and 

employment areas to zonal area in that zone. 

Density variables include population and employment densities for each zone. 

Population density is generally defined as the number of individuals per given unit of 

zonal area (person/hectare or person/square kilometers). Employment density is 

measured by total area of any sectoral employment per hectare such as the size of 

industrial employment in that zone. Also, employment density can be estimated by 

dividing total sectoral employment by total zonal area such as workers per hectare. 

Several empirical studies in Europe and USA (Newman and Kenworthy 1989, 

Schwanen, et al. 2004) suggested that higher population densities negatively correlated 

with the use of private car trips. It is positively correlated with public and walking trips.  

According to the report of National Academy of Sciences (2009), “increasing 

population and employment density in metropolitan areas could reduce vehicle travel, 

energy use, and CO2 emissions from less than 1 percent up to 11 percent by 2050 

compared to a base case for household vehicle usage”. In the case of Istanbul, there is 

no evidence. In the content of the study, several density measures related to density are 

tested. 

Another important land use dimension is land use diversity indicating the degree 

of land use composition. Two indexes are generally used in empirical studies: land use 

mix and land use balance. In this study, a land use mix diversity index is used (lusemix) 
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similar to Rajamani et al. (2002), Bhat and Gossen (2004), and Bhat and Guo (2007) as 

seen in the Equation 2.3. Land use mix index indicates proportion of dissimilar land use 

types in that zone (percentages of zonal area in residential, commercial, industrial, and 

other land uses). 

Another diversity measure is jobs - hosing balance indicating that imbalance 

between workplace and residential areas increases traffic congestion. As mentioned 

before, the jobs - housing balance ratio (JHB) can be measured in a number of different 

ways. In the content of the study, two different formulations are developed. The first 

one is based on the formulation developed by Cervero (1989, 1996). The formulation is 

written as: 

 

sidentsemployedre

swor
JHB

ker
 (3.30) 

 

This ratio express quantitatively the relationship between number of workers in a 

city and number of residents in a city who are employed. In the case, employment / 

worker ratio (ewdens) is estimated by dividing total employment to the total number of 

workers in that zone. The second JHB formulation is written as follows: 
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 (3.31) 

 

Where E presents employment size and P is the population size at each relative 

zone. c presents activity rate measured at the zonal level. It is the ratio of people who is 

capable of work in the relative zone to zonal population. The value of this variable 

ranged from 0 to 1. 0 represents a pure residential area or a non-residential area while 1 

represents a balance between employment and population. Theoretically, if jobs - 

housing balance occurs, people want to live and work in the same area. It can be 

expected that long trips would be avoided (Cervero 1989, Sultana 2002, Wang and Chai 

2009). In other words, good jobs - housing balance means that there may be short work 

commute and more non - motorized trips. 
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The third category of land use is accessibility index. The variable for transit 

accessibility variable (tracc) is created for measuring residential sorting (or self-

selection) effects as dummy variable. In this case, transit accessibility represents the 

presence of transit (rail or sea) in relative TAZ. It is expected that the presence of transit 

accessibility positively correlated with the choice of transit mode. 

The following hypotheses associated with land use variables are derived from 

the relationship between mode choice and land use in Istanbul. 

 

H.1. Population density is positively correlated with walking and transit mode choice. 

H.2. Employment densities are positively correlated with motorized trips. 

H.3. Diversity positively correlates with walk and transit mode choice. 

H.4. Transit access increases the choice of transit mode. 

H.5. Commuters whose trip origin and destination point is in the same zone are more 

likely to choose non-motorized alternatives. 
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Table 3.4. Aggregate model variables 

 

Variables 

 

Description 

 A. Household Socioeconomic Variables 

 
 

Zonal Area  (area) Zonal area as hectare (hectare / 100). 

Household Income  (hhinc) Zonal average of household income (income (T.L.) / 1000). 

Household Size  (hhsize) Zonal average of household size. 

House Ownership  (hownr) Zonal average of household ownerships. 

Car Ownership  (ncar) The number of car per 1000 people. 

Employed  (wrkr) Zonal average of worker. 

B. Land Use Variables  

1. Density  

Employment / Population Density  (epdens) The ratio of total employment to total zonal population within each zone. 

Population Density  (pdens) Population per zonal area (person/hectare). 

Industrial Employment Density  (iedens) Number of industrial employment per zonal area. 

Commercial Employment Density  (cedens) Number of commercial employment per zonal area. 

Commercial and Ind. Area Density  (cidens) The ratio of total size of commercial and industrial area within each zone to total zonal area. 

2. Accessibility  

Transit Accessibility  (tracc) The presence of transit access in each zone. 

3. Diversity  

Job - Housing Balance  (jhb) The degree of land use balance between jobs and residents at the zonal level. 

Land Use Mix  (lumix) The degree to which land uses are mixed within each zone. 
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Table 3.5. Disaggregate model variables 

Variables 

 

Description 

 A.Socioeconomic Variables of Trip Maker 

 
 

Individual Income  (hhinc) Individual income as monthly. 

Driver License  (drl) The presence of driver license as dummy variable. 

Unlimited Akbil Card  (sakbil) The presence of unlimited akbil card for public transport vehicles as dummy variable. 

Akbil Card  (akbil) The presence of akbil card for public transport vehicles as dummy variable. 

Car Owner  (ncar) The number of auto in household.  

Company Car  (ccar) The number of company car in household.  

B. Travel (Generic) Variables  

Travel Time  (tt) Travel time by each mode. 

Travel Cost  (tc) Travel cost by each mode. 

C. Land Use Variables  

1. Density  

Population Density  (pdens) Population per zonal area (person/hectare). 

2. Accessibility  

Transit Accessibility  (tracc) The presence of transit access in each zone as dummy variable. 

3. Diversity  

Employment / Worker Ratio  (ewdens) The ratio of total employment to total number of worker within each zone. 

Intrazonal  (intra) Origin and destination of hbw trip is in the same zone or not as dummy variable 

88
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3.4.3. Model Structure and Formulations 

 

3.4.3.1. Baseline Category Logit  

 

 Logit models provide an efficient model to analyze travel demand. When 

response variable is binary (0 or 1), binary logistic regression models the probability of 

an event that is occurred or not. In this case, since choice set includes four modes (or 

four categories), this type of logit models is called as “multicategory logit”. 

Multinomial responses can be divided into two categories: nominal (unordered 

categories) and ordinal responses. If response categories are ordered, cumulative logit 

models are preferred. Mode choice problem in the case is an example of nominal 

(unordered) response. Baseline category logit model is used for nominal responses. 

Baseline category logit model compares each group with a reference group 

simultaneously. In this choice analysis, baseline category logit model compares walk as 

an unmotorized mode with car, service, and transit modes sequentially. In other words, 

walk mode is used as the baseline category. Baseline category logit model only selects 

the set of the variables as the best subset of variables using different selection methods 

such as stepwise, forward, and backward. In the content of the study, stepwise selection 

method is used. The three logit equations described the log odds that people who live in 

the zones in Istanbul select other primary travel modes instead of walk. According to 

the formulation of baseline category (or generalized logit) logit model, the probabilities 

for each mode can be written as: 

 

π1=probability of walk mode, 

π2=probability of car mode, 

π3=probability of service mode, 

π4=probability of transit mode. 

 

The logit equation for car mode is as below: 
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2  (3.32) 

 

Baseline category logit models are estimated for only socioeconomic data and 

then the whole data set. Therefore, the effects of land use characteristics are analyzed 

separately from other factors affecting mode choice. For testing the goodness of fit in 

this model, several test statistics are used. Deviance and Pearson Chi-Square test 

statistics are used for testing the goodness of fit of the models. In other words, these test 

statistics provide important measures for model check. Maximum likelihood analysis of 

variance is used for detecting statistically significant variables. In the content of the 

study, the hypothesis is tested that expanded model outperforms the base model with 

only socioeconomic variables. The null hypothesis (H0) for the case is as follows: 

 

H0 = The base model with socioeconomic characteristics fits the data. 

H1 = The expanded model fits better. 

 

Also, the parameter estimate is estimated by maximum likelihood estimator 

instead of weighted least square estimator. Finding the best set of variables for the 

models, stepwise method is used as a variable selection method. The significance level 

for selecting variables is performed at the 0.01 % level of significance. Most of the 

variables obtained from household travel survey are eliminated from the models 

because of low significance levels and multicollinearity problems. The remaining 

variables are entered into the models. The model variables are presented in Table 3.3. 

PROC LOGISTIC and CATMOD statement in SAS is used for binary and also nominal 

response outcomes. Baseline category logit model is estimated in SAS software using 

both PROC LOGISTIC and PROC CATMOD. Mode choice data are arranged in the 

frequency format instead of individual data. Since only SAS Proc Logistic (or Proc 

Catmod) procedure allows the input of binary response data that are grouped. Proc 

Logistic procedure in SAS software is used for mode choice data that are grouped
14

. 

                                                             
14 Further detailed desciptions of logit models are contained in Allison (1999), Agresti (2002), and 

Hosmer and Lemeshow (2000). 
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3.4.3.2. Multinomial Logit Models 

 

In the content of the study, one of the empirical mode choice methods at 

disaggregate level in Istanbul includes discrete choice models developed from consumer 

choice theory (Ben-Akiva and Lerman 1985, Domencich and McFadden 1975). The 

modeling framework used for estimating the probability a commuter opted for a 

particular mode in Istanbul is expressed in terms of multinomial logit model as: 

 

n
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P  (3.33) 

 

Where Pniod is the probability of an individual n choosing mode i for home based 

work travel between origin (o) and destination (d). Cn represents the choice set and Vniod 

is the utility function. Vniod, deterministic (systematic) component of utility function, 

includes alternative specific constant (ASC), travel attributes or generic variables (TT 

and TC), socioeconomic variables (SE), and land use variables (LU). In order to 

measure the effect of land use, a series of logit model is estimated in Nlogit software. 

Four different multinomial logit model specifications for home - based work trips in 

Istanbul are developed. The MNL models and their forms are as follow: 
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 (3.34) 

 

 The probability that a choice response is observed is written as a function of a 

set of explanatory variables as follows: 

  

A. The Base Model: Only alternative specific constants (ASC). The model took the 

form as follows: 

Cnodjniodniod ASCfVnjodASCfVP )(exp(/)(exp(  (3.35) 
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B. Model 1: Only alternative specific constants and travel attributes (time and cost). 

The model took the form: 

 

Cnodj jodiodniodniod TASCfVnjodTASCfVP )),(exp(/)),(exp(  (3.36) 

 

C. Model 2: Adding socioeconomic variables to the Model 1. Model 2 took the 

form: 

 

Cnodj njodniodniodniod SETASCfVnjodSETASCfVP )),,(exp(/)),,(exp(  (3.37) 

 

D. Model 3 (Expanded Model): Adding land use variables to Model 2. Model 3 

took the form: 

 

Cnodj odnjododniodniodniod LUSETASCfVnjodLUSETASCfVP )),,,(exp(/)),,,(exp(  (3.38) 

 

Firstly, the base model is estimated. After Model 1 and Model 2, expanded 

model finally is estimated. The expanded model includes alternative specific constants, 

travel time and cost (generic variables), and land use attributes. Land use attributes both 

at trip origin and destination are entered into the utility functions. Comparisons of the 

equation as explained above allow marginal effects of adding socioeconomic and land 

use variables to mode choice utility function to be measured. It is expected that 

expanded model statistically improves models‟ explanatory level. This hypothesis is 

tested in terms of different goodness of fit criteria such as changes in the log likelihood 

function and pseudo R
2
. In the models, estimated parameters represents the impact of 

the explanatory variables used in the models on the utility of the alternatives. The utility 

specification of the expanded model is given in Table 3.6. The utility functions 

according to the models are as follow: 
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Base Model:  Only ASC Variables 
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 (3.39) 

 

Model 1:  ASC + GENERIC Variables 
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Model 2:  ASC + Generic + Socioeconomic Variables 
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Model 3:  (Expanded Model): FULL DATA 

tcttV

ndestinatiopdensoriginpdens

ndestinatioewdensoriginewdens

ccarncarhhincdrltcttV

ndestinatiotraccorigintracc

ndestinatiopdensoriginpdensndestinatioewdens

originewdensakbilsakbiltcttV

ndestinatiopdensoriginpdens

ndestinatioewdensoriginewdensrattV

service

auto

transit

walk

54

2421

1815

111096543

2625

232017

1487542

2219

16131241

)()(

)()(

)()(

)()()(

)(

)()(

)()(int

 (3.42) 



 

 

94 

Table 3.6. The systematic utility function of disaggregate OD – based multinomial logit model 

 ASC ASC ASC 
TRAVEL 

TIME 

TRAVEL 

COST 

DR. 

LICENSE 
TRSAKBIL TRAKBIL INCOME 

HH AUTO 

OWNERSHIP 

COMPANY 

AUTO 

 β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 β11 

WALK ONE 0 0 tt 0 0 0 0 0 0 0 

TRANSİT 0 ONE 0 tt tc 0 sakbil akbil 0 0 0 

AUTO 0 0 ONE tt tc drl 0 0 hhinc ncar ccar 

SERVICE 0 0 0 tt tc 0 0 0 0 0 0 

 

 

 Intra Zonal Travel 
Emp. / Worker 

(JHB) 
Population Density Transit Access 

 β12 β13-β18 β19-β24 β25- β26 

WALK intra ewdens pdens 0 

TRANSİT 0 ewdens pdens tracc 

AUTO 0 ewdens pdens 0 

SERVICE 0 0 0 0 
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3.4.3.3. Bayesian Belief Networks 

 

Bayesian belief networks (BBNs) as a graphical model provide guidance about 

causal relationships between variables. In other words, BBNs represent dependencies 

and independencies among variables using directed acyclic graph. This is a part of 

qualitative (structural) of the network. On the other hand, quantitative (probabilistic) 

part is represented by conditional probability tables for each node in the network. The 

most important difference between conventional models (regression and logit models) 

and soft computing methods (artificial neural network, fuzzy logic, etc) is that 

conventional models provide information about the signs of the model parameters and 

statistical significance while soft computing methods may not. However, BBNs provide 

a graphical model that shows the direction and strength of the relationships among the 

variables while other methods maynot. Although this model has gained popularity in 

environmental sciences, decision support systems, healthcare management, medical 

diagnostic problems, and risk assessment in recent years, the application in 

transportation modeling is rather limited. In the content of the study, BBNs are 

developed to investigate the causal relationships among the variables. Also, the purpose 

of the models is to predict the choice probabilities of travel modes. BBNs are estimated 

at both aggregate and disaggregate level. The process to develop a Bayesian network in 

this case is summarized as follows: 

 

1. Deciding what variables and their states should be included into the models. 

2. Discretization of the model variables. 

3. Building a Bayesian network structure with train set using expert knowledge 

(domain knowledge) and learning algorithms. 

4. Creating conditional probability tables for each node in the network using 

expert knowledge and learning algorithms. 

5. Compiling the network and inferences in Hugin software. 

6. Sensitivity analysis and performance measures of BBNs models using test 

set. 
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The most disadvantages in studying a BBNs is computation time of learning 

algorithms from data. The size of conditional probability table (CPT) expands as model 

variables increases. The conditional probability tables (CPTs) of the Bayesian network 

becomes too large. The size of a CPT grows exponentially with the number of parents. 

To reduce the number of parents, the significance level should be adjusted. However, 

this adjustment was inadequate for performing algorithms in Hugin. Therefore, only the 

variables that are statistically significant according to the result of logit models are 

selected. In other words, the variables that did not contribute the explanatory power of 

logit models were eliminated from the networks. For example, the variables except jobs 

- housing balance at both origin and destination are entered into the network at 

disaggregate level. HUGIN runs out of memory due to the large size of CPTs. Because 

of this, BN PowerConstructor software is preferred. After deciding model variables, the 

most of the softwares developed for Bayesian networks needs to discretize continuous 

variables for applying learning algorithms. For example, Hugin includes equal 

distribution and equi-distance methods. Since the existing literature cannot provide 

enough guidance, discretization process is performed according to expert knowledge. At 

both levels, data structure differs from each other. Therefore, the states of the models 

(nodes) can vary as seen in Table 3.7 and Table 3.8. 

In BBNs, for building network structure (or developing model), 80% of the case 

file randomly selected from empirical data is used in learning or training. The learned 

BBNs are tested on the random subset of 20% of the case file that was not used in the 

learning process. There are two alternatives in BBNs to construct a network: expert 

knowledge and learning algorithms from data. Learning algorithms in BBNs can be 

divided into two groups: structural and parametrical learning from data. As mentioned 

before, parametric learning determines CPTs of each node of a network while structural 

learning determines the causality among the variables in a network. In the literature 

related to BBNs, there are many learning algorithms. Different softwares may include 

different learning algorithms such as search and score and dependency analysis 

methods. These methods are expected to find the correct structure. BN 

PowerConstructor is applied to construct bayesian belief networks and estimate CPTs. 

The method used in BN PowerConstructor for structural learning from data is based on 

dependency analysis. The method requires conditional independence (CI) tests. Since 

the algorithms cannot detect exact relationships among the variables, some relationships 
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from the existing literature were constructed as manual. Therefore, both approaches 

(manual and automatically) are applied in structural learning. 

 

Table 3.7. The model variables used in BBNs at disaggregate level 

Variables (Nodes) Label States 

Walking Time WTIME 8 states 

Transit Time TRTIME 8 states 

Auto Time ATIME 10 states 

Service Time STIME 6 states 

Transit Cost TCOST 8 states 

Auto Cost ACOST 5 states 

Service Cost SCOST 6 states 

Driving License DRL 2 states 

Income INCOME 6 states 

Akbil Card Usage AKBIL 2 states 

Unlimited Akbil Card Usage SAKBIL 2 states 

The Number of Car in HH NCAR 3 states 

The Number of Company Car in HH CCAR 2 states 

Intra Zonal Travel for Walk Mode INTRA 2 states 

Emp. / Worker Density at origins ORATIO3 10 states 

Emp. / Worker Density at destinations DRATIO3 11 states 

Pop. Density at origins OPDENS 3 states 

Pop. Density at destinations DPDENS 4 states 

The Presence of Transit Access at origins OTRACC 2 states 

The Presence of Transit Access at destinations DTRACC 2 states 

Mode Choice (The Query Node) MODECHOICE 

4 States: 

Walk (1), 
Transit (2), 

Car (3), 

Service (4). 

 

The network structures are detected from mode choice data in BN 

PowerConstructor and then some relationships are derived manually (semi-automatic). 

After building bayesian network structure, conditional probability tables are derived 
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from empirical data with parametric learning algorithm in BN PowerConstructor. The 

network is built up in the software program BN PowerConstructor. After that, Hugin 

compiles the network. The last step is to test how well the predictions of the network 

match the actual cases and make sensitivity analysis. In order to do this, data accuracy 

pane using testing data in Hugin is used to calculate different scores and generate an 

analysis report. 

 

Table 3.8. The model variables used in BBNs at aggregate level 

Variables (Nodes) Label States 

Household Income HHINC 3 states 

Household Size HSIZE 3 states 

The Number of Car per 1000 People NCAR 3 states 

House Ownership HOWNR 2 states 

Working WRKR 2 states 

The Size of Zonal Area AREA 3 states 

Employment / Population Density  EWDENS 3 states 

Pop. Density  PDENS 3 states 

Job – Housing Balance JHB 4 states 

Land Use Mix LUSEMIX 3 states 

Industrial Employment Density IEDENS 4 states 

Commercial Employment Density CEDENS 3 states 

Com. & Ind. Emp. Area Density CIDENS 2 states 

The Presence of Transit Access  TRACC yes, no 

Mode Choice (The Query Node) MODE CHOICE 

4 states: 

 
Walk(1), 

Car (2), 

Service (3), 

Transit (4). 

 

The softwares used in BBNs such as Hugin and Netica provide an analysis 

report that is used to model assessment. This analysis report includes some scoring 

rules, error rate, a confusion matrix, and ROC curve. Quadratic loss and spherical 

payoff are the most used scoring rules. Quadratic loss ranges from 0 to 2, with 0 being. 

The formulation of spherical payoff is written as follows (Marcot, et al. 2006): 
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(3.43) 

 

Where MOAC is the mean probability value of a given state and n is the number 

of states in bayes network. Pc is the probability predicted for the correct state while Pj 

represents the probability predicted for state j. Spherical payoff ranges from 0 to 1. 1 

represents the best model performance. Hugin Researcher Version 7.1 provides its own 

predictive accuracy scoring measures: Euclidian distance and Kulbach - Leibler 

divergence
15

. In the content of the study, the scoring rules, Euclidian distance and 

Kulbach - Leibler divergence, are used. These scoring rules show similarities quadratic 

loss and spherical payoff that are derived from other softwares used in BBNs. The 

classification of a BBN model including binary output can be tested with a receiver 

operating characteristic (ROC) curve (Marcot, et al. 2006, Dlamini 2009). Since the 

mode choice problem includes multinomial response, ROC curve is not used. Confusion 

matrix (or crosstab), scoring rules, and error rate are used for model performance of 

BBNs at both levels. 

 

 

 

 

 

 

 

 

 

 

 

                                                             
15

 The formulation for the scoring rules are discussed in www.norsys.com and www.hugin.com. 

http://www.norsys.com/
http://www.hugin.com/
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CHAPTER 4 

 

DATA SOURCES AND PROCESSING 

 

This chapter provides information about the study area, data sources, and 

processing. Firstly, the case study is described. After that, the household survey data 

used in empirical models is described. In the content of the study, 2006 Household 

Travel Survey prepared for 2007 Istanbul Transportation Master Plan is used. Data 

represents the most recent travel information in Istanbul. This section includes 

descriptive statistics of empirical data used in aggregate and disaggregates models. 

 

4.1. Description of The Case Study and Istanbul Household Survey 

Data 

 

The boundaries of Istanbul province are selected as this study. Istanbul is 

situated on both sides of the Bosporus Strait. The Bosporus Strait divides Istanbul into 

two parts: the European side and the Asian side. Istanbul is surrounded by the province 

of Kocaeli in the east, by Marmara Sea in the south, by the Black Sea in the north, and 

by the province of Tekirdağ in the west as seen in the Figure 4.1. Its history has over 

2500 years. The city is the largest city in Turkey with a population of around 12.573 

million in 2007 according to official census data based on the address based population 

registration system while it was 1.078 million in 1945. A list of the population of 

Istanbul by years is given in Table 4.1. According to this table, the increase in 

population in the last 10 years has been over 2.5 million. The total area of the city 

boundaries covers 5512 square kilometers. 8.156.867 people live on the European side 

while 4.416.867 people live on the Asian side (IBB 2010). 
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Figure 4.1. The Case Study  

(Source: Istanbul Metropolitan Municipality (IBB) - Directorate of City Planning, GIS based Land Use Database) 

101
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Table 4.1. Population levels in Istanbul 

   (Source: Governorship of Istanbul 2010) 

Year Population (person) 

1927 806.863 

1945 1.078.399 

1960 1.882.092 

1975 3.904.588 

1990 7.195.773 

1997 9.198.809 

2000 10.018.735 

2007 12.573.836 

2008 12.697.164 

 

The city includes 32 districts
16

 in total. The eleven counties are located on the 

Asian side while the others are located on the Europeanside. The spatial configuration 

of land use in Istanbul is displayed in the Figure 4.2. According to the Figure 4.2, green 

areas (dark and light green) in the fringe show the forests and agricultural areas whereas 

brown areas show urban areas (residential). The most of the areas for the districts of 

Catalca, Silivri, Beykoz, and Sile includes non-residential areas. 58.4 % of forest areas 

is located on European side while 41.6 % of them is located on Asian side. Commercial 

areas area concentrated on the residential areas. The total industrial area is 10.476 

hectare in Istanbul metropolitan area. The industrial firms that needs large industrial 

areas are located in Maltepe - Kartal districts and Kağıthane in the west side. The 

industrial firms have been located in Tuzla, and Küçükçekmece associated with 

developing highways (IBB 2005). Regarding urban transportation in Istanbul, there are 

two bridges connecting the continents in the city. These bridges carry a heavy load of 

commuting and intercity traffic. The direction of commuting trips in the morning is 

toward the CBD whereas this direction in the evenings towards the fringes. In Istanbul, 

highway is 232 kilometers in length while public road is 324 kilometers in length. On 

the other hand, the existing rail systems in Istanbul consist of tram, funicular, teleferic, 

light rail transit (LRT), and metro as seen in Figure 4.3. The properties of the rail 

systems are summarized in Table 4.2. 

                                                             
16 During transportation master plan studies, Istanbul included 32 districts. The number of the districts 

increased from 32 to 39 in 2008. 25 of them are located in Europeanside whereas 14 of them are in Asian 

side. 
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Figure 4.2. Land Use in Istanbul Metropolitan Area  

(Source: IBB - Directorate of City Planning, GIS based Land Use Database) 
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Figure 4.3. Existing rail systems in Istanbul 

(Source: adapted from IBB 2005) 

 

Table 4.2. Rail systems and its properties 

(Source: IBB 2005) 

 

The Route of Travel 

 

Type 

 

Length            

(km) 

Passenger 

Carried 

Daily  

(person) 

Carrying 

Capacity 

Daily 

(person) 

Taksim – 4. Levent Metro 8,3 120.000 950.000 

Aksaray-Havaalanı LRT 19,5 290.000 450.000 

Eminönü-Zeytinburnu Tramvay 11,2 280.000 300.000 

Ġstiklal C. (Tünel-Taksim) Nostaljik 

Tramvay 

1,6 5.000 6.000 

Kadıköy-Moda 2,6 1.700 15.000 

Tünel-Karaköy Füniküler 0,5 13.000 15.000 

Sirkeci-Halkalı    Banliyö  

(TCDD) 

27 50.000 
250.000 

Harem-Gebze 45 75.000 

Maçka Teleferik 0,4 1.000 2.000 

TOTAL  116,1 835.700 1.988.000 
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The rail systems in Istanbul are about 116 kilometers in length. In comparison 

with the cities in Europe, this length is rather limited. For example, Athina has 55 

kilometers in length with 51 stations whereas total length of the rail system is 215.5 

kilometers in Paris. Madrid metro is one of the longest metro network in Europe with 

284 kilometers and 283 stations
17

. Sea transportation is important for inner-city travel. 

Sea transportation is supported by private and public vehicles. Seabus, fast ferry, and 

motorboats have been used for sea transportation. Istanbul has a strategic position in air 

transportation. There are two international airports: Atatürk Airport on European side 

and Sabiha Gökçen Airport on Asian side. 

The data used for the empirical analysis is the 2006 Household Travel Survey 

conducted by the Transportation Department of the Metropolitan Municipality of 

Istanbul. 2006 Household survey was used for 2007 Transportation Master Plan in 

Istanbul. In Istanbul, three transportation master plan and model calibration studies have 

been prepared up till now for the years 1987, 1997, and 2007. 2007 Istanbul 

Transportation Master Plan includes the boundaries of the metropolitan area (urban and 

rural areas). The plan includes 539.000 hectares. Transportation master plan in 2007 has 

the survey with highest sampling rate. At the beginning of the study, 80% response rate 

was aimed. 90.000 households were considered for the survey due to budget limitations 

and previous experiences. In order to make realize, sampling rate was estimated at about 

2.2%. At the end of the study, 263.768 people in 70.888 households (as response) 

participate in this survey, resulting in a database of 356.000 trips in total. 451 travel 

analysis zones were determined as seen in the Figure 4.6. These travel zones consist of 

33 districts (32 districts in Istanbul and 1 district in Gebze, the province of Kocaeli). 

2006 Household Travel Survey was randomly made with people who live in 451 travel 

analysis zones (OD HH 2006). Table 4.3 represents the all trips by different travel 

modes in Istanbul. 32.3% of the total trips is home - based work (HBW); 21.4% is home 

- based school (HBS); 37.2% is home - based other (HBO); and 9.1% is non-home 

based (NHB) trips (Appendix B). The share of private modes is 29% while the share of 

public transportation is 71% in Istanbul. According to the 2006 Household Travel 

Survey, the leading transportation mode is walking (49.28%). Private mode usage is 

only around 14.57%, and public transit is around 35.73%. Service usage is around 11%. 

                                                             
17 The detailed information for the rail systems in European cities can be found in www.UrbanRail.Net. 
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The share of rail transit is only about 2.3%. In comparison with European cities, this 

rate is rather at low levels. The usage of sea transportation is lower than rail systems 

with 1%. Modal split by travel modes is displayed in Figure 4.4 and Figure 4.5. 

 

Table 4.3. Trip distribution according to trip purpose in 2006 

(Source: OD HH 2006) 

Travel Modes 
HBW 

% 

HBW 

% 

HBS 

% 

HBS 

% 

HBO 

% 

HBO 

% 

NHB 

% 

NHB 

% 

Total 

Percent (%) 

Walk 27,47 71,09 60,48 31,64 49,28 

Drive Alone 11,75 0,73 4,99 18,58 7,19 

Shared Ride 6,00 2,03 7,27 12,44 5,76 

Taxi 1,06 0,28 2,31 2,67 1,35 

Service 19,22 11,54 1,16 5,22 10,73 

DolmuĢ 1,39 0,45 1,04 1,16 1,03 

Minibus 10,70 4,14 9,07 7,81 8,35 

Public Bus 14,04 6,38 8,40 9,52 10,05 

Private Bus 2,48 1,26 2,08 1,89 2,01 

Motorcycle 0,27 0,02 0,11 0,36 0,16 

Bicycle 0,08 0,01 0,07 0,03 0,05 

Metro (Taksim - 4.Levent) 0,84 0,33 0,42 1,08 0,59 

LRT (Aksaray - Airport) 0,81 0,29 0,46 0,68 0,56 

Tram 0,99 0,54 0,56 1,38 0,76 

Tünel 0,03 0,01 0,02 0,08 0,02 

Ferry 1,08 0,46 0,60 1,21 0,78 

Sea Bus 0,12 0,07 0,06 0,13 0,09 

Sea Motor 0,18 0,07 0,11 0,20 0,13 

Suburb Train 0,56 0,18 0,29 0,35 0,37 

Other 0,91 0,13 0,53 3,64 0,75 

Total 100 100 100 100 100 

 

Table 4.4 and Table 4.5 represent the rates in modal split and trip purpose 

throughout the years. According to Table 4.4, the share of private car, service, and rail 

systems have increased. On the contrary, the usage for taxi, dolmuĢ, bus and sea 

transportation has decreased. Regarding modal split by the years in Table 4.5, as 

mentioned before, the biggest share is home - based other trips. From 1996 to 2007, 

home-based other trips increased approximately 19%. Home - based work trips were 

53% in 1987. Then, hbw trips increased about 2% in 1997. HBW trips decreased to the 

lowest level (32.3%) in 10 years (OD HH 2006). 
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Figure 4.4. Modal split by travel modes in Istanbul 

 

 

Figure 4.5. Modal split by main travel modes in Istanbul 
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Table 4.4. Modal split for motorized trips by the years in Istanbul 

(Source: OD HH 2006) 

Travel Modes 1987 (%) 1996 (%) 2007 (%) 

Private Car 19,3 19,2 26,34 

Taxi + DolmuĢ 10,2 9,4 4,75 

Service Vehicles 10,4 11,5 21,48 

Bus 35,2 34,1 24,12 

Minibus 19 19,6 16,71 

Rail Systems 3,8 3,6 4,6 

Sea 2,1 2,6 2 

 

 

Table 4.5. Trip purpose distribution throughout the years in Istanbul 

(Source: OD HH 2006) 

Trip Purpose 1987 (%) 1997 (%) 2007 (%) 

HBW 53 55 32.3 

HBS 16 14.5 21.4 

HBO 19 18.3 37.2 

NHB 12 12.2 9.1 

TOTAL 100 100 100 
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Figure 4.6. Travel Analysis Zones in Istanbul   

(Source: IBB - Directorate of City Planning, GIS based Land Use Database) 
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According to OD HH 2006, average travel time for non - motorized trips (walk 

and bicycle) is 32 minutes while average travel time for motorized trips is 49 minutes. 

For HBW trips, average travel times are 41,92 minutes for non-motorized trips and 

51,95 minutes for motorized trips. Table 4.6 represents average travel times by the 

years. In the last two decades, travel times firstly decreased in 1996 and then increased 

in 2006. The main reason for the reduction in travel time is that a new bosphorus bridge 

and rail systems were introduced into transportation system after 1987. 

 

Table 4.6. Average travel times by the years (minutes) 

(Source: OD HH 2006) 

 Motorized Trips Non-Motorized Trips 

Trip Purpose 1987 1996 2006 1987 1996 2006 

HBW 55,6 43,0 52,0 45,4 37,9 41,9 

HBS 50,9 37,4 48,5 28,8 26,2 23,3 

HBO 51,2 41,9 49,8 36,5 34,4 27,8 

NHB 44,6 34,0 52,0 35,0 31,3 36,5 

Total 52,8 40,7 48,9 38,0 34,3 32,2 

 

Table 4.7. Mobility rates by trip purposes 

(Source: OD HH 2006) 

Trip Purpose Gross Mobility Rates
 

Net Mobility 

Rates
 

HBW Trips 0.56 1.94 

HBS Trips 0.37 2.02 

HBO Trips 0.58 2.17 

NHB Trips 0.12 1.64 

Total Trips 1.64 2.40 

 

For total trips, gross mobility rate is 1,64 while net mobility rate is 2,40. For 

HBW trips, gross mobility rate is 0,56 while net mobility rate is 1,94 (OD HH 2006)
18

 

                                                             
18 These rates represents mobility rates that were estimated by the models. Survey rates are close to these 

rates.  
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as seen in Table 4.7. As seen in Table 4.7, mobility rates for home - based other (HBO) 

trips takes the largest percentage (58%) while home - based work and home - based 

school contributes 56% and 77%, respectively. Table 4.8 and Figure 4.7 represent the 

distribution of start and end times for HBW trips in Istanbul. 

 

Table 4.8. The Distribution of start and end times for HBW trips 

(Source: adapted from OD HH 2006) 

Time Period Start End 

24:00 – 01:00 0,12 0,58 

01:00 – 02:00 0,17 0,26 

02:00 – 03:00 0,10 0,12 

03:00 – 04:00 0,10 0,09 

04:00 – 05:00 0,15 0,12 

05:00 – 06:00 0,60 0,32 

06:00 – 07:00 6,15 1,95 

07:00 – 08:00 18,38 10,53 

08:00 – 09:00 17,12 23,63 

09:00 – 10:00 4,42 8,79 

10:00 – 11:00 1,56 2,40 

11:00 – 12:00 0,97 1,13 

12:00 – 13:00 1,37 1,39 

13:00 – 14:00 0,90 0,93 

14:00 – 15:00 0,88 0,83 

15:00 – 16:00 1,53 1,16 

16:00 – 17:00 2,62 1,92 

17:00 – 18:00 7,23 4,30 

18:00 – 19:00 13,05 9,35 

19:00 – 20.00 11,69 13,43 

20:00 – 21:00 5,53 8,86 

21:00 – 22:00 2,65 4,30 

22:00 – 23:00 1,60 2,16 

23:00 – 24:00 1,11 1,44 

 

Peak hour for start time of hbw trips is between 07:00 and 08:00 am in the 

morning and 18:00 and 19:00 pm in the evening. Peak hour for end time of hbw trips is 

between 08:00 - 09:00 am and 19:00 - 20:00 pm in the evening. According to Figure 

4.7, hbw trips have two peaks in the morning and evening. 
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Figure 4.7. Start and end times for HBW trips 

 

In the survey, 451 travel analysis zones are determined as seen in the Figure 4.6. 

Household travel survey is randomly conducted with the households in which live in 

451 travel analysis zones (TAZs) throughout the metropolitan area. The travel data 

includes information on the socioeconomic, travel, and self - reported distance and time 

for relative travel. Weekend trips were not included in the data. Some land use variables 

were obtained using Geographic Information systems. Land use data is at zonal level. 

Land use data was obtained by Metropolitan Municipality of Istanbul. 

In the content of the study, at aggregate level, hbw trips are analyzed for 406 

TAZs due to available data. Also, 45 zones are not included into the study contain 

natural and military areas. Home - based work trips in these zones are low levels. 

Therefore, 406 of 451 TAZs are selected as the study area. At disaggregate level, the 

models are calibrated for 451 travel analysis zones (origin - destination pairs). Table 4.9 

represents the properties of travel analysis zones in Istanbul. Fatih and Üsküdar are the 

provinces that include the most travel zones. Adalar only includes one zone. Çatalca is 

the biggest district in Istanbul. The total population in the case study is 12,006,999 

people. The most crowded district is GaziosmanpaĢa whereas the adalar is the smallest 

district in Istanbul. The lowest population density is in ġile whereas the highest 

population density is Güngören. The average household size does not vary substantially. 

The average household size ranges from 2.52 to 4.44. The total number of household 

varies substantially. GaziosmanpaĢa has the biggest value for the total number of 

household in Istanbul. The lowest value for total number of household is in Adalar. 
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Table 4.9. The properties of the districts in 2006 Household Travel Survey 

(Source: adapted from OD HH 2006) 

 

Counties 

(Districts) 

The 

Number 

of 

Zones 

Total 

Zone 

Area 

The Total  

Number of 

Household  

The 

Average 

Household 

Size 

Total 

Population 

Population 

Density 

(person/ha.) 

Adalar 1 1098,71 6591 2,52 16592 15,10 

Beykoz 20 31444,72 64559 3,56 230628 7,33 

Kadıköy 17 3824,41 205543 2,91 597906 156,34 

Kartal 17 7767,89 135419 3,59 473429 60,95 

Maltepe 10 5186,78 121707 3,45 400851 77,28 

Pendik 17 19848,12 142948 3,63 508386 25,61 

Sultanbeyli 5 2884,09 53548 4,44 239231 82,95 

ġile 11 79037,04 10860 3,29 35180 0,45 

Tuzla 7 12442,65 37682 3,65 133733 10,75 

Ümraniye 22 21571,73 210470 3,92 800737 37,12 

Üsküdar 28 4062,15 180139 3,21 585087 144,03 

Avcılar 5 2850,24 80124 3,65 283114 99,33 

Bağcılar 10 2175,63 174694 4,10 721073 331,43 

Bahçelievler 7 1655,40 159252 3,63 574070 346,79 

Bakırköy 11 2983,37 61575 2,86 174658 58,54 

BayrampaĢa 8 954,12 70013 3,65 255150 267,42 

BeĢiktaĢ 20 1782,15 70979 2,67 179299 100,61 

Beyoğlu 24 895,68 64881 3,53 226664 253,06 

Büyükçekmece 18 20422,30 158716 3,62 576045 28,30 

Çatalca 15 133563,55 22758 3,69 82035 0,61 

Eminönü 9 506,55 13279 3,49 45158 89,15 

Esenler 10 4382,20 113182 4,03 462306 105,50 

Eyüp 13 20352,19 71434 3,72 261203 12,83 

Fatih 30 1080,25 115766 3,21 369133 341,71 

GaziosmanpaĢa  14 35280,27 250033 3,94 997398 28,27 

Güngören 6 720,08 79844 3,78 296145 411,27 

Kâğıthane  15 1560,12 105549 3,59 374890 240,30 

Küçükçekmece 12 12708,80 200849 3,73 742568 58,43 

Sarıyer 22 15137,30 81464 3,45 274742 18,15 

Silivri 15 85668,16 37239 3,33 123230 1,44 

ġiĢli 21 3443,13 93514 3,05 277879 80,71 

Zeytinburnu 7 1129,41 77463 3,70 287821 254,84 

Gebze 4 8333,56 107649 3,89 400658 48,08 

Total 451 546752,75 3379719 3,55 12.006.99 21,96 
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4.2. Descriptive Statistics of Empirical Data 

 

Before estimating empirical models, descriptive statistics are estimated for 

whole data. The results of descriptive statistics for aggregate and disaggregate data are 

presented in Table 4.10 and 4.11. Firstly, the result of descriptive statistics at aggregate 

level is discussed. Then, descriptive statistics for disaggregate level is presented. 

 

Table 4.10. Descriptive statistics for aggregate mode choice data 

 

Variables 

 

Minimum Maximum Mean 
Std. 

Deviation 
Variance 

Zonal Area (area) 

 (ha / 100) 

 

0.1 322.38 10.51 29.43 866.24 

Worker (wrkr) 

 
0.2 0.49 0.323 0.04 0.002 

Car Ownership per 1000 

people (ncar) 
11 589 122.04 71.46 5106.42 

House Owner 
(hownr) 

0 0.96 0.59 0.11 0.01 

Household Size 

(hhsize) 
1.77 4.95 3.474 0.54 0.29 

Household Income 

(TL/1000) (hhinc) 
0.41 4.431 1.084 0.42 0.18 

Employment / Population 

(epdens) 

 

0.02 8.62 0.4915 0.82 0.67 

Population Density (person 

/ hectare) (pdens) 

(pdens) 

0.168 868.29 186.50 177.88 31642 

Job - Housing Balance 

(jhb)  

 

0.056 0.99 0.53 0.23 0.05 

Land Use Mix 

(lumix) 
0.00006 0.73 0.31 0.14 0.021 

Industrial Employment 

Density (iedens) 
0 155.52 13.17 20.84 434.30 

Commercial Employment 

Density (cedens) 
0.0026 80.31 8.16 10.89 118.63 

Commercial & Ind. Area 

Density (cidens) 
0 0.79 0.14 0.15 0.02 

Transit Accessibility 

(tracc) 

 

0 

 

 

1 

 

 

0.27 

 

 

0.45 

 

 

0.19 

  



 

 

115 

The total number of traffic analysis zones is 406 at aggregate level. The change 

between minimum statistic and maximum statistic for many variables differ 

substantially. For example, the size of zonal area ranges from 10.09 ha to 32238 ha. The 

average size of traffic analysis zones in Istanbul is 10.50 ha. Household income ranges 

from monthly 410 TL to 4431 TL. The difference in household income among the zones 

is rather high. Average household size is about 3.5 people. The difference among 

households in the zones related to house ownership and the number of cars per 1000 

person is also high. 

Regarding the land use characteristics, population density (person / hectare) 

ranges from 0.16 to 868.286. Jobs - housing balance as a measure of land use diversity 

increases about 1 in Istanbul. The lowest level in jobs - housing balance ratio is almost 

0.056. A measure of the other diversity index is land use mix diversity index. This index 

ranges from almost 0 to 0.725. Three employment densities are used: industrial 

employment density, commercial employment density, and commercial & industrial 

area density. In comparison to commercial employment density, the change interval for 

industrial employment density is higher. This suggests that industrial employment in the 

zones is more dominant than commercial employment. Some zones may not include 

industrial firms due to the high share of natural and residential areas whereas 

commercial employment is available in all selected zones. Commercial and industrial 

area density presents the spatial size in total (commercial as wholesale, retail, and 

industrial) per zonal area. The zones with the lowest level of this density include greatly 

natural, forest, green, and military areas. In sum, descriptive statistics suggest that the 

differences among households as socioeconomic and land use characteristics are 

attractive at aggregate level. 

The empirical application of disaggregate models includes four - alternative 

mode choice model. The models, MNL and BBNs, aim to predict a commuter choice of 

travel mode. After the elimination of missing and correlated variables, the empirical 

data includes a sample of 116992 home - based work trips in total. The sample 

frequencies of the chosen mode in full data are as follows: 

 

1. Walk Travel: 29.11% (34061), 

2. Transit Travel: 30.90% (36156), 



 

 

116 

3. Car Travel: 19.59% (22924), 

4. Service Travel: 20.39% (23851). 

Average values of some explanatory variables are as follows: 

1. Travel time (minutes): 

A. Walk Travel: 126.19 

B. Transit Travel: 40.85 

C. Car Travel: 18.11 

D. Service Travel: 23.63 

2. Travel monetary cost (Turkish Lira): 

A. Transit Travel: 2.15 

B. Car Travel: 6.03 

C. Service Travel: 2.15 

3. Household Income: 1250.17 (Turkish Lira) 

4. Number of cars available to the household: 0.36 

5. Number of company cars available to the household: 0.045 

6. Travel distance (kilometers): 8.87 

Descriptive statistics for disaggregate data are presented in Table 4.11. The 

change interval between minimum and maximum is rather high at disaggregate data. 

Income level ranges from 100 T.L. to 10000 T.L. among the people who live in 

Istanbul. Average household size is 4,12 people. On average, the number of 

automobiles is 0,36 whereas the number of company car on average is ,on average, 

lower than auto ownership. Travel distance ranges from minimum 0,27 km to maximum 

135,77 km. Regarding the generic variables, hbw trips undertaken by car have lower 

values of time than other travel modes. On the other hand, hbw trips by service have 

lower value of cost than other travel modes
19

. In relation to the land use characteristics 

of the commuters in the sample, the change intervals vary substantially. For example, 

                                                             
19 Travel cost for walking mode is not estimated. 
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population density (population / hectare) at origin ranges from minimum 0,15 to 

maximum 868,29 while population density at destination ranges from minimum 0,014 

to maximum 868,29. The index for jobs - housing balance in general ranges from 0.06 

to 256.10. On average, this index is estimated as 5,43 at the origins. Descriptive 

statistics for training and testing sets at both levels are presented in Table 4.12 - 4.15. 

 

 Table 4.11. Descriptive statistics for disaggregate mode choice data 

Variables Minimum Maximum Mean Std. 

Deviation 

Individual Income (TL) 100 10000 1250.17 956.58 

Household Size (person) 1 23 4.12 1.75 

The Number of Auto in HH 
0 3 0.36 0.55 

The Number of Company Car in 

HH 
0 2 0.045 0,22 

Travel Distance (kilometers) 0.27 135,77 8,87 8,98 

Travel Time for Walk (minutes) 4.03 2036.55 126.19 137.26 

Travel Time for Auto (minutes) 0.33 197.37 18.11 20.57 

Travel Time for Service 

(minutes) 

0.49 254.61 23.62 26.42 

Travel Time for Transit 

(minutes) 
5.86 352.46 40.85 32.68 

Travel Cost for Service (TL) 1.97 4.75 2.15 0.18 

Travel Cost for Transit (TL) 1.00 13.97 2.15 1.51 

Travel Cost for Auto (TL) 0.34 82.85 6.03 5.55 

Emp. / Worker at Origin (JHB) 0.06 256.10 5.43 28.78 

Population Density at Origin 0.15 868.29 229.19 202.07 

Emp. / Worker at Destination 0.066 256.10 5.60 29.25 

Population Density  

at Destination 
0.014 868.29 227.53 201.44 
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Table 4.12. Descriptive statistics of disaggregate data in the train set (93594) 

VARIABLE MINIMUM MAXIMUM MEAN STD_DEV 

Income 100 10000 1249,80 951,80 

Household Size 1 23 4,12 1,75 

The number of auto in HH 0 3 0,36 0,55 

The number of auto in HH 0 2 0,045 0,22 

DIST_KM 0,31 135,77 8,86 8,98 

YY_TIME 4,03 2036,55 126,01 137,25 

OTO_TIME 0,33 175,28 18,10 20,58 

SRVS_TIME 0,49 226,11 23,62 26,43 

TRNST_TIME 5,86 352,46 40,83 32,69 

PR_SR_C 1,97 4,72 2,15 0,19 

FARE 1 13,97 2,14 1,51 

OTO_REVISE 0,34 82,85 6,02 5,55 

Emp. / Wor. (O) 0,0657 256,1035 5,45 28,88 

Popdens (O) 0,1523 868,2864 228,52 201,65 

Emp. / Wor. (D) 0,0657 256,1035 5,57 29,15 

Popdens (D) 0,0145 868,2864 227,40 201,30 

 

Table 4.13. Descriptive statistics of disaggregate data in the test set (23398) 

Variable MINIMUM MAXIMUM MEAN STD_DEV 

Income 100 10000 1251,65 975,47 

Household Size 1 20 4,14 1,75 

The number of auto in HH 0 3 0,36 0,55 

The number of auto in HH 0 2 0,047 0,22 

DIST_KM 0,27 114,66 8,92 8,99 

YY_TIME 4,03 1719,90 126,96 137,30 

OTO_TIME 0,33 197,37 18,15 20,56 

SRVS_TIME 0,52 254,61 23,67 26,40 

TRNST_TIME 5,86 334,62 40,93 32,64 

PR_SR_C 1,97 4,31 2,15 0,18 

FARE 1 13,37 2,16 1,52 

OTO_REVISE 0,38 76,86 6,07 5,58 

Emp. / Wor. (O) 0,066 256,10 5,34 28,36 

Popdens (O) 0,1523 868,28 231,84 203,69 

Emp. / Wor. (D) 0,0657 256,10 5,73 29,65 

Popdens (D) 0,0145 868,29 228,07 201,97 
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In order to make performance comparisons, aggregate and disaggregate data are 

divided into two sub - sets. To avoid any empirical bias, descriptive statistics in both 

data set are kept close to each other as seen in Table 4.12 - 4.15. 

The whole empirical data at disaggregate level includes a sample of 116992 

home - based work trips. The training data set that are selected randomly from the 

whole data set includes 93594 records. The remaining 23398 records are used as the 

testing data set to compare the predictive ability of the empirical models. The whole 

empirical data at aggregate level includes the socioeconomic and land use 

characteristics for 406 travel analysis zones. The training data set that is selected 

randomly from the whole data set includes 325 zonal records. The remaining 81 zonal 

records are used as the testing data set to compare the predictive ability of the empirical 

models. The values for training and testing data sets are close to each other at 

disaggregate level in comparison with aggregate data. 

 

Table 4.14. Descriptive statistics of aggregate data in the train set (325) 

VARIABLES MINIMUM MAXIMUM MEAN 

STD. 

DEV. 

Zonal Area 0.13 322,38 10,41 31.01 

Worker 0.2 0.49 0,32 0.042 

Car Ownership 13 589 119,93 73,761 

House Owner 0 0.96 0.58 0.11 

Household Size 1,8 4,9 3,484 0.54 

Household Income 0.41 2,78 1.07 0.39 

Employment / Population 0.02 7.91 0.47 0.7 

Population Density 0.17 868,29 193,12 179,89 

Job - Housing Balance 0.056 0.996 0.531 0.225 

Land Use Mix 0 0.725 0.31 0.147 

Industrial Employment 

Density 0 156 14,04 21,753 

Commercial Employment 

Density 0.0025 80,31 8.63 11.5 

Commercial & Ind. Area 

Density 0 0.79 0.14 0.15 
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Table 4.15. Descriptive statistics of aggregate data in the test set (81) 

VARIABLES MINIMUM MAXIMUM MEAN 

STD. 

DEV. 

Zonal Area 0.1 111,55 10.9 22.14 

Worker 0.23 0.4 0.328 0.04 

Car Ownership 11 300 130,48 61,045 

House Owner 0.35 0.88 0.6 0.097 

Household Size 2,37 4,95 3.44 0.54 

Household Income 0.63 4.431 1.16 0.53 

Employment / Population 0.075 8.62 0.59 1.18 

Population Density 0.481 866,8 1.6 168,03 

Jobs - Housing Balance 0.16 1 0.55 0.24 

Land Use Mix 0.012 0.592 0.32 0.138 

Industrial Employment 

Density 0 71,99 9.68 16,33 

Commercial Employment 

Density 0.005 31,22 6.3 7.57 

Commercial & Ind. Area 

Density 0 0,53 0.13 0.13 

 

The softwares used in the estimation of discrete choice model require the data to 

be structured in a way of trip alternative format (Koppelman and Bhat 2006). In this 

format, each individual are represented by the number of rows that is equal to the 

number of alternatives within that choice set. For this case, each individual person is 

represented by four rows of data. The data structure for discrete choice model is shown 

in Table 4.16. 
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Table 4.16. General choice data format used in discrete choice models 

pid  mode choice time  cost income age 

1 1 0 227.55 0 400 47 

1 2 1 67.8 4.76 400 47 

1 3 0 58.82 11.04 400 47 

1 4 0 75.88 2.28 400 47 

2 1 0 152.4 0 1200 33 

2 2 1 42.19 3.21 1200 33 

2 3 0 53.05 7.66 1200 33 

2 4 0 68.43 2.18 1200 33 

. . . . . . . 

. . . . . . . 

. . . . . . . 

. . . . . . . 

. . . . . . . 

. . . . . . . 

. . . . . . . 

. . . . .  . 

93594 1 0 62.55 0 1500 27 

93594 2 0 23.23 1.17 1500 27 

93594 3 1 14.34 3.16 1500 27 

93594 4 0 18.5 2.05 1500 27 

 

The choice variable as dependent variable, choice, must have one non-zero value 

for each individual. When every individual have the same choice set, this choice set is a 

fixed size. In other words, all alternatives are available to all individuals. However, in 

real situations, a decision maker may not have all alternatives. The number of 

alternatives can vary across choice set. This choice set is called as variable number of 

choices. In this set, the unavailable alternative is excluded from the choice set. In the 

case of Istanbul, car and service modes may not be available for all commuters. In order 

to determine whether an alternative is available or not for each individual, some 

assumptions should be determined. In the content of the study, choice set is determined 

as a fixed number of alternatives that all alternatives are available to all individuals. 

It is accepted that car and service alternatives may be unavailable to all 

individuals. In order to determine whether car alternative is available or not for each 

individual at disaggregate level, data for the choice set with variable number of choices 

are structured by the assumptions as follows: 
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1. If there is a car in household, the car is available for the person who is head of 

household and possesses a driver‟s license. If not, the lady of the house who possessed 

of driver license is able to drive. If not, the son of the house possessed of driver‟s 

license is able to drive, etc. 

2. If there are two cars in household, the cars are available for the head and the lady of 

the house who possessed of a driver‟s license. 

3. If there are three cars in household, the cars are available for the head, the lady, and 

the son of the house who possessed of a driver‟s license. 

4. If there is a company car in household, the car is available for the person who is head 

of household and possesses a driver‟s license. If not, the lady of the house who 

possessed of a driver‟s license is able to drive. If not, the son of the house who 

possessed of a driver‟s license is able to drive, etc. 

5. If there are two company cars in household, cars are available for the head and the 

lady of the house who are possessed of a driver‟s license. If not, the cars are available 

for the other individuals (the son or the girl of the house) who possessed of a driver‟s 

license. 

6. If there is no car, car mode is not available for that commuter. 

7. Although there is no car in household, the mode choice of commuter may be car 

mode. Therefore, car mode is available to that commuter. 

8. If the mode choice is service, service mode is available to that person. If not, service 

is not available to commuter. 

In addition, if hbw trips by walk mode that exceed 250 minutes, these trips are 

eliminated from data. It is accepted that hbw trips by walk mode between the two 

continents (Asia and Europe) are eliminated from data. 
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CHAPTER 5 

 

EMPIRICAL RESULTS 

 

This chapter focuses on the model results at aggregate and disaggregates levels. 

The study includes two sets of models for home - based work trips in each level. Each 

set in logit models includes a base model and an extended model. Significant variables, 

explanations for the sings, and the findings are presented. Goodness of fit statistics for 

all models are presented. Next, performance comparisons for logit models and bayesian 

belief networks at both levels are assessed. Performance comparisons of the models 

(Logit and BBNs) are made according to the expanded model specification. 

 

5.1. Aggregate Model Results 

 

Baseline category logit model and Bayesian belief networks are estimated at 

aggregate level. As mentioned previous section, dataset is divided into two subsets: 

training and testing data. The training data (80% of the case file, n=325 records) is used 

for estimating model parameters. Then, testing data (20%, n=81 records) is used to 

compare and test the predictive ability (model performance) for different models (logit 

and BBNs). Firstly, the results for baseline category logit model are presented. After 

that, BBNs are introduced. In aggregate level, the models are used to describe 

commuter‟s choices among four alternatives and define the effects of zonal 

characteristics on mode choice. The choice set is defined as socioeconomic and land use 

characteristics. 
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5.1.1. Baseline Category Logit Model Results 

 

In order to test main hypothesis that land use attributes affect mode choice at 

aggregate level, the analysis is carried out using two different models. Firstly, a base 

model including only socioeconomic variables is estimated. After that, land use 

variables are entered into the base model. The expanded model is needed to gauge the 

marginal influence of land use characteristics. The results of the models are presented in 

Table 5.1 and Table 5.4. 

 

Table 5.1. The base model for home - based work trips with only SoE variables 

Parameter Mode Estimate Std. Error Chi-Square Pr > ChiSq 

Intercept car -3.7098 0.2164 293.8709 <.0001 

Intercept service -5.9388 0.2234 706.5486 <.0001 

Intercept transit -1.6921 0.1883 80.7892 <.0001 

Area car -0.00279 0.000458 37.0342 <.0001 

Area service -0.00096 0.000383 6.2379 0.0125 

Area transit -0.00221 0.000372 35.4670 <.0001 

House Owner car 1.5481 0.1452 113.6669 <.0001 

House Owner service 2.3931 0.1424 282.3645 <.0001 

House Owner transit 1.6393 0.1238 175.2523 <.0001 

Household Income car 0.0665 0.0742 0.8040 0.3699 

Household Income service -0.1254 0.0836 22.470 0.1339 

Household Income transit 0.0152 0.0711 0.0454 0.8313 

Car Ownership car 0.0115 0.000392 857.4960 <.0001 

Car Ownership service 0.00544 0.000435 156.3383 <.0001 

Car Ownership transit 0.00347 0.000368 89.1290 <.0001 

Worker car -0.0441 0.3879 0.0129 0.9094 

Worker service 3.2361 0.4031 64.4528 <.0001 

Worker transit 1.1372 0.3461 10.7992 0.0010 

Household Size car 0.3170 0.0310 104.2948 <.0001 

Household Size service 0.7256 0.0319 517.8860 <.0001 

Household Size transit 0.0226 0.0269 0.7056 0.4009 
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In this stage, a base model is calibrated with only socioeconomic data (training 

data). This data set consists of 325 observations that are selected randomly. Therefore, 

there are 325 unique combinations of explanatory variables in this data set. Base model 

model has 21 parameters to be estimated. These combinations present the total number 

of analysis zones in the case. Walk mode is selected as baseline or reference category. 

Therefore, the baseline category logit model (or multinomial logit model) with 

socioeconomic variables becomes ln(πcar/πwalk), ln(πservice/πwalk), and ln(πtransit/πwalk) 

respectively. Baseline category logit model (base model) investigates the effects of 

socioeconomic characteristics on mode choice. 

The saturated model fits a separate multinomial distribution to each group. In 

this case, the saturated model has 325 x 3 =975 free parameters. In base model, there are 

a total of 21 parameters. According to Table 5.2, all variables are significant at the level 

of 0.001. Likelihood ratio and Pearson chi-square test statistics are used to compare the 

proposed model which has 21 parameters with the saturated model. These statistics have 

975 – 21 = 954 degrees of freedom as shown in Table 5.2 which reveals the proposed 

model does not fit better than the saturated model. 

 

Table 5.2. Deviance and Pearson Goodness-of-Fit Statistic for the base model 

Criterion Value DF Value/DF Pr>ChiSq 

Deviance 7964.4945 954 8.3485 <.0001 

Pearson 7890.0667 954 8.2705 <.0001 

 

 

This model fits the data with a G
2
 (Likelihood ratio) = 7964.4945 with a p-value 

of 0.0001. The Table 5.3 presents Maximum Likelihood (ML) Analysis of Variance 

derived by Proc Logistic in SAS software. According to the results, variables are highly 

significant as indicated by p-values in Table 5.3. In other words, there is evidence that 

model variables affect the choice of travel mode. 
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Table 5.3. Maximum likelihood analysis of variance for the base model 

Source       

      

DF 

 

Chi-

Square  

 

 

Pr>ChiSq 

 

Area 3 54.2227 <.0001 

House Owner 3 332.4037 <.0001 

Household Income 3 5.7427 0.1248 

Car Ownership 3 929.5184 <.0001 

Worker 3 79.6221 <.0001 

Household Size 3 647.2029 <.0001 

 

When walk mode is selected as the reference category, Table 5.1 presents ML 

estimates of the parameters. The equations derived from the Table 5.1 determine those 

for other travel mode comparisons. For instance, the prediction equation for the log 

odds of selecting car modes instead of transit is written below: 

 

)/log()/log()/log( walktransitwalkcartransitcar  (5.1) 
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Response probabilities for generalized logit models are estimated following 

expression (Agresti 2002). 
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According to the model results as seen in Table 5.1, it may seem that among all 

socioeconomic predictors, household income for all travel modes, household size for 
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transit mode, and worker for only car mode is not significant. All of the sings of the 

variables, except working status (worker) for car mode are as expected. 

Using Equation 5.4, the estimated response probabilities of the outcomes are 

presented in the equation as follows: 

 

)0226.0....6921.1exp()7256.0......9388.5exp()3170.0....7098.3exp(1

)3170.00441.00115.00665.05481.100279.07098.3exp(
car  

(5.5) 

 

 

)0226.0....6921.1exp()7256.0......9388.5exp()3170.0....7098.3exp(1

)7256.02361.300544.01254.03931.200096.09388.5exp(
service

 

(5.6) 

 

 

)0226.0....6921.1exp()7256.0......9388.5exp()3170.0....7098.3exp(1

)0226.01372.100347.00152.06393.100221.06921.1exp(
transit

 

(5.7) 

 

 

)0226.0....6921.1exp()7256.0......9388.5exp()3170.0....7098.3exp(1

1
walk

 

 

(5.8) 

 

The expanded model is estimated for socioeconomic and land use data. As in the 

previous model, walk mode is selected as a reference category. There are 325 unique 

combinations of explanatory variables. This number is based on the total number of 

traffic analysis zones in training data. The results of the expanded model is presented in 

Table 5.4. 
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Table 5.4. Expanded model for home - based work trips with full data 

Parameter Mode Estimate Std. Error Chi-Square Pr > ChiSq 

Intercept car -2.8718 0.2441 138.4558 <.0001 

Intercept service -4.9806 0.2539 384.8501 <.0001 

Intercept transit -0.9447 0.2146 19.3780 <.0001 

Area car -0.00255 0.000511 24.8153 <.0001 

Area service -0.00066 0.000431 2.3666 0.1240 

Area transit -0.00160 0.000415 14.8653 <.0001 

House Owner car 0.9734 0.1497 42.2805 <.0001 

House Owner service 1.6656 0.1479 126.7682 <.0001 

House Owner transit 0.7924 0.1294 37.4857 <.0001 

Household Income car 0.3134 0.0800 15.3326 0.003 

Household Income service 0.2760 0.0884 9.7389 0.0018 

Household Income transit 0.2855 0.0770 213.7454 <.0002 

Car Ownership car 0.0103 0.000425 590.8139 <.0001 

Car Ownership service 0.00332 0.000468 50.3048 <.0001 

Car Ownership transit 0.00248 0.000400 38.3662 <.0001 

Worker car 0.1691 0.4021 0.1768 0.6741 

Worker service 3.1813 0.4177 58.0038 <.0001 

Worker transit 1.6121 0.3606 19.9846 <.0001 

Household Size car 0.2375 0.0363 42.7378 <.0001 

Household Size service 0.6388 0.0371 295.6672 <.0001 

Household Size transit 0.0144 0.0316 0.2066 0.6494 

Employment / Pop. car -0.1078 0.0310 12.0681 0.0005 

Employment / Pop. service -0.1989 0.0356 31.2287 <.0001 

Employment / Pop. transit -0.1865 0.0293 40.5314 <.0001 

Population Density car -0.00016 0.000075 4.4011 0.0359 

Population Density service -0.00029 0.000076 14.5231 0.0001 

Population Density transit -0.00027 0.000065 17.3316 <.0001 

Jobs – Housing Balance car -0.5728 0.0641 79.8505 <.0001 

Jobs – Housing Balance service -0.4701 0.0668 49.5392 <.0001 

Jobs – Housing Balance transit -0.8367 0.0575 211.9997 <.0001 

Land Use Mix car 0.4800 0.0912 27.7189 <.0001 

Land Use Mix service 0.8099 0.0917 78.0911 <.0001 

Land Use Mix transit 0.6637 0.0803 68.3243 <.0001 

        
(cont. on next page) 
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Table 5.4. (cont.) 

Parameter Mode Estimate Std. Error Chi-Square Pr > ChiSq 

Industrial Emp. Density car -0.00003 0.000752 0.0014 0.9702 

Industrial Emp. Density service -0.00206 0.000787 6.8179 0.0090 

Industrial Emp. Density transit -0.00260 0.000664 15.3270 0.0001 

 
Commercial Emp. Density 
 

 
car 

 
-0.00351 0.00190 3.4132 0.0647 

 
Commercial Emp. Density 
 

 
service 

 
-0.00637 0.00211 9.1418 0.0025 

 
Commercial Emp. Density 
 

 
transit 

 
0.00291 0.00166 3.1002 0.0783 

Com. & Ind. Area Density car -0.9749 0.1036 88.5499 <.0001 

Com. & Ind. Area Density service -1.0175 0.1077 89.3175 <.0001 

Com. & Ind. Area Density transit -1.2839 0.0923 193.3214 <.0001 

TRACCESS car -0.0354 0.0263 1.8129 0.1782 

TRACCESS service -0.0325 0.0276 1.3839 0.2394 

TRACCESS transit 0.0478 0.0232 4.2627 0.0390 
 

 

Deviance and Pearson goodness of fit statistics test the fit of the model versus 

saturated model. The current model has 45 parameters whereas the saturated model 930 

free parameters. The overall fit statistics displayed in Table 5.5 have 930 degrees of 

freedom. 

 

Table 5.5. Deviance and Pearson Goodness-of-Fit Statistics 

Criterion 

 

Value 

 

DF 

 

Value/DF 

 

 

Pr > ChiSq 

 

Deviance 6052.9516 930 6.5086 <.0001 

Pearson 5923.3220 930 6.3692 <.0001 

  Number of unique profiles: 325       

  

The model with only intercept (null model) has been tested against the current 

model. The null model has three parameters since there are three logit equations. The 

comparison has 45 − 3 = 42 degrees of freedom. 
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Table 5.6. Maximum likelihood analysis of variance 

Source DF Chi_Square Pr > Square 

AREA 3 30.5923 <.0001 

House Owner 3 132.7054 <.0001 

Household Income 3 18.7009 <.0003 

Car Owner 3 688.0849 <.0001 

Worker Rate 3 72.8827 <.0001 

Household Size 3 363.6078 <.0001 

Employment / Population 3 53.2807 <.0001 

Population Density 3 22.7470 <.0001 

Jobs – Housing Balance 3 218.4423 <.0001 

Land Use Mix 3 101.7436 <.0001 

Industrial Emp. Density 3 20.5312 0.0001 

Commercial Emp. Density 3 23.0973 <.0001 

Com. & Ind. Area Density 3 219.3769 <.0001 

TRACCESS 3 14.1827 0.0027 

 

According to Table 5.6, all of the explanatory variables are influential effects. 

This test suggests that all of the variables should be entered into the model. The analysis 

of variance table is displayed in Table 5.6. This model fits the data with a G
2
 (likelihood 

ratio) = 6052.9516 with a p-value of 0.0001. 

In logit models, different goodness of fit test statistics are used determine how 

well estimated model fits the data. Pearson chi-square (Χ
2
) and the deviance (G

2
) are the 

most popular statistics among these. In the content of the study, it is tested that 

expanded model (M1) including 45 parameters outperforms the model with only 

socioeconomic data (M0). The null hypothesis for this case is as follows: 

 

H0 = The model with 21 parameters fits the data. 

H1 = The model with 45 parameters fits better. 

 

The likelihood ratio test statistic to test the null hypothesis given above is 

calculated as follows (Agresti, 2002): 

)()()(2)/( 1

2

0

2
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2 MGMGLLMMG  (5.9) 
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The likelihood ratio statistic equals 7964.4945 - 6052.9516 = 1911.5429 

suggesting that H0 should be rejected which means the expanded model is more 

adequate. This result provides information about which land use characteristics 

improved model fit. Response probabilities can be estimated using the formulation 5.4. 

In other words, with socioeconomic variables, the baseline category logit model 

gives G
2
 = 7964.4945 with p-value = 0.0001 while the model with the full data gives G

2
 

= 6052.9516 with p-value = 0.0001. Thus, the baseline category logit model with full 

data fits better. 

This result provides information about which land use characteristics improved 

model fit. In other words, this result proved sub-hypothesis 1 (SH1) that adding land use 

variables to the models at aggregate level improves the model explanatory power. 

As mentioned before, three logit models of car, service, and transit mode choice 

to walk mode for home - based work trips are estimated in Istanbul. Three logit 

equations describe the log odds that people who live in traffic analysis zones select 

travel modes instead of walk mode. Two different data sets are entered into the models. 

One for socioeconomic data and the other one for extended data. In extended model, 

land use variables are entered into the model as seen in Table 5.4. 

According to maximum likelihood analysis of variance in Table 5.3 and Table 

5.6, all variables are highly significant as indicated by p - values. After the inclusion of 

land use variables, the signs of all predicting variables from the first model, except 

income for service mode and working status for car mode, did not change. Also, they 

retain their statistical significance. 

Socioeconomic variables exhibit a statistically significant influence on 

motorized trips. From the table, two of the socioeconomic variables, house ownership 

and car ownership, are significant and positive for all modes. As expected, the 

coefficients of income for car mode is positive, showing that commuters who live in 

high - income zones are more likely to choose motorized alternatives (car and transit). 

The variable indicating zonal average of working is positive and significant for service 

and transit modes. Average household size is positively correlated with private modes. 

One of the possible explanations for this result is that travelling by car for households 

can be more comfort with children than transit and walk mode. According to the studies 

of Collins and Kearns (2001), space-time flexibility, safety, and security promote the 

use of car. 
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In baseline category logit model, parameters of the models are interpreted in 

terms of odds ratio. The intercepts provide information about the estimated log-odds for 

the reference group. The estimated log - odds of car versus walk mode in this group are 

-2.8718; the estimated log-odds of service versus walk is -4.9806. Regarding odds ratio 

estimated for income variables, the estimated odds ratios are 1.368 for car, 1.318 for 

service, and 1.330 for transit. The presence of transit access is characterized by dummy 

coefficients. The estimated coefficient for transit mode versus walk mode is 0.0478. 

This means that people who live in the zones with transit availability are more likely to 

choose transit versus walk mode. In other words, walk mode appear to be less common 

in the zones for home - based work trips. The estimated odds ratio of the presence of 

transit access is about 1.05. Car availability has a strong positive influence on the 

likelihood of choosing the modes versus walk mode. The all of the socioeconomic 

variables are positively correlated travel modes versus walk mode, as expected. 

Several land use variables have a statistically significant effect on mode choice. 

Jobs - housing balance is a measure of the mix between employment and dwelling units 

in a specific area. The sign of the jobs - housing balance is negative. In the world, 

policies promoting jobs - housing balance attempt to locate housing close to jobs. 

Behind these policies, planners and policy-makers want to decrease traffic congestion 

and increase accessibility to jobs and affordable housing. They aim to improve the 

quality of life and protect the environment. In the case of Istanbul, the sign indicates 

that people is more likely to use non-motorized trips for home - based work trips. 

Therefore, home based work trips are mainly intrazonal trips. Mixed land use is 

expected to shorten travel distance. Therefore, it encourages people to use walk or 

public transport modes. Positive effect of mixed land use versus walk mode indicates 

that land use mix encourage motorized trips for work trips. This result is the opposite of 

the results of North American cities whereas it resembles the findings of Asian cities 

such as Lin and Yang (2009) who studied urban form impacts on travel demand in 

Taipei, Taiwan. However, this study found that there is a significant relationship 

between mixed land use and mode choice at aggregate level in the case of Istanbul, in 

opposition to the study of Zhang (2004) for Hong Kong at disaggregate level. As seen 

in Table 5.4, density variables are negatively correlated with motorized trips as expected 

because higher densities encourages non-motorized or public transit trips. The zones 

becoming employment zone rather than residential encourage non-motorized trips. It 
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can be accepted that home - based work trips are intrazonal. People want to make a 

shorter car trips and lower travel distance. In empirical studies at disaggregate level, this 

results shows similarity with the previous studies of North American studies. At 

aggregate level, the result is the same as the studies of Lin and Long (2008) and 

Buchanan et al. (2006) who found a negative effect on private mode split at higher 

density areas. Cervero and Gorham (1995) found that residential density is positively 

correlated with transit commuting in auto and transit oriented neighborhoods in Los 

Angeles County. Bhat and Guo (2007) found that households with low income tend to 

high employment densities in Alameda County in San Francisco Bay area. Increase in 

household income tends to use motorized trips. Also, in this case, increase in 

employment densities tends to choose less motorized trips. The findings resemble 

findings for the study of Bhat and Guo (2007). 

At aggregate level, Newman and Kenworthy (1989) studied the relationship 

between density, mode shares, and vehicle miles traveled (VMT) in 32 major cities in 

Europe, North-America, Australia, and Asia. They found that increase in density leads 

to decrease the share of auto mode. There was an inverse relationship between 

population density and motorized trips. Coevering and Schwanen (2006) extended the 

studies of Newman and Kenworthy (1989, 1999). They studied the relationship between 

travel demand and urban form for 31 cities in Europe, Canada, and the USA. They 

found that higher population densities tended to decrease the share of car trips and 

increase the share of walking/bicycling modes. In the case of Istanbul, population 

density has a negative effect on motorized trips (when comparing walk mode) and has a 

positive effect on non - motorized trips in Istanbul. This result is consistent with the 

findings of previous studies as mentioned above. Increase in population density tend to 

increase the share of non - motorized modes (walk and bicycle). 

The size of zonal area is negatively correlated with motorized trips versus walk 

mode. This suggests that higher zonal areas encourage people to live close to the place 

of employment. It decreases the choice probability of motorized home - based work 

trips. On the other hand, commuters whose house ownership is low are more likely to 

use motorized trips. Increase in household income and car ownership tends to use 

motorized trips. Household size is positively correlated with motorized trips. One of the 

possible explanations for this result is that higher household size increases the number 

of workers in household. Therefore, some of workers may prefer car trips. House owner 
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and car ownership have a strong positive influence. Among the socioeconomic and land 

use attributes, commercial employment density and the presence of transit access are 

not strongly related to mode choice. 

Regarding the sub-hypothesis related to the model variables, increase in land use 

mix and the presence of transit accessibility in the zones encourage transit usage while 

increase in population density tends to decrease transit usage versus walk mode. There 

is no enough evidence of violation of sub-hypotheses H1 and H3 that people who live in 

high density, mixed use prefer to travel with transit service and walking mode due to the 

selection of walk mode as a reference category. However, hypothesis H4 that the 

presence of transit access increases the choice of transit modes is supported. Hypothesis 

H2 is not supported. Employment densities are negatively correlated with motorized 

trips. The size of zonal area is negatively correlated with motorized trips. In sum, at 

aggregate level, land use has an important factor for home - based work trips. 

Commercial & industrial area density, employment / worker ratio, jobs - housing 

balance, and land use mix variables are statistically significant for motorized trips 

versus unmotorized trips. 

Figure 5.1 - 5.5 presents the plots of these predicted probabilities against control 

variables. The baseline category logit model can be used to predict the probability of 

home - based work trips. Figure 5.1 represents the plot of the predicted probabilities 

against household income. Only car mode is positively correlated with household 

income. Increasing in income leads to decrease the choice probabilities of other travel 

modes. The mode choice probability for car mode ranges from a 10 percent to a 68 

percent. However, the probabilities of other modes decrease with increasing household 

income. For example, the probability of home - based work trips by walk mode falls 

from 40 percent to 5 percent. At the same time, the probability of hbw trips by transit 27 

percent to a 21 percent with a household income about 2800. Commuters with a 

monthly household income of $410 have an approximately 10 percent chance of 

commuting by car mode. Commuters with a monthly household income exceeding 

$3000 have a 21 percent chance of home - based work trips by transit, and an 

approximately 6 percent chance of home - based work trips by walk mode. 
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Figure 5.1. Effect of household income on mode choice probability 

 

 The Figure 5.2 represents the effects of auto ownership on mode choice 

probability. Increasing the number of auto ownership in households lead to increase 

home - based work trips by auto whereas it leads to decrease the choice probability of 

other travel modes. 

 

 

Figure 5.2. Effect of car ownership on mode choice probability 
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Figure 5.3 represents the change of mode choice probabilities of home - based 

work trips based the size of zonal area. Increasing the size of zonal area leads to higher 

demand for unmotorized trips whereas it leads to decrease motorized trips except 

service mode. The probability of home - based work trips by car falls from 21 percent to 

17 percent. The mode choice probability ranges from an approximately 29 percent 

chance of walk mode to a 33 percent. 

 

 

Figure 5.3. Effect of zonal area on mode choice probability 

 

Figure 5.4 represents the change of mode choice probabilities of home - based 

work trips based population density. Increase in population density leads to higher 

demand for walk and transit trips. The probability of home - based work trips by car 

falls from 24 percent to about 22 percent. 
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Figure 5.4. Effect of population density on mode choice probability 

 

Figure 5.5 presents the relationship between industrial employment density and 

mode choice probability. According to this figure, the probability of transit mode falls 

from 33 percent to about 26 percent whereas the probability of walk mode increases 

from about 25 percent to 43 percent. At the same time, the probability of home - based 

work trips by car falls from 23 percent to about 14 percent. 
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Figure 5.5. Effect of industrial employment density on mode choice probability 

 

5.1.2. Bayesian Belief Network Results at Aggregate Level  

 

Bayesian belief networks at aggregate level are constructed with the variables 

that are used in baseline category logit model (expanded model). In total, there are 15 

nodes, one for query node (Mode Choice). After constructed the structure from 

aggregate data, structure learning and parametric learning are applied in BN 

PowerConstructor software. The use of parametric learning from empirical data provide 

conditional probability tables in the network. The network is compiled in Hugin as seen 

in Figure 5.6 and 5.7. There are 28 links in the network among the nodes. 

The beliefs for each node are shown in Figure 5.6. Sensitivity analysis provide 

information to determine the impact levels of the nodes on query node. Table 5.7 

represents sensitivity of “Mode Choice” due to a finding at another node. The higher 

mutual info value represents more effective nodes for query node (Mode Choice). 
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Table 5.7. Sensitivity analysis of mode choice for aggregate analysis 

Node Mutual Info Variance of Beliefs 

NCAR 0.11526 0.0113063 

IEDENS 0.07837 0.0130884 

HHINC 0.04018 0.0027146 

HHSIZE 0.03386 0.0028726 

AREA 0.03232 0.0026796 

PDENS 0.02075 0.0017143 

CIDENS 0.00737 0.0013939 

CEDENS 0.00665 0.0012409 

JHB 0.0066 0.0011563 

LUMIX 0.00651 0.0005384 

WRKR 0.00502 0.0003697 

EPDENS 0.00139 0.0001511 

TRACC 0.00136 0.0000961 

HOWNR 0.00042 0.0000488 

 

According to the sensitivity analysis, the number of car in household (ncar) is 

the most influential node on the query node. Industrial employment density (iedens), 

average household income (hhinc), household size (hhsize), zonal area (area), and 

population density (pdens) are the other influential nodes sequentially for mode choice. 
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Figure 5.6. The aggregate BBN model of home - based work mode choice in Istanbul 

Note: The Node, MODECHOICE, has four states: 1 (WALK), 2 (CAR), 3 (SERVICE), and 4 (TRANSIT). 
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Figure 5.7. Learned BBNs from aggregate data for home - based work trips in Istanbul (Fixed Number of Alternatives)
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According to the network, mode choice is affected by the industrial employment 

density, the size of zonal area, and the number of cars in household in Istanbul. These 

nodes are parent nodes of mode choice. For compiled network, mode choice is walk 

with a probability of 34.1%, while its probabilities of being car, service, and transit are 

15.5%, 10.4%, and 40%, respectively. These probabilies presents beliefs. The beliefs 

(probabilities) will be updated as soon as new evidence is entered into the network. For 

the inference process, Hugin software is used. Table 5.8 presents the revised 

probabilities at aggregate level that are based on the evidence according to travel modes 

in Istanbul. 

 

Table 5.8. Inference results on evidence for mode choice variables at aggregate level 

Nodes States of Mode Choice  

Evidence for The States walk transit car service 

HHINC (1) 63.3 57.9 29.9 58.2 

HHINC (2) 32.7 37.6 56.7 35.3 

HHINC (3) 4.04 4.47 13.3 6.52 

PDENS (1) 30.2 34.9 42.5 44.2 

PDENS (2) 12.6 16.9 23.6 15.4 

PDENS (3) 57.2 48.3 33.9 40.5 

WRKR (1) 33.9 29 24.1 36.3 

WRKR (2) 66.1 71 75.9 63.7 

NCAR (1) 61.9 53 14.5 54.5 

NCAR (2) 33.6 40.5 47.2 32.3 

NCAR (3) 4.57 6.49 3.83 13.2 

LUMIX (1) 26.0 22.4 29.3 35.1 

LUMIX (2) 63.9 67.2 59 53.7 

LUMIX (3) 10.1 10.4 11.8 11.3 

 

Increase in income tends to decrease the share of walk, transit, and service 

modes. On the other hand, the choice probability of car mode in commuters with high 

income and low income levels is high while choice probability of car mode in 

commuters with medium income level is higher than other levels. The choice 

probability for walk and transit is negatively correlated with the number of car in 

household. Regarding the land use variables, increase in population density tends to 
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increase the choice probability of walk and transit modes while increase in density tends 

to decrease the share of car trips. 

Table 5.9 presents the beliefs for the node “Mode Choice” as a function of 

entered evidence of the nodes “AREA”. There is a causal relationship between mode 

choice and the size of zonal area (AREA). Increase in the size of zonal area promote to 

the choice probability for walk and car mode while it decrease the choice probability for 

transit mode. 

 

Table 5.9. Inference results based on evidence for zonal area (probabilities) 

    Mode Choice   

Node Evidence Walk Car Service Transit 

A No evidence 34.1 15.5 10.4 40 

R 1 32.9 15.1 8.18 43.8 

E 2 37.8 16.9 22.5 22.7 

A 3 42.1 17.1 21.4 19.4 

 

 

There are several scoring measures (rules) for classification success rate. For 

example, spherical payoff varying in the interval 0 and 1 is the most useful scoring rule 

in BBNs. In the content of the study, Kulbach - Leibler divergence and Euclidian 

distance are used. These measures can be estimated by Hugin (or Netica) software. 1 

represents the best model performance. Kulbach - Leibler divergence is 0.98324 

indicating good model performance. Another score, Euclidian distance, is 0.55455 for 

aggregate data. 
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5.2. Disaggregate Model Results 

 

At disaggregate level, the empirical analysis of mode choice for home - based 

work trips in Istanbul applies multinomial logit model (MNL) as a traditional model and 

Bayesian belief networks (BBNs) as an alternative method. For both models, the 

findings of the models are discussed. In MNL model, several models are estimated for 

the purpose of gauging the marginal influence of land use characteristics on home - 

based work mode choice in Istanbul. The significant variables in expanded MNL model 

are used in BBNs. Test statistics for the models are detailed discussed in this section. 

 

5.2.1. Multinomial Logit Model Results 

 

The results of MNL models are presented in Table 5.10 - Table 5.12. Firstly, the 

results of the base model are discussed. As mentioned before, the base model is a model 

with only the alternative specific constant (ASC). Base model has only three dummy 

variables for different travel modes. Each coefficient represents the relative preference 

for each mode compared with service mode. According to the base model, the estimate 

for walk and transit mode is positive, reflecting a relative preference for these modes 

over service mode while auto mode is negative, reflecting a disutility over service mode 

for hbw trips. In Model 1, travel attributes (generic variables) are entered into the base 

model. Here time is measured in minutes and cost in T.L. The coefficients of time and 

cost are the same in the utilities of alternatives. It means that a minute (or a T.L.) has the 

same marginal utility (or disutility) whether it is incurred on travel modes in Istanbul. 

The estimate of these variables is negative since, all else being equal; commuters prefer 

lower time and cost alternatives, as expected. According to this model, each additional 

minute of travel time reduces the odds of choosing that alternative by 2.95 %. Generic 

variables have a statistical significance on mode choice in Model 1. 

In Model 2 and expanded model, the estimated coefficients on travel time and 

cost retains their signs, implying that the utility of a travel mode decreases as that mode 

become more expensive or take up more time. In other words, this situation results in 

reducing the choice probability of the corresponding mode. In Model 2 and the 

expanded model, all the coefficient estimates have the expected signs. The estimated 
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coefficients for ASC retain their sign in three out of four MNL models while the 

estimated coefficients for socioeconomic variables retain their sign and level of 

significance. Regarding the results of model 2 and the expanded model, car travel is 

significantly less attractive than service travel. Travel characteristics (time and cost) are 

in the expected direction with a p-value below 0.05. The expanded model indicates that 

each additional minute results in a 2% reduction in the odds of choice. The coefficients 

for the mode dummies are highly significant. Therefore, people prefer to go by walk and 

transit modes compared with a service. Socioeconomic characteristics have significant 

effect on mode choice behavior in Istanbul. For example, increasing the number of 

household auto and company car promotes the probability of choosing auto modes. 

Each T.L. increase in income increases the probability of choosing car mode over 

service. Commuters who have akbil cards used in public transportation vehicles tend to 

travel by transit mode. Akbil possession increases the odds of choosing a transit mode 

over a service by 69%. With respect to driving license, it was found to have positive 

parameter on the choice of car mode. 

Regarding land use variables, for home - based work trips, increase in 

population density at both origins and destinations is significantly associated with the 

choice of walk, auto, and transit modes. In other words, the coefficients for population 

density represent the relative preferences for each mode compared with service mode. 

Pinjari et al. (2007) in San Francisco Bay area and Zhang (2004) in Boston found that 

population density at both origin and destination has a positive effect in the use of walk, 

bicycle, and transit usage. Also, the relationship is statistically significant. The findings 

of the thesis for population density are consistent with the previous studies. Also, 

hypothesis H1 is supported. 
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Table 5.10. Multinomial logit model results for base model and model 1 

Variables 

 
Base 

Model 
  Model 1 

  

  Parameter  t value p-values Parameter  t value p-values 

Travel Characteristics 
            

Travel Cost (TCOST)    -0.0545 -33.17 0.0001 

Travel Time (TTIME)    -0.0295 -131.88 0.0001 

Mode Constants          

Walk 0.3542 37.55 0.0001 2.1681 145.89 0.0001 

Transit 0.4121 44.21 0.0001 1.0299 94.81 0.0001 

Car -0.0439 -4.24 0.0001 0.0791 5.82 0.0001 

Service (base)          

Socioeconomic 

Characteristics             

Driver's License:  

0=No, 1=Yes (car)           

Unlimited Akbil Card 

Usage: 0=No, 1=Yes 

(transit)           

Akbil Card Usage:  

0=No, 1=Yes (transit)           

Income (car)           

Vehicle Ownership: number 

of automobile in HH (car)           

Company Car Ownership: 

number of automobile in 

HH (car)           

Log-Likelihood of 

Unrestricted Model (LLU) 
  259498   259498 

Log-Likelihood of 

Restricted Model (LLR) 
  3829.8   38907 

Log Likelihood Function   -127834   -110295 

Estrella   0.0404   0.3626 

Adjusted Estrella   0.0403   0.3625 
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Table 5.11. Multinomial logit model results for model 2 

Variables   Model 2   

  Parameter  t value p-values 

Travel Characteristics       

Travel Cost (TCOST) -0.0627 -33.80 0.0001 

Travel Time (TTIME) -0.0301 -128.24 0.0001 

Mode Constants      

 Walk 2.1433 139.99 0.0001 

 Transit 0.6954 57.50 0.0001 

 Car -1.8857 -67.85 0.0001 

 Service (base)      

Socioeconomic Characteristics       

Driver's License: 0=No, 1=Yes (car) 1.2883 51.38 0.0001 

Unlimited Akbil Card Usage: 0=No, 1=Yes 

(transit) 1.0736 53.36 0.0001 

Akbil Card Usage: 0=No, 1=Yes (transit) 0.8061 39.52 0.0001 

Income (car) 0.000123 12.74 0.0001 

Vehicle Ownership: number of automobile in 

HH (car) 1.6148 87.96 0.0001 

Company Car Ownership: number of 

automobile in HH (car) 1.4307 38.59 0.0001 

Land Use Chatacteristics       

Intrazonal Travel (Trips which begin and end in the same traffic zone) 

Emp./ Worker Ratio at origin (walk)     

Emp./ Worker Ratio at origin (transit)     

Emp./ Worker Ratio at origin (car)     

Emp./ Worker Ratio at destination (walk)     

Emp./ Worker Ratio at destination (transit)    

Emp./ Worker Ratio at destination (car)     

Pop. Density at origin (walk)     

Pop. Density at origin (transit)     

Pop. Density at origin (car)     

Pop. Density at destination (walk)    

Pop. Density at destination (transit)    

Pop. Density at destination (car)    

    

   

Transit Accessibility at origin :0=No, 1=Yes (transit) 

Transit Accessibility at destination :0=No, 1=Yes (transit) 

Log-Likelihood of Unrestricted Model (LLU)     259498 

Log-Likelihood of Restricted Model (LLR)     65402 

Log Likelihood Function     -97048 

Estrella     0.553 

Adjusted Estrella     0.553 
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Table 5.12. Multinomial logit model results for expanded model 

Variables  Expanded Model   

  Parameter  t value 

p-

values 

Travel Characteristics       

Travel Cost (TCOST) -0.0532 -27.71 0.0001 

Travel Time (TTIME) -0.0203 -80.76 0.0001 

Mode Constants 

  

  

 Walk 0.4628 15.21 0.0001 

 Transit 0.2180 10.78 0.0001 

 Car -2.1136 -62.03 0.0001 

 Service (base)       

Socioeconomic Characteristics       

Driver's License: 0=No, 1=Yes (car) 1.2881 51.02 0.0001 

Unlimited Akbil Card Usage: 0=No, 1=Yes (transit) 0.9831 47.73 0.0001 

Akbil Card Usage: 0=No, 1=Yes (transit) 0.6925 33.21 0.0001 

Income (car) 0.00011 11.39 0.0001 

Vehicle Ownership: number of automobile in HH (car) 1.6704 89.86 0.0001 

Company Car Ownership: number of automobile in HH (car) 1.4701 39.26 0.0001 

Land Use Chatacteristics       

Intrazonal Travel (walk) 2.2118 96.71 0.0001 

Emp. / Worker Ratio at origin (walk) 0.0041 6.50 0.0001 

Emp. / Worker Ratio at origin (transit) 0.0067 15.70 0.0001 

Emp. / Worker Ratio at origin (car) 0.0033 6.50 0.0001 

Emp. / Worker Ratio at destination (walk) -0.00036 -0.56 0.5729 

Emp. / Worker Ratio at destination (transit) 0.0027 6.42 0.0001 

Emp. / Worker Ratio at destination (car) 0.0030 6.16 0.0001 

Pop. Density at origin (walk) 0.00072 10.57 0.0001 

Pop. Density at origin (transit) 0.00026 4.75 0.0001 

Pop. Density at origin (car) 0.00051 7.84 0.0001 

Pop. Density at destination (walk) 0.0010 14.81 0.0001 

Pop. Density at destination (transit) 0.0004 7.35 0.0001 

Pop. Density at destination (car) 0.0004 6.16 0.0001 

TRACC at origin: 0=No, 1=Yes (transit) 0.2322 13.05   0.0001 

TRACC at destination: 0=No, 1=Yes (transit) 0.1845 0.0178 0.0001 

Log-Likelihood of Unrestricted Model (LLU)     259498 

Log-Likelihood of Restricted Model (LLR)     77840 

Log Likelihood Function     -90829 

Estrella     0.628 

Adjusted Estrella     0.627 
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Increase in the ratio for employment / worker (ewdens) as a measure of jobs - 

housing balance (jhb) at origins is positively correlated with travel modes (walk, car, 

and transit modes). However, at destinations, this ratio did not show statistically 

significance to commuter‟s decisions with walk travel. Increase in this ratio at 

destinations is negatively associated with walk mode. People tend to choose other travel 

modes rather than unmotorized modes. Jobs - housing balance show statistically 

significant for all the modes at the origin and at the destination at the 1 % level, except 

walk mode at destination. The findings are consistent with the research by Zhang (2004) 

who found that land use balance had no influence on mode choice for commuting by 

transit and nonmotorized modes (walk and bicycle) at trip origins in Boston. In this 

study, ewdens ratio only at the trip origins is associated with higher probabilities of 

commuting by walk mode. Higher balance promotes to use motorized modes (car and 

transit) at the trip origins and the trip destinations. Jobs - housing balance may matter to 

home - based work trips in Istanbul. There is not enough evidence for hypothesis H3. 

Land use balance as a measure of diversity is positively correlated with the choice of 

walk and transit modes at the trip origins while land use balance is only positively 

correlated with motorized trips at trip destinations. 

In terms of employment density, Vega and Reynolds-Feighan (2008) found that 

employment density showed small negative effects on the choice probability for car use 

in Dublin. Zhang (2004) found that employment density (jobs/acre) at both origins and 

destinations were associated with higher probabilities of commuting by transit and 

nonmotorized modes (walk and bike) in Boston. In Hong Kong, Zhang (2004) found 

that employment density showed statistical relevance to commuter‟s decision on travel 

by rail and bus at trip origin and by drive at trip destination. Cervero (2002) suggested 

that gross density (population+employment / gross square miles) were statistically 

significant to commuting by drive alone and group ride automobile in Montgomery 

County, Maryland. Vega and Reynolds-Feighan (2006) suggested that the size of 

employment area of the job destination have a positive effect in the use of public 

transport. In terms of employment density, the findings are not consistent with each 

other in terms of significance. In this study, employment density variable was not 

entered into the models due to multicorrelation problem with ewdens variable. 

However, there is enough evidence of supporting for hypothesis H2. 
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The presence of transit access (sea or rail) to work places promotes transit usage, 

as expected. It can be considered that travel zones with higher transit access promote 

people to live near rail stops or ferry stations. It is due to residential sorting effects.  

Therefore, hypothesis H4 is supported. When studying the impact of land use dummy 

variable that selects commuters working and living in the same area, the sign of 

intrazonal travel variable confirmed the hypothesis. People tend to make intrazonal 

travel for home - based work trips and commuters who live in the zones that include 

working and living areas tend to choose more walk alternative compared with service. 

This finding may be due to traffic congestion and parking problems. This finding is 

consistent with research by Vega and Reynolds-Feighan (2006) that commuters 

working and living in the same area reduce car travel in Dublin. Also, this finding 

supports hypothesis H5. 

To determine whether the expanded model is statistically significant and overall 

model significance, several test statistics are used: informal tests, goodness of fit 

measures, and other statistical tests. These tests provide guidance for evaluating each 

model and compare different model specifications. 

 

a. Informal Tests: 

 

Firstly, some informal tests are applied into the models. Informal tests include 

examining the signs of the model parameters associated with the existing literature or 

priori expectations. One of the most used tests is to check the signs of the model 

parameters. All the coefficient estimates have the expected signs. Travel time and cost 

variables is negative, as expected, implying that the utility of a travel mode in Istanbul 

increases as the mode becomes cheaper or slower. The estimate of alternative specific 

constant variables is positive, except auto, implying that walk and transit modes have a 

relative preference over service mode. All estimated coefficients of socioeconomic 

variables have the expected positive sign. 

Regarding the land use variables, the signs may not fit the sings of previous 

studies. In the expanded model, land use variables are entered into the model. Firstly, 

entering land use variables to the model did not change the signs of other variables. All 

variables in model 2 retained their significance to predict mode choice in Istanbul. It 

means that land use has an independent influence on mode choice in Istanbul. The result 
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is a similar with the findings of Cervero (2002), Cervero and Kockelman (1997), and 

Zhang (2004) studies. 

 

b. Determining Overall Model Significance (Test of Entire Models): 

 

In order to test the hypothesis that expanded model statistically improves upon 

other models, a likelihood ratio test is used in the same way that the F test is used in 

multiple regression model. The likelihood ratio test is also used to determine overall 

model significance in multinomial logit model applications. Likelihood ratio test 

provide information about the estimated model parameters whether or not they improve 

the predictive capability of the model. To compare log-likelihood function of any model 

against the LL of other model, the formulation of LL ratio test statistics is (Ben Akiva 

and Lerman 1985, Hensher, et al. 2005): 

Under the null hypothesis that all the parameters are equal to zero: 

 

2

modmod ~)(2 elestimatedelbase LLLL  (5.10) 

 

2~)(2 UR LLLL  (5.11) 

 

It is χ
2
 distributed with k degrees of freedom. Where LLR represents the log-

likelihood with base model (restricted model), LLU represents the log-likelihood for the 

estimated model such as expanded model. Chi-squared distributions and critical values 

against different degrees of freedom are presented in Figure 5.8 and Table 5.13. Any 

model specification with a higher value of log-likelihood function is accepted to be 

better than other model. This situation can be obtained from several softwares such as 

SAS, STATA, and Nlogit. Table 5.14 presents the summary measures of goodness of fit 

obtained from SAS and Nlogit. This test statistic is chi-squared distributed. 
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Figure 5.8. Chi squared distributions for different degrees of freedom 

(Source: Koppelman and Bhat 2006). 

 

Table 5.13. Critical chi-squared (χ
2
) values for confidence levels 

(Source: Evans 2007) 

 

     Critical Values        

Level of 

Confidence 1 2 3 4 5 10 20 21 

90% 2.71 4.61 6.25 7.78 9.24 15.99 28.41 29.62 

95% 3.84 5.99 7.81 9.49 11.07 18.31 31.41 32.67 

99% 6.63 9.21 11.34 13.28 15.09 23.21 37.57 38.93 

99.90% 10.83 13.82 16.27 18.47 20.51 29.59 45.32 46.8 

 

To determine whether the expanded model including land use variables is 

superior to Model 2, the estimated log-likelihood ratio tests (-2LL) is compared to a chi-

square statistic with degrees of freedom equal to the difference in the number of 

parameters estimated for estimated model and Model 2. The expanded model includes 

26 parameters while Model 2 includes 11 parameters. Regarding land use variables, 

main hypothesis of the study is that land use variables characteristics affect mode choice 

decisions for home - based work trips in Istanbul at both level. 
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H0 = βLand Use Variables = 0 

12438970489082922  

(5.12) 

(5.13) 

 

The statistical test of the hypothesis that land use has no effect on mode choice 

with 15 (26-11) degrees of freedom at α=0.05 (95% confidence), the critical χ
2

(21)d.f. is 

24,99. The log-likelihood ratio tests are summarized in Table 5.14. The log-likelihood 

ratio test can be used for comparing different choice model specifications. 

 

Table 5.14. Goodness of fit measures for MNL models 

Goodness of Fit Measures Base model Model 1 Model 2 

Expanded 

Model 

Likelihood Ratio (R)  3829.8 38907 65402 77840 

Upper Bound of R (U) 259498 259498 259498 259498 

Log Likelihood Function 
at convergence -127834 -110295 -97048 -90829 

Log Likelihood Function 

at constants -127834 -127834 -127834 -127834 

Test Statistic [-2*(LLR - LLU)]  35078 61572 74010 

Degree of Freedom 3 5 11 26 

Critical Chi-Squared Value  

at 99% Confidence  20.515 31.264 54.051 

Rejection Confidence 99.9% 99.9% 99.9% 99.9% 

Rejection Significance 0.001 0.001 0.001 0.001 

Estrella 0.0404 0.3626 0.553 0.628 

Adjusted Estrella 0.0403 0.3625 0.5528 0.6277 

McFadden‟s LRI     

 

When comparing the test statistics of 12438 to the chi-square critical value of 

24.99, the test statistic is greater than the critical value. If the -2LL value exceeds the 

critical chi-square value, the null hypothesis that the specified model is no better than 

the base comparison model is rejected. It means that analyst is able to reject the 

hypothesis that expanded model does not statistically improve the LL over the Model 2. 

The log-likelihood of expanded model is statistically closer to zero than that of Model 2. 

The null hypothesis is rejected with high confidence. In other words, land use variables 

should not be excluded from the model. Expanded model including land use variables 

outperforms Model 2 that includes socioeconomic, ASC, and generic variables. 
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c. Overall Goodness of Fit (Determining Model Fit) 

 

LL ratio test provide guidance to compare different choice model specifications. 

Other test for determining model fit is called as pseudo R
2
. This ratio is suggested by 

McFadden (1974) and it is called as the likelihood ratio index (rho-squared) that is 

analogous to the R
2
 in linear regression model. A pseudo R

2
 or likelihood ratio index 

(ρ
2
) for a choice model is estimated by the following formulation: 

 

elbase

elestimated

LL

LL
R

mod

mod2 1  

0

2

ln

ln
1

L

L
or  

 

32,0
127834

97048
12

 for Model 2 

 

41,0
127834

90829
12  for the Expanded Model 

(5.14) 

 

(5.15) 

 

 

(5.16) 

 

 

(5.17) 

 

Where L presents the value of the maximum likelihood function at maximum 

and L0 is a likelihood function when regression coefficients are zero. McFadden‟s 

likelihood ratio index is ranged from 0 to 1. In this case, a value of 0.41 for pseudo R
2
 is 

not equal to an R
2
 of 0.41 for a linear regression model since MNL model is non-linear. 

The pseudo-R
2
 in expanded model is higher than the pseudo R

2
 in Model 2. It means 

that expanded model can explain higher variance than Model 2. A pseudo R
2
 of 0.41 

represents an R
2
 of approximately 0.80 for the equivalent R

2
 of a linear regression 

model. McFadden‟s likelihood ratio index (LRI) or pseudo R
2
 can be obtained from 

SAS and Nlogit softwares as seen in Table 5.14. 

Another goodness of fit measure is Estrella and Adjusted Estrella. Estrella 

(1998) proposes a goodness-of-fit measure to be desirable in discrete choice modeling: 

(SAS 2004, 663): 

 

1. The measure must take values in [0; 1], where 0 represents no fit and 1 corresponds to 

perfect fit. 
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2. The measure should be directly related to the valid test statistic for the significance of 

all slope coefficients. 

3. The derivative of the measure with respect to the test statistic should comply with 

corresponding derivatives in a linear regression. 

 

 Its formulation is written as (SAS 2004): 

 

0ln
2

0

2

1
ln

ln
1

L
N

E
L

L
R  (5.18) 

 

Where lnL0 is estimated with null parameter values and N represents the number 

of observations. For this case, Estrella and Adjusted Estrella increases from the base 

model including only ASC variables to expanded model. According to Estrella measure, 

the expanded model is superior to the other models. Estrella measure confirms sub-

hypothesis SH-1 that adding land use variables improve the model explanatory power at 

disaggregate level. 

 

d. Measuring of Willingness to Pay (Value of Travel Time) 

 

One of the aims to use discrete choice models is to measure willingness to pay 

(WTP) in order to take advantage from the utility of a travel mode. WTP is estimated as 

the ratio of two parameters including time and cost. When estimating WTP, the 

parameters for both time and cost are expected to be statistically significant and one of 

both parameters at least is measured in monetary values. Therefore, both time and cost 

should be entered into the utility function (Hensher, et al. 2005, Koppelman and Bhat, 

2006). WTP presents value of travel time savings (VTTS). Travel time savings is a 

measure in transportation literature for determining road and public transportation 

pricing because travellers may spend money to save time. The most general application 

in the world is used for calculating the value for money of spending public funds on 

transport investments. As such, WTP is calculated as follows: 

 

60
cos t

timeVTTS  (5.19) 



 

 

156 

For Model 1 including only ASC and generic variables, this formulation gives 

the result as follows: 

 

perhourLTVTTS /..48.3260
0545.0

0295.0
 (5.20) 

 

In sum, multinomial logit model in expanded form out-performed the basic one 

that is similar with Cervero (2002) and Zhang (2004). Based on both the pseudo R
2
 and 

likelihood ratio test, land use variables in Istanbul for home - based work trips 

contribute significantly in explaining travel mode choice decisions for commuters at 

both aggregate and disaggregate level. 

 

5.2.2. Bayesian Belief Network Results at Disaggregate Level 

 

Bayesian Belief Networks are constructed with the variables that are statistically 

significant in multinomial logit model (expanded model). According to this, there are 20 

nodes (variables), except query node, implying mode choice. After structure learning 

from mode choice data, parametric learning is applied in BN PowerConstructor. The 

compiled network in Hugin is shown in Figure 5.9 and 5.10. In total, BN 

PowerConstructor produced 43 links in this network learned from training data. The 

network for disaggregate mode choice includes 2264948 conditional probability in total. 
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Table 5.15. Sensitivity analysis of mode choice for disaggregate analysis 

Node Mutual Info Variance of Belief 

WTIME 0.18672 0.0231627 

TRTIME 0.15036 0.0206352 

ATIME 0.12371 0.0176776 

INTRA  0.10787 0.0180908 

STIME  0.10449 0.0128564 

TCOST 0.09699 0.0098920 

NCAR  0.06259 0.0056779 

ACOST 0.05546 0.0057518 

DRL  0.02706 0.0015842 

SAKBIL  0.00695 0.0008842 

INCOME  0.00336 0.0002542 

CCAR  0.00284 0.0002793 

DEWDENS  0.00280 0.0002795 

OTRACC  0.00259 0.0002753 

DPDENS  0.00252 0.0002470 

OPDENS  0.00237 0.0002325 

SCOST  0.00209 0.0002558 

DTRACC  0.00181 0.0001931 

OEWDENS  0.00172 0.0001721 

AKBIL 0.00061 0.0000662 

 

The beliefs are shown for each node in the Figure 5.9. In order to know how 

sensitive our belief in query node‟s value is to the findings of other nodes, a sensitivity 

analysis is estimated. “MODECHOICE” is selected as the query node in this analysis. 

The result of sensitivity analysis is presented in Table 5.15. 
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3
4
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6
7
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Figure 5.9. The disaggregate BBN model of home - based work mode choice in Istanbul 

Note: The Node, MODECHOICE, has four states: 1 (WALK), 2 (TRANSIT), 3 (CAR), and 4 (SERVICE). 
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Figure 5.10. Learned BBNs for home - based work trips in Istanbul (Fixed Number of Alternatives)
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The table for sensitivity analysis provide guidance about which nodes can most 

influence the key variable, “Mode Choice”. The degree of influence of the nodes in the 

network is calculated as a measure of mutual information (or entropy reduction) and 

quadratic score (or variance of belief). Mutual info provide information about the 

degree of sensitivity of one node to another in the network while quadratic score 

represents a measure between query node and other nodes. According to this table, the 

most influential nodes of "Mode Choice", are: travel time nodes for walking (wtime), 

transit (trtime), auto (atime), intra travel for walk mode (intra), travel time for service 

(stime), and travel cost by transit (tcost). Travel time is the most significant factor 

causing the largest entropy reduction in travel mode choice in Istanbul at disaggregate 

level. For the inference process, Hugin software is used. Table 5.16 presents the revised 

probabilities (beliefs) that are based on the evidence according to different travel modes. 

 

Table 5.16. Inference results based on evidence for mode choice variables 

Nodes States of Mode Choice  

Evidence for The States walk transit car service 

akbil card (1) 29.2 28.2 20.5 22.1 

akbil card (2) 28.3 31.8 19.2 20.7 

sakbil (1) 29.6 26.8 20.9 22.6 

sakbil (2) 26.3 39 16.7 18 

driver license (1) 32.4 31.6 11.6 24.5 

driver license (2) 26.6 26.7 26.9 19.8 

ncar (1) 31.8 32.6 11.9 23.8 

ncar (2) 23.8 21.4 36.9 18 

ccar (1) 29.3 29.1 19.7 21.8 

ccar (2) 23.6 22.1 32.2 22.1 

wtime (1) 66.1 10.7 13.7 9.44 

wtime (2) 53.4 15.1 17.2 14.3 

wtime (3) 41.4 20.8 20.7 17.1 

wtime (8) 5.12 42.1 21.7 31 

trtime (1) 63 11.4 14.3 11.3 

trtime (2) 51.3 15.4 17.2 16.1 

trtime (3) 30.9 29.4 19.9 19.8 

trtime (9) 7.96 34.9 22.5 34.6 
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A commuter having an akbil card and unlimited akbil card (sakbil) used in 

public transportation in Istanbul tends to choose transit mode increasingly. The 

commuters who have a drive license may tent to go to works by auto, as expected. 

Increase in car and company car in household increase the choice probability of car 

mode. Increase in walking travel time cause to decrease the choice probability for walk 

mode while increase in travel time increases the choice probability for transit mode. 

Table 5.17 presents the beliefs for the node “Mode Choice” as a function of 

entered evidence of the nodes “INCOME”. There is no direct link between mode choice 

and income. According to Table 5.17, increase in income promote to the choice 

probability for car mode while it decrease the choice probability for transit mode, as 

expected. 

 

Table 5.17. Inference results based on evidence for income node (probabilities) 

      Mode Choice   

    Walk Transit Car Service 

Node No evidence 29.1 28.8 20.3 21.9 

I 0-1 30.1 30.4 16.9 22.6 

N 1-2 29.5 29.5 18.8 22.2 

C 2-3 28.8 28.4 21.1 21.7 

O 3-4 28.1 27.2 23.6 21.1 

M 4-5 27.9 26.9 24.1 21 

E 5-6 26.8 25.3 27.5 20.4 

 

The complexity of the relationship between land use and travel mode choice, the 

choice of the states and discretisation of the variables in BBNs may influence the 

accuracy of the network. Kulbach - Leibler Divergence is 0.932 indicating good model 

performance. Euclidian distance is 0.51429. 
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5.3. Performance Comparisons of Mode Choice Models 

 

Section 2.4 presents performance comparison methods. There is no standard 

approach on how to compare the results of BBNs with classical approaches. In order to 

evaluate the performance of conventional models (logit models) and alternative method 

(BBNs), confusion matrices are estimated for performance comparisons of aggregate 

and disaggregate models. Confusion matrix provides a table comparing predicted with 

actual outcomes. In this study, testing data is used to test the accuracy of the models 

while training data set is used for estimating model parameters in the models at both 

aggregate and disaggregate levels. 

 This matrix provides information about overall accuracy of the models. Error 

rate estimated from this matrix can be used for performance comparison of the models. 

The overall accuracy in conjunction with different confusion matrices is estimated using 

by the formulation as: 

 

Overall Accuracy= 100
N

n
 (5.21) 

 

Where n is the total number of pixels that actually belong to that class and N represents 

the total number of observations in confusion matrix. This formulation can be rewritten 

as follows: 

 

         (Number of Correct Predictions) / (Total Number of Observations)        (5.22) 

 

Estimated confusion matrices including proportions of correct predictions 

(presented in parantheses) for aggregate level are represented in Table 5.18 and Table 

5.19. According to this result, baseline category logit model correctly predicted the 

mode chosen 48 (14+21+12+1) times out of the total of 81 choices made whereas BBNs 

correctly predicted 48 (16+22+10+0) times out of the total of 81 choices made. These 

choice models correctly predicted the actual choice outcome for almost 59 percent of 

the total number of cases in test set. 
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Table 5.18. Confusion matrix for baseline category logit model 

   
Predicted 

  

Actual Walk Transit Car Service Total 

Walk 
14 

(0,583) 

9 

(0,375) 

1 

(0,042) 

0 

(0) 
24 

Transit 
8 

(0,242) 

21 

(0,636) 

3 

(0,09) 

1 

(0,03) 
33 

Car 
1 

(0,053) 

6 

(0,316) 
12 

(0,632) 

0 

(0) 
19 

Service 
1 

(0,2) 

3 

(0,6) 

0 

(0) 

1 

(0,2) 
5 

Total 
 

24 

 

 

39 

 

 

16 

 

 

2 

 

81 

 

Table 5.19. Confusion matrix for BBNs at aggregate level 

   
Predicted 

  

Actual Walk Transit Car Service Total 

Walk 
16 

(0,552) 

9 

(0,31) 

2 

(0,069) 

2 

(0,069) 
29 

 

Transit 
8 

(0,2) 

22 

(0,55) 

7 

(0,175) 

3 

(0,075) 

40 

 

Car 
0 

(0) 

2 

(0,167) 
10 

(0,833) 

0 

(0) 
12 

 

Service 
 

0 

 

 

0 

 

 

0 

 

 

0 

 

 

0 

 

Total 
 

24 

 

 

33 

 

 

19 

 

 

5 

 

81 

 

According to the tables in the above, Baseline category logit model predicts the 

walk mode correctly 58 percent of the time, the transit alternative correctly about 64 

percent of the time, and the car, and the service alternatives correctly about 63 and 20 

percent of the time, respectively. BBNs predicts the walk alternative correctly 55 

percent of the time, the transit alternative correctly 55 percent of the time, and the car 

and the service modes correctly 83 and 0 percent of the time, respectively. At aggregate 
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level, BBNs failed to predict the service mode more than baseline category logit model. 

In order to increase the model performance, new estimation algorithms or the states of 

the nodes in BBNs should be adjusted again. Both models can predict the car and transit 

alternatives correctly more than other alternatives. 

The overall model error rate in BBNs is 40.74%, implying that the model had 

the majority of its predictions correct for mode choice observations while the overall 

model rate is 40.74% in baseline category logit model. According to this result, 

aggregate models have the same error rate. In this situation, there is no superiority of 

BBNs over baseline category logit model. 

 For disaggregate level (as seen in Table 5.20 and Table 5.21), multinomial logit 

model correctly predicted the mode chosen 13975 (5430 + 4362 + 2807 + 1376) times 

out of the total of 23398 choices made whereas BBNs correctly predicted 14363 (5825 

+ 4661 + 2874 + 1003) times out of the total of 23398 choices made. For test set, MNL 

model correctly predicted the actual choice outcome for almost 60 percent of the total 

number of cases in test set whereas BBNs correctly predicted the actual choice outcome 

for almost 61 percent of the total number of cases in test set. 

 

Table 5.20. Confusion matrix for MNL at disaggregate level 

   
Predicted 

  

Actual Walk Transit Car Service Total 

Walk 
5430 

(0,722) 

748 

(0,099) 

609 

(0,081) 

726 

(0,096) 
7513 

 

Transit 
877 

(0,112) 

4362 

(0,557) 

835 

(0,106) 

1755 

(0,224) 

7829 

 

Car 
298 

(0,061) 

911 

(0,186) 
2807 

(0,575) 

862 

(0,176) 
4878 

 

Service 
193 

(0,060) 

1247 

(0,392) 

362 

(0,114) 

1376 

(0,432) 

3178 

 

Total 6798 7268 4613 4719 23398 
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Table 5.21. Confusion matrix for BBNs at disaggregate level 

   
Predicted 

  

Actual Walk Transit Car Service Total 

Walk 
5825 

(0.724) 

836 

(0.103) 

623 

(0.077) 

758 

(0.094) 
8042 

Transit 
529 

(0.065) 

4661 

(0.570) 

901 

(0.110) 

2081 

(0.255) 
8172 

Car 
290 

(0.058) 

920 

(0.185) 
2874 

(0.579) 

877 

(0.177) 
4961 

Service 
154 

(0.069) 

851 

(0.383) 

215 

(0.097) 

1003 

(0.451) 
2223 

Total 6798 7268 4613 4719 23398 

 

According to the tables for disaggregate models, MNL model predicts the walk 

mode correctly 72 percent of the time, the transit alternative correctly about 56 percent 

of the time, and the car, and the service alternatives correctly about 58 and 43 percent of 

the time, respectively. BBNs predicts the walk alternative correctly 72 percent of the 

time, the transit alternative correctly 57 percent of the time, and the car and the service 

modes correctly 58 and 45 percent of the time, respectively. In opposition to the 

aggregate models, disaggregate BBNs succeed more than aggregate BBNs in terms of 

model performance. At aggregate level, baseline category logit model predicts transit 

mode correctly while Bayesian belief networks correctly predict car mode more than 

other alternatives. At disaggregate level, multinomial logit model and BBNs are more 

successful for the correct prediction of walk mode. 

The overall model error rate in BBNs is 38.61%, implying that the model had 

the majority of its predictions correct for mode choice observations while the overall 

model rate is almost 40% in MNL. According to this result, BBNs as an alternative 

method in disaggregate mode choice modeling is superior upon the MNL. 

According to the results, hypohesis (SH-2) that alternative method is superior to 

conventional models is confirmed for only disaggregate level. At aggregate level, 

superiority is not clear. As mentioned in Chapter 4, there are two different data 

structures (data setup) for discrete choice model estimation. When every individual can 



 

 

166 

select all alternatives, the choice set size is a fixed size. However, in reality, all 

alternatives (all choices) are not available to all individuals such as limited income and 

lack of driving license. In this situation, the number of alternatives vary across 

individuals. According to choice analysis, the data should be structured in one of two 

formats. At disaggregate level, the study analyzed model results and model 

performances for different data formats. The model results that are estimated in Nlogit 

program, for choice set with fixed size and varying size for full data are given in Table 

5.22. 

 

Table 5.22. MNL model results for different choice data 

Variables 

 

Fixed 

Number 

of 

Choices 

  

Variable 

Number 

of 

Choices   

  Parameter  t value 

P 

values Parameter  t value 

P 

values 

Travel Characteristics       

Travel Time (TTIME) -0.0098 -97.69 0.0001 -0.0320 -141.843 0.0001 

Travel Cost (TCOST) -0.8166 -63.54 0.0001 -0.0741 -38.724 0.0001 

Number of Observation  116992   116992  

Log Likelihood 

Function 
 -154688   -74604  

 

 As expected, the estimate of generic variables (time and cost) is negative for 

both different structure types. Lower time and cost alternatives in home - based work 

trips are preferred in the case of Istanbul. Generic variables have statistically significant 

effect on mode choice. Model performances that are evaluated in a contingency table 

(confusion matrix) are shown in Table 5.23 and 5.24. Mode choice model used for fixed 

numbers of choices predicts walk alternative correctly 24 percent of the time, transit 

alternative correctly 27 percent of the time, and car and service alternatives correctly 24 

and 36 percent of the time, respectively. On the other hand, mode choice model used for 

variable numbers of choices predicts walk alternative correctly 39 percent of the time, 

transit alternative correctly 79 percent of the time, and car and service alternatives 

correctly 59 and 44 percent of the time, respectively. 
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Table 5.23. Confusion matrix at disaggregate level for fixed numbers of choices 

   
Predicted 

  

Actual Walk Transit Car Service Total 

Walk 
8168 

(0.24) 

8676 

(0.25) 

8464 

(0.25) 

8753 

(0.26) 
34061 

Transit 
5158 

(0.14) 

9828 

(0.27) 

8728 

(0.24) 

12442 

(0.35) 
36156 

Car 
3462 

(0.15) 

6124 

(0.27) 
5587 

(0.24) 

7751 

(0.34) 
22924 

Service 
3196 

(0.13) 

6416 

(0.27) 

5632 

(0.24) 

8607 

(0.36) 
23851 

Total 19984 31044 28411 37553 116992 

 

Table 5.24. Confusion matrix at disaggregate level for variable numbers of choices 

   
Predicted 

  

Actual Walk Transit Car Service Total 

Walk 
13139 

(0.39) 

19034 

(0.56) 

1888 

(0.05) 

0 

 
34061 

Transit 
4847 

(0.13) 
28582 

(0.79) 

2726 

(0.08) 

0 

 
36156 

Car 
3407 

(0.08) 

14000 

(0.33) 

25554 

(0.59) 

0 

 
42961 

Service 
128 

(0.03) 

774 

(0.20) 

1242 

(0.33) 
1670 

(0.44) 
3814 

Total 21521 62390 31410 1670 116992 

 

According to the results, the model performance for variable numbers of choices 

is superior upon the model including the fixed numbers of choices. In the content of the 

study, the expanded model specification including variable numbers of choices are 

estimated using Nlogit. However, the model give insignificant t values and unexpected 

signs of the coefficients. The model produce an error that Nlogit is unable to estimate 

standard errors for utility function of the expanded form. The pattern of missingness of 

the alternatives may cause this situation that the parameters are not identified. 
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CHAPTER 6 

 

CONCLUSION 

 

The purpose of this research is to expand the understanding derived from the 

previous empirical research on the effects of land use on mode choice behavior for 

home - based work trips (HBW) by accounting for conventional (logit models) and an 

alternative approach (BBNs). In existing literature, urban settings mostly took place in 

North-American and European cities. From developing part of the world, there have 

been lack of empirical evidence to support the relationship between land use and mode 

choice. The study introduced several socieconomic and land use characteristics relevant 

to the topic under discussion. In order to achieve a better understanding of the 

relationship between land use and travel demand, comparing and analyzing the results 

of aggregate and disaggregate models together needed to be develop. While previous 

studies has tried to analyze the effects at either aggregate level or disaggregate level, 

this study has analyzed the effects of land use on mode choice at both levels. Therefore, 

this approach has provided detailed information about the effects for comparing the 

results with different cases in the literature. The empirical analysis in this study is based 

on 2006 Household Travel Survey prepared for 2007 Istanbul Transportation Master 

Plan. The model specifications tested several variables describing zonal - individual 

socioeconomic characteristics, travel characteristics for disaggregate analysis, and land 

use characteristics. In the content of the study, land use characteristics have been 

approximated mainly by density (population and employment), diversity (land use mix 

and jobs - housing balance), and accessibility. 

In the last 15 years, soft computing methods, especially neural networks, fuzzy 

logic, and hybrid approaches (neuro-fuzzy modeling) become more attractive than 

conventional models. BBNs are new models and more flexible than logit models in 

mode choice modeling. An important contribution of the study is that bayesian belief 

networks (BBNs) that have been rarely used in mode choice studies have been proposed 

to analyze complex and probabilistic relationships among the variables. In opposition to 

the previous studies such as Scuderi and Clifton (2005), BBNs are used to inference and 

forecast in the content of the study. 
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The overall results of the study are summarized as follows: (1) land use 

characteristics have an independent influence on mode choice for home - based work 

trips in Istanbul. Many variables retained their signs and statistical significance after the 

inclusion of land use characteristics. (2) There is evidence to support hypothesis SH-1 

that adding land use variables to the models at aggregate and disaggregate levels 

improves the model‟s explanatory power. The result is consistent with the findings of 

the previous studies (e.g. Cervero and Kockelman (1997), Zhang (2004), and Cervero 

(2002)). (3) The hypothesis (SH-2) that soft computing methods (BBNs) are superior to 

conventional models (logit models) in mode choice modeling at both levels is supported 

only at disaggregate level. For this case, there is no evidence to support this hypothesis 

(SH-2) at aggregate level. 

The empirical results show that, as in the case of aggregate level data, many 

socieconomic factors significantly affects travel mode choice for HBW trips in Istanbul. 

The variables, zonal average of working (wrkr), for car mode and household size 

(hhsize) have not statistically significant effect on mode choice. The signs of 

socieconomic characteristics are as expected. The variables, household income (hhinc), 

household size (hhsize), house ownership (hownr), car ownership (ncar), zonal 

average of working (wrkr) are positively correlated with motorized trips. Regarding the 

land use variables, it is found that many land use variables have a statistically 

significant effect on mode choice. A negative correlation is found between density 

(population and employment) and motorized trips. This result does not support 

hypothesis H2 that employment densities positively correlated with motorized trips 

while the result supports hypothesis H1 for only walking mode. Transit choice at 

aggregate level is negatively correlated with population density. According the 

empirical studies in both the USA and Europe (Schwanen, et al., 2004, Frank and Pivo 

1994, Newman and Kenworthy 1989, Coevering and Schwanen 2006), traveling by car 

for home - based work trips is negatively correlated with population density. The result 

of the study is consistent with the literature at aggregate level. At aggregate level, it is 

found that land use mix diversity index is positively correlated with motorized trips. 

This result is not consistent with the previous studies for the cities in developed 

countries while it is consistent with the previous studies for the cities in Asia. Therefore, 

there is no enough evidence to support the hypothesis H3. 
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At aggregate level, hypothesis H4 that the presence of transit access in the zones 

increases the choice of transit mode, is supported. One important finding is that the size 

of zonal area is negatively correlated with motorized trips. The size of area has a 

negative influence on motorized trips at aggregate level. This finding about the size of 

the zonal area (area) suggest that commuters who live in higher zonal area tends to live 

close to employment areas. Sensitivity analysis in BBNs suggests that the number of car 

in household (ncar), industrial employment density (iedens), household income 

(hhinc), household size (hhsize), the size of zonal area (area), and population density 

(pdens) are the most influential nodes on mode choice. For aggregate analysis, the 

findings associated with land use characteristics show similarities with the findings of 

the empirical studies in Asian cities. 

The empirical analysis at disaggregate level, carried out using multinomial logit 

model (MNL) and bayesian belief networks (BBNs), reveals that all socieconomic 

factors significantly affects travel mode choice for HBW trips in Istanbul. The 

coefficients for socioeconomic variables are positive, as expected. Surprisingly, the 

impact of household income on commuter‟s utility is significant but marginal in 

comparison with other variables. The coefficients of the type of akbil cards used in 

public transportation in Istanbul for the mode dummies represents the relative 

preferences for transit modes even after the inclusion of the land use variables. The 

coefficients of travel attributes (travel time and travel cost) are negative, as expected. 

The coefficients of both variables are treated as generic. Negative signs indicates that 

commuters prefer lower time and cost alternatives for home - based work trips in 

Istanbul. According to the expanded model, both variables reach statistical significance. 

Each additional minute in travel time reduces the odds of choosing that alternative by 

2% while each additional T.L. in travel cost reduces the odds of choosing that 

alternative by 5.3%. In the expanded model, the estimate of alternative specific constant 

(ASC) for walk and transit is positive while the ASC coefficient for car mode is 

negative. Car travel is significantly less atractive than service travel. Many travel 

characteristics, socieconomic characteristics, and alternative specific coefficients retain 

their significance and signs after the inclusion of the land use variables. 

Regarding the land use variables for disaggregate analysis, many land use 

variables at both orgins and destinations are statisticaly significant for mode choice in 

Istanbul. Main hypothesis of the study is supported. Land use variables in the expanded 
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model improved overall predictability (model‟s explanatory power), as in the case of the 

aggregate analysis. Statistical tests (LL ratio and pseudo R
2
) confirmed sub-hypothesis 

of the study, SH-1, that adding land use variables to the models at disaggregate levels 

improves the model explanatory power. This result for disaggregate data is consistent 

with the earlier studies done in other countries (Cervero 2002, Zhang 2004) and also in 

aggregate data. According to overall accuracy for MNL and BBNs, the proportion of 

explained variation in BBNs is more than MNL models. Therefore, hypothesis SH-2 

that soft computing methods (BBNs) are superior to conventional models (logit models) 

in mode choice modeling, is supported for disaggregate analysis. 

A positive correlation is found between population density and relative modes 

(walk, transit, and car). This result supports hypothesis H1. However, this is not 

consistent with the result of the expanded model at aggregate level. One of the 

explanations for this is that walk mode was selected as the referent mode in baseline 

category logit model while service was treated as the referent mode, meaning 

coefficients on the utility function was interpreted with reference to the service mode. 

However, the result supports the findings of Pinjari et al. (2007) in San Francisco, 

Zhang (2004) in Boston, and Coevering and Schwanen (2006) in the cities of Europe, 

Canada, and US. Employment / Worker ratio (oewdens and dewdens) as a measure of 

employment density is positively correlated with travel modes, except walk mode at 

destination. It was found enough evidence to support hypothesis H2. Diversity 

positively influences with walk mode and transit only at the origins. Therefore, 

hypothesis H3 is supported for walk mode and transit mode. 

At disaggregate level, the presence of transit access in the zones is positively 

correlated with the choice of transit mode, as expected. Hypothesis H4 is supported. 

Commuters working and living in the same zones (intra) tend to use walk mode more 

than service mode. Hypothesis (H5) that commuters whose trip origin and destination 

point is in the same zone are more likely to choose non-motorized alternatives, is 

supported at disaggregate level. When studying the effects of the model variables with 

BBNs for disaggregate data, sensitivity analysis suggests that travel time for walking 

(wtime), transit (trtime), car (atime), service (stime), travel cost for transit (tcost), and 

intra travel for walk mode (intra) are the most influential variables for mode choice. 

The results of the study found enough evidence for the relationship between 

mode choice and land use for home - based work trips in Istanbul. It appears that there 
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are a number of travel and socioeconomic characteristics that may explain the variation 

in choice behavior. For example, socioeconomic characteristics can explain more of the 

variation in choice behavior than land use characteristics do. In terms of the distance 

travelled, land use characteristics may be more important than socioeconomic 

characteristics. 

Further empirical evidence from elsewhere in Turkey is needed to verify the 

external validity of the effects on mode choice. Some of the variables used in this study 

require further examination and revision. If GIS data for urban form characteristics are 

available at neighborhood level, model results may assist in developing sufficient land 

use policies. Bayesian belief networks may provide more flexible structure of error 

terms while multinomial logit may not. In BBNs example for aggregate and 

disaggregate data, the BBNs models do not provide highly accurate in analyzing mode 

choice when considering high error rates that are about 40%. However, the application 

of performance test using scoring rules and error rates are one of the first applications 

for mode choice analysis in travel demand modeling. 

Even though the numerous studies have focused on the effects of land use (or 

urban form) on travel behavior, the debate about the significance, magnitude, and which 

aspects of land use continues. From the perspective of physical planning and urban 

policy, the study suggests that land use characteristics are not exogenous in the 

modeling of mode choice behavior made by individuals, as well as zonal. It is found 

that the commuters working and living in the same zonal area tend to travel by non-

motorized modes for home - based work trips in Istanbul. Also, the presence of transit 

access in the zones promotes the use of transit. Individuals are consistent with their 

lifestyle values (preferences). Therefore, it indicates that there is evidence for residential 

sorting effects in Istanbul. In other words, main reasons to travel by car trips are longer 

travel, waiting, access, and egress times for public transportation, especially for bus 

travel. 

Existing rail systems should be extended in and around the big industrial areas in 

Istanbul. New residential developments should be concentrated around rail systems. 

Physical planning should allow to the commuters with more opportunities for switching 

travel modes. For example, park and ride systems should be extended to serve 

commuters. Pricing strategy that provides commuters some opportunities to promote the 

use of transit modes should be developed. In the city centers of Istanbul, high cost in 
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parking may discourage the use of private automobiles. The estimates of the 

disaggregate models indicates that individuals are willingness to pay for reduced travel 

time. It means that a program aimed at reducing traffic congestion and increasing 

comfort in public transportation needs to be developed. Public transportation provides 

opportunities for the disadvantages groups such as poor and elderly people. Auto - 

dependent cities generate more air pollution. On the contrary, transit - oriented cities 

generate less pollution and more energy savings, especially home - based work trips. 

For decades, policies aimed at encouraging clustered development, higher densities, and 

improve level of service (LOS) for transit has been implemented. Also, in Europe and 

Canada, there are some restrictions on auto use while there are some facilities on transit 

usage. Some policies such as right of way to buses and auto - free zones may provide 

opportunities for transit to become safer and more attractive for commuters. Bus rapid 

transit systems may be a good alternative to save travel cost and travel time. Making rail 

system projects realize will provide safer, cheaper, and faster opportunities to the 

commuters in Istanbul. As known that, policentric urban structure and decentralization 

of land use will cause to more use of the private modes for all trip purposes. On the 

other hand, it leads to less use of public transportation. Spatial mismatch (jobs - housing 

imbalanced areas) leads to observe longer commutes. As Istanbul has expanded, the 

effects of land use on mode choice may become more important. Physical planning may 

assist in reducing the use of private modes. For example, mixed land use development 

and jobs - housing balanced areas may play an important role in promoting the use of 

public transportation. Distance travelled to work is highly related to the development of 

polycentric urban structure. Understanding the relationship between land use and travel 

behavior contributes to develop urban policies that aim to reduce motorized travel 

demand. As an urban policy, jobs - housing balance should be achieved at the two 

continents: Asia and Europe so that traffic load between two continents may decrease. 

In addition, traffic flow from one to another may decrease depending on jobs - housing 

balance. 

Regarding the further studies, this study can be expanded in a number of ways. 

First, modeling mode choice and land use can be analyzed with various aspects of travel 

behavior such as route choice and vehicle miles traveled (VMT). Analyzing and 

comparing of various travel demand factors may provide the full picture of the 

relationship between land use and travel demand. Second, in the case of developing 
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countries, the effects of urban form characteristics on travel behavior needs to be 

expanded with conventional and alternative approaches. In terms of land use 

characteristics, the study found significant land use variables at both levels in Istanbul. 

However, new land use (or urban form) variables  may be introduced to the models that 

can be used with different type of measurements. Third, the impact of land use on mode 

choice should be tested for home - based school (HBS) trips, home - based other (HBO) 

trips, and non - home - based (NHB) trips. Land use (or urban form) characteristics, 

their significance and signs may vary across trip purpose. Therefore, analyzing the 

effects based on different trip purposes may provide useful information for physical 

planning. Fourth, this study proposed new models for mode choice analysis. Baseline 

category logit and bayesian belief networks (BBNs) are rarely used models in 

transportation modeling. Especially, BBNs should be used for other stages in 

transportation modeling such as trip generation and trip distribution. Main disadvantage 

for BBNs is the computation time of the learning algorithms that increases when the 

number of the states of variables increases. Also, the number of the CPTs in BBNs 

expands when more states and nodes are involved. Fifth, in mode choice analysis, 

choice set with fixed number of alternatives that all alternatives are available to all 

individuals, is generally used. The model performances of the further studies using 

variable number of choice set may be higher than the models including fixed number of 

alternatives. The study provides information about this situation. Finally, conventional 

models, especially multinomial logit models (MNL), have been studied for years. In 

recent years, soft computing methods have become the alternative methods to discrete 

choice models. Activity-based approaches to travel analysis, bayesian belief networks 

(BBNs), structural equation modeling, and hybrid models (e.g., neuro - fuzzy and 

genetic - fuzzy) should be applied in travel demand analysis. In these approaches, the 

inclusion of land use variables may improve model‟s explanatory power. Also, different 

algorithms can be tested in soft computing methods. For example, the application of 

neural networks in travel demand analysis use generally the feed-forward back 

propagation algorithm. New algorithms may be developed to better understand mode 

choice behavior. 

 



175 

 

REFERENCES 

 

Abane, Albert M. 2010. Travel behaviour in Ghana: empirical observations from four 

metropolitan areas. Journal of Transport Geography (Article in press). 

 

Abdelwahab W. and Sayed T. 1999. Freight mode choice models using artificial neural 

networks. Civil Engineering and Environmental Systems 16(4): 267-286. 

 

Abellan J., Gomez-Olmedo, M. and Moral, S. 2006. Some Variations on the PC 

Algorithm. Proceedings of the Third European Workshop on Probabilistic 

Graphical Models, Prague, Czech Republic. 

 

Agresti, Alan. 2002. Categorical data analysis. John Wiley & Sons, Inc., New Jersey. 

 

AktaĢ, E., Ülengin, F., ġahin, ġ. Ö. 2007. A decision support system to improve the 

efficiency of resource allocation in healthcare management. Socio - Economic 

Planning Science 41(2): 130-146. 

 

Allison, P.D. 1999. Logistic regression using the SAS system – theory and application. 

SAS Institute, Inc. Cary, NC. 

 

Alonso, W. 1964. Location and land use. Cambridge: Harvard University Press. 

 

Alpaydın, E. 2004. Introduction to machine learning. MIT Press, Cambridge, MA. 

 

Alpizar, F. And Carlsson, F. 2003. Policy implications and analysis of the determinants 

of travel mode choice: an application of choice experiments to metropolitan 

Costa Rica. Environment and Development Economics 8(4): 603-619. 

 

Alpkokin, P., Hayashi, Y., Black, J., and Gercek, H. 2005. Polycentric employment 

growth and impacts on urban commuting patterns: Case study of Istanbul. 

Journal of Eastern Asia Society for Transportation Studies 6: 3835-3850. 

 

Andrade, K., Uchida, K., and Kagaya, S. 2006. Development of transport mode choice 

model by using adaptive neuro - fuzzy inference system. Journal of the 

Transportation Research Board TRB 1977: 8-16. 

 

Avineri, E. 2005. Soft computing applications in traffic and transport systems: A 

review. In: Hoffmann, F., Koppen, M., Klawonn, F. and Roy, R. (Eds.), Soft 

computing: Methodologies and applications. Springer Series on Studies in 

Fuzziness and Soft Computing. Springer-Verlag, Germany. 

 

Baker, J. Basu, R., Crapper, M., Lall, S. And Takeuchi, A. 2005. Urban poverty and 

transport: the case of Mumbai. World Bank Policy Research Working Paper 

3693. 

 

http://www.springer.com/engineering/book/978-3-540-25726-4
http://www.springer.com/engineering/book/978-3-540-25726-4
http://www.springer.com/engineering/book/978-3-540-25726-4


176 

 

Ben – Akiva, M. 1973. Structure of passenger travel demand models. Ph.D. 

Dissertation. Department of Civil Engineering, MIT, Cambridge. 

 

Ben – Akiva, M. and Lerman, S.R. 1985. Discrete choice analysis: Theory and 

application to travel demand. Cambridge MA: MIT Press. 

 

Ben-Akiva, M. and Bierlaire, M. 1999. Discrete choice methods and their applications 

to short-term travel decisions. in R. Hall (ed.), Handbook of Transportation 

Science. International Series in Operations Research and Management Science, 

23. 

 

Bhat, C.R. and Gossen, R. 2004. A mixed multinomial logit model analysis of weekend 

recreational episode type choice. Transportation Research Part B 38(9): 767-

787. 

 

Bhat, C.R. and J.Y. Guo. 2007. A comprehensive analysis of built environment 

characteristics on household residential choice and auto ownership levels. 

Transportation Research Part B 41(5): 506-526. 

 

Boarnet, G. M. and Crane, R. 2001. Travel by design: The influence of urban form on 

travel. New York, Oxford University Press. 

 

Bonnel, P. 2003. The estimation of aggregate modal split models, European Transport 

Conference. Strasbourg, France. 

 

Bouckaert, R. R. 2008. Bayesian network classifiers in Weka for version 3 – 57.  The 

University of Waikato. 

 

Bowman, J. and Ben – Akiva,  M. 1997. Activity - based travel forecasting. Activity – 

Based Travel Forecasting Conference. In Texas Transportation Institute, 

Washington D.C. 

 

Bromley, J., Jackson, N.A., Clymer, O.J., Giacomello., A.M., Jensen F.V. 2005. The 

use of Hugin to develop Bayesian networks as an aid to integrated water 

resource planning. Environmental Modelling & Software 20(2): 231-242. 

 

Buchanan, N., Barnett, R., Kingham, S., and Johnston, D. 2006. The effect of urban 

growth on commuting patterns in Christchurch. New Zealand. Journal of 

Transport Geography 14(5): 342-354. 

 

Cambridge Systematics. 1994. The effects of land use and travel demand management 

strategies on commuting behavior. US Department of Transportation, US 

Environmental Protection Agency, US Department of Energy, Washington, D.C. 

Report prepared for the Travel Model Improvement Program. 

 

Cantarella, G.E. and De Luca, S. 2005. Multilayer feedforward networks for 

transportation mode choice analysis: An analysis and a comparison with random 

utility models. Transportation Research Part C: Emerging Technologies 13(2): 

121-155. 

http://rosowww.epfl.ch/mbi/handbook-final.pdf
http://rosowww.epfl.ch/mbi/handbook-final.pdf
http://rosowww.epfl.ch/mbi/handbook-final.pdf
http://www.wkap.nl/book.htm/0-7923-8587-X
http://www.wkap.nl/book.htm/0-7923-8587-X
http://www.wkap.nl/book.htm/0-7923-8587-X
http://www.wkap.nl/series.htm/ISOR
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VH8-45CC0XM-2&_user=746191&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=995460491&_rerunOrigin=google&_acct=C000041658&_version=1&_urlVersion=0&_userid=746191&md5=496d796ff2ba87b027bb392d4e54311f#bbib8


177 

 

Celik, H. M. and Yankaya, U. 2006. The impact of rail transit investment on the 

residential property values in developing countries: The case of Izmir subway, 

Turkey. Property Management 24(4): 369-382. 

 

Celikoglu, H. B. 2006. Application of radial basis function and generalized regression 

neural networks in non-linear utility function specification for travel mode 

choice modelling. Mathematical and Computer Modelling 44(7-8): 640-658. 

 

Celikoglu, H. B. 2006. Calibration of logit modal split models with feed-forward back-

propagation neural networks. 16th Mini EURO Conference: Artificial 

Intelligence in Transportation, Poznan University of Technology, Poland. 

 

Cervero, R. 1989. Jobs - housing balancing and regional mobility. Journal of the 

American Planning Association 55(2): 136-150. 

 

Cervero, R. 1991. Jobs - housing balance as public policy. Urban Land 50(10): 10-14. 

 

Cervero, R. 1996. Jobs - housing balance revisited: trends and impacts in the San 

Francisco Bay Area. Journal of the American Planning Association 62(4): 492-

511. 

 

Cervero, R. 2002. Built environment and mode choice: Toward a normative framework. 

Transportation Research Part D 7: 265-284. 

 

Cervero, R. and Duncan, M. 2002. Residential self selection and rail commuting: A 

nested logit analysis. Working Paper, University of California Transportation 

Center, Berkeley California. 

 

Cervero, R. and Gorham, R. 1995. Commuting in transit versus automobile 

neighborhoods. Journal of the American Planning Association 61(2): 210-225. 

 

Cervero, R. and Kockelman, K. 1997. Travel demand and The 3Ds: Density, diversity, 

and design. Transportation Research Part D 2(3): 199-219. 

 

Cervero, R. and Wu, K. 1997. Influences of land use environments onj commuting 

choices: An analysis of large U.S. metropolitan areas using the 1985 American 

Housing Survey. Working Paper (683), University of California at Berkeley. 

 

Chang, Hsin – Li and Wu, Shun – Cheng. 2008. Exploring the vehicle dependence 

behind mode choice: Evidence of motorcycle dependence in Taipei. 

Transportation Research Part A 42: 307-320. 

 

Chen C., and McKnight, C. E. 2007. Does the built environment make a difference? 

Additional evidence from the daily activity and travel behavior of homemakers 

living in New York City and suburbs. Journal of Transport Geography 15(5): 

380-395. 

 



178 

 

Chen, C., Gong, H. and Paoswell, R. 2008. Role of the built environment on mode 

choice decisions: Additional evidence on the impact of density. Transportation, 

35: 285 – 299. 

 

Cheng, S. and Long, J. S. 2007. Testing for IIA in the multinomial logit model. 

Sociological Methods & Research 35(4): 583–600. 

 

Coevering, P. Van De and Shwanen, T. 2006. Re-evaluating the impact of urban form 

on travel patterns in Europe and North America. Transport Policy 13(3): 229-

239. 

 

Collins, D. and Kearns, R. 2001. The safe journeys of an enterprising school: 

Negotiating landscapes of opportunity and risk. Health and Place 7(4): 293-306. 

 

Commins, N. And Nolan, A. 2010. The determinants of mode of transport to work in 

the Greater Dublin Area. Transport Policy (Article in press). 

 

Cooper, G. F., Herskovitz, E. 1992. A bayesian method for the induction of 

probabilistic networks from data. Machine Learning 9(4): 309-347. 

 

Cornalba, C. and Giudici, P. 2004. Statistical models for operational risk management. 

Physica A 338: 166–172. 

 

Cramer, J. S. 2003. Logit models from economics and other fields. Cambridge 

University Press. 

 

Crane, R. 2000. The influence of urban form on travel: on interpretive review. Journal 

of Planning Literature 15(1): 3-23. 

 

Crane, R. and Crepeau, R. 1998. Does neighborhood design influence travel? A 

behavioral analysis of travel diary and GIS data. Transportation Research Part 

D 3(4): 225-238. 

 

Dargay, J. and Gately, D. 1999. Income‟s effect on car and vehicle ownership, 

worldwide: 1960 – 2015. Transportation Research Part A 33: 101-138. 

 

De Palma, A. and Rochat, D. 2000. Mode choice for trips to work in Geneva: An 

empirical analysis. Journal of Transport Geography 8(1): 43-51. 

 

Demir, Y. K. and Gerçek, H. 2006. UlaĢtırma türü seçiminde esnek hesaplama 

yöntemleri. İTÜ Dergisi D 5(6): 61-73. 

 

Dirican, A. 2001. Evaluation of the diagnostic test's performance and their comparisons. 

Cerrahpaşa Journal of Medicine 32 (1): 25-30. 

 

Dlamini, W. D. 2010. A bayesian belief network analysis of factors influencing wildfire 

occurrence in Swaziland. Environmental Modeling & Software 25(2): 199-208. 

 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VBF-4CTCSR1-1&_user=746191&_coverDate=01%2F31%2F2005&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1278612897&_rerunOrigin=scholar.google&_acct=C000041658&_version=1&_urlVersion=0&_userid=746191&md5=c7b9aedae65c281dd9a4894c746fcded#bbib5


179 

 

Domencich, T.A. and McFadden D. 1975. Urban travel demand: A behavioural 

analysis. North Holland Publishing Company. 

 

Estrella, A. 1998. A new measure of fit for equations with dichotomous dependent 

variables. Journal of Business and Economic Statistics 16: 198-205. 

 

Evans, James R. 2007. Statistics, data analysis & decision modeling. 3
rd

 edition, 

Pearson Prentice Hall New Jersey. 

 

Ewing, R., Deanna, M. and Li, S. C. 1996. Land use impacts on trip generation rates. 

Transportation Research Record 1518: 1-6. 

 

Ewing, R., Schroeer, W., and Greene, W. 2004. School location and travel analysis of 

factors affecting mode choice. Transportation Research Record: Journal of the 

Transportation Research Board 1895: 55-63. 

 

Ewing, Reid and Cervero, R. 2001. Travel and the built environment: A synthesis. 

Transportation Research Record 1780: 87-114. 

 

Fischer, M. M. and Gopal, S. 1994. Artificial neural networks: A new approach to 

modeling interregional telecommunication flows. Journal of Regional Science 

34(4): 503-527. 

 

Fotheringham, A. S. And Knudsen, D. C. 1987. Goodness-of-fit statistics. Geo Books, 

Norwich. 

 

Frank L. and G. Pivo. 1994. Impacts of mixed use and density on utilization of three 

modes of travel: single-occupant vehicle, transit, and walking. Transportation 

Research Record 1466: 44–52. 

 

Frank, L., Bradley, M., Kavage, S., Chapman, J., and L., T. K. 2007. Urban form, travel 

time, and cost relationships with our complexity and mode choice. 

Transportation 35(1): 37-54. 

 

Gakenheimer, R. 1999. Urban mobility in the developing world. Transportation 

Research Part A 33: 671-689. 

 

Gakenheimer, R. and Zegras, C. 2004. Drivers of travel demand in cities of the 

development world. Appendix in Mobility 2030: Meeting The Challenges to 

Sustainability, World Business Council for Sustainable Development, The 

Sustainable Mobility Project. 

 

Gebeyehu, M. and Takano, S. 2007. Diagnostic evaluation of public transportation 

mode choice in Addis Ababa. Journal of Public Transportation 10(4): 27-50. 

 

Gomez – Ibanez, J. A. 1991. A global view of automobile dependence. Journal of 

American Planning Association 57: 369-376. 

 



180 

 

Governorship of Istanbul. 2010. http://www.istanbul.gov.tr/Default.aspx?pid=33&cat=1 

(accessed May 28, 2010). 

 

Greene, W. H.  2003. Econometric analysis.  5th edition, Prentice Hall, New Jersey. 

 

Greenwald, M. J. 2006. The relationship between land use and intrazonal trip making 

behaviors: Evidence and implications. Transportation Research Part D 11: 432 

– 446. 

 

Gujarati, D. N. 1995. Basic econometrics. 3rd edition, McGraw-Hill, Inc. 

 

Gwilliam, K. 2003. Urban transport in developing countries. Transport Reviews 23(2): 

 197-216. 

 

Hamed, M. H. And Olaywah, H. H. 2000. Travel - related decisions by bus, servis taxi, 

 and private car commuters in the city of Amman, Jordon. Cities 17(1): 63-71. 

 

Hanson, S. 2004. The context of urban travel: Concepts and recent trends. in The 

 Geography of Urban Transportation, 3rd edition. S. Hanson and G. Giuliano 

 (eds). The Guilford Press, New York.  

 

Hausman, J. and McFadden, D. 1984. Specification tests for the multinomial logit 

model. Econometrica 52: 1219-1240. 

 

Heckerman, D. 1996. A tutorial on learning with bayesian networks. Technical Report, 

Microsoft Research. 

 

Hensher D. A. and Button, K. 2000. Handbook of transport modelling. First edition, 

Handbooks in Transport Volume 1, Elsevier Science, New York. 

 

Hensher D. A. and Button, K., Haynes, K. E., Stopher, P. 2004. Handbook of transport 

geography and spatial systems. Handbooks in Transport Volume 5, Elsevier 

Science, New York. 

 

Hensher, D.A. and Ton, T. T. 2000. A comparison of the predictive potential of 

artificial neural networks and nested logit models for commuter mode choice. 

Transportation Research Part E: Logistics and Transportation Review 36(3): 

155-172. 

 

Hensher, D.A., Rose, J.M., and Grene, W.H. 2005. Applied choice analysis: A primer. 

Cambridge, Cambridge University Press. 

 

Hess. D. 2001. Effect of free parking on commuter mode choice-evidence from travel 

diary data. Transportation Research Record 1753: 35-42. 

 

Hosmer, D. W. and S. Lemeshow. 2000. Applied logistic regression. 2nd edition, 

Wiley. 

 

http://www.istanbul.gov.tr/Default.aspx?pid=33&cat=1


181 

 

Hugin GUI Help. 2010. The Hugin Graphical User Interface Help Pages, 

www.hugin.com (accessed May 28, 2010). 

 

Hunt, J. D., Kriger, D. S., and Miller, E. J. 2005. Current operational urban land use – 

transport modelling frameworks: A review. Transport Reviews 25(3): 329-376. 

 

Hyodo, T., Montalbo, C. M., Fujiwara, A. and Soedhodho, S. 2005. Urban travel 

behavior characteristics of 13 cities based on household interview survey data. 

Journal of The Eastern Asia Society for Transportation Studies 6: 23-28. 

 

IBB. 2005. 1/25000 Ölçekli nazın imar planı analitik etüd ihalesi – arazi kullanım 

raporu. Ġstanbul BüyükĢehir Belediyesi - ġehir Planlama Müdürlüğü. 

 

IBB. 2010. Istanbul Metropolitan Municipality, www.ibb.gov.tr (accessed May 28, 

2010). 

 

Jaimes, F., Farbiarz, J., Alvarez, D., and Martinez, C. 2005. Comparison between 

logistic regression and neural networks to predict death in patients with 

suspected Sepsis in the emergency room. Critical Care 9(2): R150 – R156. 

 

Janssesns, D., Wets G., Brijs, T., Vanhoof, K., Arentze, T., Timmermans H. 2006. 

Integrating bayesian networks and decision trees in a sequential rule-based 

transportation model. European Journal of Operational Research 175(1): 16- 

34. 

 

Jensen, F. V. 2001. Bayesian networks and decision graphs. Springer. 

 

Jou, Rong-Chang, Hensher, D. A., and Liu, Yu-Hsin 2010. Urban commuters‟ mode-

switching behaviour in Taipai, with an application of the bounded rationality 

principle. Urban Studies 47(3): 650-665. 

 

Kahn, C.E., Roberts, L.M., Shaffer,  K.A. and Haddawy, P. 1997. Construction of a 

bayesian network for mammographic diagnosis of breast cancer. Computers in 

Biology and Medicine 27(1): 19-29. 

 

Kanafani, A. 1983. Transportation demand analysis. McGraw-Hill. 

 

Kennedy, P. 1981. A guide to econometrics. The MIT Press, Cambridge, Massachusetts. 

 

Kitamura, R., Mokhtarian, P. C., and Laidet, L. 1997. A micro analysis of land use and 

travel in five neighborhoods in the San Francisco Bay Area. Transportation 

24(2): 125-158. 

 

Kjaerulff, U., Madsen, A.L. 2008. Bayesian networks and influence diagrams: A guide 

to construction analysis. Springer. 

 

Kockelman, K. M. 1997. Travel behavior as a function of accessibility, land use mixing, 

and land use balance: Evidences from the San Francisco Bay Area. Master 

Thesis, University of California, Berkeley. 

http://www.hugin.com/
http://www.ibb.gov.tr/
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VBS-4MS9K5C-6&_user=746191&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000041658&_version=1&_urlVersion=0&_userid=746191&md5=f185b7ad3ea9461adb1d76da6a750325#bbib20


182 

 

Koppelman, F. S. and Bhat, C. 2006. A self instructing course in mode choice 

modeling: multinomial and nested logit models. U.S. Department of 

Transportation Federal Transit Administration. 

 

Kutzbach, Mark J. 2009. Motorization in developing countries: Causes, consequences, 

and effectiveness of policy options. Journal of Urban Economics 65: 154-166. 

 

Lai, Wen-Tai and Lu, Jin-Long. 2007. Modeling the working mode choice, ownership 

and usage of car and motorcycle in Taiwan. Journal of The Eastern Asia Society 

for Transportation Studies 7: 869-885. 

 

Larranaga, P., Poza, M., Yurramendi, Y., Murga R.H., Kuijpers, C.M.H. 1996. 

Structure learning of bayesian networks by genetic algorithms: A performance 

analysis of control parameters. IEEE Transactions on Pattern Analysis and 

Machine Intelligence 18(9). 

 

Lau, J. C. Y. and Chiu, C. C. H. 2004. Accessibility of workers in a compact city: the 

case of Hong Kong. Habitat International 28: 89-102. 

 

Lauritzen, S. L. 1995. The EM algorithm for graphical association models with missing 

data. Computational Statistics & Data Analysis 19(2): 191-201. 

 

Lee, Sun Mi and Abbott, P.A. 2003. Bayesian networks for knowledge discovery in 

large data sets: basics for nurse researchers. Journal of Biomedical Informatics 

(36): 389-399. 

 

Levinson, D. and Kumar, A. 1995. A multimodal trip distribution model: Structure and 

application. Transportation Research Record 1466: 124-131. 

 

Limtanakool, N., Dijst, M., and Schwanen, T. 2006. The Influence of socioeconomic 

characteristics, land use and travel time considerations on mode choice for 

medium- and longer - distance trips. Journal of Transport Geography 14(5): 

327-341. 

 

Lin, J. and Long, L. 2008. What neighborhood are you in? empirical findings of 

relationships between household travel and neighborhood characteristics. 

Transportation 35(6 ): 739-758. 

 

Lin, Jen-Jia and Yang, An-Tsei 2009. Structural analysis of how urban form impacts 

travel demand: evidence from Taipei. Urban Studies 46 (9): 1951-1967. 

 

Liu, G. 2006. A behavioral model of work – trip mode choice in Shanghai. Discussion 

Papers. No: 444, Statistics Norway, Research Departmant. 

 

Lowry, I. S. 1964. A model of a metropolis. Technical Memorandum, RM – 4035 RC, 

The Rand Corporation, California. 

 

Luce, R. 1959. Individual choice behavior: A theoretical analysis. Wiley, New York. 

 



183 

 

Lynch, S. M. 2007. Introduction to applied bayesian statistics and estimation for social 

scientists. Springer. 

 

Maat, K., Van Wee B., and Stead, D. 2005. Land Use and travel behaviour: expected 

effects from the perspective of utility theory and activity-based theories. 

Environment and Planning B: Planning and Design 32(1): 33-46. 

 

Madsen, Anders L., Lang, Michael, Kjærulff, Uffe B., Jensen, Frank. 2003. The hugin 

tool for Learning bayesian networks. Springer. 

 

Manski. C. 1973. The analysis of qualitative choice. Ph.D. Dissertation, Department of 

Economics, MIT, Cambridge. 

 

Marcot, B.G., Steventon, J.D., Sutherland, G.D., McCann, R.K. 2006. Guidelines for 

developing and updating bayesian belief networks applied to ecological 

modeling and conservation. Canadian Journal of Forest Research 36(12): 3063–

3074. 

 

Marschak, J. 1960. Binary choice constraints on random utility indicators, In Stanford 

Symposium on Mathematical Methods in the Social Sciences, Stanford 

University Press, Stanford, Calif. 

 

McArthur, D. P., Kleppe, G., Thorsen, I., and Uboe, J. 2010. The spatial transferability 

of parameters in a gravity model of commuting flows. Journal of Transport 

Geography (Article in press). 

 

McFadden, D. 1974. Conditional Logit Analysis of Qualitative Choice Behavior. In 

Frontiers in Econometrics, Academic Press, New York. 

 

Meyer, M.D. and Miller, E. J. 2001. Urban transportation planning: A decision-

oriented approach. McGraw-Hill, A.B.D. 

 

Mills, E. S. 1972. Studies in the structure of the urban economy. Baltimore: Johns – 

Hopkins. 

 

Muth, R. F. 1969. Cities and housing. Chicago: Chicago Univesity Press. 

 

Nadkarni, S., Shenoy, P. P. 2001. A bayesian network approach to making inferences in 

causal maps. European Journal of Operational Research 128(3): 479-498. 

 

National Academy of Sciences. 2009. 

http://www.nationalacademies.org/annualreport/Report_to_Congress_2009.pdf 

(accessed May 28, 2010). 

 

Neapolitan, R.E. 1990. Probabilistic reasoning in expert systems: Theory and 

algorithms. John Wiley and Sons, New York. 

 

Neapolitan, R.E., Jiang, X. 2007. Probabilistic methods for financial and marketing 

informatics. Morgan Kaufman, San Mateo, CA. 

http://www.springerlink.com/content/rv1584/?p=44f3319e2b7f4b5bbe3da36f04bf295e&pi=0
http://www.springerlink.com/content/rv1584/?p=44f3319e2b7f4b5bbe3da36f04bf295e&pi=0
http://www.nationalacademies.org/annualreport/Report_to_Congress_2009.pdf


184 

 

Newman P W G, Kenworthy J. R. 1989. Gasoline consumption and cities. A 

comparison of US cities with a global survey. Journal of the American Planning 

Association 55(1): 24-37. 

 

Newman, P & Kenworthy, J. 1999. Sustainability and cities: Overcoming automobile 

dependence. Island Press, Washington D.C. 

 

Nijkamp P., Reggiani, A. Tritapepe, T. 1996. Modelling inter-urban flows in Italy: A 

comparison between neural network approach and logit analysis. Transportation 

Research Part C: Emerging Technologies 4(6): 323–338. 

 

Nijkamp, P., Reggiani, A., and Tritapepe, T. 1997. Spatial choice behaviour: Logit 

models and neural network analysis. The Annals of Regional Science 31(4): 411-

429. 

 

Nijkamp, P., Reggiani, A., and Trsang, W. F. 2004. Comparative modelling of 

interregional transport flows: Applications to multimodal european freight 

transport. European Journal of Operational Research 155(3): 584-602. 

 

Norsys Software Corp. 2010. http://norsys.com (accessed May 28, 2010). 

 

Nurdeen, A., Rahmat, R. A. and Ġsmail, A. 2007. Modeling of transportation behavior 

for coercive measures for car driving in Kuala Lumpur. ARPN Journal of 

Engineering and Applied Sciences 2(2): 18-23. 

 

OD HH 2006. Istanbul ulaşım ana planı hanehalkı araştırması 1. aşama analitik etüd 

ve model kalibrasyonu işi 2006 – 2007. Ġstanbul BüyükĢehir Belediyesi, UlaĢım 

Daire BaĢkanlığı – UlaĢım Planlama Müdürlüğü. 

 

Oppenheim, N. 1995. Urban travel demand modeling from individual choices to 

general equilibrium. John Wiley & Sons, USA. 

 

Ortuzar, J.D. and Willumsen, L.G. 1995. Modelling transport. John Wiley & Sons, 

England. 

 

Pacione, M. 2009. Urban geography: A global perspective. 3
rd

 Edition, Routledge, New 

York. 

 

Pan, H., Shen, Q., and Zhang, M. 2009. Influence of urban form on travel behaviour in 

four neighborhoods of Shangai. Urban Studies 46(2): 275-294. 

 

Papacostas, C.S. and P.D. Prevendouros 1993. Transportation engineering and 

planning. Prentice-Hall, Inc., New Jersey. 

 

Pearl, J. 1988. Probabilistic reasoning in intelligent systems: networks of plausible 

inference. Morgan Kaufmann Publishers. 

 

Peng, Z. 1997. The jobs - housing balance and urban commuting. Urban Studies 34(8): 

1215-1235. 

http://norsys.com/


185 

 

Phibanchon, S., Abdulkareem, S., Zain, R., and Abidin, B. 2007. An adaptive fuzzy 

regression model for the prediction of dichotomous response variables. The 2007 

International Conference Computational Science and its Applications. Malaysia. 

 

Phibanchon, S., R. M., Karem, S. A., Zain, R., and Abidin, B. 2007. An adaptive fuzzy 

regression model for the prediction of dichotomous response variables. The 2007 

International Conference Computational Science and its Applications, Kuala 

Lumpur Malaysia. 

 

Pickrell, Don. 1999. Transportation and land use. in Gomez-Ibanez, William B. Tye, 

and Clifford Winston, Editors, Essays in Transportation Economics and Policy–

A Handbook in Honor of John R. Meyer. Washington, D.C.: Brookings 

Institution. 

 

Pinjari, A.R., Bhat, C.R., Pendyala, R.M., and Waddell, P.A. 2007. Modeling residential 

sorting effects to understand the impact of the built environment on commute 

mode choice. Transportation 34(5): 557 - 573. 

 

Plane, David A. 1981. The geography of urban commuting fields some empirical 

evidence from New England. The Professional Geographer 33(2): 182-188. 

 

Pucher, J. 2004. The geography of urban transportation. 3
rd

 Edition, The Guilford 

Press. 

 

Pucher, J. and Renne, J. 2003. Socieconomics of urban travel : Evidence from the 2001 

NHTS. Transportation Quarterly 57(3): 49-77. 

 

Rajamani J., C. Bhat, and S. Handy, Y. Song. 2003. Assessing the impact of urban form 

measure on nonwork trip mode choice after controlling for demographic and 

level-of- service effects. Transportation Research Record: Journal of the 

Transportation Research Board 1831: 158-165. 

 

Ramanathan, Ramu 1998. Introductory econometrics with applications. Fourth Edition, 

The Dryden Press. 

 

Reilly, M. and Landis, J. 2002. The influence of built-form and land use on mode 

choice: evidence from the 1996 Bay Area Travel Survey. University of 

California Transportation Center Research Paper, Berkeley. 

 

Robinson, R. W. 1977. Counting unlabelled acyclic diagraphs. Lecture Notes in 

Mathematics: Combinatorial Mathematics V, Springer-erlag. 

 

Rodriguez, D.A., Khattak, A.J., Evenson, K.R. 2006. Can new urbanism encourage 

physical activity? comparing a new urbanist neighborhood with conventional 

suburbs. Journal of the American Planning Association 72(1): 43-54. 

 

Rouwendal, J. and Nijkamp, P. 2004. Living in two worlds: a review of home – to – 

work decisons. Growth and Change 35(3): 287-303. 

 



186 

 

Santoso, Djoen San and Tsunokawa, Koji. 2005. Patial transferability and updating 

analysis of mode choice models in developing countries. Transportation 

Planning and Technology 28(5): 341-358. 

 

SAS 2004. SAS/ETS 9.1 User’s Guide. SAS Institute Inc., Cary/NC, USA. 

 

SAS User Guide 2008. SAS / ETS 9.2 User’s Guide. Chapter 15: The MDC Procedure, 

SAS Publishing. 

 

Sayed, T. and  Razavi, A. 2000. Comparison of neural and conventional approaches to 

mode choice analysis. Journal of Computing in Civil Engineering 14(1): 23-30. 

 

SCAG. 2001. The new economy and jobs – housing balance in Southern California, Los 

Angeles. 

 

Schwanen T. and Mokhtarian P L, 2005. What affects commute mode choice: 

Neighborhood physical structure or preferences toward neighborhoods? Journal 

of Transport Geography 13(1): 83-99. 

 

Schwanen, T., Dieleman, F.M., Dijst, M. 2001. Travel behaviour in Dutch monocentric 

and policentric urban systems. Journal of Transport Geography 9(3): 173-186. 

 

Schwanen, T., Dijst, M., and Dieleman, F. M. 2004. Policies for urban form and their 

Impact on travel: The Netherlands experience. Urban Studies 41(3): 579-603. 

 

Schwanen, T., Dijst, M., and Dieleman, F. M. 2004. The impacts of metropolitan 

structure on commute behavior in the Netherlands: A multilevel approach, 

Growth and Change 35(3): 304-333. 

 

Scuderi, Marco G., Clifton. Kelly J. 2005. Bayesian approaches to learning from data: 

using NHTS for the analysis of land use and travel behavior. Journal of 

Transportation and Statistics 8(3): 25-40. 

 

Senbil, M. Fujiwara, A., Zhang, J. and Asri, D. U. 2005. Development of a choice 

model for evaluating sustainable urban form in a developing city. Proceedings of 

The Eastern Asia Society for Transportation Studies 5: 2164-2178. 

 

Senbil, M., Kitamura, R., and Mohamad, J. 2009. Residential location, vehicle 

ownership and travel in Asia: A comparative analysis of Kei-Han-Shin and 

Kuala Lumpur metropolitan areas. Transportation 36(3): 325-350. 

 

Senbil, M., Zhang, J. and Fujiwara, A. 2007. Motorization in Asia: 14 countries and 

three metropolitan areas. IATSS Research 31(1): 46-58. 

 

Senbil, M., Zhang, J., and Fujiwara, A. 2006. Motocycle ownership and use in Jabotek 

(Indonesia) metropolitan area. Discussion Paper Series 2006-3, Hiroshima 

University. 

 



187 

 

Shaughnessy, P. and Livingston, G. R. 2005. Evaluating the Causal Explanatory Value 

of Bayesian Network Structure Learning Algorithms. Technical Report 2005-

017, Computer Science Department, University of Massachusetts Lowell. 

 

Snellen D, Borgers A, Timmermans H. 2002. Urban form, road network type, and mode 

choice for frequently conducted activities: a multilevel analysis using quasi-

experimental design data. Environment and Planning A 34(7): 1207-1220. 

 

Sohn, J. 2005. Are commuting patterns a good indicator of urban spatial structure? 

Journal of Transport Geography 13(4): 306-317. 

 

Spiegelhalter, D.J., Dawid, A.P., Lauritzen, S.L. and Cowell, R.G. 1993. Bayesian 

analysis in expert systems. Statistical Science 8: 219-283. 

 

Spirtes, P. and Glymour, C. 1991. An algorithm for fast recovery of sparse causal 

graphs. Social Science Computing Review 9(1): 62-72. 

 

Srinivasan, K. K., Pradhan, G. N., and Naidu, G. M. 2007. Commute mode choice in a 

developing country: role of subjective factors, and variations in responsiveness 

across captive, semicaptive and choice segments in commute mode choice in a 

developing country. Transportation Research Record: Journal of the 

Transportation Research Board 2038: 53-61. 

 

Srinivasan, S. 2002. Quantifying spatial characteristics of cities. Urban Studies 39(11): 

2005-2028. 

 

Srinivasan, S. and Rogers, P. 2005. Travel behavior of low – income residents: studying 

two contrasting locations in the city of Chennai, India. Journal of Transport 

Geography 13: 265-274. 

 

Stead, D. 2001. Relationships between land use, socioeconomic factors, and travel 

patterns in Britain. Environment and Planning B: Planning and Design 28(4): 

499-528. 

 

Steck, H. 2001. Constrained - based structural learning in bayesian networks using finite 

data sets. Doctoral Thesis, Munich, Germany. 

 

Steck, H., and Tresp, V. 1999. Bayesian belief networks for data mining. Proceedings of 

the Second Workshop Data Mining und Data Warehousing als Grundlage 

moderner enscheidungsunterstuetzender systeme. 

 

Sultana, S. 2002. Job/housing imbalance and commuting time in the Atlanta 

metropolitan area: Exploration of causes of longer commuting time. Urban 

Geography 23(8): 728-749. 

 

Taaffe, E. J., Gauthier, H.L., and O‟Kelly, M.E., 1996. Geography of transportation. 

2nd edition, Prentice Hall. 

 



188 

 

Tang, T. C. and Chi, Li C. 2005. Predicting multilateral trade credit risks: comparisons 

of logit and fuzzy logic models using ROC curve analysis. Expert Systems wih 

Applications 28(3): 547-556. 

 

Timmermans, H. 2003. The saga of integrated land use – transport modeling. how 

many more dreams before we make up? 10 th International Conference on 

Travel Behaviour Research, Lucerne. 

 

Torres, F. J., Huber, M. 2003. Learning a Causal Model from Household Survey Data 

using a Bayesian belief network. Presented at the annual meetings of the 

transportation research board, Washington D.C. 

 

Tortum, A., Yayla, N., and Gökdağ, M. 2008. The modeling of mode choices of 

intercity freight transportation with the artificial neural networks and adaptive 

neuro-fuzzy inference system. Expert Systems and Applications 36(3): 6199-

6217. 

 

Train, K. 2003. Discrete choice methods with simulation. Massachusetts: Cambridge 

University Press. 

 

TRB Special Report 282. 2005. Does the built environment influence physical activity? 

Examining the evidence. Transportation Research Board. Institute of Medicine 

of the National Academics, Washington D.C. 

 

Türe, M., Ġ. Kurt, E. Yavuz ve T. Kürüm 2005. Hipertansiyonun Tahmini için Çoklu 

Tahmin Modellerinin KarĢılaĢtırılması (Sinir Ağları, Lojistik Regresyon ve 

Esnek Ayırma Analizleri). Anadolu Kardiyoloji Dergisi 5(1): 24-28. 

 

Urbanrail.net. 2010. http://www.urbanrail.net/index.html (accessed May 28, 2010). 

 

Vanderlaan, L. 1998. Changing urban systems: an empirical analysis at two spatial 

levels. Regional Studies 32(3): 235-247. 

 

Vasconcellos, E. A. 2001. Urban transport, environment, and equity: the case for 

developing countries. Earthscan, London. 

 

Vasconcellos, E. A. 2005. Urban change, mobility and transport in Sao Paulo: three 

decades, three cities. Transport Policy 12: 91-104. 

 

Vega, A. and Reynolds-Feighan, A. 2006. Choice of residential location and travel 

mode to work in the greater dublin area, presented to UTSG. 

 

Vega, A. and Reynolds-Feighan, A. 2008. Employment sub - centres and travel to work 

mode choice in the Dublin Region. Urban Studies 45(9): 1747-1768. 

 

VTPI. 2010. Victoria Transport Policy Institute. http://www.vtpi.org/tdm/tdm80.htm 

(accessed September 28, 2010). 

 

http://en.wikipedia.org/wiki/Kenneth_E._Train
http://elsa.berkeley.edu/books/choice2.html
http://www.urbanrail.net/index.html
http://www.vtpi.org/tdm/tdm80.htm


189 

 

Vythoulkas, P.C. and Koutsopoulos, H.N. 2003. Modeling discrete choice behavior 

using concepts from fuzzy set theory, approximate reasoning and neural 

networks. Transportation Research Part C Emerging Technologies 11(1): 51-73. 

 

Wan, Xia., Chen, J. and Zheng, M. 2009. The impact of land use and traffic resources 

supply on commute mode choice. 2009 Second International Conference on 

Intelligent Computation Technology and Automation, Changsha, Hunan. 

 

Wang, D. and Chai, Y. 2009. The jobs - housing relationship and commuting in Beijing, 

China: The legacy of Danwei. Journal of Transport Geography 17(1): 30-38. 

 

Witten, Ian and Frank, Eibe 2005. Data mining: practical machine learning tools and 

techniques. 2nd Edition, Morgan Kaufmann. 

 

World Bank. 2002. Cities on the move: a world bank urban transport strategy review. 

Washington, D.C. 

 

Wright, Paul H. and Ashford, Norman J. 1989. Transportation engineering: planning 

and design. 3
rd

 ed., John Wiley & Sons, New York. 

 

Xie, C., Lu, J., and Parkany, E. 2003. Work travel mode choice modeling with data 

mining: Decision trees and neural networks. Transportation Research Record 

1854: 50-61. 

 

Yankaya, U. 2004. Modeling the impacts of Izmir subway on the values of residential 

property using hedonic price model, Unpublished Master of Thesis, Izmir 

Institute of Technology, Izmir. 

 

Zegras, C. 2010. The built environment and motor vehicle ownership and use: evidence 

from Santiago de Chile. Urban Studies 47(8): 1793-1817. 

 

Zhang M. 2004. The Role of land use in travel mode choice: evidence from Boston and 

Hong Kong. Journal of American Planning Association 70(3): 344-361. 

 

Zhao, P. 2010. Sustainable urban expansion and transportation in a growing megacity: 

consequences of urban sprawl for mobility on the urban fringe of Beijing. 

Habitat International 34: 236-243. 

 

Zhao, P., Lü, Bin., and Roo, Gert de. 2010. Impact of the jobs – housing balance on 

urban commuting in Beijing in the transformation era. Journal of Transport 

Geography (Article in press). 

 

 

 

 

 

 

http://books.elsevier.com/mk/?isbn=0120884070
http://books.elsevier.com/mk/?isbn=0120884070
http://books.elsevier.com/mk/?isbn=0120884070


190 

 

APPENDIX A 

 

THE SOFTWARE CODES TO ESTIMATE THE 

MULTINOMIAL LOGIT MODELS 

 

Nlogit 4.0 program is used to estimate a greater range of models for discrete choice such 

as multinomial logit, nested logit, and multinomial probit. The codes listed below only 

include base model and Model 1 that are the part of disaggregate discrete choice 

models. These models can be estimated by different programs such as SAS and Matlab. 

The software packages produce essentially the same results but in different formats. 

 

Base Model: 

 

NLOGIT 

;lhs = choice, cset, altij 

;Choices = walk, transit, car 

;Model: 

U(walk) = ascwalk / 

U(transit) = asctr / 

U(car) = asccar $ 

 

or; 

 

NLOGIT ; Lhs = mode; Choices = walk, transit, car, service 

; Rh2 = one $ 

 

 

Model 1: 

 

NLOGIT ; Lhs = mode; Choices = walk, transit, car, service 

; Rhs = tcost,ttime 

; Rh2 = one $ 
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APPENDIX B 

 

TRANSPORTATION MASTER PLAN STUDIES  

 

Table B. 1. Transportation Master Plan Studies in Istanbul in The Last Thirty Years 

(Source: OD HH 2006) 

Çalışma 
IRTC İBUNP İUAP 

İUAP 

2007 

Yapan Kuruluş 
IRTC 

Konsorsiyum 

Temel Müh. 

A.ġ. 

ĠTÜ - 

Ġstanbul 

BüyükĢehir 

Belediyesi 

Ġstanbul 

BüyükĢehir 

Belediyesi 

Yapılış Yılı 1985 1987 1997 2007 

Model TRANSPLAN 
TRANPLAN/ 

TRANSPORT 
TRANPLAN TRANSCAD 

Çalışma Alanı (Ha) 97.637 86.962 154.733 539.000 

Bölge Sayısı 97 108 209 451 

Ulaştırma Ağındaki 

Bağlantı Sayısı 

    

Karayolu 1.835 2.200 5.323 15.586 

Toplu TaĢıma 1.544 4.000 6.423 10.338 

Çalışma Alanı Nüfusu 5.784.160 5.760.000 9.057.747 12.006.999 

Doğu Yakası 
1.917.000 

(%32) 

1.850.000 

(%35) 

3.170.211 

(%35) 

4.422.418 

(%37) 

Batı Yakası 
3.867.160 

(%68) 

3.910.000 

(%65) 

5.887.536 

(%65) 

7.584.581 

(%63) 
İstihdam 1.924.000 2.035.000 2.532.211 3.957.336 

Doğu Yakası 
446.800 

(%22.5) 

457.800 

(%27) 

676.738 

(%26) 

1.179.884 

(%30) 

Batı Yakası 
1.477.200 

(%77.5) 

1.577.200 

(%73) 

1.885.473 

(%74) 

2.777.452 

(%70) 
 

(cont. on next page)



192 

 

Table B. 1. (cont.) 

 

Çalışma IRTC İBUNP İUAP İUAP 2007 

Yapan Kuruluş 
IRTC 

Konsorsiyum 

Temel 

Müh. A.ġ. 

ĠTÜ - 

Ġstanbul 

BüyükĢehir 

Belediyesi 

Ġstanbul 

BüyükĢehir 

Belediyesi 

KiĢi 4.779 9.456 37.843 263.768 

Örneklem Oranı  (%) 0,08 0,16 0,42 2,2 

Gelir Grupları (YTL)     

DüĢük ( 0 -1000 )
20

 % 24.4 % 28.5 % 27.1 % 69.0 

Orta ( 1000 -2000 ) % 61.5 % 63.4 % 65.4 % 23.5.0 

Yüksek ( 2000+ ) % 14.1 % 8.1 % 7.5 %  7.5.0 

Trafiğe Kayıtlı Özel                          

Otomobil Sayısı 
297.693 375.200 889.342 1.522.521 

Otomobil Sahipliği 

( 1/1000 Kişi ) 

    

DüĢük 10 4 7 71 

Orta 52 73 79 143 

Yüksek 125 283 208 277 

Ortalama 51 71 76 103 / 111 

Kişi Başına Ortalama 

Hareketlilik 
    

Motorlu Araçlarla 0,69 0,87 1,00 0,88 

Yaya Dahil 1,03 1,44 1,54 1,74 

Yaya Yolculuk Oranı  (%) 33 40 35 49,3 

 

(cont. on next page)

                                                             
20 2007 classification 
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Table B. 1. (cont.) 

 

Çalışma IRTC İBUNP İUAP İUAP 2007 

Yapan Kuruluş 
IRTC 

Konsorsiyum 

Temel 

Müh. A.ġ. 

ĠTÜ - 

Ġstanbul 

BüyükĢehir 

Belediyesi 

Ġstanbul 

BüyükĢehir 

Belediyesi 

Ortalama Yolculuk 

Uzunluğu 

( Dakika ) 

46 52,8 41 48,8 

Ev - ĠĢ 48,5 55,6 43 51,9 

Ev - Okul 46,3 50,9 37,4 48,5 

Ev - Diğer 43,4 51,2 42 49,8 

Ev Uçlu Olmayan 36,7 44,6 34 52,0 

Yolculuk Amaçları (%)     

Ev - ĠĢ 60 53 55,0 32,3 

Ev - Okul 9 16 14,5 21,4 

Ev - Diğer 20 19 18,3 37,2 

Ev Uçlu Olmayan 11 12 12,2 9,1 

Toplam 100 100 100 100 

Türel Dağılım  ( % )     

Özel TaĢıma 32,5 30 40 29 

Toplu TaĢıma 67,5 70 60 71 
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APPENDIX C 

 

LAND USE FORMULATIONS 

 

Ratio 1: Employment / Population Density (epdens) 

 

Population

Employment
 

 

Ratio 2: Worker / Population Density 

 

Population

ployeesNumberofEm
 

 

Ratio 3: Employment / Worker Density as a jobs – housing balance ratio (ewdens) 

 

ployeesNumberofEm

Employment
 

 

Ratio 4: Employment Area Density 

 

gareashou

asworkingareretailretailindustryradeWholesalet

sin

&
 

 

Ratio 5: Population Density (pdens) 

 

ZonalArea

Population
 

 

Ratio 6: Built Up Area Population Density 

 

aBuiltUpAre

Population
 

Built Up Urban Areas includes urban services, transportation, housing, wholesale trade, 

retail, industry, tourism, working areas, green and sport areas, military, storage, and 

health. 
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Ratio 7: Built Up Area Population Density 2 

 

aBuiltUpAre

Population
 

 

Urban Areas includes urban services, transportation, housing, wholesale trade, retail, 

industry, tourism, working areas, military, storage, and health. 
 

Ratio 8: Overall Density (Gross Density) 

 

ZonalArea

EmploymentPopulation
 

 

or  
ZonalArea

jobsresidents
 

 

Ratio 9: Gross Density 2 

 

asBuiltUpAre

EmploymentPopulation
 

 

 Ratio 10: Job Density 

 

asBuiltUpAre

Employment
 

 
Ratio 11: Worker Density 

 

asBuiltUpAre

ployeesNumberofEm
 

 

Ratio 12: Road Density Index 

 

Linear roads length over sqaure areas. In other words, a ratio of the total road length 

within each TAZ over the total areas.  
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Ratio 13: Rail Road Ratio 

 

Roadlength

ngthRailroadle
 

 

Ratio 14: Transit Access for each zones (1: Available; 0: Not Available) 

 

Ratio 15: Jobs – Housing Balance 1 (jhb) 
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Ratio 16 Jobs – Housing Balance 2 (jhb) 
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Ei = Employment Size, 

Pi = Population Size, 

C = Aktivite Oranı. 

 

Ratio 17: Employed Residents to jobs balance index (jhb) 

 

)(
1

JOBSER
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ER = Number of employed residents, 

JOBS = Number of workers. 
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Ratio 18: Land Use Mix Diversity Index (lumix) 

 

Land Use Mix Diversity = 

2

3

4

1

4

1

4

1

4
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1
T

o

T

i

T

c

T

r

 

T = r + c + i + o, 

r: residential area, 

c: commercial area, 

i: industrial area, 

o: other land uses. 

 

Ratio 19: Total Employment Density in TAZ 

 

area

employment
 

 

Ratio 20: Service Employment Density in TAZ 

 

area

employmentservice_
 

 

Ratio 21: Industrial Employment Density in TAZ (iedens) 

 

area

employmentindustrial_
 

 

Ratio 22: Commercial Employment Density in TAZ (cedens) 

 

area

employmentcommercial_
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Ratio 23: Commercial Area Ratio (C_AREA_RATIO): The ratio of commercial 

and industrial area to total area of a zone (cidens). 

 

zonalarea

industrycommercial
 

 

Ratio 24: Commercial Area Ratio 2 (cidens) 

 

AREAUPBUILT

ngareasurbanworkiindustrycommercial
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Ratio 25: Commercial Area Ratio 3 (cidens) 

 

ZonalArea

ngareasUrbanworkiIndustryCommercial
 

 

Ratio 26: Transit Length Density (in meters) of transit per acre. 

 

Area

ngthRailroadle
 

 

Ratio 27: Employment Density in TAZ 

 

reassidentialA

ngareasUrbanworkiIndustryCommercial
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Ratio 28: Industry Employment Density (1) 

 

Population

Industry
 

 

Ratio 29: Employment Density in TAZ (2) 

 

Population

CommercialIndustry
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Ratio 30: Employment Density in TAZ (3) 

 

Population

ngareasUrbanworkiIndustryCommercial
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APPENDIX D 

 

QUESTIONNAIRE FORM USED IN 2006 (O/D BASED) 

ISTANBUL HOUSEHOLD TRAVEL SURVEY   

 

 



201 

 

 



202 

 

 



203 

 

 



204 

 

 



205 

 

 



206 

 

 



207 

 

 



208 

 



209 

 

VITA 

 

Birthplace / Date:  Ġzmir,   July 15, 1978 

e-mail:   uguryankaya@iyte.edu.tr;  uyankaya@gmail.com 

Education: 

2004 – 2010   Ph.D.  Ġzmir Institute of Technology, Faculty of Architecture, 

Department of City and Regional Planning. 

Thesis: Modeling The Effects of Land Use Characteristics on 

Mode Choice For Home - Based Work Trips: The Case of 

Istanbul. 

2000 – 2004  M.Sc.  Ġzmir Institute of Technology, Faculty of Architecture, 

Department of City and Regional Planning. 

Thesis: Modeling The Impacts of Izmir Subway on the Values of 

Residential Property Using Hedonic Price Model. 

1996– 2000  B.Sc.  Dokuz Eylul University, Faculty of Architecture, 

Department of City and Regional Planning. 

 

Some Recent Publications: 

(1) Yankaya, Uğur and Celik, H. Murat. 2006.“Modeling the Impacts of Rail Transit 

Investment on the Values of Residential Property: A Hedonic Price Approach in The 

Case of Izmir Subway, TURKEY”, Ecomod: International Conference on Regional and 

Urban Modeling, 1 - 3 June 2006, Brussels. 

 

(2) Yankaya, Uğur., Celik, H. Murat., Ozdemir Serhan., and Sevil, Hakki Erhan. 2010. 

“Chaotic Structure Test and Predictability Analysis on Traffic Time Series in The City 

of Istanbul”, Ġstanbul Kültür University, 3rd International Interdisciplinary Chaos 

Symposium on Chaos and Complex Systems, 21 – 24 May 2010, Istanbul. 

 

(3) Yankaya, Uğur. and Çelik, H. Murat. 2005.“İzmir Metrosunun Konut Fiyatları 

Üzerindeki Etkilerinin Hedonik Fiyat Yöntemi ile Modellenmesi”, Dokuz Eylül 

Üniversitesi Ġktisadi ve Ġdari Bilimler Fakültesi Dergisi 20(2): 61-79. 

 

(4) Çelik, H. Murat and Yankaya, Uğur. 2006. “The Impact of Rail Transit Investment 

on the Residential Property Values in Developing Countries: The Case of Izmir 

Subway”, Turkey, Journal of Property Management 24(4): 369-382. 

 

(5) Yankaya, Uğur ve Celik, H. Murat: “Arazi Kullanım Karakteristiklerinin Tür Seçimi 

Üzerindeki Etkilerini Modellemek: İstanbul Örneği”, 1. Ulusal Planlamada Sayısal 

Modeller Sempozyumu, Ġstanbul Teknik Üniversitesi, 24 – 26 Kasım 2010, Istanbul. 

 

mailto:uguryankaya@iyte.edu.tr
mailto:uyankaya@gmail.com

