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ABSTRACT 

 
A GENETIC - FUZZY SYSTEM MODELLING OF  

TRIP DISTRIBUTION 
 
Trip distribution modelling is one of the most active parts of travel demand analysis. In 

recent years, use of soft computing techniques has introduced effective modelling 

approaches to the trip distribution problem. Fuzzy Rule-Based System (FRBS) and 

Genetic Fuzzy Rule-Based System (GFRBS: fuzzy system improved by a knowledge 

base learning process with genetic algorithms) modelling of trip distribution are two of 

these new approaches. However, much of the potential of these techniques has not been 

demonstrated so far. The present study explores the potential capabilities of these 

approaches in  an urban trip distribution problem with some new features. For this 

purpose, a simple FRBS and a novel GFRBS were designed to model Istanbul intra-city 

passenger flows. Subsequently, their accuracy, applicability, and generalizability 

characteristics were evaluated against the well-known gravity and neural networks 

based trip distribution models. The overall results show that: i) traditional doubly 

constrained gravity models are still simple and efficient;  ii) neural networks may not 

show expected performance when they are forced to satisfy production-attraction 

constraints; iii) simply-designed FRBSs, learning from observations and expertise, are 

both interpretable and efficient in forecasting trip interchanges even if the data is large 

and noisy; and iv) use of genetic algorithms in fuzzy rule base learning considerably 

increases modelling performance, although it brings additional computation costs. 
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ÖZET 

 
BİR GENETİK - BULANIK SİSTEM ÖNERİSİ İLE  

SEYAHAT DAĞILIMI MODELLEMESİ 
 

Geçmişten günümüze, seyahat dağılım modelleri, ulaşım talep analizinin en aktif 

kısımlarından biri olagelmiştir. Son yıllarda, hesaplamalı zeka tabanlı tekniklerin 

kullanımı, klasik seyahat dağılımı problemine yeni ve etkin  çözümler getirmiştir. 

Bulanık Kural Tabanlı Sistemler (BKTS) ve Genetik Bulanık Tabanlı Sistemler 

(GBKTS:  bulanık kural tabanının genetik algoritmalar yardımıyla öğrenildiği ya da 

iyileştirildiği sistemler) bu yeni yaklaşımlardan ikisidir. Ancak, bu iki yaklaşımın 

seyahat dağılımı modellemesindeki potansiyelleri bugüne kadar gerçek anlamda ortaya 

konamamıştır. Bu çalışmada, kentsel seyahat dağılımı problemine bu iki yaklaşımın 

potansiyel uygulanabilirliği araştırılmaktadır. Bu amaçla öncelikle, İstanbul sehir-içi 

seyahat dağılımını modellemek üzere basit bir BKTS ve orijinal bir GKBS 

tasarlanmıştır. Daha sonra tasarlanan bu modellerin doğruluğu, uygulanabilirliği ve 

genellenebilirliği gibi özellikleri, yaygın olarak kullanılan gravite ve sinir ağları tabanlı 

seyahat dağılımı modelleri ile kıyaslanmıştır. Çalışma ile ulaşılan sonuçları özetlemek 

gerekirse: i) klasik çift-kısıtlı gravite modelleri halen basit ve etkin modellerdir; ii) sinir 

ağı tabanlı modeller, üretim-çekim kısıtlarının yerine getirilmesi söz konusu olduğunda 

beklenen performansı göstermeyebilmektedir; iii) gözlemlerden ve uzman 

deneyiminden öğrenen, basitçe tasarlanmış BKTS'ler, hem yorumlanabilir hem de 

seyahat değişimlerini tahminlemede oldukça başarılıdır. Bu durum veri seti geniş ve yer 

yer problemli olsa bile geçerlidir; iv) hesaplama veya modelleme zorlukları içerse de, 

bulanık kural sisteminin oluşturulmasında genetik algoritmaların kullanımı modelleme 

performansını ciddi ölçüde arttırmaktadır.  

 

 
  



iv 
 

TABLE OF CONTENTS 

 
LIST OF FIGURES ......................................................................................................... vi 

 

LIST OF TABLES ......................................................................................................... viii 

 

LIST OF ABBREVATIONS ........................................................................................... ix 

 

CHAPTER 1. INTRODUCTION ..................................................................................... 1 

 

CHAPTER 2. TRADITIONAL TRIP DISTRIBUTION MODELS ................................ 4 

2.1. Travel Demand Analysis and The Four-Step Demand Modelling ......... 4 

2.2. Fundamentals of Trip Distribution Analysis .......................................... 6 

2.3. Trip Distribution Models ........................................................................ 8 

2.3.1. An Overview .................................................................................... 8 

2.3.2. The Growth-Factor Methods ............................................................ 9 

2.3.2.1. Uniform Growth-Factor Technique ......................................... 9 

2.3.2.2. Singly-Constrained Growth-Factor Technique ..................... 10 

2.3.2.3. Doubly-Constrained Growth-Factor Technique .................... 10 

2.3.3. The Gravity Models ....................................................................... 11 

2.3.3.1. Historical Background and Early Forms of Gravity Models . 11 

2.3.2.2. A Family of Spatial Interaction Models ................................ 12 

2.3.2.3. The Doubly-Constrained Gravity Model ............................... 13 

2.3.4.  The Intervening Opportunities Model ........................................... 15 

2.4. Advantages and Disadvantages of Traditional Trip Distribution  
       Models .................................................................................................. 15 

 

CHAPTER 3. MODELLING TRIP DISTRIBUTION WITH SOFT COMPUTING  
                       TECHNIQUES ........................................................................................ 25 

3.1. Soft Computing Applications in  Traffic and Transport Systems ........ 17 

3.2. Modelling Trip Distribution With Neural Networks ............................ 21 

3.3. Modelling Trip Distribution With Fuzzy Logic and  
       Genetic Algorithms .............................................................................. 22



v 
 

CHAPTER 4. FUNDEMENTALS OF FUZZY AND GENETIC FUZZY  
                       SYSTEMS ............................................................................................... 25 

4.1. Fuzzy Logic and Fuzzy Rule-Based Systems ...................................... 25 

4.1.1. Fuzzy Sets and Membership Functions .......................................... 25 

4.1.2. Fuzzy Rule Base Systems .............................................................. 29 

4.2. Genetic Fuzzy Systems......................................................................... 34 

4.2.1. A Brief Description of Genetic Algorithms ................................... 35 

4.2.2. Genetic Fuzzy Rule-Based Systems (GFRBS) .............................. 36 

 

CHAPTER 5. EMPIRICAL ANALYSIS ....................................................................... 39 

5.1. Description of the Study Area and Data ............................................... 39 

5.2. Modelling Trip Distribution With A Fuzzy Rule-Based  
       System (FRBS) ..................................................................................... 44 

5.3. Modelling Trip Distribution With A Genetic Fuzzy Rule-Based  
       System (GFRBS) .................................................................................. 49 

5.4.  Benchmark Models .............................................................................. 53 

5.4.1. Doubly-Constraint Gravity Model (DCGM) ................................. 54 

5.4.2. Neural Networks Based Trip Distribution Model (NNTDM) ........ 59 

5.5. Performance Measures and Goodness-Of-Fit Statistics ....................... 63 

5.4.1. Micro Level Statistics .................................................................... 64 

5.4.2. Macro level Statistics ..................................................................... 66 

 

CHAPTER 6. RESULTS ................................................................................................ 68 

6.1. Training Results ................................................................................... 68 

6.2. Testing Results ..................................................................................... 74 

6.3. Overall Results ..................................................................................... 79 

 

CHAPTER 7. CONCLUSION ....................................................................................... 86 

 

REFERENCES ............................................................................................................... 89 

 

APPENDICES 

APPENDIX A. COMPUTER PROGRAMS .................................................................. 97 

APPENDIX B. RULE BASES ..................................................................................... 136 

 



vi 
 

LIST OF FIGURES 

 
Figure 2.1. Four-Step Travel Demand Modelling Process ............................................... 5 

Figure 3.1. Computational Intelligence Based Techniques: A Family Tree .................. 18 

Figure 3.2. Number of Citations with NNs, FL and GAs by Years ................................ 20 

Figure 4.1. Fuzzy Membership Function Components ................................................... 26 

Figure 4.2. Crisp and Fuzzy Sets: An Example .............................................................. 27 

Figure 4.3. Fuzzy Set Operations: Union, Intersection and Complement ...................... 28 

Figure 4.4. General Form of a Fuzzy Rule-Based System ............................................. 31 

Figure 4.5. Graphical Interpretation of A General Mamdani-Type FRBS ..................... 32 

Figure 4.6. A Typical GAs Procedure ............................................................................ 35 

Figure 4.7. Main Components of Genetic Fuzzy Rule-Based Systems .......................... 37 

Figure 5.1. Traffic Analysis Zones and Home Based Work Trip Productions ............... 41 

Figure 5.2. Traffic Analysis Zones and Home Based Work Trip Attractions ................ 42 

Figure 5.3. Observed Trip Length Distributions of Data Sets ........................................ 43 

Figure 5.4. Graphical Illustration of the Proposed FRBS Design .................................. 48 

Figure 5.5. Flow Chart of the Proposed Genetic Algorithm ........................................... 49 

Figure 5.6. Graphical Representation Of Encoding-Decoding Strategy ........................ 50 

Figure 5.7. Illustrations of Crossover, Ranking Probability Function and  
Number of Mutations Through The Generations........................................ 52 

Figure 5.8. Convergence of The GFRBS Design ........................................................... 53 

Figure 5.9. Changes in DCGM Performance Against Various Impedance  
                 Parameter Values: Measure for the Power Cost Function on Training  

Data Set ....................................................................................................... 58 

Figure 5.10. Changes in DCGM Performance Against Various Impedance  
Parameter Values: Measure for the Exponential Cost Function 
on Training Data Set ................................................................................. 58 

Figure 5.11. An Illustration of NN based Trip Distribution Model: A Three-Layer  
Feed-Forward Neural Network with Error Back-Propagation .................. 60 

Figure 5.12. NNTDM Back-Propagation Training with  
Levenberg-Marquardt Learning ................................................................ 62 

Figure 6.1. TLD Comparison - DCGM ML Estimation on Training Data Set ............... 70 

Figure 6.2. TLD Comparison - DCGM WLS Estimation on Training Data Set ............ 70 

Figure 6.3. TLD Comparison - DCGM TLD Based Estimation on Training Data Set .. 70 

Figure 6.4. TLD Comparison - NNTDM on Training Data Set ..................................... 71 



vii 
 

Figure 6.5. TLD Comparison - FRBS Design on Training Data Set .............................. 71 

Figure 6.6. TLD Comparison - GFRBS Design on Training Data Set ........................... 71 

Figure 6.7. Regression Plots - DCGM ML Estimation on Training Data Set ................ 72 

Figure 6.8. Regression Plots -DCGM WLS Estimation on Training Data Set ............... 72 

Figure 6.9. Regression Plots - DCGM TLD Based Estimation on Training Data Set .... 72 

Figure 6.10. Regression Plots - NNTDM on Training Data Set ..................................... 73 

Figure 6.11. Regression Plots - FRBS Design on Training Data Set ............................. 73 

Figure 6.12. Regression Plots - GFRBS Design on Training Data Set .......................... 73 

Figure 6.13. TLD Comparison - DCGM ML Estimation on Testing Data Set .............. 75 

Figure 6.14. TLD Comparison - DCGM WLS Estimation on Testing Data Set ............ 75 

Figure 6.15. TLD Comparison - DCGM TLD Based Estimation on Testing Data Set .. 75 

Figure 6.16. TLD Comparison - NNTDM on Testing Data Set ..................................... 76 

Figure 6.17. TLD Comparison - FRBS Design on Testing Data Set .............................. 76 

Figure 6.18. TLD Comparison - GFRBS Design on Testing Data Set ........................... 76 

Figure 6.19. Regression Plots - DCGM ML Estimation on Testing Data Set ................ 77 

Figure 6.20. Regression Plots -DCGM WLS Estimation on Testing Data Set .............. 77 

Figure 6.21. Regression Plots - DCGM TLD Based Estimation on Testing Data Set ... 77 

Figure 6.22. Regression Plots - NNTDM on Testing Data Set ....................................... 78 

Figure 6.23. Regression Plots - FRBS Design on Testing Data Set ............................... 78 

Figure 6.24. Regression Plots - GFRBS Design on Testing Data Set ............................ 78 

Figure 6.25. TLD Comparison - DCGM ML Estimation on Whole Data Set ................ 80 

Figure 6.26. TLD Comparison - DCGM WLS Estimation on Whole Data Set ............. 80 

Figure 6.27. TLD Comparison - DCGM TLD Based Estimation on Whole Data Set ... 80 

Figure 6.28. TLD Comparison - NNTDM on Whole Data Set ...................................... 81 

Figure 6.29. TLD Comparison - FRBS Design on Whole Data Set ............................... 81 

Figure 6.30. TLD Comparison - GFRBS Design on Whole Data Set ............................ 81 

Figure 6.31. Regression Plots - DCGM ML Estimation on Whole Data Set ................. 82 

Figure 6.32. Regression Plots -DCGM WLS Estimation on Whole Data Set ................ 82 

Figure 6.33. Regression Plots - DCGM TLD Based Estimation on Whole Data Set ..... 82 

Figure 6.34. Regression Plots - NNTDM on Whole Data Set ........................................ 83 

Figure 6.35. Regression Plots - FRBS Design on Whole Data Set ................................ 83 

Figure 6.36. Regression Plots - GFRBS Design on Whole Data Set .............................. 83 

 

 



viii 
 

LIST OF TABLES 

 
Table 2.1. Trip and Friction Matrixes with Notations ...................................................... 6 

Table 2.2. Classification of Theoretical Trip Distribution Models ................................... 8 

Table 3.1. Classification for Soft Computing Research in Traffic and  
Transport   Systems ....................................................................................... 20 

Table 4.1. Fuzzy Set Operations: Union, Intersection and Complement ......................... 6 

Table 4.2. The Canonical Form of A Fuzzy Rule-Based System ..................................... 8 

Table 5.1. Descriptive Statistics of Data Sets ................................................................. 43 

Table 5.2. An Appearance From the Constructed Rule Base ......................................... 47 

Table 5.3. DCGM Parameter Estimates and Related Goodness of Fit  
Statistics for Training Data Set  .................................................................... 57 

Table 5.4. NNTDM Implementation Issues: Experimented and Selected Cases ........... 62 

Table 6.1. Model Results: Goodness-of-Fit Statistics for the Training Data Set ........... 69 

Table 6.2. Model Results: Goodness-of-Fit Statistics for the Testing Data Set ............. 74 

Table 6.3. Model Results: Goodness-of-Fit Statistics for the Whole Data Set .............. 79 

Table 6.4. Model Results: District-Based Goodness-of-Fit Statistics ............................ 84 

Table 6.5. Observed and Modelled Trip Shares: Intra-zonal vs. Inter-Zonal,  
Intra-District vs. Inter-District and Bridge Crossing vs. Not Bridge  
Crossing Trips ............................................................................................... 85 

Table 7.1. An Evaluation of Trip Distribution Models for the  
Doubly-Constrained  Case  ........................................................................... 87



ix 
 

LIST OF ABBREVIATIONS 

 
AI  Artificial Intelligence 

ARAE  Average Relative Absolute Error 

ARV   Average Relative Variance  

DCGM Doubly-Constrained Gravity Model 

FL  Fuzzy Logic 

FRBS  Fuzzy Rule-Based Systems 

GAs   Genetic Algorithms 

GFRBS Genetic Fuzzy Rule-Based Systems 

GFS  Genetic Fuzzy Systems 

GIS   Geographical Information Systems 

HBO  Home-Based-Other 

HBS  Home-Based-School 

HBW  Home-Based-Work 

MF  Membership Function 

ML  Maximum Likelihood 

MSE  Mean Square Error 

MTCE  Mean Travel Cost Error 

NHB  None-Home-Based 

NNs  Neural Networks 

NNTDM Neural Network Based Trip Distribution Model 

O-D  Origin-Destination 

P-A  Production-Attraction 

RMSE  Root Mean Square Error 

SRMSE  Standardized Root Mean Square Error 

TAZ  Traffic Analysis Zone 

TLD  Trip Length Distribution 

WLS  Weighted Least Squares 

 

 

 
 



1 
 

CHAPTER 1 

 

INTRODUCTION 

 
 Travel demand modelling is crucial in transportation planning. Over several 

decades, a number of techniques have been proposed for each steps of the demand 

analysis to achieve more accurate and applicable solutions. Among them, trip 

distribution has probably been the most attracted field of travel demand analysis 

especially with the widespread use of gravity type of spatial interaction models. 

 Simply for a given trip purpose, any trip distribution model estimates the trips 

between given origins and destinations. From the early 1950s, modellers have used 

several different formulations to deal with this task. The  gravity models in the mid-

1950s and many other aggregate or disaggregate models have followed the initial 

growth factor techniques, such as the intervening opportunity models, random utility 

models, activity based models and several mixed and combined models. All models 

have a theoretical basing mainly on physics, statistics, economics and behavioural 

sciences.  

 With its well-known theoretical base and various application procedures, the  

gravity type of spatial interaction models have been by far the most commonly used 

aggregate trip distribution models. Recently, there has been increasing interest among 

both transportation researchers and practitioners in exploring the capability of 

computational intelligence based techniques to real transportation problems.  

 Research in more effective and predictive methodologies in spatial interaction 

and trip distribution modelling has also led to some pioneering studies in this area. 

Many scholars have proposed new modelling procedures to forecast aggregate 

interactions using Neural Networks  (Openshaw, 1993; Fischer and Gopal, 1994; Black, 

1995; Mozolin et al., 2000; Celik, 2004; Tillema et al., 2006; Tapkin and Ozdemir, 

2009), Fuzzy Logic (Kalic and Teodorovic, 1996; 2003; Shafahi et al., 2008) and 

Evolutionary or Genetic Algorithms (Diplock and Openshaw, 1996; Leung, 2007).  

 The initial experiences with these techniques have been encouraging and the 

overall results offer that the Neural Networks (NNs), Fuzzy Logic (FL) and Genetic 

Algorithms (GAs) can successfully be used in spatial interaction models. Additionally, 
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they can produce more accurate results against the conventional models even though the 

efficiency, accuracy, applicability and interpretability of these approaches are still under 

investigation.  

 From our point of view, use of fuzzy set theory and FL is very promising in 

modelling spatial interactions for several reasons: i) they are simple, flexible, and 

equation-free; ii) they can be used under uncertain and imprecise conditions; iii) they 

provide an opportunity to incorporate expertise into modelling procedure, a process that 

may increase the interpretability of the analysed system; and iii) they are capable of 

increasing the accuracy of analysed system when hybridized with GAs or NNs. 

 A  pioneering fuzzy logic approach to trip distribution modelling was introduced 

by Kalic and Teodorovic (1996; 2003). They (1996) estimated air passenger flows 

among some major industrial cities and tourist resorts using known productions and 

attractions as inputs. In comparison to non-fuzzy methods, the proposed Fuzzy Rule-

Based System (FRBS) produced better results.  In another study, they (2003) achieved 

better results using a Genetic Fuzzy Rule-Based System (GFRBS: fuzzy systems 

augmented by a learning process based on genetic algorithms search). Finally, Shafahi 

et. al. (2008) proposed a FRBS to predict the discretionary trips in Tahran showing its 

capability in predicting intra-city passenger flows. They used travel time as additional 

input and gained better results against  the unconstrained type of gravity model.  

 However, in comparison with the approaches centred on gravity and  NNs, the 

full potential of FRBSs and GFRBSs has still not been demonstrated in trip distribution 

modelling. Their efficiency, accuracy, applicability, and interpretability are still under 

investigation. In particular, applicability of GFRBSs to the estimation of intra-city 

passenger flows had not been investigated earlier. They offer high-quality predictions, 

but their computational challenges with an additional friction variable are not known. 

With this background, this study attempts to set out an FRBS and a GFRBS for 

modelling intra-city passenger flows in Istanbul. Our primary interest is to contribute to 

the knowledge and literature on the feasibility of using such models for urban trip 

distribution modelling. Another objective is to compare and evaluate the accuracy, 

applicability, and generalizability of such models against well-known trip distribution 

models in a complex real-world case. For this purpose, a doubly-constrained gravity 

model and a multilayer feed-forward NNs based trip distribution model were 

established as the benchmarks, and model performances were evaluated empirically 

using the 2006 Istanbul Travel Survey data. 
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 The thesis starts with an overall explanation of traditional travel demand 

analysis and four-step modelling process. Then a brief review on aggregate trip 

distribution models are given with the descriptions and mathematical expressions. The 

main focus is presented on the gravity type of trip distribution model and its doubly-

constrained type as it has been selected as a benchmark model. 

 The third chapter consists of soft computing techniques and their applications in 

transport modelling and trip distribution analysis. First, basic components of NNs, FL 

and GAs are introduced, then a literature review on their application to spatial 

interaction and trip distribution modelling is summarized in the chapter. 

 A general explanation of the FRBSs and GFRBSs  are given in the fourth 

chapter. It also introduces main properties of fuzzy set theory and GAs. 

 The fifth chapter includes the whole empirical analysis. Description of the study 

area and data sets are included in this chapter. Additionally, the fifth chapter includes 

calibration, training, learning and implementation issues of the applied trip distribution 

models. The performance measure and goodness-of-fit statistics used in the thesis are 

also explained here.  

 Chapter six includes results and empirical findings of the all applied trip 

distribution models. Finally,  summary findings and  model evaluation of the study 

along with further research possibilities are discussed and evaluated in the conclusion 

chapter.  
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CHAPTER 2 

 

TRADITIONAL TRIP DISTRIBUTION MODELS 

 

2.1. Travel Demand Analysis and The Four-Step Demand Modelling 

 
 Urban transportation planning process takes community needs and expectations 

into consideration and establishes a way of designing future transportation systems. One 

of the most important stage of transportation planning process is forecasting future 

travel demand in a desired level of accuracy. Starting from the middle of the twentieth 

century, progressive researches in this area has led travel demand modelling into a well-

designed modelling methodology. A number of deterministic and stochastic models 

have been developed to understand travel behaviour better and to achieve more accurate 

forecasts. 

 The traditional urban travel demand modelling consists of a sequential 

procedure often referred as the ‘four-step’ modelling process: trip generation, trip 

distribution, mode choice and trip assignment. In order to identify possible 

transportation system needs and required changes, these sub-models forecast future 

travel demand using existing transportation system and base year travel demand 

information.  

 Meyer and Miller (2001, p.270) describe the basic assumption behind the four-

step model as “…in a sequential decision process, people decide to make a trip 

(generation), decide where to go (distribution), decide what mode to take (modal split), 

and decide what route to use (assignment)” and make brief definition of each steps as: 

 
• Trip generation is the prediction of the number of trips produced by and attracted to each zone, 

that is, the number of trips ends “generated” within the urban area.  
 

• Trip distribution is the prediction of origin-destination (O-D) flows, that is, the linking of the trip 
ends predicted by the trip generation model together to form trip interchanges or flows. 
 

• Modal split models predict the percentages of travel flow that will use each of the available 
modes (auto, transit, walk, etc.) between each origin-destination pair. 
 

• Trip assignment places the O-D flows for each mode on specific routes of travel through the 
respective modal networks (Meyer and Miller, 2001, p.270). 
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 The origins of four-step modelling procedure go back to the 1950s to the 

comprehensive transportation plans of large North American Cities. As being known 

the pioneering urban transportation study, Chicago Area Transportation Study (1959) 

contains a diagram showing the travel forecasting phase of the planning process 

consisting of three steps: i) estimate trip generation, ii) estimate trip distribution, iii) 

estimate future travel demand. The concepts of modal split and traffic assignment were 

introduced in the second part of the Chicago study (Boyce, 2002).  

 After the initial studies in North America, the transportation planning process 

became institutionalized with the Federal Aid Highway Act (1962) and standardized by 

the codification of all technical aspects of planning process in a series of technical 

manual (Taaffe et al., 1996).  First formed in these studies, the four-step modelling 

procedure is in use over forty years with its main framework. A general form of four-

step  travel demand modelling procedure can be shown as in Figure 2.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Four-Step Travel Demand Modelling Process 

  

 Martin et al. (1961) prepared an early review of urban travel forecasting 

methods including all features of data collection, plan formulation, travel forecasting, 

and also four-step modelling procedure. During the period of 1965-1980, many 

academic researchers began to investigate improved model formulations for the 

individual steps of the sequential procedure. For instance, Wilson (1967; 1970) 
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proposed the entropy-maximizing formulation of the trip distribution model. 

Furthermore,  he linked the mode choice and residential location models. McFadden 

(1974) derived the logit mode choice model based on random utility theory and 

Williams (1977) produced his seminal treatment of nested logit models (Boyce, 2002).  

 Researchers have continued their studies in a slowing rate especially to increase 

predictive capabilities of each individual steps of sequential procedure with aggregate or 

disaggregate approaches after 1980s. Extensive reviews on some important  models on 

travel demand forecasting can be seen in the works of  Ortuzar and Willumsen (2001), 

Meyer and Miller (2001), Taaffe et al. (1996) and Oppenheim (1995).  

 

2.2. Fundamentals of Trip Distribution Analysis 

 
 Trip distribution analysis has always been one of the most active sector of travel 

demand modelling process. Simply for a given trip purpose, any trip distribution model 

estimates the trip interactions between given origins and destinations. Considering a 

zone system in any city or a region, the starting point of modelling is to build an 

production-attraction and a friction matrix related to the zone system. Such matrixes are 

shown in Table 2.1. Between m origins and n destinations, there is a set of flows as in 

trip matrix, and a matched set of spatial separations as in friction matrix. 

  

Table 2.1. Trip and Friction Matrixes with Notations 

 
Trip 

Matrix 

Attraction Zone   
Friction  
Matrix 

Attraction Zone 

1 2 ... n  1 2 ... n 

Pr
od

uc
tio

n 
Z

on
e 1 T11 T12 ... T1n  

Pr
od

uc
tio

n 
Z

on
e 1 C11 C12 ... C1n 

2 T21 T22 ... T2n  2 C21 C22 ... C2n 

... ... ... ... ...  ... ... ... ... ... 

m Tm1 Tm2 ... Tmn  m Cm1 Cm2 ... Cmn 

  

 The row sum of trip matrix represents the total number of trips originated from 

zone i, and Pi stands for the production total of zone i (Eq. 2.1) . The column sum 

represents the total number of trips destinated from zone j, and Aj stands for the 
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attraction total of zone j (Eq. 2.2). Finally, sum of all interactions represents total 

number of trips T, which also equals to the production and attraction totals (Eq. 2.3). 

 

௜ܲ ൌ ∑ ௜ܶ௝௝        (2.1) 

 

௝ܣ ൌ ∑ ௜ܶ௝௜        (2.2) 

 

∑ ௜ܶ௝௜௝ ൌ ∑ ௜ܲ௜ ൌ ∑ ௝௝ܣ      (2.3) 

 

 All compatible cells (Cijs) in the friction matrix represents some measure of 

spatial impedance. Generally three types of measures dominate the literature:  physical 

distance, travel cost and travel time.  Considering the above matrices as base year data, 

observed distributions are to be estimated using some appropriate functions and 

parameters. If a desired level of accuracy is satisfied with the estimations, the same 

function and/or parameters can be used to predict projection year trip table. The output 

of trip generation phase becomes input for those predictions. A general form of a trip 

distribution model can be written as follows: 

     

௜ܶ௝ ൌ ݂൫ ௜ܲܣ௝ܥ௜௝൯      (2.4) 

 

where Tij stands for the estimated trips between zones i and j; Pi and Aj represent some 

function of  trip production and attraction potentials of zone i and zone j; and Cij stands 

for the general travel cost between zone i and zone j. In some cases additional 

socioeconomic characteristics could be considered as zone based  inputs.  

 However, most of the modelling efforts suggest use of trip production and 

attraction totals solely. These two variables comprise and represent many other factors 

and are convenient with the trip generation outputs. It is also preferable to use either a 

production-attraction (PA) or an origin-destination (OD) matrix depending on purpose 

of the model. The trip distribution of the traditional four-step modelling process deals 

generally with a PA matrix, where an OD matrix is required for directional traffic 

assignment. 
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2.3. Trip Distribution Models 

 

2.3.1. An Overview 

 
 From the early 1950s, modellers have used several different formulations to deal 

with distribution of trips between given origins and destinations. Initial approaches 

expanded known distributions with growth factors to forecast future patterns.  The  

gravity models in the mid-1950s and many other models aggregate or disaggregate have 

followed the initial techniques, such as the intervening opportunities models, random 

utility models, activity based models and several mixed and combined models.  

 All above mentioned models have a theoretical base mainly on physics, 

statistics, economics or behavioural sciences. Today, the main classification of 

theoretical trip distribution models can be formed as it is shown in Table 2.2. As seen in 

the table, trip distribution models can be divided into two broad categories : aggregate 

and disaggregate. 

 

Table 2.2. Classification of Theoretical Trip Distribution Models 
(Source: Cascetta et al., 2007, p.601) 

Aggregate Approach Disaggregate Approach 

Growth Factor Methods 
Gravity/Spatial Interaction Models
Intervening Opportunities Models 

Random Utility Models 

Mixed Models 

Gravity-opportunities Models Random Utility Models with  
Intervening Opportunities 

 

 Aggregate models analyze total number of trips between each traffic analysis 

zones and can be further classified into growth-factor methods, gravity or spatial 

interaction models and intervening opportunities models. On the other hand, 

disaggregate models such as logit and activity-based models deal with individuals' 

behaviours and destination choices.  
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 Present work deals with aggregate models of trip distribution, so the following 

sections give essentials of well-known aggregate models. Much of the focus is given on 

gravity type of spatial interaction models due to its proved effectiveness and widespread 

usage. More on theoretical models and extensive reviews on either aggregate or 

disaggregate models can be seen in the works of Ortuzar and Willumsen (2001), Easa 

(1993), Black (2003), Kanafani (1983), Oppenheim (1995), and Cascetta et al. (2007). 

 

2.3.2. The Growth-Factor Methods 

 
 Growth-factor methods are initial modelling techniques especially used in the 

early transportation plans mentioned earlier. The first applications in the 1950-1960s 

took origin-destination flows of large household surveys and expand known 

distributions with some growth factors.  

 The Uniform model, Fratar model , Detroit model and Furness model were the  

significant methods in this respect. Today, they are especially used to update a trip 

matrix for short term forecasts. According to the available information, Ortuzar and 

Willumsen (2001) distinguishes growth-factor methods into three: Uniform, Singly-

Constrained and Doubly-Constrained Growth-Factor Techniques. 

 

2.3.2.1. Uniform Growth-Factor Technique 

 
 If only information on overall future trip rates or growth factors are available, an 

old or present trip matrix can simply be expanded with the uniform growth-factor 

technique. First, a single-factor is computed for the whole study area (eq. 2.5), and then 

each cells in the trip matrix are expanded using the computed growth rate (eq. 2.6) as: 

    

ܨ ൌ ܶ/ܶ଴       (2.5) 

 

௜ܶ௝ ൌ ܨ ௜ܶ௝
଴        (2.6) 

 

where, F is the ratio of total number of future trips, T, over observed total number of 

trips T0, and  ௜ܶ௝ is the future and  ௜ܶ௝
଴  is the observed trips from zone i to zone j. 
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2.3.2.2. Singly-Constrained Growth-Factor Technique 

 
 If there is likely information on total number of trips originating or attracted to 

each zones, it would be possible to apply origin-specific or destination-specific growth 

factors. The computation steps take the same form of previously established equations 

2.5 and 2.6. The only difference is that the total number of trips are replaced with the 

origin or destination totals of zones. With this replacement any trip interaction can be 

computed with the growth rate of corresponding rows or columns in the trip matrix. 

 

2.3.2.3. Doubly-Constrained Growth-Factor Technique  

 
 In most cases of trip distribution analysis, both originating and attracted trip 

totals are known collectively as an output of trip generation step. In such cases, there 

should be a row factor Fi and a column factor Fj when expanding the interaction  ௜ܶ௝ 

between zone i and zone  j.  However, there is still a need to use additional correction 

factors to satisfy trip total constraints iteratively. Furness (1965) propose, in this manner 

is one of the best known iterative method with 'balancing factors' Ai and Bj as: 

 

௜ܶ௝ ൌ ௜ܶ௝
଴ܨ௜ܨ௝ܣ௜ܤ௝      (2.7) 

 

or incorporating growth factors Fi and Fj into new variables ai and bj: 

 

௜ܶ௝ ൌ ௜ܶ௝
଴ܽ௜ ௝ܾ       (2.8) 

 

where, ai and bj are balancing factors, and  ௜ܶ௝ and  ௜ܶ௝
଴  are the future and observed 

number of trips between zones i and j.  

 In order to compute the equation, one can set all bjs as 1 and calculate ais that 

satisfy origin constraints. Then using the latest ais the column factors bjs can be 

calculated to satisfy trip attraction constrains. The process is continued iteratively until 

the  changes are sufficiently small. This method is also called as bi-proportional 

algorithm, and is a special case of entropy maximization which excludes spatial 

separation of zones (Ortuzar and Willumsen, 2001).  
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2.3.3. The Gravity Models 

 

2.3.3.1. Historical Background and Early Forms of Gravity Models 

 
 With its well-known theoretical base and various application  procedures gravity 

type of spatial interaction models have been by far the most commonly used aggregate 

trip distribution models. Simply they assume, analogously  to the  Newton's Law of 

Universal Gravitation (1686), that the interaction between any two zones is directly 

proportional to their magnitudes and inversely proportional to distance between them.  

 In social sciences, the gravity concept go back to the 19th century to the works 

of Carey (1858) and Ravenstein (1885;1889). Since first application to identify potential 

effects and notions of market area for retail trade (law of Reilly's retail gravitation, 

1929), the gravity models have been extensively employed by geographers, planners 

and transportation  modellers. Considering the trip distribution problem, one of the first 

study was made by Casey in 1955. He estimated shopping trips in a region and used an 

early form of  gravity model as follows:  

 

௜ܶ௝ ൌ ߙ ௜ܲ ௝ܲ ݀௜௝
ଶ⁄       (2.9) 

 

where, ௜ܶ௝ is the number of trips between towns i and j, ௜ܲ and ௝ܲ are the populations of 

towns, ݀௜௝ is the distance between i and j, and ߙ is a constant.  

 This basic form has improved over the years and new theoretical insights 

together with new variables  have introduced to the initial gravity model. A general 

form of classical gravity model can be written as : 

 

  ௜ܶ௝ ൌ ߙ ௜ܲܣ௝݂൫ܥ௜௝൯      (2.10) 

 

where, ௜ܶ௝ is the total number of  trips between zones i and j, ௜ܲ and ܣ௝ are the total 

number of trips produced in and attracted to zones i and j , ݂൫ܥ௜௝൯ is the friction 

function that exist between zones (generally a decreasing function,  power or 

exponential), and ߙ is an adjustment factor.  
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 Past several decades have brought fundamental contributions to the early gravity 

models and create a large area of research called "Spatial Interaction Modeling". Today 

the name spatial interaction models is used interchangeable with the gravity models in 

any application of flow distributions.  

 The initial improvements in spatial interaction modelling by Hansen (1959), 

Huff (1962; 1963) and Lowry (1964), have followed by many others for the subsequent 

years. Wilson's (1967;1970) 'Family of Spatial Interactions', Alonso's (1973;1978) 

'General Theory of Movement' and Fotheringham's (1983) ' Theory of Competing 

Destinations' were the important contributions in this respect. As well as these 

improvements, applying spatial interaction models to real cases has been further 

enhanced especially with the development of new calibration techniques. There is a 

considerable amount of literature on gravity and spatial interaction models, and it is 

possible to find excellent reviews in Fotheringham and O’Kelly (1989), Batten and 

Boyce (1986), Sen and Smith (1995) and Roy (2004). 

 

2.3.2.2. A Family of Spatial Interaction Models  

 
 Spatial interaction models drifted further away from its original gravity 

formulation with the important works of Wilson (1967, 1970) on entropy maximization. 

The maximum entropy approach created the basis for the development and 

implementation of numerous operational models including trip distribution analysis. 

Wilson has   distinguished  several cases introducing  'A Family of Spatial Interaction 

Models'. According to his justification, the interactions can be unconstrained, as in early 

gravity models, production constrained, attraction constrained or doubly constrained. 

 The main assumption is that any interaction ( ௜ܶ௝) between two zones is 

proportional to total interaction flows ( ௜ܲ) leaving zone i, total interaction flows ( ܣ௝) 

terminating at zone j, and some decreasing function of travel cost ݂൫ܥ௜௝൯ between zone i 

and zone j (Wilson, 1974) .  

 

௜ܶ௝ ן ௜ܲ  and  ௜ܶ௝ ן ௝  and   ௜ܶ௝ܣ ן ݂൫ܥ௜௝൯   (2.11) 

 

 At this point of view, a constant ܭ can be introduced, which substitutes for the 

proportionality of interactions. 
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௜ܶ௝ ൌ ܭ ௜ܲܣ௝݂൫ܥ௜௝൯      (2.12) 

 

Then, if either total outflow from i or total inflow to j is known, it can be possible to 

derive the proportionality constant K as : 

 

∑ ௜ܶ௝ ൌ ௜ܲ௝        (2.13) 

 

ܭ ൌ 1 ∑ ௜ܲ௜⁄ ݂൫ܥ௜௝൯      (2.14) 

 

where ௜ܲs are known, and 

 

∑ ௜ܶ௝௜ ൌ  ௝       (2.15)ܣ

 

ܭ ൌ 1 ∑ ⁄௝௝ܣ ݂൫ܥ௜௝൯      (2.16) 

 

where ܣ௝s are known.  

 Considering these derivations, four cases can be distinguished as: 

 i)  Unconstrained case: Neither the set of row totals nor the set of column 

  totals is known. 

 ii)  Production Constrained case: The set of row totals is known. 

 iii)  Attraction-Constrained case: The set of column totals is known. 

 iv)  Production-Attraction-Constrained (Doubly-Constrained) case: Both sets 

  of interaction totals are known (Wilson, 1974). 

 

2.3.2.3. The Doubly-Constrained Gravity Model  

 
 In transportation studies, the number of trips generated and attracted at each 

zones of origins and destinations is usually known. Corresponding to the case of 

maximum information, Doubly Constrained Gravity/Spatial Interaction Model (DCGM) 

has found a wide applicability in trip distribution problems.  

 The high accuracy of DCGMs' estimations is also shown empirically in 

Fortheringham and O'kelly (1989). Accordingly, the traditional form of DCGM 
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introduced with the following expressions, is selected as a benchmark model for the 

performance measures of the present study.  In classical manner, the expression of the  

doubly-constrained gravity distribution model can be stated as follows: 

 

௜ܶ௝ ൌ ܽ௜ ௝ܾ ௜ܲܣ௝݂ሺܥ௜௝ሻ       (2.17) 

 

ܽ௜ ൌ 1
∑ ௝ܾܣ௝݂ሺܥ௜௝ሻ௝

ൗ        (2.18) 

 

  ௝ܾ ൌ 1
∑ ܽ௜ ௜݂ܲሺܥ௜௝ሻ௜

ൗ        (2.19) 

 

where, ௜ܶ௝ is  the number of  trips from zone i to zone j, ௜ܲ   is the total number of trips 

produced in zone i, ܣ௝  is the total number of trips attracted to zone j, ݂ሺܥ௜௝ሻ is the 

friction factor related to some measure of spatial separation between zone i and zone j, 

and finally ܽ௜ and ௝ܾ   are the balancing factors that ensures origin (∑ ௜ܶ௝ ൌ ௜ܲ௝ ) and 

destination (∑ ௜ܶ௝ ൌ ௝௜ܣ ) constraints are satisfied.  

 The spatial separation of zones is usually included in the model as a cost of 

physical distance or  measured or assigned travel time. Ones the friction parameter(s) 

have been calibrated for the base year trip matrix, the future pattern of trips can be 

simulated easily. The well known friction functions are as follows:  

 

݂ሺܥ௜௝ሻ ൌ ݁ିఉሺ஼೔ೕሻ  exponential cost function  (2.20) 

 

݂ሺܥ௜௝ሻ ൌ ௜௝ܥ
ିఉ    power cost function   (2.21) 

 

݂ሺܥ௜௝ሻ ൌ ܽ݁ିఈሺ஼೔ೕሻିܥఉ combined or gamma cost function (2.22) 

 

 The selected calibration techniques and implementation procedure of DCGM are 

discussed in another chapter of the study. Further reviews on calibration as well as 

theoretical aspects of spatial interaction and trip distribution modelling can be found in 

the texts by Fortheringham and O'kelly (1989), Ortuzar and Willumsen (2001), Roy 

(2004) and Sen and Smith (1995).  
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2.3.4.  The Intervening Opportunities Model  

 
 One of the important approach to trip distribution modelling, other than above 

mentioned gravity type of spatial interaction models, is the 'intervening opportunities 

model. It was originally developed by Stouffer (1940) and refined by Schneider (1959)  

in Chicago Area Transportation Study.  

 According to the intervening opportunities model, trip making is not explicitly 

related to travel distance but to accessible opportunities.  It basically assumes that the 

trip endings are directly proportional to the number of opportunities at the destination 

and inversely proportional to the number of intervening opportunities. 

 Most widely used form of the intervening opportunities model can be written as 

follows (Vuchic, 2005): 

 

௜ܶ௝ ൌ ௜ܲ
ቀ௘షಽಲೕି௘షಽಲೕశభቁ

൫ଵି௘షಽಲ൯
     (2.23) 

 

where, ௜ܶ௝ is the trip interchanges between zone i and zone j, ܮ is the probability of 

travelling to particular destination, ܸ is the total number of opportunities, ௝ܸ  ܽ݊݀ ௝ܸାଵ 

are the number of opportunities passed up to the zones j and j+1, and ௜ܲ is the total 

number of trips leaving zone i. Although the intervening opportunities model is a kind 

of spatial interaction model, it differs from the traditional gravity model with its 

statistical nature and its different measure of attractiveness and impedance terms. 

 

2.4. Advantages and Disadvantages of Traditional Trip Distribution 
 Models 
 
 Growth-factor techniques are easy to understand and apply. There is no need for 

a calibration procedure. However, predicting all interactions with only a single factor 

and without any transportation system  information is not sufficient in many cases.  

They are especially suitable for short term forecasts in small urban areas where a 

present trip matrix is available and a friction matrix is not. The base year trip matrix is 

also supposed to has no sampling error as the growth factor techniques is much more 

sensitive to actual trip interchanges.   
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 The traditional gravity type of spatial interaction models can be used in many 

applications with various weights, functional forms, transportation costs and further 

disaggregation by route choice, trip type, transport mode, and so forth. This flexible 

structure with well-established calibration and validation procedures constitutes the 

main advantage of gravity models. Additionally, its underlying theory is simple and 

policy-responsive. Finally, calibration procedures of gravity models are well-known and 

available with many computer packages. 

 However, the gravity models have also some disadvantages. First, the gravity 

models are based on existing travel behaviour pattern and transportation system 

characteristics. The friction factor and other socio-economic factors or parameters are 

very unlikely to remain stable. Second, gravity models use only physical separation as a 

friction factor and this leads to the exclusion of other behavioural factors and 

opportunities. Third, they assume all the information is related with base year trip 

matrix and the trip end constraints. This would be also problematic when any sampling 

error is included with the base trip matrix and the outputs of the trip generation phase 

are not sufficiently accurate. Finally, gravity models do not use any explicit variable of 

individuals or households  behaviour  which is valid with all aggregate models. 

 Both the gravity models and the intervening opportunities model have been used 

in many urban transportation studies over the years. One of the main difference of these 

models is that the gravity models are deterministic and intervening opportunities are 

probabilistic.  As  Taafe et al. (1996) states that the results of the empirical use of both 

models has shown that they are equally effective in describing and predicting trip 

distributions.  

  However, although it begins from different principles and have some useful 

insights,  the intervening opportunities model is not often used in practice. According to 

the Ortuzar and Willumsen (2001) the reasons of this situation would be: i) its 

theoretical basis is less well known  and possibly more difficult by practitioners; ii) it 

does not include any practically measured trip cost attribute; iii) the lack of suitable 

software; iv) and finally its theoretical and practical advantages over the gravity models 

are not overwhelming. As Wilson (1974) states that the intervening opportunities model 

can be seen as a specialized gravity model while many of the features which are applied 

to gravity model could be applied to the intervening opportunities model. 
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CHAPTER 3 

 

MODELLING TRIP DISTRIBUTION WITH SOFT 
COMPUTING TECHNIQUES: A REVIEW  

 
3.1. Soft Computing Applications in Traffic and Transport Systems 

 
 Over the past decades, a variety of techniques of computational intelligence and 

artificial life have influenced regional science research to understand more fully the 

natural complexity of many spatial and regional systems. Achieving and evaluating 

huge amount of digital spatial data with the help of GIS and fast soft computing 

techniques have led spatial analysts to recall the traditional explanatory spatial models 

eliminating the past drawbacks (Roy and Thill, 2004).  

 The transportation systems are naturally complex systems involving a very large 

number of components and different parties, each having different and often conflicting 

objectives. In order to cope with its complexity, there has been increasing interest 

among both transportation researchers and practitioners in exploring the feasibility of 

applying Artificial Intelligence (AI) based techniques to real transportation problems 

(Sadek, 2007) .  

 According to Sadek (2007) AI refers to methods that mimic biologically 

intelligent behaviour in order to solve problems that is difficult to solve by classical 

mathematics. At present time, AI methods can be divided into two broad categories: i) 

symbolic AI, which focuses on the development of knowledge-based systems; and ii) 

computational intelligence, which includes such methods as artificial neural networks, 

fuzzy systems, and evolutionary computing as shown in Figure 3.1. Bezdek (1994; cited 

in Konar, 2005, p.5) describes a computationally intelligent system as follows. 

 
 A system is computationally intelligent when it: deals with only numerical (low data), has 
 pattern recognition components, does not use knowledge in the A I sense, and additionally when 
 it (begins to) exhibit i) computational adaptivity, ii) computational fault tolerance, iii) speed 
 approaching human-like turnaround and iv) error rates that approximate human performance. 
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Figure 3.1. Computational Intelligence Based Techniques: A Family Tree 

(Source: Konar, 2005, p.vi) 
 

 Especially with the 1990's, many researchers started to study the synergistic 

behaviour of computational intelligence based techniques. Zadeh called this synergism 

as 'Soft Computing' and described their synergistic rather than competitive behaviour as 

in following two quotations: 

 
 Soft computing is not a homogenous body of concepts and techniques. Rather it is a collection of 
 methodologies, which in one form or another reflect the guiding principle of soft computing: 
 exploit the tolerance for imprecision, uncertainty, and partial truth to achieve tractability, 
 robustness, and low solution cost. Viewed in a slightly different perspective, soft computing is a 
 consortium of methodologies which, either singly or in combination, serve to provide effective 
 tools for the development of intelligent systems (Pedrycz, 1996;cited in Konar, 2005,p. 8) 
 
 
 ...a recent trend to view fuzzy logic (FL), neurocomputing (NC), genetic computing (GC) and 
 probabilistic computing (PC) as an association of computing methodologies falling under the 
 rubric of so-called soft computing. The essence of soft computing is that its constituent 
 methodologies are for the most part complementary and synergistic rather than competitive. A 
 concomitant of the concept of soft computing is that in many situations it is advantageous to 
 employ FL, NC, GC, and PC in combination rather than isolation (Pedryc and Gomide, 
 1998;cited in Konar, 2005, p.8).    
 
 
   In parallel with the other engineering sciences, Neural Networks (NNs), Fuzzy 

Logic (FL) and Genetic Algorithms (GAs) have been the most featured soft computing 

techniques used in transportation research. A number of studies have shown 

applicability of those techniques to transportation problems such as in traffic control 

and design, demand analysis and logistics. Here an overview of these studies is given 
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and fundamentals of these widely used soft computing techniques is introduced in the 

subsequent sections of the study.   

 A recent study (Avineri, 2005) gives a brief overview of the use of soft 

computing methodologies for modelling and analyzing traffic and transport systems. 

According to this study, during the last three decades approximately one thousand 

researches have established in the field of traffic and transport systems dealing with soft 

computing techniques. The field of traffic control and management with a rate of 37% 

has become the most studied field of transportation researches. The issues included in 

transport planning and management, and transport policy and administration studies 

have followed the traffic control and management studies with a total rate of 29%. 

 Table 3.1  shows the detailed results of Avineri’s (2005) literature review 

according to the issues in traffic and transportation systems. Additionally, Figure 3.2 

shows the citation results according to the yearly development of soft computing 

techniques.  

 According to the Avineri (2005), travel demand modelling with many special 

issues other than four step modelling is included in the section of modelling of travel 

choice behaviour with 83 (8%) citation.  First applications of soft computing techniques 

to travel demand modelling are based on fuzzy rules and classical tools of fuzzy control. 

Teodorovic and Kikuchi (1990), Lotan and Koutsopoulos (1993) and Henn (2000) has 

studied route-choice problem with fuzzy set theory. Then several researchers compare 

the Neural Networks in different travel demand modeling stages, such as Black (1995),  

Ji-Rong (2000), Mozolin et al., (2000), and Kim (2001etc.  Genetic algorithms were 

recently used in route-choice modelling  by Nakayama (2000), and in trip distribution 

by Kalic and Teodorovic (2003). 

 The reader is referred to works by Teodorovic (1994; 1999), Teodorovic and 

Vukadinovic (1999), Dougherty (1995) and TRB (2007)  for an in-depth coverage of 

the traffic and transportation applications of NNs, FL and GAs. 
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Table 3.1. Classification for Soft Computing Research in Traffic and Transport Systems 
(Source: Avineri, 2005, p.18) 

Research Topics Number of 
Citations

Traffic Control and Management 375 (37%)

Transport Planning and Management, Transport Administration, Transport 
Policy  
Modeling of Travel Choice Behaviour  
Transport Projects Selection  
Other Issues of Transport Planning   

83 (8%)
17 (2%)

196 (20%)

Logistics  40 (4%)

Design and Construction of Transport Facilities Including Geometric 
Design, Pavement Management, Construction, Materials Properties  112 (11%)

Other Applications of Traffic and Transport Systems, and Review Papers 
Including Planning and Operating Public Transport, Operating and 
Management of Parking Facilities, Maintenance of Traffic and Transport 
Systems, Airline Network Applications, Airport Planning and Others  

181 (18%)

Total 1004

 
 
 

 
Figure 3.2. Number of Citations with NNs, FL and GAs by Years 

(Source: Avineri, 2005, p.20) 
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3.2. Modelling Trip Distribution with Neural Networks 

 
 Artificial Neural Networks, commonly referred to as Neural Networks (NNs), 

are computational models of the brain. Similar to the structure of brain, artificial 

neurons which are interconnected by edges constitutes a layered network, the network 

receives input, performs some internal process such as activations of the neurons, and 

produces output (Munakata, 2008). Multilayer NNs are at the same time universal 

approximators (Hornik et al., 1989; Hornik, 1991), by adjusting the connection weights 

of the neurons, NNs can be "trained" to approximate any nonlinear function to a 

required degree of accuracy (Sadek, 2007).  

 Especially in the last two decades, NNs have been applied in many scientific 

disciplines as well as transport geography and modelling. The application potentials of 

NN models across the traditional models have been shown in many studies. As the NNs 

have a highly flexible and equation free structure, a number of function approximation, 

system identification and control, nonlinear modelling, pattern recognition and 

optimization problems have solved or resolved with NNs.  

 The reader is referred to some previous publications by  Doughtery (1995), 

Mussone (1999), Avineri (2005) and Ishak and Franco (2007) for a review on some of 

the NN applications in transport geography and traffic engineering, and to valuable 

works by Munakata (2008) and Haykin (1999) for a detailed theoretical framework of 

NNs. 

 Several recent studies have also proposed the use of NNs to model spatial 

interactions and trip distribution. Openshaw (1993) presented the potential use of NNs 

in spatial interaction modelling and Fischer and Gopal (1994) showed the applicability 

and predictive accuracy of NNs in modelling distribution of interregional 

telecommunication flows. Many others have followed these pioneering works in trip 

distribution modelling: Black (1995) and Celik (2004) modelled commodity flows and 

Mozolin et al. (2000), Tillema et al. (2006) and Tapkin (2009) modeled intercity 

passenger flows with NNs.  

 Nearly all the scholars compared the NNs predictive performance with some of 

conventional gravity type of spatial interaction models. In many cases, NNs 

outperformed the conventional models and it is concluded that NNs may perform well 

enough to estimate spatial interaction flows in general. The only differentiating 
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conclusion was presented by Mozolin et al. (2000) and Celik (2004). They trained the 

networks for a base-year interaction matrix and tried to forecast a known matrix at 

projection year. They concluded that the NNs may perform better than conventional 

models for the base year matrix, but they fail to outperform conventional models for 

forecasting purposes.  

 Although the debates are continuing, the NN based spatial interaction models 

have been in use for more than fifteen years. So, it would be appropriate for us to 

establish a NNs based trip distribution model and compare the overall performance 

measures with the proposed GFRBS design.  The selected network topology and its 

training and implementation issues are discussed in subsequent sections of the present 

study. 

 

3.3. Modelling Trip Distribution with Fuzzy Logic and Genetic 
 Algorithms 
 
 The Fuzzy Set Theory (1965) and the Fuzzy Logic (1973) were first introduced 

by Lotfi Zadeh as a mathematical tool for dealing with uncertainty, imprecision, 

subjectivity and linguistic terms. Since then, a number of researches as well as a number 

practical engineering applications have been established using the concept of fuzziness. 

The fuzzy logic or FRBSs has proved to be a good tool for a wide range of application 

areas such as in system/process control, pattern recognition, classification, non-linear 

input-output mapping, approximate reasoning, machine learning and decision making.   

 As Kalic and Teodorovic states (2003, p.214), fuzzy logic applications in 

solving different kinds of problem can be divided into two categories.  

 

• Firstly, use of fuzzy logic is a suitable for treating subjectivity, ambiguity, 

uncertainty and imprecision, when we do not have sufficiently precise input 

data, or the data including subjective feeling of the expert and are most often 

described in linguistic terms. Over the last three decades a number of models 

which treat subjectivity, uncertainty and imprecision have been developed using 

fuzzy logic. 
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• Secondly, fuzzy logic can be used with the problems in which uncertainty, 

subjectivity or imprecision are not present. Recently, significant theoretical 

results have been achieved in the field of  fuzzy systems. Fuzzy logic has proved 

to be a good tool for tackling problems involving a mapping of inputs into 

outputs. Wang (1992), Wang and Mendel (1992) and Kosko (1994) showed in 

their works that the fuzzy logic systems can be treated as universal 

approximators. 

 

 In traffic and transportation studies, FRBSs have been applied in each of these 

categories especially for selecting transportation investment projects, and modelling trip 

generation, trip distribution, modal split, and route choice. As being universal 

approximators, they have also been used in traffic controls and related studies including 

aircraft control, ship loading/unloading control, intersection signal control, accident 

analysis/prevention, and level of service evaluation (see Teodorovic,1994; 1999).  

 Apart from these applications, learning fuzzy rules and tuning fuzzy 

membership functions are the two key components for an FRBS. Genetic Algorithms 

(GAs) have proven suitable for solving both combinatory optimisation and parameter 

optimization problems. Employing GAs to construct a fuzzy system with learning 

process from examples can greatly enhance the control performance of a fuzzy system 

(Chiou and Lan, 2005). This line of research has spurred broad use of  fuzzy systems 

improved by a GA learning process: Genetic Fuzzy Systems (GFS) and in particular 

GFRBSs (see Cordon et al., 2004; Ishibuchi, 2007; Herrera, 2008).  

  Considering the spatial interaction and trip distribution modelling, it is possible 

to mention about some important studies that uses fuzzy inference systems and/or 

genetic algorithms.  According to these studies listed below, FRBSs can be used to 

solve trip distribution problem efficiently and, together with the use of GAs, it is 

possible to achieve better model performances. However, the performance of FRBSs 

against a doubly-constrained gravity model and a NNs based trip distribution model has 

still not been investigated. Moreover, the GFRBS has still not been adapted for the 

prediction of intra-city passenger flows, which adds computational burden and 

complexity with an additional friction variable and additional fuzzy rules.  The present 

study tries to make up these shortages with an empirical analysis.  
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• Kalic and Teodorovic (1996) estimated air passenger flows between some major 

industrial cities and tourist resorts using known productions and attractions as 

inputs.  In comparison to non-fuzzy methods, the FRBS that they used gave 

better results. 

 

• Kalic and Teodorovic (2003) carried out their studies with the use of GAs to 

optimize initial fuzzy rule-based system. They have achieved better results with 

a GFRBS design. 

 

• Openshaw (1997;1998) proposed the use of fuzzy set systems in modelling 

spatial interactions and showed some empirical results for a origin-constrained 

gravity model using Sugeno-type of fuzzy inference. 

 

• Diplock and Openshaw (1996) investigated the use of genetic algorithms in an 

attempt to obtain globally  optimal parameter estimates for a mix of simple and 

complex spatial interaction models. 

 

• Shafahi et  al. (2008) proposed a simple FRBS to predict the discretionary trips 

in Tehran showing its capability in intra-city passenger flows. They used travel 

time as third input and gained better results against the unconstrained type of 

gravity model.  
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CHAPTER 4 

 

FUNDEMENTALS OF FUZZY AND GENETIC FUZZY 
SYSTEMS 

 

4.1. Fuzzy Logic and Fuzzy Rule-Based Systems 

 
 The concept of fuzziness (1965) and fuzzy logic (1973) was first introduced by 

Zadeh to deal with uncertainty, imprecision and partial truth. Simply, fuzzy logic 

provides a way to draw definite conclusions from vague information and it enables 

using linguistic terms and human like reasoning in modelling complex real-life systems. 

 The term fuzzy logic is generally used in two sense: i) in a narrow sense, it can 

be seen as a branch of fuzzy set theory dealing with logical systems where classical 

logic suffers, ii) in a broad sense, it can be specified as synonymously with fuzzy set 

theory, fuzzy control systems and fuzzy modelling. This study uses the term fuzzy logic 

as its broad and comprehensive meaning.  

 As mentioned earlier, fuzzy logic is useful in two general context: i) in situations 

involving uncertainty, imprecision and partial truth, and ii) in situations where mapping 

any inputs into desired outputs even if there is no uncertainty and imprecision exist. 

Present study introduces a fuzzy rule-based system designed in the latter context. The 

following two sections give a brief overview of fuzzy sets and introduces a general 

Fuzzy Rule-Based System (FRBS) also used in this study. 

 

4.1.1. Fuzzy Sets and Membership Functions 
 

 Fuzz logic and fuzzy systems are mainly based on fuzzy set theory. Its 

mathematical foundations can be seen as a generalization of classical set theory. In 

classical set theory, boundaries of sets are rigid and elements are either members or not 

members of predefined crisp sets. If an object belongs to a set, its membership function 

value is 1, otherwise it is 0.  
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 Classical set theory is not sufficient to describe vague concepts especially in real 

life cases. Seeing inadequacies of this binary structure, Zadeh (1965) introduced a 

gradual membership concept to ordinary sets with overlapping boundaries. In fuzzy 

sets, boundaries are not price and can overlap, additionally many degrees of 

membership are possible between a closed interval [0,1].  

 All information contained in a fuzzy set is described by its membership function, 

most fundamental parts of fuzzy sets. Membership function of a set   μ஺ሺݔሻ, maps each 

element to its degree between 0 and 1. They can be formed in any discrete or continuous 

functions. Some of the most widely used continuous membership functions are 

triangular, trapezoidal, s-shaped, sigmoidal and gaussian functions.  

 A membership function is mainly constituted from three parts: the core, crisp 

subset of the universe that represents complete membership; the support, non-zero 

membership range of the membership function; and the boundaries,  region of the 

universe that includes greater than zero, but smaller than complete membership degree 

(Figure 4.1).  

 

 
Figure 4.1. Fuzzy Membership Function Components 

  

 Let us consider a universe of discourse , say 'distance to city centre', and define 

three subsets: low, medium and high distances. If some appropriate intervals are given 

to predefined membership functions, the crisp and fuzzy sets can be shown graphically 

as in Figure 4.2.  
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Figure 4.2. Crisp and Fuzzy Sets: An Example 

 

 Additionally, for an element ݔ that belongs to subset ܣ , say 'medium distance to 

city centre', the membership degree,  μ஺ሺݔሻ, of crisp and fuzzy subsets can be 

calculated as in equations 4.1 and 4.2 respectively. As seen in the figure and the 

mathematical form of fuzzy membership function, any value of  ݔ can get different 

membership degrees other than exact 0 and 1. Moreover, the element x can also be a 

member of a nearby subset if it is in a fuzzy or gray area.   

 

μܣሺݔሻ  =    1   if 15 ൑ ݔ ൑ 45      

0   otherwise      (4.1) 

 

μܣሺݔሻ  = ௫ିଵ଴
ଶହିଵ଴

   if 10 ൑ ݔ ൑ 25      

   1   if 25 ൑ ݔ ൑ 35      

௫ିହ଴
ଷହିହ଴

   if 35 ൑ ݔ ൑ 50      

0   otherwise      (4.2) 

  

 Classical sets can be considered as a special case of fuzzy sets that is restricted 

to certain values. So, nearly all classical set operations and properties are supported by 

fuzzy sets. Three of the operators have remarkable importance, union, intersection and 

complement, which are illustrated in Figure 4.3 and summarized in Table 4.1.   

1.0

0

µ(x)

15 4530 60 9075 0 15 4530 60 9075

µ(x)

1.0

0.5

Distance to City Centre (minutes) Distance to City Centre (minutes)

M
em

be
rs

hi
p

 D
eg

re
e

M
em

be
rs

hi
p

 D
eg

re
e

Low
Distance

Medium
Distance

High
Distance

Low
Distance

Medium
Distance

High
Distance

Crisp Sets Fuzzy Sets

x x



28 
 

 
Figure 4.3. Fuzzy Set Operations: Union, Intersection and Complement 

 

 Suppose that ܣ and ܤ are two fuzzy sets on the universe ܺ, then the union of sets 

 , 'ሻ.  The fuzzy union operator is also called as logical 'orݔ஻ሺڂis denoted by  μ஺ ܤ and ܣ

representing all the elements that belong to either set A or set B. 

 Similarly, the intersection of fuzzy sets ܣ and ܤ is denoted by   μ஺ת஻ሺݔሻ, and 

represents the region where  all the elements are  member of both of set A and set B. 

The fuzzy intersection operator is also called as logical 'and' operator.  

 The complement of fuzzy set ܣ is a new fuzzy set denoted by  ܣҧ, which 

represents elements that are not belong to set A. Complementation operator fuzzy sets is 

also known as logical  'not' operator.  

 Other properties of classical sets can also be applied to fuzzy sets. Classical  set 

properties such as, commutativity, associativity, distributivity and identity are familiar 

with fuzzy set properties. 

 

Table 4.1. Fuzzy Set Operations: Union, Intersection and Complement 

Fuzzy Set Operator Logical Operator Mathematical Expression 

Union OR ߤ஺ڂ஻ሺݔሻ ൌ ,ሻݔ஺ሺߤሼݔܽ݉ ሻሽݔ஻ሺߤ

Intersection AND ߤ஺ת஻ሺݔሻ ൌ ݉݅݊ሼߤ஺ሺݔሻ,  ሻሽݔ஻ሺߤ

Complement NOT ߤ஺ҧሺݔሻ ൌ ሼ1ݔܽ݉ െ  ሻሽݔ஺ሺߤ
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4.1.2. Fuzzy Rule-Based Systems (FRBSs) 

 
 Fuzzy Rule-Based Systems (FRBS) are one of the most important application  

areas of fuzzy set theory. As an extension of classical rule-based systems, a FRBS uses 

fuzzy sets and fuzzy logic to represent and connect knowledge which is usually 

linguistic.  Because of its multi-disciplinary nature, FRBS are also known as fuzzy 

inference systems, fuzzy control systems, fuzzy expert systems, fuzzy reasoning, fuzzy 

modelling and finally fuzzy systems which is more broad.   

 FRBS are most useful in modelling complex systems that can be observed by 

humans. The most common way to represent human knowledge is to form it into natural 

language expressions: IF premise, THEN conclusion. This expression is commonly 

referred as an  IF-THEN rule-based system. They enable use of linguistic variables as 

antecedents and consequents, and logical connectives as well. Using basic properties 

and operations of fuzzy sets, any compound rule structure can be decomposed and 

reduced to a number of simple canonical rules as shown in Table 4.2 Canonical rules 

may include either assignment statements, conditional statements or unconditional 

statements. Conditional and unconditional statements place restrictions on the 

consequent, and linguistic connections such as "and", "or", "not" connect them each 

other (Ross, 2004).    

 

Table 4.2. The Canonical Form Of A Fuzzy Rule-Based System 

Rule 1: IF Condition C1, THEN restriction R1 

Rule 2: IF Condition C2, THEN restriction R2 

...... ..... 

Rule r: IF Condition Cr, THEN restriction Rr 

 

 The most commonly used FRBS can be distinguished into two main 

configurations: i) Mamdani-type FRBS, proposed by Mamdani (1974) and Mamdani 

and Assilian (1975), and ii) Sugeno-type FRBS, introduced by Takagi and Sugeno 

(1985) and Sugeno and Kang (1988).  

 They are all similar in their antecedents and rule base structure and their ability 

to process human like reasoning with linguistic variables. However, they become 

different in producing system outputs. The output of a Mamdani-type FRBS is a fuzzy 
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set as in its inputs, whereas the output of a Sugeno-type FRBS is generally either a 

linear function of its inputs or some constants. An approximate fuzzy rule can be 

formed as following expressions in each case:     

 

  Mamdani-type FRBS: IF X1 is A1 and X2 is A2 and ..... Xi is Ai,  

      THEN Y is B 

 

  Sugeno-type FRBS:  IF X1 is A1 and X2 is A2 and ..... Xi is Ai,  

      THEN Y = a0+ a1X1+ a2X2+ .....+aiXi 

 

 Mamdani-type FRBS also used in this study, is the most common FRBS in 

practice and in the literature. It generally deals with  mapping crisp inputs into crisp 

outputs and enables the use of linguistic variables and expert knowledge. This 

knowledge can be easily combined with automatically generated rules from data sets 

that describe the relation between system input and output as in our case.  

 Either Mamdani-type or Sugeno-type, a FRBS generally consist of four main 

components: fuzzification, knowledge base, inference and defuzzification. A general 

form of a FRBS and its components is shown in Figure 4.4 and is described as 

following.  

 Fuzzification, is the process of mapping inputs into linguistic fuzzy sets and 

computing their membership degrees for rule antecedents. In most cases, inputs are 

crisp numerical values which are then transformed into fuzzy values.   

 Knowledge base, is the most fundamental part of a FRBS and constituted from a 

data base and a rule base. The data base keeps linguistic variables or in other words 

fuzzy membership functions for both of the inputs and outputs. The rule base, on the 

other side, includes a collection of fuzzy If-Then rules. All other components of a FRBS 

uses the information preserved in knowledge base. 

 Inference system, is responsible for combining fuzzy sets with corresponding 

logical operators, then giving an fuzzy output. The type of combining  is changeable 

depending on selected implication method such as max-min or max-product implication.  

Additionally, the type of outputs may differ according to the selected inference system: 

A Mamdani-Type inference system produces fuzzy outputs to defuzzify, on the other 

hand, a Sugeno-Type inference system produces a vector of real values. 
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 Defuzzification, is the process of reduction which maps aggregated fuzzy results 

into a crisp output. There are also a number of defuzzification methods. The most 

widely used of them are the Centre of gravity and weighted average methods.    

 

 
Figure 4.4. General Form of A Fuzzy Rule-Based System 

 

 Graphical interpretation of a FRBS can considerably help us to understand 

nature of fuzzy modelling. Implication of a Mamdani-type Fuzzy Rule-Based System 

can be distinguished into four steps as described below and illustrated in Figure 4.5 :   

 

 Step 1 :  Initialization: Define input and output variables. Normalize data 

   into some appropriate range if it is required. Constitute the 

   knowledge base: set fuzzy membership functions on variables and 

   determine fuzzy rules.  

 Step 2 :  Fuzzification: Compute fuzzy membership values of actual 

   inputs   using corresponding membership functions, usually as 

   crisp into fuzzy values. 

 Step 3 :  Inference: Combine fuzzy sets with logical operators using 

   appropriate implication algorithm. Aggregate all  outcome to 

   generate fuzzy output. 

 Step 4 :  Defuzzification: Convert aggregated fuzzy output into crisp 

   output using a defuzzification method. 
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 Development of fuzzy membership functions and generating a fuzzy rule base 

(rule induction) are two key components of a FRBS design. There is a number of  way 

to assign membership values or functions to fuzzy variables.  The most widely used 

techniques are  based on some numeric or logical operations or they are intuitive. These 

techniques can be distinguished into six: i) intuition, ii) inference, iii) rank ordering, iv) 

neural networks, v) genetic algorithms, and vi) inductive reasoning.  

 Apart from these, there are several automated methods for fuzzy systems which 

provide additional procedures to develop membership functions as well as rule base 

learning procedures. Batch least squares, recursive least squares, gradient method, 

learning from example, modified learning from example and clustering method are 

some of the important algorithms for fuzzy system development (Ross, 2004).   

 Among the automated fuzzy models, the learning from example is one of the 

most widely used technique for fuzzy rule induction. This technique is originally 

developed by Wang and Mendel (1992) as a supervised data mining technique to 

generate fuzzy rules from numerical data.   

 It is also known as Wang-Mendel Method or One-Pass Method which is a simple 

FRBS design method that generates a set of IF–THEN rules by performing a one-pass 

operation on the given input–output data, and then combines the rules in a common rule 

base, to construct a final FRBS. It can be described with the following five steps as 

indicated in Mendel and Mouzouris (1997, p. 888-889): 

 

The One-Pass Method: 
 
Given a set of input–output pairs, 
 

൫xଵ
ሺଵሻ, xଶ

ሺଵሻ, … , x୬
ሺଵሻ; yଵ൯, ൫xଵ

ሺଶሻ, xଶ
ሺଶሻ, … , x୬

ሺଶሻ; yଶ൯ …   (4.3) 
 

where xଵ, xଶ, … , x୬ are inputs and is the output, we proceed as follows to construct a FLS: 
 
1) Let  ሾxଵ

ି, xଵ
ାሿ, ሾxଶ

ି, xଶ
ାሿ, … , ሾx୬

ି, x୬
ାሿ; ሾyି, yାሿ be the domain intervals of the input and output 

variables, respectively, where domain interval implies the interval a variable is most likely to lie 
in. We divide each domain interval into 2N+1 regions, where N can be different for each 
variable. Then, we assign membership functions to the regions, labelled as SN (Small N), ..., 
S1(Small 1), CE (Center), B1 (Big 1), ..., BN (Big N).  
 
2) We evaluate the membership of each input–output point in regions where it may occur, and 
assign the given xଵ

ሺ୧ሻ, xଶ
ሺ୧ሻ, … , x୬

ሺ୧ሻ, or yሺ୧ሻ  to the region with maximum  membership. 
 
3) In order to resolve conflicting rules, i.e., rules with the same  antecedent membership 
functions and different consequent membership functions, we assign a degree to each rule as 
follows: µ୶ౡ

ሺx୩ሻ  let denote the kth membership of the input variable in the region Xk with 
maximum membership, and µYሺyሻ the membership of the output variable in the region Y with 
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maximum membership, where Xk and Y are labels from their corresponding sets SN, ..., 
S1,CE,B1,...BN. Then, the degree for the lth rule, Rl , is defined as 
 

D൫R୪൯ ൌ ∏ µ୶ౡ
ሺx୩ሻµYሺyሻ ୬

୩ୀଵ    (4.4) 
 

In the event of conflicting rules, the rule with the highest degree (eq.4.4) is kept in the rule base, 
and all other conflicting rules are discarded. 
 
4) We generate a combined rule base comprised both of numerically generated fuzzy rules (as 
described above) and linguistic information provided by experts. 
 
5) After the combined rule base is generated, we employ a defuzzification method (such as 
Center-of-Area, Center-of-Sums, Height defuzzifier), to obtain the crisp output of the FLS. 
 

4.2. Genetic Fuzzy Systems 
 

 Fuzzy rule-based systems have an advantage of storing knowledge that is 

learned from the data itself or set up by an expert. However, they lack a self-learning 

feature. If knowledge of the system is fixed and well-defined it is easy to design an 

effective FRBS. On the other hand, an increase in the size and complexity of the 

knowledge base complicates the process of designing an optimum FRBS. One of the 

recent important approaches to removing this learning deficiency of fuzzy systems is to 

enhance them using GAs.  

 The use of GAs in enhancing or optimizing fuzzy systems has started a new 

field of research that is called Genetic Fuzzy Systems (GFSs). The pioneering works of 

GFSs can be dated back to the early 1990s (Karr,1991; Thrift, 1991; Pham and 

Karaboga, 1991; Valenzuela-Rendon,1991). Since then, evolutionary learning of fuzzy 

systems has been extended and several types of GFS have been developed. Genetic 

Fuzzy Rule-Based Systems (GFRBS), genetic fuzzy clustering systems, genetic fuzzy 

neural systems and genetic fuzzy decision trees has constituted the main types of GFS. 

 The most widely used types of GFSs are GFRBSs, which incorporate 

evolutionary techniques to achieve automatic generation or modification of each 

component of the FRBS knowledge base. The present study proposes a GFRBS to 

model intra-city passenger flows. A brief review of GAs and main components of 

GFRBS are introduced in the following two sections of the study. Further reviews and 

various applications of GFSs can be found in the texts by Cordon et al. (2001), 

Bodenhower and Herrera (1997) and Herrera and Verdegay (1996)  
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4.2.1. A Brief Description of Genetic Algorithms 

 
 Genetic Algorithms (GAs) are effective tools with acceptable solutions when 

exploring large search spaces in a reasonable time. First initiated by Holland (1975) and 

his colleagues, they are guided random search techniques which are primarily based on 

Darwin’s principals of natural selection and the genetics branch of Biology.  In a GA 

process, genetic codes of individuals within a population evolve into a solution with the 

overriding principal of survival of the fittest. New generations produce individuals 

having improved genetic codes with reproduction, crossover, and mutation operators.  

 Typically a GAs procedure can be identified with some main steps as: the 

creation of the initial population and the evaluation function; the determination of 

chromosome representation (generally binary strings) and selection function; and finally 

the set of parameters for genetic operators, reproduction, and termination criteria 

(Figure 4.6). Genetic algorithms work well in a wide variety of engineering problems. 

They have attracted considerable attention in a great number of disciplines as a 

methodology of search, optimisation and learning, especially after the work of Goldberg 

(1989). A brief explanation of GAs is introduced below, further reviews and 

applications can be found  in the text by Haupt and Haupt (2004), Sivanandam and 

Deepa (2008), Gen and Cheng (2000) and Bodenhofer (1999). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. A Typical GAs Procedure 

INITIALIZE 
population at random 

EVALUATE 
fitness of individuals 

TERMINATE 
if the goal is reached 

REPRODUCE 
the population with selection, 

crossover and mutation

FINISH  
YES

NO



36 
 

 The main steps of simple GAs can be further described with the following 

operations (Sivanandam and Deepa, 2008, p. 30-31): 

 
• Start: Genetic random population of n chromosomes (suitable solutions for the problem) 
• Fitness: Evaluate the fitness f(x) of each chromosome x in the population 
• New population: Create a new population by repeating following steps until the new population 

is complete 
- Selection: select two parent chromosomes from a population according to their fitness   

(the better fitness, the bigger chance to get selected). 
- Crossover: With a crossover probability, cross over the parents to form new offspring   

(children). If no crossover was performed, offspring is the exact copy of parents. 
- Mutation: With a mutation probability, mutate new offspring at each locus (position in 

chromosome) 
- Accepting: Place new offspring in the new population. 

• Replace: Use new generated population for a further sum of the algorithm. 
• Test: If the end condition is satisfied, stop, and return the best solution in current population. 
• Loop: Go to step 2 for fitness evaluation. 

 

 Additionally, GAs can be realized with the following procedural code where 

P(t) denotes a population of chromosomes at time t (Konar, 2005, p.324):  

 
BEGIN 
 t=0; 
 initialize P(t); 
 evaluate P(t); 
 while (termination condition not satisfied) do 
  begin  
  t=t+1; 
  select P(t) from P(t-1); 
  alter P(t); 
  evaluate P(t); 
 end; 
END 

  

4.2.2. Genetic Fuzzy Rule-Based Systems (GFRBSs) 

 
The subject of a GFRBS is to learn or modify the knowledge base of a FRBS. 

Fuzzy membership functions, scaling functions and rule base can be stored in the 

knowledge base of a fuzzy system. In designing GFRBS, either part of or the entire 

knowledge base can be subject to optimisation by GAs. Figure 4.7 indicates such an 

integration of GAs with FRBSs.  
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Figure 4.7. Main Components Of Genetic Fuzzy Rule-Based Systems 

 

Two procedures are possible in GFRBS: genetic tuning and  genetic learning. In 

a genetic tuning process, parameters of the data base including membership functions 

are adjusted using a predefined rule base. In genetic learning process, the performance 

of the FRBS is improved with knowledge base learning including the rule base. 

Considering the genetic tuning and learning processes GFRBS designs generally fall 

into one of four main categories: The present study deals with the second category: 

learning the rule base of a predefined FRBS with fixed membership functions.  

 

 1. Use of GAs to tune up membership functions under a given set of fuzzy rules. 

 2. Use of GAs to learn the rule base with fixed membership functions.  

 3. Use of GAs to learn both the database and the rule base simultaneously. 

 4. Use of GAs to learn the database and the rule base sequentially.  

 
 Regardless of the problem, genetic  tuning or learning process will be based on 

evolution. Three issues are essential in the process (Bodenhower and Herrera; 1997): 

 
 The population of potential solutions: The population of a GFRBS has to be 

 constituted from one of several components of the FRBS. The individuals in the 

 population may represent partly or completely the parameters of FRBS or 

 membership functions or the rule base.  
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 The set of evolution operators: The genetic learning process has to be evolved 

 into best solution through selection, crossover and mutation operators. Success 

 of an evolutionary learning is based on applying appropriate genetic operators 

 that is compatible with the chromosome representation of the FRBS component.  

  

 The performance index: A fitness/error function has to be established in order to 

 measure the difference between the desired and the actual  output of the FRBS.  

  
 Finally, GAs can be used with various representations in genetic learning of a 

rule base. These representations generally follow two different approaches: i) the 

'chromosome = set of rules", and the 'chromosome = rule" (Herrera, 2008). The first 

approach, also known as the Pittsburgh Approach (Smith, 1980), is selected as the 

genetic learning strategy of the proposed design. The Pittsburgh approach successfully 

solves the cooperation versus competition problem by evolving a population of rule 

bases instead of single rules (Cordon et al.; 2001). However, it brings much greater 

computational burden which can be solved with improved genetic operators.  
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CHAPTER 5 

 

EMPIRICAL ANALYSIS 

 
5.1. Description of the Study Area and Data 

 
 İstanbul Metropolitan Area has been selected for the case study. It is a very 

complex and challenging city region to test a trip distribution model. Its transportation 

system consists a of high number of interaction links, nodes and bridge crossings. 

Moreover, the production-attraction and the friction matrices of the Istanbul 

metropolitan area were measured recently, in a large household survey. 

 Istanbul is located in Northwest Turkey connecting the Marmara and Black Seas 

and separating the two continents: Asia and Europe. It has a population of nearly 13.8 

million, or 17.8% of Turkey’s total population (TurkStat, 2010). An estimated 21 

million daily trips occur in the Istanbul metropolitan area. 50% of these trips are by 

foot, 14% by private cars, and 36% by public transit modes. Additionally, 1.3 million 

daily trips are continent crossings, 1 million on bridges and the remaining 300.000 with 

ferries (Istanbul Metropolitan Municipality Transportation Planning Depart., 2008). 

 The data used in this study come from the Household Travel Survey conducted 

by the Transportation Department of the Istanbul Metropolitan Municipality in 2006. 

The survey was established in 451 Traffic Analysis Zones (TAZs) covering the entire 

metropolitan area of Istanbul and including 90.000 households (3% sampling rate). In 

the survey, which had an 80% unit response rate, approximately 264.000 people in 

72.000 households were surveyed and a total of 356.000 trips were recorded between 

451 origin-destination pairs. 

 The observed trips (including both pedestrian and motorized trips) between a 

possible 203.401 distinct interaction points were categorized by trip purposes. 

Approximately 127.000 of these trips were for home-based-work (HBW), 94.000 trips 

were for home-based-school (HBS), 115.000 trips were home-based-other (HBO), and 

20.000 trips were non-home-based (NHB) trips (Istanbul Metropolitan Municipality 

Transportation Planning Department, 2008). 
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 Use of home-based-work (HBW) trips was found sufficient for empirical 

analysis. The use of the production-attraction (P-A) form of the HBW trip matrix is 

preferred for the modelling procedure. Figures 5.1 and 5.2 show spatial distribution of 

zonal production and attraction totals of HBW trips in the Istanbul Metropolitan area. 

The trip matrix includes both within and between interactions of TAZs. Additionally, 

assigned travel times are chosen due to typical problems with travel time self-reported 

in the survey. In summary, the modelling data is constituted from two 451 by 451 

matrices: a P-A trip matrix and a travel time matrix.  

 To divide a single set of data into two representative parts —the first part for the 

purpose of training and calibration, the second part for the testing of generalization 

purposes— is an orthodox methodology, especially in NNs and FL based modelling. 

Therefore, the data matrices are divided into two representative parts, but with an 

unusual technique.  

  The calibration of doubly-constrained gravity models requires that the data be 

in matrix format due to row and column constraints. In addition, taking any number of 

independent observations or incomplete small matrices from the whole matrix may 

cause biased parameter estimations. So, the whole matrix is divided into two equal 

rectangle matrices: a training matrix, and a testing matrix. The training matrix includes 

trips from all TAZs to odd numbered TAZs (a 451 by 226 matrix); the testing matrix 

includes trips from all TAZs to even numbered TAZs (a 451 by 225 matrix).  

 It can be criticized that dividing the data set can reduce the gravity model's 

performance as the benchmark. However, it has been experimented that the gravity 

model parameters remain stable even if it is calibrated with smaller amount of samples. 

The representativeness of samples was found more effective in successfully calibrating 

gravity models.  The representativeness of two datasets is further tested with a two-

sample paired t-test. No statistically significant difference was found between training, 

testing and whole datasets when the trip length distributions (TLDs) were taken into 

account. Descriptive statistics and observed TLDs of all data sets are shown in Table 

5.1 and Figure 5.3. 
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Table 5.1. Descriptive Statistics of Data Sets 

Data Sets Number of Elements Mean Std. Deviation Minimum Maximum
Full Data Set 

Production Vector 451 283 307 2 1614

Attraction Vector 451 283 329 3 2024

Travel Time Matrix 203401 54 37 0.17 299

Trip Matrix 203401 0.63 6.2 0 885

Training Data Set

Production Vector 451 139 172 1 1171

Attraction Vector 226 278 339 4 1952

Travel Time Matrix 101926 54 38 0.17 299

Trip Matrix 101926 0.62 6.8 0 885

Testing Data Set

Production Vector 451 144 156 1 1009

Attraction Vector 225 288 318 3 2024

Travel Time Matrix 101475 54 37 0.17 275

Trip Matrix 101475 0.64 5.6 0 454

 

 

 

 

 
Figure 5.3. Observed Trip Length Distributions of Data Sets 
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5.2. Modelling Trip Distribution with a Fuzzy Rule-Based System 
 (FRBS)  
 

 Fuzzy rule-based systems (FRBSs) are useful in two general contexts: i) in 

situations involving uncertainty, imprecision and partial truth, and ii) in situations where 

investigators are mapping any inputs into desired outputs even if there is no uncertainty 

and imprecision present. In this study we propose a Mamdani-type FRBS designed in 

the latter context to solve urban trip distribution problem.  

 The main logic behind the proposed FRBS design and its variable structure are 

the same as with the classical gravity model including three inputs and one output. 

Considering an origin-destination zone pair, if zonal trip productions and trip 

attractions are known along with the corresponding friction factor, the number of 

interactions/trips between this zone pair can be estimated using a FRBS as a universal 

approximator. Its main structure can be established starting from the simple verbal 

statements as follows: 

 

• IF total trip production of the origin is LOW, AND total trip attraction of the 
destination is LOW, AND friction factor between corresponding origin and 
destination is HIGH,  THEN the interactions/trips between origin and 
destination is LOW; 
 

• IF total trip production of the origin is HIGH, AND total trip attraction of the 
destination is HIGH, AND friction factor between corresponding origin and 
destination is LOW,  THEN the interactions/trips between origin and 
destination is HIGH. 
 

 In order to construct a FRBS, these verbal statements are to be decomposed into 

a set of overlapping fuzzy sets connected to If-Then rules with logical operators. There 

are several ways exist to establish fuzzy partitions and fuzzy rule base.  

 The present study deals with designing a simple and effective FRBS that is 

regardful to the accuracy-interpretability trade-off. Therefore, a heuristic design of 

fuzzy sets with few partitions is preferred for simplicity. Then, a widely-used Wang-

Mendel method (1992), also known as the one-pass method, is implied as the fuzzy rule 

induction procedure. The following five steps describe the construction and training of 

the proposed FRBS design:  
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(1) Divide input-output spaces into overlapping regions: 

The input-output pairs of trip distribution problem can be stated as, 

ሺ ଵܲ, ,ଵܣ ;ଵܨ ଵܶሻ, ሺ ଶܲ, ,ଶܣ ;ଶܨ ଶܶሻ, . . . , ሺ ௜ܲ , ,௜ܣ ;௜ܨ ௜ܶሻ 

where P, A, and F (production, attraction, and friction) represent input and T 

(trips) represent output variables. Each variable has a domain interval which lies 

between minimum and maximum values. The domain intervals are divided into a 

prespecified number of subintervals. Number and lengths of these subintervals are 

determined with intuition and visual inspection. The production and the attraction 

variables are divided into 5, the friction variable is divided into 6, and the output 

variable, trips, is divided into 20 fuzzy sets. The fuzzy sets are labelled with 

numbered Membership Functions (MFs) representing low, moderate and high 

quantities roughly. For simplicity, the first and the last MFs are established as 

semi-trapezoidal and the others are set as triangular. Figure 5.4 indicates an 

illustration of originally scaled fuzzy sets used in the study. 

 

(2) Generate fuzzy rule candidates from numerical data: 

In this step, membership degrees [µ(xi)] of each input-output point are evaluated, 

and  then MFs having maximum degrees are assigned as a rule candidate. Suppose 

that membership degrees evaluated for any pair of data are indicated as following:  

 

μሺ௉೔,஺೔,ி೔;்೔ሻ ՜ ൤ ୧ܲሺ0.7 in MFଵ; 0.4 in MFଶሻ, ;୧ሺ0.8 in MFଵܣ 0.2 in MFଶሻ,
;୧ሺ0.6 in MFଵܨ 0.3 in MFଶሻ; ୧ܶሺ0.9 in MFଶ; 0.2 in MFଷሻ ൨ 

 

Assigning the corresponding MFs with maximum degree to logical If-Then 

structure constitutes the ith rule candidate as:  

 

݅௧௛ ݁ݐܽ݀݅݀݊ܽܿ ݈݁ݑݎ ՜    ,ଵܨܯ ݏ݅ ௜ܨ ݀݊ܽ ଵܨܯ ݏ݅ ௜ܣ ݀݊ܽ ଵܨܯ ݏ݅ ௜ܲ ܨܫ

 ଶܨܯ ݏ݅ ௜ܶ ܰܧܪܶ    

 

(3) Select one desired rule among conflicting rules: 

Three input structure, P, A, and F with 5, 5 and 6 fuzzy partitions respectively, 

enable 150 (5*5*6) different rule antecedents (IF part of a rule) with logical 'and' 

connections. However, the training data set consists of 101926 observed input-

output pairs leading to a great number of conflicting rules: the rules having same 
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antecedents but different consequents (THEN part of a rule). The traditional 

approach of the original Wang-Mendel method evaluates strength of the each rule 

candidate with multiplying their membership degrees, and then selects a final rule 

having the maximum strength. Since, this approach does not satisfy with our case 

due to high number of the same rule candidates, this step is processed in a 

different way: first, the weighted average of conflicting rule consequents are 

computed using their observed frequencies, then the nearest consequent part to the 

computed weighted average is selected as the final rule. For instance, if three 

different rule consequents are observed with various frequencies as in the 

following example: 

 

IF Pi is MF1and Ai is MF1 and Fi is MF1,  THEN Ti is MF2 ՜ frequency 25 
 THEN Ti is MF3 ՜ frequency 35 
 THEN Ti is MF5 ՜ frequency 20 
 

a final rule consequent (MF label number) can be selected computing their 

weighted average as in the following expression: 

 

݊௪௔ ൌ
ሺ݊ଵ כ ଵ݂ሻ ൅ ሺ݊ଶ כ ଶ݂ሻ ൅ ڮ ൅ ሺ݊௞ כ ௞݂ሻ

ଵ݂ ൅ ଶ݂൅ ڮ ൅ ௞݂
ൌ൐

ሺ2 כ 25ሻ ൅ ሺ3 כ 35ሻ ൅ ሺ5 כ 20ሻ
25 ൅ 35 ൅ 20

؆ 3 

 
where, ݊௞ and ௞݂ represent observed label number of a MF and corresponding 

frequency, and  ݊௪௔ represents the weighted average of the conflicting rule 

consequents. Then, the final statement of the rule in the above example should 

end with MF3, since the computed ݊௪௔ equals approximately 3. 

 

(4) Combine selected fuzzy rules and generate fuzzy rule base: 

This step is the final step of an automated fuzzy rule base learning procedure. 

Steps one through four are automated   with a self-created program written in the 

MATLAB environment. In this step, all single rules, selected in the previous step, 

are combined establishing the initial fuzzy rule base.  

 

(5) Check out fuzzy rule base and make a limited number of changes: 

Approximately 95% of the rule base has been directly generated from numerical 

input-output pairs with the first four steps. Then, non-observed rules are 

extrapolated making an analogy to neighbourhood rules having similar 
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antecedents. Finally, the whole rule base has been checked out logically and a 

limited number of rules (10%) have been changed to improve the generalizability 

of the system. Table 5.2 indicates the latest appearance of the rule base. 

 

Table 5.2. An Appearance From The Constructed Rule Base 

Rule Number Antecedents Consequents 
Rule 1 IF Pi is MF1 and Ai is MF1 and Fi is MF1 THEN Ti is MF3 
Rule 2 IF Pi is MF1 and Ai is MF2 and Fi is MF1 THEN Ti is MF3 
Rule 3 IF Pi is MF1 and Ai is MF3 and Fi is MF1 THEN Ti is MF4 
..... ..... ..... 
Rule 23 IF Pi is MF5 and Ai is MF3 and Fi is MF1 THEN Ti is MF18 
Rule 24 IF Pi is MF5 and Ai is MF4 and Fi is MF1 THEN Ti is MF19 
Rule 25 IF Pi is MF5 and Ai is MF5 and Fi is MF1 THEN Ti is MF20 
..... ..... ..... 
Rule 148 IF Pi is MF5 and Ai is MF3 and Fi is MF6 THEN Ti is MF1 
Rule 149 IF Pi is MF5 and Ai is MF4 and Fi is MF6 THEN Ti is MF1 
Rule 150 IF Pi is MF5 and Ai is MF5 and Fi is MF6 THEN Ti is MF2 

 

After having established the MFs and the rule base, the next step is to select the 

implementation techniques. The implication procedure of the proposed FRBS for both 

training and testing purposes is described in the following steps:   

 

Step 1—Initialization: Initialize data and normalize input-output spaces into 
some appropriate range when it is required. Constitute the knowledge base.  
Step 2—Fuzzification: Compute fuzzy membership degrees of actual inputs 
using corresponding membership functions: crisp into fuzzy values. 
Step 3—Inference: Combine fuzzy sets with logical operators with appropriate 
implication algorithm. Aggregate all outcomes to generate fuzzy output. In this 
step, both of the Max-Min and the Max-Product techniques are tried and the 
Max-Product implication is selected. 
Step 4—Defuzzification: Convert aggregated fuzzy outputs into crisp outputs 
using a defuzzification method. In this step, the Centroid Defuzzification method 
has been selected and implied within various defuzzification techniques. 

 

Graphical interpretation of this procedure is beneficial to understand nature of 

fuzzy trip distribution modelling. The following illustration in Figure 5.4 shows the 

original components and scales of the proposed FRBS design. It produces unconstrained 

trip interactions as output. Before using it for simulation purposes, we had to ensure that 

the results satisfy production and attraction constraints. Therefore, the results of the 

FRBS were adjusted with a row-column balancing process in each simulation of data 

sets. A  numerical example of such balancing process, which is similar to the well-

known  Furness Iterations (1965), can be seen in Ease (1993).  



48
 

 

 
Fi

gu
re

 5
.4

. G
ra

ph
ic

al
 Il

lu
st

ra
tio

n 
O

f T
he

 P
ro

po
se

d 
FR

B
S 

D
es

ig
n 

 

48 



49 
 

5.3. Modelling Trip Distribution with a Genetic Fuzzy Rule-Based 
 System (GFRBS) 
 
 An FRBS to solve trip distribution problem was introduced in the previous 

section. Its rule base was constructed with a mixed procedure including both learning 

from examples and expertise. Here, the rule base of the proposed FRBS is learnt 

completely from examples with the use of GAs. All other components of the proposed 

FRBS remain unchanged . In other words, the proposed GA search for the best 

combination of rule consequents or output MF labels represented with gray circles in 

Figure 5.4. 

 Initially, a Simple GA (Goldberg, 1989) was developed with basic genetic 

operators and binary representation.  However,  due to the large combinatorial search 

space and huge amount of data, the convergence failed, and some additional 

modifications have been introduced to improve performance of the algorithm. Keeping 

the main flow chart and its binary representation, several probabilistic and adaptive 

features were introduced to the genetic operators. The flow chart in Figure 5.5 indicates 

main steps of the proposed GFRBS, fully automated and programmed with MATLAB. 

A brief description of the whole procedure is given afterwards. 

 

 
Figure 5.5. Flow Chart of the Proposed Genetic Algorithm 
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 Initialization: The initial population of the GA consists of randomly generated 

20 binary chromosomes encoding the whole rule set.  The chromosomes have 450 

binary digits where 3 digits were assigned for each of the 150 rule consequents. 

Meaning that a rule can end with one of 8 (23) alternatives. Actually, there are 20 output 

MFs in the proposed FRBS, however, a few of shifting consequents are meaningful for 

each rule antecedents. Eventually, maximum number of alternatives was restricted to 8 

in order to reduce search space and save time.  

 The alternatives were obtained from available knowledge according to the 

conflicting rules of FRBS design. The most frequently observed or most probable 2, 4 

or 8 rule consequents were identified for each rule antecedent and collected in a pool. 

With this rule pool, 45 rules can end with one of 2, 65 rules can end with one of 4, and 

40 rules can end with one of 8 MF alternatives constituting 6.4*1088 (245*465*840) 

possible rule sets. Figure 5.6 shows the whole encoding-decoding strategy including a 

view from the rule base and the rule pool.  

 

 

 
Figure 5.6. Graphical Representation Of Encoding-Decoding Strategy 
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 Evaluation: In the evaluation step, the binary strings were decoded into the rule 

sets to run the FRBS. Then output values of the FRBS for each of the rule set were 

compared with the actual values. The mean square error (MSE) was used as the fitness 

(error) function: 

ܧܵܯ ൌ ∑ ሺ ೔்
బି்೔ሻమಿ

೔సభ
ே

       (5.1) 

 

where,  ܰ is the number of data pairs, ௜ܶ
଴  is the number of observed trips, and T୧  is the 

number of estimated trips. The FRBS estimated trips were also balanced to satisfy the 

constraints before making the comparisons.  

 Reproduction: Generally in GAs, successive generations of the population 

should base on transferring the best chromosomes to  next generation (selection), and 

then improving them with gene exchanges (crossover) and gene alterations (mutation). 

The proposed GA was designed with this three step evolution process described as 

follows: 

• Selection: In this step 'successful' chromosomes, the parents, were copied to a 

mating pool, then selected for crossover and mutation according to some 

measure of their fitness. There are number of ways to choose the parent 

population. A mixed procedure was implemented in order to improve the 

convergence performance: Firstly, a ranking was applied, in which 

chromosomes are ranked and assigned proportions only on their rank orders, not 

on their absolute fitness. Then each mating parents were selected with a biased 

roulette-wheel for recombination. The slots of the wheel was divided according 

to the ranking proportions determined with a power function (see Figure 5.7). 

Apart from these, when generating new populations with genetic selection, 

crossover and mutation operators an elitist strategy was developed. The few best 

chromosomes (10% of  total population) of the former generations were directly 

copied to next generations through genetic operators. This strategy significantly 

improved the GA's performance preventing it from loss of good solutions. 

• Crossover: In the crossover step, new chromosomes (offspring) were created by 

recombining two parent chromosomes with a certain probability (0.8). Classical 

one point or two point crossover were employed to the parent chromosomes with 

equal probability.  In one point crossover, the algorithm chooses a point at 

random, called the crossover point, and exchanges the contents to the right of 
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this point; in two point crossover,  the algorithm chooses  two points, and 

exchanges the contents between these points. Figure 5.7 indicates an illustration 

of adopted crossover technique used in the GA. 

• Mutation: In order to achieve faster results and prevent the algorithm from a 

premature convergence, following two components were introduced to the 

classical mutation operator. First, the assumption of a constant probability of 

mutation in each generation is abandoned in favour of an adaptive one. With 

high mutation probability at the startup, the population attacked to get out of 

from local optima; and with low probability at the end, the population resembled 

each other to find out small improvements. Second, the simple bit-flip mutation 

operator has been replaced with a probabilistic (Poisson distribution) mutation 

operator. This approach is an efficient and time-saving alternative of simple bit-

flip mutation. In this approach, the average number of mutations (λ=72 ) in each 

generation is determined automatically, multiplying the population size (20) , 

chromosome length(450) and mutation probability (0.008). Then number of 

mutations in various generations is determined with a decreasing Poisson 

distribution at the start up. Finally, only in that number of randomly selected bits 

in the whole population is changed (inverted) through the generations. A graph 

that shows mutations through the generations can be seen in Figure 5.7. 

 

 
Figure 5.7. Illustrations Of Crossover, Ranking Probability Function And Number Of 
  Mutations Through The Generations 
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 Termination: Any early stopping of the GA was not seen necessary as the 

termination criteria. We rather limited the evolution of the population up to 250 

maximum generations. 

 With the above procedure, the GFRBS design successfully converged to the best 

solution. Then it was used for simulation purposes with the optimized rule base. Figure 

5.8 indicates its convergence with both of the progress of population average and best 

individual.  

 

 
Figure 5..8. Convergence Of The GFRBS Design 

 

5.4.  Benchmark Models 

 
 The Doubly-Constrained Gravity Model (DCGM), introduced earlier, was 

selected as the first benchmark model. A Neural Network Based Trip Distribution 

Model (NNTDM) was established as the second benchmark. Even though debate 

continues, NNs-based distribution models have a history of successful use, and it is 

appropriate to establish a NNs-based model and compare its overall performance with 

the proposed FRBS and GFRBS designs. The next sections of this paper cover 

calibration, training, and implementation issues for these benchmark models.  
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5.4.1. Doubly-Constraint Gravity Model (DCGM) 

 
 Traditional DCGM calibration process generally involves  the determination of 

the friction function parameter(s) introduced earlier. Many studies have suggested 

statistical or numerical computational procedures to calibrate these friction parameters 

(Hyman, 1969; Wilson, 1970; Evans, 1971; Williams, 1976; Sen and Soot, 1981; Gray 

and Sen, 1983, Dickey, 1983; Sen, 1986). Among these procedures, statistical least 

squares and maximum likelihood approaches, and TLD based numerical approaches are 

reasonably found efficient for our analysis.  

 The regression based techniques and maximum likelihood approaches have 

well-known desirable statistical  properties, and they have consistently been proven the 

calibration abilities. The TLD based numerical approaches have also some advantages, 

especially when a great number of inter-zonal trips are missing as in our case. In these 

cases, a macro level measure of the interactions, such as trip length frequency 

distributions or mean travel cost, would enable a better understanding of the systems' 

behaviour. The selected three principally distinct calibration procedures are listed below 

and described  with specific formulations next. 

 

• The Maximum Likelihood Estimation which maximizes the likelihood function 

of a theoretical poison distribution of interactions and is described in Sen (1986) 

and Fortheringham and O'kelly (1989),   

• The Weighted Least Squares Estimation which is based on the 'odds ratio 

technique' and logarithmic transformation proposed by Sen and Soot (1981) for 

rectangular interaction matrices, 

• The Trip Length Distribution Based Estimation which is based on a line search 

algorithm that minimizes the root mean squared error (RMSE) between 

observed and estimated trip length frequency distributions. 

 

Maximum Likelihood (ML) Estimation:  

ML estimations are widely used in gravity type of model calibrations. The main steps 

involved in the estimation include: (i) identifying a theoretical distribution for the 

interactions, generally a Poisson distribution (Flowerdew and Aitkin, 1982; Sen 1986), 

(ii) maximizing the likelihood function of this distribution, and (iii) then deriving 
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equations that ensure the maximization of the likelihood function with its logarithmic 

transformations (Fortheringham and O'kelly, 1989). The derived ML equation for power 

cost function parameter, say beta (β), is: 

 

∑ ∑ ௜ܶ௝
଴ln ሺܿ௜௝ሻ௝௜ ൌ ∑ ∑ ௜ܶ௝ln ሺܿ௜௝ሻ௝௜       (5.2) 

 

 It is possible to derive the same equation using Wilson's (1970) entropy-

maximizing or Hyman's (1969) Bayesian approaches. The equation can be solved 

iteratively starting with an initial estimate of beta value, β0. Then, the use of DCGM 

equations, initiated in equations 2-17, 2-18 and 2-19, produce an estimated trip matrix. 

The value is then gradually decreased or increased through a convergence that satisfies 

the ML equation 5-2. Hyman's (1969) suggestion for the initial β value, and his second 

order formula for rest of the β values produce rapid convergence to final estimate as: 

 

଴ߚ ൌ 3 ⁄ҧܥ2          (5.3) 

 

ଵߚ ൌ ҧ଴ܥ଴ߚ ⁄ҧܥ         (5.4) 

 

௞ାଵߚ ൌ ሺ஼ҧି஼ҧೖషభሻఉೖି ሺ஼ҧି஼ҧೖሻఉೖషభ
ሺ஼ҧೖି஼ҧೖషభሻ

      (5.5) 

 

where ܥҧ  is the observed mean travel cost and the ܥҧ௞ is the estimated mean travel cost 

using DCGM equations with ߚ௞.   

 

Weighted Least Squares (WLS) Estimation:  

The regression based calibration of spatial interaction models is required a linearized 

model form. The unconstrained models can easily be linearized with logarithmic 

transformations, then the parameter values can be computed with ordinarily least 

squares estimation. Unfortunately, it is a bit more complicated for constrained models. 

The 'odds ratio technique' for calibration of DCGMs provided by Sen and Soot (1981) 

and Gray and Sen (1983) is a valuable contribution at this point.  

 The technique separates the estimation of the friction parameters from the 

calculation of balancing factors, then takes ratios of interactions so that the ܣ௜ ௜ܱ and 
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 ௝ terms in the model can be canceled out (Fortheringham and O'kelly, 1989). With aܦ௝ܤ

power cost function, the equation takes the form of: 

 

   ൫ ௜ܶ௝ ௜ܶ௜⁄ ൯. ൫ ௝ܶ௜ ௝ܶ௝⁄ ൯ ൌ  ൫ܿ௜௝ ܿ௜௜⁄ ൯. ൫ ௝ܿ௜ ௝ܿ௝⁄ ൯ିఉ
     (5.6) 

 

where, with a logarithmic transformation, its linearized form is, 

 

݈݊ ௜ܶ௝ ൅ ݈݊ ௜ܶ௜െ݈݊ ௜ܶ௝ െ ݈݊ ௜ܶ௜ ൌ  െߚሺ݈݊ܿ௜௝ ൅ ݈݊ܿ௜௜െ݈݊ܿ௜௝ െ ݈݊ܿ௜௜ሻ   (5.7) 

 

 Once the β parameter is estimated with ordinarily least squares or weighted least 

squares (WLS) with the weight being ൫ ௜ܶ௝
ିଵ ൅ ௜ܶ௜

ିଵ ൅ ௝ܶ௜
ିଵ ൅ ௝ܶ௝

ିଵ൯ି଴.ହ
 (sen and Soot, 

1981), the balancing factors can easily been computed from the equations 2-18 and 2-

19. However, our data matrices are rectangular and cannot be computed with the above 

equations. Sen and Soot (1981) also proposed an alternative method of transformation 

for equation 5-8, which can also be used in calibrating our matrices. 

 

       ݈݊ ௜ܶ௝ െ ቀଵ
௡

ቁ ∑ ݈݊ ௜ܶ௝ െ௝ ቀ ଵ
௠

ቁ ∑ ݈݊ ௜ܶ௝ ൅ ቀ ଵ
௠௡

ቁ௜ ∑ ∑ ݈݊ ௜ܶ௝௝௜          

             ൌ   െߚ ቂ݈݊ܿ௜௝ െ ቀଵ
௡

ቁ ∑ ݈݊ܿ௜௝ െ௝ ቀ ଵ
௠

ቁ ∑ ݈݊ܿ௜௝ ൅ ቀ ଵ
௠௡

ቁ௜ ∑ ∑ ݈݊ܿ௜௝௝௜ ቃ       (5.8) 

 

 In its application, a weighted least squares estimation technique with the weight 

being ௜ܶ௝
଴.ହ is preferred to exclude the heteroscedastic error terms caused by the 

logarithmic transformations of equation 5-8. 

 

Trip Length Distribution (TLD) Based Estimation:   

Several search procedures are exist, especially for the one-parameter functions 

minimization. However, one of the simplest procedure is to run the model for a wide 

range of β values, and chose the best β value that optimizes a predetermined goodness-

of-fit statistic (Wilson, 1974).  

 The proposed TLD based estimation uses a simple line search algorithm to find 

the best value of β. Firstly, trip matrices are estimated using β values in the search 

interval (0-4), then TLD of these matrices are computed, and finally, observed and 

estimated TLDs are compared with the root mean squared error (RMSE). The β value 
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with the lowest RMSE score determined as the impedance parameter. The RMSEs 

between observed and estimated TLDs are computed as in equation 5.22 which is 

described in goodness-of-fit statistics section. 

 During the calibration process, the use of combined gamma function is not 

concerned. Because Istanbul is a pedestrian oriented city, and the home-based-work 

trips data includes both motorized and pedestrian travels. This situation gives shape to 

the trip length frequency distribution (see Figure 5.3) where the frequencies decrease 

continuously starting from the first time intervals. So, the use of power and exponential 

cost functions other than combined gamma function would produce more appropriate 

distributions.  Including these two cost functions, each of  the three  calibration 

procedures are applied to traditional DCGM initiated in equations 2.17, 2.18 and 2.19. 

All calibration procedures and algorithms are created in MATLAB programming 

environment, and the impedance parameters (say beta) of each procedures are computed 

using the training data set. The computer codes of all calibration procedures can be seen 

in Appendix A. 

 Afterwards, using calibrated impedance parameters, trip matrices of power and 

exponential cost functions are estimated and compared with various goodness-of-fit 

statistics (see the statistics in section 5.5). The overall results with training data set show 

that the use of power cost function produces considerably more  accurate estimations for 

the Istanbul case. The results for both parameter estimates and related goodness-fit-

statistics are shown numerically in Table 5.3. The changes in DCGM performance with 

respect to various parameter values are shown visually in Figures 5.9 and 5.10.  

 
Table 5.3. DCGM Parameter Estimates and Related Goodness of Fit Statistics for 
 Training Data Set 

DCGM 
Calibration 
Procedure B
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Power Cost Function 
ML Est. -1.94 4.17 0.85 0.99 0.17 0.94 -2.77 0.10 0.10 9.46 

WLS Est. -2.05 4.16 0.86 0.94 0.17 0.96 -1.65 0.18 0.14 8.92 

TLD Based Est. -1.84 4.29 0.85 1.06 0.18 0.93 -4.18 0.07 0.07 10.56 

Exponential Cost Function 
ML Est. -0.12 6.78 0.64 1.15 0.45 1.18 0.17 0.62 0.48 0.77 

WLS Est. -0.21 5.94 0.72 0.88 0.34 1.49 4.45 0.45 0.35 0.91 

TLD Based Est. -0.31 6.12 0.76 0.76 0.36 2.11 6.45 0.40 0.30 0.94 
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Figure 5.9.  Changes in DCGM Performance Against Various Impedance Parameter 
  Values: Measure for The Power Cost Function on Training Data Set 

 
 
 

 

 
Figure 5.10. Changes in DCGM Performance Against Various Impedance Parameter 
 Values: Measure for The Exponential Cost Function on Training Data Set 
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5.4.2. Neural Networks Based Trip Distribution Model (NNTDM) 

 
 The natural structure of  NN based spatial interaction models involves three 

inputs (production, attraction and friction) and one output (interactions) as in traditional 

spatial interaction problem. Also called as "Neural Spatial Interaction Models" (see 

Fischer, 2001; 2009), they are more closely related to conventional spatial interaction 

models then they are to neurobiological models (Fischer, 2003).  There are many types 

of NN models with various functionality and architecture. However, the subject of the 

past studies mentioned earlier and this paper also is a multilayer feed-forward network 

with (error) back-propagation training algorithm.  

 A multilayer feed-forward network generally consists of one input, one or more 

hidden and one output layers, where all the neurons in the layers transfer the 

information through only the neurons in the next layer. The weights, assigned to the 

links between neurons, are adjusted to minimize the mean square error between the 

networks' output values and actual target values in an iterative manner. This process is 

also a supervised learning process, generally adopted with a gradient descent method, 

the so-called (error) back-propagation training algorithm (see Rumelhart et.al.,1986).  

 A general illustration of a Neural Network based Trip Distribution Model 

(NNTDM), which is also used in this study, is presented at Figure 5.11. The number of 

neurons in the hidden layers, the number of hidden layers, type of transfer functions and 

learning algorithms as well as the number of inputs can be changed for the proper use. 

A brief explanation of the mathematical procedure for this three-layer feed-forward 

back-propagation network is given with mathematical expressions as follows. Please see 

in depth theoretical explanations in Munakata (2008) and Haykin (1999).  

 Each neurons in the proposed network (Figure 5.11) are composed of two units. 

The first unit evaluates the weighted sum of input signals, and the second unit transfers 

this weighted sum through the next layer. The most widely used transfer functions are 

sigmoidal functions, which also ensure the non-linear mapping of the network. With a 

logistic sigmoid activation functions in the hidden and output layers, the network 

outputs can be computed as following: 

 

௝ܪ ൌ 1
1 ൅ ݁ିሺ∑ ௐ೔ೕ௑೔ሻൗ       (5.9) 
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Figure 5.11.  An Illustration of NN based Trip Distribution Model: A Three-Layer 
 Feed-Forward Neural Network with Error Back-Propagation 
 

where, ௜ܺ   is the ith element of the input vector, ௜ܹ௝    is the weight associated with the 

input and hidden layer neurons, ܪ௝ is the output signal of jth neuron at hidden layer, and, 

 

௞ܻ ൌ 1
1 ൅ ݁ିሺ∑ ௐೕೖுೕሻൗ        (5.10) 

 

where, ௝ܹ௞  is the weight associated with hidden and output layer neurons, ௞ܻ  is the 

output signal of kth neuron at output layer, which stands for "interactions" for this 

network. Note that there is an additional (imaginary - bias) neuron in each of the input 

and hidden layers, which accelerates the network's learning. These neurons are 

generally set as to 1, and are computed as other neurons in the related layers. If the 

optimal values of weights are already known, the network is ready to use for modeling 

purposes. If not, it is needed to train the network and adjust weights to minimize the 

error between observed and modeled outputs.  Overall error, E, is usually computed as, 

 

ܧ ൌ 1
2ൗ ෌ ሺ ௞ܶ െ ௞ܻሻଶ

ே      (5.11) 
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where, ௞ܶ stands for the target (desired) values, ௞ܻ stands for the network produced 

output values introduced earlier and N stands for the number of examples in the pattern. 

The changes in the weights are inversely proportional to the derivative of the error with 

respect to the weights, and can be adjusted using a recursive algorithm starting from the 

output nodes as,  

 

ܹ′௝௞ ൌ ௝ܹ௞ ൅  ௝      (5.12)ܪ௞ߜߟ

 

ܹ′௜௝ ൌ ௜ܹ௝ ൅ ௝ߜߟ ௜ܺ      (5.13) 

 

where, 
௞ߜ ൌ ௞ܻሺ1 െ ௞ܻሻሺ ௞ܶ െ ௞ܻሻ     (5.14) 

 

௝ߜ ൌ ௝൫1ܪ െ ௝൯ܪ ∑ ௞ߜ ௝ܹ௞     (5.15) 

 

where, ܹ′௝௞ is the new weight associated with the hidden and output layers, ܹ′௜௝ is the 

new weight  associated with the input and hidden layers, η is a constant, also known as 

learning rate usually set between 0 and 1, and ߜ௞ and ߜ௝ are the error terms changeable 

with the selected type of transfer functions. 

 Defining the variables and the main architecture of the network is the first step 

of the NNs modelling. The other steps include, developing a strategy to avoid over-

training (where the network learns incorrect information/noise, instead of the general 

pattern), and selecting appropriate training styles, activation functions, learning 

algorithms and parameter values.  

 In order to prevent the network from over-training and obtain the best 

generalization performance, the training data set further separated randomly into two: 

80% for training the network, and 20% for cross-validation. As in common practice 

other network configuration and training issues are proceeded by trial and error 

selection. All the process is realized in Matlab environment using The Neural Network 

Toolbox (see Appendix A). Use of this toolbox and required explanations can be seen in 

Demuth et.al (2009). Table 5.4 indicates the experimented and selected cases for 

network training and Figure 5.12 shows the convergence of the network with the 

Levenberg-Marquardt learning algorithm. 
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 The trained network is then used to simulate data sets and to produce 

unconstrained trip interactions.   Finally, a balancing process was applied to predicted 

flows as in FRBS design in order to satisfy the origin-destination constraints.  

 

Table 5.4. NNTDM Implementation Issues: Experimented and Selected Cases 
Implementation Issues Experimented Cases Selected Cases 

Normalization Technique • Z-score Normalization 
• Min-Max Normalization • Min-Max Normalization 

Number of Hidden Layer 

Neurons 
• 3-6-9-12-15 
• 20-25-30-40 • 9 

Activation Function of  

Hidden Layer 
• Hyperbolic Tangent Function 
• Logistic Sigmoid Function • Logistic Sigmoid 

Activation Function of  

Output Layer 

• Hyperbolic Tangent Function 
• Logistic Sigmoid Function 
• Linear Function 

• Logistic Sigmoid 

Training Style • Batch Training 
• Incremental Training • Batch Training 

Learning Algorithm 
• Gradient Descent with Learning Rate 
• Gradient Descent with Adaptive  

Learning Rate and Momentum Term 
• Levenberg-Marquardt 

• Levenberg-Marquardt 

Performance Measure • Mean Squared / Absolute Error  
• r square 

• Mean Squared Error 
• r square 

Termination Criteria • Maximum Epochs 
• Validation Performance • Validation Performance 

 

 

 
Figure 5.12. NNTDM Back-Propagation Training With Levenberg-Marquardt Learning 
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5.5. Performance Measures and Goodness-of-Fit Statistics  

 
 A spatial interaction model generally tries to identify any system characteristics 

from observed flows.  As being the main prerequisite, a good estimate of observed 

flows also increases the generalizability of the model and intensifies the theoretical 

assumptions. Thus, over the years, various goodness-of-fit statistics have been proposed 

to measure the accuracy of models' estimations.  

 Commonly, a goodness-of-fit statistic is a quantitative description of some 

aspect of the difference between observed and estimated values. Especially in spatial 

interaction and trip distribution modelling, the used statistics can be classified into four 

main groups as: (i) general distance statistics such as standardized root mean squared 

error and index of dissimilarity, (ii) information based statistics such as information 

gain, phi statistic and psi statistic, iii) traditional statistics such as regression statistics (r 

square, slope and intercept) and Pearson Chi-square, and iv) log-likelihood statistics. 

(Fotheringham and Knudsen;1987).  In addition to these, goodness-of-fit measures of 

trip distribution modelling can be classified into two levels: micro and macro. The first 

one is based on the entry by entry comparison of flows with one of the above mentioned 

statistics. The second one is based on the similarity comparison of certain macro 

characteristics such as the trip length distributions and mean travel costs of trip 

matrices. (Smith and Hutchinson;1981). 

 For the purpose of performance measure and model evaluation in this analysis, 

several different goodness-of-fit statistics are selected at both micro and macro levels of 

measure. Among the nine selected statistics having all different properties, five of them 

measures entry by entry micro level performance: (i) Standardized Root Mean Squared 

Error (SRMSE), (ii) Coefficient of Determination (r square), (iii) The Regression Slope 

(Slope), (iv) Average Relative Variance (ARV), (v) The Phi Statistic (Phi), and four of 

them measures some of macro level performance: (vi) Mean Travel Cost Error (MTCE), 

(vii) Trip Length Distribution Root Mean Squared Error (TLD RMSE), (viii) Trip 

Length Distribution Average Relative Absolute Error for the First Five Interval (TLD 

ARAE F5), (ix) Trip Length Distribution Average Relative Absolute Error for the Last 

Five Interval   (TLD ARAE L5). Each of these statistics is described in turn at following 

sections. Further reviews can be found in the works by Smith and Hutchinson (1981), 

Knudsen and Fotheringham (1986) and  Fotheringham and Knudsen (1987).  
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5.4.1. Micro Level Statistics 

 
Description of Mathematical Notations:  

௜ܶ௝
଴    is the number of  observed trips from zone i to zone j, 

T୧୨   is the number of estimated trips from zone i to zone j, 

തܶ ଴   is the mean of the observed trips 
തܶ    is the mean of the estimated trips 

 is the number of origins    ܫ

 is the number of destinations    ܬ

 ොଶ   is the variance of observed tripsߪ

∑ ܶ଴  is the total number of observed trips 

∑ ܶ  is the total number of estimated trips 

  ௜௝  is the travel cost/time between origin i and destination jܥ

௜ܨ
଴    is the observed trip length frequency percentage for the ith time interval    

    ௜    is the estimated trip length frequency percentage for the ith time intervalܨ

݊   is the number of time intervals associated with trip length frequencies 

 is the friction parameter for DCGM  ߚ

 ҧ   is the observed mean travel costܥ

   ௞ߚ ҧ௞   is the estimated mean travel cost usingܥ

 

Standardized Root Mean Squared Error (SRMSE):  SRMSE is one of the most accurate 

comparative measure of model performances (see  Knudsen and Fotheringham, 1986). 

It is a measure of micro level dissimilarities and it has a lower limit of 0 and upper limit 

of 1.  

 

ܧܵܯܴܵ ൌ ට∑ ሺ ೔்ೕ
బି்೔ೕሻమ೔ೕ

ூ௫௃
  

∑ ሺ ೔்ೕ
బሻ೔ೕ

ூ௫௃
൘      (5.16) 

 

 However, SRMSE values can be greater than this upper limit if the computed 

average error is greater than the mean. In our case, the latter is valid, thus, a smaller 

value of SRMSE statistic indicates the more accurate set of estimations.  
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Coefficient of Determination (r square): Coefficient of determination is the most widely 

used measure of model performance with well known statistical properties. It is a 

measure of linear association between observed and estimated values. Its range is 

between 0 and 1, where the value of 1 indicates a perfect correspondence.   

  

ଶݎ ൌ 1 െ
∑ ሺ ೔்ೕ

బି்೔ೕሻమ
೔ೕ

∑ ሺ ೔்ೕ
బି ത்బሻమ೔ೕ

       (5.17) 

 

 Several studies have also showed the error insensitivity of r square statistic in 

some specific cases (see Smith and Hutchinson, 1981; Knudsen and 

Fotheringham,1986;  Fotheringham and Knudsen; 1987). Therefore, the interpretation 

of r square measures should be made cautiously.   

 

The Regression Slope (Slope): Another comparison of model fits can be made with the 

use of linear regression parameters. Plotting the observed values, ݔ௜, against the 

estimated values, ݕ௜, and to fit a straight line between them with least squares estimate, 

௜ݕ ൌ ݐ݌݁ܿݎ݁ݐ݊݅ ൅  ௜ሻ, give useful statistics for performance measure. Theݔሺ݁݌݋݈ݏ

intercept should be zero and the slope should be 1 for a perfect fit and the deviation 

from these values shows worsening fit of the model (Wilson, 1974).   

  

݁݌݋݈ܵ  ൌ
∑ ሺ ೔்ೕ

బି ത்బሻሺ்೔ೕି ത்ሻ೔ೕ

∑ ሺ ೔்ೕ
బି ത்బሻమ೔ೕ

       (5.8) 

 

 The intercept and the slope statistics are highly correlated. Therefore, the use of 

slope is found sufficient for performance measure. As emphasized in Fotheringham and 

Knudsen (1987): if the slope is less than 1, large values tend to be under predicted and 

small values over predicted, and if the slope is greater than 1, large values tend to be 

over predicted and small values under predicted.    

 

Average Relative Variance (ARV):  ARV is a measure of normalized mean squared 

error that is used widely in NNs literature (see Fischer and Gopal,1994; Fischer et.al., 

2003). It is similar and highly correlated with the SRMSE statistic.  

 

ܸܴܣ ൌ ଵ
ఙෝమ  ଵ

ூ௫௃
∑ ሺ ௜ܶ௝

଴ െ ௜ܶ௝ሻଶ
௜௝      (5.19) 



66 
 

 

 It has a lower limit of 0 and upper limit of 1. However, as in SRMSE values, it 

can be greater than 1, when the computed average error is greater than the mean. In this 

situation, a smaller value of ARV statistic indicates more accurate fit. 

 

The Phi Statistic (Phi): The Phi statistic is similar to information gain statistic. The 

larger the value of Phi statistic the poorer the model fit. Its usage in spatial interaction 

and trip distribution modelling is reviewed and proposed in the works of Smith and 

Hutchinson (1981), Knudsen and Fotheringham (1986). 

 

݄ܲ݅ ൌ ∑ ೔்ೕ
బ

∑ ்బ௜௝ ฬln ൬ ೔்ೕ
బ

்೔ೕ
൰ฬ      (5.20) 

 

 One of the main handicap of the Phi statistic is its sensitivity to zero entries. If 

necessary this problem can be solved with substituting a small non-zero elements to 

these entries. 

 

5.4.2. Macro level Statistics 

 
Mean Travel Cost Error (MTCE): MTCE is a macro level of performance measure in 

trip distribution modelling. It is additionally  in use as a standard calibration procedure 

for years (see Hyman,1969 for instance).  

 

ܧܥܶܯ ൌ ൬
∑ ሺ ೔்ೕ

బ஼೔ೕሻ೔ೕ

∑ ்బ ൰ െ ቀ
∑ ሺ்೔ೕ஼೔ೕሻ೔ೕ

∑ ்
ቁ      (5.21) 

 

 If the deviation (negative or positive) from observed mean travel cost is larger, 

so the error in estimated friction factors are larger.  

 

Trip Length Distribution Root Mean Squared Error (TLD RMSE): TLD based measure 

is also a macro level of measure for trip distribution modelling., and in use for years 

both in calibration (see Dickey,1983; TRB,1998 for some different applications) and the 

model evaluation phases. Simply a TLDE RMSE measures the root mean squared 
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differences between observed and estimated trip length frequency distributions 

associated with usually time intervals. 

 

ܧܵܯܴ ܦܮܶ ൌ ට∑ ሺி೔
బିி೔ሻమ೙

೔సభ
௡

       (5.22) 

 

 The larger value of TLDE RMSE indicates higher error between observed and 

estimated TLDs.    

 

Trip Length Distribution Average Relative Absolute Error for the First Five Interval         

(TLD ARAE F5): Average Relative Absolute Error (ARAE) is a useful statistic when it 

is preferred to measure the proportion of errors rather than magnitudes. It can also be 

used in entry by entry measures (see Roy, 2004), however, in our case, it is a measure of 

proportional errors between the observed and estimated trip length frequencies for the 

first five time intervals.  

 

5ܨ ܧܣܴܣ ܦܮܶ ൌ ଵ
௡

∑ ൫หܨ௜
଴ െ ௜หܨ ௜ܨ

଴ൗ ൯௡
௜ୀଵ      (5.23) 

 

 Its usage could be effective where especially searching out the relative errors 

related with short trips. When having a perfect fit of the observed and the estimated first 

five trip length frequencies, the TLD ARAE F5 is zero. But considering its upper level, 

its value has no restriction. 

 

Trip Length Distribution Average Relative Absolute Error for the Last Five Interval   

(TLD ARAE L5): TLD ARAE L5 is a similar performance measure with the previously 

described TLD ARAE F5. The only difference is, it searches the relative errors in 

estimating trips with long travel times.  

 

5ܮ ܧܣܴܣ ܦܮܶ ൌ ଵ
௡ିሺ௡ିହሻ

∑ ൫หܨ௜
଴ െ ௜หܨ ௜ܨ

଴ൗ ൯௡
௜ୀሺ௡ିହሻ    (5.24) 

  

It measures proportional errors between the observed and the estimated trip length 

frequencies for the last five time intervals and it has a negative correlation with TLD 

RMSE and TLD ARAE F5. 
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CHAPTER 6 

 

RESULTS 

 
 This chapter presents goodness-of-fit statistics of the previously introduced trip 

distribution models: a Doubly-Constrained Gravity Model with Maximum Likelihood 

(DCGM ML) estimation, a Doubly-Constrained Gravity Model with Weighted Least 

Squares (DCGM WLS) estimation, a Doubly-Constrained Gravity Model with Trip 

Length Distribution (DCGM TLD) based estimation, a Neural Network based Trip 

Distribution Model (NNTDM), a Fuzzy Rule-Based System (FRBS) design and a 

Genetic Fuzzy Rule-Based System (FRBS) design.  

 All the models have simulated for each of the training, testing and whole data 

sets. Their performances in each case have measured with various goodness-of fit 

statistics. Five of the statistics measure entry by entry, micro level performance: i) 

Standardized Root Mean Squared Error (SRMSE), ii) Coefficient of Determination (r 

square), iii) The Regression Slope (Slope), iv) Average Relative Variance (ARV), v) 

The Phi Statistic (Phi), and four of them measure some of macro level performance: vi) 

Mean Travel Cost Error (MTCE), vii) Trip Length Distribution Root Mean Squared 

Error (TLD RMSE), viii) Trip Length Distribution Average Relative Absolute Error for 

the First Five Interval (TLD ARAE F5), ix) Trip Length Distribution Average Relative 

Absolute Error for the Last Five Interval  (TLD ARAE L5). Finally, the performance of 

the models further measured with respect to the results of district-based aggregation and 

trip shares such as among intra-zonal vs. inter-zonal, intra-district vs. inter-district trips.  

 

6.1. Training Results 

 
 The training results reported in Table 6.1. show the learning capacity of the 

implemented trip distribution models. As an overall evaluation, it can be stated that the 

GFRBS design demonstrates a certain superiority for almost all goodness-of-fit 

statistics. It has showed a considerably good performance especially with having 3.42 

SRMSE, 0.90 r square and 0.07 TLD RMSE scores. The DCGMs and FRBS design 

follow the GFRBS design with respect to their modelling performances. Their statistics 
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are close to each other and they all have produced fair predictions having a 0.85 or more 

r square scores. Especially, the DCGM ML estimation is good at both micro and macro 

level statistics, whereas the DCGM WLS estimation is good at micro level, and the 

DCGM TLD based estimation is good at macro level statistics. The FRBS design 

achieved better results when the micro level statistics are taken into account. It has the 

second best scores of SRMSE and r square with 4.10 and 0.87, but the second worst 

scores with the MTCE and TLD RMSE with -4.29 and 0.11. Finally, the NNTDM has 

obtained unexpected results in the training phase especially with the lowest SRMSE and 

r square scores. The reason for that can be one of its implementation procedures that the 

NNTDM was subjected to a row-column balancing, and it was stopped to train before a 

possible over-training problem. 

 Apart from these, as it is indicated with the graphical analysis of the TLDs 

(Figures 6.1 - 6.6), all the models have captured the general trend of the observed TLD, 

except for the DCGM WLS estimation. Especially,  GFRBS design and DCGM TLD 

based estimation have caught nearly a perfect fit to the observed TLD.  Additionally, 

when the regression plots of the models (Figures 6.7 - 6.12) are analyzed, it can be said 

that: all the models have showed a little tendency to under predict larger flows and over 

predict smaller flows. It can be explained with general structure of the observed flow 

matrix that is mostly involved small amount of flows. The GFRBS design and the 

DCGM WLS estimation is still successful in this respect. They have produced 

considerably good predictions with a slope score that is close to unity.   

 

Table 6.1. Model Results: Goodness-of-Fit Statistics for Training Data Set 
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DCGM ML Est. 4.17 0.86 0.86 0.17 0.94 -2.77 0.10 0.10 9.46 

DCGM WLS Est. 4.16 0.86 0.92 0.17 0.96 -1.65 0.18 0.14 8.92 

DCGM TLD Based Est. 4.29 0.85 0.80 0.18 0.93 -4.18 0.07 0.07 10.56 

NNTDM 4.75 0.82 0.74 0.22 1.00 -4.14 0.11 0.10 7.5 

FRBS Design 4.10 0.87 0.79 0.16 1.00 -4.29 0.11 0.10 11.03 

GFRBS Design 3.42 0.90 0.92 0.11 0.92 -1.07 0.07 0.06 10.58 
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Figure 6.1. TLD Comparison - DCGM ML Estimation on Training Data Set 

 

 
Figure 6.2. TLD Comparison - DCGM WLS Estimation on Training Data Set 

 

 
Figure 6.3. TLD Comparison - DCGM TLD Based Estimation on Training Data Set 
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Figure 6.4. TLD Comparison - NNTDM on Training Data Set 

 

 
Figure 6.5. TLD Comparison - FRBS Design on Training Data Set 

 

 
Figure 6.6. TLD Comparison - GFRBS Design on Training Data Set  
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Figure 6.7. Regression Plots - DCGM ML Estimation on Training Data Set 

 

 
Figure 6.8. Regression Plots - DCGM WLS Estimation on Training Data Set 

 

  
Figure 6.9. Regression Plots - DCGM TLD Based Estimation on Training Data Set 
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Figure 6.10. Regression Plots - NNTDM on Training Data Set 

 

 
Figure 6.11. Regression Plots - FRBS Design on Training Data Set 

 

 
Figure 6.12. Regression Plots - GFRBS Design on Training Data Set 
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6.2. Testing Results 

 
 The testing results of the models are more important than the training results. 

They represent predictive ability of the models better, and give an idea about trained 

models generalizability performance. According to the testing scores (Table 6.2), the 

GFRBS design outperforms all other models in almost every statistics except for the 

regression slope and phi statistic. In comparison to the training results, the GFRBS 

design have recorded a small decrease in SRMSE (3.91)  and  r square (0.81) scores, 

whereas an increase in MTCE (-0.85) and TLD RMSE (0.05) scores.  This is a desired 

and expected situation that the GFRBS design have successfully learnt macro behaviour 

of the  analyzed system. A similar observation is valid for the FRBS design. On the 

contrary to training, FRBS design have showed a better performance than DCGMs in 

testing case. FRBS design has achieved the second best performance with respect to the 

three important statistics SRMSE (4.15), r square (0.78) and TLD RMSE (0.10) scores. 

Apart from these, it can be said that the DCGM ML and DCGM TLD based estimations 

have preserved their performance and produced fairly good predictions. However, the  

DCGM WLS estimation has got worse especially when its TLD RMSE score is taken 

into account. The NNTDM model catch up with the other models a little. Its SRMSE 

score in testing has decreased to 4.42 from 4.75 and its TLD RMSE score has remained 

nearly the same. This is meaningful that the over-training strategy has worked well with 

NNTDM. The visual analysis of the TLD comparisons and the regression plots of the 

testing case follow approximately the same pattern of the training estimations. The 

following figures from Figure 6.13 to Figure 6.24 presents visual comparison of results. 

 

Table 6.2. Model Results: Goodness-of-Fit Statistics for Testing Data Set 
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DCGM ML Est. 4.25 0.78 0.86 0.19 0.94 -2.89 0.15 0.12 11.51 

DCGM WLS Est. 4.34 0.78 0.92 0.20 0.97 -1.71 0.22 0.15 10.90 

DCGM TLD Based Est. 4.27 0.77 0.79 0.19 0.93 -4.39 0.11 0.09 12.74 

NNTDM 4.42 0.75 0.69 0.20 1.00 -4.19 0.12 0.11 4.25 

FRBS Design 4.15 0.78 0.75 0.18 1.02 -4.25 0.10 0.08 18.02 

GFRBS Design 3.91 0.81 0.86 0.16 0.97 -0.85 0.05 0.02 11.03 
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Figure 6.13. TLD Comparison - DCGM ML Estimation on Testing Data Set 

 

 
Figure 6.14. TLD Comparison - DCGM WLS Estimation on Testing Data Set 

 

 
Figure 6.15. TLD Comparison - DCGM TLD Based Estimation on Testing Data Set 
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Figure 6.16. TLD Comparison - NNTDM on Testing Data Set 

 

 
Figure 6.17. TLD Comparison - FRBS Design on Testing Data Set 

 

 
Figure 6.18. TLD Comparison - GFRBS Design on Testing Data Set 
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Figure 6.19. Regression Plots - DCGM ML Estimation on Testing Data Set 

 

 
Figure 6.20. Regression Plots - DCGM WLS Estimation on Testing Data Set 

 

 
Figure 6.21. Regression Plots - DCGM TLD Based Estimation on Testing Data Set 
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Figure 6.22. Regression Plots - NNTDM on Testing Data Set 

 

 
Figure 6.23. Regression Plots - FRBS Design on Testing Data Set 

 

 
Figure 6.24. Regression Plots - GFRBS Design on Testing Data Set 
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6.3. Overall Results 
 

 The GFRBS design has achieved the best scores in almost all goodness-of-fit 

statistics, when the models are simulated with the whole data set. It has gained a 4.30 

SRMSE, 0.82 r square and 0.08 TLD RMSE score that is consistent with the training 

and the testing cases. FRBS design has  showed the second best  performance in whole 

data simulation, especially with the 4.56 SRMSE, 0.79 r square and 0.09 TLD RMSE 

scores. DCGM ML and DCGM TLD based estimation has followed the FRBS design 

with a nearby performance and fairly good predictions. DCGM WLS estimation has 

showed a worsening performance in whole data simulation. On the contrary to the 

training and testing, its performance is poorer than the NNTDM with the worst TLD 

RMSE (0.26) and SRMSE (5.10) scores. Table 6.3 indicates the goodness-of fit 

statistics for the whole data set model simulations. 

 As it is indicated from the visual analysis of the TLDs (Figures 6.25 - 6.30), all 

the models have captured the general trend of the observed TLD, except for the DCGM 

WLS and DCGM ML estimations. Especially,  the GFRBS and the FRBS designs have 

caught an outstanding fit to the observed TLD.  Similar with the  training case, all the 

models have showed a little tendency to under predict larger flows and over predict 

smaller flows as it can be seen in Figures 6.31-6.36. It can be explained with the 

structure of the observed trip matrix that is dominated with the small amount of flows. 

The DCGM WLS estimation and the GFRBS design are the most successful in this  

respect with 0.94 and 0.87 slope scores.  

 

Table 6.3. Model Results: Goodness-of-Fit Statistics for the Whole Data Set 

Trip 
Distribution 

Models SR
M

SE
 

r 
sq

ua
re

 

Sl
op

e 

A
R

V
 

Ph
i  

St
at

is
tic

 

M
T

C
E

 

T
L

D
 

R
M

SE
 

A
R

A
E

 
T

L
D

 F
5 

A
R

A
E

 
T

L
D

 L
5 

DCGM ML Est. 4.88 0.77 0.87 0.23 0.97 -2.68 0.17 0.13 10.40 

DCGM WLS Est. 5.10 0.77 0.94 0.26 1.00 -1.44 0.26 0.18 9.80 

DCGM TLD Based Est. 4.82 0.77 0.79 0.23 0.96 -4.33 0.11 0.10 11.76 

NNTDM 5.02 0.75 0.71 0.25 1.07 -4.30 0.13 0.14 5.91 

FRBS Design 4.56 0.79 0.75 0.21 1.02 -3.19 0.09 0.07 13.65 

GFRBS Design 4.30 0.82 0.88 0.19 0.96 -0.33 0.08 0.07 10.59 
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Figure 6.25. TLD Comparison - DCGM ML Estimation on Whole Data Set 

 

 
Figure 6.26. TLD Comparison - DCGM WLS Estimation on Whole Data Set 

 

 
Figure 6.27. TLD Comparison - DCGM TLD Based Estimation on Whole Data Set  
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Figure 6.28. TLD Comparison - NNTDM on Whole Data Set 

 

 
Figure 6.29. TLD Comparison - FRBS Design on Whole Data Set  

 

 
Figure 6.30. TLD Comparison - GFRBS Design on Whole Data Set 



82 
 

 
Figure 6.31. Regression Plots - DCGM ML Estimation on Whole Data Set 

 

 
Figure 6.32. Regression Plots - DCGM ML Estimation on Whole Data Set  

 

 
Figure 6.33. Regression Plots - DCGM TLD Based Estimation on Whole Data Set 
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Figure 6.34. Regression Plots - NNTDM on Whole Data Set 

 

 
Figure 6.35. Regression Plots - FRBS Design on Whole Data Set 

 

 
Figure 6.36. Regression Plots - GFRBS Design on Whole Data Set 
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 As it can be observed in the majority of previous cases, the proposed GFRBS 

design have produced superior predictions. The FRBS design, the DCGM TLD based 

estimation and  the DCGM ML estimation in turn have followed the GFRBS design. 

They have also achieved high level of accuracy and good level of generalizability after 

the GFRBS design. The DCGM WLS estimation and the NNTDM have not showed the 

expected performance. Especially, the performance of the DCGM WLS estimation has 

decreased within the testing and the whole data set simulations. 

 The performance of the models is further tested with a district-based aggregation 

of trip interchanges. All of the model results for traffic analysis zones were aggregated 

within the corresponding 31 districts in Istanbul Metropolitan Area. Then observed and 

predicted flows for the districts compared using three micro level goodness-of-statistics 

as shown in Table 6.4. The GFRBS design has outperformed the other models as in  

previous cases. In general all the models have achieved good results with having at least 

0.92 r square score in district-based measure. 

 

Table 6.4.  Model Results: District-Based Goodness-of-Fit Statistics 
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SRMSE 0.78 0.72 0.88 1.04 0.86 0.63 

r square 0.95 0.95 0.94 0.92 0.95 0.97 

Slope 1.08 1.05 1.15 1.18 1.14 1.05 

 
  

 Finally, the spatial distribution of modelled trip interchanges have further 

measured with a trip share comparison. Observed and modelled trip shares among intra-

zonal vs. inter-zonal, intra-district vs. inter-district and bridge crossing vs. not bridge 

crossing trips has measured. The results of this measure is indicated in Table 6.5. Nearly 

all the models have successfully estimated trip shares approximately with 10-15% error 

in most of the cases. Surprisingly, the  DCGM WLS estimation has outperformed the 

other models. We had mandatorily seeded the trip matrix with a very small number 

before calibrating DCGM WLS estimation. Spatial distribution of the modelled trip 

interchanges could be affected from this implementation leading to a better performance 

of the model with respect to trip shares. 
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Table 6.5. Observed and modelled trip shares: intra-zonal vs. inter-zonal, intra-district 
 vs. inter-district and bridge crossing vs. not bridge crossing trips 
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Intra-Zonal 24.5% 24.3% 27.0% 21.4% 18.6% 18.5% 21.7% 

Percentage Error ----- -1.1% +9.8% -12.9% -24.1% -24.4% -11.8% 

Inter-Zonal 75.5% 75.7% 73.0% 78.6% 81.4% 81.5% 78.3% 

Percentage Error ----- +0.3% -3.2% +4.2% +7.8% +7.9% +3.8% 

Intra-District 47.2% 42.7% 45.7% 39.4% 38.8% 38.5% 42.7% 

Percentage Error ----- -9.44 -3.20 -16.55 -17.78 -18.47 -9.39 

Inter-District 52.8% 57.3% 54.3% 60.6% 61.2% 61.5% 57.3% 

Percentage Error ----- 8.43 2.86 14.78 15.88 16.49 8.39 

Bridge Crossing 6.8% 8.2% 7.4% 9.2% 10.5% 7.7% 5.7% 

Percentage Error ----- +20.4% +8.6% +34.4% +53.1% +12.1% -15.8% 

Not Bridge Crossing 93.2% 91.8% 92.6% 90.8% 89.5% 92.3% 94.3% 

Percentage Error ----- -1.5% -0.6% -2.5% -3.8% -0.9% +1.2% 
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CHAPTER 7 
 

CONCLUSION 

 
 The general purpose of this study was to set out a fuzzy and a genetic fuzzy 

system to estimate intra-city passenger flows, thus, to contribute to the literature 

representing their potential use in trip distribution modelling. For this purpose, a simple 

Mamdani-type FRBS was developed to estimate trip interchanges in Istanbul 

Metropolitan Area. Its rule base and fuzzy partitions were constructed with a mixed 

procedure including both learning from examples and expertise. Aggregate variables of 

the traditional trip distribution problem (production, attraction and friction) were used 

as inputs. Afterwards, the rule base of the proposed FRBS was further improved with a 

novel GFRBS design. The rule base learning process in GFRBS design was shifted to a 

combinatorial optimization problem and solved with a probabilistic and adaptive 

genetic algorithm. Both of the two model outputs was enforced to satisfy production 

and attraction constraints giving access to use of them as a part of sequential travel 

demand modelling.   

 The performance of the proposed models was evaluated comparatively with 

respect to the benchmark models: a traditional doubly-constrained gravity model and a 

multilayer feed-forward neural network. Various goodness-of-fit statistics were used in 

the performance evaluation. According to the results achieved, a straightforward 

consequence is that the FRBSs and the GFRBSs can be used in predicting intra-city 

passenger flows with high level of accuracy. 

 The present study has also examined the proposed and the benchmark models in 

many respects and achieved a plenty of empirical results. Additionally, all the models 

have evaluated according to their simplicity, predictive ability, interpretability, 

flexibility, data dependency etc. in trip distribution modelling. The following statements 

below, briefly demonstrate findings of the empirical analysis, and Table 7.1 summarizes 

evaluation of the main characteristics of the models for a doubly-constrained case: 

 

i. traditional doubly-constrained gravity models are still simple and efficient;  they 

are steady and strong, yet they suffer from one-parameter generalization; they 
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should be tried first in almost every case, at least for a comparison; they offer 

better predictions with maximum likelihood or TLD based parameter estimation.  

ii. neural networks may not show expected performance if they are forced to satisfy 

production-attraction constraints; they are unsteady, non-interpretable and 

case/data dependent; its equation-free structure and potential usage with 

additional inputs provide an outstanding advantage. 

iii. simply-designed FRBSs, learning from numerical data and expertise, are both 

interpretable and efficient in forecasting trip interchanges even if the data is 

large and noisy;  they do not require data and can be established with only basic 

human reasoning; additional inputs can be introduced to the model easily as in 

neural networks. 

iv. GFRBSs offer high level of accuracy in trip distribution modelling, although it 

brings additional computation cost; they should be preferred especially when 

high accuracy is needed or when system's complexity increases and classical 

rule base learning approaches fail. 

 

Table 7.1: An Evaluation of Trip Distribution Models for the Doubly-Constrained Case 

CRITERIA DCGM ML 
Estimation  

DCGM WLS 
Estimation 

DCGM TLD 
Based Est. 

NNTDM 
 

FRBS  
Design 

GFRBS 
Design 

Mathematical 
Simplicity Moderate Moderate Strong Moderate Strong Moderate 

Application 
Simplicity Strong Strong Strong Moderate Strong Weak 

Statistical 
Interpretability Strong Strong Strong Unknown Unknown Unknown 

System  
Interpretability Moderate Moderate Moderate Weak Strong Strong 

Prediction 
Ability Moderate Weak Moderate Weak Moderate Strong 

Improvement with 
Additional Variables Weak Weak Weak Strong Strong Strong 

Dependency to  
Data Existence Strong Strong Strong Weak Strong Weak 

Hybridization   
Ability Weak Weak Weak Strong Strong Strong 

Computational 
Costs Strong Strong Strong Moderate Strong Weak 

Ready to Use 
Software Packages Strong Weak Strong Strong Strong Weak 
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 It is appropriate to stress here again that the present study has demonstrated how 

soft computing techniques, neural networks, fuzzy and genetic fuzzy systems, can 

successfully be used in modelling any spatial interactions. Among the other soft 

computing techniques, use of fuzzy set theory and fuzzy logic in spatial sciences has 

very promising features. In several scientific disciplines such as urban planning, 

transportation modelling, urban geography and regional science, the field data is 

generally involved uncertainty, vagueness and incompleteness. FRBSs provide an 

outstanding opportunity to deal with this drawback. They enable using linguistic terms 

and human like reasoning in modelling complex real-life systems. Additionally, they 

have an equation-free structure; they are not black-box,  in contrast interpretable ; they 

can be used without numerical data; they can incorporate expert knowledge into 

modelling procedure; they provide a flexible framework for hybridization with other 

soft computing techniques such as genetic algorithms and neural networks. 

 In conclusion, fuzzy and genetic fuzzy systems offer an alternative way to 

traditional gravity models and neural networks in modelling trip distributions. The 

present study has demonstrated their applicability to a challenging city region with a 

desired level of accuracy and interpretability. There are several positive reasons for 

continuing to develop trip distribution models in this fields. 

 This study differs from similar previous works (Kalic and Teodorovic, 1996; 

2003 and Shafahi et al., 2008) in several respects: i) a genetic fuzzy system was 

proposed to model intra-city passenger flows for the first time; ii) original solutions to 

the fuzzy rule base learning problem were developed; iii) an extensive performance 

comparison was established for the first time, among the fuzzy, genetic fuzzy, doubly-

constrained gravity and neural networks based trip distribution models.  

  Further researches should explore designing such fuzzy and genetic fuzzy 

systems with some new features such as : with additional variables, for instance a zonal 

land use variable or a geographical barrier can be introduced as additional inputs; with 

same variables but different configurations such as with a Sugeno-type FRBS; with 

innovative evolutionary algorithms and learning strategies; and most importantly with 

an approximate FRBS design that works properly in a low quality data environment or 

under uncertainty and imprecision. There is still a few number of studies that 

demonstrate such systems' ability on an environment where uncertainty and imprecision 

exist. 
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APPENDIX A 

 

COMPUTER PROGRAMS  

 
 Present study deals with large data sets and includes a number of iterative 

mathematical algorithms. Additionally, many of the algorithms used in this study are 

not included in built-up software packages. So, it is found appropriate to create own 

computer programs/codes for nearly all mathematical and statistical algorithms. 

 The selected programming/computing software is MATLAB and used version is  

R2009b.  The MATLAB product family provides a high-level programming language, 

an interactive technical computing environment, and functions for: algorithm 

development, data analysis and numeric computation.  

 The following sections include calibration, training and learning algorithms for 

each of the trip distribution models introduced earlier. Description of the program  and 

algorithm details are given with '%' denotes.  One can run any of the program, if he or 

she copy and paste the code to a MATLAB script file (.m - file) and load a suitable data 

set.  

 

  



 
 

98 
 

A.1. Doubly-Constrained Gravity Model Calibration with Maximum 
 Likelihood Estimation 
 
--------------------------------------------------------------------------------------------------------------------------------------------- 
%% MAXIMUM LIKELIHOOD CALIBRATION ALGORITHM FOR DOUBLYCONSTRAINED GRAVITY 
MODEL 
  
%% Definition of the Program 
%This program calibrates friction factor parameter (beta) for Doubly Constraint GM 
%The code is written for both of the Cost Functions: Power (cij^-b) and Exponential(e^-b*cij) 
%Calibration criteria is to replicate the Observed Total Travel Cost   
%See detailed formula and its explanations in Fortheringham and O'Kelly (1989), at pages 49-56 
%See Hyman's iterative parameter estimation method in Hyman (1969) 
%At the end, code produces an estimate of beta parameter (b) and modelled trip matrix with the parameter estimate 
%Produced in             :13.08.2009      
%Last Modified in        :08.06.2010                                  ***written by Mert Kompil     ***mertkompil@gmail.com 
  
%% Load Data 
clc;  
clear; 
load -mat HBW_TRAIN_DATA;        %load data from a -mat file (-mat file includes FRICTION_TRAIN and 
    OBS_TRIPS_TRAIN matrices) 
  
%% Select Cost Function Type (Power or Exponential) 
answer          = input(' Please Select The Cost Function :\n Enter "1" for POWER and "2" for EXPONENTIAL 
FUNCTIONS  ----- > '); 
if  answer      ==1; 
    type=1; 
else 
    type=2; 
end; 
  
%% Rename Data Matrices 
t_time=HBW_FRICTION_TRAIN;                    %enter the name of friction matrix here (distanc/time)(cij) 
obs_trips=HBW_OBS_TRAIN;                           %enter the name of trip matrix (Tij) 
clear ('HBW_FRICTION_TRAIN','answer','HBW_OBS_TRAIN', 'HBW_ROW_DATA_TRAIN')     
 %Clear old matrixes 
  
%% Enter Maximum Iteration Numbers and Convergence Criteria  
iter1=100;                              %maximum iteration number for the loop finding beta (b) parameter  
iter2=100;                             %maximum iteration number for the loop finding the balancing factors (Ai&Bj) 
conv1=0.001;                         %convergence criteria for balancing factors (Ai&Bj) 
conv2=0.0001;                      %convergence criteria for beta (b)parameter estimate 
  
%% Create Starting matrices and parameters 
prod_tot=sum(obs_trips,2)';                   %produce production totals matrix  
attr_tot=sum(obs_trips);                     %produce attraction totals matrix 
logt_time=log(t_time);                         %take log of friction matrix 
if  type==1                                             %compute Observed Total Travel Cost 
    obs_ttc=sum(sum(obs_trips.*logt_time));              %use "log(cij)" for Power Cost Function  
else 
    obs_ttc=sum(sum(obs_trips.*t_time));                 %use only "cij" for Exponential Cost Function  
end; 
b=ones(iter1+1,1);                                %produce a row vector for beta (b) parameters 
b(1)=(3/(2*obs_ttc));                            %compute the initial beta (b0) parameter 
mod_ttc=ones(iter1+1,1);                   %produce a row vector for Modeled Total Travel Costs (c0,c1,...cn) values 
[m,n]=size(obs_trips);                           %produce matrix index 
mod_trips=ones(m,n);                           %modelled trip matrix 
A0=ones(m,n);                                    %computation table for Ais 
B0=ones(m,n);                                      %computation table for Bjs 
Ai=ones(m,iter2);                         %produce a matrix for Ais to make comparison through iterations 
Bj=ones(iter2,n);                                   %produce a matrix for Bjs to make comparison through iterations  
B=ones(1,n);                                  %set the initial Bjs as one 
 %% Start Iteration Loops 
for r=1:iter1                           %START LOOP 1: for beta (b) parameter 
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%% Find Balancing Factors (Ais&Bjs) 
        for k=1:iter2           %START LOOP 2: for balancing factors (Ai&Bj) 
                if type==1                           %if the Power Cost function is selected 
                    for i=1:m,                           %find Ais 
                        for j=1:n 
                            A0(i,j)=B(j)*attr_tot(j)*(t_time(i,j)^b(r)); 
                        end; 
                    end; 
                        A=(1./sum(A0,2))'; 
                    for i=1:m                            %find Bjs 
                        for j=1:n 
                            B0(i,j)=A(i)*prod_tot(i)*(t_time(i,j)^b(r)); 
                        end; 
                    end; 
                end; 
                if type==2                               %if the Exponential Cost function is selected 
                    for i=1:m,                           %find Ais 
                        for j=1:n 
                            A0(i,j)=B(j)*attr_tot(j)*(exp(t_time(i,j)*b(r))); 
                        end; 
                    end; 
                        A=(1./sum(A0,2))'; 
                    for i=1:m                            %find Bjs 
                        for j=1:n 
                            B0(i,j)=A(i)*prod_tot(i)*(exp(t_time(i,j)*b(r))); 
                        end; 
                    end; 
                end;   
                B=(1./sum(B0)); 
                Ai(:,k)=A;                         %write Ais to the related column in matrix for comparison 
                Bj(k,:)=B;                            %write Bjs to the related row in matrix for comparison 
                if k>1                                   %compare balancing factors 
                    if sqrt((sum((Ai(:,k)-Ai(:,(k-1))).^2))/k)< conv1 && sqrt(sum((Bj(k,:)-Bj((k-1),:).^2),2)/k) < conv1;  
                    break                                %if convergence criteria is satisfied, stop process, otherwise continue 
                    end; 
                end; 
        end;                    %END OF LOOP 2: for balancing factors (Ai&Bj) 
                 
%% Compute Modeled Trip Matrix 
        if type==1                                      %if the Power Cost function is selected 
            for i=1:m, 
                for j=1:n 
                    mod_trips(i,j)= A(i)*B(j)*prod_tot(i)*attr_tot(j)*(t_time(i,j)^b(r));           %compute the modelled trips  
                end; 
           end; 
        end; 
        if type==2                                      %if the Exponential Cost function is selected 
            for i=1:m, 
                for j=1:n 
                    mod_trips(i,j)= A(i)*B(j)*prod_tot(i)*attr_tot(j)*(exp(t_time(i,j)*b(r)));      %compute the modelled trips  
                end; 
           end; 
        end;            
         
%% Estimate a Better beta (b) Parameter 
        if  type==1                                                 %compute Modeled Total Travel Cost (C0,C1,...Cn) 
            mod_ttc(r)=sum(sum(mod_trips.*logt_time));               %use "log(cij)" for Power Cost Function  
        else 
            mod_ttc(r)=sum(sum(mod_trips.*t_time));                  %use only "cij" for Exponential Cost Function  
        end;            
        if  r==1                                           % use this formula for the first iteration (b1) to estimate beta parameter 
            b(r+1)=b(r)*mod_ttc(r)/obs_ttc;                          
        else                                               % use this formula for subsequent iterations (b2,b3,...bn) 
            b(r+1)=((obs_ttc-mod_ttc(r-1))*b(r)-((obs_ttc-mod_ttc(r))*b(r-1)))/(mod_ttc(r)-mod_ttc(r-1));    
        end; 
        if  r>1 
            if  abs((b(r+1))-(b(r))) < (conv2)       % compare the last two beta (b) estimates  
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            break                                                   % if convergence criteria is satisfied, stop process, otherwise continue 
            end; 
        end;    
end;                                    %END OF LOOP 1: for beta (b) parameter 
  
%% Show the Estimated Parameter on Screen 
beta=b(r+1); 
if  type==1 
    fprintf('\n beta calibration for Power Cost Function is successfully completed in %g iterations \n',r) 
else 
    fprintf('\n beta calibration for Exponential Cost Function is successfully completed in %g iterations \n',r) 
end; 
fprintf('\n beta ----> %f\n',beta)                              %show the best value estimate for beta (b) parameter on the screen 
clear ('obs_ttc','iter1','iter2','conv1','conv2','A','B','m','n','mod_ttc','logt_time',... 
       'k','r','i','j','b','c','prod_tot','attr_tot','type','A0','Ai','B0','Bj')    %clear temporary matrixes 
  
%% Output of the Program 
i)   the modelled trips (mod_trips) and,  
ii)  the beta (beta) parameter estimate  
--------------------------------------------------------------------------------------------------------------------------------------------- 
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A.2. Doubly-Constrained Gravity Model Calibration  with Trip Length 
 Distribution Based Estimation 
 
---------------------------------------------------------------------------------------------------------------------------------- 
%% MINIMIZING TRIP LENGTH DISTRIBUTION RMSE WİTH A LINE SEARCH ALGORITHM  
  
%% Definition of the Program 
%The code is written for both of the Cost Functions: Power (cij^-b) and Exponential(e^-b*cij) 
%Calibration criteria is to replicate the Observed Trip Length Distribution according to the given trip length intervals 
%During the process, you have to set an interval number (bin interval) and a maximum value (end of bins) 
%At the end, code produces an estimate of beta parameter (b) and, Observed and Modelled Trip Length Distributions 
%Produced in            :10.08.2009      
%Last Modified in       :08.06.2010                                ***written by Mert Kompil     ***mertkompil@gmail.com 
  
%% Load Data 
clc;  
clear; 
load -mat HBW_Train_Data;       %load data from a -mat file (-mat file includes DISTANCE_TRAIN, 
    OBS_TRIPS_TRAIN and ROW_DATA_TRAIN matrices) 
  
%% Select Cost Function Type (Power or Exponential) 
answer          = input(' Please Select The Cost Function :\n Enter "1" for POWER and "2" for EXPONENTIAL 
FUNCTIONS  ----- > '); 
if  answer      ==1; 
    type=1; 
else 
    type=2; 
end; 
%% Set an Interval Number for Each Bins 
answer1          = input('\n Please Enter an Interval Number for Each Bins  ----- > '); 
  
%% Set a Value That The Bins End 
answer2          = input('\n Please Enter a Value that the Bins End  ----- > '); 
  
%% Rename Data Matrices 
t_time=HBW_FRICTION_TRAIN;                               %enter the name of friction matrix here (distanc/time)(cij) 
obs_trips=HBW_OBS_TRAIN;                                 %enter the name of trip matrix (Tij) 
row_data=HBW_ROW_DATA_TRAIN; 
clear ('HBW_FRICTION_TRAIN','answer','HBW_OBS_TRIPS_TRAIN', 'HBW_ROW_DATA_TRAIN')      
%Clear old matrixes 
  
%% Set a Vector of beta (b) parameters for line search 
b=(-0.1:-0.1:3)';                               %For more than one parameter, the input should be a column vector 
[w,c]=size(b);                                  %matrix index 
  
%% Compute Observed Trip Length Distribution 
maxi=max(max(t_time));                                   %the maximum friction value 
mini=0;                                                   %the minimum friction value - set zero as default value 
bin_int=answer1;                                         %interval for each bins 
max_bin=answer2;                                         %the value that bins end 
num_bins=floor((max_bin/bin_int)+1);               %number of bins 
OTLD=zeros(num_bins,4);                                  %create a matrix for observed trip length distribution  
OTLD(:,1)=(1:1:num_bins);                                
OTLD(:,2)=(bin_int:bin_int:(max_bin+bin_int))'; 
OTLD(num_bins,2)=maxi; 
[h,s]=size(row_data);                                    %matrix index 
for i=1:h                                                 %produce observed trip length distribution 
    for k=1:num_bins-1 
        if mini <= row_data(i,5) && row_data(i,5)< OTLD(1,2) 
           OTLD(1,3)= OTLD(1,3)+row_data(i,6); 
           break 
        end; 
        if OTLD(k,2) <= row_data(i,5) && row_data(i,5)< OTLD(k+1,2) 
           OTLD(k+1,3)= OTLD(k+1,3)+row_data(i,6); 
           break 
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        end; 
    end; 
end; 
clear ('answer1','answer2','k')                          %Clear temporary values 
  
%% Enter Maximum Iteration Number and Convergence Criteria for Balancing Factors  
iter=100;                                                 %maximum iteration number for the loop finding the balancing 
factors (Ai&Bj) 
conv=0.001;                                              %convergence criteria for balancing factors (Ai&Bj) 
  
%% Create Starting matrices and parameters for modeled trips 
prod_tot=sum(obs_trips,2)';                              %produce production totals matrix  
attr_tot=sum(obs_trips);                                 %produce attraction totals matrix  
rmse=ones(w,1);                                          %create a column vector for RMSE Results 
row_data_2=ones(h,c);                                   %create a matrix to write modeled tirps in rows 
MTLD00=zeros(num_bins,w);                             %create a matrix to write modeled Trip Length Distribution Counts 
MTLD01=MTLD00;                                           %create a matrix to write modeled TLD  Percents 
[m,n]=size(obs_trips);                                   %matrix index 
mod_trips=ones(m,n);                                     %create a matrix for modeled trip matrix 
A0=ones(m,n);                                            %computation table for Ais 
B0=ones(m,n);                                            %computation table for Bjs 
Ai=ones(m,iter);                                         %produce a matrix for Ais to make comparison through iterations 
Bj=ones(iter,n);                                         %produce a matrix for Bjs to make comparison through iterations  
B=ones(1,n);                                             %set the initial Bjs as one 
%% Start Computation for each beta (b) input 
for g=1:w           %START LOOP 1: produce modeled trip matrix for given beta (b) 
     
%% Find Balancing Factors (Ais&Bjs) 
        for k=1:iter           %START LOOP 2: for balancing factors (Ai&Bj) 
                if type==1                               %if the Power Cost function is selected 
                    for i=1:m,                           %find Ais 
                        for j=1:n 
                            A0(i,j)=B(j)*attr_tot(j)*(t_time(i,j)^b(g)); 
                        end; 
                    end; 
                        A=(1./sum(A0,2))'; 
                    for i=1:m                            %find Bjs 
                        for j=1:n 
                            B0(i,j)=A(i)*prod_tot(i)*(t_time(i,j)^b(g)); 
                        end; 
                    end; 
                end; 
                if type==2                              %if the Exponential Cost function is selected 
                    for i=1:m,                           %find Ais 
                        for j=1:n 
                            A0(i,j)=B(j)*attr_tot(j)*(exp(t_time(i,j)*b(g))); 
                        end; 
                    end; 
                        A=(1./sum(A0,2))'; 
                    for i=1:m                            %find Bjs 
                        for j=1:n 
                            B0(i,j)=A(i)*prod_tot(i)*(exp(t_time(i,j)*b(g))); 
                        end; 
                    end; 
                end;   
                B=(1./sum(B0)); 
                Ai(:,k)=A;                             %write Ais to the related column in matrix for comparison 
                Bj(k,:)=B;                               %write Bjs to the related row in matrix for comparison 
                if k>1                                   %compare balancing factors 
                    if sqrt((sum((Ai(:,k)-Ai(:,(k-1))).^2))/k)< conv && sqrt(sum((Bj(k,:)-Bj((k-1),:).^2),2)/k) < conv;  
                    break                                %if convergence criteria is satisfied, stop process, otherwise continue 
                    end; 
                end; 
        end;                    %END OF LOOP 2: for balancing factors (Ai&Bj) 
        clear ('k','i','j')     %clear temporary values 
                 
%% Compute Modeled Trip Matrix 
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        if type==1                                       %if the Power Cost function is selected 
            for i=1:m, 
                for j=1:n 
                    mod_trips(i,j)= A(i)*B(j)*prod_tot(i)*attr_tot(j)*(t_time(i,j)^b(g));           %compute the modeled trips  
                end; 
           end; 
        end; 
        if type==2                                       %if the Exponential Cost function is selected 
            for i=1:m, 
                for j=1:n 
                    mod_trips(i,j)= A(i)*B(j)*prod_tot(i)*attr_tot(j)*(exp(t_time(i,j)*b(g)));      %compute the modeled trips  
                end; 
           end; 
        end;  
  
%% Write Modeled Trip Matrix to Rows to Compute Modeled TLD 
        v=1; 
        for o=1:m 
            temp=mod_trips(:,v); 
            row_data_2(o,g)=temp(o); 
        end; 
        v=v+1; 
        t=1; 
        x=0; 
        for u=1:n-1 
            for f=t:m*u 
            temp=mod_trips(:,v); 
            row_data_2(m+f,g)=temp(x+f);     
            end; 
            t=t+m; 
            v=v+1; 
            x=x-m; 
        end; 
         
%% Compute Modeled TLD  
        for i=1:h 
            for k=1:num_bins-1 
                if mini <= row_data(i,5) && row_data(i,5)< OTLD(1,2) 
                   MTLD00(1,g)= MTLD00(1,g)+row_data_2(i,g); 
                   break 
                end; 
                if OTLD(k,2) <= row_data(i,5) && row_data(i,5)< OTLD(k+1,2) 
                   MTLD00(k+1,g)= MTLD00(k+1,g)+row_data_2(i,g); 
                   break 
                end; 
            end; 
        end; 
         
%% Compute RMSE 
        for i=1:num_bins 
        OTLD(i,4)=(OTLD(i,3)/sum(OTLD(:,3)))*100; 
        MTLD01(i,g)=(MTLD00(i,g)/sum(MTLD00(:,g)))*100; 
        end; 
        rmse(g) =(sqrt((sum((OTLD(:,4)-MTLD01(:,g)).^2))))/num_bins; 
end;            %END OF LOOP 1: for beta (b) line search 
  
%% Write Results in Matrices 
results=ones(w,2); 
results(:,1)=b; 
results(:,2)=rmse(:,1);                           %combine parameter values and rmse results in matrix 
sorted_results=sortrows(results,2);              %sort the rows according to the minimum to maximum rmse 
beta=sorted_results(1,1);                         %beta is the value which has minimum rmse 
for i=1:w                                   %find the beta value previous index and call TLDs results from 
     previously created matrices 
    if  beta==b(i,1); 
        break         
    end; 
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    index=i; 
end; 
TLD=OTLD; 
TLD(:,5)=MTLD00(:,i);        %write modeled TLD counts and percents next to  observed TLD counts and percents 
TLD(:,6)=MTLD01(:,i); 
   
%% Show the Estimated Parameter and RMSE Plot on Screen 
if  type==1 
    fprintf('\n Line Search ALgorithm for Power Cost Function is successfully completed. \n %g paremeters have tried 
\n',w) 
else 
    fprintf('\n Line Search ALgorithm for Exponential Cost Function is successfully completed. \n %g paremeters have 
tried \n',w) 
end; 
fprintf('\n beta ----> %f\n',beta)                              %show the best value estimate for beta (b) parameter on the screen 
plot(results(:,2)); figure(gcf); title('RMSE CHANGE')           %plot RMSE change 
  
clear('A','A0','Ai','B','B0','Bj','MTLD00','MTLD01','OTLD','attr_tot','prod_tot','b','bin_int','num_bins',... 
      'c', 'conv','f','g','h','i','index','iter','j','k','m','max_bin','maxi','mini','mod_trips','n','o',... 
      'x', 'v','u','w','type','temp','t_time','s','t','row_data_2','row_data','rmse','results0','obs_trips');    
%clear temporary matrices 
  
%% Output of the Program 
%   The outputs of the program is : 
%   i)  The beta (b) parameter estimate which minimizes the difference between OTLD and MTLD 
%   ii) The result matrix that includes beta (b) values and paired RMSEs 
%   iii)A plot of RMSE Change 
%   iv) Sorted result matrix that includes beta values with RMSE from lowest to highest order  
%   v)  A final matrix that includes in order: bin no, bin interval, OTLD counts, OTLD percentage, MTLD counts and 
MTLD percentage 
--------------------------------------------------------------------------------------------------------------------------------------------- 
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A.3. Weighted Least Squares Transformation for Doubly-Constrained 
 Gravity Model Calibration 
 
--------------------------------------------------------------------------------------------------------------------------------------------- 
%% WEIGHTED LEAST SQUARES TRANSFORMATION FOR DOUBLY-CONSTRAINED GM  
% Transform Approach: Add a Constant to Zero Interaction Cells or to Zero and Non-Zero Interaction Cells 
  
%% Definition of the Program 
%This transformation is especially for rectangle trip matrices, also it can be used for square matrices  
%You can select one of the two cost functions (power and exponential)during the transformation 
%The problem of zero interactions will be eliminated with the addition of a constant to trip matrix(to Zero Interaction 
Cells or to Whole Cells)  
%The regression equation and its definitions can be found in Sen and Soot(1981)or Fortheringham and O'Kelly 
(1989) at pages 46-47 
%At the end ,the code produces dependent variable(Y), independent variable(X) and Weight variable (W), all column 
vectors in result matrix 
%The output of the code can be calibrated in any statistical software having a tool for weighted least squares 
estimation 
%Produced in:07.08.2009      
%Modified in:08.06.2010                                               ***written by Mert Kompil     ***mertkompil@gmail.com  
  
%% Load Data 
clc;  
clear; 
load -mat HBW_TRAIN_DATA;      %load data from a -mat file (-mat file includes DISTANCE_TRAIN, 
     OBS_TRIPS_TRAIN and ROW_DATA_TRAIN matrices) 
  
%% Select the Type of Cost Function (Power or Exponential) 
answer1= input(' Please Select The Cost Function :\n Enter "1" for POWER and "2" for EXPONENTIAL 
FUNCTIONS  ----- > '); 
if  answer1==1; 
    type=1; 
else 
    type=2; 
end; 
  
%% Select the Type of Adding a Constant to Trip Matrix: to Zero Interaction Cells or to Whole Cells  
fprintf('\n Please Select to Add Predetermined Constant:') 
answer2= input('\n Enter "1" for ZERO Interaction Cells or "2" for both ZERO and NON-ZERO Interaction Cells ----
- > '); 
if  answer2==1; 
    zeros=1; 
else 
    zeros=2; 
end; 
  
%% Set the Constant to add Trip Matrix 
answer3= input('\n Enter the Constant to Add (such as "0.1","0.5" etc..) ----- > '); 
add=answer3;                                 %constant to add zero interaction cells or both zero and non-zero cells 
  
%% Rename Data Matrices 
t_time=HBW_FRICTION_TRAIN;       %enter the name of friction matrix here (distance/time)(cij) 
obs_trips=HBW_OBS_TRAIN;                     %enter the name of trip matrix (Tij) 
row_data=HBW_ROW_DATA_TRAIN;             %enter the name of row data matrix   
     %here the row_data includes TAZ IDs in column 1-2, frictions in 
     %column 5 and interactions in column 6 
clear 
('HBW_FRICTION_TRAIN','HBW_OBS_TRIPS_TRAIN','HBW_ROW_DATA_TRAIN','answer1','answer2','answ
er3')     %Clear old matrixes 
  
%% Create Starting matrices and Index Numbers 
[m,n]=size(obs_trips);                   %Matrix Index 
[k,r]=size(row_data);                    %Matrix Index 
obs_trips2=ones(m,n); 
row_data2=ones(k,2); 
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if  type==1 
    t_time2=log(t_time);                 %Take Log of friction matrix for power cost function 
    row_data2(:,1)=log(row_data(:,5)); 
else 
    t_time2=t_time;                      %There is no need to take log of friction matrix for exponential cost function 
    row_data2(:,1)=row_data(:,5); 
end; 
if  zeros==1                             %Add the predetermined constant only to zero interaction cells 
    for i=1:m                            
        for j=1:n 
            if  obs_trips(i,j)==0; 
                obs_trips2(i,j)=log(add); 
            else 
                obs_trips2(i,j)=log(obs_trips(i,j)); 
            end; 
        end; 
    end; 
    for s=1:k 
        if  row_data (s,6)==0; 
        row_data2(s,2)=add; 
        else 
        row_data2(s,2)=row_data(s,6);    
        end; 
    end; 
else                                      %Add the predetermined constant to both zero and non-zero interaction cells 
    obs_trips2=log((obs_trips+add));             
    row_data2(:,2)=(row_data(:,6)+add);          
end; 
row_mean=mean(obs_trips2,2);            %compute row means for trips 
row_mean2=mean(t_time2,2);               %compute row means for frictions 
column_mean=mean(obs_trips2)';         %compute column means for trips 
column_mean2=mean(t_time2)';           %compute column means for frictions 
grand_mean=mean(mean(obs_trips2));   %compute grand mean for trips 
grand=(ones(k,1))*grand_mean;             %write grand mean in a vector 
grand_mean2=mean(mean(t_time2));         %compute grand mean for frictions 
grand2=(ones(k,1))*grand_mean2;          %write grand mean in a vector 
weight=(row_data2(:,2).^0.5);            %compute the weight (W) variable from interactions 
reg_mat=ones(k,8);                       %Create a matrix to write 8 columns of transformation variables 
  
%% Compute Each Transformation Variables to Calculate Dependent (Y) and Independent (X) Variables 
% Column 1 
    reg_mat(:,1)=log(row_data2(:,2));     
%% 
% Column 2 
for t=1:n-1 
    if t==1 
        for i=1:m 
        reg_mat(i,2)=row_mean(i,1); 
        reg_mat(((t*m)+i),2)=row_mean(i,1); 
        end; 
    else 
        for i=1:m 
        reg_mat(((t*m)+i),2)=row_mean(i,1); 
        end; 
    end; 
end; 
% Column 3 
h=0; 
for t=1:n 
    for i=1:m     
    reg_mat(((h*m)+i),3)=column_mean(t); 
    end; 
    h=h+1; 
end; 
 
% Column 4 
    reg_mat(:,4)=grand(:,1); 
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% Column 5 
    reg_mat(:,5)=row_data2(:,1); 
% Column 6 
for t=1:n-1 
    if t==1 
        for i=1:m 
        reg_mat(i,6)=row_mean2(i,1); 
        reg_mat(((t*m)+i),6)=row_mean2(i,1); 
        end; 
    else 
        for i=1:m 
        reg_mat(((t*m)+i),6)=row_mean2(i,1); 
        end; 
    end; 
end; 
% Column 7 
h=0; 
for t=1:n 
    for i=1:m     
    reg_mat(((h*m)+i),7)=column_mean2(t); 
    end; 
    h=h+1; 
end; 
% Column 8 
    reg_mat(:,8)=grand2(:,1); 
 
%% Compute Dependent Variable (Y), Independent Variable (X) and Weight (W) 
regression_transformation=ones(k,3);                                                 %result matrix 
regression_transformation(:,1)=(reg_mat(:,1)-reg_mat(:,2)-reg_mat(:,3)+reg_mat(:,4));   %dependent variable (Y) 
regression_transformation(:,2)=(reg_mat(:,5)-reg_mat(:,6)-reg_mat(:,7)+reg_mat(:,8));   %independent variable (X) 
regression_transformation(:,3)=weight;                                              %weight (W) 
if  type==1                                                                              %Show transformation selections on screen 
    fprintf('\n Transformation sucsessfully completed for Power Cost Function \n') 
else 
    fprintf('\n Transformation sucsessfully completed for Exponential Cost Function \n') 
end; 
if zeros==1 
    fprintf('\n The constant "%g" added to zero interaction cells \n',add) 
else 
    fprintf('\n The constant "%g" added to both zero and non-zero interaction cells \n',add) 
end; 
clear('i','m','n','k','r','t','s','j','t_time','t_time2','obs_trips','obs_trips2','zeros',...    
      'column_mean','column_mean2','grand_mean','grand_mean2','add','reg_mat','type',... 
      'h','des_tot','orj_tot','weight','row_data','row_data2','row_mean','row_mean2','grand','grand2')    
%clear temporary inputs  
   
%% Output of the Program 
%The outputs is 'regression_transformation' matrix which includes Y,X and W variables in an order 
%You can save the matrix as a text file, writing command window "save filename.txt -ascii" 
%Then saved file can be opened in any statistical software (SPSS)  in order to run weighted least squares estimation 
--------------------------------------------------------------------------------------------------------------------------------------------- 
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A.4. Neural Network Based Trip Distribution Model (NNTDM) 
 Training Algorithm 
 
--------------------------------------------------------------------------------------------------------------------------------------------- 
%% NEURAL NETWORK BASED TRIP DISTRIBUTION MODEL (NNTDM) TRAINING ALGORITHM  
  
%% Definition of the Program 
%This program trains a Neural Network using Matlab - Neural Network Toolbox 
%The Neural Network Toolbox implementation issues can be seen in Demuth et.al (2009) 
%The learning of the network is based on Levenberg-Marquardt Learning Algorithm 
%The production, attraction and friction are the inputs, and trips are the output of the network 
%At the end, code produces trained network and unscaled network outputs 
%Produced in            :January - 2009      
%Last Modified in     :23.06.2010                          ***written by Mert Kompil     ***mertkompil@gmail.com 
  
%% Load Data 
clc; 
clear; 
load HBW_TRAIN_DATA.mat  %load data from a -mat file (-mat file includes training data inputs and outputs) 
  
%% Min-Max Normalization of data set between 0.1 and 1 
input_data=HBW_ROW_DATA_TRAIN(:,3:5)';                           %rename input matrix 
output_data=HBW_ROW_DATA_TRAIN(:,6)';                            %rename output vector 
[sc_input,sc_tr_in] = mapminmax(input_data,0.1,1);               %normalize (scale)inputs 
[sc_output,sc_tr_out] = mapminmax(output_data,0.1,1);            %normalize (scale)output 
%unscale = mapminmax('reverse',simulated_result,sc_tr_out)       %use this expression in order  
                                                                   %to unscale the network output 
  
%% Create and Configurate the Network 
net = newff(sc_input,sc_output,9,{'logsig','logsig'});   %determine number of neurons and activation functions   
rand('seed',333)                               %set a random seed 
net = init(net);                               %initialize the network with random seed 
net.inputs{1}.processParams{3}.ymin=0;        %change predefined lower range for input activation 
net.outputs{2}.processParams{2}.ymin=0;       %change predefined lower range for output activation 
net.divideParam.trainRatio = 0.8;             %adjust training data ratio for over-training process 
net.divideParam.valRatio = 0.2;               %adjust validation data ratio for over-training process 
net.divideParam.testRatio = 0;                 %set third part ratio as zero 
  
%% Adjust Learning Algorithm and Parameters 
net.trainFcn='trainlm'; 
net.trainParam.mu=0.2;                         %set Initial Learning Rate 
net.trainParam.mu_dec=0.1;                    %set Learning Rate decrease factor 
net.trainParam.mu_inc=3;                       %set Learning Rate increase factor 
net.trainParam.epochs=12;                     %determine maximum number of epoch 
net.trainParam.max_fail=125;                 %determine maximum number of cross-validation checks to stop 
  
%% Train Network 
[net,tr] = train(net,sc_input,sc_output);    %train the network 
  
%% Output of the Program 
%The outputs are i)the trained network (net) and ii) training parameters and configuration (tr) 
%After some trials, the network training has to be stopped at best epoch 
%Then the best trained parameters can be used to simulate any appropriate data set 
%The expression "sim(net,sc_input)" can be used to simulate the network 
--------------------------------------------------------------------------------------------------------------------------------------------- 
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A.5. Goodness-of-Fit Statistics - Micro Level 

 
--------------------------------------------------------------------------------------------------------------------------------------------- 
%% GOODNESS OF FIT STATISTICS FOR DOUBLY CONSTRAINT GRAVITY MODEL - MICRO LEVEL 
% For SRMSE, r square, Slope, ARV, Phi Statistic 
  
%% Definition of the Program 
%This program uses previously estimated beta (b)parameter as an input to produce modeled trip matrix 
%Then produces goodness of fit statistics comparing observed and modeled trips    
%The code can be used for both of the Cost Functions: Power (cij^-b) and Exponential(e^-b*cij) 
%The observed trip matrix can be square or rectangle 
%See formulas of some of the used goodness of fit statistics in Fortheringham and O'Kelly (1986; 1989)and Smith 
and Hutchinson (1981) 
%At the end, the code produces i) Standardized Root Mean Square Error (SRMSE),ii) Straigt Line Statistics 
(intercept, slope, r square), %iii)Average Relative Variance (ARV), iv)Phi Statistic (phi) 
  
%Produced in            :09.08.2009      
%Last Modified in    :08.06.2010                                       ***written by Mert Kompil     ***mertkompil@gmail.com 
  
%% Load Data 
clc;  
clear; 
load -mat HBW_TRAIN_DATA;      %load data from a -mat file (-mat file includes 
FRICTION_TRAIN,OBS_TRIPS_TRAIN and ROW_DATA_TRAIN matrices) 
  
%% Select Cost Function Type (Power or Exponential) 
answer          = input(' Please Select The Cost Function :\n Enter "1" for POWER and "2" for EXPONENTIAL 
FUNCTIONS  ----- > '); 
if  answer      ==1; 
    type=1; 
else 
    type=2; 
end; 
  
%% Rename Data Matrices 
t_time=HBW_FRICTION_TRAIN;               %enter the name of friction matrix here (distance/time)(cij) 
obs_trips=HBW_OBS_TRAIN;                 %enter the name of trip matrix (Tij) 
row_data=HBW_ROW_DATA_TRAIN;            %enter the name of row data matrix  
                                           %here the row_data includes TAZ IDs in column 1-2, frictions in 
     %column 5 and interactions in column 6 
clear ('HBW_FRICTION_TRAIN','HBW_OBS_TRAIN', 'HBW_ROW_DATA_TRAIN','answer')      
%Clear old matrixes 
  
%% Enter Maximum Iteration Number and Convergence Criteria for Balancing Factors  
iter=100;                             %maximum iteration number for the loop finding the balancing factors (Ai&Bj) 
conv=0.001;                           %convergence criteria for balancing factors (Ai&Bj) 
  
%% Set Pre-Calibrated beta (b) parameter or parameters 
b=[-1.94 -2.05 -1.84]';          %optimum parameter estimates (MLH, WLS, TLD RMSE)for power cost function 
%b=[-0.12 -0.21 -0.31]';        %optimum parameter estimates (MLH, WLS, TLD RMSE)for exponential cost function 
%b=(-0.05:-0.05:-4)';             %For more than one parameter, the input should be a column vector 
[w,c]=size(b);                       %matrix index 
  
%% Create Starting matrices and parameters 
prod_tot=sum(obs_trips,2)';                                  %produce production totals matrix  
attr_tot=sum(obs_trips);                                     %produce attraction totals matrix  
tot_trips=sum(sum(obs_trips));                             %compute total trips 
srmse=ones(w,1);                                             %create a column vector for SRMSE Results 
arv=ones(w,1);                                               %create a column vector for ARAE Results 
phi=ones(w,1);                                               %create a column vector for Phi Statistic Results 
nrmse=ones(w,1);                                             %create a column vector for NRMSE Results 
intercept=ones(w,1);                                         %create a column vector for Intercept value Results 
slope=ones(w,1);                                             %create a column vector for Slope value Results 
rsquare=ones(w,1);                                 %create a column vector for R square Results 
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chisquare=ones(w,1);                                         %create a column vector for Chi Square Results 
[m,n]=size(obs_trips);                                       %matrix index 
[h,s]=size(row_data);                                        %matrix index 
mod_trips=ones(m,n);                                         %create a matrix for modeled trip matrix 
result_matrix=row_data;                                      %create a matrix to write modeled trips in rows 
A0=ones(m,n);                                                %computation table for Ais 
B0=ones(m,n);                                                %computation table for Bjs 
Ai=ones(m,iter);                                             %produce a matrix for Ais to make comparison through iterations 
Bj=ones(iter,n);                                             %produce a matrix for Bjs to make comparison through iterations  
B=ones(1,n);                                                 %set the initial Bjs as one 
  
%% Start Computation for each beta (b) input 
for g=1:w           %START LOOP 1: produce modeled trip matrix for given beta (b) 
     
%% Find Balancing Factors (Ais&Bjs) 
        for k=1:iter           %START LOOP 2: for balancing factors (Ai&Bj) 
                if type==1                              %if the Power Cost function is selected 
                    for i=1:m,                          %find Ais 
                        for j=1:n 
                            A0(i,j)=B(j)*attr_tot(j)*(t_time(i,j)^b(g)); 
                        end; 
                    end; 
                        A=(1./sum(A0,2))'; 
                    for i=1:m                           %find Bjs 
                        for j=1:n 
                            B0(i,j)=A(i)*prod_tot(i)*(t_time(i,j)^b(g)); 
                        end; 
                    end; 
                end; 
                if type==2                              %if the Exponential Cost function is selected 
                    for i=1:m,                          %find Ais 
                        for j=1:n 
                            A0(i,j)=B(j)*attr_tot(j)*(exp(t_time(i,j)*b(g))); 
                        end; 
                    end; 
                        A=(1./sum(A0,2))'; 
                    for i=1:m                           %find Bjs 
                        for j=1:n 
                            B0(i,j)=A(i)*prod_tot(i)*(exp(t_time(i,j)*b(g))); 
                        end; 
                    end; 
                end;   
                B=(1./sum(B0)); 
                Ai(:,k)=A;                              %write Ais to the related column in matrix for comparison 
                Bj(k,:)=B;                               %write Bjs to the related row in matrix for comparison 
                if k>1                                   %compare balancing factors 
                    if sqrt((sum((Ai(:,k)-Ai(:,(k-1))).^2))/k)< conv && sqrt(sum((Bj(k,:)-Bj((k-1),:).^2),2)/k) < conv;  
                    break                                %if convergence criteria is satisfied, stop process, otherwise continue 
                    end; 
                end; 
        end;                    %END OF LOOP 2: for balancing factors (Ai&Bj) 
                 
%% Compute Modeled Trip Matrix 
        if type==1                                      %if the Power Cost function is selected 
            for i=1:m, 
                for j=1:n 
                    mod_trips(i,j)= A(i)*B(j)*prod_tot(i)*attr_tot(j)*(t_time(i,j)^b(g));           %compute the modeled trips  
                end; 
           end; 
        end; 
        if type==2                                      %if the Exponential Cost function is selected 
            for i=1:m, 
                for j=1:n 
                    mod_trips(i,j)= A(i)*B(j)*prod_tot(i)*attr_tot(j)*(exp(t_time(i,j)*b(g)));      %compute the modeled trips  
                end; 
           end; 
        end;      
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 %% Write Modeled Trip Matrix to Rows for Statistical Computation 
v=1; 
p=s+g; 
for o=1:m 
    temp=mod_trips(:,v); 
    result_matrix(o,p)=temp(o); 
end; 
v=v+1; 
t=1; 
x=0; 
for u=1:n-1 
    for f=t:m*u 
    temp=mod_trips(:,v); 
    result_matrix(m+f,p)=temp(x+f);     
    end; 
    t=t+m; 
    v=v+1; 
    x=x-m; 
end; 
         
%% Calculate Goodness of Fit Statistics 
%SRMSE      (Standardized Root Mean Squared Error) 
srmse(g)=(sqrt((sum((result_matrix(:,6)-result_matrix(:,p)).^2)./(m*n))))/(sum(result_matrix(:,6))/(m*n)); 
%Straight Line Statistics (Intercept, Slope and R square) 
stats={'beta','rsquare',}; 
obs=result_matrix(:,6); 
mod=result_matrix(:,p); 
str_line = regstats(obs,mod,'linear',stats); 
rsquare(g) = str_line.rsquare(1,1); 
intercept (g)=str_line.beta(1,1); 
slope(g)=str_line.beta(2,1); 
%ARV (Average Relative Variance) 
var_full=39.0287;                             %variance of full data 
%var_train= var(result_matrix(:,6));         %variance of train data 
arv(g)= (sum((result_matrix(:,6)-result_matrix(:,p)).^2))/(var_full*m*n); 
% Phi Statistic 
phi_trip_0=(result_matrix(:,6)+0.000001);   %add a small constant before computation of phi statistic 
phi_trip=phi_trip_0./tot_trips; 
phi (g)= sum(phi_trip.*(abs(log(phi_trip_0./result_matrix(:,p)))));  
%Chi Square     (Pearson Chi Square Statistic) 
%chisquare(g)=nansum(((result_matrix(:,6)-result_matrix(:,p)).^2)./(result_matrix(:,p))); 
%NRMSE          (Normalized Root Mean Squared Error) 
%nrmse(g)=(sqrt((sum((result_matrix(:,6)-result_matrix(:,p)).^2)./(m*n)))/(max(max(obs_trips))-
min(min(obs_trips)))); 
end;               %END OF LOOP 2: for each beta (b) parameter 
  
%% Show the Results in Workplace 
type_1_results_structure={'beta', 'SRMSE','r square','Slope','ARV', 'phi',;... 
b, srmse, rsquare, slope, arv,  phi}; 
type_1_results=[b srmse rsquare slope arv phi]; 
fprintf('\n Goodness of Fit Statistics for Doubly Constraint SIM has produced\n') 
clear   ('A','B','attr_tot','prod_tot','conv','type','i','j','g','w','r','m','n','iter','k','i','srmse','nrmse','rsquare','phi_trip','phi',... 
        
'obs_mtc','mod_mtc','t_time','mod_trips','obs_trips','row_data','u','v','x','t','temp','b','intercept','slope','arv','phi_trip_0',... 
        'str_line','stats','obs','mod','f','h','o','p','s','c','result_matrix','A0','Ai','B0','Bj','chisquare','var_full','tot_trips')  
%clear temporary variables 
  
%% Output of the Program 
%The outputs are combined into a result matrix and also into a structure. 
%In an order of columns, the result matrix includes 
%i)     beta (b) values used as an input 
%ii)    Standardized Root Mean Square Error (SRMSE) 
%ii)    Regression Statistics (R square,Slope,Intercept), 
%iii)   Average Relative Variance (ARV) 
%iv)    Phi Statistic (phi) 
%v)     Mean Travel Cost Error (MTCE)  
--------------------------------------------------------------------------------------------------------------------------------------------- 
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A.6. Goodness-Of-Fit Statistics - Macro Level 

 
--------------------------------------------------------------------------------------------------------------------------------------------- 
%% GOODNESS OF FIT STATISTICS FOR DOUBLY CONSTRAINT GRAVITY MODEL - MACRO LEVEL 
% For MTCE, TLD RMSE, TLD ARAE F5, TLD ARAE L5 
  
%% Definition of the Program 
%This program uses previously estimated beta (b)parameter as an input to produce modeled trip matrix 
%Then produces goodness of fit statistics comparing observed and modeled Trip Length Distribution (TLD)   
%The code can be used for both of the Cost Functions: Power (cij^-b) and Exponential(e^-b*cij) 
%During the process, you have to set an interval number (bin interval) and a maximum value (end of bins) 
%At the end, the code produces i) Mean Travel Cost Error, ii) Trip Length Distribution Root Mean Square Error 
(TLD RMSE),  
%iii)Trip Length Distribution Average Relative Absolute Error for the first five intervals (TLD ARAE F5) 
%iv)Trip Length Distribution Mean Absolute Percentage Error for the last five intervals (TLD ARAE L5) 
  
%Produced in           :15.08.2009      
%Last Modified in  :06.08.2010                                       ***written by Mert Kompil     ***mertkompil@gmail.com 
  
%% Load Data 
clc;  
clear; 
load -mat HBW_Train_Data;      %load data from a -mat file (-mat file includes 
FRICTION_TRAIN,OBS_TRIPS_TRAIN and ROW_DATA_TRAIN matrices) 
  
%% Select Cost Function Type (Power or Exponential) 
answer          = input(' Please Select The Cost Function :\n Enter "1" for POWER and "2" for EXPONENTIAL 
FUNCTIONS  ----- > '); 
if  answer      ==1; 
    type=1; 
else 
    type=2; 
end; 
  
%% Set an Interval Number for Each Bins 
answer1          = input('\n Please Enter an Interval Number for Each Bins  ----- > '); 
  
%% Set a Value That The Bins End 
answer2          = input('\n Please Enter a Value that the Bins End  ----- > '); 
  
%% Rename Data Matrices 
t_time=HBW_FRICTION_TRAIN;               %enter the name of friction matrix here (distance/time)(cij) 
obs_trips=HBW_OBS_TRAIN;                 %enter the name of trip matrix (Tij) 
row_data=HBW_ROW_DATA_TRAIN;            %enter the name of row data matrix  
                                           %here the row_data includes TAZ IDs in column 1-2, frictions in 
     %column 5 and interactions in column 6 
 
clear ('HBW_FRICTION_TRAIN','HBW_OBS_TRAIN', 'HBW_ROW_DATA_TRAIN','answer')      
%Clear old matrixes 
  
%% Enter Maximum Iteration Number and Convergence Criteria for Balancing Factors  
iter=100;                                 %maximum iteration number for the loop finding the balancing factors (Ai&Bj) 
conv=0.001;                        %convergence criteria for balancing factors (Ai&Bj) 
  
%% Set Pre-Calibrated beta (b) parameter or parameters 
b=[-1.94 -2.05 -1.84]';         %optimum parameter estimates (MLH, WLS, TLD RMSE)for power cost function 
%b=[-0.12 -0.21 -0.31]';        %optimum parameter estimates (MLH, WLS, TLD RMSE)for exponential cost function 
%b=(-0.05:-0.05:-4)';          %For more than one parameter, the input should be a column vector 
[w,c]=size(b);                                 %matrix index 
  
%% Compute Observed Trip Length Distribution 
maxi=max(max(t_time));             %the maximum friction value 
mini=0;                                                 %the minimum friction value - set zero as default value 
bin_int=answer1;                                   %interval for each bins 
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max_bin=answer2;                             %the value that bins end 
num_bins=floor((max_bin/bin_int)+1);                     %number of bins 
OTLD=zeros(num_bins,4);                                   %create a matrix for observed trip length distribution  
OTLD(:,1)=(1:1:num_bins);                                
OTLD(:,2)=(bin_int:bin_int:(max_bin+bin_int))'; 
OTLD(num_bins,2)=maxi; 
[h,s]=size(row_data);                           %matrix index 
for i=1:h                                                %produce observed trip length distribution 
    for k=1:num_bins-1 
        if mini <= row_data(i,5) && row_data(i,5)< OTLD(1,2) 
           OTLD(1,3)= OTLD(1,3)+row_data(i,6); 
           break 
        end; 
        if OTLD(k,2) <= row_data(i,5) && row_data(i,5)< OTLD(k+1,2) 
           OTLD(k+1,3)= OTLD(k+1,3)+row_data(i,6); 
           break 
        end; 
    end; 
end; 
clear ('answer1','answer2','k')                  %Clear temporary values 
  
%% Create Starting matrices and parameters for modeled trips 
prod_tot=sum(obs_trips,2)';                              %produce production totals matrix  
attr_tot=sum(obs_trips);                                 %produce attraction totals matrix 
tot_trips=sum(sum(obs_trips));                           %Sum observed trips 
obs_mtc=sum(sum(obs_trips.*t_time))/tot_trips;           %compute Observed Mean Travel Cost 
MTCE=ones(w,1);                                           %create a column vector for MTCE Results 
TLD_RMSE=ones(w,1);                                      %create a column vector for TLD RMSE Results 
TLD_ARAE_F5=ones(w,1);                           %create a column vector for TLD ARAE Results for first 5 bins 
TLD_ARAE_L5=ones(w,1);                           %create a column vector for TLD ARAE Results for last 5 bins 
arae=ones(5,2);                                          %create a temporary matrix for arae calculations 
row_data_2=ones(h,c);                                    %create a matrix to write modeled tirps in rows 
MTLD00=zeros(num_bins,w);                             %create a matrix to write modeled Trip Length Distribution Counts 
MTLD01=MTLD00;                             %create a matrix to write modeled TLD Percents 
[m,n]=size(obs_trips);                    %matrix index 
mod_trips=ones(m,n);                                     %create a matrix for modeled trip matrix 
A0=ones(m,n);                                            %computation table for Ais 
B0=ones(m,n);                                            %computation table for Bjs 
Ai=ones(m,iter);                                         %produce a matrix for Ais to make comparison through iterations 
Bj=ones(iter,n);                                         %produce a matrix for Bjs to make comparison through iterations  
B=ones(1,n);                                             %set the initial Bjs as one 
  
%% Start Computation for each beta (b) input 
for g=1:w           %START LOOP 1: produce modeled trip matrix for given beta (b) 
     
%% Find Balancing Factors (Ais&Bjs) 
        for k=1:iter           %START LOOP 2: for balancing factors (Ai&Bj) 
                if type==1                              %if the Power Cost function is selected 
                    for i=1:m,                          %find Ais 
                        for j=1:n 
                            A0(i,j)=B(j)*attr_tot(j)*(t_time(i,j)^b(g)); 
                        end; 
                    end; 
                        A=(1./sum(A0,2))'; 
                    for i=1:m                           %find Bjs 
                        for j=1:n 
                            B0(i,j)=A(i)*prod_tot(i)*(t_time(i,j)^b(g)); 
                        end; 
                    end; 
                end; 
                if type==2                              %if the Exponential Cost function is selected 
                    for i=1:m,                          %find Ais 
                        for j=1:n 
                            A0(i,j)=B(j)*attr_tot(j)*(exp(t_time(i,j)*b(g))); 
                        end; 
                    end; 
                        A=(1./sum(A0,2))'; 
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                    for i=1:m                           %find Bjs 
                        for j=1:n 
                            B0(i,j)=A(i)*prod_tot(i)*(exp(t_time(i,j)*b(g))); 
                        end; 
                    end; 
                end;   
                B=(1./sum(B0)); 
                Ai(:,k)=A;                              %write Ais to the related column in matrix for comparison 
                Bj(k,:)=B;                              %write Bjs to the related row in matrix for comparison 
                if k>1                                   %compare balancing factors 
                    if sqrt((sum((Ai(:,k)-Ai(:,(k-1))).^2))/k)< conv && sqrt(sum((Bj(k,:)-Bj((k-1),:).^2),2)/k) < conv;  
                    break                                %if convergence criteria is satisfied, stop process, otherwise continue 
                    end; 
                end; 
        end;                    %END OF LOOP 2: for balancing factors (Ai&Bj) 
                 
%% Compute Modeled Trip Matrix 
        if type==1                                      %if the Power Cost function is selected 
            for i=1:m, 
                for j=1:n 
                    mod_trips(i,j)= A(i)*B(j)*prod_tot(i)*attr_tot(j)*(t_time(i,j)^b(g));           %compute the modeled trips  
                end; 
           end; 
        end; 
        if type==2                                      %if the Exponential Cost function is selected 
            for i=1:m, 
                for j=1:n 
                    mod_trips(i,j)= A(i)*B(j)*prod_tot(i)*attr_tot(j)*(exp(t_time(i,j)*b(g)));      %compute the modeled trips  
                end; 
           end; 
        end;      
  
%% Write Modeled Trip Matrix to Rows to Compute Modeled TLD 
        v=1; 
        for o=1:m 
            temp=mod_trips(:,v); 
            row_data_2(o,g)=temp(o); 
        end; 
        v=v+1; 
        t=1; 
        x=0; 
        for u=1:n-1 
            for f=t:m*u 
            temp=mod_trips(:,v); 
            row_data_2(m+f,g)=temp(x+f);     
            end; 
            t=t+m; 
            v=v+1; 
            x=x-m; 
        end;  
         
%% Compute Modeled TLD  
        for i=1:h 
            for k=1:num_bins-1 
                if mini <= row_data(i,5) && row_data(i,5)< OTLD(1,2) 
                   MTLD00(1,g)= MTLD00(1,g)+row_data_2(i,g); 
                   break 
                end; 
                if OTLD(k,2) <= row_data(i,5) && row_data(i,5)< OTLD(k+1,2) 
                   MTLD00(k+1,g)= MTLD00(k+1,g)+row_data_2(i,g); 
                   break 
                end; 
            end; 
        end; 
         
%% Compute MTCE  (Mean Travel Cost Error) 
        mod_mtc=sum(sum(mod_trips.*t_time))/sum(sum(mod_trips)); 
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        MTCE(g)=(obs_mtc-mod_mtc); 
         
%% Compute TLD RMSE 
        for i=1:num_bins 
        OTLD(i,4)=(OTLD(i,3)/sum(OTLD(:,3)))*100; 
        MTLD01(i,g)=(MTLD00(i,g)/sum(MTLD00(:,g)))*100; 
        end; 
        TLD_RMSE(g) =(sqrt((sum((OTLD(:,4)-MTLD01(:,g)).^2))))/num_bins; 
         
%% Compute TLD ARAE for the First and the Last Five Length Intervals 
        for i=1:5 
            arae(i,1)=(abs(OTLD(i,4)-MTLD01(i,g))./OTLD(i,4)); 
            arae(i,2)=(abs(OTLD((num_bins-5)+i,4)-MTLD01((num_bins-5)+i,g))./OTLD((num_bins-5)+i,4)); 
        end; 
        TLD_ARAE_F5(g) =(sum(arae(:,1))./5); 
        TLD_ARAE_L5(g) =(sum(arae(:,2))./5); 
end;            %END OF LOOP 1: for beta (b) line search 
         
%% Write Results in a matrix 
type_2_results_structure={'beta', 'MTCE','TLD_RMSE','TLD_ARAE_F5','TLD_ARAE_L5';... 
b, MTCE, TLD_RMSE, TLD_ARAE_F5, TLD_ARAE_L5}; 
type_2_results=[b MTCE TLD_RMSE TLD_ARAE_F5 TLD_ARAE_L5];                      
%show parameter values, TLD RMSE and TLD ARAE values in same matrix 
   
%% Show Results and Plots on Screen 
if  type==1 
    fprintf('\n Line Search ALgorithm for Power Cost Function is successfully completed. \n %g paremeters have tried 
\n',w) 
else 
    fprintf('\n Line Search ALgorithm for Exponential Cost Function is successfully completed. \n %g paremeters have 
tried \n',w) 
end; 
figure; 
plot(type_2_results(:,2)); title('RMSE CHANGE')             %plot RMSE change 
figure; 
plot(type_2_results(:,3)); title('TLD FIRST FIVE ARAE ')  %plot TLD FIRST FIVE ARAE 
  
clear('A','A0','Ai','B','B0','Bj','MTLD00','MTLD01','OTLD','attr_tot','prod_tot','b','bin_int','num_bins','TLD_RMSE','to
t_trips',... 
      'c', 'conv','f','g','h','i','index','iter','j','k','m','max_bin','maxi','mini','mod_trips','n','o','arae','MTCE', 'obs_mtc',... 
      'x', 
'v','u','w','type','temp','t_time','s','t','row_data_2','row_data','rmse','TLD_ARAE_F5','TLD_ARAE_L5','obs_trips','mod_
mtc'); 
  
%% Output of the Program 
%   The output of the program is included in a result matrix. The columns contain orderly, 
%   i)       The beta (b) parameters used as input 
%   ii) Mean Travel Cost Error (MTCE) 
%   iii)   Trip Length Distribution Root Mean Squared Error (TLD RMSE) 
%   iv)    Trip Length Distribution Mean Absolute Percentage Error for the first five Bins (TLD ARAE First Five) 
%   v)     Trip Length Distribution Mean Absolute Percentage Error for the last five Bins (TLD ARAE Last Five) 
--------------------------------------------------------------------------------------------------------------------------------------------- 
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A.7. Fuzzy Rule-Based System (FRBS) - Rule Learning Algorithm 
 
--------------------------------------------------------------------------------------------------------------------------------------------- 
%% FUZZY RULE-BASED SYSTEM (FRBS) - RULE LEARNING ALGORITHM 
  
%% Definition of the Program 
%This program includes a fuzzy rulebase learning algorithm for the trip distribution problem 
%The code uses production, attraction, friction data vectors as inputs and trip interactions as output 
%The code uses predefined fuzzy membership functions and establishes a rulebase from numerical data 
%The learning procedure basis on a modififed 'Wang-Mendel'(1992)rule learning process 
%The final rules are selected after computing the weighted averages of the conflicting rules 
%At the end, the code produces i)Observed rules for each of the data pairs (obs_rules), 
%ii)Counted and summarized rule candidates (summarized_rules),  
%iii)Finally established rule base (final_rulebase). 
  
%Produced in             :10.02.2010      
%Last Modified in        :20.06.2010         ***written by Mert Kompil      ***mertkompil@gmail.com 
  
%% Load Data 
clc; clear; 
load -mat HBW_TRAIN_DATA.mat;    %include data vectors 
load -mat MF_VECTORS.mat;         %include MF points in a structure named 'mfvec'  
 %% Construct Data Vectors 
row_data=HBW_ROW_DATA_TRAIN;     %HBW train data in the row format 
input_data=[row_data(:,3) row_data(:,4) row_data(:,5) row_data(:,6)]; 
round_data=[input_data(:,1) input_data(:,2) roundn(input_data(:,3),-1) input_data(:,4)]; 
data=round_data;                   %vectors of Production, Attraction, Friction and Trips 
[m,~]=size(data); 
clear ('HBW_ROW_DATA_TRAIN','HBW_OBS_TRAIN','HBW_FRICTION_TRAIN',... 
    'input_data','row_data','round_data') %clear temporary files 
 %% Establish Variable Intervals - Membership function Domains 
x_prod=0:1:1200;             %production variable domain 
x_attr=0:1:2050;             %attraction variable domain 
x_fric=0:0.1:300;            %friction variable domain 
x_fric=roundn(x_fric,-1);    %round friction variable domain 
x_trips=0:1:885;             %trips variable domain 
 %% CONSTRUCT MEMBERSHIP DOMAINS %% 
%% production MFs 
prodmf_1=trapmf(x_prod,mfvec.prod(1:4));     %call MF points from MF_VECTORS.mat 
prodmf_2=trimf(x_prod,mfvec.prod(5:7)); 
prodmf_3=trimf(x_prod,mfvec.prod(8:10));  
prodmf_4=trimf(x_prod,mfvec.prod(11:13)); 
prodmf_5=trapmf(x_prod,mfvec.prod(14:17)); 
%production MFS - Antecedents  
ant_prod=[prodmf_1;prodmf_2;prodmf_3;prodmf_4;prodmf_5];    
%% attraction MFs 
attrmf_1=trapmf(x_attr,mfvec.attr(1:4));     %call MF points from MF_VECTORS.mat 
attrmf_2=trimf(x_attr,mfvec.attr(5:7)); 
attrmf_3=trimf(x_attr,mfvec.attr(8:10)); 
attrmf_4=trimf(x_attr,mfvec.attr(11:13)); 
attrmf_5=trapmf(x_attr,mfvec.attr(14:17)); 
%attraction MFS - Antecedents  
ant_attr=[attrmf_1;attrmf_2;attrmf_3;attrmf_4;attrmf_5]; 
%% friction MFs 
fricmf_1=trapmf(x_fric,mfvec.fric(1:4));         %call MF points from MF_VECTORS.mat 
fricmf_2=trimf(x_fric,mfvec.fric(5:7)); 
fricmf_3=trimf(x_fric,mfvec.fric(8:10)); 
fricmf_4=trimf(x_fric,mfvec.fric(11:13)); 
fricmf_5=trimf(x_fric,mfvec.fric(14:16)); 
fricmf_6=trapmf(x_fric,mfvec.fric(17:20)); 
%friction MFS - Antecedents  
ant_fric=[fricmf_1;fricmf_2;fricmf_3;fricmf_4;fricmf_5;fricmf_6];    
%% trips MFs 
tripsmf_1=trapmf(x_trips,mfvec.trips(1:4));      %call MF points from MF_VECTORS.mat 
tripsmf_2=trimf(x_trips,mfvec.trips(5:7)); 
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tripsmf_3=trimf(x_trips,mfvec.trips(8:10)); 
tripsmf_4=trimf(x_trips,mfvec.trips(11:13)); 
tripsmf_5=trimf(x_trips,mfvec.trips(14:16)); 
tripsmf_6=trimf(x_trips,mfvec.trips(17:19)); 
tripsmf_7=trimf(x_trips,mfvec.trips(20:22)); 
tripsmf_8=trimf(x_trips,mfvec.trips(23:25)); 
tripsmf_9=trimf(x_trips,mfvec.trips(26:28)); 
tripsmf_10=trimf(x_trips,mfvec.trips(29:31)); 
tripsmf_11=trimf(x_trips,mfvec.trips(32:34)); 
tripsmf_12=trimf(x_trips,mfvec.trips(35:37)); 
tripsmf_13=trimf(x_trips,mfvec.trips(38:40)); 
tripsmf_14=trimf(x_trips,mfvec.trips(41:43)); 
tripsmf_15=trimf(x_trips,mfvec.trips(44:46)); 
tripsmf_16=trimf(x_trips,mfvec.trips(47:49)); 
tripsmf_17=trimf(x_trips,mfvec.trips(50:52)); 
tripsmf_18=trimf(x_trips,mfvec.trips(53:55)); 
tripsmf_19=trimf(x_trips,mfvec.trips(56:58)); 
tripsmf_20=trapmf(x_trips,mfvec.trips(59:62)); 
%Trips MFS - Consequents  
cons_trips=[tripsmf_1;tripsmf_2;tripsmf_3;tripsmf_4;tripsmf_5;tripsmf_6;tripsmf_7;tripsmf_8; 
            tripsmf_9;tripsmf_10;tripsmf_11;tripsmf_12;tripsmf_13;tripsmf_14;tripsmf_15; 
            tripsmf_16;tripsmf_17;tripsmf_18;tripsmf_19;tripsmf_20;];  
clear('prodmf_1','prodmf_2','prodmf_3','prodmf_4','prodmf_5','attrmf_1','attrmf_2','attrmf_3',... 
'attrmf_4','attrmf_5','fricmf_1','fricmf_2','fricmf_3','fricmf_4','fricmf_5','fricmf_6',... 
'tripsmf_1','tripsmf_2','tripsmf_3','tripsmf_4','tripsmf_5','tripsmf_6','tripsmf_7','tripsmf_8',... 
'tripsmf_9','tripsmf_10','tripsmf_11','tripsmf_12','tripsmf_13','tripsmf_14','tripsmf_15',... 
'tripsmf_16','tripsmf_17','tripsmf_18','tripsmf_19','tripsmf_20',);  %clear temporary files 
            
%% IDENTIFY MEMBERSHIP DEGREES FOR EACH DATA PAIRS %% 
%% production labels 
res_prod=ones(5,m); 
[~,s]=size(x_prod); 
for i=1:m 
    k=data(i,1); 
    for j=1:s         
        if k==x_prod(j) 
           ind=j; 
           break 
        end; 
    end; 
    res_prod(:,i)=ant_prod(:,ind); 
end; 
 %% attraction labels 
res_attr=ones(5,m); 
[~,s]=size(x_attr); 
for i=1:m 
    k=data(i,2); 
    for j=1:s         
        if k==x_attr(j) 
           ind=j; 
           break 
        end; 
    end; 
    res_attr(:,i)=ant_attr(:,ind); 
end; 
 %% friction labels 
res_fric=ones(6,m); 
[~,s]=size(x_fric); 
for i=1:m 
    k=data(i,3); 
    for j=1:s         
        if k==x_fric(j) 
           ind=j; 
           break 
        end; 
    end; 
    res_fric(:,i)=ant_fric(:,ind); 
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end; 
 %% trips labels 
res_trips=ones(20,m); 
[~,s]=size(x_trips); 
for i=1:m 
    k=data(i,4); 
    for j=1:s         
        if k==x_trips(j) 
           ind=j; 
           break 
        end; 
    end; 
    res_trips(:,i)=cons_trips(:,ind); 
end; 
clear ('x_attr','x_trips','x_prod','x_fric','h','s','k','i','j','ind') %clear temporary files 
 %% ASSIGN MF LABELS HAVING MAXIMUM MEMBERSHIP DEGREE  %% 
%% production labels 
[h,s]=size(res_prod); 
rules=zeros(s,9); 
for i=1:s 
    max_prod=max(res_prod(:,i)); 
    for j=1:h 
        if  res_prod(j,i)==max_prod 
            rules(i,1)=j; 
            break 
        end; 
    end; 
    rules(i,5)=max_prod;     
end; 
 %% attraction labels 
[h,s]=size(res_attr); 
for i=1:s 
    max_attr=max(res_attr(:,i)); 
    for j=1:h 
        if  res_attr(j,i)==max_attr 
            rules(i,2)=j; 
            break 
        end; 
    end; 
    rules(i,6)=max_attr;     
end; 
%% friction labels 
[h,s]=size(res_fric); 
for i=1:s 
    max_fric=max(res_fric(:,i)); 
    for j=1:h 
        if  res_fric(j,i)==max_fric 
            rules(i,3)=j; 
            break 
        end; 
    end; 
    rules(i,7)=max_fric;     
end; 
%% trips labels 
[h,s]=size(res_trips); 
for i=1:s 
    max_trips=max(res_trips(:,i)); 
    for j=1:h 
        if  res_trips(j,i)==max_trips 
            rules(i,4)=j; 
            break 
        end; 
    end; 
    rules(i,8)=max_trips;     
end; 
%% IDENTIFY RULE CANDIDATES AND COMPUTE THEIR STRENGTHS FOR EACH OF THE DATA 
PAIRS %% 
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rules(:,9)=rules(:,5).*rules(:,6).*rules(:,7).*rules(:,8); %Com 
obs_rules=rules;   % Observed Rule Candidates and Membership Degrees for Each Data Pairs  
 clear ('max_attr','max_trips','max_prod','max_fric','res_attr','res_trips','res_prod','res_fric',... 
'h','s','i','j','m','n','ant_attr','cons_trips','ant_prod','ant_fric','mfvec')   %clear temporary files 
  
%% COUNT AND SUMMARIZE RULE CANDIDATES 
[m,~]=size(rules); 
mf_prod=5; mf_attr=5; mf_fric=6; mf_trips=20; % Assign number of MFs 
write=zeros(m,5); 
t=1; 
for i=1:mf_prod 
    for r=1:mf_attr 
        for j=1:mf_fric 
            for h=1:mf_trips 
                for k=1:m 
                    if  rules(k,1)==i && rules(k,2)==r && rules(k,3)==j && rules(k,4)==h 
                        write(t,:)=[i r j h rules(k,9)]; 
                        t=t+1; 
                    end; 
                end; 
            end; 
        end; 
    end; 
end; 
write2=write(:,1:1:4); 
write2(m+1,:)=write2(1,:); 
t=1; p=1; g=1; 
summarized_rules=zeros(1,5); 
for i=p:m 
    if  write2(i,:)-write2(i+1,:)==0 
        g=g+1; 
    else 
        summarized_rules(t,:)=write(i,:); 
        summarized_rules(t,5)=g; 
        p=p+1;  
        t=t+1; 
        g=1; 
    end;        
end; 
[v,~]=size(summarized_rules); 
ssum=ones(v,2); 
ssum(1,1)=summarized_rules(1,5); 
k=2; 
for i=1:v-1 
    h=summarized_rules(i+1,5); 
    ssum(k,1)=ssum(k-1,1)+h; 
    k=k+1; 
end; 
[v,~]=size(ssum); 
k=1; 
for i=1:v 
    s=ssum(i); 
    ssum(i,2)=sum(write(k:s,5)); 
    k=s+1; 
end 
summarized_rules=[summarized_rules ssum(:,2)]; 
summarized_rules(:,6)=summarized_rules(:,6)./summarized_rules(:,5); % Counted and Summarized Rule Candidates 
clear ('g','h','i','j','k','m','n','p','s','t','v','y','write','write2','ssum','r')  %clear temporary files 
 %% COMPUTE WEIGHTED AVERAGE OF RULE CANDIDATES - ESTABLISH RULE BASE %% 
srules=[summarized_rules summarized_rules(:,4).*summarized_rules(:,5)]; 
[m,n]=size(srules); 
n_rules=mf_prod*mf_attr*mf_fric; 
write=zeros(n_rules,7); 
t=1; 
for i=1:mf_prod 
    for r=1:mf_attr 
        for j=1:mf_fric 
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            for k=1:m 
                if  srules(k,1)==i && srules(k,2)==r && srules(k,3)==j 
                    write(t,1:4)=[i r j k];      
                end; 
            end; 
            t=t+1; 
        end; 
    end;     
end; 
write2=write; 
z=0; h=0; 
for i=1:n_rules 
    if write2(i,4)==0 
       z=z+1; 
    end; 
end; 
write3=zeros(n_rules-z,7); 
for s=1:n_rules-z 
    for i=1+h:n_rules 
        if  write2(i,4)~=0 
            h=i; 
            write3(s,:)=write2(i,:); 
            break 
        end; 
    end; 
end; 
write3(1,5)=write3(1,4); 
for i=1:n_rules-z-1 
    b=write3(i+1,4); 
    c=write3(i,4); 
    write3(i+1,5)=b-c; 
end 
k=0; y=0;  
for i=1:n_rules-z 
        p=write3(i,5); 
    for j=k+1:p+k 
        y=y+srules(j,7); 
    end; 
    write3(i,6)=y; 
    y=0; 
    k=k+p; 
end; 
k=0; y=0; p=0; 
for i=1:n_rules-z 
        p=write3(i,5); 
    for j=k+1:p+k 
        y=y+srules(j,5); 
    end; 
    write3(i,7)=y; 
    y=0; 
    k=k+p; 
end; 
z=write3(:,6)./write3(:,7); 
z=round(z); 
final_rulebase=[write3(:,1:3) z];  %Establish Final Rule Base 
  
clear ('m','n','i','j','p','k','y','t','write','write2','write3','c','b','h','mf_attr','mf_prod','mf_fric',... 
        'r','s','z','mf_trips','n_rules','rules','srules','data') %clear temporary files 
  
%% OUTPUT OF THE PROGRAM %%   
% The present code produces three outputs: 
% i)Observed rules for each of the data pairs => obs_rules, 
% ii)Counted and summarized rule candidates => summarized_rules, 
% iii)Finally established rule base (before experts control) => final_rulebase. 
--------------------------------------------------------------------------------------------------------------------------------------------- 
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A.8. Fuzzy Rule-Based System (FRBS) - Implication Algorithm 

 
--------------------------------------------------------------------------------------------------------------------------------------------- 
%% FUZZY RULE-BASED SYSTEM (FRBS) - IMPLICATION ALGORITHM 
  
%% Definition of the Program 
%This program is a fuzzy implication of the trip distribution problem 
%The code uses production, attraction, friction data vectors as inputs 
%And estimates trip interactions as output 
%The code uses the predefined fuzzy membership functions and rulebase 
%The implication and the defuzzification techniques are: the "max-product" and the "centroid" techniques 
%At the end, the code produces i) Fuzzy System Output (fuzzy_output),  
%ii) Modelled and Balanced Trip Matrix (Modelled_trips), %iii)Mean Squared Error (MSE),  
%iv)Standardized Root Mean Squared Error (SRMSE) 
  
%Produced in            :15.04.2010      
%Last Modified in     :20.06.2010          ***written by Mert Kompil     ***mertkompil@gmail.com 
  
%% Load Data 
clc; 
clear all; 
load -mat HBW_TRAIN_DATA.mat;    %include data vectors 
load -mat MF_VECTORS.mat;         %include MF points in a structure named 'mfvec'  
load -mat RULEBASE.mat            %include rulebase (150*1)  
  
%% Construct Data Vectors 
row_data=HBW_ROW_DATA_TRAIN;         %HBW train data in the row format 
obs_trips=HBW_OBS_TRAIN;              %Observed trips in matrix format 
ttime=HBW_FRICTION_TRAIN;            %Friction in matrix format 
obs_input=row_data(:,3:5); 
obs_output=row_data(:,6); 
round_input=[obs_input(:,1) obs_input(:,2) roundn(obs_input(:,3),-1)]; 
in1=round_input(:,1); in2=round_input(:,2); in3=round_input(:,3);        % Input vectors 
[m,~]=size(row_data); 
clear ('HBW_ROW_DATA_TRAIN','HBW_FRICTION_TRAIN','HBW_OBS_TRAIN')       %clear temporary files 
  
%% Establish Variable Intervals - Membership function Domains 
x_prod=0:1:1200; x_attr=0:1:2050; x_fric=0:0.1:300; x_fric=roundn(x_fric,-1); %x_trips=0:1:885; 
x_trips0=0:0.005:0.2; x_trips1=1:1:39; x_trips2=40:5:140; x_trips3=145:10:235; x_trips4=245:20:885; 
x_trips=[x_trips0 x_trips1 x_trips2 x_trips3 x_trips4]; 
clear ('x_trips0','x_trips1','x_trips2','x_trips3','x_trips4')           %clear temporary files 
  
%% CONSTRUCT MEMBERSHIP DOMAINS %% 
%% production MFs 
prodmf_1=trapmf(x_prod,mfvec.prod(1:4));        %call MF points from MF_VECTORS.mat 
prodmf_2=trimf(x_prod,mfvec.prod(5:7)); 
prodmf_3=trimf(x_prod,mfvec.prod(8:10)); 
prodmf_4=trimf(x_prod,mfvec.prod(11:13)); 
prodmf_5=trapmf(x_prod,mfvec.prod(14:17)); 
%production MFS - Antecedents  
ant_prod=[prodmf_1;prodmf_2;prodmf_3;prodmf_4;prodmf_5]'; 
%% attraction MFs 
attrmf_1=trapmf(x_attr,mfvec.attr(1:4));         %call MF points from MF_VECTORS.mat 
attrmf_2=trimf(x_attr,mfvec.attr(5:7)); 
attrmf_3=trimf(x_attr,mfvec.attr(8:10)); 
attrmf_4=trimf(x_attr,mfvec.attr(11:13)); 
attrmf_5=trapmf(x_attr,mfvec.attr(14:17)); 
%attraction MFS - Antecedents  
ant_attr=[attrmf_1;attrmf_2;attrmf_3;attrmf_4;attrmf_5]'; 
%% friction MFs 
fricmf_1=trapmf(x_fric,mfvec.fric(1:4));         %call MF points from MF_VECTORS.mat 
fricmf_2=trimf(x_fric,mfvec.fric(5:7)); 
fricmf_3=trimf(x_fric,mfvec.fric(8:10)); 
fricmf_4=trimf(x_fric,mfvec.fric(11:13)); 
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fricmf_5=trimf(x_fric,mfvec.fric(14:16)); 
fricmf_6=trapmf(x_fric,mfvec.fric(17:20)); 
%friction MFS - Antecedents  
ant_fric=[fricmf_1;fricmf_2;fricmf_3;fricmf_4;fricmf_5;fricmf_6]'; 
%% trips MFs 
tripsmf_1=trapmf(x_trips,mfvec.trips(1:4));      %call MF points from MF_VECTORS.mat 
tripsmf_2=trimf(x_trips,mfvec.trips(5:7)); 
tripsmf_3=trimf(x_trips,mfvec.trips(8:10)); 
tripsmf_4=trimf(x_trips,mfvec.trips(11:13)); 
tripsmf_5=trimf(x_trips,mfvec.trips(14:16)); 
tripsmf_6=trimf(x_trips,mfvec.trips(17:19)); 
tripsmf_7=trimf(x_trips,mfvec.trips(20:22)); 
tripsmf_8=trimf(x_trips,mfvec.trips(23:25)); 
tripsmf_9=trimf(x_trips,mfvec.trips(26:28)); 
tripsmf_10=trimf(x_trips,mfvec.trips(29:31)); 
tripsmf_11=trimf(x_trips,mfvec.trips(32:34)); 
tripsmf_12=trimf(x_trips,mfvec.trips(35:37)); 
tripsmf_13=trimf(x_trips,mfvec.trips(38:40)); 
tripsmf_14=trimf(x_trips,mfvec.trips(41:43)); 
tripsmf_15=trimf(x_trips,mfvec.trips(44:46)); 
tripsmf_16=trimf(x_trips,mfvec.trips(47:49)); 
tripsmf_17=trimf(x_trips,mfvec.trips(50:52)); 
tripsmf_18=trimf(x_trips,mfvec.trips(53:55)); 
tripsmf_19=trimf(x_trips,mfvec.trips(56:58)); 
tripsmf_20=trapmf(x_trips,mfvec.trips(59:62)); 
cons_trips=[tripsmf_1;tripsmf_2;tripsmf_3;tripsmf_4;tripsmf_5;tripsmf_6;tripsmf_7; 
            tripsmf_8;tripsmf_9;tripsmf_10;tripsmf_11;tripsmf_12;tripsmf_13;tripsmf_14; 
            tripsmf_15;tripsmf_16;tripsmf_17;tripsmf_18;tripsmf_19;tripsmf_20]; 
         
clear ('prodmf_1','prodmf_2','prodmf_3','prodmf_4','prodmf_5','attrmf_1','attrmf_2','attrmf_3',... 
'attrmf_4','attrmf_5','fricmf_1','fricmf_2','fricmf_3','fricmf_4','fricmf_5','fricmf_6',... 
'tripsmf_1','tripsmf_2','tripsmf_3','tripsmf_4','tripsmf_5','tripsmf_6','tripsmf_7','tripsmf_8',... 
'tripsmf_9','tripsmf_10','tripsmf_11','tripsmf_12','tripsmf_13','tripsmf_14','tripsmf_15',... 
'tripsmf_16','tripsmf_17','tripsmf_18','tripsmf_19','tripsmf_20');  %clear temporary files 
  
%% COMPUTE ANTECEDENTS OF INPUT PAIRS WITH MAX-PRODUCT IMPLICATION %% 
antecedents=zeros(150,m); 
parfor i=1:m 
mf_p=interp1q(x_prod,ant_prod,in1(i));       %Identify MF labels for production variable 
mf_a=interp1q(x_attr,ant_attr,in2(i));       %Identify MF labels for attraction variable 
mf_f=interp1q(x_fric,ant_fric,in3(i));       %Identify MF labels for friction variable 
antecedents(:,i)=[... 
(mf_p(1).*mf_a(1).*mf_f(1));(mf_p(1).*mf_a(2).*mf_f(1));(mf_p(1).*mf_a(3).*mf_f(1)); 
(mf_p(1).*mf_a(4).*mf_f(1));(mf_p(1).*mf_a(5).*mf_f(1));(mf_p(2).*mf_a(1).*mf_f(1)); 
(mf_p(2).*mf_a(2).*mf_f(1));(mf_p(2).*mf_a(3).*mf_f(1));(mf_p(2).*mf_a(4).*mf_f(1)); 
(mf_p(2).*mf_a(5).*mf_f(1));(mf_p(3).*mf_a(1).*mf_f(1));(mf_p(3).*mf_a(2).*mf_f(1)); 
(mf_p(3).*mf_a(3).*mf_f(1));(mf_p(3).*mf_a(4).*mf_f(1));(mf_p(3).*mf_a(5).*mf_f(1)); 
(mf_p(4).*mf_a(1).*mf_f(1));(mf_p(4).*mf_a(2).*mf_f(1));(mf_p(4).*mf_a(3).*mf_f(1)); 
(mf_p(4).*mf_a(4).*mf_f(1));(mf_p(4).*mf_a(5).*mf_f(1));(mf_p(5).*mf_a(1).*mf_f(1)); 
(mf_p(5).*mf_a(2).*mf_f(1));(mf_p(5).*mf_a(3).*mf_f(1));(mf_p(5).*mf_a(4).*mf_f(1)); 
(mf_p(5).*mf_a(5).*mf_f(1));(mf_p(1).*mf_a(1).*mf_f(2));(mf_p(1).*mf_a(2).*mf_f(2)); 
(mf_p(1).*mf_a(3).*mf_f(2));(mf_p(1).*mf_a(4).*mf_f(2));(mf_p(1).*mf_a(5).*mf_f(2)); 
(mf_p(2).*mf_a(1).*mf_f(2));(mf_p(2).*mf_a(2).*mf_f(2));(mf_p(2).*mf_a(3).*mf_f(2)); 
(mf_p(2).*mf_a(4).*mf_f(2));(mf_p(2).*mf_a(5).*mf_f(2));(mf_p(3).*mf_a(1).*mf_f(2)); 
(mf_p(3).*mf_a(2).*mf_f(2));(mf_p(3).*mf_a(3).*mf_f(2));(mf_p(3).*mf_a(4).*mf_f(2)); 
(mf_p(3).*mf_a(5).*mf_f(2));(mf_p(4).*mf_a(1).*mf_f(2));(mf_p(4).*mf_a(2).*mf_f(2)); 
(mf_p(4).*mf_a(3).*mf_f(2));(mf_p(4).*mf_a(4).*mf_f(2));(mf_p(4).*mf_a(5).*mf_f(2)); 
(mf_p(5).*mf_a(1).*mf_f(2));(mf_p(5).*mf_a(2).*mf_f(2));(mf_p(5).*mf_a(3).*mf_f(2)); 
(mf_p(5).*mf_a(4).*mf_f(2));(mf_p(5).*mf_a(5).*mf_f(2));(mf_p(1).*mf_a(1).*mf_f(3)); 
(mf_p(1).*mf_a(2).*mf_f(3));(mf_p(1).*mf_a(3).*mf_f(3));(mf_p(1).*mf_a(4).*mf_f(3)); 
(mf_p(1).*mf_a(5).*mf_f(3));(mf_p(2).*mf_a(1).*mf_f(3));(mf_p(2).*mf_a(2).*mf_f(3)); 
(mf_p(2).*mf_a(3).*mf_f(3));(mf_p(2).*mf_a(4).*mf_f(3));(mf_p(2).*mf_a(5).*mf_f(3)); 
(mf_p(3).*mf_a(1).*mf_f(3));(mf_p(3).*mf_a(2).*mf_f(3));(mf_p(3).*mf_a(3).*mf_f(3)) 
(mf_p(3).*mf_a(4).*mf_f(3));(mf_p(3).*mf_a(5).*mf_f(3));(mf_p(4).*mf_a(1).*mf_f(3)) 
(mf_p(4).*mf_a(2).*mf_f(3));(mf_p(4).*mf_a(3).*mf_f(3));(mf_p(4).*mf_a(4).*mf_f(3)); 
(mf_p(4).*mf_a(5).*mf_f(3));(mf_p(5).*mf_a(1).*mf_f(3));(mf_p(5).*mf_a(2).*mf_f(3)); 
(mf_p(5).*mf_a(3).*mf_f(3));(mf_p(5).*mf_a(4).*mf_f(3));(mf_p(5).*mf_a(5).*mf_f(3)); 
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(mf_p(1).*mf_a(1).*mf_f(4));(mf_p(1).*mf_a(2).*mf_f(4));(mf_p(1).*mf_a(3).*mf_f(4)); 
(mf_p(1).*mf_a(4).*mf_f(4));(mf_p(1).*mf_a(5).*mf_f(4));(mf_p(2).*mf_a(1).*mf_f(4)); 
(mf_p(2).*mf_a(2).*mf_f(4));(mf_p(2).*mf_a(3).*mf_f(4));(mf_p(2).*mf_a(4).*mf_f(4)); 
(mf_p(2).*mf_a(5).*mf_f(4));(mf_p(3).*mf_a(1).*mf_f(4));(mf_p(3).*mf_a(2).*mf_f(4)); 
(mf_p(3).*mf_a(3).*mf_f(4));(mf_p(3).*mf_a(4).*mf_f(4));(mf_p(3).*mf_a(5).*mf_f(4)); 
(mf_p(4).*mf_a(1).*mf_f(4));(mf_p(4).*mf_a(2).*mf_f(4));(mf_p(4).*mf_a(3).*mf_f(4)); 
(mf_p(4).*mf_a(4).*mf_f(4));(mf_p(4).*mf_a(5).*mf_f(4));(mf_p(5).*mf_a(1).*mf_f(4)); 
(mf_p(5).*mf_a(2).*mf_f(4));(mf_p(5).*mf_a(3).*mf_f(4));(mf_p(5).*mf_a(4).*mf_f(4)); 
(mf_p(5).*mf_a(5).*mf_f(4));(mf_p(1).*mf_a(1).*mf_f(5));(mf_p(1).*mf_a(2).*mf_f(5)); 
(mf_p(1).*mf_a(3).*mf_f(5));(mf_p(1).*mf_a(4).*mf_f(5));(mf_p(1).*mf_a(5).*mf_f(5)); 
(mf_p(2).*mf_a(1).*mf_f(5));(mf_p(2).*mf_a(2).*mf_f(5));(mf_p(2).*mf_a(3).*mf_f(5)); 
(mf_p(2).*mf_a(4).*mf_f(5));(mf_p(2).*mf_a(5).*mf_f(5));(mf_p(3).*mf_a(1).*mf_f(5)); 
(mf_p(3).*mf_a(2).*mf_f(5));(mf_p(3).*mf_a(3).*mf_f(5));(mf_p(3).*mf_a(4).*mf_f(5)); 
(mf_p(3).*mf_a(5).*mf_f(5));(mf_p(4).*mf_a(1).*mf_f(5));(mf_p(4).*mf_a(2).*mf_f(5)); 
(mf_p(4).*mf_a(3).*mf_f(5));(mf_p(4).*mf_a(4).*mf_f(5));(mf_p(4).*mf_a(5).*mf_f(5)); 
(mf_p(5).*mf_a(1).*mf_f(5));(mf_p(5).*mf_a(2).*mf_f(5));(mf_p(5).*mf_a(3).*mf_f(5)); 
(mf_p(5).*mf_a(4).*mf_f(5));(mf_p(5).*mf_a(5).*mf_f(5));(mf_p(1).*mf_a(1).*mf_f(6)); 
(mf_p(1).*mf_a(2).*mf_f(6));(mf_p(1).*mf_a(3).*mf_f(6));(mf_p(1).*mf_a(4).*mf_f(6)); 
(mf_p(1).*mf_a(5).*mf_f(6));(mf_p(2).*mf_a(1).*mf_f(6));(mf_p(2).*mf_a(2).*mf_f(6)); 
(mf_p(2).*mf_a(3).*mf_f(6));(mf_p(2).*mf_a(4).*mf_f(6));(mf_p(2).*mf_a(5).*mf_f(6)); 
(mf_p(3).*mf_a(1).*mf_f(6));(mf_p(3).*mf_a(2).*mf_f(6));(mf_p(3).*mf_a(3).*mf_f(6)); 
(mf_p(3).*mf_a(4).*mf_f(6));(mf_p(3).*mf_a(5).*mf_f(6));(mf_p(4).*mf_a(1).*mf_f(6)); 
(mf_p(4).*mf_a(2).*mf_f(6));(mf_p(4).*mf_a(3).*mf_f(6));(mf_p(4).*mf_a(4).*mf_f(6)); 
(mf_p(4).*mf_a(5).*mf_f(6));(mf_p(5).*mf_a(1).*mf_f(6));(mf_p(5).*mf_a(2).*mf_f(6)); 
(mf_p(5).*mf_a(3).*mf_f(6));(mf_p(5).*mf_a(4).*mf_f(6));(mf_p(5).*mf_a(5).*mf_f(6))]; 
end; 
  
%% AGGREGATE WITH CONSEQUENTS AND DEFUZZIFY USING CENTROID DEFUZZIFICATION %% 
rules=rulebase; 
[y,z]=size(x_trips); 
[nrules,g]=size(rulebase); 
fuzzy_output=zeros(m,1); 
consequent=zeros(nrules,z); 
cons0=zeros(nrules,z); 
for i=1:nrules 
cons0(i,:)=cons_trips(rules(i),:); 
end; 
for i=1:m 
    for j=1:z     
    consequent(:,j)=(cons0(:,j).*antecedents(:,i));      
    end; 
aggregation= max(consequent);                             %Aggregation 
output0= defuzz(x_trips,aggregation,'centroid');         %Defuzzifization     
fuzzy_output(i)=output0;           %Fuzzy Output (Modelled trips before balancing) 
end; 
clear ('x_attr','x_prod','x_fric','x_trips','rules','rulebase','y','z','output0',... 
'm','n','nrules','mfvec','i','j','g','ant_attr','ant_fric','ant_prod','cons0','cons_trips',... 
'consequent','antecedents','aggregation','in1','in2','in3','round_input') 
  
%% APPLY BALANCING WITH FURNESS ITERATION AND PRODUCE MODELLED MATRIX %% 
mod=fuzzy_output; 
obsmat=obs_trips; 
[m,n]=size(obsmat); 
modmat=zeros(m,n); 
%% Convert Row Vector to Matrix 
t=1; 
c=m; 
for i=1:n 
    modmat(:,i)=mod((t:1:c)',1); 
    t=t+m; 
    c=c+m; 
end; 
%% Balance Matrix with Iterations 
iter=100; 
prodtot=sum(obs_trips,2)'; 
attrtot=sum(obs_trips); 
attr_mod=sum(modmat);  
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diff_1=ones(iter,n); diff_2=ones(m,iter); 
for d=1:iter 
    diff_1(d,:)=attrtot./attr_mod; 
    for i=1:m 
        for j=1:n 
        modmat(i,j)=diff_1(d,j).*modmat(i,j); 
        end; 
    end; 
    prod_mod=sum(modmat,2)'; 
    diff_2(:,d)=prodtot./prod_mod; 
    for i=1:m 
        for j=1:n 
        modmat(i,j)=diff_2(i,d).*modmat(i,j); 
        end; 
    end; 
    attr_mod=sum(modmat); 
end; 
modelled_trips=modmat;           %Modelled Trip Matrix 
  
%% CALCULATE MSE and SRMSE 
MSE=mse(obsmat-modmat);     %Mean Squared error 
SRMSE=(sqrt((sum(sum((modmat-obsmat).^2)))./(m*n)))/(sum(sum(obsmat))/(m*n));   %Std. Root Mean Squ. Error  
  
clear ('attr_mod','attrtot','prodtot','c','d','i','iter','j','m','n','mod','diff_1','diff_2',... 
    'modmat','obs_input','obs_output','obs_trips','obsmat','prod_mod','row_data','t','ttime') 
  
%% OUTPUT OF THE PROGRAM %%   
% The present code produces three outputs: 
% i)Fuzzy System Output =>fuzzy_output, 
% ii)Modelled Trip Matrix After Balancing =>Modelled_trips, 
% iii)Mean Squared Error =>MSE,  
% iv)Standardized Root Mean Squared Error =>SRMSE. 
--------------------------------------------------------------------------------------------------------------------------------------------- 
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A.9. Genetic Fuzzy Rule-Based System (GFRBS) - Training Algorithm 

 
--------------------------------------------------------------------------------------------------------------------------------------------- 
%% GENETIC FUZZY RULE-BASED SYSTEM (GFRBS) - TRAINING ALGORITHM 
  
%% Definition of the Program 
%This program learns rulebase of a fuzzy system for the trip distribution problem with GAs 
%The code uses production, attraction, friction data vectors as inputs and trip interactions as output 
%The GA code uses predefined fuzzy membership functions and finds an optimum rule base from numerical data 
%The framework of the genetic algorithm is developed from the original work of D.E. Goldberg 
%See his Pascal Codes in 'Genetic Algorithms in Search, Optimization and Machine Learning' 1986, pages:342-349 
%Goldberg's SGA code is improved with elitisizm, ranking, and probabilistic - adaptive mutation 
%And adopted to a GFRBS design 
%The code calls 12 functions which are introduced next: binvecdec.m; flip.m; mfout.m; obj_function.m;...  
%plotGA.m; randint.m; rw_selection.m; reportGA_1; reportGA_2; sp_crossover.m; stats.m; tld.m. 
%At the end, the code produces i)Best Individual Progress (progress1), 
%ii)Average Individual Progress (progress2), 
%iii)A data structure including final population statistics and model results (result_pop). 
  
%Produced in             :10.05.2010      
%Last Modified in       :20.06.2010         ***written by Mert Kompil      ***mertkompil@gmail.com 
  
  
%% LOAD DATA 
clc; 
clear all; 
load -mat HBW_DATA_STRUCTURE.mat; 
load -mat MF_VECTORS.mat; 
load -mat RULEBASE.mat 
%% CREATE GLOBAL VARIABLES for FUNCTION CALLS 
tic 
global psize; global lbit; global maxgen; global crossprob; global mutprob; global nmutation; 
global totcross; global maximum; global minimum; global avg; global sumfitness; 
%% SET STARTING PARAMETERS FOR THE GA 
    psize=20;                  %Population Size      
    lbit=450;                 %Chromosome Length 
    rbit=lbit/3;              %Rulebase Length 
    maxgen =250;                   %Maximum Number of Generations 
    crossprob=1;                   %Crossover Probability      
    mutprob=.001;                %Mutation Probability 
%% CREATE DATA SETS - WRITE VARIABLES INTO STRUCTURES 
    %Trip Data 
data=train_data; 
data.bal_iter=100; 
data.diff_1=ones(data.bal_iter,data.n); 
data.diff_2=ones(data.m,data.bal_iter); 
    %TLD Data 
tlddata.trips=data.rowmat(:,6); 
tlddata.ttime=data.rowmat(:,5); 
tlddata.maxi=max(data.rowmat(:,5));                                   %the maximum friction value 
tlddata.mini=0;                                                          %the minimum friction value - set zero as default value 
tlddata.bin_int=5;                                                       %interval for each bins 
tlddata.max_bin=150;                                                     %the value that bins end 
tlddata.num_bins=floor((tlddata.max_bin/tlddata.bin_int)+1);            %number of bins 
tlddata.TLD=zeros(tlddata.num_bins,4);                           %create a matrix for observed trip length distribution  
tlddata.TLD(:,1)=(1:1:tlddata.num_bins);                                
tlddata.TLD(:,2)=(tlddata.bin_int:tlddata.bin_int:(tlddata.max_bin+tlddata.bin_int))'; 
tlddata.TLD(tlddata.num_bins,2)=tlddata.maxi; 
tlddata.OTLD=tld(data.rowmat(:,6),tlddata); 
tlddata.MTLD=zeros(tlddata.num_bins,4);   
tlddata.obs_mtc=sum(sum(data.obsmat.*data.ttime))/sum(sum(data.obsmat)); 
    %Fuzzy Data - Fuzzy Domains, MFs, Antecedents, Consequents 
in1=data.rowmat(:,3);  
in2=data.rowmat(:,4);  
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in3=roundn(data.rowmat(:,5),-1); 
x_prod=0:1:1200; x_attr=0:1:2050; x_fric=0:0.1:300; x_fric=roundn(x_fric,-1); 
x_trips0=0:0.005:0.2; x_trips1=1:1:39; x_trips2=40:5:140; x_trips3=145:10:235; x_trips4=245:20:885; 
x_trips=[x_trips0 x_trips1 x_trips2 x_trips3 x_trips4]; 
fdata=mfout(data,mfvec,x_prod,x_attr,x_fric,x_trips,in1,in2,in3); 
fdata.xtr=x_trips; 
[~,fdata.nxtr]=size(x_trips); 
[fdata.nrules,~]=size(rulebase); 
fdata.consequent=zeros(fdata.nrules,fdata.nxtr);  
fdata.fuzzyout= zeros(data.k,1);      
fdata.cons0=zeros(fdata.nrules,fdata.nxtr);  
    %Rulebase 
ruleadd=rulebase(rbit+1:1:fdata.nrules);        %Enables partly search of rulebase 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% CREATE INITIAL POPULATION RANDOMLY 
for j = 1:psize 
    sol.chrom       = round(rand(1,lbit)); 
    sol.indbin      = zeros(rbit,3); 
    sol.indreal     = 0; 
    sol.rules       = 0; 
    sol.rulebase    = 0; 
    sol.tlds        = tlddata.OTLD(:,4); 
    sol.modmat      = 0; 
    sol.modrow      = 0; 
    sol.mserr       = 0; 
    sol.srmse       = 0; 
    sol.mtce        = 0; 
    sol.tldrmse     = 0; 
    sol.fitness     = 0; 
    sol.p1          = 0; 
    sol.p2          = 0; 
    sol.xsite       = 0; 
    prevgen(j)      = sol;  %Initial Population  
end 
%% DECODE BINARY NUMBERS INTO DECIMAL NUMBERS (RULE NUMBER)  
for j=1:psize 
    for i=3:3:lbit 
        prevgen(j).indbin(i/3,:)    =prevgen(j).chrom(i-2:i); 
    end 
    for i=1:rbit 
        prevgen(j).indreal(i,1)     =binvec2dec(prevgen(j).indbin(i,:))+1; 
    end 
    for i=1:rbit 
        prevgen(j).rules(i,1)       =rulepool(i,prevgen(j).indreal(i)); 
    end 
end 
%%  SET NEW VARIABLES INTO INITIAL POPULATION - EVALUATE FITNESS 
parfor j=1:psize 
    prevgen(j).rulebase              =[prevgen(j).rules; ruleadd]; 
    [modmat,mserr,srmse]             =obj_function(prevgen(j).rulebase,data,fdata); 
    prevgen(j).modmat                =modmat; 
    prevgen(j).mserr                  =mserr; 
    prevgen(j).srmse                  =srmse; 
    [modrow,mtce,tldrmse,MTLD]       =stats(prevgen(j).modmat,data,tlddata); 
    prevgen(j).modrow                =modrow;     
    prevgen(j).mtce                   =mtce; 
    prevgen(j).tldrmse               =tldrmse; 
    prevgen(j).tlds(:,2)              =MTLD(:,4); 
    prevgen(j).fitness                =prevgen(j).mserr; 
end 
%% CALCULATE STARTING STATISTICS %% 
maximum          = max([prevgen.fitness]); 
avg              = mean([prevgen.fitness]); 
minimum          = min([prevgen.fitness]); 
fitnesssum       = sum([prevgen.fitness]); 
nmutation        = 0; 
totcross         = 0; 
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reportGA_1; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% CREATE SOME VARIABLES %% 
progress1= ones(maxgen,1); progress2= ones(maxgen,1); gen = 0; 
%% CREATE MUTATION VARIABLES (POISSON DISTRIBUTION) %% 
        nmut0        = ceil(psize*lbit*mutprob); 
        nmut1        = ceil(poissrnd(nmut0,maxgen,1).^2); 
        nmut         = sort(nmut1,'descend'); 
%% SET ELITISIZM %% 
elit=psize/10;       %Store 10% of the best chromosome 
[s,ind] = sort([prevgen.fitness],'ascend'); 
for i=1:elit 
    z=ind(i); 
    nextgen(i)=prevgen(z); 
end; 
%% SET RANKING %% 
pow=2.5;            %Use a power function 
rank=zeros(psize,4); 
rank(:,1)=(psize:-1:1)'; 
rank(:,2)=rank(:,1).^pow; 
for i=1:psize 
rank(i,3)=rank(i,2)./sum(rank(:,2)); 
end 
rank(:,4)=ind'; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% GENERATE POPULATIONS THROUGH FINAL SOLUTION - START GENERATIONS %% 
while gen < maxgen 
    gen = gen + 1 
    k = elit+1;  
    %APPLY SELECTION & CROSSOVER OPERATIONS 
    while k <= psize %%%%%%%     
        % Apply Roulette Wheel Selection  
        mate1 = rw_selection(psize, rank);   
        mate2 = rw_selection(psize, rank); 
        % Apply Single Point Crossover 
        [nextgen(k).chrom nextgen(k+1).chrom jcross] = ... 
        sp_crossover(prevgen(mate1).chrom, prevgen(mate2).chrom); 
%% 
    for i=3:3:lbit 
        nextgen(k).indbin(i/3,:)     =nextgen(k).chrom(i-2:i); 
    end 
    for i=1:rbit 
        nextgen(k).indreal(i,1)      =binvec2dec(nextgen(k).indbin(i,:))+1; 
    end 
    for i=1:rbit 
        nextgen(k).rules(i,1)         =rulepool(i,nextgen(k).indreal(i)); 
    end 
        nextgen(k).p1            = mate1; 
        nextgen(k).p2            = mate2; 
        nextgen(k).xsite         = jcross; 
         
    for i=3:3:lbit 
        nextgen(k+1).indbin(i/3,:)     =nextgen(k+1).chrom(i-2:i); 
    end 
    for i=1:rbit 
        nextgen(k+1).indreal(i,1)     =binvec2dec(nextgen(k+1).indbin(i,:))+1; 
    end 
    for i=1:rbit 
        nextgen(k+1).rules(i,1)        =rulepool(i,nextgen(k+1).indreal(i)); 
    end       
        nextgen(k+1).p1          = mate1; 
        nextgen(k+1).p2          = mate2; 
        nextgen(k+1).xsite       = jcross; 
        k = k + 2; 
    end %%%%% 
    %EVALUATE FITNESS 
parfor j=1:psize 
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    nextgen(j).rulebase              =[nextgen(j).rules; ruleadd]; 
    [modmat,mserr,srmse]             =obj_function(nextgen(j).rulebase,data,fdata); 
    nextgen(j).modmat                =modmat; 
    nextgen(j).mserr                  =mserr; 
    nextgen(j).srmse                  =srmse; 
    nextgen(j).fitness                =nextgen(j).mserr; 
end 
    %APPLY MUTATION   
        next         = nextgen; 
        w1           = ceil(psize.*rand(nmut(gen),1));  
        y1           = ceil(lbit.*rand(nmut(gen),1));  
        for     i = 1:length(w1) 
                if  next(w1(i)).chrom(y1(i))==1; 
                    next(w1(i)).chrom(y1(i))=0; 
                else  
                    next(w1(i)).chrom(y1(i))=1; 
                end  
        end 
    %COMPUTE MUTATED CHROMOSOMES FITNESS 
    %Decode Choromosomes  
for j=1:psize 
    for i=3:3:lbit 
        next(j).indbin(i/3,:)     =next(j).chrom(i-2:i); 
    end 
    for i=1:rbit 
        next(j).indreal(i,1)      =binvec2dec(next(j).indbin(i,:))+1; 
    end 
    for i=1:rbit 
        next(j).rules(i,1)        =rulepool(i,next(j).indreal(i)); 
    end 
end 
    %Evaluate Fitness 
parfor j=1:psize 
    next(j).rulebase               =[next(j).rules; ruleadd]; 
    [modmat,mserr,srmse]          =obj_function(next(j).rulebase,data,fdata); 
    next(j).modmat                 =modmat; 
    next(j).mserr                  =mserr; 
    next(j).srmse                  =srmse; 
    next(j).fitness                =next(j).mserr; 
end 
    %APPLY ELITISIZM 
        [t,ind0]  = sort([nextgen.fitness],'ascend'); 
        [s,ind1]  = sort([next.fitness],'ascend'); 
        for i=1:elit 
            y=ind0(i); 
            z=ind1(i); 
            poolgen(i)=nextgen(y); 
            poolgen(elit+i)=next(z); 
        end; 
    [g,ind2] = sort([poolgen.fitness],'ascend'); 
        for i=1:elit 
            z=ind2(i); 
            next(i)=poolgen(z); 
        end;  
    %APPLY RANKING 
    [~,ind3] = sort([next.fitness],'ascend'); 
    rank(:,4)=ind3'; 
    %CALCULATE STATISTICS and REPORT FOR NEW GENERATION 
    sumfitness        = sum([next.fitness]); 
    maximum           = max([next.fitness]); 
    minimum           = min([next.fitness]); 
    avg              = mean([next.fitness]); 
    bestofgen         = minimum; 
    progress1(gen)    = bestofgen; 
    progress2(gen)    = avg; 
    reportGA_2; 
    prevgen           = next;        
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end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% END OF GENERATIONS %% 
  
%% RENAME FINAL POPULATION - COMPUTE TLDs of EACH INDIVIDUAL 
result_pop=next; 
parfor j=1:psize 
    [modrow,mtce,tldrmse,MTLD]         =stats(result_pop(j).modmat,data,tlddata); 
    result_pop(j).modrow                =modrow;     
    result_pop(j).mtce                  =mtce; 
    result_pop(j).tldrmse               =tldrmse; 
    result_pop(j).tlds(:,1)             =tlddata.OTLD(:,4); 
    result_pop(j).tlds(:,2)             =MTLD(:,4); 
end 
%% SHOW BEST RESULT ON SCREEN - PLOT CONVERGENCE 
result=min(progress1) 
plotGA(progress1,progress2) 
toc 
%% CLEAR TEMPORARY FILES %% 
clear('avg','bestofgen','crossprob','data','elit','fdata','fitnesssum','full_data','g','gen','i',... 
    'in1','in2','in3','ind','ind0','ind1','ind2','ind3','j','jcross','k','lbit','mate1','mate2',... 
    'maxgen','maximum','mfvec','minimum','mutprob','next','nextgen','nmut','nmut0','nmut1','test_data',... 
     'nmutation','poolgen','pow','prevgen','psize','rank','rbit','ruleadd','rulebase','rulepool',... 
     's','sol','sumfitness','t','testdata','tlddata','totcross','traindata','w1','x_attr','x_fric','result',... 
     'x_prod','x_trips','x_trips0','x_trips1','x_trips2','x_trips3','x_trips4','y','y1','z','train_data') 
  
%% OUTPUT OF THE PROGRAM %%   
% The present code produces three outputs: 
% i)Best Individual Progress Through Generations =>progress1, 
% i)Average Population Progress Through Generations =>progress1, 
% iii)Final Population Results =>resultpop 
% resultpop includes best individuals with corresponding 
    %rulebase,  
    %modelled trips,  
    %statistics of the modelled trips including MSE, SRMSE,TLD etc.. 
--------------------------------------------------------------------------------------------------------------------------------------------- 
 
 
binvec2dec.m 
--------------------------------------------------------------------------------------------------------------------------------------------- 
%% Convert Binary Numbers to Decimal Numbers 
function out = binvec2dec(vec) 
%       Example: 
%       binvec2dec([1 1 1 0 1]) returns 23 
 if isempty(vec) 
   error('daq:binvec2dec:argcheck', 'B must be defined.  Type ''daqhelp binvec2dec'' for more information.'); 
end 
 % Error if B is not a double. 
if (~isa(vec, 'double') && ~isa(vec, 'logical')) 
   error('daq:binvec2dec:argcheck', 'B must be a binvec.'); 
end 
 % Non-zero values map to 1. 
vec = vec~=0; 
 % Convert the binvec [0 0 1 1] to a binary string '1100'; 
h = deblank(num2str(fliplr(vec)'))'; 
 % Convert the binary string to a decimal number. 
out = bin2dec(h); 
--------------------------------------------------------------------------------------------------------------------------------------------- 
 
flip.m 
--------------------------------------------------------------------------------------------------------------------------------------------- 
% Decide 1 or 0 with Bit-Flip 
function bit = flip(p) 
    if p == 1 
        bit = 1; 
    elseif p == 0 
        bit = 0; 
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    else         
        bit = rand <= p; 
    end 
--------------------------------------------------------------------------------------------------------------------------------------------- 
 
mfout.m 
--------------------------------------------------------------------------------------------------------------------------------------------- 
%% Set Fuzzy MFs - Identify Antecedents 
function fuzzydata = mfout(data,mfvec,x_prod,x_attr,x_fric,x_trips,in1,in2,in3) 
%% MEMBERSHIP FUNCTIONS 
    %production 
prodmf_1=trapmf(x_prod,mfvec.prod(1:4)); 
prodmf_2=trimf(x_prod,mfvec.prod(5:7)); 
prodmf_3=trimf(x_prod,mfvec.prod(8:10)); 
prodmf_4=trimf(x_prod,mfvec.prod(11:13)); 
prodmf_5=trapmf(x_prod,mfvec.prod(14:17)); 
ant_prod=[prodmf_1;prodmf_2;prodmf_3;prodmf_4;prodmf_5]'; 
    %attraction 
attrmf_1=trapmf(x_attr,mfvec.attr(1:4)); 
attrmf_2=trimf(x_attr,mfvec.attr(5:7)); 
attrmf_3=trimf(x_attr,mfvec.attr(8:10)); 
attrmf_4=trimf(x_attr,mfvec.attr(11:13)); 
attrmf_5=trapmf(x_attr,mfvec.attr(14:17)); 
ant_attr=[attrmf_1;attrmf_2;attrmf_3;attrmf_4;attrmf_5]'; 
    %friction 
fricmf_1=trapmf(x_fric,mfvec.fric(1:4)); 
fricmf_2=trimf(x_fric,mfvec.fric(5:7)); 
fricmf_3=trimf(x_fric,mfvec.fric(8:10)); 
fricmf_4=trimf(x_fric,mfvec.fric(11:13)); 
fricmf_5=trimf(x_fric,mfvec.fric(14:16)); 
fricmf_6=trapmf(x_fric,mfvec.fric(17:20)); 
ant_fric=[fricmf_1;fricmf_2;fricmf_3;fricmf_4;fricmf_5;fricmf_6]'; 
    %trips 
tripsmf_1=trapmf(x_trips,mfvec.trips(1:4)); 
tripsmf_2=trimf(x_trips,mfvec.trips(5:7)); 
tripsmf_3=trimf(x_trips,mfvec.trips(8:10)); 
tripsmf_4=trimf(x_trips,mfvec.trips(11:13)); 
tripsmf_5=trimf(x_trips,mfvec.trips(14:16)); 
tripsmf_6=trimf(x_trips,mfvec.trips(17:19)); 
tripsmf_7=trimf(x_trips,mfvec.trips(20:22)); 
tripsmf_8=trimf(x_trips,mfvec.trips(23:25)); 
tripsmf_9=trimf(x_trips,mfvec.trips(26:28)); 
tripsmf_10=trimf(x_trips,mfvec.trips(29:31)); 
tripsmf_11=trimf(x_trips,mfvec.trips(32:34)); 
tripsmf_12=trimf(x_trips,mfvec.trips(35:37)); 
tripsmf_13=trimf(x_trips,mfvec.trips(38:40)); 
tripsmf_14=trimf(x_trips,mfvec.trips(41:43)); 
tripsmf_15=trimf(x_trips,mfvec.trips(44:46)); 
tripsmf_16=trimf(x_trips,mfvec.trips(47:49)); 
tripsmf_17=trimf(x_trips,mfvec.trips(50:52)); 
tripsmf_18=trimf(x_trips,mfvec.trips(53:55)); 
tripsmf_19=trimf(x_trips,mfvec.trips(56:58)); 
tripsmf_20=trapmf(x_trips,mfvec.trips(59:62)); 
cons_trips=[tripsmf_1;tripsmf_2;tripsmf_3;tripsmf_4;tripsmf_5;tripsmf_6;tripsmf_7; 
            tripsmf_8;tripsmf_9;tripsmf_10;tripsmf_11;tripsmf_12;tripsmf_13;tripsmf_14; 
            tripsmf_15;tripsmf_16;tripsmf_17;tripsmf_18;tripsmf_19;tripsmf_20]; 
  
%% 
antecedents=zeros(150,data.k); 
parfor i=1:data.k 
mf_p=interp1q(x_prod,ant_prod,in1(i)); 
mf_a=interp1q(x_attr,ant_attr,in2(i)); 
mf_f=interp1q(x_fric,ant_fric,in3(i)); 
antecedents(:,i)=[... 
(mf_p(1).*mf_a(1).*mf_f(1));(mf_p(1).*mf_a(2).*mf_f(1));(mf_p(1).*mf_a(3).*mf_f(1)); 
(mf_p(1).*mf_a(4).*mf_f(1));(mf_p(1).*mf_a(5).*mf_f(1));(mf_p(2).*mf_a(1).*mf_f(1)); 
(mf_p(2).*mf_a(2).*mf_f(1));(mf_p(2).*mf_a(3).*mf_f(1));(mf_p(2).*mf_a(4).*mf_f(1)); 
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(mf_p(2).*mf_a(5).*mf_f(1));(mf_p(3).*mf_a(1).*mf_f(1));(mf_p(3).*mf_a(2).*mf_f(1)); 
(mf_p(3).*mf_a(3).*mf_f(1));(mf_p(3).*mf_a(4).*mf_f(1));(mf_p(3).*mf_a(5).*mf_f(1)); 
(mf_p(4).*mf_a(1).*mf_f(1));(mf_p(4).*mf_a(2).*mf_f(1));(mf_p(4).*mf_a(3).*mf_f(1)); 
(mf_p(4).*mf_a(4).*mf_f(1));(mf_p(4).*mf_a(5).*mf_f(1));(mf_p(5).*mf_a(1).*mf_f(1)); 
(mf_p(5).*mf_a(2).*mf_f(1));(mf_p(5).*mf_a(3).*mf_f(1));(mf_p(5).*mf_a(4).*mf_f(1)); 
(mf_p(5).*mf_a(5).*mf_f(1));(mf_p(1).*mf_a(1).*mf_f(2));(mf_p(1).*mf_a(2).*mf_f(2)); 
(mf_p(1).*mf_a(3).*mf_f(2));(mf_p(1).*mf_a(4).*mf_f(2));(mf_p(1).*mf_a(5).*mf_f(2)); 
(mf_p(2).*mf_a(1).*mf_f(2));(mf_p(2).*mf_a(2).*mf_f(2));(mf_p(2).*mf_a(3).*mf_f(2)); 
(mf_p(2).*mf_a(4).*mf_f(2));(mf_p(2).*mf_a(5).*mf_f(2));(mf_p(3).*mf_a(1).*mf_f(2)); 
(mf_p(3).*mf_a(2).*mf_f(2));(mf_p(3).*mf_a(3).*mf_f(2));(mf_p(3).*mf_a(4).*mf_f(2)); 
(mf_p(3).*mf_a(5).*mf_f(2));(mf_p(4).*mf_a(1).*mf_f(2));(mf_p(4).*mf_a(2).*mf_f(2)); 
(mf_p(4).*mf_a(3).*mf_f(2));(mf_p(4).*mf_a(4).*mf_f(2));(mf_p(4).*mf_a(5).*mf_f(2)); 
(mf_p(5).*mf_a(1).*mf_f(2));(mf_p(5).*mf_a(2).*mf_f(2));(mf_p(5).*mf_a(3).*mf_f(2)); 
(mf_p(5).*mf_a(4).*mf_f(2));(mf_p(5).*mf_a(5).*mf_f(2));(mf_p(1).*mf_a(1).*mf_f(3)); 
(mf_p(1).*mf_a(2).*mf_f(3));(mf_p(1).*mf_a(3).*mf_f(3));(mf_p(1).*mf_a(4).*mf_f(3)); 
(mf_p(1).*mf_a(5).*mf_f(3));(mf_p(2).*mf_a(1).*mf_f(3));(mf_p(2).*mf_a(2).*mf_f(3)); 
(mf_p(2).*mf_a(3).*mf_f(3));(mf_p(2).*mf_a(4).*mf_f(3));(mf_p(2).*mf_a(5).*mf_f(3)); 
(mf_p(3).*mf_a(1).*mf_f(3));(mf_p(3).*mf_a(2).*mf_f(3));(mf_p(3).*mf_a(3).*mf_f(3)) 
(mf_p(3).*mf_a(4).*mf_f(3));(mf_p(3).*mf_a(5).*mf_f(3));(mf_p(4).*mf_a(1).*mf_f(3)) 
(mf_p(4).*mf_a(2).*mf_f(3));(mf_p(4).*mf_a(3).*mf_f(3));(mf_p(4).*mf_a(4).*mf_f(3)); 
(mf_p(4).*mf_a(5).*mf_f(3));(mf_p(5).*mf_a(1).*mf_f(3));(mf_p(5).*mf_a(2).*mf_f(3)); 
(mf_p(5).*mf_a(3).*mf_f(3));(mf_p(5).*mf_a(4).*mf_f(3));(mf_p(5).*mf_a(5).*mf_f(3)); 
(mf_p(1).*mf_a(1).*mf_f(4));(mf_p(1).*mf_a(2).*mf_f(4));(mf_p(1).*mf_a(3).*mf_f(4)); 
(mf_p(1).*mf_a(4).*mf_f(4));(mf_p(1).*mf_a(5).*mf_f(4));(mf_p(2).*mf_a(1).*mf_f(4)); 
(mf_p(2).*mf_a(2).*mf_f(4));(mf_p(2).*mf_a(3).*mf_f(4));(mf_p(2).*mf_a(4).*mf_f(4)); 
(mf_p(2).*mf_a(5).*mf_f(4));(mf_p(3).*mf_a(1).*mf_f(4));(mf_p(3).*mf_a(2).*mf_f(4)); 
(mf_p(3).*mf_a(3).*mf_f(4));(mf_p(3).*mf_a(4).*mf_f(4));(mf_p(3).*mf_a(5).*mf_f(4)); 
(mf_p(4).*mf_a(1).*mf_f(4));(mf_p(4).*mf_a(2).*mf_f(4));(mf_p(4).*mf_a(3).*mf_f(4)); 
(mf_p(4).*mf_a(4).*mf_f(4));(mf_p(4).*mf_a(5).*mf_f(4));(mf_p(5).*mf_a(1).*mf_f(4)); 
(mf_p(5).*mf_a(2).*mf_f(4));(mf_p(5).*mf_a(3).*mf_f(4));(mf_p(5).*mf_a(4).*mf_f(4)); 
(mf_p(5).*mf_a(5).*mf_f(4));(mf_p(1).*mf_a(1).*mf_f(5));(mf_p(1).*mf_a(2).*mf_f(5)); 
(mf_p(1).*mf_a(3).*mf_f(5));(mf_p(1).*mf_a(4).*mf_f(5));(mf_p(1).*mf_a(5).*mf_f(5)); 
(mf_p(2).*mf_a(1).*mf_f(5));(mf_p(2).*mf_a(2).*mf_f(5));(mf_p(2).*mf_a(3).*mf_f(5)); 
(mf_p(2).*mf_a(4).*mf_f(5));(mf_p(2).*mf_a(5).*mf_f(5));(mf_p(3).*mf_a(1).*mf_f(5)); 
(mf_p(3).*mf_a(2).*mf_f(5));(mf_p(3).*mf_a(3).*mf_f(5));(mf_p(3).*mf_a(4).*mf_f(5)); 
(mf_p(3).*mf_a(5).*mf_f(5));(mf_p(4).*mf_a(1).*mf_f(5));(mf_p(4).*mf_a(2).*mf_f(5)); 
(mf_p(4).*mf_a(3).*mf_f(5));(mf_p(4).*mf_a(4).*mf_f(5));(mf_p(4).*mf_a(5).*mf_f(5)); 
(mf_p(5).*mf_a(1).*mf_f(5));(mf_p(5).*mf_a(2).*mf_f(5));(mf_p(5).*mf_a(3).*mf_f(5)); 
(mf_p(5).*mf_a(4).*mf_f(5));(mf_p(5).*mf_a(5).*mf_f(5));(mf_p(1).*mf_a(1).*mf_f(6)); 
(mf_p(1).*mf_a(2).*mf_f(6));(mf_p(1).*mf_a(3).*mf_f(6));(mf_p(1).*mf_a(4).*mf_f(6)); 
(mf_p(1).*mf_a(5).*mf_f(6));(mf_p(2).*mf_a(1).*mf_f(6));(mf_p(2).*mf_a(2).*mf_f(6)); 
(mf_p(2).*mf_a(3).*mf_f(6));(mf_p(2).*mf_a(4).*mf_f(6));(mf_p(2).*mf_a(5).*mf_f(6)); 
(mf_p(3).*mf_a(1).*mf_f(6));(mf_p(3).*mf_a(2).*mf_f(6));(mf_p(3).*mf_a(3).*mf_f(6)); 
(mf_p(3).*mf_a(4).*mf_f(6));(mf_p(3).*mf_a(5).*mf_f(6));(mf_p(4).*mf_a(1).*mf_f(6)); 
(mf_p(4).*mf_a(2).*mf_f(6));(mf_p(4).*mf_a(3).*mf_f(6));(mf_p(4).*mf_a(4).*mf_f(6)); 
(mf_p(4).*mf_a(5).*mf_f(6));(mf_p(5).*mf_a(1).*mf_f(6));(mf_p(5).*mf_a(2).*mf_f(6)); 
(mf_p(5).*mf_a(3).*mf_f(6));(mf_p(5).*mf_a(4).*mf_f(6));(mf_p(5).*mf_a(5).*mf_f(6))]; 
end; 
fuzzydata.const=cons_trips;         
fuzzydata.ant=antecedents;                
--------------------------------------------------------------------------------------------------------------------------------------------- 
 
obj_function.m 
--------------------------------------------------------------------------------------------------------------------------------------------- 
%% Evaluate Fitness of the Chromosomes 
function  [modmat,mse_out,srmse_out]= obj_function(rules,data,fdata) 
%% FIND FUZZY OUTPUT %%%%%%%%%% 
for i=1:fdata.nrules 
fdata.cons0(i,:)=fdata.const(rules(i),:); 
end; 
%% 
for i=1:data.k 
    for j=1:fdata.nxtr     
    fdata.consequent(:,j)=(fdata.cons0(:,j).*fdata.ant(:,i)); 
    end; 
aggregation= max(fdata.consequent); 
output0= defuzz(fdata.xtr,aggregation,'centroid'); 
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fdata.fuzzyout(i)=output0; 
end; 
  
%% FIND SRMSE %%%%%%%% 
mod=fdata.fuzzyout; 
obsmat=data.obsmat; 
m=data.m; 
n=data.n; 
%% Convert to Matrix 
t=1; 
c=m; 
for i=1:n 
    data.modmat(:,i)=mod((t:1:c)',1); 
    t=t+m; 
    c=c+m; 
end; 
%% Balance Matrix 
modmat=data.modmat; 
attr_mod=sum(modmat); 
for d=1:data.bal_iter 
    data.diff_1(d,:)=data.attrtot./attr_mod; 
    for i=1:m 
        for j=1:n 
        modmat(i,j)=data.diff_1(d,j).*modmat(i,j); 
        end; 
    end; 
    prod_mod=sum(modmat,2)'; 
    data.diff_2(:,d)=data.prodtot./prod_mod; 
    for i=1:m 
        for j=1:n 
        modmat(i,j)=data.diff_2(i,d).*modmat(i,j); 
        end; 
    end; 
    attr_mod=sum(modmat); 
end; 
 %% Calculate MSE 
mse_out=mse(obsmat-modmat); 
%% Calculate SRMSE 
srmse_out=(sqrt((sum(sum((modmat-obsmat).^2)))./(m*n)))/(sum(sum(obsmat))/(m*n));  
--------------------------------------------------------------------------------------------------------------------------------------------- 
 
plotGA.m 
--------------------------------------------------------------------------------------------------------------------------------------------- 
%% Plot Convergence 
function  plotGA(progress1,progress2) 
% DRAW CONVERGENCE I 
figure;  
semilogy(progress1); 
title('Convergence to Solution'); 
xlabel('Iterations'); 
ylabel('Best Individual in Whole Generation') 
fprintf('\n') 
% DRAW CONVERGENCE II 
figure;  
semilogy(progress2); 
title('Average Population Progress '); 
xlabel('Iterations'); 
ylabel('Average Fitness') 
fprintf('\n') 
--------------------------------------------------------------------------------------------------------------------------------------------- 
 
randint.m 
--------------------------------------------------------------------------------------------------------------------------------------------- 
% Creat a random integer from a closed interval [a,b] 
function r = randint(low,high) 
    if low >= high 
        r = low; 
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    else 
        r = low + fix(rand* (high - low + 1)); 
    end 
--------------------------------------------------------------------------------------------------------------------------------------------- 
 
reportGA_1.m 
--------------------------------------------------------------------------------------------------------------------------------------------- 
%% Report Starting Options 
fprintf('\n') 
fprintf('\n') 
fprintf('   GA Parameters\n') 
fprintf('   -------------------------------------------------\n') 
fprintf('   Population size (psize)              =   %d\n', psize) 
fprintf('   Chromosome length (lbit)             =   %d\n',lbit) 
fprintf('   Maximum # of generation (maxgen)     =   %d\n',maxgen) 
fprintf('   Crossover probability (crossprob)    =   %f\n' ,crossprob) 
fprintf('   Mutation  probability (mutprob)      =   %f\n',mutprob) 
fprintf('   -------------------------------------------------\n') 
fprintf('\n') 
fprintf('\n') 
fprintf('   Starting Population Statistics\n') 
fprintf('   -------------------------------------------------\n') 
fprintf('   Maximum fitness = %f\n',maximum) 
fprintf('   Average fitness = %f\n',avg) 
fprintf('   Minimum fitness = %f\n',minimum) 
fprintf('   Sum  of fitness  = %f\n',fitnesssum) 
fprintf('   -------------------------------------------------\n') 
--------------------------------------------------------------------------------------------------------------------------------------------- 
 
reportGA_2.m 
--------------------------------------------------------------------------------------------------------------------------------------------- 
%% Report Population Fitness in Each Genration 
fprintf('\n') 
fprintf('\n') 
fprintf('Generation Report\n') 
fprintf('-------------------------------------------------------------------------------------------------------------------\n'); 
fprintf('%1s %d %46s %d\n', 'Generation', gen-1, '|Generation', gen); 
fprintf('-------------                                   |-------------\n') 
fprintf(' #     code             x          fitness      |   #   mates   xsite         code            x          fitness   '); 
fprintf('   \n') 
fprintf('------------------------------------------------|-------------------------------------------------------------------\n'); 
  
for j = 1:psize 
    fprintf('%2d)    ', j); 
    fprintf('%d', prevgen(j).chrom); 
    fprintf('    %10d', prevgen(j).srmse);   
    fprintf('    %10d', prevgen(j).fitness); 
    fprintf('%9s %3d) (%2d,%2d)  ', '|', j, next(j).p1, next(j).p2); 
        if next(j).xsite(1) ~= -1 
            fprintf('[%2d]          ', next(j).xsite(1));    
        else 
            fprintf('[No]          ');   
        end 
    fprintf('%d', next(j).chrom); 
    fprintf('    %10d', next(j).srmse); 
    fprintf('    %11d\n', next(j).fitness); 
end 
fprintf('-------------------------------------------------------------------------------------------------------------------\n');    
fprintf('Generation %d', gen); 
fprintf('\n') 
fprintf('Statistics:') 
fprintf('  sum = %g', fitnesssum); 
fprintf('  max = %g', maximum); 
fprintf('  min = %g', minimum); 
fprintf('  avg = %g', avg); 
fprintf('\n') 
fprintf('           ') 
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fprintf('  nmutation = %d', nmut(gen)); 
fprintf('  totcross = %d', totcross); 
fprintf('  solution for the generation -----> %d\n', bestofgen); 
fprintf('-------------------------------------------------------------------------------------------------------------------\n');    
fprintf('\n') 
fprintf('\n') 
--------------------------------------------------------------------------------------------------------------------------------------------- 
 
rw_selection.m 
--------------------------------------------------------------------------------------------------------------------------------------------- 
% Apply Roulette Wheel Slection 
function p = rw_selection(psize, rank) 
    partsum = 0; 
    j = 0; 
    randnum =  rand; 
    while (partsum < randnum && j < psize) 
        j = j+1; 
        partsum = partsum + rank(j,3); 
    end 
p=rank(j,4); 
 --------------------------------------------------------------------------------------------------------------------------------------------- 
 
sp_crossover.m 
--------------------------------------------------------------------------------------------------------------------------------------------- 
%% Apply Crossover 
function [child1 child2 jcross] = sp_crossover(parent1, parent2) 
    global crossprob; 
    global totcross; 
    global lbit; 
  
    if flip(crossprob)  == 1 
        jcross = randint(1, lbit - 1); 
        totcross = totcross + 1;     
  
        for j = 1:jcross 
            child1(j) = (parent1(j)); 
            child2(j) = (parent2(j)); 
        end 
  
        for j = jcross+1:lbit 
            child1(j) = (parent2(j)); 
            child2(j) = (parent1(j));            
        end  
    else 
        jcross = -1; 
        for j = 1:lbit 
            child1(j) = (parent1(j)); 
            child2(j) = (parent2(j)); 
        end 
    end 
 --------------------------------------------------------------------------------------------------------------------------------------------- 
 
stats.m 
--------------------------------------------------------------------------------------------------------------------------------------------- 
%% Calculate Statistics 
function  [mod_row,mtce_out,tldrmse_out,tld_out]= stats(modmat,data,tlddata) 
m=data.m; 
n=data.n; 
k=data.k; 
%% Calculate MTCE 
mod_mtc=sum(sum(modmat.*data.ttime))/sum(sum(modmat)); 
mtce=(tlddata.obs_mtc-mod_mtc); 
%% Calculate TLD RMSE 
        convert=ones(k,1); 
        v=1; 
        for o=1:m 
            temp=modmat(:,v); 
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            convert(o,1)=temp(o); 
        end; 
        v=v+1; 
        t=1; 
        x=0; 
        for u=1:n-1 
            for f=t:m*u 
            temp=modmat(:,v); 
            convert(m+f,1)=temp(x+f);     
            end; 
            t=t+m; 
            v=v+1; 
            x=x-m; 
        end; 
       mod_row=convert; 
tld_out=tld(mod_row,tlddata); 
tlddata.MTLD=tld_out; 
tld_rmse =(sqrt((sum((tlddata.OTLD(:,4)-tlddata.MTLD(:,4)).^2))))/tlddata.num_bins; 
%% 
mtce_out=mtce; 
tldrmse_out=tld_rmse; 
--------------------------------------------------------------------------------------------------------------------------------------------- 
 
tld.m 
--------------------------------------------------------------------------------------------------------------------------------------------- 
%% Compute Trip Length Distribution 
function tld_output = tld(trips,tlddata)  
row_trips=trips; 
row_ttime=tlddata.ttime; 
TLD0=tlddata.TLD; 
[h,~]=size(row_trips);                                   %matrix index 
for i=1:h                                                 %produce observed trip length distribution 
    for k=1:tlddata.num_bins-1 
        if tlddata.mini <= row_ttime(i) && row_ttime(i) < TLD0(1,2) 
           TLD0(1,3)= TLD0(1,3)+row_trips(i); 
           break 
        end; 
        if TLD0(k,2) <= row_ttime(i) && row_ttime(i)< TLD0(k+1,2) 
           TLD0(k+1,3)= TLD0(k+1,3)+row_trips(i); 
           break 
        end; 
    end; 
end; 
  
for i=1:tlddata.num_bins 
    TLD0(i,4)=(TLD0(i,3)/sum(TLD0(:,3)))*100; 
end; 
tld_output=TLD0; 
--------------------------------------------------------------------------------------------------------------------------------------------- 
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APPENDIX B 

 

RULE BASES 

 
B.1. Rule Base of the Fuzzy Rule-Based System (FRBS) 

 
Rule Number Antecedents Consequents 
Rule 1 IF Pi is MF1 and Ai is MF1 and Fi is MF1 THEN Ti is MF3 
Rule 2 IF Pi is MF1 and Ai is MF2 and Fi is MF1 THEN Ti is MF3 
Rule 3 IF Pi is MF1 and Ai is MF3 and Fi is MF1 THEN Ti is MF4 
Rule 4 IF Pi is MF1 and Ai is MF4 and Fi is MF1 THEN Ti is MF5 
Rule 5 IF Pi is MF1 and Ai is MF5 and Fi is MF1 THEN Ti is MF6 
Rule 6 IF Pi is MF2 and Ai is MF1 and Fi is MF1 THEN Ti is MF5 
Rule 7 IF Pi is MF2 and Ai is MF2 and Fi is MF1 THEN Ti is MF8 
Rule 8 IF Pi is MF2 and Ai is MF3 and Fi is MF1 THEN Ti is MF11 
Rule 9 IF Pi is MF2 and Ai is MF4 and Fi is MF1 THEN Ti is MF11 
Rule 10 IF Pi is MF2 and Ai is MF5 and Fi is MF1 THEN Ti is MF15 
Rule 11 IF Pi is MF3 and Ai is MF1 and Fi is MF1 THEN Ti is MF11 
Rule 12 IF Pi is MF3 and Ai is MF2 and Fi is MF1 THEN Ti is MF11 
Rule 13 IF Pi is MF3 and Ai is MF3 and Fi is MF1 THEN Ti is MF11 
Rule 14 IF Pi is MF3 and Ai is MF4 and Fi is MF1 THEN Ti is MF12 
Rule 15 IF Pi is MF3 and Ai is MF5 and Fi is MF1 THEN Ti is MF17 
Rule 16 IF Pi is MF4 and Ai is MF1 and Fi is MF1 THEN Ti is MF6 
Rule 17 IF Pi is MF4 and Ai is MF2 and Fi is MF1 THEN Ti is MF13 
Rule 18 IF Pi is MF4 and Ai is MF3 and Fi is MF1 THEN Ti is MF15 
Rule 19 IF Pi is MF4 and Ai is MF4 and Fi is MF1 THEN Ti is MF14 
Rule 20 IF Pi is MF4 and Ai is MF5 and Fi is MF1 THEN Ti is MF19 
Rule 21 IF Pi is MF5 and Ai is MF1 and Fi is MF1 THEN Ti is MF8 
Rule 22 IF Pi is MF5 and Ai is MF2 and Fi is MF1 THEN Ti is MF16 
Rule 23 IF Pi is MF5 and Ai is MF3 and Fi is MF1 THEN Ti is MF18 
Rule 24 IF Pi is MF5 and Ai is MF4 and Fi is MF1 THEN Ti is MF19 
Rule 25 IF Pi is MF5 and Ai is MF5 and Fi is MF1 THEN Ti is MF20 
Rule 26 IF Pi is MF1 and Ai is MF1 and Fi is MF2 THEN Ti is MF2 
Rule 27 IF Pi is MF1 and Ai is MF2 and Fi is MF2 THEN Ti is MF2 
Rule 28 IF Pi is MF1 and Ai is MF3 and Fi is MF2 THEN Ti is MF4 
Rule 29 IF Pi is MF1 and Ai is MF4 and Fi is MF2 THEN Ti is MF4 
Rule 30 IF Pi is MF1 and Ai is MF5 and Fi is MF2 THEN Ti is MF5 
Rule 31 IF Pi is MF2 and Ai is MF1 and Fi is MF2 THEN Ti is MF2 
Rule 32 IF Pi is MF2 and Ai is MF2 and Fi is MF2 THEN Ti is MF4 
Rule 33 IF Pi is MF2 and Ai is MF3 and Fi is MF2 THEN Ti is MF6 
Rule 34 IF Pi is MF2 and Ai is MF4 and Fi is MF2 THEN Ti is MF7 
Rule 35 IF Pi is MF2 and Ai is MF5 and Fi is MF2 THEN Ti is MF8 
Rule 36 IF Pi is MF3 and Ai is MF1 and Fi is MF2 THEN Ti is MF3 
Rule 37 IF Pi is MF3 and Ai is MF2 and Fi is MF2 THEN Ti is MF6 
Rule 38 IF Pi is MF3 and Ai is MF3 and Fi is MF2 THEN Ti is MF7 
Rule 39 IF Pi is MF3 and Ai is MF4 and Fi is MF2 THEN Ti is MF8 
Rule 40 IF Pi is MF3 and Ai is MF5 and Fi is MF2 THEN Ti is MF13 
Rule 41 IF Pi is MF4 and Ai is MF1 and Fi is MF2 THEN Ti is MF5 
Rule 42 IF Pi is MF4 and Ai is MF2 and Fi is MF2 THEN Ti is MF7 
Rule 43 IF Pi is MF4 and Ai is MF3 and Fi is MF2 THEN Ti is MF9 
Rule 44 IF Pi is MF4 and Ai is MF4 and Fi is MF2 THEN Ti is MF10 
Rule 45 IF Pi is MF4 and Ai is MF5 and Fi is MF2 THEN Ti is MF12 
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Rule 46 IF Pi is MF5 and Ai is MF1 and Fi is MF2 THEN Ti is MF3 
Rule 47 IF Pi is MF5 and Ai is MF2 and Fi is MF2 THEN Ti is MF8 
Rule 48 IF Pi is MF5 and Ai is MF3 and Fi is MF2 THEN Ti is MF11 
Rule 49 IF Pi is MF5 and Ai is MF4 and Fi is MF2 THEN Ti is MF15 
Rule 50 IF Pi is MF5 and Ai is MF5 and Fi is MF2 THEN Ti is MF16 
Rule 51 IF Pi is MF1 and Ai is MF1 and Fi is MF3 THEN Ti is MF1 
Rule 52 IF Pi is MF1 and Ai is MF2 and Fi is MF3 THEN Ti is MF1 
Rule 53 IF Pi is MF1 and Ai is MF3 and Fi is MF3 THEN Ti is MF2 
Rule 54 IF Pi is MF1 and Ai is MF4 and Fi is MF3 THEN Ti is MF2 
Rule 55 IF Pi is MF1 and Ai is MF5 and Fi is MF3 THEN Ti is MF2 
Rule 56 IF Pi is MF2 and Ai is MF1 and Fi is MF3 THEN Ti is MF2 
Rule 57 IF Pi is MF2 and Ai is MF2 and Fi is MF3 THEN Ti is MF2 
Rule 58 IF Pi is MF2 and Ai is MF3 and Fi is MF3 THEN Ti is MF4 
Rule 59 IF Pi is MF2 and Ai is MF4 and Fi is MF3 THEN Ti is MF6 
Rule 60 IF Pi is MF2 and Ai is MF5 and Fi is MF3 THEN Ti is MF4 
Rule 61 IF Pi is MF3 and Ai is MF1 and Fi is MF3 THEN Ti is MF2 
Rule 62 IF Pi is MF3 and Ai is MF2 and Fi is MF3 THEN Ti is MF4 
Rule 63 IF Pi is MF3 and Ai is MF3 and Fi is MF3 THEN Ti is MF5 
Rule 64 IF Pi is MF3 and Ai is MF4 and Fi is MF3 THEN Ti is MF1 
Rule 65 IF Pi is MF3 and Ai is MF5 and Fi is MF3 THEN Ti is MF7 
Rule 66 IF Pi is MF4 and Ai is MF1 and Fi is MF3 THEN Ti is MF3 
Rule 67 IF Pi is MF4 and Ai is MF2 and Fi is MF3 THEN Ti is MF5 
Rule 68 IF Pi is MF4 and Ai is MF3 and Fi is MF3 THEN Ti is MF6 
Rule 69 IF Pi is MF4 and Ai is MF4 and Fi is MF3 THEN Ti is MF10 
Rule 70 IF Pi is MF4 and Ai is MF5 and Fi is MF3 THEN Ti is MF10 
Rule 71 IF Pi is MF5 and Ai is MF1 and Fi is MF3 THEN Ti is MF3 
Rule 72 IF Pi is MF5 and Ai is MF2 and Fi is MF3 THEN Ti is MF4 
Rule 73 IF Pi is MF5 and Ai is MF3 and Fi is MF3 THEN Ti is MF7 
Rule 74 IF Pi is MF5 and Ai is MF4 and Fi is MF3 THEN Ti is MF9 
Rule 75 IF Pi is MF5 and Ai is MF5 and Fi is MF3 THEN Ti is MF10 
Rule 76 IF Pi is MF1 and Ai is MF1 and Fi is MF4 THEN Ti is MF1 
Rule 77 IF Pi is MF1 and Ai is MF2 and Fi is MF4 THEN Ti is MF1 
Rule 78 IF Pi is MF1 and Ai is MF3 and Fi is MF4 THEN Ti is MF1 
Rule 79 IF Pi is MF1 and Ai is MF4 and Fi is MF4 THEN Ti is MF2 
Rule 80 IF Pi is MF1 and Ai is MF5 and Fi is MF4 THEN Ti is MF2 
Rule 81 IF Pi is MF2 and Ai is MF1 and Fi is MF4 THEN Ti is MF1 
Rule 82 IF Pi is MF2 and Ai is MF2 and Fi is MF4 THEN Ti is MF2 
Rule 83 IF Pi is MF2 and Ai is MF3 and Fi is MF4 THEN Ti is MF2 
Rule 84 IF Pi is MF2 and Ai is MF4 and Fi is MF4 THEN Ti is MF3 
Rule 85 IF Pi is MF2 and Ai is MF5 and Fi is MF4 THEN Ti is MF4 
Rule 86 IF Pi is MF3 and Ai is MF1 and Fi is MF4 THEN Ti is MF1 
Rule 87 IF Pi is MF3 and Ai is MF2 and Fi is MF4 THEN Ti is MF2 
Rule 88 IF Pi is MF3 and Ai is MF3 and Fi is MF4 THEN Ti is MF3 
Rule 89 IF Pi is MF3 and Ai is MF4 and Fi is MF4 THEN Ti is MF5 
Rule 90 IF Pi is MF3 and Ai is MF5 and Fi is MF4 THEN Ti is MF6 
Rule 91 IF Pi is MF4 and Ai is MF1 and Fi is MF4 THEN Ti is MF1 
Rule 92 IF Pi is MF4 and Ai is MF2 and Fi is MF4 THEN Ti is MF3 
Rule 93 IF Pi is MF4 and Ai is MF3 and Fi is MF4 THEN Ti is MF4 
Rule 94 IF Pi is MF4 and Ai is MF4 and Fi is MF4 THEN Ti is MF6 
Rule 95 IF Pi is MF4 and Ai is MF5 and Fi is MF4 THEN Ti is MF7 
Rule 96 IF Pi is MF5 and Ai is MF1 and Fi is MF4 THEN Ti is MF1 
Rule 97 IF Pi is MF5 and Ai is MF2 and Fi is MF4 THEN Ti is MF3 
Rule 98 IF Pi is MF5 and Ai is MF3 and Fi is MF4 THEN Ti is MF4 
Rule 99 IF Pi is MF5 and Ai is MF4 and Fi is MF4 THEN Ti is MF7 
Rule 100 IF Pi is MF5 and Ai is MF5 and Fi is MF4 THEN Ti is MF8 
Rule 101 IF Pi is MF1 and Ai is MF1 and Fi is MF5 THEN Ti is MF1 
Rule 102 IF Pi is MF1 and Ai is MF2 and Fi is MF5 THEN Ti is MF1 
Rule 103 IF Pi is MF1 and Ai is MF3 and Fi is MF5 THEN Ti is MF1 
Rule 104 IF Pi is MF1 and Ai is MF4 and Fi is MF5 THEN Ti is MF2 
Rule 105 IF Pi is MF1 and Ai is MF5 and Fi is MF5 THEN Ti is MF1 
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Rule 106 IF Pi is MF2 and Ai is MF1 and Fi is MF5 THEN Ti is MF1 
Rule 107 IF Pi is MF2 and Ai is MF2 and Fi is MF5 THEN Ti is MF1 
Rule 108 IF Pi is MF2 and Ai is MF3 and Fi is MF5 THEN Ti is MF2 
Rule 109 IF Pi is MF2 and Ai is MF4 and Fi is MF5 THEN Ti is MF4 
Rule 110 IF Pi is MF2 and Ai is MF5 and Fi is MF5 THEN Ti is MF2 
Rule 111 IF Pi is MF3 and Ai is MF1 and Fi is MF5 THEN Ti is MF1 
Rule 112 IF Pi is MF3 and Ai is MF2 and Fi is MF5 THEN Ti is MF2 
Rule 113 IF Pi is MF3 and Ai is MF3 and Fi is MF5 THEN Ti is MF2 
Rule 114 IF Pi is MF3 and Ai is MF4 and Fi is MF5 THEN Ti is MF3 
Rule 115 IF Pi is MF3 and Ai is MF5 and Fi is MF5 THEN Ti is MF3 
Rule 116 IF Pi is MF4 and Ai is MF1 and Fi is MF5 THEN Ti is MF1 
Rule 117 IF Pi is MF4 and Ai is MF2 and Fi is MF5 THEN Ti is MF2 
Rule 118 IF Pi is MF4 and Ai is MF3 and Fi is MF5 THEN Ti is MF2 
Rule 119 IF Pi is MF4 and Ai is MF4 and Fi is MF5 THEN Ti is MF6 
Rule 120 IF Pi is MF4 and Ai is MF5 and Fi is MF5 THEN Ti is MF5 
Rule 121 IF Pi is MF5 and Ai is MF1 and Fi is MF5 THEN Ti is MF1 
Rule 122 IF Pi is MF5 and Ai is MF2 and Fi is MF5 THEN Ti is MF2 
Rule 123 IF Pi is MF5 and Ai is MF3 and Fi is MF5 THEN Ti is MF2 
Rule 124 IF Pi is MF5 and Ai is MF4 and Fi is MF5 THEN Ti is MF4 
Rule 125 IF Pi is MF5 and Ai is MF5 and Fi is MF5 THEN Ti is MF5 
Rule 126 IF Pi is MF1 and Ai is MF1 and Fi is MF6 THEN Ti is MF1 
Rule 127 IF Pi is MF1 and Ai is MF2 and Fi is MF6 THEN Ti is MF1 
Rule 128 IF Pi is MF1 and Ai is MF3 and Fi is MF6 THEN Ti is MF1 
Rule 129 IF Pi is MF1 and Ai is MF4 and Fi is MF6 THEN Ti is MF1 
Rule 130 IF Pi is MF1 and Ai is MF5 and Fi is MF6 THEN Ti is MF1 
Rule 131 IF Pi is MF2 and Ai is MF1 and Fi is MF6 THEN Ti is MF1 
Rule 132 IF Pi is MF2 and Ai is MF2 and Fi is MF6 THEN Ti is MF1 
Rule 133 IF Pi is MF2 and Ai is MF3 and Fi is MF6 THEN Ti is MF1 
Rule 134 IF Pi is MF2 and Ai is MF4 and Fi is MF6 THEN Ti is MF1 
Rule 135 IF Pi is MF2 and Ai is MF5 and Fi is MF6 THEN Ti is MF2 
Rule 136 IF Pi is MF3 and Ai is MF1 and Fi is MF6 THEN Ti is MF1 
Rule 137 IF Pi is MF3 and Ai is MF2 and Fi is MF6 THEN Ti is MF1 
Rule 138 IF Pi is MF3 and Ai is MF3 and Fi is MF6 THEN Ti is MF1 
Rule 139 IF Pi is MF3 and Ai is MF4 and Fi is MF6 THEN Ti is MF1 
Rule 140 IF Pi is MF3 and Ai is MF5 and Fi is MF6 THEN Ti is MF1 
Rule 141 IF Pi is MF4 and Ai is MF1 and Fi is MF6 THEN Ti is MF1 
Rule 142 IF Pi is MF4 and Ai is MF2 and Fi is MF6 THEN Ti is MF1 
Rule 143 IF Pi is MF4 and Ai is MF3 and Fi is MF6 THEN Ti is MF1 
Rule 144 IF Pi is MF4 and Ai is MF4 and Fi is MF6 THEN Ti is MF1 
Rule 145 IF Pi is MF4 and Ai is MF5 and Fi is MF6 THEN Ti is MF1 
Rule 146 IF Pi is MF5 and Ai is MF1 and Fi is MF6 THEN Ti is MF1 
Rule 147 IF Pi is MF5 and Ai is MF2 and Fi is MF6 THEN Ti is MF1 
Rule 148 IF Pi is MF5 and Ai is MF3 and Fi is MF6 THEN Ti is MF1 
Rule 149 IF Pi is MF5 and Ai is MF4 and Fi is MF6 THEN Ti is MF1 
Rule 150 IF Pi is MF5 and Ai is MF5 and Fi is MF6 THEN Ti is MF2 

  



 
 

139 
 

B.2. Rule Base of the Genetic Fuzzy Rule-Based System (GFRBS) 

 
Rule Number Antecedents Consequents 
Rule 1 IF Pi is MF1 and Ai is MF1 and Fi is MF1 THEN Ti is MF5 
Rule 2 IF Pi is MF1 and Ai is MF2 and Fi is MF1 THEN Ti is MF5 
Rule 3 IF Pi is MF1 and Ai is MF3 and Fi is MF1 THEN Ti is MF5 
Rule 4 IF Pi is MF1 and Ai is MF4 and Fi is MF1 THEN Ti is MF6 
Rule 5 IF Pi is MF1 and Ai is MF5 and Fi is MF1 THEN Ti is MF5 
Rule 6 IF Pi is MF2 and Ai is MF1 and Fi is MF1 THEN Ti is MF7 
Rule 7 IF Pi is MF2 and Ai is MF2 and Fi is MF1 THEN Ti is MF8 
Rule 8 IF Pi is MF2 and Ai is MF3 and Fi is MF1 THEN Ti is MF10 
Rule 9 IF Pi is MF2 and Ai is MF4 and Fi is MF1 THEN Ti is MF10 
Rule 10 IF Pi is MF2 and Ai is MF5 and Fi is MF1 THEN Ti is MF13 
Rule 11 IF Pi is MF3 and Ai is MF1 and Fi is MF1 THEN Ti is MF9 
Rule 12 IF Pi is MF3 and Ai is MF2 and Fi is MF1 THEN Ti is MF11 
Rule 13 IF Pi is MF3 and Ai is MF3 and Fi is MF1 THEN Ti is MF10 
Rule 14 IF Pi is MF3 and Ai is MF4 and Fi is MF1 THEN Ti is MF13 
Rule 15 IF Pi is MF3 and Ai is MF5 and Fi is MF1 THEN Ti is MF15 
Rule 16 IF Pi is MF4 and Ai is MF1 and Fi is MF1 THEN Ti is MF7 
Rule 17 IF Pi is MF4 and Ai is MF2 and Fi is MF1 THEN Ti is MF13 
Rule 18 IF Pi is MF4 and Ai is MF3 and Fi is MF1 THEN Ti is MF15 
Rule 19 IF Pi is MF4 and Ai is MF4 and Fi is MF1 THEN Ti is MF16 
Rule 20 IF Pi is MF4 and Ai is MF5 and Fi is MF1 THEN Ti is MF16 
Rule 21 IF Pi is MF5 and Ai is MF1 and Fi is MF1 THEN Ti is MF9 
Rule 22 IF Pi is MF5 and Ai is MF2 and Fi is MF1 THEN Ti is MF17 
Rule 23 IF Pi is MF5 and Ai is MF3 and Fi is MF1 THEN Ti is MF19 
Rule 24 IF Pi is MF5 and Ai is MF4 and Fi is MF1 THEN Ti is MF20 
Rule 25 IF Pi is MF5 and Ai is MF5 and Fi is MF1 THEN Ti is MF20 
Rule 26 IF Pi is MF1 and Ai is MF1 and Fi is MF2 THEN Ti is MF4 
Rule 27 IF Pi is MF1 and Ai is MF2 and Fi is MF2 THEN Ti is MF3 
Rule 28 IF Pi is MF1 and Ai is MF3 and Fi is MF2 THEN Ti is MF6 
Rule 29 IF Pi is MF1 and Ai is MF4 and Fi is MF2 THEN Ti is MF5 
Rule 30 IF Pi is MF1 and Ai is MF5 and Fi is MF2 THEN Ti is MF5 
Rule 31 IF Pi is MF2 and Ai is MF1 and Fi is MF2 THEN Ti is MF2 
Rule 32 IF Pi is MF2 and Ai is MF2 and Fi is MF2 THEN Ti is MF5 
Rule 33 IF Pi is MF2 and Ai is MF3 and Fi is MF2 THEN Ti is MF6 
Rule 34 IF Pi is MF2 and Ai is MF4 and Fi is MF2 THEN Ti is MF7 
Rule 35 IF Pi is MF2 and Ai is MF5 and Fi is MF2 THEN Ti is MF7 
Rule 36 IF Pi is MF3 and Ai is MF1 and Fi is MF2 THEN Ti is MF3 
Rule 37 IF Pi is MF3 and Ai is MF2 and Fi is MF2 THEN Ti is MF6 
Rule 38 IF Pi is MF3 and Ai is MF3 and Fi is MF2 THEN Ti is MF6 
Rule 39 IF Pi is MF3 and Ai is MF4 and Fi is MF2 THEN Ti is MF7 
Rule 40 IF Pi is MF3 and Ai is MF5 and Fi is MF2 THEN Ti is MF11 
Rule 41 IF Pi is MF4 and Ai is MF1 and Fi is MF2 THEN Ti is MF4 
Rule 42 IF Pi is MF4 and Ai is MF2 and Fi is MF2 THEN Ti is MF5 
Rule 43 IF Pi is MF4 and Ai is MF3 and Fi is MF2 THEN Ti is MF9 
Rule 44 IF Pi is MF4 and Ai is MF4 and Fi is MF2 THEN Ti is MF12 
Rule 45 IF Pi is MF4 and Ai is MF5 and Fi is MF2 THEN Ti is MF13 
Rule 46 IF Pi is MF5 and Ai is MF1 and Fi is MF2 THEN Ti is MF6 
Rule 47 IF Pi is MF5 and Ai is MF2 and Fi is MF2 THEN Ti is MF7 
Rule 48 IF Pi is MF5 and Ai is MF3 and Fi is MF2 THEN Ti is MF11 
Rule 49 IF Pi is MF5 and Ai is MF4 and Fi is MF2 THEN Ti is MF12 
Rule 50 IF Pi is MF5 and Ai is MF5 and Fi is MF2 THEN Ti is MF14 
Rule 51 IF Pi is MF1 and Ai is MF1 and Fi is MF3 THEN Ti is MF3 
Rule 52 IF Pi is MF1 and Ai is MF2 and Fi is MF3 THEN Ti is MF2 
Rule 53 IF Pi is MF1 and Ai is MF3 and Fi is MF3 THEN Ti is MF4 
Rule 54 IF Pi is MF1 and Ai is MF4 and Fi is MF3 THEN Ti is MF3 
Rule 55 IF Pi is MF1 and Ai is MF5 and Fi is MF3 THEN Ti is MF5 
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Rule 56 IF Pi is MF2 and Ai is MF1 and Fi is MF3 THEN Ti is MF1 
Rule 57 IF Pi is MF2 and Ai is MF2 and Fi is MF3 THEN Ti is MF2 
Rule 58 IF Pi is MF2 and Ai is MF3 and Fi is MF3 THEN Ti is MF5 
Rule 59 IF Pi is MF2 and Ai is MF4 and Fi is MF3 THEN Ti is MF6 
Rule 60 IF Pi is MF2 and Ai is MF5 and Fi is MF3 THEN Ti is MF5 
Rule 61 IF Pi is MF3 and Ai is MF1 and Fi is MF3 THEN Ti is MF2 
Rule 62 IF Pi is MF3 and Ai is MF2 and Fi is MF3 THEN Ti is MF3 
Rule 63 IF Pi is MF3 and Ai is MF3 and Fi is MF3 THEN Ti is MF5 
Rule 64 IF Pi is MF3 and Ai is MF4 and Fi is MF3 THEN Ti is MF5 
Rule 65 IF Pi is MF3 and Ai is MF5 and Fi is MF3 THEN Ti is MF6 
Rule 66 IF Pi is MF4 and Ai is MF1 and Fi is MF3 THEN Ti is MF3 
Rule 67 IF Pi is MF4 and Ai is MF2 and Fi is MF3 THEN Ti is MF5 
Rule 68 IF Pi is MF4 and Ai is MF3 and Fi is MF3 THEN Ti is MF6 
Rule 69 IF Pi is MF4 and Ai is MF4 and Fi is MF3 THEN Ti is MF8 
Rule 70 IF Pi is MF4 and Ai is MF5 and Fi is MF3 THEN Ti is MF9 
Rule 71 IF Pi is MF5 and Ai is MF1 and Fi is MF3 THEN Ti is MF3 
Rule 72 IF Pi is MF5 and Ai is MF2 and Fi is MF3 THEN Ti is MF4 
Rule 73 IF Pi is MF5 and Ai is MF3 and Fi is MF3 THEN Ti is MF6 
Rule 74 IF Pi is MF5 and Ai is MF4 and Fi is MF3 THEN Ti is MF8 
Rule 75 IF Pi is MF5 and Ai is MF5 and Fi is MF3 THEN Ti is MF10 
Rule 76 IF Pi is MF1 and Ai is MF1 and Fi is MF4 THEN Ti is MF1 
Rule 77 IF Pi is MF1 and Ai is MF2 and Fi is MF4 THEN Ti is MF1 
Rule 78 IF Pi is MF1 and Ai is MF3 and Fi is MF4 THEN Ti is MF2 
Rule 79 IF Pi is MF1 and Ai is MF4 and Fi is MF4 THEN Ti is MF3 
Rule 80 IF Pi is MF1 and Ai is MF5 and Fi is MF4 THEN Ti is MF3 
Rule 81 IF Pi is MF2 and Ai is MF1 and Fi is MF4 THEN Ti is MF1 
Rule 82 IF Pi is MF2 and Ai is MF2 and Fi is MF4 THEN Ti is MF2 
Rule 83 IF Pi is MF2 and Ai is MF3 and Fi is MF4 THEN Ti is MF2 
Rule 84 IF Pi is MF2 and Ai is MF4 and Fi is MF4 THEN Ti is MF4 
Rule 85 IF Pi is MF2 and Ai is MF5 and Fi is MF4 THEN Ti is MF3 
Rule 86 IF Pi is MF3 and Ai is MF1 and Fi is MF4 THEN Ti is MF1 
Rule 87 IF Pi is MF3 and Ai is MF2 and Fi is MF4 THEN Ti is MF2 
Rule 88 IF Pi is MF3 and Ai is MF3 and Fi is MF4 THEN Ti is MF3 
Rule 89 IF Pi is MF3 and Ai is MF4 and Fi is MF4 THEN Ti is MF3 
Rule 90 IF Pi is MF3 and Ai is MF5 and Fi is MF4 THEN Ti is MF6 
Rule 91 IF Pi is MF4 and Ai is MF1 and Fi is MF4 THEN Ti is MF2 
Rule 92 IF Pi is MF4 and Ai is MF2 and Fi is MF4 THEN Ti is MF1 
Rule 93 IF Pi is MF4 and Ai is MF3 and Fi is MF4 THEN Ti is MF5 
Rule 94 IF Pi is MF4 and Ai is MF4 and Fi is MF4 THEN Ti is MF5 
Rule 95 IF Pi is MF4 and Ai is MF5 and Fi is MF4 THEN Ti is MF6 
Rule 96 IF Pi is MF5 and Ai is MF1 and Fi is MF4 THEN Ti is MF1 
Rule 97 IF Pi is MF5 and Ai is MF2 and Fi is MF4 THEN Ti is MF2 
Rule 98 IF Pi is MF5 and Ai is MF3 and Fi is MF4 THEN Ti is MF5 
Rule 99 IF Pi is MF5 and Ai is MF4 and Fi is MF4 THEN Ti is MF6 
Rule 100 IF Pi is MF5 and Ai is MF5 and Fi is MF4 THEN Ti is MF7 
Rule 101 IF Pi is MF1 and Ai is MF1 and Fi is MF5 THEN Ti is MF1 
Rule 102 IF Pi is MF1 and Ai is MF2 and Fi is MF5 THEN Ti is MF1 
Rule 103 IF Pi is MF1 and Ai is MF3 and Fi is MF5 THEN Ti is MF1 
Rule 104 IF Pi is MF1 and Ai is MF4 and Fi is MF5 THEN Ti is MF1 
Rule 105 IF Pi is MF1 and Ai is MF5 and Fi is MF5 THEN Ti is MF1 
Rule 106 IF Pi is MF2 and Ai is MF1 and Fi is MF5 THEN Ti is MF1 
Rule 107 IF Pi is MF2 and Ai is MF2 and Fi is MF5 THEN Ti is MF1 
Rule 108 IF Pi is MF2 and Ai is MF3 and Fi is MF5 THEN Ti is MF1 
Rule 109 IF Pi is MF2 and Ai is MF4 and Fi is MF5 THEN Ti is MF4 
Rule 110 IF Pi is MF2 and Ai is MF5 and Fi is MF5 THEN Ti is MF2 
Rule 111 IF Pi is MF3 and Ai is MF1 and Fi is MF5 THEN Ti is MF1 
Rule 112 IF Pi is MF3 and Ai is MF2 and Fi is MF5 THEN Ti is MF1 
Rule 113 IF Pi is MF3 and Ai is MF3 and Fi is MF5 THEN Ti is MF2 
Rule 114 IF Pi is MF3 and Ai is MF4 and Fi is MF5 THEN Ti is MF3 
Rule 115 IF Pi is MF3 and Ai is MF5 and Fi is MF5 THEN Ti is MF3 
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Rule 116 IF Pi is MF4 and Ai is MF1 and Fi is MF5 THEN Ti is MF1 
Rule 117 IF Pi is MF4 and Ai is MF2 and Fi is MF5 THEN Ti is MF1 
Rule 118 IF Pi is MF4 and Ai is MF3 and Fi is MF5 THEN Ti is MF2 
Rule 119 IF Pi is MF4 and Ai is MF4 and Fi is MF5 THEN Ti is MF4 
Rule 120 IF Pi is MF4 and Ai is MF5 and Fi is MF5 THEN Ti is MF3 
Rule 121 IF Pi is MF5 and Ai is MF1 and Fi is MF5 THEN Ti is MF1 
Rule 122 IF Pi is MF5 and Ai is MF2 and Fi is MF5 THEN Ti is MF1 
Rule 123 IF Pi is MF5 and Ai is MF3 and Fi is MF5 THEN Ti is MF2 
Rule 124 IF Pi is MF5 and Ai is MF4 and Fi is MF5 THEN Ti is MF4 
Rule 125 IF Pi is MF5 and Ai is MF5 and Fi is MF5 THEN Ti is MF4 
Rule 126 IF Pi is MF1 and Ai is MF1 and Fi is MF6 THEN Ti is MF1 
Rule 127 IF Pi is MF1 and Ai is MF2 and Fi is MF6 THEN Ti is MF1 
Rule 128 IF Pi is MF1 and Ai is MF3 and Fi is MF6 THEN Ti is MF1 
Rule 129 IF Pi is MF1 and Ai is MF4 and Fi is MF6 THEN Ti is MF1 
Rule 130 IF Pi is MF1 and Ai is MF5 and Fi is MF6 THEN Ti is MF1 
Rule 131 IF Pi is MF2 and Ai is MF1 and Fi is MF6 THEN Ti is MF1 
Rule 132 IF Pi is MF2 and Ai is MF2 and Fi is MF6 THEN Ti is MF1 
Rule 133 IF Pi is MF2 and Ai is MF3 and Fi is MF6 THEN Ti is MF1 
Rule 134 IF Pi is MF2 and Ai is MF4 and Fi is MF6 THEN Ti is MF1 
Rule 135 IF Pi is MF2 and Ai is MF5 and Fi is MF6 THEN Ti is MF1 
Rule 136 IF Pi is MF3 and Ai is MF1 and Fi is MF6 THEN Ti is MF1 
Rule 137 IF Pi is MF3 and Ai is MF2 and Fi is MF6 THEN Ti is MF1 
Rule 138 IF Pi is MF3 and Ai is MF3 and Fi is MF6 THEN Ti is MF1 
Rule 139 IF Pi is MF3 and Ai is MF4 and Fi is MF6 THEN Ti is MF1 
Rule 140 IF Pi is MF3 and Ai is MF5 and Fi is MF6 THEN Ti is MF1 
Rule 141 IF Pi is MF4 and Ai is MF1 and Fi is MF6 THEN Ti is MF1 
Rule 142 IF Pi is MF4 and Ai is MF2 and Fi is MF6 THEN Ti is MF1 
Rule 143 IF Pi is MF4 and Ai is MF3 and Fi is MF6 THEN Ti is MF1 
Rule 144 IF Pi is MF4 and Ai is MF4 and Fi is MF6 THEN Ti is MF1 
Rule 145 IF Pi is MF4 and Ai is MF5 and Fi is MF6 THEN Ti is MF1 
Rule 146 IF Pi is MF5 and Ai is MF1 and Fi is MF6 THEN Ti is MF1 
Rule 147 IF Pi is MF5 and Ai is MF2 and Fi is MF6 THEN Ti is MF1 
Rule 148 IF Pi is MF5 and Ai is MF3 and Fi is MF6 THEN Ti is MF1 
Rule 149 IF Pi is MF5 and Ai is MF4 and Fi is MF6 THEN Ti is MF1 
Rule 150 IF Pi is MF5 and Ai is MF5 and Fi is MF6 THEN Ti is MF1 
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