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ABSTRACT 
 

BIOKINEMATIC ANALYSIS OF HUMAN BODY 
 

This thesis concentrates on the development of rigid body geometries by using 

method of intersections, where simple geometric shapes representing revolute (R) and 

prismatic (P) joint motions are intersected by means of desired space or subspace 

requirements to create specific rigid body geometries in predefined octahedral fixed 

frame. Using the methodical approach, space and subspace motions are clearly 

visualized by the help of resulting geometrical entities that have physical constraints 

with respect to the fixed working volume. Also, this work focuses on one of the main 

areas of the fundamental mechanism and machine science, which is the structural 

synthesis of robot manipulators by inserting recurrent screws into the theory. After the 

transformation unit screw equations are presented, physical representations and 

kinematic representations of kinematic pairs with recurrent screws are given and the 

new universal mobility formulations for mechanisms and manipulators are introduced. 

Moreover the study deals with the synthesis of mechanisms by using quaternion and 

dual quaternion algebra to derive the objective function. Three different methods as 

interpolation approximation, least squares approximation and Chebyshev approximation 

is introduced in the function generation synthesis procedures of spherical four bar 

mechanism in six precision points. Separate examples are given for each section and the 

results are tabulated. Comparisons between the methods are also given. As an 

application part of the thesis, the most important elements of the human body and 

skeletal system is investigated by means of their kinematic structures and degrees of 

freedom. At the end of each section, an example is given as a mechanism or 

manipulator that can represent the behavior of the related element in the human body. 
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ÖZET 
 

İNSAN VÜCUDUNUN BİYOKİNEMATİK ANALİZİ 
 

Tezin ilk aşamasında, döner (R) ve doğrusal (P) mafsal hareketlerini temsil eden 

basit geometrik şekillerin, önceden belirlenmiş sabit hacim içerisinde özel katı cisim 

geometrilerinin oluşturulması için, istenen uzay ve altuzay gereksinimleri göz önüne 

alınarak kesiştirildiği kesişimler metoduna yoğunlaşılmıştır. Sistematik yaklaşım 

kullanılarak, oluşturulan sabit çalışma hacmine göre fiziksel sınırlamalara sahip 

geometrik cisimlerin yardımıyla uzay ve altuzay hareketleri açık olarak 

canlandırılmıştır. Ayrıca, bu çalışma, makinalar ve mekanizmalar bilimdalının en 

önemli dallarından biri olan robot manipülatörlerin yapısal sentezi konusunda 

çalışmalar içermektedir. Çalışma içerisinde kinematik mafsallar ve vida teorisi üzerine 

odaklanılmıştır. Her bir kinematik mafsalın ardışık vidalar ile hem fiziksel hem de 

kinematik gösterimleri verildikten sonra robot manipülatörler için yeni genel serbestlik 

derecesi formülü belirtilmiştir. Tezin ileriki aşamalarında “quaternion” ve “dual 

quaternion” cebiri kullanılarak mekanizmaların sentezlenmesi üzerine çalışılmıştır. 

Interpolasyon yaklaşımı, en küçük kareler yaklaşımı ve Chebyshev yaklaşımı olmak 

üzere üç farklı teknik kullanılarak küresel dört çubuk mekanizmasının altı dizayn 

noktasında fonksyon üretme sentezi yapılmış, her bölüm için farklı örnekler verilmiş ve 

sonuçlar tablolarda gösterilmiştir. Çalışma içerisinde kullanılan metodların 

karşılaştırılmaları ayrıca yapılmıştır. Tezin son bölümlerinde insan vücudu ve iskelet 

sisteminde bulunan önemli elemanlar kinematik yapıları ve serbestlik derecelerine göre 

incelenmiş, her bölümün sonunda incelenen elemanın davranışını gösterebilecek 

mekanizma veya manipulatör örnekleri verilmiştir. 
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CHAPTER 1 

 

INTRODUCTION 

 

Although the thesis title just indicates the “Biokinematic Analysis of Human 

Body”, the studies that will be introduced throughout this study are interrelated but are 

not solely limited to the cover name. During the following chapters, both theoretical and 

practical aspects will be given along with illustrations and examples on the fundamental 

area of mechanism and machine science, especially for the design of mechanisms and 

robot manipulators. 

 

1.1. Research Statement 

 

During the first chapters of the study different mathematical tools such as 

quaternion algebra, biquaternion algebra and screw theory are introduced as they are 

used throughout the study for various purposes. The reason behind the usage of multiple 

models is the fact that each of them has unique characteristics in different cases that 

simplifies the overall problem. For instance, quaternions can be easily used to carry out 

the calculations of solely rotational sequences, while the biquaternions can be used in 

the cases, where translational sequences exist as well as rotational ones. On the screw 

theory side, both rotational and translational components can be introduced in only one 

screw, where they can be used to represent the displacements, velocities, forces and 

torques in three dimensional space. 

 One of the important studies of this thesis concentrates on the development of 

rigid body geometries by using method of intersections, where simple geometric shapes 

representing revolute (R) and prismatic (P) joint motions are intersected by means of 

desired space or subspace requirements to create specific rigid body geometries in 

predefined octahedral fixed frame. Using the methodical approach, space and subspace 

motions can be clearly visualized by the help of resulting geometrical entities that have 

physical constraints with respect to the fixed working volume. Also, using the same 

idea, one degrees of freedom (DoF) mechanism with variable general constraint one is 

created and illustrated along with its design procedure for further references. 
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 Afterwards, the thesis focuses on one of the main areas of the fundamental 

mechanism and machine science, which is the structural synthesis of robot manipulators 

by inserting recurrent screws, screws that have directions intersected one another in 

series, into the theory and focusing on the smallest elements of the robot manipulators, 

kinematic pairs. Brief information about the screws along with illustrations is presented. 

Physical representations and kinematic representations of both lower and higher 

kinematic pairs with recurrent screws are directly given. New universal mobility 

formulations are introduced for both kinematic pairs and robot manipulators. Examples 

are given throughout the related chapters to clarify the idea behind the subject and the 

method is applied to the existing robot manipulators in previous structural synthesis 

studies of the same author. 

 Also the thesis deals with the function generation synthesis of spherical four bar 

mechanism for the six precision points in order to design six construction parameters 

0 0 1 2 3, , , ,ϕ ψ α α α , and 4α . Quaternion algebra is used as a mathematical tool to derive 

the objective function. Three different methods as interpolation approximation, least 

squares approximation and Chebyshev approximation are used for synthesis procedure. 

Separate examples are given for each section and the results are tabulated. Comparisons 

between the used methods are given at the end of the related chapter. 

Another interesting and challenging point in the study is using dual quaternions 

in the process of kinematic synthesis to compute the objective function of mechanisms 

that are desired to be synthesized. Before introducing the algebra, a mixed method of 

quaternion and vector algebra is used to show the limitations of quaternions and to 

verify the results of the dual quaternion algebra in the synthesis procedure. One degree 

of freedom mechanism from subspace five is used as an example and RP serial robot 

manipulator is used for the calculations. A new approach is proposed in the synthesis of 

subspace five mechanism by integrating both function generation and body guidance 

synthesis. 

Following the theoretically rich sections, as its title clearly implies, this thesis 

starts to investigate the kinematics of human body. All the important sections of the 

human skeletal system and body including human eyes, arm, hand, leg, foot, skull and 

vertebral column are introduced in terms of their kinematical structure and DoF with 

their possible mechanism or manipulator counterparts. The importance of the study is to 

extract all possible information about the biokinematics of human body into one 
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reference that can be used for further studies in the area of medicine to design advanced 

prosthetics and robotics to design advanced humanoid robots for various tasks. 

 

1.2. Literature Survey 

 

Quaternions, and biquaternions are being used continuously in the area of 

computational kinematics. First application of quaternions is found in the description of 

motion of the rigid body (Hamilton, 1866). The topological geometry in spatial 

kinematics is discussed by Porteous (1921), where the representation of spherical 

displacements and motions are described by the rotation group of unit quaternions. 

Nixravesh et al. (1985) introduced the method which is based on a sequence of matrix 

computation, and identities for relating a representation of spherical motion with their 

corresponding velocity and acceleration vectors. Angeles (1988) introduced the theory 

of vector and scalar invariants of a rotation tensor as a function of time of a spherical 

motion. Chevallier (1991) discussed about dual quaternions in kinematics. Collins et al. 

(1998) studied the workspace and singular configurations of the 3-RPR parallel 

manipulator, where they also used quaternions. Larochelle (2000) used planar 

quaternions to create synthesis equations for planar robots, and created a virtual reality 

environment that could promote the design of spherical manipulators. Martinez et al. 

(2000) presented quaternion operators for describing the position, angular velocity and 

angular acceleration for a spherical motion of a rigid body with respect to the reference 

frame. McCarthy et al. (2006) used Clifford algebra exponentials in the kinematic 

synthesis. Dai (2006) reviewed theoretical development of rigid body displacements, 

where he also mentions about quaternions and biquaternions. Roy et al. (2008) used 

quaternion interpolation in the finite element approximation of geometrically exact 

beam. Zupan (2009) tried to implement rotational quaternions into the geometrically 

exact three dimensional beam theory. In the study, novel finite element formulation was 

proposed. Pennestri et al. (2009) used dual quaternions for the analysis of rigid body 

motions and tries to apply them to the kinematic modeling of the human joints. 

Cellodoni et al. (2010) investigated an elastic model of rod and carried out the group of 

rotations by using quaternions. Banavar et al. (2010) developed an analytical model of a 

novel spherical robot by using quaternion algebra. Liao et al. (2010) used biquaternions 

in the inverse kinematic analysis of general 6R serial manipulators. 
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In accordance with the mathematical tools, investigation of rigid body motions 

in space and constrained subspaces is another fundamental tool for designing different 

new kinds of mechanisms in the area of mechanism and machine science. Although 

there are not so many studies that are solely concentrated on rigid body movements and 

subspaces, the idea is indirectly found in the works that involve mechanism designs and 

mobility calculation criterions. 

 Herve (1999) introduced the lie group of rigid body displacements as an 

important tool for mechanism design. Gogu (2005) proposed a new mobility calculation 

formulation for parallel mechanisms with elementary legs. In his formulation, the 

independent motion parameters of the platform and the legs must be observed with 

respect to the fixed frame. Zhao et al. (2006) pointed out in the beginning of their study 

that, determination of the independent motions of the end effectors is the main problem 

in mechanism analysis. Müller (2008) mentioned in one part of his study about the 

mobility criteria that are based on motion groups, where the main idea is to identify the 

group of rigid body motions. Alizade et al. (2007) presented the history of structural 

formulations, where space or subspace numberλ was introduced in many works of 

different authors. Also in their papers (2004-2008), they proposed new mobility and end 

effector motion formulations by taking into account subspace of the platforms, leg 

loops, branch loops and legs. Using these formulations along with the design 

procedures, they created different kinds of manipulators. Throughout the presented 

studies in the literature, it is apparent that the visualization of the end effector motions 

and determination of the space or subspace number λ  have vital importance. Multiple 

kinds of manipulators are designed or analyzed after these sequences are fulfilled. 

During the last century, research conducted in the area of structural synthesis of 

robot manipulators have continuously increased. Due to this rapid increase in research, 

many investigations on the subject are discussed in literature by using different tools 

and methodologies. Among those investigations, new mobility formulations as well as 

new procedures to use or follow in the structural design of robot manipulators are 

proposed. Thanks to its versatility, screw theory can be classified as one of the most 

prominent tools used in the mentioned researches. 

In their studies Huang and Li (2002-2003) proposed a screw theory based 

method for the type synthesis of parallel manipulators. A new method is introduced to 

find constraints given to the end effector from limbs by using reciprocal screws and the 

motion of the platform is decided. Three-, four-, and five-DoF non-constrained and 
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overconstrained manipulators are also revealed in their researches. Similarly, by using 

theory of reciprocal screws, Fang and Tsai (2002-2004) investigated four-, and five-

DoF parallel manipulators with identical limb structures and three-DoF translational and 

rotational non-constrained and overconstrained manipulators. Kong and Gosselin (2001-

2007) proposed a way for the type synthesis of parallel manipulators that is composed 

of screw theory and virtual chain approach. Jin et al. (2004) investigated the structural 

synthesis of parallel manipulators based on the selective actuation by using screw 

algebra. His study resulted in developing three-DoF spherical motions, three-DoF 

translational motions, three-DoF hybrid motions and six-DoF spatial motions depending 

on the types of the actuation. 

Being the main components of mechanisms and robot manipulators, kinematic 

pairs have also vital importance in structural synthesis. Designers should decide and 

select which kinematic pairs to be used from a variety of choices in their designs with 

respect to the given constraints, such as workspace limitations, subspace conditions, and 

mobility requirements. Many researchers are used kinematic pairs in their proposed 

mobility calculations and structural synthesis procedures. Those procedures can be 

examined briefly in the detailed review about kinematic structure of mechanisms that 

has been introduced by Mruthyunjaya (2003), and in the studies of Alizade et al. (2007) 

that have reviewed the history of DoF analysis and structural synthesis formulations in a 

table including the names of authors, publication dates and commentaries. The updated 

table is presented in this study and can be seen in Table 1.1. 

As additional information, in the design process of mechanisms, the importance 

of the kinematic synthesis problem cannot be neglected. After the selection of the 

mechanism that will be used for a specific task, its construction parameters must be 

designed with respect to the given or desired constraint conditions. There are different 

types of synthesis for different tasks. Function generation is one kind of synthesis, 

where mentioned constraint conditions are related with some function between the input 

and output links. It is important to note that the whole calculation process can become 

complicated especially when the number of design parameters is increased. Thus, 

different methods throughout the literature have been developed and examined in 

various mechanisms to overcome this difficulty. 
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Table 1.1. Formulas for structural analysis and synthesis (revisited). 

 Equations Authors Commentary 

1 1L j l= − +  

l is the number of links; j is the number of joints 

L. Euler, 
1752 

L is the number of 
independent loops; 

2 

3 2 1 0

1
0 1

2
3 1

m

m

m m

l j

j j l

j l l n l

− − =

< − < +

> − = = −

 
P. L. Chebyshev,  

1869 

Eq. for planar mech. with 1 
DoF  

mj  is the number of moving 

joints 

ml = n is the number of 

moving links 

3 
3 2 4 0

1

l j

j n

− − =

= −
 

J. J. Sylvester,  
1874 

Eq. for planar mech. with 1 
DoF 

4 

1

) 3 2 3

) 3 2 4 0

) 2 3 0

) 3 2 4 0

) 5 6 7 0

6( 1) 5

a M l j

b l j q

c l j

d l j q C

e H l

or M l p

= − −

− − + =

− − =

− − + − =

− + =

= − −

 

q is the number of overclosing constraints  

1p  is the one mobility joints 

C is the number of cam pairs 
H is the number of helical joints 

M. Grübler, 
1883, 1885 

M is mobility of 
mechanisms. DoF depends 
from the rank of functional 

determinant (r=3, 2) 
a) DoF for planar mech. 

b) Eq. for kinematic chains 
with revolute R and 
prismatic P pairs 

c) Eq. for plane mech. just 
with prismatic P pairs 

d) Eq. for kinematic chains 
with revolute, prismatic and 

cam pairs 
e) DoF of spatial mech. with 

helical joints 

5 

) ( 1)( 1) 2

) ( 1)( 1) 2

) ( 1) 5

5 7, 6, 1,

1

u

i

u p

a l

b l q K

c M l f j L q

l L

K j

λ ν

λ ν

ν λ ν

− − + =

+ + − − + =

= − + − − +

= + = = −

= −

∑
∑

∑

 

pj  is the passive mobilities in the joints 

if  is the mobility of kinematic pairs 

P.O. Somov,  
1887 

a) Eq. for plane (λ=3) and 
spatial (λ=6) mech. (M=1) 
b) Eq. for plane and spatial 

mech. (M=1) 
c) Somov’s universal 
structural formula 

λ  is the number of 
independent parameters 
describing the position of 

rigid body (general constraint 
parameter) 

6 

) ( 1) 1a l Sλ − − =  

( ) iS i fλ= −∑  is the total number of 

independent joint constraints 

) 1

) ( ) 1

ib f L

c j L S

λ

λ

− =

− − =
∑

 

Kh. I. Gokhman,  
1889 

a) Eq. for plane and spatial 
mech. (M=1) 

b) Loop mobility criterion 
(M=1) 

c) Eq for mech. (M=1) 
Eqs. (a) and (c) gives Euler’s 

equation 

7 6M n S= −  
G. Koeings,  

1905 

Mobility Eq. for spatial 
mech. 

(similar to Gokhman Eq.) 

8 3 2 0n j− =  
L. V. Assur, 

 1916 
Eq. for simple structural 

groups 

9 

( 1) ( 1) 0

( 1)
s

s

S l

M n S

λ λ λ

λ λ

− − + + =

= − −
 

sS  is the number of screw pairs 

R. Muller, 
1920 

Eq. for kinematic chains with 
screw pairs 

(Similar to M. Grubler Eq.) 

(cont. on next page) 
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Table 1.1. (cont.) 

 Equations Authors Commentary 

10 

5

1

6( 1) i v

i

M l ip q n
=

= − − + −∑  

ip  is the kinematic pairs with i class 

i = number of joint constraint 

A. P. Malushev,  
1923 

Universal Somov-
Malushev’s mobility Eq. 

vn  is the number of links 

with variable length 

11 
1

1

( 1)

( 1) ( )

j

i

i

j

i

i

M l j f

M l i f

λ

λ λ

=

=

= − − +

= − + −

∑

∑
 

K. Kutzbach,  
1929 

Other form of universal 
mobility Eq. 

12 
23( 1) 2( )M l P R K p= − − + + −  

 
P is the number of prismatic pairs 
R is the number of revolute pairs 

N. I. Kolchin,  
1932-1934 

Structural formula for planar 
mechanisms. 

K is the number of higher 
pairs with pure roll or pure 
slippage 

2p  is the number of higher 

pair with rolling and slipping 

13 
1 1

6
j L

j K

i K

M n S d q
= =

= − + +∑ ∑  

6K Kd λ= −  is the family of the elementary 

closed loop or the number of independent 
constraints in the loops 

I. I. Artobolevskii, 
1935 

Other form of universal 
mobility Eq. First time in 
mobility Eq., it is used 

variable general constraint as 
variable number of 

independent close loops 
family. 

Kλ  is the variable general 

constraint 

14 

1

1

( )

2,....,6

i

i

M n i p q
λ

λ λ

λ

−

=

= − − +

=

∑
 

V. V. Dobrovolskii, 
1939 

Other form of universal 
structural formula 

15 

)

)

1,...,5 2,...,6

)

i

i

i

i

a M ip r

b M ip L

i

c L j n

λ
λ

λ

λ

= −

= −

= =

= −

∑

∑ ∑
 

U. F. Moroshkin, 
1958 

a) Structural Eq. of system 
with the integrable joining 
b) Eq. of the DoF with 

variable general constraint 
c) Number of independent 

close loops  

r λ=  is the rank of linear 
independent loop 

16 
1 1

j L

i K p

i K

M f r j
= =

= − −∑ ∑  

1

j

i

i

f
=
∑  is the total number DoF of joints with 

revolute, prismatic and helical joints; 

R. Voinea and 
M. Atanasiu,  

1959 

Mobility Eq of a complex 
mechanisms 

1≤rK≤6 is the rank of screw 
system 

17 1L j l= − +  
B. Paul,  
1960 

Using formula #1, it was 
created topological condition 
of criterion for the degree of 
constraint of plane kinematic 

chains 

18 
1

6( 1)
j

i

i

M f j l
=

= − − +∑  
W. Rössner ,  

1961 

The mobility Eq. taking into 
consideration Euler’s 

formula 
 # 1 

(cont. on next page) 
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Table 1.1. (cont.) 

 Equations Authors Commentary 

19 
1

6( 1) 3( 1)
j

i

i

M f j l j l
=

= − − + − − +∑  
H. Boden, 

1962 

Mobility Eq., consisting from 
the planar and the spatial 

loops 

20 

1

1

) 6

) 3

) 2( 1)

) 2

j

i

i

j

i

i

a M f L q

b M f L q

c M l j q

d M j L q

=

=

= − +

= − +

= − − +

= − +

∑

∑
 O. G. Ozol,  

1962 

a), b), and c) mobility Eq.s 
for variable general 

constraint, as λ=6, 3, 2 with 
excessive constraints 
d) mobility Eq. for 

cylindirical mechanisms 
(λ=2) 

21 M F r= −  
F is the relative freedom between links 

K. J. Waldron,  
1966 

Mobility Eq of closed loop 
r is the order of the 

equivalent screw system of 
the closed loop 

22 
5

1

(6 ) (6 )i

i r

M i p d L
= +

= − − −∑  
N. Manolescu,  

1968 

Mobility Eq. with the 
parameter of the family of 
the elementary closed loop. 

23 

5

1 1

6( 1) (6 )
L

i K

i K

p

M l i f d

q j

= =

= − − − + +

+ −

∑ ∑

∑ ∑
 

C. Bagci, 
 1971 

Mobility Eq. to calculate 
DoF of motion in a 

mechanism similar to Eq. # 

13 by adding parameter pj  

24 
5

1

(6 )( 1) ( )a a i

i

M d l i d p
=

= − − − −∑  
P. Antonescu, 

 1973 

Mobility formulas with 
different values for the 
motion coefficient λ 

(formula #14) 

25 

1 1

1 1

1

1

)

)

)

)

2 , 3, 4 , 5, 6

E L

i K

i K

j L

i K

i K

E

i

i

j

i

i

a M m

b M f

c M m L

d M f L

λ

λ

λ

λ

λ

= =

= =

=

=

= −

= −

= −

= −

=

∑ ∑

∑ ∑

∑

∑

 

E is the total number of independent 
displacement variable 

im  is the relative displacements of the joints 

if  is the relative joint motion when im  

correspond in 1:1 with DoF in joints  

F. Freudenstein, 
 R. I. Alizade,  

1975 

Mobility Eq.s without 
exception 

a) and b) mobility Eq.s are 
used for mechanisms which 
contain mixed independent 
loops with variable general 

constraint. 
c) and d) Mobility equations 
of mechanisms with the same 

number of independent, 
scalar loop closure equations 
in each independent loop. 

Kλ  is the number of 

independent, scalar, 
differential loop closure 

equations 

λ is the DoF of space where 
the mechanism operates 

26 
1

( 1)
j

i

i

M l j fλ
=

= − − +∑  
K. H. Hunt, 

 1978 
Mobility Eq. coming from 

Eq. 25d using Eq 1 

(cont. on next page) 
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Table 1.1. (cont.) 

 Equations Authors Commentary 

27 
1

( 1) ( )
j

i

i

M l fλ λ
=

= − − −∑  
J. M. Herve,  

1978 

Mobility formula based on 
the algebraic group structure 

of the displacement set 

28 

1

1 1

L L

K Kj

K j K

M Fλ
−

= = +

= −∑ ∑ ∑  

KjF  is the mobility of the joints that is common 

between any two loops K and j, and the mobility 
of the joints in the L loops can be counted once 
or twice 
 

A. Gronowicz,  
1981 

Mobility Eq. for multi loop 
kinematic chains 

29 
1

j

i

i

M f r
=

= −∑  
T. H. Davies,  

1981 

Mobility equations similar to 
Eq. # 15a 

r is the rank of the coefficient 
matrix of constraint 

equations 

30 

1

2

1
2

1 1 1 1

2

1

1
( 2)

2

1
( 3 2)

2

NL L L

K Kj i i ni

K K j K i

N

i i ni

i

M F n n F

n n F

λ
−

= = = + =

=

= − + + − +

+ − +

∑ ∑∑ ∑

∑

%
% %

 

V. P. Agrawal, 
 J. S. Rao,  

1987 

Mobility Eq. to any general 
mechanism with constant or 
variable general constraints 
with simple or multiple joints 

1
N , 

2
N is the total number of 

internal and external multiple 
joints respectively 

in% , niF
%
; in , niF is the 

number of links and the 
mobility of simple joints 

forming the i th internal and 
external multiple joints 

respectively. 

31 

1 1

1

)

) ( 1)

j L

e e

i K

i K

L

e

K comj comj

K j

a M f

b M L f

λ

λ

= =

=

= −

= − −

∑ ∑

∑ ∑
 

comjL  is the number of loops with common joint 

j 
e

comjf  is the active degree of mobility of the j th 

common joint 

F. Dudita, 
D. Diaconescu,  

1987 

Eq. of a elementary or a 
complex (multi loop) 

mechanisms 
e

if is the active mobilities in 

i th joint 
e

Kλ is the dimension of the 

active motion space 

32 

( )

( ) ( ) ( )

M nullity J

nullity J d v r J

=

= −
 

J is the Jacobian matrix; r(J) is the rank of the 
Jacobin matrix; d(v) is the finite dimensional 
vector space v 

J. Angeles, 
C. Gosselin,  

1988 

The mobility Eq. by using 
the Jacobian matrix of a 

simple or multi loop closed 
kinematic chain without 

exception 

(cont. on next page) 
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Table 1.1. (cont.) 

 Equations Authors Commentary 

33 

1

1

1

)

) ( )

) ( )

) ( )

B b

E

i B b

i

j

i B b

i

j

i B b

i

p

p

a L j B c

b M m j B c q j

c M f j B c q j

d f j B c

λ

λ

λ

=

=

=

= − −

= − − − + −

= − − − + −

= − −

∑

∑

∑

 

B is the number of mobile platform;
B
j  is the 

total number of joints on the mobile platforms 

R. I. Alizade,  
1988 

a) A new formula of number 
of independent loops 
b) and c) are structural 
formulas as a function of 
number of branches, 
platforms and sum of 

mobility of kinematic pairs 
and other parameters 

d) Eq. for simple structural 
groups (λ=6,5,4,3,2) 

bc is the total number of 

branches between mobile 
platforms 

34 1

( )
lc

i

i

M fλ λ
=

= − −∑  

( )ifλ −  is the degree of constraint of the 

platform 

J. M. McCarthy,  
2000 

Mobility Eq. of a parallel 
manipulator 

35 
1

(6 )( 1)
j

i

i

M d l j f q
=

= − − − + +∑  
Z. Huang, 
Q .C. Li, 
2003 

Structural formula for 
parallel mechanisms 

36 

, ,

1

1

2

) ( )

) ( )

)
l b l B b

j

i

i

j

i

i

c c c c j c

a M f c B

b f c B

c L c B

λ

λ

=

=

= + = −

= − −

= −

= −

∑

∑  

Rasim Alizade, 
 Cagdas Bayram,  

2003 

a) MobilityEq. of 
mechanisms  

b) Eq.’s for simple 
structural groups. 

c) New formula of the 
number of independent 

loops 
c  is the sum of legs and 

branches, 

lc is the total number of 

legs, connecting  mobile 
platforms to ground 

37 1 1

j l

i j p

i j

M f S S
= =

= − +∑ ∑  

pS  and jS  are spatialities of mobile platform and 

legs respectively 

Grigore Gogu,  
2005 

Mobility Eq. for parallel 
mechanisms 

(cont. on next page) 
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Table 1.1. (cont.) 

 Equations Authors Commentary 

38 
1 1

1

) ( 3) ( ) ( )

) ( )

l l
c c

l l p

l l

j

i p

i

l

l b h

b M d D f q j

a M B c f q j

c c c c

λ

λ

λ
= =

=

= + + − + + −

= − + + −

−

= + +

∑ ∑

∑

 

D is number of dimensions of vectors in 
Cartesian space 
 
di is number of dimensions of vectors in 
Subspace 

Rasim Alizade,  
Cagdas Bayram, 
Erkin Gezgin, 

2005 

a) Mobility Eq. for robotic 
systems with independent 

loops with variable 
general constraint 
b)A new structural 

formula of mobility loop-
legs equation for parallel 

Cartesian platform 
manipulators. 

λ is the general constraint 
parameters of simple 

structural group 

h
c is the number of hinges 

39 
1 1

1 1

) ( ) ( )

) ( ) ( )

l

l

cn

h L L l l

L l

cn

h l L L l

L l

a M j f f

b m j c f d D

λ λ λ

λ λ

= =

= =

= + + − + −

= + + + − + −

∑ ∑

∑ ∑
 

Rasim Alizade,  
Fatih Cemal Can, 
Erkin Gezgin, 

2008 

Mobility (M) and motion 
(m) Eq. for serial parallel 

Euclidean robot 
manipulators with 
variable general 

constraints that include, 
several hinges, legs and 

branch-loops. 
 

40 

3

1 2 1

) $ , 1

) $ 2 ( 2) ( 1)

k

l L

i j k

i j k

a M s T

b M s l N j T λ
= = =

= + −Γ Γ = +

= + − − − − − −∑ ∑ ∑
 

T stands for the type number of the kinematic 
pair 
 
Γ is the contact origin of the kinematic pair 
 
$ represents the total number of screws 
 
s is the number of screws with variable pitch 

Rasim Alizade,  
Erkin Gezgin, 

2010 

Mobility equation of the 
kinematic pairs (Mk) and 
the general mobility 
equation (M) for the 
mechanisms and 
manipulators 
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As spherical mechanisms hold a transition position between the planar and 

spatial linkages, they attract many authors for synthesis purposes. Being the smallest 

member of close loop spherical mechanisms, function generation synthesis of four bar 

spherical linkage can be seen in many studies. Denavit and Hartenberg (1964) presented 

the synthesis procedure for three precision points in the function generation of spherical 

four bar mechanism, where a logarithmic function is decided to be generated. 

Zimmerman (1967) proposed an algorithm for the same mechanism for four precision 

points. Polynomial approximation is used for three, four and five precision points in the 

works of Alizade (1994), Alizade et al. (2005), Farhang et al. (1988, 1999), Rao et al. 

(1973), and Murray et al. (1995) for the spherical four bar mechanism. Also in the paper 

of Alizade et al. (2005), effects of the locations of the precision points are considered 

and a graphical method in CAD environment is shown to verify the solutions of the 

construction parameters. Sancribrian et al. (2007) proposed a synthesis method that uses 

a dimensional synthesis technique and local optimization. Cervantes-Sanchez et al. 

(2009) introduced a new approach for three and four precision points exact kinematic 

synthesis, where several examples for the spherical four-bar mechanism are given. Also, 

Kazerounian et al. (1993) and Gupta et al. (1998) presented additional conditions as 

rotability, branch and circuit defect elimination etc. that can be controlled after the 

synthesis problem. 

On the biokinematics side, many authors has studied the various elements of the 

human body in terms of their moving capabilities, structures and functions. Jenkin et al. 

(1993) presented the hardware and software designs of the stereo robotic head system 

“TRISH” with torsional eye movements. Haslwanter (1994) studied the mathematics of 

the three-DoF human eye rotations by using rotational matrices and the quaternions. 

Gosselin et al. (1994) represented the agile eye that is an optimized parallel spherical 

manipulator with the capability to orient a camera within a workspace larger than the 

human eye. Moeslund et al. (2001) dealt with the pose estimation of the human arm by 

using kinematic constraints. In their work, the main concern was on the visual motion 

capture of the human arm. Koolstra (2002) reviewed the dynamics of human 

masticatory system. In the study, the movement characteristics of the human 

masticatory system are discussed. Breazeal (2003), dealt with the role of emotion and 

expressive behaviour between the humans and expressive antromorphic robots. 

Ludewig et al. (2004) studied three dimensional clavicular motions during arm 

elevation. Admiraal et al. (2004) modelled the dynamics and kinematics of the human 
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arm movements. In their work, the relation between the dynamics and kinematics is 

studied. Pileicikiene et al. (2004) reviewed the human masticatory system from a 

biomechanical perspective. Oswald et al. (2004) tried to integrate an anthropomorphic 

robot hand into a humanoid robot. Wu et al. (2005) placed recommendations for the 

various joint coordinate axes of human body. Peck et al. (2007) accomplished the 

modeling of human jaw and its muscles. Benjelloun et al. (2007) conducted the 

vertebral mobility analysis by using faces contours detection and anterior faces 

detection. In their work, X-ray images of the spinal column in various positions are 

used. Zhang et al. (2008) proposed three-DoF humanoid eye that is actuated by using 

artificial pneumatic muscles. Barshan et al. (2009) classified the human leg motions by 

using two low-cost piezoelectric gyroscopes that are placed on the legs. Raabe et al. 

(2009) introduced a new dynamic jaw simulator based on the kinematics of human jaw. 

In their work, six-DoF Steward-Gough Platform is used as a manipulator. Buschmann et 

al. (2009), introduced a walking humanoid robot, LOLA, to reach fast and human like 

walking. 

As the presented literature review related with this thesis study shows the 

development of the subjects throughout the century, it is clear that there will be more 

advanced future studies by the help of rapidly evolving technology and new theoretical 

methods. 
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CHAPTER 2 

 

QUATERNION AND DUAL QUATERNION ALGEBRA 

 

 William Rowan Hamilton searched for thirteen years for a system for the 

analysis of three-dimensional space. This search came to end in 1843 in four-

dimensional space with his discovery of hyper-complex numbers of rank 4, named 

quaternions, one of the main systems of the vector analysis. 

 In general, quaternions are four dimensional numbers that have one scalar and 

one vector part. The vector part is obtained by adding the elements i, j and k to the real 

numbers which satisfy the following relations: 

 

2 2 2 -1= = = =i j k ijk                                              (2.1) 

 

Equation (2.1) shows the main rule of Hamilton for dealing operations on the vector 

part of the quaternions. All of his concepts and ideas were developed in the light of this 

rule. 

 

2.1. Quaternion Preliminaries 

 

 Quaternions can be represented mainly by two alternative ways. As the name 

already suggests, they can be considered as the row of four real numbers that can be 

represented by; 

 

                                                        0 1 2 3( , , , )q q q q q=                                                 (2.2) 

 

where, 0 1 2, ,q q q  and 3q  are simply real numbers or scalars. Also, they can be denoted 

by scalar and vector parts as, 

 

                                                               0q q= + q                                                      (2.3) 
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where, 0q  is some scalar and q  is an ordinary vector in 3R . Equation (2.3) can be 

extended to, 

 

                                                    0 1 2 3q q q q q= + + +i j k                                             (2.4) 

 

As seen in Equations (2.3 & 2.4), quaternions can be represented as the sum of 

scalar and vector, which is not defined in ordinary linear algebra. So that, it is important 

to express the operation procedures of the quaternions. 

 

2.2. Quaternion Addition and Equality 

 

Let us take two quaternions 0 1 2 3q q q q q= + + +i j k and 0 1 2 3p p p p p= + + +i j k . 

These quaternions are equal if and only if they have exactly the same components, that 

is; 

 

                                      

0 0

1 1

2 2

3 3

p q

p q
p q

p q

p q

= 
 = 

= ⇔  
= 

 = 

                                                  (2.5) 

 

In the addition case, the sum of two quaternions p q+ is described by adding the 

corresponding components of both quaternions, Equation (2.6). 

 

                      0 0 1 1 2 2 3 3( ) ( ) ( ) ( )p q p q p q p q p q+ = + + + + + + +i j k                (2.6) 

 

Due to the fact that there is no difference between the addition of quaternions and the 

row of four real numbers, quaternion addition satisfies the field properties that are 

applied to the addition. 

The addition of two quaternions is again a new quaternion, so the set of 

quaternions are closed under addition, Equation (2.7). 
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0 1 2 3

p q r

r r r r r

+ =

= + + +i j k
                                            (2.7) 

 

Also each quaternion has a negative or additive inverse where each component of the 

corresponding quaternion is negative, Equation (2.8). 

 

                                                       0 1 2 3r r r r r− = − − − −i j k                                          (2.8) 

 

Moreover, there exists a zero quaternion, in which each component of the quaternion is 

“0”, and the sum of any quaternion with the zero quaternion is again itself, Equation 

(2.9). 

 

                                                     

0

1

2

3

0

0
0

0

0

p

p
p

p

p

r p r

= 
 = 

= ⇔  
= 

 = 
+ =

                                                 (2.9) 

 

Finally, note that, the quaternion addition is commutative and associative, Equation 

(2.10). 

 

                                                      
( ) ( )

p q q p

p q r p q r

+ = +

+ + = + +
                                        (2.10) 

 

2.3. Quaternion Multiplication 

 

 When compared with the addition, quaternion multiplication is more 

complicated, except the multiplication by a scalar. Similar to the addition, 

multiplication of a quaternion by a scalar quantity is described by a quaternion, in which 

components of the corresponding quaternion is multiplied by the scalar Equation (2.11). 

 

                                                
0 1 2 3

Aq p

p Ap Ap Ap Ap

=

= + + +i j k
                                     (2.11) 
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On the other hand, if a quaternion is multiplied by another quaternion, more detailed 

procedure should be followed. 

 In the product of two quaternions, the fundamental rule of Hamilton, Equation 

(2.1), should be satisfied. Equation (2.1) can be opened as: 

 

                                                             

2 2 2 -1= = =i j k

ij = k = -ji

jk = i = -kj

ki = j = -ik

                                            (2.12) 

 

and the product of two quaternions will be, 

 

                                   

0 1 2 3 0 1 2 3

2
0 0 0 1 0 2 0 3 1 0 1 1

2
1 2 1 3 2 0 2 1 2 2

2
2 3 3 0 3 1 3 2 3 3

( )( )pq p p p p q q q q

p q p q p q p q p q p q

p q p q p q p q p q

p q p q p q p q p q

= + + + + + +

= + + + + +

+ + + + +

+ + + + +

i j k i j k

i j k i i

ij ik j ji j

jk k ki kj k

                    (2.13) 

 

When Equation (2.12) and (2.13) are combined, 

 

                                             

0 0 0 1 0 2 0 3

1 0 1 1 1 2 1 3

2 0 2 1 2 2 2 3

3 0 3 1 3 2 3 3

pq p q p q p q p q

p q p q p q p q

p q p q p q p q

p q p q p q p q

= + + +

+ − + −

+ − − +

+ + − −

i j k

i k j

j k i

k j i

                                 (2.14) 

 

and Equation (2.14) is regrouped, the product of two quaternions will become, 

 

                                
0 0 1 1 2 2 3 3

0 1 2 3 0 1 2 3

2 3 3 2 3 1 1 3 1 2 2 1

( )

( ) ( )

( ) ( ) ( )

pq p q p q p q p q

p q q q q p p p

p q p q p q p q p q p q

= − + +

+ + + + + +

+ − + − + −

i j k i j k

i j k

               (2.15) 

 

From this point, the cross and dot product of two vectors in three dimensional space 

should be recalled. Let us take two vectors 1 2 3( , , )a a a=a and 1 2 3( , , )b b b=b , then the dot 

product of two vectors will be, 
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                                                 1 1 2 2 3 3. ( , , )a b a b a b=a b                                                (2.16) 

 

and the cross product will be, 

 

                                                

1 2 3

1 2 3

2 3 3 2

3 1 1 3

1 2 2 1

( )

( )

( )

a a a

b b b

a b a b

a b a b

a b a b

× =

= −

+ −

+ −

i j k

a b

i

j

k

                                                (2.17) 

 

Using Equations (2.15, 2.16 & 2.17) the product of two quaternions becomes, 

 

                                         0 0 0 0pq p q p q= − + + +p.q q p p×q                                  (2.18) 

 

where, p and q are the vector parts of the quaternions consecutively. 

 As it can be easily seen from above equations, multiplication results of 

quaternions are still quaternions, and the fundamental rule of Hamilton violate the 

commutative rule. As a result, it can be said that, quaternions are closed under the 

multiplication and the product of quaternions are non commutative, Equation (2.19). 

 

                                        
0 1 2 3

0 1 2 3

q q q q qAp q

s s s s sqr s

qr rq

= + + +=   
⇒   

= + + +=   
≠

i j k

i j k                               (2.19) 

 

Also quaternion product is associative and distributive over addition, Equation (2.20). 

 

                                                         

( ) ( )

( )

( )

pq r p qr

p q r pq pr

p q r pr qr

=

+ = +

+ = +

                                            (2.20) 
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Note that the identity for quaternion multiplication is a quaternion that has real 

part “1” and vector part “0”, and the product of any quaternion with the identity is again 

itself, Equation (2.21). 

                                                       

0

1

2

3

1

0

0

0

p

p
pq q

p

p

= 
 = 

= ⇔ 
= 

 = 

                                            (2.21) 

 

2.4. Conjugate of the Quaternion 

  

Although it is simple, conjugate is a very important algebraic concept of the 

quaternions. The conjugate of quaternion q is usually denoted by ( )K q , and it is given 

by, 

 

                                                    0

0 1 2 3

( )K q q

q q q q

= −

= − − −

q

i j k
                                     (2.22) 

 

Due to the fact that, the vector parts of a quaternion and its conjugate differ only 

in sign, product and sum of the quaternion and its conjugate result in scalar quantity, 

Equation (2.23). 

 

                                                
2 2 2 2

0 1 2 3

0

( ) ( )

( ) ( )

2

qK q K q q

q q q q

q K q K q q

q

= 
 

= + + + 
+ = + 

 
= 

                                  (2.23) 

 

As additional information, conjugate of the product of two quaternions is equal 

to the product of the individual conjugates in reverse order Equation (2.24). 

 

                                                         ( ) ( ) ( )K pq K q K p=                                           (2.24) 
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2.5. Norm of the Quaternion 

. 

The norm of a quaternion is usually denoted by ( )N q or q and can be referred as 

the length of q . The norm is defined as, 

 

                                                           ( ) ( )N q K q q=                                               (2.25) 

 

Using Equation (2.18), Equation (2.25) can be extended to, 

 

                                              

2
0 0

0 0 0 0

2
0

2 2 2 2
0 1 2 3

2

( ) ( )( )

( ). ( ) ( )

.

N q q q

q q q q

q

q q q q

q

= − +

= − − + + − + −

= +

= + + +

=

q q

q q q q q ×q

q q            (2.26) 

 

As additional information, norm of the product of two quaternions is equal to the 

product of the individual norms, Equation (2.27). 

 

                                                         ( ) ( ) ( )N pq N p N q=                                           (2.27) 

 

Also note that, if the norm of a quaternion is unity, the components of the 

corresponding quaternions must have absolute values less than or equal to 1. Such 

quaternions are called as unit quaternions. 

 

2.6. Inverse of the Quaternion 

 

 Dealing with the conjugate and the norm concepts, now it can be showed that 

every non-zero quaternion have a multiplicative inverse. The inverse of a quaternion 

usually denoted by 1q− and by the definition of inverse, product of a quaternion with its 

inverse should result in unity, Equation (2.28). 

 

                                                           1 1 1q q qq− −= =                                                 (2.28) 
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If it is multiplied with ( )K q by post and pre multiplication, Equation (2.28) becomes, 

 

                                             1 1( ) ( ) ( )q qK q K q qq K q− −= =                                        (2.29) 

 

Since 2( ) ( ) ( )qK q K q q N q= =  the inverse quaternion can be denoted as: 

 

                                                           1

2

( )

( )

K q
q

N q

− =                                                     (2.30) 

 

Note that if q is a unit quaternion ( ( ) 1N q = ), than the inverse of the quaternion 

will be its conjugate as: 

 

                                                      1( ) 1 ( )N q q K q−= ⇔ =                                         (2.31) 

 

2.7. Dual Quaternion Preliminaries 

 

In fact dual quaternions are constructed in the same way as the quaternions; 

however, dual quaternions use dual numbers instead of real numbers as coefficients. In 

the light of the definition, a dual quaternion can be represented as, 

 

( , , , )Q a e b f c g d hε ε ε ε= + + + +                                      (2.31) 

 

whereε  is the dual unit 2 0ε = . If the Equation (2.31) is opened in the vector form, dual 

quaternion representation will become, 

 

( ) ( ) ( ) ( )Q a e b f c g d h

Q a b c d f g h

Q r d

ε ε ε ε
ε ε ε ε
ε

= + + + + + + +

= + + + + + + +

= +

i j k

i j k e i j k                            (2.32) 

 

where “r” and “d” are quaternions individually. Looking at Eq. (2.32), it can be easily 

seen that dual quaternions have eight components, where four of them represent real 

part and the remaining represent the dual part. 
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2.8. Dual Quaternion Multiplication 

 

 The multiplication of a dual quaternion with a scalar quantity has the same 

procedure with the quaternion multiplication. On the other hand if the dual quaternion is 

to be multiplied by another dual quaternion, dual quaternion multiplication should be 

used (Table 2.1). 

 

Table 2.1. Dual quaternion multiplications. 

1 2Q Q  2Q  2Q i  2Q j  2Q k  2Q ε  2Q iε  2Q jε  2Q kε  

1Q  1 i j k ε  iε  jε  kε  

1Q i  i -1 k - j iε  ε−  kε−  jε  

1Q j  j - k -1 i jε  kε  ε−  iε−  

1Q k  k j - i -1 kε  jε−  iε  ε−  

1Q ε  ε  iε−  jε−  kε−  0 0 0 0 

1Q iε  iε  ε−  kε−  jε  0 0 0 0 

1Q jε  jε  kε  ε−  iε−  0 0 0 0 

1Q kε  kε  jε−  iε  ε−  0 0 0 0 

 

2.9. Conjugate of the Dual Quaternion 

 

 Unlike the quaternions, dual quaternions has three kinds of conjugates. If the 

thi conjugate of the dual quaternion is ( ) ( 1, 2,3)iK Q i = , it can be defined as, 

 

1

2

3

( ) ( ) ( )

( )

( ) ( ) ( )

Q r d

K Q K r K d

K Q r d

K Q K r K d

ε
ε

ε

ε

= +

= +

= −

= −

                                          (2.33) 

 

where ( )K r  and ( )K d  are the conjugates of the quaternions “r” and “d” individually. 
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2.10. Norm of the Dual Quaternion 

 

 Similar to the quaternions, the norm of a dual quaternion ( )N Q can be denoted 

as, 

 

1( ) ( )N Q K Q Q=                                               (2.34) 

 

It should also be added that, the norm property of quaternions (Equation 2.27) is valid 

for the dual quaternions as 1 2 1 2( ) ( ) ( )N QQ N Q N Q= . 

 

2.11. Inverse of the Dual Quaternion 

 

The inverse of the dual quaternions 1Q− can be taken by using the same 

procedure of quaternion inverse as, 

 

1 1
2

( )

( )

K Q
Q

N Q

− =                                                     (2.35) 

 

Note that if Q is a unit dual quaternion ( ( ) 1N Q = ), than the inverse of the dual 

quaternion will be its first conjugate as, 

 

                                                   1
1( ) 1 ( )N Q Q K Q−= ⇔ =                                        (2.36) 
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CHAPTER 3 

 

SCREW THEORY 

 

This chapter is presented to briefly describe the screw theory that was developed 

by Sir Robert Stawell Ball in 1876. As a mathematical tool, screw theory is mostly used 

in the rigid body dynamics, where it can represent the displacements, velocities, forces 

and torques in three dimensional space by using individual screws including both 

rotational and translational components. 

 

3.1. Introduction to Screws 

 

Screw can be described as a six component displacement vector, $ ( )= s,u , 

which might also be either a twist or a wrench, with an axis ( )L t t= +r s  (Figure 3.1). 

The angular velocity [ , , ]Tx y zw w w=w and the linear velocity [ , , ]Tx y zV V V=V  of any 

moving rigid body are three dimensional vectors and can form a twist 

[ , ]T= + ×T w V q w , while the other three dimensional vectors as resultant force 

[ , , ]Tx y zF F F=F acting at a point on the moving rigid body and resultant torque 

[ , , ]Tx y zτ τ τ=τ  applied to that body can form a wrench [ , ]Tτ= × +W F p F .  

 

 

 

Figure 3.1. Screw, wrench and twist. 
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The displacement of a rigid body can be described in terms of unit vector 

[ , , ]Tl m n=s  and moment [ , , ]TP l Q m R nµ µ µ= + + +u , where ( , , , , , )l m n P Q R  are 

the Plucker coordinates of screw axis. The parameter µ  is called the pitch of the screw, 

that is the ratio of the magnitude of the component “u ” in the direction of “s ” to the 

magnitude of “ s ” (Hao 1998). Six independent components ( , , , , , )l m P Q R µ  of two 

vectors ( )s,u  are also three dimensional vectors and called displacement of screw 

$ [ , ]Tµ= × +s r s s . Note that as [ , , ]Tl m n=s  is a unit vector with the condition 1⋅ =s s , 

and one of its components is dependent on the other two. 

 

3.2. Motor Screw 

 

Before defining the motor screw, sliding vectors should be discussed. Sliding 

vector can be described as a vector with known length, direction, position and zero pitch 

0µ = . Consider that arbitrary number of sliding vectors is given in space 1{ }nis  as 

shown in Figure 3.2. The resultant vector of sliding vectors in space will be the main 

vector 
1

n

i

i=

=∑s s  while the main moment with respect to an arbitrary point M in space 

will be 
1

( )
n

M i i

i=

= ×∑u ρ s . Changing the arbitrary point to a new one N, the main moment 

will become 
1

( )
n

n i i m

i=

= + × = + ×∑u ρ ρ s u ρ s , where “ρ ” is the shortest distance from 

the point N to the resultant main vector. The system of main vector and main moment is 

called motor screw. 

 

 

 

Figure 3.2. Sliding vectors, and motor screw. 
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In the general case the main vector and main moment form some angle α . 

Assume that the main vector “ s ” is placed to an arbitrary point M and the main moment 

“u ” is calculated with respect to another arbitrary point N (Figure 3.3). The main 

moment “u ” can be assembled into two component vectors 'u and ' 'u where ' //u s  and 

' ' ⊥u s . If the moments are said to be taken from some arbitrary point N than ' 'u will be 

 

 

 

Figure 3.3. Main vector and main moment. 

 

equal to ' ' = ×u ρ s , where “ρ ” is the shortest distance from point N to the vector “ s ”. 

In order to find “ρ ” in terms of the main vector and main moment following algebraic 

procedure can be introduced as, 

( ) ( )
( ); ;
2

Sin Sin
Sin

α απ ×
= × = = = = =

⋅

u'' u s u s u
u'' ρ s ρ s ρ ρ

s s s s s s
 

 

3.3. Particular Cases 

 

Although screws are defined in their most general forms, there also exist some 

special cases. If the screw is lack of pitch µ  that is also called zero screw, it forms a 

line that can be described as ( , )= ×L s r s , this particular line is called Plucker vector 

and can be shown in dual form as$ w= + °e e  or $ ( , )= °e e . Note that Plucker vector 

will be formed by two vectors (main vector and moment vector) that are perpendicular 

to each other. The other situation is valid when the main vector and the main moment 

are directed in the same direction or the opposite directions. These special types of 

screws are called right and left screws respectively (Figure 4.4). Also, it can be easily 

seen from Figure 3.4 that, to form a right or left screw, the direction of the main vector 
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“s ” should be passing from the point where the moment is considered to be taken, 

origin “O” in the case of Figure 4.4, so that the moment “u ” will be just formed due to 

the positive or negative pitch µ , $ [ , ]Tµ= s s . 

 

 

 

Figure 3.4. Right and left screws. 

 

If there exists only a moment vector uwith lack of main vector “ s ”, the screw is 

called degenerated screw. 

 

3.4. Intersections of Two Screws 

 

 Let’s consider the two screws $i  and $ j that are intersected in space, (Figure 

3.5). If the radius vector ρρρρ (x,y,z) can be defined by using the components of related 

screw, the position of any rigid body can also be computed by defining two intersecting 

screws on the rigid body. 

 

 

 

Figure 3.5. Intersections of two screws. 
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 It is already known from the definition that the moment component of any screw 

can be defined by the formulation, 

 

= ×e ρ eo                                                        (3.1) 

 

If Equation (3.1) is opened with respect to the individual components, the equation of 

the screw axis or the line in space can be found as,  

 

n m l n m l
iP jQ kR i j k

z y x z y x
+ + = + +                              (3.2) 

 

Investigating the Equation (3.2), it will be revealed that 
n m

P ny mz
z y

= = − , 

l n
Q lz nx

x z
= = − , and 

m l
R mx ly

y x
= = − . Using the same analogy equations of the 

two intersecting screw axis in space can be written as, 

 

, ,

, ,
i i i i i i i i i

j j j j j j j j j

P n y m z Q l z n x R m x l y

P n y m z Q l z n x R m x l y

= − = − = −

= − = − = −
                      (3.3) 

 

In order to find the three coordinates of the radius vector ρρρρ (x,y,z), sufficient equation 

groups from Equation (3.3) can be used, such as 1 1 2( , , )P Q R , 1 2 1( , , )P Q R , and 

2 1 1( , , )P Q R . After solving the mentioned equation groups the three coordinates of the 

radius vector ρρρρ (x,y,z) can be introduced as,  

 

-1 -1 -1
i j i j i j ij i j j i ij i j j i ij

-1 -1 -1
i j j i ij i j i j j i ij i j j i ij

-1 -1
i j j i ij i j j i ij j i i j i j

x (q m r n l p )l x (l q l q )m x (l r l r )n

y (m p p )l , y (p l m q n r )m , y (m )n

z (n p n p )l z (n q -n q )m z (l p q m r )n

m r m r

n

   = + + = − = −
   
   = − = + + = −
   
   = + = = + +   

-1
ij

 
 
 
 
 
 

(3.4) 

 

where in Equation (3.4), ij i j j i ij i j j il m n m n , m n l n l ,= − = − and ij i j j in l m l m= −  are the 

projections of normal vector i j ije ×e = n onto axes of system coordinates. 
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3.5. Transformation Unit Screw Equations 

 

In order to create the mathematical models of kinematic pairs and design new 

mechanisms from various subspaces, theory of screw calculations should be clearly 

investigated. It is known that the axis of any screw can be described as a dual vector, 

which can be introduced as a complex number, 

 

$ ω= +e eo                                                        (3.5) 

 

where in Equation (3.5), e  is the unit vector of the screw axis, eo  is the moment of e  

with respect to the origin of the fixed coordinate system and ω  is the Clifford’s 

operator ( 2 0ω = ). Actually screw calculations can be described as the vector algebra of 

the dual vectors. Each screw can be characterized in space by three dual 

coordinates$( , , )L M N% % % . Each of the dual coordinates can be represented as three dual 

components similar to the Equation (3.1) as,  

 

, ,L l P M m Q N n Rω ω ω= + = + = +% % %           (3.6) 

 

The six components$( , , , , , )l m n P Q R  of the dual coordinates of Equation (3.6) are 

called Plücker coordinates in the theory of screw calculations of unit screws, where 

, ,l m and n are the components of unit vector e  while , ,P Q and R are the components 

of momenteo . 

Let’s consider three unit screws in space $ ,$ ,i j and$k , Figure 3.6. In order to 

form the algorithm to find the dual coordinates of the third screw $ ( , , )k k k kL M N% % %  with 

respect to the known dual coordinates of unit screws $ ( , , )i i i iL M N% % %  and , unit screw $ j  

is directed along the short distance between $i and$k . It is clear from Figure (3.4) that, 

two unit screw pairs $ ,$i j and$ ,$j k  are orthogonal unit screws ( 90ij jkα α= = o , 

0ij jka a= = ) and the position and orientation of unit screw $k  with respect to $i  can be 

described by two independent parameters ika and ikα . 
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Figure 3.6. Three recurrent screws in space. 

 

The orientation of any rigid body with respect to the reference frame can be 

represented by recurrent unit vector equations by using following formulation, 

 

k =e Be                                                            (3.7) 

 

where in Equation (3.7), [ , , ]Tk k k kl m n=e , [ , , , , , ]Ti ij i ij i ijl l m m n n=e , 
i i

ij
j j

n m
l

n m
= , 

i i

ij
j j

l n
m

l n
= , 

i i

ij
j j

m l
n

m l
=  and, 

0 0 0 0

0 0 0 0

0 0 0 0

ik ik

ik ik

ik ik

C S

C S

C S

α α

α α
α α

 
 =  
  

B . 

 

If the transferring principle of Kotel'nikov-Shtudi1 is applied in the Equation (3.7), the 

dual coordinates of unit screw $ ( , , )k k k kL M N% % %  with respect to the known dual 

coordinates of unit screws $ ( , , )i i i iL M N% % %  and $ ( , , )j j j jL M N% % % can be computed by using, 

 

$k = BE%                                                       (3.8) 

                                                 
1 All formulas of vector algebra can be used in screw algebra formulations if and only if the values should 
be interpreted in dual forms 
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where in Equation (3.8), $ [ , , ]Tk k k kL M N= % % % , [ , , , , , ]Ti ij i ij i ijL L M M N N=E % % % % % % , 

i i
ij

j j

N M
L

N M
=

% %
%

% %
, i i

ij
j j

L N
M

L N
=

% %
%

% %
, i i

ij
j j

M L
N

M L
=

% %
%

% %
, 

A A 0 0 0 0

0 0 A A 0 0

0 0 0 0 A A

ik ik

ik ik

ik ik

C S

C S

C S

 
 =  
  

B%  

and 

, ,

, ,

, ,

k k k k k k k k k

i i i i i i i i i

j j j j j j j j j

L l P M m Q N n R

L l P M m Q N n R

L l P M m Q N n R

ω ω ω

ω ω ω

ω ω ω

= + = + = +

= + = + = +

= + = + = +

% % %

% % %

% % %

. 

 

To proceed further, it should be noted that, the angles between the unit screws 

$ ,$ ,i j and$k  can be indicated in dual angle form as, 

 

 , ,ij ij ij jk jk jk ik ik ikA a A a A aα ω α ω α ω= + = + = +                  (3.9) 

 

where in Equation (3.9) ,ij jkα α , ikα , ,ij jka a  and ika   are the angles between the screw 

axes and the short distances between corresponding screw axes in space respectively. If 

the trigonometric operations are to be carried out in the dual angles, following formulas 

should be used, 

 

( ) ( ) ( ), ( ) ( ) ( )Sin A Sin aCos Cos A Cos a Sinα ω α α ω α= + = +           (3.10) 

 
Using the rules of screw algebra, Equation (3.10) and after some arrangements 

in the elements of Equation (3.8), the transformation unit screw equations with real 

Plücker coordinates can be introduced as follows, 

 

$k = BE%  

$ [ , , , , , ] , [ , , , , , , , , , , ]T T
k k k k k k k i ij i ij i ij i ij i ij i ijl m n P Q R l l m m n n P P Q Q R R= =E  

, ,
i i i i i i i i i i i i

ij ij ij
j j j j j j j j j j j j

n Q m R l R n P m P l Q
P Q R

n Q m R l R n P m P l Q
= − = − = −  

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

ik ik

ik ik

ik ik

ik ik ik ik ik ik

ik ik ik ik ik ik

ik ik ik ik ik ik

C S

C S

C S

a S a C C S

a S a C C S

a S a C C S

α α
α α

α α
α α α α

α α α α
α α α α

 
 
 
 

=  
− 
 −
 

−  

B%
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As it is shown above each unit screw is determined by six Plücker coordinates, 

and only four of them are independent as 1⋅ =e e  and 0⋅ =e eo . So that the rigid body in 

space can be defined by using six independent parameters as , , , , ,k k k k ik ikl m P Q a α or 

other combinations. 

 

3.6. Transformation Unit Screw Equations by Using Denavit 

Hartenberg Notations 

 

 The transformation unit screw equations with real plucker coordinates can be 

modified in notation wise by using Denavit-Hartenberg parameters. As seen in Figure 

3.7, joint parameters ( , )Sθ and link parameters ( , )aα are indicated disdinctly in 

classical Denavit-Hartenberg notations. 

 

  

 

Figure 3.7. Joint and link parameters. 

 

 As it is already stated, Equation (3.8) can be used to find the third screw  ($ )k , if 

the components of first and second screws ($ ,$ )i j  are known along with the short 

distance and the angle between the first and the third screws. However the matrix 

B% should be modified, if the joint parameters are to be used as, 

 

,ik ik ik ika Sα θ→ →  

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

ik ik

ik ik

ik ik

ik ik ik ik ik ik

ik ik ik ik ik ik

ik ik ik ik ik ik

C S

C S

C S

S S S C C S

S S S C C S

S S S C C S

θ θ
θ θ

θ θ
θ θ θ θ

θ θ θ θ
θ θ θ θ

 
 
 
 

=  
− 
 −
 

−  

B%
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CHAPTER 4 

 

RIGID BODY MOTIONS IN SPACE AND SUBSPACES 

BY USING METHOD OF INTERSECTIONS 

 

This chapter concentrates on the development of rigid body geometries by using 

method of intersections, where simple geometric shapes representing revolute (R) and 

prismatic (P) joint motions are intersected by means of desired space or subspace 

requirements to create specific rigid body geometries in predefined octahedral fixed 

frame. Using the methodical approach, space and subspace motions can be clearly 

visualized by the help of resulting geometrical entities that have physical constraints 

with respect to the fixed working volume. 

 

4.1. Rigid Body Motions 

 

A rigid body with no general constraints ( 0d = ) has six independent motions in 

Euclidean space ( 6λ = ), three revolutions around and three translations along ,x y and 

z axes (Figure 4.1) of the Cartesian frame. These motions can be represented 

asRRRPPP , where R andP stand for revolute rotational and prismatic motions 

(translations) respectively. It is very important to note that, any rigid body whether in 

space or subspaces cannot have more than three independent rotations or translations; 

due to the fact that, there exist only three independent directions in Cartesian frame. 

 

 

 

Figure 4.1. Rigid body motions in Cartesian space 6λ = . 
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 Making use of this rule, achievable independent motions of the rigid bodies in 

various subspaces can easily be tabulated. As it is seen in Table 4.1, one example for a 

specific motion related with each of the subspaces is given for different rigid body 

geometries and fixed frames.  

 

Table 4.1. Possible independent motion configurations of rigid bodies in subspaces. 

λ  1 2 3 

Motions ,R P  , ,RR RP PP  
,

,

RRR RRP

RPP PPP
 

Examples 

 

Cube in Slot 

 

Cylinder in Slot 

 

Cube on Plane 

λ  4 5 6 

Motions 
,RRRP RRPP

RPPP
 

RRRPP

RRPPP
 RRRPPP  

Examples 

 

Cylinder on Plane 

 

Sphere on Plane 

 

Sphere in Space 

 

In the cases of examples, cube in a slot is simply a prismatic joint that have only 

one translational motion (P ) along the z  axis. If the cube is swapped with a cylindrical 

rigid body, it gains additional capability to rotate (R ) around the z axis keeping its 

translational motion, so that its subspace is increased by one. On the cube on plane case, 

without loosing area of contact, the rigid body can rotate around the z axis and translate 

along the ,x y axes ( , 3RPP λ = ). If the area of contact is swapped with line of contact 

by using cylinder instead of a cube, the rigid body gains another rotation around x or 

y axis preserving its other motions ( , 4RRPP λ = ). Similarly, if the cylinder is replaced 

by a sphere, its line of contact is transformed into a point of contact which adds another 
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rotational capability around x or y axis ( , 5RRRPP λ = ). Note that, if there is no contact 

constraint, RRRPPP  motion in 6λ =  is reached. 

 Although representing rigid body motions  this way clarifies the subspace 

concept, it is difficult to find examples for all motion configurations that preserve one 

common analogy. As a result, One contribution of this thesis study to the literature is an 

easy approach that simplifies the visualization of rigid body motions in space or 

subspaces by introducing unique methodology called method of intersections. 

 

4.2. Method of Intersections 

 

Briefly, the idea behind the methodology is based on the construction of the 

octahedral fixed frame, which will be called “moi frame” hereafter, and the 

intersections of the simple geometric shapes that carry the behaviors of the prismatic or 

revolute motions (Figure 4.2). 

 

 

 

Figure 4.2. Simple geometric rigid bodies with unique motion behaviors and moi space. 

 

 It can be easily seen from the figure that the selected cube element is just 

capable of exiting three translational motions along ,x y and z axes unless any other 

constraints prevent it to do so. The other three unique cylinders represent three distinct 

rotational motions around the Cartesian coordinate axes and the moi frame is composed 

of three slots with square cross sections that are orthogonally combined. Assuming the 

length of the side of the cube, the height and the diameter of the cylinders and the side 

of the inner square cross section of the moi frame slots are equal, the following 

procedure can be performed to visualize the rigid body motions in a specific subspace. 

• Select the desired space or subspace number ( 1,2,...,6)i iλ = . 

• Select the motion configuration of the determined subspace from Table 4.1. 
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• Intersect the geometrical representations of individual motions resulting in a 

unique geometrical shape. 

• If there exist missing translational motions, remove a slot from moi frame that is 

representing missing translational motion axis to create constrained moi frame 

(Note that, if there are not any translational motions in the selected motion 

configuration, the constrained moi frame will just transformed into a hollow 

cube). 

• Put the resultant geometrical shape into moi or constrained moi frame to identify 

the rigid body motion in determined space or subspace. 

The idea can appear confusing; however, examples will clarify the concept. 

 

Example 1: Consider that subspace 5λ =  is selected with the motion configuration 

x yR R PPP . After the intersection of the related simple geometrical shapes, the resultant 

rigid body is placed into the moi frame (Figure 4.3). Due to the fact that the rigid body 

has a square cross section on xy plane, its rotation around z axis is constrained as 

desired. On the other hand circular cross sections on xz and yz planes makes the 

rotations around x and y axes possible. Also note that all of the translations can be 

fulfilled thanks to the unconstrained moi frame. 

 

 

 

Figure 4.3. Visualization of rigid body motions x yR R PPP  in 5λ = . 

 

Example 2: Consider that subspace 5λ =  is selected again, but with different motion 

configuration x yRRRP P . As translation along the z axis is not included, z slot of the moi 

space is removed. After the intersection of the related simple geometrical shapes, the 

resultant rigid body is placed into the constrained moi frame (Figure 4.4). Due to the 
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fact that the rigid body has circular cross sections on all planes, its rotations around x , 

y and z axes are possible. However, removed z slot of the moi frame constrains the 

z translation of the rigid body, while other translations are achievable. 

 

 

 

Figure 4.4. Visualization of rigid body motions x yRRRP P  in 5λ = . 

 

 Despite of being a useful tool for visualization of rigid body motions in space or 

subspaces, the methodology explained in this chapter can also be used for designing 

new mechanisms. In the light of example 1, two dyads are required to represent two 

cylinders, where they should be assembled together and articulated in the Cartesian 

frames to end up with a 5λ = mechanism. The dyads are selected as P R R− − chains as 

they are sufficient for cylinder creation and orthogonal assembly, where prismatic joints 

are translated along x and y axes. Finally 5λ =  mechanism with mobility 1M = is 

created by using the idea behind the method of intersections (Figure 4.5). 

 

 

 

Figure 4.5. 5λ = , 1M = mechanism created by using method of intersections 

 

Note that by fixing another link instead of the one in the figure, different 

motions of the desired end-effector point in 5λ = can be achieved. 
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CHAPTER 5 

 

STRUCTURAL SYNTHESIS OF ROBOT 

MANIPULATORS BY USING SCREW THEORY 

 

This chapter deals with one of the main areas of the fundamental mechanism and 

machine science as the structural synthesis of robot manipulators by using screw theory. 

The investigation will start by focusing on the smallest elements of the robot 

manipulators, kinematic pairs. Throughout the chapter physical representations and 

kinematic representations of both lower and higher kinematic pairs with recurrent 

screws (screws that have directions intersected one another in series) will be given. 

Using transformation unit screw concept, the mathematical models of selected 

kinematic pairs will be defined and the procedure to find mathematical models of 

remaing pairs will be introduced. Also at the end of the chapter a new universal 

mobility formulation for both kinematic pairs and robot manipulators will be presented 

in terms of screw theory. 

 

5.1. Kinematic Pairs and Mathematical Models 

 

In order to form a kinematic pair, exactly two rigid bodies must be attached to 

each other by specified geometry. If the contact geometry between two attached rigid 

bodies is a surface, lower kinematic pairs are formed. Otherwise, if the contact 

geometry between two attached rigid bodies is a line or a point contact, higher 

kinematic pairs are formed. During this study they will be referred as Type I, Type II, 

and Type III kinematic pairs respectively with respect to their contact geometries for the 

ease of use. In fact, kinematic pairs can be constructed not only in different structures as 

described previously but also in various mobilities. However, their mobilities can not be 

higher than five; due to the fact that, the unconstrained space has six independent 

motions, and kinematic pairs need at least one constraint in order to be defined properly. 

The most common kinematic pairs in all types and mobilities are shown in Table 5.1 

with their physical and kinematic representations by using recurrent screws. 
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Table 5.1. Kinematic pairs with their physical and kinematic representations. 

Type Mobility 
Kinematic 

Pair 
Physical Representation & Kinematic Representation $ s 

 Revolute (R) 

 

3 0 

 

1 1 

Prismatic 
(P) 

 

3 0 

(cont. on next page) 
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Table 5.1. (cont.) 

Type Mobility 
Kinematic 

Pair 
Physical Representation & Kinematic Representation $ s 

 1 1 Helical (H) 

 

3 0 

 
1 2 

Cylindrical 
(C) 

 

3 1 

(cont. on next page) 
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Table 5.1. (cont.) 

Type Mobility 
Kinematic 

Pair 
Physical Representation & Kinematic Representation $ s 

 
2 

Spherical 
with Finger 

(Sf) 

 

4 0 

 

1 

3 Spherical (S) 

 

5 0 

(cont. on next page) 
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Table 5.1. (cont.) 

Type Mobility 
Kinematic 

Pair 
Physical Representation & Kinematic Representation $ s 

 
3 

Spherical 
with Finger 

in Slot 
(Sfs) 

 

5 1 

 

2 

4 
Spherical in 
Slot (Ss) 

 

6 1 

(cont. on next page) 
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Table 5.1. (cont.) 

Type Mobility 
Kinematic 

Pair 
Physical Representation & Kinematic Representation $ s 

 2 4 
Spherical in 
Torus (St) 

 

6 1 

 3 5 
Spherical on 
Plane (Sp) 

 

7 2 
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 In order to define the mathematical models of the kinematic pairs by using 

transformation unit screw concept, the last output screw should be defined in terms of 

variable (• ), constant ( x ), and dependent variables (� ). As seen in Table 5.2, although 

the screw structures resemble with each other, the parameter structure of all the joints  

 

Table 5.2. Variable, constant and dependent parameters of kinematic pairs. 

 ik
a  1+j k

a  2+k k
a  1 3+ +k k

a  2 4+ +k k
a  α

ik
 1α +j k

 2α +k k
 1 3α + +k k

 2 4α + +k k
 

R x  - - - - •  - - - - 

P •  - - - - x  - - - - 

H �  - - - - �  - - - - 

C •  - - - - • - - - - 

Sf 0 0 - - - • • - - - 

S 0 0 0 - - • • • - - 

Sfs • 0 0 - - • • x  - - 

Ss • 0 0 0 - • x  • • - 

St • 0 0 0 - • x  • • - 

Sp x  0 • • 0 x  
2

π
 • • • 

 

are different. Assuming that the first two screws ($ , $ )i j
 are known, the final output 

screw can be computed by using Equation (3.8). Now let’s look at the mathematical 

models of the first five joints in Table 5.1 or Table 5.2. After the sequential operations 

are carried out the mathematical models of the revolute, prismatic, helical and 

cylindrical joints can be introduced as, $ ( , , , , , )k k k k k k kl m n P Q R  in Figure 5.1. 

 

 

 

Figure 5.1. Mathematical models of R, P, H and C kinematic pairs 
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It is clear that the mathematical models are the same for all of the four joints in terms of 

formulation structure, however the behavior of the parameters ika  and ikα are different 

for each joint; for instance, both of the parameters ika  and ikα are independent variables 

in cylindrical joint while they are dependent to each other in the case of helical joint. If 

the same operations are applied to the screw structure of spherical with finger joint the 

resulting matrix of the final screw 1 1 1 1 1 1 1$ ( , , , , , )k k k k k k kl m n P Q R+ + + + + + +  will be computed, Figure 

5.2. By using the same analogy mathematical models of the other remaining kinematic  

 

 

 

Figure 5.2. Mathematical models of Sf kinematic pair. 

 

pairs can be computed. However it should be noted that, if the number of screws in the 

pair structure increases, the resulting components of the final screw will become more 

complex.  

 

5.2 Mobility Equations 

 

The reason behind the usage of recurrent screws in the study of kinematic pairs 

is the fact that, they can clarify the motion concept easily. From this point of view, a 

new mobility formulation for all types of kinematic pairs can be introduced as, 

 

$kM s= + −Γ                                                       (5.1) 

 

where, $ represents the total number of screws, s is the number of screws with variable 

pitch, and Γ is the contact origin of the kinematic pair that can also be calculated by 

using the formulation, 

 

1TΓ = +                                                           (5.2) 
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Note that, in Equation (5.2), T stands for the type number of the kinematic pair. The 

concept will be clarified by the following examples. 

 

Example 1: Let’s start with the most common kinematic pair, the revolute joint. As 

seen in Table 5.1, the revolute pair can be represented by the total of three screws, 

where none of them has a variable pitch. Being a Type I kinematic pair, its mobility can 

be calculated by using Equations (5.1 & 5.2) as, 

$ ( 1) 3 0 (1 1) 1kM s T= + − + = + − + = . 

 

Example 2: Let’s consider the cylindrical pair. Although it seems having the same 

screw structure with the revolute pair, cylindrical pair is represented by three screws, 

one of which has a variable pitch. So that the mobility of Type I kinematic pair will 

become, 

$ ( 1) 3 1 (1 1) 2kM s T= + − + = + − + = . 

 

Example 3: The idea is the same for the higher Type II and Type III kinematic pairs. 

Let’s take spherical in slot joint that can be represented by six screws, where one of 

them has variable pitch. The mobility of Type II kinematic pair can be calculated as 

$ ( 1) 6 1 (2 1) 4kM s T= + − + = + − + = . In the case of Type III spherical on plane pair 

that is represented by seven screws, where two of them have variable pitches, the 

mobility will result in, 

$ ( 1) 7 2 (3 1) 5kM s T= + − + = + − + = . 

 

It is important to note that, any screw that carries two independent motions as 

rotation around and translation along its axis is said to be a screw with variable pitch. 

 Although the examples clarify the mobility criterion of the kinematic pairs, 

contact origin Γ of the kinematic pair should also be discussed. As it can be seen in 

Figure 5.3, the simple planar surface can be represented by two screws. The intersection 

of two planar surfaces that will result in a line can be represented by three screws and 

the intersection of three planar surfaces that will result in a point can be represented by 

four screws. In the light of these, the origin of the kinematic pair is equals to the number 

of screws needed to represent the creation of its associated contact geometry. 
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Figure 5.3. Screw representations of planar surface intersections. 

 

Having learned the idea behind the mobility of kinematic pairs by the help of 

recurrent screws, the subject can be extended beyond by applying the same analogy to 

the mechanisms and robot manipulators. From this perspective, Equation (5.1) can be 

enhanced into a new general mobility equation for mechanisms and manipulators as, 

 

3

1 2 1

$ 2 ( 2) ( 1)
l L

i j k

i j k

M s l N j T λ
= = =

= + − − − − − −∑ ∑ ∑                        (5.3) 

 

where, l is the total number of links including ground link, Ni is the number of elements 

on ith link, Tj is the number of pairs with jth type, L is the number of independent loops 

and finally λk is the space or subspace number of kth independent loop. Applying the 

new mobility equation, to the robot manipulators in Figure 5.4, examples 4 and 5 will 

clarify the idea. 

 

 

 

Figure 5.4. Parallel platform manipulators with higher kinematic pairs. 
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Example 4: Checking the number of screws needed to represent each individual pair of 

the Euclidean platform manipulator in Figure 5.6a from Table 5.1 and summing them 

up, $ can be calculated as, $ 6( ).6 12( ).3 72tS R= + = . As there are six spherical in torus 

kinematic pairs, s will be equal to six (s=6). There exist fourteen links (l=14) in total, 

where twelve of them are two element and two of them are six element links 

(
1

( 2) 8
l

i

i

N
=

− =∑ ). Due to the fact that spherical in torus joints are the only higher 

kinematic pairs in manipulator,
3

2

( 1) j

j

j T
=

−∑  will result in 6. As the manipulator is 

working on space λ=6, and it has five identical independent loops, 
5

1

5.k

k

λ λ
=

=∑  will 

result in 30. Finally, using the defined parameters, the mobility of the Euclidean parallel 

manipulator can be calculated as, 

72 6 2.14 8 6 30 6M = + − − − − = . 

 

Example 5: Similarly using the same procedure with the previous example for the 

parallel platform manipulator in Figure 5.6b, the variables of the Equation (5.3) can be 

calculated as, $ 6( ).3 2( ).3 1( ).3 1( ).7 34pR P C S= + + + = , 1( ).2 1( ).1 3ps S C= + = , 

l=9, 
1

( 2) 2
l

i

i

N
=

− =∑ , 
3

2

( 1) 2j

j

j T
=

− =∑ , L=2, 
2

1

2.6 12k

k

λ
=

= =∑ . The mobility of the 

parallel platform manipulator will be, 

34 3 18 2 2 12 3M = + − − − − = . 

 

 As verified by the examples, the proposed recurrent screw technique and the 

mobility equations are valid for both individual kinematic pairs and robot manipulators. 
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CHAPTER 6 

 

KINEMATIC SYNTHESIS OF MECHANISMS BY USING 

QUATERNION AND DUAL QUATERNION ALGEBRA 

 

This chapter focuses on the function generation synthesis of spherical four bar 

mechanism for six independent construction parameters 0 0 1 2 3, , , ,ϕ ψ α α α , and 4α  by 

giving six or more design points with respect to the methods that are used in the 

synthesis procedure. Quaternion algebra will be used to derive the objective function of 

spherical four bar mechanism by following some rotational sequences. Three different 

methods as interpolation approximation, least squares approximation and Chebyshev 

approximation will be used during synthesis procedure. During the consecutive trials in 

Chebyshev approximation, a new approach will be proposed to renew the design points 

that is plotting the graph of the objective functions derivative and taking the roots of it 

as new design points with the two boundary points. Discussions about the procedure 

and comparisons between the used methods will be introduced. Also this chapter tries to 

use dual quaternions in the process of kinematic synthesis to compute the objective 

function of mechanisms that are desired to be synthesized. Before introducing the 

algebra, a mixed method of quaternion and vector algebra will be used to show the 

limitations of quaternions and to verify the results of the dual quaternion algebra in the 

synthesis procedure. One DoF mechanism from subspace five and RP serial robot 

manipulator will be used for the calculations. A novel approach will be proposed in the 

synthesis of subspace five mechanism by integrating both function generation and body 

guidance operation in one synthesis problem. RP serial manipulator will be synthesized 

for path generation synthesis. 

 

6.1. Objective Function (Spherical Four Bar) 

 

The main problem in the synthesis of any mechanism is the fact that, the 

objective function of the mechanism that will be synthesized should be found and 

simplified by using appropriate algebraic method. Due to common intersection point of 
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all the joint axes in a spherical mechanism, quaternion algebra can be used as a great 

tool for this purpose. Note that, any quaternion operator 1( )q q− will rotate any vector 

around any axis by the desired amount of angle provided that they are passing from a 

common point (Figure 6.1). 

 

 

 

Figure 6.1. Rotation of a vector by using quaternion operator. 

 

Consider that two unit vectors of the input and output joint axes in spherical four 

bar mechanism is selected as 1̂r and ˆ4r , and the coordinate system is placed so that 

ˆ =1r i (Figure 6.2). 

 

 

 

Figure 6.2. Spherical Four Bar Mechanism. 

 

Starting from 1̂r , ˆ4r  can be reached by using two distinct routes. The first one includes 

the construction parameters 1 2,α α and 3α  where 1̂r is rotated around the normal of 
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AOB plane 1N  by the angle 1α to reach ˆ2r , than ˆ2r is rotated around the normal of 

BOC plane 2N  by the angle 2α to reach ˆ3r , and finally ˆ3r is rotated around the normal 

of COD plane 3N  by the angle 3α to reach ˆ4r  (Equation 6.1). The second one includes 

the construction parameter 4α where 1̂r is rotated around z axis by the angle 4α to reach 

ˆ
4r  (Equation 6.2). 

 

1 1 1
3 2 1 1 2 3

3 31 1 2 2
1 2 2 3 3

ˆ ˆ( )

ˆ ˆ ˆ( ) ( ), ( ) ( ), ( ) ( )
2 2 2 2 2 2

q q q q q q

q Cos Sin q Cos Sin q Cos Sin
α αα α α α

− − −=

= + = + = +

4 1

1

r r

n n n
  (6.1) 

1 4 4
4 4 4

ˆ ˆ( ) , ( ) ( )
2 2

q q q Cos Sin
α α−= = +4 1r r k                                (6.2) 

 

From this point, to make the calculations possible, 2
ˆ ˆ,1n n and 3n̂  should be defined 

clearly. 

 1n̂  can be reached by rotating the unit vector of z axis “k ” around x axis by the 

input angle ϕ  (Equation 6.3), 2n̂  can be reached by rotating 1n̂ around ˆ2r axis by the 

angle γ  (Equation 6.4), and 3n̂  can be reached by rotating the negative unit vector of 

z axis “−k ” around ˆ4r axis by the output angle ψ  (Equation 6.5). 

 

1
5 5 5

ˆ ( ) , ( ) ( )
2 2

q q q Cos Sin
ϕ ϕ−= = +1n k i                                (6.3) 

1 1
6 1 6 6 1 1

ˆ ˆ ˆ ˆ ˆ( ) , ( ) ( ), ( )
2 2

q q q Cos Sin q q
γ γ− −= = + =2 2 2 1n n r r r                   (6.4) 

1 1
7 7 7 4 4

ˆ ˆ ˆ ˆ( ) , ( ) ( ), ( )
2 2

q q q Cos Sin q q
ψ ψ− −= − = + =3 4 4 1n k r r r                  (6.5) 

 

Defining 2
ˆ ˆ,1n n and 3n̂ , Equations (6.1 & 6.2) can be recalled. Both of the 

equations result in a quaternion with null scalar part and three vector components 

,i j andk . If the vector components of two resulting quaternions are equalized, three 

equations, including construction parameters ( 1 2 3 4, , ,α α α α ), input parameter (ϕ ), and 

output parameter (ψ ), will be reached. However, these equations also includeγ , in the 

form of ( )Cos γ and ( )Sin γ  as variable parameters. Owing to the fact that γ is neither 
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construction nor input-output parameter, it is not needed during the function generation 

synthesis problem and it should be eliminated. In the light of this, using algebraic 

operations and manipulations, three equations are reduced into one equation that is free 

ofγ . After the simplification of this equation, the objective function of spherical four 

bar mechanism is attained as, 

 

2 1 3 4 1 3 4 1 4 3 1 3 4

1 3 0

C C C C C C S S S C C C S S C C S

S S S S

α α α α α ψ α α α α ψ ϕ α α α ϕ α

α α ψ ϕ

− + − −

− =
        (6.6) 

 

where, S and C stand for sine and cosine of the angles respectively. On the other hand, 

when Equation (6.6) is inspected, it can be seen that there exist only four design 

parameters ( 1 2 3 4, , ,α α α α ). Hence, the pole positions of the input link 0ϕ and the output 

link 0ψ is selected to fulfill the place of the remaining two parameters. When ϕ  and ψ  

are replaced with ( 0 iϕ ϕ+ ) and ( 0 iψ ψ+ ) respectively in Equation (6.6), the new 

objective function of the six independent parameters function generation synthesis of 

spherical four bar mechanism in open form will become, 

 

2 1 3 4 1 3 4 0 1 3 4 0 3 1 4 0

3 1 4 0 4 1 3 0 0 1 3 0 0

1 3 0 0 4 1 3 0 0 4 1 3 0 0

1 3 0 0

i i i

i i i i i

i i i i i i

i i

C C C C C S S C C C S S S S C S S C C

C S S S S C S S C C C C S S S S C C

S S C C S S C S S S S S S C S S C S C S

S S C S C S

α α α α α α α ψ ψ α α α ψ ψ α α α ϕ ϕ

α α α ϕ ϕ α α α ψ ϕ ψ ϕ α α ψ ϕ ψ ϕ

α α ψ ϕ ψ ϕ α α α ψ ϕ ψ ϕ α α α ϕ ψ ϕ ψ

α α ψ ϕ ϕ ψ

− + − −

+ − +

− + +

− 4 1 3 0 0 1 3 0 0 0
i i i i

C S S C S C S S S C S C Sα α α ψ ϕ ψ ϕ α α ϕ ψ ψ ϕ+ − =

(6.7) 

 

Note that the new objective function (set of equations 1, 2,..,6i = ) includes six 

independent parameters ( 0 0 1 2 3 4, , , , ,ϕ ψ α α α α ) to design. 

 

6.2. Interpolation Approximation 

 

Before proceeding further, dividing both sides by 1 3 0 0S S S Sα α ψ ϕ  Equation (6.7) 

can be rewritten in a polynomial form as, 

 

11

0

0, ( 1,2,..,6)i

j j i

j

P f F i
=

− = =∑                                    (6.8) 
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where, the constant parameters are, 

0 2 1 3 4 1 3 0 0 1 4 2 0

3 1 4 0 4 3 4 0 5 0 6 2 3

7 4 5 8 1 2 5 9 1 2 10 2 5 11 1 5

( ) /( ), , ,

/ , / , , ,

, , , ,

P C C C C S S S S P C P Cot

P Cot S S P Cot S S P Cot P P P

P P P P PP P P PP P P P P PP

α α α α α α ψ ϕ α ψ

α α ϕ α α ψ ϕ

= − = − = −

= − = = − =

= = = = − =

 

and the continuous independent functions are, 

0 1 2 3 4 5 6

7 8 9 5 10 1 11 2 8

1, , , , , , ,

, , , , , , ( 1,2,..,6)

i i i i i i i

i i i i i i i i i

i i i i i i i i i

i i i i

f f S S f S C f S f S f C S f C

f C f C C f f f f f f F f i

ψ ϕ ψ ϕ ψ ϕ ψ ϕ ψ

ϕ ψ ϕ

= = = = = = =

= = = = = = =

 It is apparent that, in Equation (6.8), there exist six unknowns{ }5
0jP , and six 

nonlinear terms{ }11
6jP . If the nonlinear terms are rewritten in terms of nonlinear 

operators{ }6
1kλ , a new set of equations will be reached as, 

 

2 3 1 4 5 2

1 2 5 3 1 2 4

2 5 5 1 5 6

0, 0

0, 0

0, 0

P P P P

PP P PP

P P PP

λ λ

λ λ

λ λ

− = − =

− = − =

− − = − =

                                      (6.9) 

 

where, 6 1 7 2 8 3 9 4 10 5 11 6, , , , ,P P P P P Pλ λ λ λ λ λ= = = = = = . If the terms with nonlinear 

operators are gathered to the same side of the equation, Equation (6.8) becomes, 

 

5

8 1 6 2 7 3 8 4 5 5 1 6 2
0

, ( 1, 2,..,6)i i i i i i i i

j j

j

P f f f f f f f f iλ λ λ λ λ λ
=

= − − − − − − =∑   (6.10) 

 

Now, all the terms on the left side of Equation (6.10) is linear, so that the unknown 

parameters { }5
0jP can be assumed as linearly proportional with the nonlinear operators 

as, 

 

1 2 3 4 5 6 , ( 0,1,..,5)j j j j j j j jP l m n p q r s jλ λ λ λ λ λ= + + + + + + =            (6.11) 

 

If Equation (6.11) is inserted into Equation (6.10), and the parameters with the same 

nonlinear operators are equalized, 42 equations with 42 unknowns 

( , , , , , , 0,1,..,5j j j j j j jl m n p q r s j = ) will be reached. These equations can be written in 

matrix form as below, 
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[ ]
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[ ]
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6 6
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. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

x

x

x

x

x

x

x

A L T

A M U

A N V

A P W

A Q Y

A R Z

A S G

     
     
     
     
     

=     
     
     
     
         

     (6.12) 

 

where, 

5 6
1 5 0 8 1

0 5 6
2 5 0 6 1

0 5 6
3 5 0 7 1

0 5 6
4 5 0 8 1

0 5
5 5 0

0 5
6 5 0

0 5
0

[{ } ] [{ } ]
{ }

[{ } ] [{ } ]
{ }

[{ } ] [{ } ]
{ }

, ,[{ } ] [{ } ]
{ }

[{ } ] [{
{ }

[{ } ]
{ }

[{ } ]

T i T

k

j T i T

k

j T i T

k

j T i T

k

j T

k

j T

k

j T

k

L l T f
f

M m U f
f

N n V f
f

A P p W f
f

Q q Y f
f

R r
f

S s

= =
 

= = − 
  = = − 

=   = = −
  = = − 
  =
   =

6
5 1

6
1 1

6
2 1

} ]

[{ } ]

[{ } ]

i T

i T

i T

Z f

G f

= −

= −

 

Solution of Equation (6.12) will give the unknowns 

( , , , , , , 0,1,..,5j j j j j j jl m n p q r s j = ). After substituting them into Equations (6.9 & 6.11), 

six nonlinear equations with six unknown nonlinear operators { }6
1kλ are attained. 

Solving these equations numerically for nonlinear operators and inserting one of the real 

solutions into the Equation (6.11), { }5
0jP can be calculated and the six construction 

parameters will become, 

 

1 1 1 1
0 2 0 5 4 1 1 3 0 4

1 1
3 4 0 4 2 1 3 0 0 1 3 4

( ), ( ), ( ), ( / )

( / ), ( )

Cot P Cot P Cos P Cot P S S

Cot P S S Cos S S S S C C C

ψ ϕ α α ϕ α

α ψ α α α α ψ ϕ α α α

− − − −

− −

= − = − = − = −

= = +
(6.13) 

 

6.2.1. Numerical Example 

 

In the case of numerical example, the input of the mechanism is decided to be 

selected from an interval of 2 / 3 4 / 3π ϕ π< < , the output function is selected 

as 0.8ψ ϕ= , and the six design points in prescribed interval are given with respect to the 

Chebyshev spacing. The given design points and the calculated construction parameters 
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are tabulated in Table 6.1. Also the designed spherical four bar mechanism and the plot 

of its objective function in the design interval can be seen in Figure 6.3. 

 

Table 6.1. Given design points and calculated construction parameters for NE 6.2.1. 

i  1 2 3 4 5 6 

( )i radϕ  2.13008 2.40111 2.87056 3.41263 3.88207 4.15311 

( )i radψ  1.83112 2.01525 2.32473 2.66975 2.95972 3.12391 

0 ( )radϕ  0 ( )radψ  1( )radα  2 ( )radα  3( )radα  4 ( )radα  
Construction 

Parameters 1.23867 
-0.52161 

(5.76158) 
0.38103 1.32361 

-1.49412 

(4.78907) 
0.17546 

 
 

 

 

Figure 6.3. Designed spherical four bar mechanism and its objective function. 

 

Note that the objective function takes its zero values only at the six precision 

points that are equal to the six design points as expected. Although the errors in 

intervals between the precision points seem to be uniform, there are small deviations on 

the extremum values. 

 

6.3. Least Square Approximation 

 

In the previous section, the fitting error was ( , ) ( )i iF c Fδ ϕ ϕ= − , where c stands 

for the construction parameters, ( )iF ϕ is the actual function, and ( , )iF cϕ is the 

predicted function from the given design points. As a result, the fitting error vanishes at 
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the six design points. However, in that specific example, number of design points that 

are given just equal to the number of unknown parameters. Now consider the case when 

the design points are over determined; that is, number of design points n are greater 

than the number of construction parametersm . 

The problem can be solved by using least square approximation method to find 

the best fitting function with respect to the given design point set. The least square 

approximation method suggests that, the best fitting function is reached when the sum 

of squared fitting errors (η ) is a minimum. 

 

2 2

1 1

( ( , ) ( ))
n n

i i

i i

F c Fη δ ϕ ϕ
= =

= = −∑ ∑                                  (6.14) 

 

The minimum η  is reached if and only if when the partial derivations of Equation 

(6.14) with respect to the construction parameters are zero. 

 

0, ( 0,1,..., )
j

j l
P

η∂
= =

∂
                                            (6.15) 

 

Using Equation (6.15), 1l +  equations ( 1)l m= −  are generated for the same amount of 

construction parameters and should be solved with respect to the given design 

conditions. 

 For the synthesis problem of this study, Equation (6.14) can be rewritten as, 

 

11
2

1 0
( )( )

n
i

j j i

i j

P f Fη
= =

= −∑∑                                             (6.16) 

 

If Equation (6.11) is inserted into Equations (6.15 & 6.16), and the parameters with the 

same nonlinear operators are equalized, 42 equations with 42 unknowns can be written 

in matrix form, 
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    
    
    

=    
    
    
    
        

  (6.17) 

 

where, 

0 0 0 1 0 2 0 3 0 4 0 5

1 0 1 1 1 2 1 3 1 4 1 5

2 0 2 1 2 2 2 3 2 4 2 5

3 0 3 1 3 2 3 3 3 4 3 5

4 0
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f f f f f f f f f f f f
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f f f f f f f f f f f f
B

f f f f f f f f f f f f
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f f f f f f f f f f

f f f f f f f f f f f f
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 
 
 
 
 
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[ [ ] [ ] [ ] [ ] [ ] [ ]]

[ [ ] [ ] [ ] [ ] [ ] [ ]]

i T

i i i i i i i i i i i i T

i i i i i i i i i i i i T

Z f f f f f f f f f f f f

G f f f f f f f f f f f f

− − − − − −

− − − − − −

=

=

and, 
1

[ ]
n

i i i i

j k j k

i

f f f f
=

=∑ . 

From this point, following the same analogy, the solution of Equation (6.17) will give 

the unknowns ( , , , , , , 0,1,..,5j j j j j j jl m n p q r s j = ). Inserting these parameters into 

Equations (6.9 & 6.11) and solving the equations numerically for nonlinear operators 

{ }6
1kλ , Equations (6.11 & 6.13) can be used to find construction parameters 

( 0 0 1 2 3 4, , , , ,ϕ ψ α α α α ). 

 

6.3.1. Numerical Example 

 

Using the same interval ( 2 / 3 4 / 3π ϕ π< < ), and the output function ( 0.8ψ ϕ= ), 

fourteen design points in prescribed interval is given again with respect to the 

Chebyshev spacing. The given design points and the calculated construction parameters 

are tabulated in Table 6.2. Also the plot of the designed mechanisms objective function 

and the sum of squared fitting errorsη  with the mean of η  in the design interval can be 

seen in Figure 6.4. 
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Table 6.2. Given design points and calculated construction parameters for NE 6.3.1. 

i  1 2 3 4 5 6 7 

( )i radϕ  2.10098 2.15316 2.25491 2.40111 2.58445 2.79573 3.02434 

( )i radψ  1.81108 1.84698 1.91647 2.01525 2.13744 2.27612 2.42385 

i  8 9 10 11 12 13 14 

( )i radϕ  3.25884 3.48746 3.69874 3.88207 4.02828 4.13002 4.18221 

( )i radψ  2.57306 2.71649 2.84736 2.95972 3.04857 3.11001 3.14141 

0 ( )radϕ  0 ( )radψ  1( )radα  2 ( )radα  3( )radα  4 ( )radα  Construction 
Parameters 

1.24252 
-0.51943 
(5.76376) 

0.38098 1.32458 
-1.49467 
(4.78852) 

0.17518 

 
 

 

 

Figure 6.4. a) Objective function of the designed spherical four bar mechanism 
b) Sum of squared fitting errors η  with meanη  

 

It is important to note that, although 14 design points are given, the fitting error 

vanishes only at six precision points. Also, when compared with the previous method, 

the values of the construction parameters ( 0 0 1 2 3 4, , , , ,ϕ ψ α α α α ) are close but different. 

This small difference on the other hand affects the extremum values of the fitting errors; 

that is, the max or min errors in intervals between the precision points are more uniform 

than the previous results. 

 

6.4. Chebyshev Approximation 

 

Although the square approximation gives the reasonable results for the fitting 

error extremums in the design interval, the errors are not equal. Knowing that the best 

fitting error function, in this study the objective function, will be reached when it 

oscillates between an error bound of±Γ  with maximum absolute error Γ  in each 
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sections in the design interval (Equation 6.18), Chebyshev approximation method is 

decided to be used to in the synthesis problem. 

 

( , ) ( ) , ( 1,2,..., )i iF c F i nϕ ϕ− = Γ =                                  (6.18) 

 

Consider that the objective function is in the form of, 

 

0 1

l l k

j j j j

j j l

P f P f F δ
+

= = +

+ − =∑ ∑                                        (6.19) 

 

where, k is the number of nonlinear parameters. The function in Equation (6.19) 

consecutively changes sign ( 2)l +  times, so that it has ( 2)l +  extremums in the design 

interval, where two of them are the boundary precision points. Due to the fact that 

max/min error value ±Γ is also being searched to bind the objective function at the 

given design points in the design interval, Γ  should be defined as a design parameter in 

synthesis equation that is again assumed to be linearly proportional with the nonlinear 

operators as, 

 

6 6 1 6 2 6 3 6 4 6 5 6 6l m n p q r sλ λ λ λ λ λΓ = + + + + + +                           (6.20) 

 

As a result, total number of parameters to be calculated with needed design points will 

increase by one, and Equation (6.18) can be rewritten to form 2n l= + equations. 

 

11
1

0

( 1) , ( 1, 2,...,7)i i

j j i

j

P f F i+

=

− = − Γ =∑                                    (6.21) 

 

If Equation (6.11) is inserted into Equation (6.21), and the parameters with the 

same nonlinear operators are equalized, 49 equations with 49 unknowns can be written 

in matrix form as, 
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  (6.22) 

 

where, 
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Using again the same analogy, the solution of Equation (6.22) will give the unknowns 

( , , , , , , 0,1,..,6j j j j j j jl m n p q r s j = ). Inserting the unknowns into Equation (6.9), and 

solving numerically for nonlinear operators{ }6
1kλ , Equations (6.11, 6.13 & 6.20) can be 

used to find construction parameters ( 0 0 1 2 3 4, , , , ,ϕ ψ α α α α ) and fitting error limitΓ . 

After the parameters are calculated, the derivative of Equation (6.21) with respect 

to iϕ is taken and its function is drawn in the design interval to find ( 2)n − roots of the 

derivative equation. As the roots are the extremums of the generated objective function 

with the synthesized parameters, they will become new iϕ values with the previous 

boundary precision points. Newer construction parameters and fitting error limitΓwill 

be recalculated by using Equations (6.22, 6.9, 6.11, 6.20 & 6.13) in this order. This 

consecutive process should be continued until Equation (6.18) is satisfied.  

 

6.4.1. Numerical Example 

 

Picking the same interval ( 2 / 3 4 / 3π ϕ π< < ), and the output function 

( 0.8ψ ϕ= ), seven design points in prescribed interval is given with respect to the 
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Chebyshev spacing. The given design points and the calculated construction parameters 

are tabulated in Table 6.3 for each consecutive trials until the construction parameters 

are not changing in five decimals and the Equation (6.18) is satisfied. Also the plot of 

the designed mechanisms objective function and its derivative in the design interval can 

be seen in Figure 6.5 for trial 1 and trial 2 as the change between them is more visible. 

When the results are compared with both of the previous methods, the values of 

the construction parameters ( 0 0 1 2 3 4, , , , ,ϕ ψ α α α α ) are too close again. However, by 

using Chebyshev approximation, at the end of the forth trial the fitting errors are 

equalized for each of the extremum values. Note that, unlike the first method, design 

points in Chebyshev approximation are the points, where the fitting error reaches its 

extremum values in the design interval. Also the fitting error still vanishes at the six 

precision points. 

 

Table 6.3. Given design points and calculated construction parameters for NE 6.4.1. 

Trial 1 1 2 3 4 5 6 7 

( )i radϕ  2.12065 2.32286 2.68723 3.14159 3.59595 3.96032 4.16253 

( )i radψ  1.82463 1.96254 2.20518 2.49873 2.78389 3.00735 3.12958 

0 ( )radϕ
 

0 ( )radψ
 

1( )radα
 

2 ( )radα
 

3( )radα
 

4 ( )radα
 

Γ  Construction 
Parameters 

1.24133 
-0.52034 
(5.76285) 

0.37989 1.32471 
-1.49455 
(4.78864) 

0.17462 
8.48283 
10-6 

Trial 2 1 2 3 4 5 6 7 

( )i radϕ  2.12065 2.25868 2.63882 3.13495 3.63403 4.02038 4.16253 

( )i radψ  1.82463 1.91904 2.17335 2.49451 2.80745 3.04379 3.12958 

0 ( )radϕ
 

0 ( )radψ
 

1( )radα
 

2 ( )radα
 

3( )radα
 

4 ( )radα
 

Γ  Construction 
Parameters 

1.24225 
-0.51978 
(5.76341) 

0.38008 1.32487 
-1.49468 
(4.78851) 

0.17467 
9.26939 
10-6 

Trial 3 1 2 3 4 5 6 7 

( )i radϕ  2.12065 2.25770 2.62865 3.13255 3.64097 4.02100 4.16253 

( )i radψ  1.82463 1.91838 2.16664 2.49298 2.81174 3.04416 3.12958 

0 ( )radϕ
 

0 ( )radψ
 

1( )radα
 

2 ( )radα
 

3( )radα
 

4 ( )radα
 

Γ  Construction 
Parameters 

1.24227 
-0.51977 
(5.76342) 

0.38008 1.32488 
-1.49468 
(4.78851) 

0.17467 
9.27502 
10-6 

Trial 4 1 2 3 4 5 6 7 

( )i radϕ  2.12065 2.25775 2.62866 3.13247 3.64093 4.02096 4.16253 

( )i radψ  1.82463 1.91841 2.16665 2.49293 2.81171 3.04414 3.12958 

0 ( )radϕ
 

0 ( )radψ
 

1( )radα
 

2 ( )radα
 

3( )radα
 

4 ( )radα
 

Γ  Construction 
Parameters 

1.24227 
-0.51977 
(5.76342) 

0.38008 1.32488 
-1.49468 
(4.78851) 

0.17467 
9.27502 
10-6 
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Figure 6.5.  Objective function of the designed spherical four bar mechanism and its 
derivative in trial 1 and trial 2 

 

6.5. Discussion (Spherical Four Bar) 

 

Although the synthesis methods shown up to this point are applied only to 

spherical four bar mechanism, they are also valid for more common planar four bar 

function generators (similarly the joint axes are intersecting at infinity) as well as other 

mechanisms. On the other hand, it should be noted that the maximum number of 

independent parameters that can be synthesized in planar four bar function generators 

are limited to five ( 0 0, , , ,a b cϕ ψ ) due to the ability of scaling (Figure 6.6). 

 

 

 

Figure 6.6.  Parameters of planar four bar mechanism function generator. 
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 On the calculation side, the reason behind the usage of the quaternion algebra in 

order to find the objective function of the mechanism is the simplicity of the tool for the 

rotations and the spherical four bar mechanism is just composed of rotational sequences. 

Moreover, the non-linear equations that are used to find the non-linear operators { }6
1kλ  

in each example are solved numerically by using Mathematica software. Also, as an 

alternative method used by many authors in literature, the non-linear equation sets can 

be reduced into one equation with only one variable of non-linear operator in some 

order and again solved numerically in the end, if the order is high to solve analytically. 

After the results are acquired, the synthesized mechanisms are controlled in the 

simulation environment with respect to the calculated independent parameters. Note that 

as a different constraint additional conditions as rotability, branch and circuit defect 

elimination can also be controlled after the synthesis problem in other studies. 

It is important that, the strategy followed up to this point by using introduced 

methodologies is error based. The aim is not only to reduce the error but also to bind the 

error into some limits ±Γ  so that the maximum absolute error in each interval between 

the precision points will be the same and oscillates back and forth in that interval. The 

Chebyshev approximation gave the best results in that manner with respect to the given 

examples. Also, throughout the chapter the notion “design points” are used for the 

points that are given by the designer and the “precision points” are used for the points 

where the objective function of the synthesized mechanism takes zero values. 

It should also be noted that, during the consecutive trials in Chebyshev 

approximation, a new approach is taken to renew the precision points iϕ . As it is not an 

easy task to find the precision points from the equations generated by the derivation of 

Equation (6.21) with respect to iϕ , and equating them to zero, function of the derived 

equation is drawn in the design interval to compute ( 2)n − roots. Afterwards, these 

roots are used as new iϕ values with the previous boundary design points for the next 

trial. At the end of each method, a numerical example is given providing that the design 

intervals and the output function remains the same. Although values of the construction 

parameters 0 0 1 2 3, , , ,ϕ ψ α α α , and 4α of the three designed spherical four bar mechanisms 

are near, the generated objective functions and their fitting errors differ (Figure 6.7). 
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Figure 6.7. Objective functions of the designed spherical four bar mechanisms for three 
different methods 

 

As it can be seen in Figure 6.7, interpolation approximation generates the 

highest fitting error, and also the error values at the extremums are not equal. On the 

other hand, least squares approximation decreased the highest fitting error value when 

compared with the interpolation approximation. However, the fitting error extremums 

are still not bounded in the same error values. Finally by using Chebyshev 

approximation, after the fourth trial, not only the maximum fitting error values are 

decreased with respect to the previous methods, but also the objective function starts to 

oscillate between an error bound of±Γ  with maximum absolute error Γ . 

 

6.6. Dual Quaternions in Rigid Body Rotations and Translations 

 

As mentioned earlier the dual quaternions have eight components, where four of 

them represent real part and the remaining represent the dual part. Although quaternions 

can only be used for the rotational sequences of the rigid bodies, the addition of this 

dual part gives the dual quaternions the ability to represent translational motions as well 

as the rotational motions. 

 Any dual quaternion operator 1( )Q Q−  can rotate or translate any given vector 

by the desired amount provided that dual quaternion multiplication is used for the 

product (Table 2.1). However, it should also be noted that unlike the usual 

representation, the inverse of the unit dual quaternion 1Q− should be taken as the third 

type conjugate of the dual quaternion (Equation 2.33). 
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To translate a rigid body by a specified amount 1 1 1 1( , , )x y zδ =  (Figure 6.8), 

following equation should be used,  

 

1
2 1( )r Q r Q−=                                                    (6.23) 

 

where 1r is the first position of the rigid body ( , , )x y zδ = in the dual quaternion form as 

1 1r x i y j z kε ε ε= + + +  , 2r is the final position of the rigid body in dual quaternion form 

andQ  will be 1 1 11
2 2 2

x y z
Q i j kε ε ε= + + + . 

 

 

 

Figure 6.8. Translation of rigid body. 

 

To rotate a rigid body by a specified angle α around any axis m̂  (Figure 6.9), 

the same equation can be used (Equation 6.23) However Q  should be modified to 

ˆ( ) ( )
2 2

Q Cos mSin
α α

= + . 

 

 

 

Figure 6.9. Rotation of rigid body. 
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Also note that for mixed rigid body simultaneous translation and rotation motions, dual 

quaternion operations can be applied sequentially to the initial position vector. 

 

6.7. Objective Functions 

 

 As the previous sections clearly states, the main problem in the synthesis of any 

mechanism is building its objective function in simplest form by using appropriate 

algebraic method. Although quaternion algebra was introduced before as an easy and 

fast tool, it can not be used solely in all mechanisms due to its rotational nature with 

spherical geometry requirement. On the other hand, using together with the classical 

vector algebra, quaternions can be applied to other non-spherical mechanisms as well. 

 In the light of this idea, let’s consider subspace λ=5, M=1 mechanism, where its 

input is aligned with x1 axis and the output is aligned with x2 axis (Figure 6.10). 

 

 

 

Figure 6.10. Subspace λ=5, M=1 mechanism. 

 

As it can easily be seen in Figure 6.10, link CD  will move in the surfaces of two 

spheres, if the mechanism is actuated. These two spheres are taken to be unit spheres 

that are just touching each other ( 2=0r j ) for the simplicity of the problem, where the 

task is to find five unknown construction parameters 1 2 3 4, , ,α α α α and br  by giving 
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some function ( )i if ϕΦ =  and orientation of link CD  ( ˆ ibr ) in five design points 

(i=1,2,…,5). The objective function of the task will be generated by using the procedure 

below. 

• The mechanism will be divided into two serial RR spherical manipulators 

centered in O1,O2 and touching one end of the link CD  with their end effectors 

(Figure 6.11). 

• f1r and f2r  vectors will be found by applying quaternion algebra in two different 

but equally oriented coordinate systems.  

• Vector loop equation f1 b 0 f2r + r = r +r  will be constructed in any of the 

coordinate systems to end up with three equations in component wise ( i, j,k ). 

• By using these three equations, an objective function will be developed by 

removing unwanted parameters 1γ and 2γ . 

 

 

 

Figure 6.11. Two serial RR spherical manipulators. 

 

Let’s start to apply the quaternion algebra to the first half of the mechanism. To 

reach f1r , 1r  is rotated around the normal of 1AO B plane 1N  by the angle 1α than the 

resulting vector is rotated around the normal of 1BOC plane 2N  by the angle 2α . 
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1 1
2 1 1 2

1 1 2 2
1 2 2

( )

ˆ ˆ( ) ( ), ( ) ( )
2 2 2 2

q q q q

q Cos Sin q Cos Sin
α α α α

− −=

= + = +

f1 1

1

r r

n n
                      (6.24) 

 

Similarly in the second half of the mechanism, To reach 2fr , 2r  is rotated around 

the normal of 2EO F plane 4N  by the angle 4α than the resulting vector is rotated 

around the normal of 2DO E plane 3N  by the angle 3α . 

 

1 1
2 4 3 2 3 4

3 34 4
3 4 4 3

( )

ˆ ˆ( ) ( ), ( ) ( )
2 2 2 2

q q q q

q Cos Sin q Cos Sin
α αα α

− −=

= + = +

fr r

n n
                     (6.25) 

 

In order to solve Equations (6.24 & 6.25), 2 3
ˆ ˆ ˆ, ,1n n n  and 4n̂  should clearly be 

defined. 1n̂  can be reached by rotating the unit vector of 1z axis k around 1x axis by the 

input angle ϕ  (Equation 6.26), 2n̂  can be reached by rotating 1n̂ around 1m
)

axis by the 

angle 1γ ( Equation 6.27), 4n̂  can be reached by rotating the negative unit vector of 

2z axis −k around 2x axis by the output angle φ  (Equation 6.28) and 3n̂  can be reached 

by rotating 4n̂ around 2m
)

axis by the angle 2γ ( Equation 6.29). 

 

1
5 5 5

ˆ ( ) , ( ) ( )
2 2

q q q Cos Sin
ϕ ϕ−= = +1n k i                                 (6.26) 

1 11 1
6 1 6 6 1 1

ˆ ˆ ˆ( ) , ( ) ( ), ( )
2 2

q q q Cos Sin q q
γ γ− −= = + =2 1 1 1n n m m r

) )
                (6.27) 

1
4 7 7 7
ˆ ( ) , ( ) ( )

2 2
q q q Cos Sin

ψ ψ−= − = +n k i                                 (6.28) 

1 12 2
8 4 8 8 2 2 3 2 3

ˆ ˆ ˆ( ) , ( ) ( ), ( )
2 2

q q q Cos Sin q q
γ γ− −= = + =2n n m m r

) )
                (6.29) 

 

After defining normal vectors, Equations (6.24 & 6.25) can be recalled. Both of 

the equations result in a quaternion with a null scalar part and three vector components 

,i j andk ; so that, as the third step suggested vector loop equation f1 b 0 f2r + r = r +r that 

includes all of the construction parameters 1 2 3 4, , ,α α α α and br  is constructed. 



 69 

However, these set of three equations also include 1γ  and 2γ . Due to the fact that 1γ  

and 2γ are neither construction nor input-output parameters, they are not needed during 

the synthesis problem and should be eliminated. As a result, using algebraic operations 

and manipulations, three equations should be reduced into one equation, objective 

function, that is free of 1γ  and 2γ . After the computation of objective function is 

fulfilled, construction parameters 1 2 3 4, , ,α α α α and br can be found by using desired 

synthesis procedure. 

In order to verify the results between the mixed algebra and the dual quaternion 

algebra, let’s start with a relatively easier task as the synthesis of RP serial manipulator. 

As seen in Figure 6.12 the rotation axis of the first revolute joint and the translation axis 

of the second prismatic joint are intersecting at a common point, which is selected as the 

origin of the global coordinate system. The task includes the path generation synthesis 

of the RP manipulator by giving the position of the end effector ( , , )i i iϕ ψδ and the 

rotation angle of the first input actuator ( )iθ in desired design points, where their 

numbers should be equal to the number of construction parameters of the manipulator. 

Note that in the current task 1 2,α α , and a  are taken as the construction parameters so 

that the number of design points should be three ( 1,2,3i = ). 

 

 

 

Figure 6.12. Serial RP manipulator. 

 

Now let’s start with the objective function generation by using quaternion 

algebra in accordance with the vector algebra. To reach the position of the end effector, 
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two distinct ways can be used. The first route includes the construction parameters 

1 2, ,aα α  and actuator inputs ,dθ while the second one includes the given parameters 

,ϕδ  and, ψ . To end up with the gripper position vector 4r from the first route, the unit 

vector r should be rotated around z axis by 1α degrees; the resultant vector 1r should be 

rotated around the normal 1N by the angle 2α ; the resultant vector 2r should be 

translated along its axis by d amount and finally 3r  should be translated along the 

gripper axis by a  amount. The calculations of the given procedure can be carried out by 

using the mixed method as below, 

 

1 1 1
1 1 1

1 1 1
2 2 2

1 2 2
2 3 1 3 3

3 2 2

1
4 2 4 4 4 3

( ) , , ( ) ( )
2 2

( ) , ( ) ( )
2 2

( ) , ( ) ( )
2 2

' ( ) , ( ) ( ), '
4 4

q q q Cos Sin

q q q Cos Sin

q q q Cos Sin

d

q q q Cos Sin a

α α

θ θ

α α

π π

−

−

−

−

= = = +

= = +

= = +

= +

= = + = +

1

1 1

1

1

r r r i k

n k r

r r n

r r r

r r n r r r

                      (6.30) 

 

where 'r is the direction of the gripper axis and 1n is the unit vector of the normal 1N . 

To end up with the gripper position vector δ from the second route, the vector 1δ should 

be rotated around negative y axis by the angleψ  amount and finally the resultant 

vector 2δ should be rotated around z axis by the angleϕ . The calculations of the given 

procedure can be carried out by using the mixed method as below, 

 

1
1 2 5 1 5 5

1
6 2 6 6

, ( ) , ( ) ( )
2 2

( ) , ( ) ( )
2 2

q q q Cos j Sin

q q q Cos k Sin

ψ ψ
δ

ϕ ϕ

−

−

= = = −

= = +

δ i δ δ

δ δ

                        (6.31) 

 

By using the results from Equations (6.30 & 6.31), =4r δ , three equations in 

component wise ( i, j,k ) is constructed. The last step of the objective function 

generation includes the removal of the unwanted variable parameters from the equation 

sets to get single equation, objective function, with desired parameters. It should be also 
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noted that for path generation synthesis the second actuator variabled should be 

eliminated from the equations. After the elimination procedure the generated objective 

function can be introduced as, 

 

1
2 1

2

0 0 1 1 2 2

0

0, ( 1,2,3)

i i i i i i i i i

i

S
C S C S S aS C S S

S

P f P f P f F i

α
α δ ψ α δ ψ θ θ δ ψ ϕ θ

α
+ − − =

+ + − = =

                        (6.32) 

 

 As the current study also focuses on the dual quaternion algebra, the same 

operations in two distinct routes should be expressed in dual quaternion form. Equations 

of the first route can be expressed as, 
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Equations of the second route can be expressed as, 

 

1
1 2 7 1 7 7

1
8 2 8 8

1 , ( ) , ( ) ( )
2 2

( ) , ( ) ( )
2 2

Q Q Q Cos j Sin

Q Q Q Cos k Sin

ψ ψ
δ ε

ϕ ϕ

−

−

= + = = −

= = +

δ i δ δ

δ δ

                    (6.34) 

 

Following the same procedure with the previous method, the same objective function is 

generated (Equation 6.32). So it is verified that, in the procedures in need of 

translational motions dual quaternion algebra is solely sufficient. 
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6.7.1. Numerical Example 

 

After the generation of the objective function of the RP serial manipulator, 

numerical example can be given to calculate the desired construction parameters 1 2,α α , 

and a . Using interpolation approximation, three design points are needed to compute 

the unknown construction parameters. The given parameters and the calculated 

construction parameters can be seen in Table 6.4. 

 

Table 6.4. Given parameters with calculated construction parameters 

iθ (rad) iδ  iψ (rad) iϕ (rad) 1α (rad) 2α (rad) a  

12

π
 3 

6

π
 

9

π
 

9

π
 6 

3

π
 

3

π
 

6

π
 9 

3

π
 

6

π
 

0.951014 0.862584 0.477219 

 

The synthesized manipulator can be seen in Figure 6.13. 

 

 

 

Figure 6.13. Synthesized serial RP manipulator. 
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CHAPTER 7 

 

BIOKINEMATIC ANALYSIS OF HUMAN BODY 

 

This chapter of the thesis deals with the type synthesis of the human body by 

investigating the various important elements of it in terms of their kinematic structure 

and DoF. Throughout the chapter, each individual joint will be illustrated with their 

possible achievable motions, and kinematic representations of the joints will be given in 

terms of their mechanism counterparts. Various examples are introduced with respect to 

the motion mimicry by using different types of mechanisms and manipulators that 

includes both new designs and existing designs from the literature. As stated before, 

further studies can be focused on the combination of related individual mechanism 

architectures to form one hybrid manipulator to fully mimic human body complexes. 

 

7.1. Human Eyes 

 

 Eyes can be categorized as one of the most important organs in human body 

(Figure 7.1), due to their ability to provide vision. 

 

 

 

Figure 7.1. Human eye. 
(Source: Wikipedia, 2010) 



 74 

 Most of the time, the motion of the eye is thought to be solely voluntary. On the 

other hand, in order to precisely process images, the brain should compensate for the 

head motions during body movements by turning the eyes rapidly by involuntary 

motions. Due to this fact, mobility of the eyes has great importance. Controlled by six 

muscles, (Figure 7.2), the eye actually has six DoF, which are three rotations and three 

translations that provide compensation during the motion of the body. However this 

study will focus on only the three main rotations around the horizontal, vertical and 

optical axes, due to the fact that translations along the coordinate axes are infinitesimal 

motions due to the head movements. 

 

  

 

Figure 7.2. Eye muscles: a) Medial rectus, b) Superior rectus, c) Superior oblique, 
d) Lateral rectus, e) Inferior oblique, f) Inferior rectus. (Source: Wikipedia, 
2010) 

 

 As it can clearly be seen in Figure 7.3, each pair of the six muscles of the eye is 

responsible for one individual rotational motion around one of the coordinate axes. 

Lateral and medial rectus muscles are capable of actuating the eye orientation in the 

vertical eye axis, inferior and superior rectus eye muscles are capable of actuating the 

eye orientation in the horizontal eye axis and finally inferior and superior oblique 

muscles are capable of actuating the eye orientation in the optical eye axis. In 

conclusion, the total DoF of the single eye can be described as three by omitting the 

three infinitesimal translational motions. As these three motions are only independent 

rotations around the axes, appropriate three DoF spherical manipulators can mimic the 

eye movements. To form a spherical manipulator, first the designer should calculate the 

number of joints needed to form the manipulator with respect to the given constraints 
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Figure 7.3. Eye movements from the superior view: a) Lateral rectus, b) Medial rectus, 
c) Inferior rectus, d) Superior rectus, e) Inferior oblique, f) Superior oblique. 
(Source: Wikipedia, 2010) 
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and later each of the individual joints should be intersected at a common point. 

Examples will clarify the idea for both serial and parallel manipulators. 

 

Example 1: Let’s construct three DoF serial spherical manipulator that can mimic all of 

the rotational motions of the human eye. Due to its serial nature, it is clear that the 

manipulator should have three one degree of freedom motors and the axis of the motors 

should be intersected at a common point, where the origin of the eye coordinate system 

is situated (Figure 7.4). 

 

  

 

Figure 7.4. Three DoF serial spherical manipulator. 

 

Example 2: Let’s construct three DoF parallel spherical platform manipulator that has 

one triangular platform. Due to its triangular platform the manipulator shall have three 

legs and therefore will have two independent loops. Knowing that the loops of a 

spherical manipulator will be in subspace λ=3, the number of one degree of freedom 

joints needed to form the manipulator can be calculated from the Alizade mobility 

formula, , , 3 (3 3) 9i i iM f f M fλ λ= − = + = + + =∑ ∑ ∑ ∑ ∑ . Calculated nine 

joints can be distributed evenly all the legs. Note that similar to the serial spherical 

manipulator, all the axis of the joints should be intersected at a common point where the 

origin of the eye coordinate system is located (Figure 7.5). 
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Figure 7.5. Three DoF parallel spherical platform manipulator. 

 

The two examples given above are the mechanisms that can mimic the motion of 

one eye. On the other hand, human visual system is composed of two eyes, where each 

move in coordination with another. Although the visual complexity can be simulated by 

using two individual mechanisms, it will be more convenient to design a mechanism 

that can fulfill all of the coordinated motions of the ocular system. 

Before starting to design targeted mechanism, the coordinated motions of the 

two eyes should be clearly investigated and the constraints should be given correctly. 

Due to the fact that, the rotations around the optical axes are infinitesimal and can be 

achieved by other means such as camera rotation or software adjustments, they will be 

excluded in the designed mechanism. As it can be seen in figure 7.6, with the 

 

 

 

Figure 7.6. Motions of the eye complex. 
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elimination of optical axes rotations, the ocular system has three DoF. One 

simultaneous rotational motion around the horizontal eye axis, one simultaneous 

rotational motion around the vertical eye axes and another independent rotational 

motion of one eye around its vertical axis to achieve focusing into one point. When 

compared with the two individual mechanism structure, it is clear that using combined 

three degrees of mechanism has several advantages such as reduced number of motors, 

easier control scheme, precision and robustness. 

 In the light of given constraints in terms of desired motions, the designed novel 

mechanism can be constructed as in figure 7.7. The focusing movement is carried out 

by the prismatic joint that is circled in red inside the figure. Other vertical and 

horizontal rotational motions can be given either by using revolute and prismatic joints 

that are attached to the ground and circled in blue or by using remaining two prismatic 

joints. 

 

 

 

Figure 7.7. Novel three DoF manipulator for the eye complex. 
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 In fact, clear investigation will reveal that, the mechanism that is introduced in 

figure 7.7 is a spatial parallel manipulator with triangular platform that has two 

independent loops in λ=6 (figure 7.8). When the prismatic joint that is responsible for 

the independent focusing motion is locked, the manipulator will become two degrees of  

 

 

 

Figure 7.8. Novel three DoF spatial parallel manipulator. 

 

freedom manipulator with normal leg configuration 6-2-6 in λ=6. However, when the 

prismatic joint is activated the total mobility of the kinematic pairs of the third leg will 

become seven (6-2-7). This activation gives the third leg an extra mobility in λ=6 that 

will not affect the platform of the manipulator. As a result, when the focusing 

movement occurs only the third leg will be affected while the overall behavior of the 

manipulator is protected. 

The case seems simple but important. Usually, in structural synthesis and design 

of the parallel manipulators, the total degree of freedom of the pairs in each leg is not 

selected to be greater than the space or the subspace number of the manipulators 

operating environment. The reason of this precaution is the fact that this redundancy 

will give extra mobility to the related leg. This extra mobility can only be used to move 

the leg instead of the platform and cause the leg to become instable if not properly 

controlled. However, in this example this extra mobility that is controlled by the linear 

actuator, is desired and proved to be usable while achieving focusing motion of the eye 

complex. 
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7.2. Human Arm 

 

 Being the complex that has the largest workspace in human body, human arm 

has many sections including multiple bones, such as clavicle, scapula, humerus, radius 

and ulna (Figure 7.9). The bones of the human arm complex start from the shoulder and 

end in the wrist. The longest bone of the arm humerus creates the upper portion, while 

two parallel bones radius and ulna create the lower portion of the human arm. The 

nearly spherical head of the humerus stays in the cavity of scapula, where it creates the 

shoulder or glenohumeral joint. The connection between the other end of the humerus 

and the two parallel relatively small bones radius and ulna creates the elbow joint. 

 

 

 

Figure 7.9. Structure of the human arm. 
(Source: Wikipedia, 2010) 

 

Although the clavicle is not a totally member of the arm, its motions contribute to the 

motion of the scapula to increase the overall workspace, so it should be mentioned in 

the biokinematic analysis of the human arm. 
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7.2.1. The Clavicle 

 

The clavicle forms the front portion of the shoulder girdle. It can be described as 

a long bone that is curved somewhat like the italic letter f, and placed horizontally at the 

upper and front part of the thorax, immediately above the first rib (Figure 7.10). 

 

 

 

Figure 7.10. The clavicle. 
(Source: Wikipedia, 2010) 

 

Actually the clavicle serves as a rigid support with scapula to the shoulder and 

helps to align the shoulder with the rest of the chest. It is connected to the thorax with a 

ball and socket type joint, as a result it has three rotational motions (Figure 7.11). 

 

 

 

Figure 7.11. Clavicle rotations. 
(Source: Wikipedia, 2010) 

 

The first rotational degree of freedom controls the elevation and the depression of the 

shoulder girdle, the second one controls the protraction and retraction of the shoulder 

girdle and the last one controls the backward and forward rotation of the shoulder 
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girdle. Owing to the fact that the whole three DoF consists of just independent 

orientations, single spherical joint can illustrate the motions. On the other hand, as the 

workspace of the clavicle is not so wide, three DoF spatial orientation parallel 

manipulator that has similar workspace can be used to illustrate the clavicle mobility 

(Figure 7.12). 

 

Example 3: Let’s construct three DoF spatial orientation parallel manipulator that have 

moving platform with a pyramid shape. Due to its rectangular platform the manipulator 

should have four legs and therefore will have three independent loops. Knowing that the 

loops of a spatial manipulator will be in space λ=6, the number of one degree of 

freedom joints needed to form the manipulator can be calculated from the Alizade 

mobility formula, , , 3 (6 3) 21i i iM f f M f xλ λ= − = + = + =∑ ∑ ∑ ∑ ∑ . Calculated 

twenty one joints will be distributed to the four legs as (6,6,6,3). After applying the 

exchangeability of kinematic pairs the orientation platform can be constructed (Figure 

7.12). 

 

  

 

Figure 7.12. Three DoF orientation manipulator. 

 

It should be noted that, in the right portion of the Figure (7.12), two DoF 

spherical with finger joints are replaced by spherical joints to make the operation of the 

manipulator easier by giving three passive rotations around each leg. 
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7.2.2. The Humerus 

 

 As mentioned before, humerus is the largest bone of the arm that creates the 

upper portion of the complex. Connecting to the cavity of the scapula by a ball and 

socket type joint with its nearly spherical head, humerus creates the shoulder or 

glenohumeral joint (Figure 7.13). Due to the fact that, the workspace of the humerus is 

affected by the workspace of the scapula, scapula motions should be introduced   

 

 

 

Figure 7.13. Humerus and the shoulder joint. 
(Source: Wikipedia, 2010) 

 

before advancing into humerus. In fact scapula has also a limited workspace similar to 

its neighbor bone. Scapula movements (Figure 7.14) are created by another ball and 

socket type joint in the connection between itself and the clavicle. Related with the  

 

 

 

Figure 7.14. Scapula rotations. 
(Source: Wikipedia, 2010) 
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nature of the spherical joint, scapula has three DoF orientation capability around its 

axes. 

Having learned the structure and the capabilities of the scapula, humerus can be 

introduced. Despide the fact that humerus and scapula connection (shoulder joint) is 

also a ball and socket type joint, it provides a larger workspace for the humerus when 

compared with the scapula motion. As seen in Figure (7.15) humerus has also three DoF 

orientation capability around its axes by the help of spherical shoulder joint. 

 

 

 

Figure 7.15. Humerus rotations. 
(Source: Wikipedia, 2010) 

 

 In order to create a mechanism that can mimic the scapula and humerus motions, 

some simplifications should be made. It is clear that by the addition of the workspaces 

of the scapula and clavicle, the humerus can move in a very large workspace. To fullfill 

such large workspace capability by introducing two individual mechanisms for both 

scapula and humerus in addition to the clavicle will be more complex and hard to 

control. As a result, the joints of clavicle-scapula and scapula-humerus can be simulated 

as one spherical mechanism since the distance between them is small. In the light of 

this, a three DoF serial manipulator with larger workspace can be used to mimic the 

upper arm motion. However, it should be noted that as the motions should be just three 

independent rotations, the axis of the motors should again be intersected at a common 

point where the origin of the shoulder joint coordinate system is located. 

 

Example 4: Let’s construct three DoF serial spherical manipulator. Due to its serial 

nature the manipulator should have three, one degree of freedom motors (Figure 7.16). 
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Figure 7.16. Three DoF serial spherical manipulator. 

 

7.2.3. The Radius and the Ulna 

 

The main function of the radius is to act as the main supporting bone of the 

forelimb. It articulates both with the humerus to form the elbow joint, and with the 

carpal bones to form the main joint of the wrist. The twist motion of the wrist is 

generated by the radius that can rotate over the ulna. When compared in structure, it is 

shorter than the ulna, which serves as a point for muscle attachment. The motions of the 

bone couples include one degree of freedom motion in the elbow that is used to bend 

the forearm up and down, and one degree of freedom motion in the wrist that gives the 

wrist and the hand its axial rotation, (Figure 7.17). 

 

 

 

Figure 7.17. Motions of the radius and ulna. 
(Source: Wikipedia, 2010) 
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Due to the simplicity of the structure and its motions, the kinematic 

representation of the lower arm system can be developed as a simple mechanism 

(Figure 7.18). 

 

  

 

Figure 7.18. Two DoF mechanism. 

 

7.3. Kinematic Analysis of Human Arm Complex by Using Theory of 

Transformation Unit Screws 

 

Up to this point, the chapter of biokinematic analysis of human body has dealt 

with the type and structural synthesis problem. The procedure of the process can be 

simply summarized in few steps as, 

 

• Investigate or define the mobility and motion relationship of the desired joint or 

the complex of the human body. 

• Decide the type of the mechanism that can be used to mimic the targeted joint 

(Serial manipulator, parallel manipulator, cam systems etc.). 

• Propose an existing mechanism from the literature or design a novel mechanism 

that can fulfill the desired task with respect to the type decision and given 

constraints. 

 

Now let’s deal with mathematical tools and carry out the kinematic analysis of 

human arm complex by using theory of transformation unit screws that is introduced in 

the previous chapters. For this task, human arm will be taken as five DoF serial 

manipulator from shoulder to wrist point that includes three DoF shoulder rotations, one 

DoF elbow rotation of forearm bending, and one DoF axial rotation of the wrist (Figure 

7.19). 
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Figure 7.19. Five DoF serial manipulator of human arm complex. 

 

7.3.1. Direct Kinematic Analysis 

 

 Before proceeding into the direct analysis problem, let’s construct the 

kinematical representation of five DoF serial manipulator and represent the variable 

parameters as well as constant ones (Figure 7.20). 

 

 

 

Figure 7.20. Kinematic representation of serial arm complex manipulator. 
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 In the problem of direct kinematics, the aim is to find the position and 

orientation of the end effector by using known values of variable and constant 

parameters. In the case presented in this subsection, these parameters for the five DoF 

serial manipulator are shown in Table 7.1. As the first and second unit screws lie on the 

x and y axes, their values are already known, 1 2$ (1,0,0,0,0,0) ,$ (0,1,0,0,0,0) . 

 

Table 7.1. Variable and constant parameters of serial arm complex manipulator. 

Variable Parameters Constant Parameters 

13 24 35 46 57, , , ,α α α α α  13 24 35 46 57, 0, , 0,a a a a a= =  

 

 

To achieve the orientation and the position of the end effector, it is needed to find the 

last two screws 6 6 6 6 6 6 6$ ( , , , , , )l m n P Q R and 7 7 7 7 7 7 7$ ( , , , , , )l m n P Q R . As mentioned 

in the previous chapters, any kth screw $k can be found by using i
th screw$i and j

th 

screw$ j by using the transformation unit screw equations, Equation (3.8). In order to 

find the last two screws 6 6 6 6 6 6 6$ ( , , , , , )l m n P Q R and 7 7 7 7 7 7 7$ ( , , , , , )l m n P Q R , 

previous screws 5
3{$ }i  should be found sequentially by applying Equation (3.8) as, 

 

$3 ( C13, 0, -S13, -S13a13, 0, -C13 a13 ); 

 

$4 ( S13 S24, C24, C13 S24, C13 S24 a13, 0, S13 S24 a13 ); 

 

$5 ( C13 C35 - C24 S13 S35, S24 S35, C35 S13 - C13 C24 S35, -(C35 S13 + C13 C24 S35) a13 - (C24 C35 

S13 + C13 S35) a35, C35 S24 a35, (-C13 C35 + C24 S13 S35) a13 + (-C13 C24 C35 + S13 S35) a35 ); 

 

$6 ( C46 S13 S24 + (C24 C35 S13 + C13 S35) S46, C24 C46 - C35 S24 S46, -S13 S35 S46 + C13 (C46 S24 
+ C24 C35 S46), C13 C46 S24 a13 + C13 C35 S46 (C24 a13 + a35) - S13 S35 S46 (a13 + C24 a35), S13 S24 

(-C13 C24 C35 + S13 S35) S46 a35, -C46 S13 S24 a13 - (C24 C35 S13 + C13 S35) S46 (a13 + C24 a35) ); 

 

$7 ( C13 (C35 C57 - C46 S35 S57) - S13 (-S24 S46 S57 + C24 (C57 S35 + C35 C46 S57)), C57 S24 S35 + 
(C35 C46 S24 + C24 S46) S57, -C57 (C35 S13 + C13 C24 S35) + (C46 S13 S35 + C13 (-C24 C35 C46 + 

S24 S46)) S57, -C57 ((C35 S13 + C13 C24 S35) a13 + (C24 C35 S13 + C13 S35) a35) + 
1

32
S57 (32 (C46 

S13 S35 + C13 (-C24 C35 C46 + S24 S46)) a13 + (32 C24 C46 S13 S35 + (S313 (5 S24 + S324) + S13 (-
7 S24 + 5 S324)) S235 S46 – 8 C13 (4 C35 C46 + (-1+C213 C235) S224 S46)) a35) - C57 (C46 (C24 

C35 S13 + C13 S35) - S13 S24 S46) a57 + (-C13 C35 + C24 S13 S35) S57 a57, C35 C57 S24 a35 – 
1

4
S13 

(C13 (-2 C35 C46 S224 + 4 S242 S352 S46) + S13 S24 (4 C46 S35 + S224 S235 S46)) S57 a35 + C57 

(C35 C46 S24 + C24 S46) a57 - S24 S35 S57 a57, (C13 (-C35 C57 + C46 S35 S57) + S13 (-S24 S46 S57 + 

C24 (C57 S35 + C35 C46 S57))) a13 + 
1

2
(2 C13 C24 (-C35 C57 + C46 S35 S57) + S13 (2 C57 S35 + (2 

C242 C35 C46 - S224 S46) S57)) a35 + (S13 (C46 C57 S35 + C35 S57) + C13 (C57 S24 S46 + C24 (-C35 

C46 C57 + S35 S57))) a57) 

(7.1) 
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 After the numerical values of the last two screws 6 6 6 6 6 6 6$ ( , , , , , )l m n P Q R and 

7 7 7 7 7 7 7$ ( , , , , , )l m n P Q R are computed, Equation. (7.1), the orientation of the end 

effector can be found from the two unit vectors 6 6 6( , , )l m n6e and 7 7 7 7( , , )l m ne . Also 

the position of the end effector ,x y and z can be calculated from the intersections of the 

last two screws by using Equation (3.4). 

 

7.3.2. Inverse Kinematic Analysis 

 

 In the problem of inverse kinematics, the aim is to find the values of the variable 

parameters by using known values of constant parameters, orientation and position of 

the end effector. In the case of targeted serial manipulator, in order to give the 

orientation of the end effector, any three given components of the unit vectors of the last 

two screws is sufficient. However it should be noted that at least one component should 

be given from each unit screw 6e and 7e . The other remaining three components can be 

calculated by using three equations as, 

 

7 7 7 671, 1,
2

Cos Cos
π

α⋅ = ⋅ = ⋅ = =6 6 6e e e e e e                           (7.2) 

 

After using Equation (7.2), the unit vector parts of the last two screws will be revealed. 

To continue the inverse task, other remaining moment vector parts of the last two 

screws 6 6 6( , , )P Q R6e ° and 7 7 7( , , )P Q R7e °  should be calculated. Using the given values 

of the position of the end effector ,x y and z , Equation (3.4), and the relations below, 

 

7 7 6 7 7 7 67 670, 0, $ $ 0a Sinα⋅ ° = ⋅ ° = ⊗ = ⋅ °+ ⋅ ° = − =6 6 6 6e e e e e e e e          (7.3) 

 

6 6 6( , , )P Q R6e ° and 7 7 7( , , )P Q R7e °  will be calculated, (Note that ⊗ sign in Equation 

(7.3) refers to the mutual moment operation). After the numerical values of the last two 

screws 6 6 6 6 6 6 6$ ( , , , , , )l m n P Q R and 7 7 7 7 7 7 7$ ( , , , , , )l m n P Q R are computed, all possible 

combinations of variable parameters 13 24 35 46 57, , , ,α α α α α  can be calculated by using 

components of $6 and $7  that are computed from the direct task in Equation (7.1). 



 90 

7.4. Human Hand 

 

 Hands (Figure 7.21) are another important part of the human body due to their 

ability to physically manipulating the environment by coarse and fine motions such as 

grasping a large obstacle or a tiny object. In the light of this importance, the sections of 

the hand should be clearly investigated with respect to their structure and motion 

capabilities. 

 

 

 

Figure 7.21. Human hand and the bones. 
(Source: Wikipedia, 2010) 

 

Actually the human hand can be split into two parts as the wrist and the fingers. 

The whole structure consists of many bones as distal phalanges, intermediate phalanges, 

proximal phalanges, metacarpals and carpals (Figure 7.21). Although the structure of 

the hand seems complicated, the motions can be easily identified. 

 

7.4.1. The Wrist 

 

 The human wrist composed of carpals that are the composed of eight small 

bones. The carpals of the hand can be categorized into two groups as midcarpals and 

radiocarpals. Three bones that are just located after the radius of the lower arm create 
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the wrist joint by the connection with the radius and the midcarpals (Figure 7.22). It 

should be noted that the midcarpals are formed by the remaining five bones of the 

carpals that are located just after the radiocarpals. 

 

 

 

Figure 7.22. Human wrist. 
(Source: Wikipedia, 2010) 

 

Despide the complexity of the carpal region, the wrist joint has just two DoF that 

are all composed of rotational motions around the axes passing through mostly the 

midcarpals. These rotations are responsible for not only extension and flexion but also 

the ulnar and radial deviation motions. Ulnar and radial deviation motions occur around 

the vertical axis of the largest carpal bone capitate that is located in the middle of the 

midcarpals, extension occurs mostly around the midcarpal joints lateral axis and the 

flexion occurs mostly around the radiocarpal joints lateral axis (Figure 7.23). 

 

 

 

Figure 7.23. Human wrist motions. 
(Source: Wikipedia, 2010) 

 

Wrist motions are composed of two independent simple orientation motions. 

Due to this simplicity, the kinematic representation of the wrist system can easily be 

reduced to an ordinary two DoF cardan or universal joint (Figure 7.24). Due to the small 
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distance between the actual axes, in this configuration extension and flexion of the 

human wrist are assumed to occur around the same axis.  

 

 

 

Figure 7.24. Cardan joint. 
(Source: Wikipedia, 2010) 

 

7.4.2. The Fingers 

 

 As the fingertips have a large density of nerve endings, the fingers are great for 

the tactile feedbacks in the human body. Thus, the fingers of the human body have 

greater positioning capability when compared with the other sections of human skeletal 

system. 

 

 

 

Figure 7.25. Bones of the finger. 
(Source: RelayHealth, 2010) 

 

The finger structure is composed of four different bones as distal phalanges, 

intermediate phalanges, proximal phalanges and metacarpals (Figure 7.25). The joints 

between the first, second and the third phalange are called interphalangeal joints, while 

the joint between the third phalange and the metacarpal is called metacarpophalangeal 

joint. The interphalangeal joints have one rotational degree of freedom that is the 

flexion motion. On the other hand metacarpophalangeal joint has two rotational DoF 
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that are both the flexion – extension and the abduction – adduction couple motions, 

(Figure 7.26). 

 

 

 

Figure 7.26. Motions of the finger bones. 
(Source: RelayHealth, 2010) 

 

 The visualization of the motions reveals that the great positioning capability of 

the human finger is caused by simple rotational flexion and abduction motions. Also it 

is clear that all of the three flexion motions occur in the same vertical plane, where the 

finger lies. The forth abduction motion just changes the orientation of mentioned 

vertical plane around the vertical axis. Following example will clarify the motion 

concept of the human finger. 

 

Example 5: Let’s construct four DoF serial manipulator, where the first three joints will 

make three DoF planar motion and the forth joint will change the orientation of the 

plane around the vertical axis. Being a serial manipulator, it should have four, one-DoF 

motors and due to the planar motion requirement, the axes of the first three joints should 

be parallel to each other and the fourth joint axis should be perpendicular to the other 

joint axes to achieve the desired motion configuration (Figure 7.27). 

 

  

 

Figure 7.27. Four DoF serial mechanism. 
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7.5. Human Leg 

 

 Closer investigation of the human leg reveals that, it has roughly similar 

kinematic structure with the human arm with the exception of workspace limitations. 

Similar to the human arm, human leg can be divided into two parts as upper portion and 

lower portion. The upper portion of the leg starts with the longest and the largest bone 

of the human skeletal system that is called femur. The lower portion of the leg continues 

with the two bones that are called tibia and fibula. Carrying the overall weight of the 

human body, tibia is the strongest bone of the skeletal system. There are two important 

joint formations in the system. The connection of the femurs nearly spherical head with 

the hip bone results in the formation of the hip joint, while the connection of femurs 

lower extremity with the tibia forms the knee joint.  The knee joint is protected and 

covered by a thick circular and triangular bone patella (knee cap or kneepan), 

 

 

 

Figure 7.28. Human leg. 
(Source: Wikipedia, 2010) 

 

which articulates with the femur (Figure 7.28). As the human legs are specifically 

adapted to the bipedal locomotion by the help of the location of human body gravity 

center and stay under the heavy load of the human body, all of the mentioned bones 

have special strength values, structures and mobilities. 
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7.5.1. The Femur 

 

  As mentioned earlier, the femur is the longest and the second strongest bone of 

the human skeletal system. Its shape is smilar to a cylindrical shaft that is curved 

forward with respect to the normal body pose. The femur can be divided into three main 

sections as the upper extremity including the head, neck and trochanters; the body and 

the lower extremity (Figure 7.28). 

 

 

 

Figure 7.28. Femur of the leg. 
(Source: Wikipedia, 2010) 

 

 When connected with the hip bone, the head of the femur creates the hip joint 

that has the similar characteristics of the ball and socket type kinematic pair. Due to its 

spherical nature hip joint has three independent rotational motions (Figure 7.29). 

 

 

 

Figure 7.29. Femur of the leg. 
(Source: Wikipedia, 2010) 
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 It should be noted that, similarly with the humerus of the arm, the femur motions 

can easily be modeled by using three DoF serial manipulator (Figure 7.16). 

 

7.5.2. The Tibia and the Fibula 

 

 The tibia is the largest of the two bones located at the lower portion of the 

human leg. Due to the fact that it carries the whole body weight, it is the strongest bone 

of the human skeletal system. The tibia has a prismoid shaft in section that is extended 

 

 

 

Figure 7.30. Tibia, fibula and the knee motion. 
(Source: Wikipedia, 2010) 

 

above and connected with the femur inside the knee joint. Compared with the tibia, 

fibula is a thinner bone (Figure 7.30). As its upper extremity is connected to the tibia 

below the knee, fibula is excluded from the knee joint. On the other hand, both bones 

help the formation of the ankle joint in each of their lower extremities. 

Although the knee joint permits not only the flexion and extension but also 

medial and lateral rotation to the lower portion of the leg, the latter pair of motions are 

small (Figure 7.30). It is clear from the definitions that, both independent motions are 

related with the orientation of the knee joint. Owing to the fact that the kinematic 

representation of the system again resembles with the human elbow structure, two DoF 

cardan or universal joint can be used to model the knee joint motions (Figure 7.24). 
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7.6. Human Foot 

 

 In a general description, human foot can be introduced as the lowest complex of 

the human body that bears the overall weight and responsible for the locomotion of the 

body. Although the definition seems to point out a simple area of skeletal system, its 

mechanical structure comes with great complexity including twenty six bones, thirty 

three joints and more than a hundred muscles, tendons and ligaments that actuate the 

joints of the foot to reach the desired mobility, (Figure 7.31). 

 

 

 

Figure 7.31. Human foot bones. 
(Source: Encyclopedia Britannica, 2010) 

 

If closely investigated, it will be revealed that this complex structure gives the 

foot its capability of overcoming extreme conditions such as excessive bending, 

instantaneous shock absorption and continuous mechanical stresses during various 

situations like running, jumping, standing etc. (Figure 7.32). 
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Figure 7.32. Human foot in extreme conditions. 
(Source: Wikipedia, 2010) 

 

 In order to clearly define the mobility constraints, the foot can be divided into 

three subsections as the posterior of the foot or the hindfoot, the midfoot and the 

forefoot. 

 

7.6.1. Hindfoot 

 

 The hindfoot behaves like a bridge between the ankle bone talus and the 

midfoot. The connection of the talus with two lower portion leg bones tibia and fibula 

creates a hinge like joint that has one degree of freedom. This mobility creates the 

dorsiflexion and the plantarflexion of the foot (Figure 7.33). 

 

 

 

Figure 7.33. Dorsiflexion and plantarflexion. 
(Source: MMG, 2010) 
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Another important joint of the posterior portion of the foot is the one degree of 

freedom subtalar joint. It is created by the connections of the talus and the calcaneus 

bones and allows the foot to make its inversion and eversion motions, (Figure 7.34). 

 

 

 

Figure 7.34. Inversion and eversion. 
(Source: MMG, 2010) 

 

 Due to the similarity in motion with the wrist complex, the posterior region of 

the human foot can be modeled by two DoF serial chain. As seen in Figure 7.35, the 

axes of two revolute joints of the modeled serial mechanism should be perpendicular to 

each other to achieve both dorsiflexion – plantarflexion and inversion – eversion motion 

couples. The actuation of the revolute joints can be given actively by distinct rotational 

motors, passively by adding RPR shock absorber structural groups to the appropriate 

positions or using both active and passive options in one configuration, Figure 7.35.  

The all passive case has been usually used in the medical prosthesis, where the joints 

are passively positioned with respect to the type of ground contact and lower  

 

  

 

Figure 7.35. Two DoF hindfoot mechanisms. 
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leg position during activities by the help of prismatic shock absorbers. When the 

prosthesis ankle is free from external forces, all the shock absorbers as well as the joints 

will return to their neutral positions. It should also be noted that, if the linear actuators 

of the orientation platform in Figure 7.12 are changed with the prismatic shock 

absorbers and the mid spherical joint that connects the two platforms is changed with 

the spherical with finger joint so that the axial z rotation become constrained, the 

resulting two DoF parallel manipulator (Figure 7.36) can be also used as a passive ankle 

prosthesis instead of serial ones. 

 

 

 

Figure 7.36. Two DoF parallel manipulator with passive shock absorbers. 

 

7.6.2. Midfoot 

 

 As seen in Figure 7.37, the mid foot is composed of five tarsal bones in various 

sizes. Although these bones do not contribute to the mobility of the human foot directly, 

they act as shock absorbers in the connection between the forefoot and the hindfoot. 

 

 

 

Figure 7.37. Tarsal bones of the midfoot. 
(Source: PaddocksHealthcare, 2010) 
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7.6.3. Forefoot 

 

 The structure of the forefoot is composed of two different bone types, 

metatarsals and phalanges (Figure 7.38). As there are five toes in human foot, many 

joints exist in the complex. The connection of metatarsals with the tarsal bones creates 

tarsometatarsal joints. Each of the metatarsal bones are articulated with one or more 

tarsal bones in these joints. However, these joints do not permit a wide range workspace 

motions. Instead the mobility is limited to slide gliding motions between the tarsal ends 

 

 

 

Figure 7.38. Bones of the forefoot. 
(Source: PaddocksHealthcare, 2010) 

 

and the base of the metatarsal bones. Transition to the phalange zone begins with the 

metatarsophalangeal joints between the metatarsal ends and the first phalanges. Similar 

with the metacarpophalangeal joints in the fingers, these joints also permits flexion - 

extension and abduction – adduction motion couples. Each of the four phalanges 

consists of three small bones and two joints while the big toe or hallux has two small 

bones and one joint. The joints between these small bones of phalanges act as a regular 

one degree of freedom revolute joint and allow the flexion rotation of toes as is the case 

in fingers. In the light of this, similar serial chains in Figure 7.27 can be used to model 

the structure. On the other hand, as the most of the flexor muscles that are responsible 

for the phalange flexion are shared through the five toes, individual mobility of the toes 

are restricted unlike the case in finger phalanges. Due to this property, the mentioned 

flexion occurs simultaneously in five of the toes and the grasping ability of the foot with 

its toes is weak. This simultaneous rotation can be easily simulated or simply modeled 

by a one degree of freedom revolute joint (Figure 7.39), and this joint can be passively 
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actuated by using simple mechanisms including torsional springs or prismatic shock 

absorbers (Figure 7.39). 

 

  

 

Figure 7.39. One DoF simplified forefoot mechanisms. 

 

7.7. Human Skull 

 

 The normal adult human skull (Figure 7.40) consists of 22 bones that are 

connected each other by immovable joints except the mandible that forms the human 

jaw by the connection with the temporal bone. These immovable joints, also referred as 

sutures, are a type of fibrous joints that permits only a slight movement for both the 

elasticity and the compliance of the skull. 

 

 

 

Figure 7.40. Human skull. 
(Source: Wikipedia, 2010) 
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7.7.1. Human Jaw 

 

 As mentioned earlier, human jaw is formed by the connection between mandible 

and the temporal bone with the help of two temporomandibular joints (Figure 7.41). 

 

 

 

Figure 7.41. Temporomandibular joint. 
(Source: One with Nature, 2010) 

 

Although the temporomandibular joints seem to give the mandible simple motion 

characteristics that can be modeled by common joints such as revolute and spherical, a 

detailed investigation will reveal that human jaw has complex motions during 

mastication (chewing) and speech formation so that this kind modeling will lead to 

incorrect results. As the study of Koolstra (2002) clearly states, this complexity is the 

results of both the large number of muscles of various shapes and sizes throughout the 

system and the incongruent articular surfaces of the temporomandibular joints, where 

the lower and the upper surfaces of joint formation have different shapes. While this 

difference results in higher motion capability in the joint, it reduces the joint stability 

due to relatively small joint contact areas.  

Actually, similar to a rigid body moving freely in space, human jaw has capable 

of six DoF including three rotations around and three translations along the Cartesian 

axes (Figure 7.42). On the other hand the workspaces of these motions are limited. 

Also, as the movements of the mandible is constrained by two temporomandibular 

joints, at some extends the various motions may become dependent to others as is the 

case in overconstrained manipulators. 
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Figure 7.42. 6 DoF human jaw movements. 
(Source: Wikipedia, 2010) 

 

 Despite of the fact that the system might be modeled by simplified concepts by 

using reduced DoF, the dynamics of the human jaw can be totally simulated by using 

suitable six DoF parallel platform manipulators (Figure 7.43) due to their higher 

precision in relatively small workspaces when compared with the serial manipulators. 

However it should be noted that, as the DoF increases, control of the manipulator will 

be more complex. 

 

 

 

Figure 7.43. 6 DoF Euclidean parallel platform manipulator. 
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7.8. Human Vertebral Column 

 

 Vertebral or spinal column (Figure 7.44) can be categorized as one of the most 

important structures in human body. It extends from the human skull up to the pelvis 

and consists of 33 small bones that are stacked on top of each other. These small bones 

are called vertebrae and shows different characteristics throughout the four regions of 

the vertebral column. 

 

 

 

Figure 7.44. Human vertebral column and its regions. 
(Source: Spine Universe, 2010) 

 

 The importance of the vertebral column comes from the vital functions of the 

system. The vertebral column protects the spinal cords, nerve roots and internal organs 

while it maintains its structural support for the body parts and creates a base for the 

attachment points of the muscles, tendons and ligaments of the body structures. Due to 

its relatively complex structure, vertebral column coarsely gives flexible mobility to the 

human body as flexion, extension, side bending and rotation around the vertical body 

axis. However, it should be noted that these motions are in reality more complex and 

generated by the combination of motions and workspaces of the individual parts of the 

system.  
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The cervical region (Figure 7.45) of the vertebral column is located at the neck 

area of the body and it includes seven unique shaped vertebrae (Figure 7.45). 

 

  

 

Figure 7.45. Cervicle region. 
(Source: Texas Back Institute, Spine Universe, 2010) 

 

This section gives the neck its three DoF motion capability of rotation, extension, 

flexion and lateral bending (Figure 7.46). 

 

 

 

Figure 7.46. Neck motions. 
(Source: NASA, 2010) 
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The thoracic region (Figure 7.47) of the vertebral column is located at the chest 

area of the body and it includes twelve unique shaped vertebrae (Figure 7.47). 

 

  

 

Figure 7.47. Thoracic region. 
(Source: Texas Back Institute, Spine Universe, 2010) 

 

Due to the fact that the rib cage of the human body is joined to thoracic region and there 

are relatively high numbers of connections on the region vertebrae, the mobility of the 

thoracic portion of the vertebral column is limited. 

The lumbar region (Figure 7.48) of the vertebral column is located at the low 

back portion of the body and it includes five unique shaped vertebrae (Figure 7.48). 

 

  

 

Figure 7.48. Lumbar region. 
(Source: Texas Back Institute, Spine Universe, 2010) 
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This section of the vertebral column carries most of the body weight, and mechanical 

stresses so that the shapes and the structures of the vertebrae are adapted in order to 

sustain structural support. When compared with the other regions of the vertebral 

column, lumbar region has the highest mobility. On the other hand the motion 

characteristics are similar with other sections. Lumbar region gives the human waist 

three DoF including rotation, extension, flexion and lateral bending (Figure 7.49). 

 

 

 

Figure 7.49. Waist motions. 
(Source: Chris Adams, CRM, Spinal Soothers, 2010) 

 

The last portion of the vertebral column is the pelvic region that can be divided 

into two sub regions as sacrum and coccyx (tailbone). This region is composed of nine 

vertebrae where the five sacrum vertebrae in adults are fused and connected with the hip 

bones. 

 As it can be seen clearly when the mobility of vertebral column regions are 

analyzed, it will be revealed that the motion characteristics have similarities. In fact, the 

overall mobility of the system is determined by the individual movements that occurred 
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in each of the vertebral segments (Figure 7.50) and the total workspace of the vertebral 

column is determined by their coupled motions. 

 

  

 

Figure 7.50. Two vertebral segments. 
(Source: Spine Universe, Texas SJH, 2010) 

 

Vertebral bodies are connected to each other by an intervertebral disc and two joints 

called facet joints. Throughout the system, facet joints guide the motions of the 

vertebral segments while they limit the excessive shear, rotation and flexion of the 

vertebrae, and intervertebral discs act as shock absorbers. The facet joints are actually 

synovial joints (Figure 7.50) filled with synovial fluid and they also responsible for the 

flexibility of the vertebral column. The intervertebral discs have two regions including a 

strong outer ring (annulus fibrosus) that connects each vertebral segment while 

protecting the center and a soft inner ring (nucleus pulposus) that acts as the main shock 

absorber (Figure 7.51).  

 

  

 

Figure 7.51. Intervertebral disc. 
(Source: Stephan Lahr, Texas SJH, 2010) 
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Although, the workspace of the motion in each vertebral segment couple is 

small, the system workspace is increased by the addition of another couple. As a result 

of this characteristic, the modularity of the system should be considered in order to 

propose a mechanism or manipulator for the whole structure. Due to the fact that motion 

capabilities of the vertebral sections and segments are similar including rotation, 

bending and flexion-extension, three DoF orientation manipulator (Figure 7.52)  that is 

presented in the clavicle rotations section would also be a good model for the vertebral 

segments.  

 

 

 

Figure 7.52. Rotational motions of 3 DoF orientation platform. 
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 As seen in Figure 7.53, the orientation platforms can also be easily combined to 

form a modular manipulator system, where it is able to simulate the whole motion 

characteristics of the vertebral column.  On the other hand, the structure of the platforms 

could be modified for a better model. If the spherical joints between the two platforms 

of the manipulator are replaced by an elastic region of suitable geometry, not only the 

workspace of each segment will be restricted but also the system will gain a shock 

absorber similar to the intervertebral discs and become more flexible. 

 

 

 

Figure 7.53. Modularity of 3 DoF orientation platform. 
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7.8.1. Geometrical Analysis of Spatial 3-DoF Orientation Mechanism 

 

Throughout the chapter, three DoF orientation platform is referred as models of 

various kinematic joints or systems in the human body. As a result it would be suitable 

to carry out its geometrical analysis in order to gain wider information about the 

manipulator.  

Equation (7.3) shows the simple equation of a sphere with radius “r” whose 

centre is fixed at the origin (Figure 7.54) and Equation (7.4) shows the case when the 

centre is positioned away from the origin 1 1 1( , , )x y z  (Figure 7.55). 

 

2 2 2 2x y z r+ + =                                                 (7.3) 

2 2 2 2
1 1 1( ) ( ) ( )x x y y z z r− + − + − =                                   (7.4) 

 

 

 

Figure 7.54. Sphere with radius “r” whose centre is fixed at the origin 

 

 

 

Figure 7.55. Sphere with radius “r” whose centre is away from the origin 
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If the generalized orientation platform in Figure 7.56 is considered and the origin 

point of the Cartesian coordinate system is placed to the rotation centre of the 

mechanism, where z axis is perpendicular to the upper platform in the initial 

configuration, workspace of the first point 1D  can be analysed by drawing a vector from 

the origin to the point 1D . From this point the workspace of 1r  will be described as 

sphere “A” whose equation becomes, 

 

1 1 1

2 2 2 2

1D D D
x y z r+ + =                                              (7.5) 

 

Due to the limitation of leg 1d  the workspace of its vector will be the volume 

between the spheres B and C. As the coordinates of 1O 1 1 1( , , )x y z  can be easily found by 

using constructional parameters, the workspace of the vector 1d will be, 

 

1 1 1

2 2 2 2

1 1 1 1

1 1min 1max

( ) ( ) ( )
D D D
x x y y z z d

d d d

− + − + − =

= →
                            (7.6) 

 

Using the same analogy, equations for other legs can be described as, 

 

2 2 2

2 2 2

3 3 3

3 3 3

2 2 2 2

2

2 2 2 2

2 2 2 2

2 2min 2max

2 2 2 2

3

2 2 2 2

3 3 3 3

3 3min 3max

( ) ( ) ( )

( ) ( ) ( )

D D D

D D D

D D D

D D D

x y z r

x x y y z z d

d d d

x y z r

x x y y z z d

d d d

+ + =

− + − + − =

= →

+ + =

− + − + − =

= →

                         (7.7) 

 

As there are six equations (Equations 7.5-7,7) with nine unknowns, remaining 

three equations can be written by using the construction parameters of the upper 

platform (Figure 7.57). 
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Figure 7.56. Generalized orientation platform 

 

 

 

Figure 7.57. Construction parameters of upper platform (a, b, and c). 
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Using the fixed lengths, a, b, and c, remaining equations can be described as, 

 

1 2 1 2 1 2

1 3 1 3 1 3

2 3 2 3 2 3

2 2 2 2

2 2 2 2

2 2 2 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

D D D D D D

D D D D D D

D D D D D D

x x y y z z a

x x y y z z b

x x y y z z c

− + − + − =

− + − + − =

− + − + − =
                        (7.8) 

 

After some modifications on nine equations and using new representations 

, ,
i i iD i D i D ix x y y z z= = =% % % ,  those equations will be reduced to six equations with six 

unknowns as,  

 

 

 

 

 

 

 

 

 

(7.9) 

 

 

 

 

 

 

  

 

  As there are six independent equations and six unknowns (Equation 7.9), there 

exists a unique solution for the position of the platform with respect to the given 

parameters. So that, solving Equation (7.9) by numerical methods and get the positions 

of the corners, any position and orientation of the centre of the orientation platform can 

be found by using the input parameters. 

2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1

2 2 2
1 1 1 1 1 1

2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2

2 2 2
2 2 2 2 2 2

2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3

( ) ( ) (2 ) (2 )

( 2 )

( ) ( ) (2 ) (2 )

( 2 )

( ) ( ) (2 ) (2 )

x z x y z y x px y py

x y x y p z r

x z x y z y x qx y qy

x y x y q z r

x z x y z y x tx y ty

x

− − + − − + +

+ − = −

− − + − − + +

+ − = −

− − + − − + +

+

% % % %

% %

% % % %

% %

% % % %

%
2 2 2

3 3 3 3 3 3

2 2 2 2 2 2 2 2 2 2 2 2
1 2 1 2 2 1 2 1 1 2 1 2 1 2 1 1 2 1

2 2 2
1 2 1 2 1 1 2

2 2 2 2 2 2 2 2 2 2 2 2
1 3 1 3 3 1 3 1 1 3 1 3 1

( 2 )

( ) ( ) ( ) ( ) (2 ) (2 )

( 2)

( ) ( ) ( ) ( )

y x y t z r

x r y r x r y r x y y x x x s y y s

x x y y s r r

x r y r x r y r x y y x x

− = −

− + − + − + − + + + +

+ − = −

− + − + − + − + + +

%

% % % % % % % % % % % %

% % % %

% % % % % % % % % 3 1 1 3 1

2 2 2
1 3 1 3 2 1 3

2 2 2 2 2 2 2 2 2 2 2 2
2 3 2 3 3 2 3 2 2 3 2 3 2 3 1 2 3 2

2 2 2
2 3 2 3 2 2 3

(2 ) (2 )

( 2)

( ) ( ) ( ) ( ) (2 ) (2 )

( 2)

x s y y s

x x y y s r r

x r y r x r y r x y y x x x s y y s

x x y y s r r

+

+ − = −

− + − + − + − + + + +

+ − = −

% % %

% % % %

% % % % % % % % % % % %

% % % %



 116 

CHAPTER 8 

 

CONCLUSION 

 

Due to the fact that, visualization of the subspace motions of the rigid bodies is 

difficult and hard to comprehend, this study has introduced a novel method called 

“Method of Intersections”, where simple geometric shapes representing revolute (R) and 

prismatic (P) joint motions are intersected by means of desired space or subspace 

requirements to create specific rigid body geometries in predefined octahedral fixed 

frame. Presented methodical approach is able to visualize space and subspace motions 

clearly by the help of resulting geometrical entities that have physical constraints with 

respect to the fixed working volume. Also, it has been proved by an example that, this 

new method can be used to design novel mechanisms in various subspaces. 

 This study has introduced the transformation unit screw equations to the 

literature, where it has been shown that any third screw ($ )k can be calculated, if the 

components of first and second screws ($ ,$ )i j  are known along with the short distance 

and the angle between the first and the third screws. Also, by using recurrent screws and 

transformation unit screw equations, physical representations and kinematic 

representations of both lower and higher kinematic pairs are given and the method for 

calculating their mathematical models is presented. Moreover, novel universal mobility 

formulations based on screw theory for both kinematic pairs and robot manipulators are 

introduced and examples are given throughout the related chapters. 

 In the synthesis part of the study, function generation synthesis of the spherical 

four bar mechanism for the six precision points is carried out by using quaternion 

algebra. Three different techniques, as interpolation approximation, least squares 

approximation and Chebyshev approximation are used in the synthesis process. After 

the calculations, results are compared and Chebyshev approximation is proved to give 

the best results with respect to fitting errors as it is expected. It should also be noted 

that, during the consecutive trials in Chebyshev approximation, a new approach is used 

to renew the precision points. Furthermore, the possible usage of the dual quaternions is 

shown in various synthesis procedures of different mechanisms.  Also, a new idea is 
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presented for the one degree of freedom mechanism with subspace five, where the 

function generation and body guidance synthesis can be carried out simultaneously. 

Following mostly the theoretical studies, this study has investigated the 

biokinematics of human body. The most important sections of the human skeletal 

system and body including human eyes, arm complex, hand complex, leg complex, foot 

complex, skull and vertebral column are introduced in terms of their kinematical 

structure and DoF. Various manipulators are proposed for the body parts that have 

capabilities to mimic the dedicated body system. In this thesis, the aim was to extract all 

possible information about the biokinematics of human body into one reference that can 

be used for further studies in the area of medicine to design advanced prosthetics and 

robotics to design advanced humanoid robots for various tasks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 118 

REFERENCES 

 

Admiraal, M. A. et al. (2004). Modelling kinematics and dynamics of human arm 
movements. Motor Control, 8, 312-338. 

 

Alizade, R. (1994). Synthesis of four-bar spherical mechanism on five parameters. J. 
Mech. Eng., Russian Academy of Science, 6 (in Russian). 

 

Alizade, R., Bayram, C. (2004). Structural synthesis of parallel manipulators. Mech. 

Mach. Theory, 39(8), 857-870. 
 

Alizade, R., Kilit, O. (2005). Analytic synthesis of function generating spherical four-
bar mechanism for the five precision points. Mech. Mach. Theory, 40(7), 863–
878. 

 

Alizade, R., Bayram, C., Gezgin, E. (2007). Structural synthesis of serial platform 
manipulators. Mech. Mach. Theory, 42(5), 580-599. 

 

Alizade, R., Can, F. C., Gezgin, E. (2008). Structural synthesis of Euclidean platform 
robot manipulators with variable general constraints. Mech. Mach. Theory, 
43(11), 1431-1449. 

 

Angales, J. (1988). Rational Kinematics. Springer Verlag, New York. 

 

Angeles, J., Gosselin, C. (1988). Determination du degree de liberte des chaines 
cinematiques. Trans. CSME, 12(4), 219-226. 

 

Barshan, B., Tunçel, O., Altun, K. (2009). Classifying human leg motions with uniaxial 
piezoelectric gyroscopes. Sensors, 9, 8508-8546. 

 

Benjelloun, M. et al. (2007). Vertebral mobility analysis using anterior faces detection. 
ACIVS 2007, LNCS 4678, 897-908. 

 

Benjelloun, M., Mahmoudi, S. (2007). Spine localization and vertebral mobility 
analysis using faces contours detection. 29th Annual International Conference of 
the IEEE EMBS Lyon, France, 6557-6560. 

 

Breazeal, C. (2003). Emotion and sociable humanoid robots. Int. J. Human-Computer 
Studies, 59, 119-155. 

 

Buschmann, T., Lohmeiner, S., Ulbrich, H. (2009). Humanoid robot LOLA: Design and 
walking control. Journal of Physiology-Paris, 103, 141-148. 



 119 

Celledoni, E., Saftsröm, N. (2010). A Hamiltonian and multi-symplectic formulation of 
a rod model using quaternions. Computer Methods in Applied Mechanics and 

Engineering, doi: 10.1016/j.cma.2010.04.017. 
 

Chevallier, D. P. (1991). Lie algebras, modules, dual quaternions and algebraic methods 
in kinematics. Mech. Mach. Theory, 26(6), 613-627. 

 

Collins, C. L., McCarthy, J. M. (1998). The quartic singularity surfaces of planar 
platforms in the Clifford algebra of the projective plane. Mech. Mach. Theory, 
33(7), 931–944. 

 

Dai, S. J. (2006). An historical review of the theoretical development of rigid body 
displacements from Rodrigues parameters to the finite twist. Mech. Mach. Theory, 
41,  41–52. 

 

Fang, Y., Tsai, L. W. (2002). Structure synthesis of a class of 4-dof and 5-dof parallel 
manipulators with identical limb structures. The International Journal of Robotic 
Research, 21(9), 799-810. 

 

Fang, Y., Tsai, L. W. (2004). Analytical identification of limb structures for 
translational parallel manipulators. Journal of Robotic Systems, 21(5), 209-218. 

 

Fang, Y., Tsai, L. W. (2004). Structure synthesis of a class of 3-dof rotational parallel 
manipulators. IEEE Transactions on Robotics and Automation, 20(1), 117-121. 

 

Farhang, K., Midha, A., Bajaj, A. K. (1988). Synthesis of harmonic motion generation 
linkages Part-I, Function generation. ASME, J. Mech. Transm. Automat. Design, 
110(1), 16–21. 

 

Farhang, K. Zargar, Y. S. (1999). Design of spherical 4R mechanisms: function 
generation for the entire motion cycle. ASME, J. Mech. Design, 121, 521–528. 

 

Gogu, G. (2005). Mobility of mechanisms: a critical review. Mech. Mach. Theory, 
40(9), 1068-1097. 

 

Gosselin, C. (1994). The agile eye: A high performance 3DoF camera orienting device. 
Proceedings of the IEEE International Conference on Robotics and Automation, 
San Diego, CA, 781-786. 

 

Gupta, K. C., Beloiu, A. S. (1998). Branch and circuit defect elimination in spherical 
four-bar linkages. Mech. Mach. Theory, 33(5), 491–504. 

 

Hamilton, W.R. (1866).Elements of Quaternions. London. 

 



 120 

Hartenberg, R. S., Denavit, J. (1964). Kinematic synthesis of linkages. McGraw-Hill, 

New York. 
 

Haslwanter, T. (2004). Mathematics of three dimensional eye rotations. Vision Res., 
35(12), 1727-1739. 

 

Herve, J. M. (1999). The Lie group of rigid body displacements, a fundamental tool for 
mechanism design. Mech. Mach. Theory, 34(5), 719-730. 

 

Huang, Z., Li, Q. C. (2002). General methodology for type synthesis of symmetrical 
lower-mobility parallel manipulators and several novel manipulators. The 

International Journal of Robotic Research, 21(2), 131-145. 
 

Huang, Z., Li, Q. C. (2002). On the type synthesis of lower-mobility parallel 
manipulators.  Proceedings of the workshop on Fundamental Issues and Future 
Research Directions for Parallel mechanisms and manipulators Quebec, Canada, 
272-283. 

 

Huang, Z., Li, Q. C. (2003). Type synthesis of 4-dof parallel manipulators. Proceedings 
of the 2003 IEEE International Conference on Robotics & Automation, Taipei, 

Taiwan, 755-760. 
 

Huang, Z., Li, Q. C. (2003). Type synthesis of 5-dof parallel manipulators. Proceedings 
of the 2003 IEEE International Conference on Robotics & Automation, Taipei, 

Taiwan, 1203-1208. 
 

Jenkin, M., Milios, E., Tsotsos, J. (1993). Design and performance of TRISH, a 
binocular robot head with torsional eye movements. International Journal of 
Pattern Recognition and Artificial Intelligence, 7(1), 51-68. 

 

Jesus Cervantes-Sanchez, J. et al. (2009). Some improvements on the exact kinematic 
synthesis of spherical 4R function generators. Mech. Mach. Theory, 44, 103–121. 

 

Jin, Y., Chen, I. M., Yang, G. (2004). Structure synthesis and singularity analysis of a 
parallel manipulator based on selective actuation. Proceedings of the IEEE 
International Conference on Robotics and Automation, 4533-4538. 

 

Banavar, N. R. et al. (2010). Design and analysis of a spherical mobile robot. Mech. 

Mach. Theory, 45, 130–136. 
 

Kazerounian, K., Solecki, R. (1993). Mobility analysis of general bi-modal four-bar 
linkages based on their transmission angle. Mech. Mach. Theory, 28(3), 437–445. 

 



 121 

Kong, X., Gosselin, C. M. (2001). Generation of parallel manipulators with three 
translational degrees of freedom based on screw theory. Proceedings of CCToMM 

Symposium on Mechanisms, Machines and Mechatronics, Montreal, Canada. 
 

Kong, X., Gosselin, C. M. (2004). Type synthesis of 3T1R 4-DoF parallel manipulators 
based on screw theory. IEEE Transactions on Robotics and Automation, 20(2), 
181-190. 

 

Kong, X., Gosselin, C. M. (2006). Type synthesis of 4-DoF SP-equivalent parallel 
manipulators: A virtual chain approach. Mech. Mach. Theory, 41, 1306-1319. 

 

Kong, X., Gosselin, C. M. (2007). Type synthesis of parallel mechanisms. Springer.  

 

Koolstra, J. H. (2002). Dynamics of the human masticatory system. Crit Rev Oral Biol 
Med, 366-376. 

 

Larochelle, P., (2000). Approximate motion synthesis via parametric constraint 
manifold fitting. Advances in Robot Kinematics, Kluwer Acad. Publ., Dordrecht. 

 

Liao, Q. et al. (2010). Inverse kinematic analysis of the general 6R serial manipulators 
based on double quaternions. Mech. Mach. Theory, 45, 193-199. 

 

Ludewig, P. M. et al. (2004). Three dimensional clavicular motion during arm 
elevation: reliability and descriptive data. J Orthop Sports Phys Ther, 34(3), 140-
9. 

 

Martinez, J. M., Gallardo-Alvarado, J. (2000). A simple method for the determination of 
angular velocity and acceleration of a spherical motion through quaternions. 
Nederlands, Meccanica, 35, 111-118. 

 

McCarthy, J. M., Perez-Gracia, A. (2006). Kinematic synthesis of spatial serial chains 
using Clifford algebra exponentials. Proc. ImechE, 220, Part C: J. Mechanical 

Engineering Science, 953-968. 
 

Moeslund, T. B., Granum, E. (2001). Pose estimation of a human arm using kinematic 
constraints. Proc. 12th Scandinavian conference on image analysis, Bergen, 
Norway, 1-8. 

 

Mohan Rao, A. V., Sandor, G. N.,  Kohli, D., Soni, A. H. (1973). Closed form synthesis 
of spatial function generating mechanism for the maximum number of precision 
points. J. Eng. Industry, 95, 725–736. 

 

Mruthyunjaya, T. S. (2003). Kinematic structure of mechanisms revisited. Mech. Mach. 

Theory, 38(4), 279-320. 



 122 

Murray, A. P., McCarthy, J. M. (1995). A linkage map for spherical four position 
synthesis. ASME Tech. Conf. Boston. MA, 833–844. 

 

Müller, A. (2009). Generic mobility of rigid body mechanisms. Mech. Mach. Theory, 
44(6), 1240-1255. 

 

Nixravesh, R.A., Wehage & Kwan, O. K. (1985). Euler Parameters in Computational 
Kinematics and Dynamics, Part 1. ASME J. Mech. Trans., Aut. Des., 107, 358-
365. 

 

Oswald, D. et al. (2004). Integrating a flexible anthropomorphic, robot hand into the 
control, system of a humanoid robot. Robotics and Autonomous Systems, 48, 213-
221. 

 

Peck, C. C., Hannam, G. A. (2007). Human jaw and muscle modeling. Archieves of 
Oral Biology, 52(4), 300-304. 

 

Pennestri, E., Valentini, P. P. (2009). Dual quaternions as a tool for rigid body motion 
analysis: a tutorial with an application to biomechanics. MULTIBODY 

DYNAMICS 2009, ECCOMAS Thematic Conference K. Arczewski, J. Fr ˛ aczek, 

M. Wojtyra (eds.) Warsaw, Poland, 1-17. 
 

Pileicikiene, G., Surna, A. (2004). The human masticatory system from a biomechanical 
perspective: a review. Stomatologija, Baltic Dental and Maxillofacial Journal, 6, 
81-84. 

 

Porteous, I.R. (1921). Topological Geometry. Cambridge University Press, Cambridge, 
U.K. 

 

Raabe, D., Alemzadeh, K., Harrison, AJL., Ireland, AJ. (2009). The chewing robot: a 
new biologically-inspired way to evaluate dental restorative materials. 31st Annual 
International Conference of the IEEE EMBS Minneapolis, Minnesota, USA, 6050-
6053. 

 

Roy, D., Ghosh, S. (2008). Consistent quaternion interpolation for objective finite 
element approximation of geometrically exact beam. Comput. Methods Appl. 

Mech. Engrg, 198, 555–571. 
 

Sancibrian, R., De-Juan, A., Garcia, P., Fernandez, A., Viadero, F. (2007). Optimal 
synthesis of function generating spherical and RSSR mechanisms. 12th IFToMM 

World Congress, Besançon (France), June, 18-21. 
 

Wu. G. et al. (2004). ISB recommendation on definitions of joint coordinate systems of 
various joints for the reporting of human joint motion-Part II: shoulder, elbow, 
wrist and hand. Journal of Biomechanics, 38, 981-992. 



 123 

Zhang, Y. et al. (2008). Design and kinematic analysis of a novel humanoid robot eye 
using pneumatic artificial muscles. Journal of Bionic Engineering, 5, 264-270. 

 

Zhao, J. S., Feng, J. Z., Dong, J. X. (2006). Computation of the configuration degree of 
freedom of a spatial parallel mechanism by using reciprocal screw theory. Mech. 

Mach. Theory, 41(12), 1486-1504. 
 

Zimmerman, J. R. (1967). Four-precision synthesis of the spherical four-bar function 
generator. Mech. Mach. Theory, 2, 133–139. 

 

Zupan, D., Saje, M., Zupan, E. (2009). The quaternion-based three-dimensional beam 
theory. Computer Methods in Applied Mechanics and Engineering, 198(49-52), 
3944-3956. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 124 

VITA 

 

Personal Information: Name: Erkin GEZGİN, Date of Birth: 15th July 1981, Place of Birth: Izmir, 
Turkey, Nationality: Turkey, E-Mail: erkingezgin@hotmail.com 
Education: • 2006-2010 PhD. in Mechanical Engineering Department, Izmir Institute of Technology. 
(CGPA: 4,0 / 4,0) Thesis: Biokinematic Analysis of Human Body. • 2004-2006 MSc. in Mechanical 
Engineering Department, Izmir Institute of Technology. (CGPA: 4,0 / 4,0) Thesis: Biokinematic Analysis 
of Human Arm • 2000-2004 BSc. in Mechanical Engineering Department, Izmir Institute of Technology. 
(CGPA: 3,9 / 4,0) 
Honors: • Graduate Achievement Award for PhD. Studies, Izmir Institute of Technology. • Graduate 
Achievement Award for MSc. Studies, Izmir Institute of Technology. •  Turkey 2nd National Robot 
Design Contest 2004, Honorable Mention by Waste Collector Robot. • 1st Place in BSc. Graduation 
Degree, Izmir Institute of Technology. • 2003-2004 Fall & Spring High Honour Certificates. • 2002-2003 
Fall & Spring High Honour Certificates. • 2001-2002 Fall & Spring High Honour Certificates. • 2000-
2001 Fall & Spring High Honour Certificates. 
Academic Experience: 2004-2011 Research Assistant in Mechanical Engineering Department, Izmir 
Institute of Technology. 
Research Areas: • Theory of Machines & Mechanisms. • Spatial & Overconstraint Robot Manipulators. • 
Robotics. • Mechatronics. • Biokinematics. • Biorobotics. • Nano & Micro Mechanisms 

Languages: • Native Language: Turkish. • Good Command of English in all Writing, Reading and Speaking 
Skills KPDS: 95/100, UDS: 90/100. • German (Beginner Level) 

Publications: SCI Journal Papers  • Rasim Alizade, Erkin Gezgin, “Synthesis of Function Generating 
Spherical Four Bar Mechanism for the Six Independent Parameters”, Mechanism and Machine Theory, (in 
print, 2011). •  Erkin Gezgin, Serhan Ozdemir, “Classification of Manipulators of the Same Origin by Virtue of 

Compactness and Complexity”, Mechanism and Machine Theory, (in print, 2011). • Rasim Alizade, Ozgun 
Selvi, Erkin Gezgin, “Structural Synthesis of Parallel Manipulators with General Constraint One”, Mechanism 
and Machine Theory, Volume 45, Issue 1, January 2010, pp: 1-14. • Rasim Alizade, Fatih Cemal Can, Erkin 
Gezgin, “Structural Synthesis of Euclidean Robot Manipulators with Variable General Constraints”, 
Mechanism and Machine Theory, Volume 43, Issue 11, November 2008, pp: 1431-1449. • Rasim Alizade, 
Cagdas Bayram, Erkin Gezgin, “Structural Synthesis of Serial Platform Manipulators”, Mechanism and 
Machine Theory, Volume 42, Issue 5, May 2007, pp: 580-599. SCI EXP Journal Papers  • Gokmen Tayfur, 
Hakki Erhan Sevil, Erkin Gezgin, Serhan Ozdemir, “Trait-Based Heterogeneous Populations Plus (TbHP+) 
Genetic Algorithm”, Mathematical and Computer Modelling, Volume 49, Issues 3-4, February 2009, pp: 709-
720. International Conference Papers • R. Alizade, O. Selvi, E. Gezgin, “Structural Synthesis of Multiloop 

Manipulators with General Constraint One”, Proceedings of the International Symposium of Mechanism and 
Machine Science, October 5-8, 2010, Izmir, Turkey,  pp: 78-84. • E. Gezgin, “Survey of Rigid Body Motions in 

Space and Subspaces by Using Method of Intersections”, Proceedings of the International Symposium of 
Mechanism and Machine Science, October 5-8, 2010, Izmir, Turkey,  pp: 92-95. • F. C. Can, E. Gezgin, 
“Structural Synthesis of Novel Parallel Manipulators”, Proceedings of the International Symposium of 
Mechanism and Machine Science, October 5-8, 2010, Izmir, Turkey, pp: 96-101. • T. Bilgincan, E. Gezgin, C. 
Dede, “Integration of the Hybrid-Structure Haptic Interface: HIPHAD v1.0”, Proceedings of the International 
Symposium of Mechanism and Machine Science, October 5-8, 2010, Izmir, Turkey, pp: 267-284. • R. Alizade, 
F.C. Can, E. Gezgin, O. Selvi, “Structural Synthesis of New Parallel and Serial Platform Manipulators”, 12th 
World Congress in Mechanism and Machine Science, June 18-21, 2007. Besancon, France, paper#: 853. • 
Rasim Alizade, Erkin Gezgin, Ozgür Kilit, “Computational Kinematics of a Spherical Wrist Motion through 

Quaternions”, International Workshop on Computational Kinematics, CK2005, 4-6 May, 2005, Cassino, Italy 
paper#:32. • Gezgin E., Sevil H.E., Ozdemir S., “The Effects of Bias, Population, Migration, and Credit 

Assignment in Optimizing Trait-Based Heterogeneous Populations”, International Conference on Artificial 
Intelligence, ICAI2005, June 27-30, 2005, Las Vegas, Nevada, USA, pp: 747-753. National Conference Papers 
• Sevil H.E., Gezgin E., Ozdemir S.,”Enhanced Convergence Properties of Populations through Aging, 
Immunity, and Instinct”, Turkish Symposium on Artificial Intelligence and Neural Networks, TAINN2005, June 
16-17, 2005, Izmir, Turkey, pp: 234-238. 

Important Activities: • Member of Organizing Committee Assistants in “X. National Spectroscopy Congress 
2007” Izmir Institute of Technology. • Coordinator of “AzC IFToMM International Symposium on Mechanism 
and Machine Science 2010” Izmir Institute of Technology. 

 


