

A GENETIC - FUZZY SYSTEM MODELING
OF TRIP DISTRIBUTION

Mert KOMPİL

İzmir Institute of Technology

December, 2010

A GENETIC - FUZZY SYSTEM MODELING
OF TRIP DISTRIBUTION

A Thesis Submitted to
the Graduate School of Engineering and Sciences of

İzmir Institute of Technology
in Partial Fulfilment of the Requirements for the Degree of

DOCTOR OF PHILOSOPY

in City Planning

by
Mert KOMPİL

December 2010
İZMİR

We approve the thesis of Mert KOMPİL

 Assoc. Prof. Dr. H. Murat ÇELİK
 Supervisor

 Prof. Dr. Cemal Arkon
 Committee Member

 Assoc. Prof. Dr. Semahat Özdemir
 Committee Member

 Assoc. Prof. Dr. K. Mert ÇUBUKÇU
 Committee Member

 Assoc. Prof. Dr. Serhan TANYEL
 Committee Member

 20 December 2010

 __________________________________ _______________________________

 Assoc. Prof. Dr. Semahat ÖZDEMİR Prof. Dr. Sedat Akkurt
 Head of the Department of City and Dean of the Graduate School of
 Regional Planning Engineering and Sciences

to my beloved father Salih Kompil

 and beloved mother Nezahat Kompil,

who have trusted and supported me all the time

bana her zaman inanmış ve desteklemiş,

sevgili babam Salih Kompil

ve sevgili annem Nezahat Kompil'e

i

ACKNOWLEDGEMENTS

 I would like to express my deep and sincere gratitude to my supervisor, Assoc.

Prof. Dr. H. Murat Çelik for his continuous encouragement and support. This work

would not have been possible without his wide knowledge and personal guidance. I also

owe my deepest gratitude to him that his thought and ideals have had remarkable

influence on me.

 I am also deeply grateful to Prof. Dr. Cemal Arkon and Assoc. Prof. Dr Semahat

Özdemir, for their valuable contributions to the present work, and for their unfailing

support and encouragement throughout my graduate life.

 I wish to express my warm and sincere thanks to Assoc. Prof. Dr. K. Mert

Çubukçu, for his constructive comments with this work, and for his important support

throughout my PhD. I would also like to show my gratitude to Assoc. Prof. Dr. Serhan

Tanyel, for his valuable comments and suggestions.

 I am deeply grateful to Istanbul Metropolitan Municipality Transportation

Planning Department. This thesis would not have been possible unless their permission

to use Istanbul Household Travel Survey data.

 I am also indebted to the members of Izmir Institute of Technology and

especially to the members of Department of City and Regional Planning with whom I

have interacted during the course of my graduate studies. I also wish to express my

warmest thanks to all of my colleagues and friends at the Department of City and

Regional Planning, for their continuous moral support and rich friendship.

 Last, but not least, I am truly indebted and forever thankful to my family for

their unfailing encouragement and support in all respects. I would like show my

warmest thanks to Ramazan İnce and Necla İnce, and to Mutlu Kompil Yaldız and

Mahmut Yaldız, who were always nearby when I needed. I am also forever indebted to

my beloved mother Nezahat Kompil, who has inspired, encouraged and supported me

throughout my whole life. Finally and most importantly, I am deeply grateful to my

lovely wife Esin İnce Kompil. The completion of this thesis would not have been

possible without her precious support and help. I would like to give my special thanks

to her and to my sweet son Oğuz Kompil, whose love make me the happiest man in the

world.

ii

ABSTRACT

A GENETIC - FUZZY SYSTEM MODELLING OF

TRIP DISTRIBUTION

Trip distribution modelling is one of the most active parts of travel demand analysis. In

recent years, use of soft computing techniques has introduced effective modelling

approaches to the trip distribution problem. Fuzzy Rule-Based System (FRBS) and

Genetic Fuzzy Rule-Based System (GFRBS: fuzzy system improved by a knowledge

base learning process with genetic algorithms) modelling of trip distribution are two of

these new approaches. However, much of the potential of these techniques has not been

demonstrated so far. The present study explores the potential capabilities of these

approaches in an urban trip distribution problem with some new features. For this

purpose, a simple FRBS and a novel GFRBS were designed to model Istanbul intra-city

passenger flows. Subsequently, their accuracy, applicability, and generalizability

characteristics were evaluated against the well-known gravity and neural networks

based trip distribution models. The overall results show that: i) traditional doubly

constrained gravity models are still simple and efficient; ii) neural networks may not

show expected performance when they are forced to satisfy production-attraction

constraints; iii) simply-designed FRBSs, learning from observations and expertise, are

both interpretable and efficient in forecasting trip interchanges even if the data is large

and noisy; and iv) use of genetic algorithms in fuzzy rule base learning considerably

increases modelling performance, although it brings additional computation costs.

iii

ÖZET

BİR GENETİK - BULANIK SİSTEM ÖNERİSİ İLE

SEYAHAT DAĞILIMI MODELLEMESİ

Geçmişten günümüze, seyahat dağılım modelleri, ulaşım talep analizinin en aktif

kısımlarından biri olagelmiştir. Son yıllarda, hesaplamalı zeka tabanlı tekniklerin

kullanımı, klasik seyahat dağılımı problemine yeni ve etkin çözümler getirmiştir.

Bulanık Kural Tabanlı Sistemler (BKTS) ve Genetik Bulanık Tabanlı Sistemler

(GBKTS: bulanık kural tabanının genetik algoritmalar yardımıyla öğrenildiği ya da

iyileştirildiği sistemler) bu yeni yaklaşımlardan ikisidir. Ancak, bu iki yaklaşımın

seyahat dağılımı modellemesindeki potansiyelleri bugüne kadar gerçek anlamda ortaya

konamamıştır. Bu çalışmada, kentsel seyahat dağılımı problemine bu iki yaklaşımın

potansiyel uygulanabilirliği araştırılmaktadır. Bu amaçla öncelikle, İstanbul sehir-içi

seyahat dağılımını modellemek üzere basit bir BKTS ve orijinal bir GKBS

tasarlanmıştır. Daha sonra tasarlanan bu modellerin doğruluğu, uygulanabilirliği ve

genellenebilirliği gibi özellikleri, yaygın olarak kullanılan gravite ve sinir ağları tabanlı

seyahat dağılımı modelleri ile kıyaslanmıştır. Çalışma ile ulaşılan sonuçları özetlemek

gerekirse: i) klasik çift-kısıtlı gravite modelleri halen basit ve etkin modellerdir; ii) sinir

ağı tabanlı modeller, üretim-çekim kısıtlarının yerine getirilmesi söz konusu olduğunda

beklenen performansı göstermeyebilmektedir; iii) gözlemlerden ve uzman

deneyiminden öğrenen, basitçe tasarlanmış BKTS'ler, hem yorumlanabilir hem de

seyahat değişimlerini tahminlemede oldukça başarılıdır. Bu durum veri seti geniş ve yer

yer problemli olsa bile geçerlidir; iv) hesaplama veya modelleme zorlukları içerse de,

bulanık kural sisteminin oluşturulmasında genetik algoritmaların kullanımı modelleme

performansını ciddi ölçüde arttırmaktadır.

iv

TABLE OF CONTENTS

LIST OF FIGURES ... vi

LIST OF TABLES ... viii

LIST OF ABBREVATIONS ... ix

CHAPTER 1. INTRODUCTION ... 1

CHAPTER 2. TRADITIONAL TRIP DISTRIBUTION MODELS 4

2.1. Travel Demand Analysis and The Four-Step Demand Modelling 4

2.2. Fundamentals of Trip Distribution Analysis .. 6

2.3. Trip Distribution Models .. 8

2.3.1. An Overview .. 8

2.3.2. The Growth-Factor Methods .. 9

2.3.2.1. Uniform Growth-Factor Technique ... 9

2.3.2.2. Singly-Constrained Growth-Factor Technique 10

2.3.2.3. Doubly-Constrained Growth-Factor Technique 10

2.3.3. The Gravity Models ... 11

2.3.3.1. Historical Background and Early Forms of Gravity Models . 11

2.3.2.2. A Family of Spatial Interaction Models 12

2.3.2.3. The Doubly-Constrained Gravity Model 13

2.3.4. The Intervening Opportunities Model ... 15

2.4. Advantages and Disadvantages of Traditional Trip Distribution
 Models .. 15

CHAPTER 3. MODELLING TRIP DISTRIBUTION WITH SOFT COMPUTING
 TECHNIQUES .. 25

3.1. Soft Computing Applications in Traffic and Transport Systems 17

3.2. Modelling Trip Distribution With Neural Networks 21

3.3. Modelling Trip Distribution With Fuzzy Logic and
 Genetic Algorithms .. 22

v

CHAPTER 4. FUNDEMENTALS OF FUZZY AND GENETIC FUZZY
 SYSTEMS ... 25

4.1. Fuzzy Logic and Fuzzy Rule-Based Systems 25

4.1.1. Fuzzy Sets and Membership Functions .. 25

4.1.2. Fuzzy Rule Base Systems .. 29

4.2. Genetic Fuzzy Systems... 34

4.2.1. A Brief Description of Genetic Algorithms 35

4.2.2. Genetic Fuzzy Rule-Based Systems (GFRBS) 36

CHAPTER 5. EMPIRICAL ANALYSIS ... 39

5.1. Description of the Study Area and Data ... 39

5.2. Modelling Trip Distribution With A Fuzzy Rule-Based
 System (FRBS) ... 44

5.3. Modelling Trip Distribution With A Genetic Fuzzy Rule-Based
 System (GFRBS) .. 49

5.4. Benchmark Models .. 53

5.4.1. Doubly-Constraint Gravity Model (DCGM) 54

5.4.2. Neural Networks Based Trip Distribution Model (NNTDM) 59

5.5. Performance Measures and Goodness-Of-Fit Statistics 63

5.4.1. Micro Level Statistics .. 64

5.4.2. Macro level Statistics ... 66

CHAPTER 6. RESULTS .. 68

6.1. Training Results ... 68

6.2. Testing Results ... 74

6.3. Overall Results ... 79

CHAPTER 7. CONCLUSION ... 86

REFERENCES ... 89

APPENDICES

APPENDIX A. COMPUTER PROGRAMS .. 97

APPENDIX B. RULE BASES ... 136

vi

LIST OF FIGURES

Figure 2.1. Four-Step Travel Demand Modelling Process ... 5

Figure 3.1. Computational Intelligence Based Techniques: A Family Tree 18

Figure 3.2. Number of Citations with NNs, FL and GAs by Years 20

Figure 4.1. Fuzzy Membership Function Components ... 26

Figure 4.2. Crisp and Fuzzy Sets: An Example .. 27

Figure 4.3. Fuzzy Set Operations: Union, Intersection and Complement 28

Figure 4.4. General Form of a Fuzzy Rule-Based System ... 31

Figure 4.5. Graphical Interpretation of A General Mamdani-Type FRBS 32

Figure 4.6. A Typical GAs Procedure .. 35

Figure 4.7. Main Components of Genetic Fuzzy Rule-Based Systems 37

Figure 5.1. Traffic Analysis Zones and Home Based Work Trip Productions 41

Figure 5.2. Traffic Analysis Zones and Home Based Work Trip Attractions 42

Figure 5.3. Observed Trip Length Distributions of Data Sets .. 43

Figure 5.4. Graphical Illustration of the Proposed FRBS Design 48

Figure 5.5. Flow Chart of the Proposed Genetic Algorithm ... 49

Figure 5.6. Graphical Representation Of Encoding-Decoding Strategy 50

Figure 5.7. Illustrations of Crossover, Ranking Probability Function and
Number of Mutations Through The Generations.. 52

Figure 5.8. Convergence of The GFRBS Design ... 53

Figure 5.9. Changes in DCGM Performance Against Various Impedance
 Parameter Values: Measure for the Power Cost Function on Training

Data Set ... 58

Figure 5.10. Changes in DCGM Performance Against Various Impedance
Parameter Values: Measure for the Exponential Cost Function
on Training Data Set ... 58

Figure 5.11. An Illustration of NN based Trip Distribution Model: A Three-Layer
Feed-Forward Neural Network with Error Back-Propagation 60

Figure 5.12. NNTDM Back-Propagation Training with
Levenberg-Marquardt Learning .. 62

Figure 6.1. TLD Comparison - DCGM ML Estimation on Training Data Set 70

Figure 6.2. TLD Comparison - DCGM WLS Estimation on Training Data Set 70

Figure 6.3. TLD Comparison - DCGM TLD Based Estimation on Training Data Set .. 70

Figure 6.4. TLD Comparison - NNTDM on Training Data Set 71

vii

Figure 6.5. TLD Comparison - FRBS Design on Training Data Set 71

Figure 6.6. TLD Comparison - GFRBS Design on Training Data Set 71

Figure 6.7. Regression Plots - DCGM ML Estimation on Training Data Set 72

Figure 6.8. Regression Plots -DCGM WLS Estimation on Training Data Set 72

Figure 6.9. Regression Plots - DCGM TLD Based Estimation on Training Data Set 72

Figure 6.10. Regression Plots - NNTDM on Training Data Set 73

Figure 6.11. Regression Plots - FRBS Design on Training Data Set 73

Figure 6.12. Regression Plots - GFRBS Design on Training Data Set 73

Figure 6.13. TLD Comparison - DCGM ML Estimation on Testing Data Set 75

Figure 6.14. TLD Comparison - DCGM WLS Estimation on Testing Data Set 75

Figure 6.15. TLD Comparison - DCGM TLD Based Estimation on Testing Data Set .. 75

Figure 6.16. TLD Comparison - NNTDM on Testing Data Set 76

Figure 6.17. TLD Comparison - FRBS Design on Testing Data Set 76

Figure 6.18. TLD Comparison - GFRBS Design on Testing Data Set 76

Figure 6.19. Regression Plots - DCGM ML Estimation on Testing Data Set 77

Figure 6.20. Regression Plots -DCGM WLS Estimation on Testing Data Set 77

Figure 6.21. Regression Plots - DCGM TLD Based Estimation on Testing Data Set ... 77

Figure 6.22. Regression Plots - NNTDM on Testing Data Set 78

Figure 6.23. Regression Plots - FRBS Design on Testing Data Set 78

Figure 6.24. Regression Plots - GFRBS Design on Testing Data Set 78

Figure 6.25. TLD Comparison - DCGM ML Estimation on Whole Data Set 80

Figure 6.26. TLD Comparison - DCGM WLS Estimation on Whole Data Set 80

Figure 6.27. TLD Comparison - DCGM TLD Based Estimation on Whole Data Set ... 80

Figure 6.28. TLD Comparison - NNTDM on Whole Data Set 81

Figure 6.29. TLD Comparison - FRBS Design on Whole Data Set 81

Figure 6.30. TLD Comparison - GFRBS Design on Whole Data Set 81

Figure 6.31. Regression Plots - DCGM ML Estimation on Whole Data Set 82

Figure 6.32. Regression Plots -DCGM WLS Estimation on Whole Data Set 82

Figure 6.33. Regression Plots - DCGM TLD Based Estimation on Whole Data Set 82

Figure 6.34. Regression Plots - NNTDM on Whole Data Set .. 83

Figure 6.35. Regression Plots - FRBS Design on Whole Data Set 83

Figure 6.36. Regression Plots - GFRBS Design on Whole Data Set 83

viii

LIST OF TABLES

Table 2.1. Trip and Friction Matrixes with Notations .. 6

Table 2.2. Classification of Theoretical Trip Distribution Models 8

Table 3.1. Classification for Soft Computing Research in Traffic and
Transport Systems ... 20

Table 4.1. Fuzzy Set Operations: Union, Intersection and Complement 6

Table 4.2. The Canonical Form of A Fuzzy Rule-Based System 8

Table 5.1. Descriptive Statistics of Data Sets ... 43

Table 5.2. An Appearance From the Constructed Rule Base ... 47

Table 5.3. DCGM Parameter Estimates and Related Goodness of Fit
Statistics for Training Data Set .. 57

Table 5.4. NNTDM Implementation Issues: Experimented and Selected Cases 62

Table 6.1. Model Results: Goodness-of-Fit Statistics for the Training Data Set 69

Table 6.2. Model Results: Goodness-of-Fit Statistics for the Testing Data Set 74

Table 6.3. Model Results: Goodness-of-Fit Statistics for the Whole Data Set 79

Table 6.4. Model Results: District-Based Goodness-of-Fit Statistics 84

Table 6.5. Observed and Modelled Trip Shares: Intra-zonal vs. Inter-Zonal,
Intra-District vs. Inter-District and Bridge Crossing vs. Not Bridge
Crossing Trips ... 85

Table 7.1. An Evaluation of Trip Distribution Models for the
Doubly-Constrained Case ... 87

ix

LIST OF ABBREVIATIONS

AI Artificial Intelligence

ARAE Average Relative Absolute Error

ARV Average Relative Variance

DCGM Doubly-Constrained Gravity Model

FL Fuzzy Logic

FRBS Fuzzy Rule-Based Systems

GAs Genetic Algorithms

GFRBS Genetic Fuzzy Rule-Based Systems

GFS Genetic Fuzzy Systems

GIS Geographical Information Systems

HBO Home-Based-Other

HBS Home-Based-School

HBW Home-Based-Work

MF Membership Function

ML Maximum Likelihood

MSE Mean Square Error

MTCE Mean Travel Cost Error

NHB None-Home-Based

NNs Neural Networks

NNTDM Neural Network Based Trip Distribution Model

O-D Origin-Destination

P-A Production-Attraction

RMSE Root Mean Square Error

SRMSE Standardized Root Mean Square Error

TAZ Traffic Analysis Zone

TLD Trip Length Distribution

WLS Weighted Least Squares

1

CHAPTER 1

INTRODUCTION

 Travel demand modelling is crucial in transportation planning. Over several

decades, a number of techniques have been proposed for each steps of the demand

analysis to achieve more accurate and applicable solutions. Among them, trip

distribution has probably been the most attracted field of travel demand analysis

especially with the widespread use of gravity type of spatial interaction models.

 Simply for a given trip purpose, any trip distribution model estimates the trips

between given origins and destinations. From the early 1950s, modellers have used

several different formulations to deal with this task. The gravity models in the mid-

1950s and many other aggregate or disaggregate models have followed the initial

growth factor techniques, such as the intervening opportunity models, random utility

models, activity based models and several mixed and combined models. All models

have a theoretical basing mainly on physics, statistics, economics and behavioural

sciences.

 With its well-known theoretical base and various application procedures, the

gravity type of spatial interaction models have been by far the most commonly used

aggregate trip distribution models. Recently, there has been increasing interest among

both transportation researchers and practitioners in exploring the capability of

computational intelligence based techniques to real transportation problems.

 Research in more effective and predictive methodologies in spatial interaction

and trip distribution modelling has also led to some pioneering studies in this area.

Many scholars have proposed new modelling procedures to forecast aggregate

interactions using Neural Networks (Openshaw, 1993; Fischer and Gopal, 1994; Black,

1995; Mozolin et al., 2000; Celik, 2004; Tillema et al., 2006; Tapkin and Ozdemir,

2009), Fuzzy Logic (Kalic and Teodorovic, 1996; 2003; Shafahi et al., 2008) and

Evolutionary or Genetic Algorithms (Diplock and Openshaw, 1996; Leung, 2007).

 The initial experiences with these techniques have been encouraging and the

overall results offer that the Neural Networks (NNs), Fuzzy Logic (FL) and Genetic

Algorithms (GAs) can successfully be used in spatial interaction models. Additionally,

2

they can produce more accurate results against the conventional models even though the

efficiency, accuracy, applicability and interpretability of these approaches are still under

investigation.

 From our point of view, use of fuzzy set theory and FL is very promising in

modelling spatial interactions for several reasons: i) they are simple, flexible, and

equation-free; ii) they can be used under uncertain and imprecise conditions; iii) they

provide an opportunity to incorporate expertise into modelling procedure, a process that

may increase the interpretability of the analysed system; and iii) they are capable of

increasing the accuracy of analysed system when hybridized with GAs or NNs.

 A pioneering fuzzy logic approach to trip distribution modelling was introduced

by Kalic and Teodorovic (1996; 2003). They (1996) estimated air passenger flows

among some major industrial cities and tourist resorts using known productions and

attractions as inputs. In comparison to non-fuzzy methods, the proposed Fuzzy Rule-

Based System (FRBS) produced better results. In another study, they (2003) achieved

better results using a Genetic Fuzzy Rule-Based System (GFRBS: fuzzy systems

augmented by a learning process based on genetic algorithms search). Finally, Shafahi

et. al. (2008) proposed a FRBS to predict the discretionary trips in Tahran showing its

capability in predicting intra-city passenger flows. They used travel time as additional

input and gained better results against the unconstrained type of gravity model.

 However, in comparison with the approaches centred on gravity and NNs, the

full potential of FRBSs and GFRBSs has still not been demonstrated in trip distribution

modelling. Their efficiency, accuracy, applicability, and interpretability are still under

investigation. In particular, applicability of GFRBSs to the estimation of intra-city

passenger flows had not been investigated earlier. They offer high-quality predictions,

but their computational challenges with an additional friction variable are not known.

With this background, this study attempts to set out an FRBS and a GFRBS for

modelling intra-city passenger flows in Istanbul. Our primary interest is to contribute to

the knowledge and literature on the feasibility of using such models for urban trip

distribution modelling. Another objective is to compare and evaluate the accuracy,

applicability, and generalizability of such models against well-known trip distribution

models in a complex real-world case. For this purpose, a doubly-constrained gravity

model and a multilayer feed-forward NNs based trip distribution model were

established as the benchmarks, and model performances were evaluated empirically

using the 2006 Istanbul Travel Survey data.

3

 The thesis starts with an overall explanation of traditional travel demand

analysis and four-step modelling process. Then a brief review on aggregate trip

distribution models are given with the descriptions and mathematical expressions. The

main focus is presented on the gravity type of trip distribution model and its doubly-

constrained type as it has been selected as a benchmark model.

 The third chapter consists of soft computing techniques and their applications in

transport modelling and trip distribution analysis. First, basic components of NNs, FL

and GAs are introduced, then a literature review on their application to spatial

interaction and trip distribution modelling is summarized in the chapter.

 A general explanation of the FRBSs and GFRBSs are given in the fourth

chapter. It also introduces main properties of fuzzy set theory and GAs.

 The fifth chapter includes the whole empirical analysis. Description of the study

area and data sets are included in this chapter. Additionally, the fifth chapter includes

calibration, training, learning and implementation issues of the applied trip distribution

models. The performance measure and goodness-of-fit statistics used in the thesis are

also explained here.

 Chapter six includes results and empirical findings of the all applied trip

distribution models. Finally, summary findings and model evaluation of the study

along with further research possibilities are discussed and evaluated in the conclusion

chapter.

4

CHAPTER 2

TRADITIONAL TRIP DISTRIBUTION MODELS

2.1. Travel Demand Analysis and The Four-Step Demand Modelling

 Urban transportation planning process takes community needs and expectations

into consideration and establishes a way of designing future transportation systems. One

of the most important stage of transportation planning process is forecasting future

travel demand in a desired level of accuracy. Starting from the middle of the twentieth

century, progressive researches in this area has led travel demand modelling into a well-

designed modelling methodology. A number of deterministic and stochastic models

have been developed to understand travel behaviour better and to achieve more accurate

forecasts.

 The traditional urban travel demand modelling consists of a sequential

procedure often referred as the ‘four-step’ modelling process: trip generation, trip

distribution, mode choice and trip assignment. In order to identify possible

transportation system needs and required changes, these sub-models forecast future

travel demand using existing transportation system and base year travel demand

information.

 Meyer and Miller (2001, p.270) describe the basic assumption behind the four-

step model as “…in a sequential decision process, people decide to make a trip

(generation), decide where to go (distribution), decide what mode to take (modal split),

and decide what route to use (assignment)” and make brief definition of each steps as:

• Trip generation is the prediction of the number of trips produced by and attracted to each zone,

that is, the number of trips ends “generated” within the urban area.

• Trip distribution is the prediction of origin-destination (O-D) flows, that is, the linking of the trip
ends predicted by the trip generation model together to form trip interchanges or flows.

• Modal split models predict the percentages of travel flow that will use each of the available
modes (auto, transit, walk, etc.) between each origin-destination pair.

• Trip assignment places the O-D flows for each mode on specific routes of travel through the
respective modal networks (Meyer and Miller, 2001, p.270).

5

 The origins of four-step modelling procedure go back to the 1950s to the

comprehensive transportation plans of large North American Cities. As being known

the pioneering urban transportation study, Chicago Area Transportation Study (1959)

contains a diagram showing the travel forecasting phase of the planning process

consisting of three steps: i) estimate trip generation, ii) estimate trip distribution, iii)

estimate future travel demand. The concepts of modal split and traffic assignment were

introduced in the second part of the Chicago study (Boyce, 2002).

 After the initial studies in North America, the transportation planning process

became institutionalized with the Federal Aid Highway Act (1962) and standardized by

the codification of all technical aspects of planning process in a series of technical

manual (Taaffe et al., 1996). First formed in these studies, the four-step modelling

procedure is in use over forty years with its main framework. A general form of four-

step travel demand modelling procedure can be shown as in Figure 2.1.

Figure 2.1. Four-Step Travel Demand Modelling Process

 Martin et al. (1961) prepared an early review of urban travel forecasting

methods including all features of data collection, plan formulation, travel forecasting,

and also four-step modelling procedure. During the period of 1965-1980, many

academic researchers began to investigate improved model formulations for the

individual steps of the sequential procedure. For instance, Wilson (1967; 1970)

Fe
ed

ba
ck

BASE YEAR DATA
-Land Use Variables

-Demographic and Socio-Economic Variables

TRIP GENERATION

TRIP DISTRIBUTION

MODE CHOICE

TRIP ASSIGNMENT

OUTPUT - TRAFFIC FLOWS

TR
A

N
SP

O
R

TA
TI

O
N

SY

ST
EM

C

H
A

R
A

C
TE

R
IS

TI
C

S

6

proposed the entropy-maximizing formulation of the trip distribution model.

Furthermore, he linked the mode choice and residential location models. McFadden

(1974) derived the logit mode choice model based on random utility theory and

Williams (1977) produced his seminal treatment of nested logit models (Boyce, 2002).

 Researchers have continued their studies in a slowing rate especially to increase

predictive capabilities of each individual steps of sequential procedure with aggregate or

disaggregate approaches after 1980s. Extensive reviews on some important models on

travel demand forecasting can be seen in the works of Ortuzar and Willumsen (2001),

Meyer and Miller (2001), Taaffe et al. (1996) and Oppenheim (1995).

2.2. Fundamentals of Trip Distribution Analysis

 Trip distribution analysis has always been one of the most active sector of travel

demand modelling process. Simply for a given trip purpose, any trip distribution model

estimates the trip interactions between given origins and destinations. Considering a

zone system in any city or a region, the starting point of modelling is to build an

production-attraction and a friction matrix related to the zone system. Such matrixes are

shown in Table 2.1. Between m origins and n destinations, there is a set of flows as in

trip matrix, and a matched set of spatial separations as in friction matrix.

Table 2.1. Trip and Friction Matrixes with Notations

Trip

Matrix

Attraction Zone
Friction
Matrix

Attraction Zone

1 2 ... n 1 2 ... n

Pr
od

uc
tio

n
Z

on
e 1 T11 T12 ... T1n

Pr
od

uc
tio

n
Z

on
e 1 C11 C12 ... C1n

2 T21 T22 ... T2n 2 C21 C22 ... C2n

...

m Tm1 Tm2 ... Tmn m Cm1 Cm2 ... Cmn

 The row sum of trip matrix represents the total number of trips originated from

zone i, and Pi stands for the production total of zone i (Eq. 2.1) . The column sum

represents the total number of trips destinated from zone j, and Aj stands for the

7

attraction total of zone j (Eq. 2.2). Finally, sum of all interactions represents total

number of trips T, which also equals to the production and attraction totals (Eq. 2.3).

௜ܲ ൌ ∑ ௜ܶ௝௝ (2.1)

௝ܣ ൌ ∑ ௜ܶ௝௜ (2.2)

∑ ௜ܶ௝௜௝ ൌ ∑ ௜ܲ௜ ൌ ∑ ௝௝ܣ (2.3)

 All compatible cells (Cijs) in the friction matrix represents some measure of

spatial impedance. Generally three types of measures dominate the literature: physical

distance, travel cost and travel time. Considering the above matrices as base year data,

observed distributions are to be estimated using some appropriate functions and

parameters. If a desired level of accuracy is satisfied with the estimations, the same

function and/or parameters can be used to predict projection year trip table. The output

of trip generation phase becomes input for those predictions. A general form of a trip

distribution model can be written as follows:

௜ܶ௝ ൌ ݂൫ ௜ܲܣ௝ܥ௜௝൯ (2.4)

where Tij stands for the estimated trips between zones i and j; Pi and Aj represent some

function of trip production and attraction potentials of zone i and zone j; and Cij stands

for the general travel cost between zone i and zone j. In some cases additional

socioeconomic characteristics could be considered as zone based inputs.

 However, most of the modelling efforts suggest use of trip production and

attraction totals solely. These two variables comprise and represent many other factors

and are convenient with the trip generation outputs. It is also preferable to use either a

production-attraction (PA) or an origin-destination (OD) matrix depending on purpose

of the model. The trip distribution of the traditional four-step modelling process deals

generally with a PA matrix, where an OD matrix is required for directional traffic

assignment.

8

2.3. Trip Distribution Models

2.3.1. An Overview

 From the early 1950s, modellers have used several different formulations to deal

with distribution of trips between given origins and destinations. Initial approaches

expanded known distributions with growth factors to forecast future patterns. The

gravity models in the mid-1950s and many other models aggregate or disaggregate have

followed the initial techniques, such as the intervening opportunities models, random

utility models, activity based models and several mixed and combined models.

 All above mentioned models have a theoretical base mainly on physics,

statistics, economics or behavioural sciences. Today, the main classification of

theoretical trip distribution models can be formed as it is shown in Table 2.2. As seen in

the table, trip distribution models can be divided into two broad categories : aggregate

and disaggregate.

Table 2.2. Classification of Theoretical Trip Distribution Models
(Source: Cascetta et al., 2007, p.601)

Aggregate Approach Disaggregate Approach

Growth Factor Methods
Gravity/Spatial Interaction Models
Intervening Opportunities Models

Random Utility Models

Mixed Models

Gravity-opportunities Models Random Utility Models with
Intervening Opportunities

 Aggregate models analyze total number of trips between each traffic analysis

zones and can be further classified into growth-factor methods, gravity or spatial

interaction models and intervening opportunities models. On the other hand,

disaggregate models such as logit and activity-based models deal with individuals'

behaviours and destination choices.

9

 Present work deals with aggregate models of trip distribution, so the following

sections give essentials of well-known aggregate models. Much of the focus is given on

gravity type of spatial interaction models due to its proved effectiveness and widespread

usage. More on theoretical models and extensive reviews on either aggregate or

disaggregate models can be seen in the works of Ortuzar and Willumsen (2001), Easa

(1993), Black (2003), Kanafani (1983), Oppenheim (1995), and Cascetta et al. (2007).

2.3.2. The Growth-Factor Methods

 Growth-factor methods are initial modelling techniques especially used in the

early transportation plans mentioned earlier. The first applications in the 1950-1960s

took origin-destination flows of large household surveys and expand known

distributions with some growth factors.

 The Uniform model, Fratar model , Detroit model and Furness model were the

significant methods in this respect. Today, they are especially used to update a trip

matrix for short term forecasts. According to the available information, Ortuzar and

Willumsen (2001) distinguishes growth-factor methods into three: Uniform, Singly-

Constrained and Doubly-Constrained Growth-Factor Techniques.

2.3.2.1. Uniform Growth-Factor Technique

 If only information on overall future trip rates or growth factors are available, an

old or present trip matrix can simply be expanded with the uniform growth-factor

technique. First, a single-factor is computed for the whole study area (eq. 2.5), and then

each cells in the trip matrix are expanded using the computed growth rate (eq. 2.6) as:

ܨ ൌ ܶ/ܶ଴ (2.5)

௜ܶ௝ ൌ ܨ ௜ܶ௝
଴ (2.6)

where, F is the ratio of total number of future trips, T, over observed total number of

trips T0, and ௜ܶ௝ is the future and ௜ܶ௝
଴ is the observed trips from zone i to zone j.

10

2.3.2.2. Singly-Constrained Growth-Factor Technique

 If there is likely information on total number of trips originating or attracted to

each zones, it would be possible to apply origin-specific or destination-specific growth

factors. The computation steps take the same form of previously established equations

2.5 and 2.6. The only difference is that the total number of trips are replaced with the

origin or destination totals of zones. With this replacement any trip interaction can be

computed with the growth rate of corresponding rows or columns in the trip matrix.

2.3.2.3. Doubly-Constrained Growth-Factor Technique

 In most cases of trip distribution analysis, both originating and attracted trip

totals are known collectively as an output of trip generation step. In such cases, there

should be a row factor Fi and a column factor Fj when expanding the interaction ௜ܶ௝

between zone i and zone j. However, there is still a need to use additional correction

factors to satisfy trip total constraints iteratively. Furness (1965) propose, in this manner

is one of the best known iterative method with 'balancing factors' Ai and Bj as:

௜ܶ௝ ൌ ௜ܶ௝
଴ܨ௜ܨ௝ܣ௜ܤ௝ (2.7)

or incorporating growth factors Fi and Fj into new variables ai and bj:

௜ܶ௝ ൌ ௜ܶ௝
଴ܽ௜ ௝ܾ (2.8)

where, ai and bj are balancing factors, and ௜ܶ௝ and ௜ܶ௝
଴ are the future and observed

number of trips between zones i and j.

 In order to compute the equation, one can set all bjs as 1 and calculate ais that

satisfy origin constraints. Then using the latest ais the column factors bjs can be

calculated to satisfy trip attraction constrains. The process is continued iteratively until

the changes are sufficiently small. This method is also called as bi-proportional

algorithm, and is a special case of entropy maximization which excludes spatial

separation of zones (Ortuzar and Willumsen, 2001).

11

2.3.3. The Gravity Models

2.3.3.1. Historical Background and Early Forms of Gravity Models

 With its well-known theoretical base and various application procedures gravity

type of spatial interaction models have been by far the most commonly used aggregate

trip distribution models. Simply they assume, analogously to the Newton's Law of

Universal Gravitation (1686), that the interaction between any two zones is directly

proportional to their magnitudes and inversely proportional to distance between them.

 In social sciences, the gravity concept go back to the 19th century to the works

of Carey (1858) and Ravenstein (1885;1889). Since first application to identify potential

effects and notions of market area for retail trade (law of Reilly's retail gravitation,

1929), the gravity models have been extensively employed by geographers, planners

and transportation modellers. Considering the trip distribution problem, one of the first

study was made by Casey in 1955. He estimated shopping trips in a region and used an

early form of gravity model as follows:

௜ܶ௝ ൌ ߙ ௜ܲ ௝ܲ ݀௜௝
ଶ⁄ (2.9)

where, ௜ܶ௝ is the number of trips between towns i and j, ௜ܲ and ௝ܲ are the populations of

towns, ݀௜௝ is the distance between i and j, and ߙ is a constant.

 This basic form has improved over the years and new theoretical insights

together with new variables have introduced to the initial gravity model. A general

form of classical gravity model can be written as :

 ௜ܶ௝ ൌ ߙ ௜ܲܣ௝݂൫ܥ௜௝൯ (2.10)

where, ௜ܶ௝ is the total number of trips between zones i and j, ௜ܲ and ܣ௝ are the total

number of trips produced in and attracted to zones i and j , ݂൫ܥ௜௝൯ is the friction

function that exist between zones (generally a decreasing function, power or

exponential), and ߙ is an adjustment factor.

12

 Past several decades have brought fundamental contributions to the early gravity

models and create a large area of research called "Spatial Interaction Modeling". Today

the name spatial interaction models is used interchangeable with the gravity models in

any application of flow distributions.

 The initial improvements in spatial interaction modelling by Hansen (1959),

Huff (1962; 1963) and Lowry (1964), have followed by many others for the subsequent

years. Wilson's (1967;1970) 'Family of Spatial Interactions', Alonso's (1973;1978)

'General Theory of Movement' and Fotheringham's (1983) ' Theory of Competing

Destinations' were the important contributions in this respect. As well as these

improvements, applying spatial interaction models to real cases has been further

enhanced especially with the development of new calibration techniques. There is a

considerable amount of literature on gravity and spatial interaction models, and it is

possible to find excellent reviews in Fotheringham and O’Kelly (1989), Batten and

Boyce (1986), Sen and Smith (1995) and Roy (2004).

2.3.2.2. A Family of Spatial Interaction Models

 Spatial interaction models drifted further away from its original gravity

formulation with the important works of Wilson (1967, 1970) on entropy maximization.

The maximum entropy approach created the basis for the development and

implementation of numerous operational models including trip distribution analysis.

Wilson has distinguished several cases introducing 'A Family of Spatial Interaction

Models'. According to his justification, the interactions can be unconstrained, as in early

gravity models, production constrained, attraction constrained or doubly constrained.

 The main assumption is that any interaction (௜ܶ௝) between two zones is

proportional to total interaction flows (௜ܲ) leaving zone i, total interaction flows (ܣ௝)

terminating at zone j, and some decreasing function of travel cost ݂൫ܥ௜௝൯ between zone i

and zone j (Wilson, 1974) .

௜ܶ௝ ן ௜ܲ and ௜ܶ௝ ן ௝ and ௜ܶ௝ܣ ן ݂൫ܥ௜௝൯ (2.11)

 At this point of view, a constant ܭ can be introduced, which substitutes for the

proportionality of interactions.

13

௜ܶ௝ ൌ ܭ ௜ܲܣ௝݂൫ܥ௜௝൯ (2.12)

Then, if either total outflow from i or total inflow to j is known, it can be possible to

derive the proportionality constant K as :

∑ ௜ܶ௝ ൌ ௜ܲ௝ (2.13)

ܭ ൌ 1 ∑ ௜ܲ௜⁄ ݂൫ܥ௜௝൯ (2.14)

where ௜ܲs are known, and

∑ ௜ܶ௝௜ ൌ ௝ (2.15)ܣ

ܭ ൌ 1 ∑ ⁄௝௝ܣ ݂൫ܥ௜௝൯ (2.16)

where ܣ௝s are known.

 Considering these derivations, four cases can be distinguished as:

 i) Unconstrained case: Neither the set of row totals nor the set of column

 totals is known.

 ii) Production Constrained case: The set of row totals is known.

 iii) Attraction-Constrained case: The set of column totals is known.

 iv) Production-Attraction-Constrained (Doubly-Constrained) case: Both sets

 of interaction totals are known (Wilson, 1974).

2.3.2.3. The Doubly-Constrained Gravity Model

 In transportation studies, the number of trips generated and attracted at each

zones of origins and destinations is usually known. Corresponding to the case of

maximum information, Doubly Constrained Gravity/Spatial Interaction Model (DCGM)

has found a wide applicability in trip distribution problems.

 The high accuracy of DCGMs' estimations is also shown empirically in

Fortheringham and O'kelly (1989). Accordingly, the traditional form of DCGM

14

introduced with the following expressions, is selected as a benchmark model for the

performance measures of the present study. In classical manner, the expression of the

doubly-constrained gravity distribution model can be stated as follows:

௜ܶ௝ ൌ ܽ௜ ௝ܾ ௜ܲܣ௝݂ሺܥ௜௝ሻ (2.17)

ܽ௜ ൌ 1
∑ ௝ܾܣ௝݂ሺܥ௜௝ሻ௝

ൗ (2.18)

 ௝ܾ ൌ 1
∑ ܽ௜ ௜݂ܲሺܥ௜௝ሻ௜

ൗ (2.19)

where, ௜ܶ௝ is the number of trips from zone i to zone j, ௜ܲ is the total number of trips

produced in zone i, ܣ௝ is the total number of trips attracted to zone j, ݂ሺܥ௜௝ሻ is the

friction factor related to some measure of spatial separation between zone i and zone j,

and finally ܽ௜ and ௝ܾ are the balancing factors that ensures origin (∑ ௜ܶ௝ ൌ ௜ܲ௝) and

destination (∑ ௜ܶ௝ ൌ ௝௜ܣ) constraints are satisfied.

 The spatial separation of zones is usually included in the model as a cost of

physical distance or measured or assigned travel time. Ones the friction parameter(s)

have been calibrated for the base year trip matrix, the future pattern of trips can be

simulated easily. The well known friction functions are as follows:

݂ሺܥ௜௝ሻ ൌ ݁ିఉሺ஼೔ೕሻ exponential cost function (2.20)

݂ሺܥ௜௝ሻ ൌ ௜௝ܥ
ିఉ power cost function (2.21)

݂ሺܥ௜௝ሻ ൌ ܽ݁ିఈሺ஼೔ೕሻିܥఉ combined or gamma cost function (2.22)

 The selected calibration techniques and implementation procedure of DCGM are

discussed in another chapter of the study. Further reviews on calibration as well as

theoretical aspects of spatial interaction and trip distribution modelling can be found in

the texts by Fortheringham and O'kelly (1989), Ortuzar and Willumsen (2001), Roy

(2004) and Sen and Smith (1995).

15

2.3.4. The Intervening Opportunities Model

 One of the important approach to trip distribution modelling, other than above

mentioned gravity type of spatial interaction models, is the 'intervening opportunities

model. It was originally developed by Stouffer (1940) and refined by Schneider (1959)

in Chicago Area Transportation Study.

 According to the intervening opportunities model, trip making is not explicitly

related to travel distance but to accessible opportunities. It basically assumes that the

trip endings are directly proportional to the number of opportunities at the destination

and inversely proportional to the number of intervening opportunities.

 Most widely used form of the intervening opportunities model can be written as

follows (Vuchic, 2005):

௜ܶ௝ ൌ ௜ܲ
ቀ௘షಽಲೕି௘షಽಲೕశభቁ

൫ଵି௘షಽಲ൯
 (2.23)

where, ௜ܶ௝ is the trip interchanges between zone i and zone j, ܮ is the probability of

travelling to particular destination, ܸ is the total number of opportunities, ௝ܸ ܽ݊݀ ௝ܸାଵ

are the number of opportunities passed up to the zones j and j+1, and ௜ܲ is the total

number of trips leaving zone i. Although the intervening opportunities model is a kind

of spatial interaction model, it differs from the traditional gravity model with its

statistical nature and its different measure of attractiveness and impedance terms.

2.4. Advantages and Disadvantages of Traditional Trip Distribution
 Models

 Growth-factor techniques are easy to understand and apply. There is no need for

a calibration procedure. However, predicting all interactions with only a single factor

and without any transportation system information is not sufficient in many cases.

They are especially suitable for short term forecasts in small urban areas where a

present trip matrix is available and a friction matrix is not. The base year trip matrix is

also supposed to has no sampling error as the growth factor techniques is much more

sensitive to actual trip interchanges.

16

 The traditional gravity type of spatial interaction models can be used in many

applications with various weights, functional forms, transportation costs and further

disaggregation by route choice, trip type, transport mode, and so forth. This flexible

structure with well-established calibration and validation procedures constitutes the

main advantage of gravity models. Additionally, its underlying theory is simple and

policy-responsive. Finally, calibration procedures of gravity models are well-known and

available with many computer packages.

 However, the gravity models have also some disadvantages. First, the gravity

models are based on existing travel behaviour pattern and transportation system

characteristics. The friction factor and other socio-economic factors or parameters are

very unlikely to remain stable. Second, gravity models use only physical separation as a

friction factor and this leads to the exclusion of other behavioural factors and

opportunities. Third, they assume all the information is related with base year trip

matrix and the trip end constraints. This would be also problematic when any sampling

error is included with the base trip matrix and the outputs of the trip generation phase

are not sufficiently accurate. Finally, gravity models do not use any explicit variable of

individuals or households behaviour which is valid with all aggregate models.

 Both the gravity models and the intervening opportunities model have been used

in many urban transportation studies over the years. One of the main difference of these

models is that the gravity models are deterministic and intervening opportunities are

probabilistic. As Taafe et al. (1996) states that the results of the empirical use of both

models has shown that they are equally effective in describing and predicting trip

distributions.

 However, although it begins from different principles and have some useful

insights, the intervening opportunities model is not often used in practice. According to

the Ortuzar and Willumsen (2001) the reasons of this situation would be: i) its

theoretical basis is less well known and possibly more difficult by practitioners; ii) it

does not include any practically measured trip cost attribute; iii) the lack of suitable

software; iv) and finally its theoretical and practical advantages over the gravity models

are not overwhelming. As Wilson (1974) states that the intervening opportunities model

can be seen as a specialized gravity model while many of the features which are applied

to gravity model could be applied to the intervening opportunities model.

17

CHAPTER 3

MODELLING TRIP DISTRIBUTION WITH SOFT
COMPUTING TECHNIQUES: A REVIEW

3.1. Soft Computing Applications in Traffic and Transport Systems

 Over the past decades, a variety of techniques of computational intelligence and

artificial life have influenced regional science research to understand more fully the

natural complexity of many spatial and regional systems. Achieving and evaluating

huge amount of digital spatial data with the help of GIS and fast soft computing

techniques have led spatial analysts to recall the traditional explanatory spatial models

eliminating the past drawbacks (Roy and Thill, 2004).

 The transportation systems are naturally complex systems involving a very large

number of components and different parties, each having different and often conflicting

objectives. In order to cope with its complexity, there has been increasing interest

among both transportation researchers and practitioners in exploring the feasibility of

applying Artificial Intelligence (AI) based techniques to real transportation problems

(Sadek, 2007) .

 According to Sadek (2007) AI refers to methods that mimic biologically

intelligent behaviour in order to solve problems that is difficult to solve by classical

mathematics. At present time, AI methods can be divided into two broad categories: i)

symbolic AI, which focuses on the development of knowledge-based systems; and ii)

computational intelligence, which includes such methods as artificial neural networks,

fuzzy systems, and evolutionary computing as shown in Figure 3.1. Bezdek (1994; cited

in Konar, 2005, p.5) describes a computationally intelligent system as follows.

 A system is computationally intelligent when it: deals with only numerical (low data), has
 pattern recognition components, does not use knowledge in the A I sense, and additionally when
 it (begins to) exhibit i) computational adaptivity, ii) computational fault tolerance, iii) speed
 approaching human-like turnaround and iv) error rates that approximate human performance.

18

Figure 3.1. Computational Intelligence Based Techniques: A Family Tree

(Source: Konar, 2005, p.vi)

 Especially with the 1990's, many researchers started to study the synergistic

behaviour of computational intelligence based techniques. Zadeh called this synergism

as 'Soft Computing' and described their synergistic rather than competitive behaviour as

in following two quotations:

 Soft computing is not a homogenous body of concepts and techniques. Rather it is a collection of
 methodologies, which in one form or another reflect the guiding principle of soft computing:
 exploit the tolerance for imprecision, uncertainty, and partial truth to achieve tractability,
 robustness, and low solution cost. Viewed in a slightly different perspective, soft computing is a
 consortium of methodologies which, either singly or in combination, serve to provide effective
 tools for the development of intelligent systems (Pedrycz, 1996;cited in Konar, 2005,p. 8)

 ...a recent trend to view fuzzy logic (FL), neurocomputing (NC), genetic computing (GC) and
 probabilistic computing (PC) as an association of computing methodologies falling under the
 rubric of so-called soft computing. The essence of soft computing is that its constituent
 methodologies are for the most part complementary and synergistic rather than competitive. A
 concomitant of the concept of soft computing is that in many situations it is advantageous to
 employ FL, NC, GC, and PC in combination rather than isolation (Pedryc and Gomide,
 1998;cited in Konar, 2005, p.8).

 In parallel with the other engineering sciences, Neural Networks (NNs), Fuzzy

Logic (FL) and Genetic Algorithms (GAs) have been the most featured soft computing

techniques used in transportation research. A number of studies have shown

applicability of those techniques to transportation problems such as in traffic control

and design, demand analysis and logistics. Here an overview of these studies is given

19

and fundamentals of these widely used soft computing techniques is introduced in the

subsequent sections of the study.

 A recent study (Avineri, 2005) gives a brief overview of the use of soft

computing methodologies for modelling and analyzing traffic and transport systems.

According to this study, during the last three decades approximately one thousand

researches have established in the field of traffic and transport systems dealing with soft

computing techniques. The field of traffic control and management with a rate of 37%

has become the most studied field of transportation researches. The issues included in

transport planning and management, and transport policy and administration studies

have followed the traffic control and management studies with a total rate of 29%.

 Table 3.1 shows the detailed results of Avineri’s (2005) literature review

according to the issues in traffic and transportation systems. Additionally, Figure 3.2

shows the citation results according to the yearly development of soft computing

techniques.

 According to the Avineri (2005), travel demand modelling with many special

issues other than four step modelling is included in the section of modelling of travel

choice behaviour with 83 (8%) citation. First applications of soft computing techniques

to travel demand modelling are based on fuzzy rules and classical tools of fuzzy control.

Teodorovic and Kikuchi (1990), Lotan and Koutsopoulos (1993) and Henn (2000) has

studied route-choice problem with fuzzy set theory. Then several researchers compare

the Neural Networks in different travel demand modeling stages, such as Black (1995),

Ji-Rong (2000), Mozolin et al., (2000), and Kim (2001etc. Genetic algorithms were

recently used in route-choice modelling by Nakayama (2000), and in trip distribution

by Kalic and Teodorovic (2003).

 The reader is referred to works by Teodorovic (1994; 1999), Teodorovic and

Vukadinovic (1999), Dougherty (1995) and TRB (2007) for an in-depth coverage of

the traffic and transportation applications of NNs, FL and GAs.

20

Table 3.1. Classification for Soft Computing Research in Traffic and Transport Systems
(Source: Avineri, 2005, p.18)

Research Topics Number of
Citations

Traffic Control and Management 375 (37%)

Transport Planning and Management, Transport Administration, Transport
Policy
Modeling of Travel Choice Behaviour
Transport Projects Selection
Other Issues of Transport Planning

83 (8%)
17 (2%)

196 (20%)

Logistics 40 (4%)

Design and Construction of Transport Facilities Including Geometric
Design, Pavement Management, Construction, Materials Properties 112 (11%)

Other Applications of Traffic and Transport Systems, and Review Papers
Including Planning and Operating Public Transport, Operating and
Management of Parking Facilities, Maintenance of Traffic and Transport
Systems, Airline Network Applications, Airport Planning and Others

181 (18%)

Total 1004

Figure 3.2. Number of Citations with NNs, FL and GAs by Years

(Source: Avineri, 2005, p.20)

21

3.2. Modelling Trip Distribution with Neural Networks

 Artificial Neural Networks, commonly referred to as Neural Networks (NNs),

are computational models of the brain. Similar to the structure of brain, artificial

neurons which are interconnected by edges constitutes a layered network, the network

receives input, performs some internal process such as activations of the neurons, and

produces output (Munakata, 2008). Multilayer NNs are at the same time universal

approximators (Hornik et al., 1989; Hornik, 1991), by adjusting the connection weights

of the neurons, NNs can be "trained" to approximate any nonlinear function to a

required degree of accuracy (Sadek, 2007).

 Especially in the last two decades, NNs have been applied in many scientific

disciplines as well as transport geography and modelling. The application potentials of

NN models across the traditional models have been shown in many studies. As the NNs

have a highly flexible and equation free structure, a number of function approximation,

system identification and control, nonlinear modelling, pattern recognition and

optimization problems have solved or resolved with NNs.

 The reader is referred to some previous publications by Doughtery (1995),

Mussone (1999), Avineri (2005) and Ishak and Franco (2007) for a review on some of

the NN applications in transport geography and traffic engineering, and to valuable

works by Munakata (2008) and Haykin (1999) for a detailed theoretical framework of

NNs.

 Several recent studies have also proposed the use of NNs to model spatial

interactions and trip distribution. Openshaw (1993) presented the potential use of NNs

in spatial interaction modelling and Fischer and Gopal (1994) showed the applicability

and predictive accuracy of NNs in modelling distribution of interregional

telecommunication flows. Many others have followed these pioneering works in trip

distribution modelling: Black (1995) and Celik (2004) modelled commodity flows and

Mozolin et al. (2000), Tillema et al. (2006) and Tapkin (2009) modeled intercity

passenger flows with NNs.

 Nearly all the scholars compared the NNs predictive performance with some of

conventional gravity type of spatial interaction models. In many cases, NNs

outperformed the conventional models and it is concluded that NNs may perform well

enough to estimate spatial interaction flows in general. The only differentiating

22

conclusion was presented by Mozolin et al. (2000) and Celik (2004). They trained the

networks for a base-year interaction matrix and tried to forecast a known matrix at

projection year. They concluded that the NNs may perform better than conventional

models for the base year matrix, but they fail to outperform conventional models for

forecasting purposes.

 Although the debates are continuing, the NN based spatial interaction models

have been in use for more than fifteen years. So, it would be appropriate for us to

establish a NNs based trip distribution model and compare the overall performance

measures with the proposed GFRBS design. The selected network topology and its

training and implementation issues are discussed in subsequent sections of the present

study.

3.3. Modelling Trip Distribution with Fuzzy Logic and Genetic
 Algorithms

 The Fuzzy Set Theory (1965) and the Fuzzy Logic (1973) were first introduced

by Lotfi Zadeh as a mathematical tool for dealing with uncertainty, imprecision,

subjectivity and linguistic terms. Since then, a number of researches as well as a number

practical engineering applications have been established using the concept of fuzziness.

The fuzzy logic or FRBSs has proved to be a good tool for a wide range of application

areas such as in system/process control, pattern recognition, classification, non-linear

input-output mapping, approximate reasoning, machine learning and decision making.

 As Kalic and Teodorovic states (2003, p.214), fuzzy logic applications in

solving different kinds of problem can be divided into two categories.

• Firstly, use of fuzzy logic is a suitable for treating subjectivity, ambiguity,

uncertainty and imprecision, when we do not have sufficiently precise input

data, or the data including subjective feeling of the expert and are most often

described in linguistic terms. Over the last three decades a number of models

which treat subjectivity, uncertainty and imprecision have been developed using

fuzzy logic.

23

• Secondly, fuzzy logic can be used with the problems in which uncertainty,

subjectivity or imprecision are not present. Recently, significant theoretical

results have been achieved in the field of fuzzy systems. Fuzzy logic has proved

to be a good tool for tackling problems involving a mapping of inputs into

outputs. Wang (1992), Wang and Mendel (1992) and Kosko (1994) showed in

their works that the fuzzy logic systems can be treated as universal

approximators.

 In traffic and transportation studies, FRBSs have been applied in each of these

categories especially for selecting transportation investment projects, and modelling trip

generation, trip distribution, modal split, and route choice. As being universal

approximators, they have also been used in traffic controls and related studies including

aircraft control, ship loading/unloading control, intersection signal control, accident

analysis/prevention, and level of service evaluation (see Teodorovic,1994; 1999).

 Apart from these applications, learning fuzzy rules and tuning fuzzy

membership functions are the two key components for an FRBS. Genetic Algorithms

(GAs) have proven suitable for solving both combinatory optimisation and parameter

optimization problems. Employing GAs to construct a fuzzy system with learning

process from examples can greatly enhance the control performance of a fuzzy system

(Chiou and Lan, 2005). This line of research has spurred broad use of fuzzy systems

improved by a GA learning process: Genetic Fuzzy Systems (GFS) and in particular

GFRBSs (see Cordon et al., 2004; Ishibuchi, 2007; Herrera, 2008).

 Considering the spatial interaction and trip distribution modelling, it is possible

to mention about some important studies that uses fuzzy inference systems and/or

genetic algorithms. According to these studies listed below, FRBSs can be used to

solve trip distribution problem efficiently and, together with the use of GAs, it is

possible to achieve better model performances. However, the performance of FRBSs

against a doubly-constrained gravity model and a NNs based trip distribution model has

still not been investigated. Moreover, the GFRBS has still not been adapted for the

prediction of intra-city passenger flows, which adds computational burden and

complexity with an additional friction variable and additional fuzzy rules. The present

study tries to make up these shortages with an empirical analysis.

24

• Kalic and Teodorovic (1996) estimated air passenger flows between some major

industrial cities and tourist resorts using known productions and attractions as

inputs. In comparison to non-fuzzy methods, the FRBS that they used gave

better results.

• Kalic and Teodorovic (2003) carried out their studies with the use of GAs to

optimize initial fuzzy rule-based system. They have achieved better results with

a GFRBS design.

• Openshaw (1997;1998) proposed the use of fuzzy set systems in modelling

spatial interactions and showed some empirical results for a origin-constrained

gravity model using Sugeno-type of fuzzy inference.

• Diplock and Openshaw (1996) investigated the use of genetic algorithms in an

attempt to obtain globally optimal parameter estimates for a mix of simple and

complex spatial interaction models.

• Shafahi et al. (2008) proposed a simple FRBS to predict the discretionary trips

in Tehran showing its capability in intra-city passenger flows. They used travel

time as third input and gained better results against the unconstrained type of

gravity model.

25

CHAPTER 4

FUNDEMENTALS OF FUZZY AND GENETIC FUZZY
SYSTEMS

4.1. Fuzzy Logic and Fuzzy Rule-Based Systems

 The concept of fuzziness (1965) and fuzzy logic (1973) was first introduced by

Zadeh to deal with uncertainty, imprecision and partial truth. Simply, fuzzy logic

provides a way to draw definite conclusions from vague information and it enables

using linguistic terms and human like reasoning in modelling complex real-life systems.

 The term fuzzy logic is generally used in two sense: i) in a narrow sense, it can

be seen as a branch of fuzzy set theory dealing with logical systems where classical

logic suffers, ii) in a broad sense, it can be specified as synonymously with fuzzy set

theory, fuzzy control systems and fuzzy modelling. This study uses the term fuzzy logic

as its broad and comprehensive meaning.

 As mentioned earlier, fuzzy logic is useful in two general context: i) in situations

involving uncertainty, imprecision and partial truth, and ii) in situations where mapping

any inputs into desired outputs even if there is no uncertainty and imprecision exist.

Present study introduces a fuzzy rule-based system designed in the latter context. The

following two sections give a brief overview of fuzzy sets and introduces a general

Fuzzy Rule-Based System (FRBS) also used in this study.

4.1.1. Fuzzy Sets and Membership Functions

 Fuzz logic and fuzzy systems are mainly based on fuzzy set theory. Its

mathematical foundations can be seen as a generalization of classical set theory. In

classical set theory, boundaries of sets are rigid and elements are either members or not

members of predefined crisp sets. If an object belongs to a set, its membership function

value is 1, otherwise it is 0.

26

 Classical set theory is not sufficient to describe vague concepts especially in real

life cases. Seeing inadequacies of this binary structure, Zadeh (1965) introduced a

gradual membership concept to ordinary sets with overlapping boundaries. In fuzzy

sets, boundaries are not price and can overlap, additionally many degrees of

membership are possible between a closed interval [0,1].

 All information contained in a fuzzy set is described by its membership function,

most fundamental parts of fuzzy sets. Membership function of a set μ஺ሺݔሻ, maps each

element to its degree between 0 and 1. They can be formed in any discrete or continuous

functions. Some of the most widely used continuous membership functions are

triangular, trapezoidal, s-shaped, sigmoidal and gaussian functions.

 A membership function is mainly constituted from three parts: the core, crisp

subset of the universe that represents complete membership; the support, non-zero

membership range of the membership function; and the boundaries, region of the

universe that includes greater than zero, but smaller than complete membership degree

(Figure 4.1).

Figure 4.1. Fuzzy Membership Function Components

 Let us consider a universe of discourse , say 'distance to city centre', and define

three subsets: low, medium and high distances. If some appropriate intervals are given

to predefined membership functions, the crisp and fuzzy sets can be shown graphically

as in Figure 4.2.

0

µ(x)

1.0

0.5

M
em

be
rs

hi
p

D
eg

re
e

Core
Boundary Boundary

Support
Universe of Discourse (x)

27

Figure 4.2. Crisp and Fuzzy Sets: An Example

 Additionally, for an element ݔ that belongs to subset ܣ , say 'medium distance to

city centre', the membership degree, μ஺ሺݔሻ, of crisp and fuzzy subsets can be

calculated as in equations 4.1 and 4.2 respectively. As seen in the figure and the

mathematical form of fuzzy membership function, any value of ݔ can get different

membership degrees other than exact 0 and 1. Moreover, the element x can also be a

member of a nearby subset if it is in a fuzzy or gray area.

μܣሺݔሻ = 1 if 15 ൑ ݔ ൑ 45

0 otherwise (4.1)

μܣሺݔሻ = ௫ିଵ଴
ଶହିଵ଴

 if 10 ൑ ݔ ൑ 25

 1 if 25 ൑ ݔ ൑ 35

௫ିହ଴
ଷହିହ଴

 if 35 ൑ ݔ ൑ 50

0 otherwise (4.2)

 Classical sets can be considered as a special case of fuzzy sets that is restricted

to certain values. So, nearly all classical set operations and properties are supported by

fuzzy sets. Three of the operators have remarkable importance, union, intersection and

complement, which are illustrated in Figure 4.3 and summarized in Table 4.1.

1.0

0

µ(x)

15 4530 60 9075 0 15 4530 60 9075

µ(x)

1.0

0.5

Distance to City Centre (minutes) Distance to City Centre (minutes)

M
em

be
rs

hi
p

 D
eg

re
e

M
em

be
rs

hi
p

 D
eg

re
e

Low
Distance

Medium
Distance

High
Distance

Low
Distance

Medium
Distance

High
Distance

Crisp Sets Fuzzy Sets

x x

28

Figure 4.3. Fuzzy Set Operations: Union, Intersection and Complement

 Suppose that ܣ and ܤ are two fuzzy sets on the universe ܺ, then the union of sets

 , 'ሻ. The fuzzy union operator is also called as logical 'orݔ஻ሺڂis denoted by μ஺ ܤ and ܣ

representing all the elements that belong to either set A or set B.

 Similarly, the intersection of fuzzy sets ܣ and ܤ is denoted by μ஺ת஻ሺݔሻ, and

represents the region where all the elements are member of both of set A and set B.

The fuzzy intersection operator is also called as logical 'and' operator.

 The complement of fuzzy set ܣ is a new fuzzy set denoted by ܣҧ, which

represents elements that are not belong to set A. Complementation operator fuzzy sets is

also known as logical 'not' operator.

 Other properties of classical sets can also be applied to fuzzy sets. Classical set

properties such as, commutativity, associativity, distributivity and identity are familiar

with fuzzy set properties.

Table 4.1. Fuzzy Set Operations: Union, Intersection and Complement

Fuzzy Set Operator Logical Operator Mathematical Expression

Union OR ߤ஺ڂ஻ሺݔሻ ൌ ,ሻݔ஺ሺߤሼݔܽ݉ ሻሽݔ஻ሺߤ

Intersection AND ߤ஺ת஻ሺݔሻ ൌ ݉݅݊ሼߤ஺ሺݔሻ, ሻሽݔ஻ሺߤ

Complement NOT ߤ஺ҧሺݔሻ ൌ ሼ1ݔܽ݉ െ ሻሽݔ஺ሺߤ

0

µ(x)

1.0

0.5

Union
0

µ(x)

1.0

0.5

0

µ(x)

1.0

0.5

Intersection Complement

A B A B A A Complement

xx x

M
em

be
rs

hi
p

D
eg

re
e

M
em

be
rs

hi
p

D
eg

re
e

M
em

be
rs

hi
p

D
eg

re
e

29

4.1.2. Fuzzy Rule-Based Systems (FRBSs)

 Fuzzy Rule-Based Systems (FRBS) are one of the most important application

areas of fuzzy set theory. As an extension of classical rule-based systems, a FRBS uses

fuzzy sets and fuzzy logic to represent and connect knowledge which is usually

linguistic. Because of its multi-disciplinary nature, FRBS are also known as fuzzy

inference systems, fuzzy control systems, fuzzy expert systems, fuzzy reasoning, fuzzy

modelling and finally fuzzy systems which is more broad.

 FRBS are most useful in modelling complex systems that can be observed by

humans. The most common way to represent human knowledge is to form it into natural

language expressions: IF premise, THEN conclusion. This expression is commonly

referred as an IF-THEN rule-based system. They enable use of linguistic variables as

antecedents and consequents, and logical connectives as well. Using basic properties

and operations of fuzzy sets, any compound rule structure can be decomposed and

reduced to a number of simple canonical rules as shown in Table 4.2 Canonical rules

may include either assignment statements, conditional statements or unconditional

statements. Conditional and unconditional statements place restrictions on the

consequent, and linguistic connections such as "and", "or", "not" connect them each

other (Ross, 2004).

Table 4.2. The Canonical Form Of A Fuzzy Rule-Based System

Rule 1: IF Condition C1, THEN restriction R1

Rule 2: IF Condition C2, THEN restriction R2

......

Rule r: IF Condition Cr, THEN restriction Rr

 The most commonly used FRBS can be distinguished into two main

configurations: i) Mamdani-type FRBS, proposed by Mamdani (1974) and Mamdani

and Assilian (1975), and ii) Sugeno-type FRBS, introduced by Takagi and Sugeno

(1985) and Sugeno and Kang (1988).

 They are all similar in their antecedents and rule base structure and their ability

to process human like reasoning with linguistic variables. However, they become

different in producing system outputs. The output of a Mamdani-type FRBS is a fuzzy

30

set as in its inputs, whereas the output of a Sugeno-type FRBS is generally either a

linear function of its inputs or some constants. An approximate fuzzy rule can be

formed as following expressions in each case:

 Mamdani-type FRBS: IF X1 is A1 and X2 is A2 and Xi is Ai,

 THEN Y is B

 Sugeno-type FRBS: IF X1 is A1 and X2 is A2 and Xi is Ai,

 THEN Y = a0+ a1X1+ a2X2++aiXi

 Mamdani-type FRBS also used in this study, is the most common FRBS in

practice and in the literature. It generally deals with mapping crisp inputs into crisp

outputs and enables the use of linguistic variables and expert knowledge. This

knowledge can be easily combined with automatically generated rules from data sets

that describe the relation between system input and output as in our case.

 Either Mamdani-type or Sugeno-type, a FRBS generally consist of four main

components: fuzzification, knowledge base, inference and defuzzification. A general

form of a FRBS and its components is shown in Figure 4.4 and is described as

following.

 Fuzzification, is the process of mapping inputs into linguistic fuzzy sets and

computing their membership degrees for rule antecedents. In most cases, inputs are

crisp numerical values which are then transformed into fuzzy values.

 Knowledge base, is the most fundamental part of a FRBS and constituted from a

data base and a rule base. The data base keeps linguistic variables or in other words

fuzzy membership functions for both of the inputs and outputs. The rule base, on the

other side, includes a collection of fuzzy If-Then rules. All other components of a FRBS

uses the information preserved in knowledge base.

 Inference system, is responsible for combining fuzzy sets with corresponding

logical operators, then giving an fuzzy output. The type of combining is changeable

depending on selected implication method such as max-min or max-product implication.

Additionally, the type of outputs may differ according to the selected inference system:

A Mamdani-Type inference system produces fuzzy outputs to defuzzify, on the other

hand, a Sugeno-Type inference system produces a vector of real values.

31

 Defuzzification, is the process of reduction which maps aggregated fuzzy results

into a crisp output. There are also a number of defuzzification methods. The most

widely used of them are the Centre of gravity and weighted average methods.

Figure 4.4. General Form of A Fuzzy Rule-Based System

 Graphical interpretation of a FRBS can considerably help us to understand

nature of fuzzy modelling. Implication of a Mamdani-type Fuzzy Rule-Based System

can be distinguished into four steps as described below and illustrated in Figure 4.5 :

 Step 1 : Initialization: Define input and output variables. Normalize data

 into some appropriate range if it is required. Constitute the

 knowledge base: set fuzzy membership functions on variables and

 determine fuzzy rules.

 Step 2 : Fuzzification: Compute fuzzy membership values of actual

 inputs using corresponding membership functions, usually as

 crisp into fuzzy values.

 Step 3 : Inference: Combine fuzzy sets with logical operators using

 appropriate implication algorithm. Aggregate all outcome to

 generate fuzzy output.

 Step 4 : Defuzzification: Convert aggregated fuzzy output into crisp

 output using a defuzzification method.

32

Fi

gu
re

 4
.5

. G
ra

ph
ic

al
 In

te
rp

re
ta

tio
n

of
 A

 G
en

er
al

 M
am

da
ni

-T
yp

e
FR

B
S

R
ul

e
1:

 I
F

 X
1

is
 M

F1
 A

N
D

 X
2

is
 M

F1
 A

N
D

 X
3

is
 M

F3
TH

EN

Y
1

is
 M

F1

R
ul

e
2:

 I
F

 X
1

is
 M

F2
 A

N
D

 X
2

is
 M

F2
 A

N
D

 X
3

is
 M

F3
TH

EN

Y
2

is
 M

F2

R
ul

e
k:

 I
F

 X
1

is
 M

F2
 A

N
D

 X
2

is
 M

F2
 A

N
D

 X
3

is
 M

F2
TH

EN

Y
k

is
 M

F3

X
1

M
F1

M
F2

M
F3

µ(
X

1)

X
1

M
F1

M
F2

M
F3

X
1

M
F1

M
F2

M
F3

µ(
X

1)

µ(
X

1)

X
2

M
F1

M
F2

M
F3

µ(
X

2)

X
2

M
F1

M
F2

M
F3

µ(
X

2)

X
2

M
F1

M
F2

M
F3

µ(
X

2)

M
F1

M
F2

M
F3

M
F1

M
F2

M
F3

X
3

M
F1

M
F2

M
F3

µ(
X

3)

Y
1

M
F1

M
F2

M
F3

µ(
Y

1)

M
F4

X
3

µ(
X

3)

M
F 4

X
3

µ(
X

3)

M
F4

M
F4

Y
2

M
F1

M
F2

M
F3

µ(
Y

2)

M
F 4

Y
3

M
F1

M
F2

M
F3

µ(
Y

3)

M
F4

Y

µ(
Y

)

Y

C
R

IS
P

IN
PU

T
S

(X
1,

X
2,

X
3)

x1
x2

x3

INITIALIZATIONFUZZIFICATION
DEFUZZIFICATIONINFERENCE

MIN MIN MIN

M
A

X

C
R

IS
P

O
U

T
PU

T
 (Y

)

y

IN
PU

T
 M

E
M

B
E

R
SH

IP
S

O
U

T
PU

T
 M

E
M

B
E

R
SH

IP
S

32

33

 Development of fuzzy membership functions and generating a fuzzy rule base

(rule induction) are two key components of a FRBS design. There is a number of way

to assign membership values or functions to fuzzy variables. The most widely used

techniques are based on some numeric or logical operations or they are intuitive. These

techniques can be distinguished into six: i) intuition, ii) inference, iii) rank ordering, iv)

neural networks, v) genetic algorithms, and vi) inductive reasoning.

 Apart from these, there are several automated methods for fuzzy systems which

provide additional procedures to develop membership functions as well as rule base

learning procedures. Batch least squares, recursive least squares, gradient method,

learning from example, modified learning from example and clustering method are

some of the important algorithms for fuzzy system development (Ross, 2004).

 Among the automated fuzzy models, the learning from example is one of the

most widely used technique for fuzzy rule induction. This technique is originally

developed by Wang and Mendel (1992) as a supervised data mining technique to

generate fuzzy rules from numerical data.

 It is also known as Wang-Mendel Method or One-Pass Method which is a simple

FRBS design method that generates a set of IF–THEN rules by performing a one-pass

operation on the given input–output data, and then combines the rules in a common rule

base, to construct a final FRBS. It can be described with the following five steps as

indicated in Mendel and Mouzouris (1997, p. 888-889):

The One-Pass Method:

Given a set of input–output pairs,

൫xଵ
ሺଵሻ, xଶ

ሺଵሻ, … , x୬
ሺଵሻ; yଵ൯, ൫xଵ

ሺଶሻ, xଶ
ሺଶሻ, … , x୬

ሺଶሻ; yଶ൯ … (4.3)

where xଵ, xଶ, … , x୬ are inputs and is the output, we proceed as follows to construct a FLS:

1) Let ሾxଵ

ି, xଵ
ାሿ, ሾxଶ

ି, xଶ
ାሿ, … , ሾx୬

ି, x୬
ାሿ; ሾyି, yାሿ be the domain intervals of the input and output

variables, respectively, where domain interval implies the interval a variable is most likely to lie
in. We divide each domain interval into 2N+1 regions, where N can be different for each
variable. Then, we assign membership functions to the regions, labelled as SN (Small N), ...,
S1(Small 1), CE (Center), B1 (Big 1), ..., BN (Big N).

2) We evaluate the membership of each input–output point in regions where it may occur, and
assign the given xଵ

ሺ୧ሻ, xଶ
ሺ୧ሻ, … , x୬

ሺ୧ሻ, or yሺ୧ሻ to the region with maximum membership.

3) In order to resolve conflicting rules, i.e., rules with the same antecedent membership
functions and different consequent membership functions, we assign a degree to each rule as
follows: µ୶ౡ

ሺx୩ሻ let denote the kth membership of the input variable in the region Xk with
maximum membership, and µYሺyሻ the membership of the output variable in the region Y with

34

maximum membership, where Xk and Y are labels from their corresponding sets SN, ...,
S1,CE,B1,...BN. Then, the degree for the lth rule, Rl , is defined as

D൫R୪൯ ൌ ∏ µ୶ౡ
ሺx୩ሻµYሺyሻ ୬

୩ୀଵ (4.4)

In the event of conflicting rules, the rule with the highest degree (eq.4.4) is kept in the rule base,
and all other conflicting rules are discarded.

4) We generate a combined rule base comprised both of numerically generated fuzzy rules (as
described above) and linguistic information provided by experts.

5) After the combined rule base is generated, we employ a defuzzification method (such as
Center-of-Area, Center-of-Sums, Height defuzzifier), to obtain the crisp output of the FLS.

4.2. Genetic Fuzzy Systems

 Fuzzy rule-based systems have an advantage of storing knowledge that is

learned from the data itself or set up by an expert. However, they lack a self-learning

feature. If knowledge of the system is fixed and well-defined it is easy to design an

effective FRBS. On the other hand, an increase in the size and complexity of the

knowledge base complicates the process of designing an optimum FRBS. One of the

recent important approaches to removing this learning deficiency of fuzzy systems is to

enhance them using GAs.

 The use of GAs in enhancing or optimizing fuzzy systems has started a new

field of research that is called Genetic Fuzzy Systems (GFSs). The pioneering works of

GFSs can be dated back to the early 1990s (Karr,1991; Thrift, 1991; Pham and

Karaboga, 1991; Valenzuela-Rendon,1991). Since then, evolutionary learning of fuzzy

systems has been extended and several types of GFS have been developed. Genetic

Fuzzy Rule-Based Systems (GFRBS), genetic fuzzy clustering systems, genetic fuzzy

neural systems and genetic fuzzy decision trees has constituted the main types of GFS.

 The most widely used types of GFSs are GFRBSs, which incorporate

evolutionary techniques to achieve automatic generation or modification of each

component of the FRBS knowledge base. The present study proposes a GFRBS to

model intra-city passenger flows. A brief review of GAs and main components of

GFRBS are introduced in the following two sections of the study. Further reviews and

various applications of GFSs can be found in the texts by Cordon et al. (2001),

Bodenhower and Herrera (1997) and Herrera and Verdegay (1996)

35

4.2.1. A Brief Description of Genetic Algorithms

 Genetic Algorithms (GAs) are effective tools with acceptable solutions when

exploring large search spaces in a reasonable time. First initiated by Holland (1975) and

his colleagues, they are guided random search techniques which are primarily based on

Darwin’s principals of natural selection and the genetics branch of Biology. In a GA

process, genetic codes of individuals within a population evolve into a solution with the

overriding principal of survival of the fittest. New generations produce individuals

having improved genetic codes with reproduction, crossover, and mutation operators.

 Typically a GAs procedure can be identified with some main steps as: the

creation of the initial population and the evaluation function; the determination of

chromosome representation (generally binary strings) and selection function; and finally

the set of parameters for genetic operators, reproduction, and termination criteria

(Figure 4.6). Genetic algorithms work well in a wide variety of engineering problems.

They have attracted considerable attention in a great number of disciplines as a

methodology of search, optimisation and learning, especially after the work of Goldberg

(1989). A brief explanation of GAs is introduced below, further reviews and

applications can be found in the text by Haupt and Haupt (2004), Sivanandam and

Deepa (2008), Gen and Cheng (2000) and Bodenhofer (1999).

Figure 4.6. A Typical GAs Procedure

INITIALIZE
population at random

EVALUATE
fitness of individuals

TERMINATE
if the goal is reached

REPRODUCE
the population with selection,

crossover and mutation

FINISH
YES

NO

36

 The main steps of simple GAs can be further described with the following

operations (Sivanandam and Deepa, 2008, p. 30-31):

• Start: Genetic random population of n chromosomes (suitable solutions for the problem)
• Fitness: Evaluate the fitness f(x) of each chromosome x in the population
• New population: Create a new population by repeating following steps until the new population

is complete
- Selection: select two parent chromosomes from a population according to their fitness

(the better fitness, the bigger chance to get selected).
- Crossover: With a crossover probability, cross over the parents to form new offspring

(children). If no crossover was performed, offspring is the exact copy of parents.
- Mutation: With a mutation probability, mutate new offspring at each locus (position in

chromosome)
- Accepting: Place new offspring in the new population.

• Replace: Use new generated population for a further sum of the algorithm.
• Test: If the end condition is satisfied, stop, and return the best solution in current population.
• Loop: Go to step 2 for fitness evaluation.

 Additionally, GAs can be realized with the following procedural code where

P(t) denotes a population of chromosomes at time t (Konar, 2005, p.324):

BEGIN
 t=0;
 initialize P(t);
 evaluate P(t);
 while (termination condition not satisfied) do
 begin
 t=t+1;
 select P(t) from P(t-1);
 alter P(t);
 evaluate P(t);
 end;
END

4.2.2. Genetic Fuzzy Rule-Based Systems (GFRBSs)

The subject of a GFRBS is to learn or modify the knowledge base of a FRBS.

Fuzzy membership functions, scaling functions and rule base can be stored in the

knowledge base of a fuzzy system. In designing GFRBS, either part of or the entire

knowledge base can be subject to optimisation by GAs. Figure 4.7 indicates such an

integration of GAs with FRBSs.

37

Figure 4.7. Main Components Of Genetic Fuzzy Rule-Based Systems

Two procedures are possible in GFRBS: genetic tuning and genetic learning. In

a genetic tuning process, parameters of the data base including membership functions

are adjusted using a predefined rule base. In genetic learning process, the performance

of the FRBS is improved with knowledge base learning including the rule base.

Considering the genetic tuning and learning processes GFRBS designs generally fall

into one of four main categories: The present study deals with the second category:

learning the rule base of a predefined FRBS with fixed membership functions.

 1. Use of GAs to tune up membership functions under a given set of fuzzy rules.

 2. Use of GAs to learn the rule base with fixed membership functions.

 3. Use of GAs to learn both the database and the rule base simultaneously.

 4. Use of GAs to learn the database and the rule base sequentially.

 Regardless of the problem, genetic tuning or learning process will be based on

evolution. Three issues are essential in the process (Bodenhower and Herrera; 1997):

 The population of potential solutions: The population of a GFRBS has to be

 constituted from one of several components of the FRBS. The individuals in the

 population may represent partly or completely the parameters of FRBS or

 membership functions or the rule base.

38

 The set of evolution operators: The genetic learning process has to be evolved

 into best solution through selection, crossover and mutation operators. Success

 of an evolutionary learning is based on applying appropriate genetic operators

 that is compatible with the chromosome representation of the FRBS component.

 The performance index: A fitness/error function has to be established in order to

 measure the difference between the desired and the actual output of the FRBS.

 Finally, GAs can be used with various representations in genetic learning of a

rule base. These representations generally follow two different approaches: i) the

'chromosome = set of rules", and the 'chromosome = rule" (Herrera, 2008). The first

approach, also known as the Pittsburgh Approach (Smith, 1980), is selected as the

genetic learning strategy of the proposed design. The Pittsburgh approach successfully

solves the cooperation versus competition problem by evolving a population of rule

bases instead of single rules (Cordon et al.; 2001). However, it brings much greater

computational burden which can be solved with improved genetic operators.

39

CHAPTER 5

EMPIRICAL ANALYSIS

5.1. Description of the Study Area and Data

 İstanbul Metropolitan Area has been selected for the case study. It is a very

complex and challenging city region to test a trip distribution model. Its transportation

system consists a of high number of interaction links, nodes and bridge crossings.

Moreover, the production-attraction and the friction matrices of the Istanbul

metropolitan area were measured recently, in a large household survey.

 Istanbul is located in Northwest Turkey connecting the Marmara and Black Seas

and separating the two continents: Asia and Europe. It has a population of nearly 13.8

million, or 17.8% of Turkey’s total population (TurkStat, 2010). An estimated 21

million daily trips occur in the Istanbul metropolitan area. 50% of these trips are by

foot, 14% by private cars, and 36% by public transit modes. Additionally, 1.3 million

daily trips are continent crossings, 1 million on bridges and the remaining 300.000 with

ferries (Istanbul Metropolitan Municipality Transportation Planning Depart., 2008).

 The data used in this study come from the Household Travel Survey conducted

by the Transportation Department of the Istanbul Metropolitan Municipality in 2006.

The survey was established in 451 Traffic Analysis Zones (TAZs) covering the entire

metropolitan area of Istanbul and including 90.000 households (3% sampling rate). In

the survey, which had an 80% unit response rate, approximately 264.000 people in

72.000 households were surveyed and a total of 356.000 trips were recorded between

451 origin-destination pairs.

 The observed trips (including both pedestrian and motorized trips) between a

possible 203.401 distinct interaction points were categorized by trip purposes.

Approximately 127.000 of these trips were for home-based-work (HBW), 94.000 trips

were for home-based-school (HBS), 115.000 trips were home-based-other (HBO), and

20.000 trips were non-home-based (NHB) trips (Istanbul Metropolitan Municipality

Transportation Planning Department, 2008).

40

 Use of home-based-work (HBW) trips was found sufficient for empirical

analysis. The use of the production-attraction (P-A) form of the HBW trip matrix is

preferred for the modelling procedure. Figures 5.1 and 5.2 show spatial distribution of

zonal production and attraction totals of HBW trips in the Istanbul Metropolitan area.

The trip matrix includes both within and between interactions of TAZs. Additionally,

assigned travel times are chosen due to typical problems with travel time self-reported

in the survey. In summary, the modelling data is constituted from two 451 by 451

matrices: a P-A trip matrix and a travel time matrix.

 To divide a single set of data into two representative parts —the first part for the

purpose of training and calibration, the second part for the testing of generalization

purposes— is an orthodox methodology, especially in NNs and FL based modelling.

Therefore, the data matrices are divided into two representative parts, but with an

unusual technique.

 The calibration of doubly-constrained gravity models requires that the data be

in matrix format due to row and column constraints. In addition, taking any number of

independent observations or incomplete small matrices from the whole matrix may

cause biased parameter estimations. So, the whole matrix is divided into two equal

rectangle matrices: a training matrix, and a testing matrix. The training matrix includes

trips from all TAZs to odd numbered TAZs (a 451 by 226 matrix); the testing matrix

includes trips from all TAZs to even numbered TAZs (a 451 by 225 matrix).

 It can be criticized that dividing the data set can reduce the gravity model's

performance as the benchmark. However, it has been experimented that the gravity

model parameters remain stable even if it is calibrated with smaller amount of samples.

The representativeness of samples was found more effective in successfully calibrating

gravity models. The representativeness of two datasets is further tested with a two-

sample paired t-test. No statistically significant difference was found between training,

testing and whole datasets when the trip length distributions (TLDs) were taken into

account. Descriptive statistics and observed TLDs of all data sets are shown in Table

5.1 and Figure 5.3.

41

Fi

gu
re

 5
.1

. T
ra

ff
ic

 A
na

ly
si

s Z
on

es
 a

nd
 H

om
e

B
as

ed
 W

or
k

Tr
ip

 P
ro

du
ct

io
ns

(S

ou
rc

e:
 Is

ta
nb

ul
 M

et
ro

po
lit

an
 M

un
ic

ip
al

ity
 T

ra
ns

po
rta

tio
n

Pl
an

ni
ng

 D
ep

ar
tm

en
t)

41

42

Fi

gu
re

 5
.2

. T
ra

ff
ic

 A
na

ly
si

s Z
on

es
 a

nd
 H

om
e

B
as

ed
 W

or
k

Tr
ip

 A
ttr

ac
tio

ns

(S
ou

rc
e:

 Is
ta

nb
ul

 M
et

ro
po

lit
an

 M
un

ic
ip

al
ity

 T
ra

ns
po

rta
tio

n
Pl

an
ni

ng
 D

ep
ar

tm
en

t)

42

43

Table 5.1. Descriptive Statistics of Data Sets

Data Sets Number of Elements Mean Std. Deviation Minimum Maximum
Full Data Set

Production Vector 451 283 307 2 1614

Attraction Vector 451 283 329 3 2024

Travel Time Matrix 203401 54 37 0.17 299

Trip Matrix 203401 0.63 6.2 0 885

Training Data Set

Production Vector 451 139 172 1 1171

Attraction Vector 226 278 339 4 1952

Travel Time Matrix 101926 54 38 0.17 299

Trip Matrix 101926 0.62 6.8 0 885

Testing Data Set

Production Vector 451 144 156 1 1009

Attraction Vector 225 288 318 3 2024

Travel Time Matrix 101475 54 37 0.17 275

Trip Matrix 101475 0.64 5.6 0 454

Figure 5.3. Observed Trip Length Distributions of Data Sets

44

5.2. Modelling Trip Distribution with a Fuzzy Rule-Based System
 (FRBS)

 Fuzzy rule-based systems (FRBSs) are useful in two general contexts: i) in

situations involving uncertainty, imprecision and partial truth, and ii) in situations where

investigators are mapping any inputs into desired outputs even if there is no uncertainty

and imprecision present. In this study we propose a Mamdani-type FRBS designed in

the latter context to solve urban trip distribution problem.

 The main logic behind the proposed FRBS design and its variable structure are

the same as with the classical gravity model including three inputs and one output.

Considering an origin-destination zone pair, if zonal trip productions and trip

attractions are known along with the corresponding friction factor, the number of

interactions/trips between this zone pair can be estimated using a FRBS as a universal

approximator. Its main structure can be established starting from the simple verbal

statements as follows:

• IF total trip production of the origin is LOW, AND total trip attraction of the
destination is LOW, AND friction factor between corresponding origin and
destination is HIGH, THEN the interactions/trips between origin and
destination is LOW;

• IF total trip production of the origin is HIGH, AND total trip attraction of the
destination is HIGH, AND friction factor between corresponding origin and
destination is LOW, THEN the interactions/trips between origin and
destination is HIGH.

 In order to construct a FRBS, these verbal statements are to be decomposed into

a set of overlapping fuzzy sets connected to If-Then rules with logical operators. There

are several ways exist to establish fuzzy partitions and fuzzy rule base.

 The present study deals with designing a simple and effective FRBS that is

regardful to the accuracy-interpretability trade-off. Therefore, a heuristic design of

fuzzy sets with few partitions is preferred for simplicity. Then, a widely-used Wang-

Mendel method (1992), also known as the one-pass method, is implied as the fuzzy rule

induction procedure. The following five steps describe the construction and training of

the proposed FRBS design:

45

(1) Divide input-output spaces into overlapping regions:

The input-output pairs of trip distribution problem can be stated as,

ሺ ଵܲ, ,ଵܣ ;ଵܨ ଵܶሻ, ሺ ଶܲ, ,ଶܣ ;ଶܨ ଶܶሻ, . . . , ሺ ௜ܲ , ,௜ܣ ;௜ܨ ௜ܶሻ

where P, A, and F (production, attraction, and friction) represent input and T

(trips) represent output variables. Each variable has a domain interval which lies

between minimum and maximum values. The domain intervals are divided into a

prespecified number of subintervals. Number and lengths of these subintervals are

determined with intuition and visual inspection. The production and the attraction

variables are divided into 5, the friction variable is divided into 6, and the output

variable, trips, is divided into 20 fuzzy sets. The fuzzy sets are labelled with

numbered Membership Functions (MFs) representing low, moderate and high

quantities roughly. For simplicity, the first and the last MFs are established as

semi-trapezoidal and the others are set as triangular. Figure 5.4 indicates an

illustration of originally scaled fuzzy sets used in the study.

(2) Generate fuzzy rule candidates from numerical data:

In this step, membership degrees [µ(xi)] of each input-output point are evaluated,

and then MFs having maximum degrees are assigned as a rule candidate. Suppose

that membership degrees evaluated for any pair of data are indicated as following:

μሺ௉೔,஺೔,ி೔;்೔ሻ ՜ ൤ ୧ܲሺ0.7 in MFଵ; 0.4 in MFଶሻ, ;୧ሺ0.8 in MFଵܣ 0.2 in MFଶሻ,
;୧ሺ0.6 in MFଵܨ 0.3 in MFଶሻ; ୧ܶሺ0.9 in MFଶ; 0.2 in MFଷሻ ൨

Assigning the corresponding MFs with maximum degree to logical If-Then

structure constitutes the ith rule candidate as:

݅௧௛ ݁ݐܽ݀݅݀݊ܽܿ ݈݁ݑݎ ՜ ,ଵܨܯ ݏ݅ ௜ܨ ݀݊ܽ ଵܨܯ ݏ݅ ௜ܣ ݀݊ܽ ଵܨܯ ݏ݅ ௜ܲ ܨܫ

 ଶܨܯ ݏ݅ ௜ܶ ܰܧܪܶ

(3) Select one desired rule among conflicting rules:

Three input structure, P, A, and F with 5, 5 and 6 fuzzy partitions respectively,

enable 150 (5*5*6) different rule antecedents (IF part of a rule) with logical 'and'

connections. However, the training data set consists of 101926 observed input-

output pairs leading to a great number of conflicting rules: the rules having same

46

antecedents but different consequents (THEN part of a rule). The traditional

approach of the original Wang-Mendel method evaluates strength of the each rule

candidate with multiplying their membership degrees, and then selects a final rule

having the maximum strength. Since, this approach does not satisfy with our case

due to high number of the same rule candidates, this step is processed in a

different way: first, the weighted average of conflicting rule consequents are

computed using their observed frequencies, then the nearest consequent part to the

computed weighted average is selected as the final rule. For instance, if three

different rule consequents are observed with various frequencies as in the

following example:

IF Pi is MF1and Ai is MF1 and Fi is MF1, THEN Ti is MF2 ՜ frequency 25
 THEN Ti is MF3 ՜ frequency 35
 THEN Ti is MF5 ՜ frequency 20

a final rule consequent (MF label number) can be selected computing their

weighted average as in the following expression:

݊௪௔ ൌ
ሺ݊ଵ כ ଵ݂ሻ ൅ ሺ݊ଶ כ ଶ݂ሻ ൅ ڮ ൅ ሺ݊௞ כ ௞݂ሻ

ଵ݂ ൅ ଶ݂൅ ڮ ൅ ௞݂
ൌ൐

ሺ2 כ 25ሻ ൅ ሺ3 כ 35ሻ ൅ ሺ5 כ 20ሻ
25 ൅ 35 ൅ 20

؆ 3

where, ݊௞ and ௞݂ represent observed label number of a MF and corresponding

frequency, and ݊௪௔ represents the weighted average of the conflicting rule

consequents. Then, the final statement of the rule in the above example should

end with MF3, since the computed ݊௪௔ equals approximately 3.

(4) Combine selected fuzzy rules and generate fuzzy rule base:

This step is the final step of an automated fuzzy rule base learning procedure.

Steps one through four are automated with a self-created program written in the

MATLAB environment. In this step, all single rules, selected in the previous step,

are combined establishing the initial fuzzy rule base.

(5) Check out fuzzy rule base and make a limited number of changes:

Approximately 95% of the rule base has been directly generated from numerical

input-output pairs with the first four steps. Then, non-observed rules are

extrapolated making an analogy to neighbourhood rules having similar

47

antecedents. Finally, the whole rule base has been checked out logically and a

limited number of rules (10%) have been changed to improve the generalizability

of the system. Table 5.2 indicates the latest appearance of the rule base.

Table 5.2. An Appearance From The Constructed Rule Base

Rule Number Antecedents Consequents
Rule 1 IF Pi is MF1 and Ai is MF1 and Fi is MF1 THEN Ti is MF3
Rule 2 IF Pi is MF1 and Ai is MF2 and Fi is MF1 THEN Ti is MF3
Rule 3 IF Pi is MF1 and Ai is MF3 and Fi is MF1 THEN Ti is MF4
.....
Rule 23 IF Pi is MF5 and Ai is MF3 and Fi is MF1 THEN Ti is MF18
Rule 24 IF Pi is MF5 and Ai is MF4 and Fi is MF1 THEN Ti is MF19
Rule 25 IF Pi is MF5 and Ai is MF5 and Fi is MF1 THEN Ti is MF20
.....
Rule 148 IF Pi is MF5 and Ai is MF3 and Fi is MF6 THEN Ti is MF1
Rule 149 IF Pi is MF5 and Ai is MF4 and Fi is MF6 THEN Ti is MF1
Rule 150 IF Pi is MF5 and Ai is MF5 and Fi is MF6 THEN Ti is MF2

After having established the MFs and the rule base, the next step is to select the

implementation techniques. The implication procedure of the proposed FRBS for both

training and testing purposes is described in the following steps:

Step 1—Initialization: Initialize data and normalize input-output spaces into
some appropriate range when it is required. Constitute the knowledge base.
Step 2—Fuzzification: Compute fuzzy membership degrees of actual inputs
using corresponding membership functions: crisp into fuzzy values.
Step 3—Inference: Combine fuzzy sets with logical operators with appropriate
implication algorithm. Aggregate all outcomes to generate fuzzy output. In this
step, both of the Max-Min and the Max-Product techniques are tried and the
Max-Product implication is selected.
Step 4—Defuzzification: Convert aggregated fuzzy outputs into crisp outputs
using a defuzzification method. In this step, the Centroid Defuzzification method
has been selected and implied within various defuzzification techniques.

Graphical interpretation of this procedure is beneficial to understand nature of

fuzzy trip distribution modelling. The following illustration in Figure 5.4 shows the

original components and scales of the proposed FRBS design. It produces unconstrained

trip interactions as output. Before using it for simulation purposes, we had to ensure that

the results satisfy production and attraction constraints. Therefore, the results of the

FRBS were adjusted with a row-column balancing process in each simulation of data

sets. A numerical example of such balancing process, which is similar to the well-

known Furness Iterations (1965), can be seen in Ease (1993).

48

Fi

gu
re

 5
.4

. G
ra

ph
ic

al
 Il

lu
st

ra
tio

n
O

f T
he

 P
ro

po
se

d
FR

B
S

D
es

ig
n

48

49

5.3. Modelling Trip Distribution with a Genetic Fuzzy Rule-Based
 System (GFRBS)

 An FRBS to solve trip distribution problem was introduced in the previous

section. Its rule base was constructed with a mixed procedure including both learning

from examples and expertise. Here, the rule base of the proposed FRBS is learnt

completely from examples with the use of GAs. All other components of the proposed

FRBS remain unchanged . In other words, the proposed GA search for the best

combination of rule consequents or output MF labels represented with gray circles in

Figure 5.4.

 Initially, a Simple GA (Goldberg, 1989) was developed with basic genetic

operators and binary representation. However, due to the large combinatorial search

space and huge amount of data, the convergence failed, and some additional

modifications have been introduced to improve performance of the algorithm. Keeping

the main flow chart and its binary representation, several probabilistic and adaptive

features were introduced to the genetic operators. The flow chart in Figure 5.5 indicates

main steps of the proposed GFRBS, fully automated and programmed with MATLAB.

A brief description of the whole procedure is given afterwards.

Figure 5.5. Flow Chart of the Proposed Genetic Algorithm

50

 Initialization: The initial population of the GA consists of randomly generated

20 binary chromosomes encoding the whole rule set. The chromosomes have 450

binary digits where 3 digits were assigned for each of the 150 rule consequents.

Meaning that a rule can end with one of 8 (23) alternatives. Actually, there are 20 output

MFs in the proposed FRBS, however, a few of shifting consequents are meaningful for

each rule antecedents. Eventually, maximum number of alternatives was restricted to 8

in order to reduce search space and save time.

 The alternatives were obtained from available knowledge according to the

conflicting rules of FRBS design. The most frequently observed or most probable 2, 4

or 8 rule consequents were identified for each rule antecedent and collected in a pool.

With this rule pool, 45 rules can end with one of 2, 65 rules can end with one of 4, and

40 rules can end with one of 8 MF alternatives constituting 6.4*1088 (245*465*840)

possible rule sets. Figure 5.6 shows the whole encoding-decoding strategy including a

view from the rule base and the rule pool.

Figure 5.6. Graphical Representation Of Encoding-Decoding Strategy

51

 Evaluation: In the evaluation step, the binary strings were decoded into the rule

sets to run the FRBS. Then output values of the FRBS for each of the rule set were

compared with the actual values. The mean square error (MSE) was used as the fitness

(error) function:

ܧܵܯ ൌ ∑ ሺ ೔்
బି்೔ሻమಿ

೔సభ
ே

 (5.1)

where, ܰ is the number of data pairs, ௜ܶ
଴ is the number of observed trips, and T୧ is the

number of estimated trips. The FRBS estimated trips were also balanced to satisfy the

constraints before making the comparisons.

 Reproduction: Generally in GAs, successive generations of the population

should base on transferring the best chromosomes to next generation (selection), and

then improving them with gene exchanges (crossover) and gene alterations (mutation).

The proposed GA was designed with this three step evolution process described as

follows:

• Selection: In this step 'successful' chromosomes, the parents, were copied to a

mating pool, then selected for crossover and mutation according to some

measure of their fitness. There are number of ways to choose the parent

population. A mixed procedure was implemented in order to improve the

convergence performance: Firstly, a ranking was applied, in which

chromosomes are ranked and assigned proportions only on their rank orders, not

on their absolute fitness. Then each mating parents were selected with a biased

roulette-wheel for recombination. The slots of the wheel was divided according

to the ranking proportions determined with a power function (see Figure 5.7).

Apart from these, when generating new populations with genetic selection,

crossover and mutation operators an elitist strategy was developed. The few best

chromosomes (10% of total population) of the former generations were directly

copied to next generations through genetic operators. This strategy significantly

improved the GA's performance preventing it from loss of good solutions.

• Crossover: In the crossover step, new chromosomes (offspring) were created by

recombining two parent chromosomes with a certain probability (0.8). Classical

one point or two point crossover were employed to the parent chromosomes with

equal probability. In one point crossover, the algorithm chooses a point at

random, called the crossover point, and exchanges the contents to the right of

52

this point; in two point crossover, the algorithm chooses two points, and

exchanges the contents between these points. Figure 5.7 indicates an illustration

of adopted crossover technique used in the GA.

• Mutation: In order to achieve faster results and prevent the algorithm from a

premature convergence, following two components were introduced to the

classical mutation operator. First, the assumption of a constant probability of

mutation in each generation is abandoned in favour of an adaptive one. With

high mutation probability at the startup, the population attacked to get out of

from local optima; and with low probability at the end, the population resembled

each other to find out small improvements. Second, the simple bit-flip mutation

operator has been replaced with a probabilistic (Poisson distribution) mutation

operator. This approach is an efficient and time-saving alternative of simple bit-

flip mutation. In this approach, the average number of mutations (λ=72) in each

generation is determined automatically, multiplying the population size (20) ,

chromosome length(450) and mutation probability (0.008). Then number of

mutations in various generations is determined with a decreasing Poisson

distribution at the start up. Finally, only in that number of randomly selected bits

in the whole population is changed (inverted) through the generations. A graph

that shows mutations through the generations can be seen in Figure 5.7.

Figure 5.7. Illustrations Of Crossover, Ranking Probability Function And Number Of
 Mutations Through The Generations

53

 Termination: Any early stopping of the GA was not seen necessary as the

termination criteria. We rather limited the evolution of the population up to 250

maximum generations.

 With the above procedure, the GFRBS design successfully converged to the best

solution. Then it was used for simulation purposes with the optimized rule base. Figure

5.8 indicates its convergence with both of the progress of population average and best

individual.

Figure 5..8. Convergence Of The GFRBS Design

5.4. Benchmark Models

 The Doubly-Constrained Gravity Model (DCGM), introduced earlier, was

selected as the first benchmark model. A Neural Network Based Trip Distribution

Model (NNTDM) was established as the second benchmark. Even though debate

continues, NNs-based distribution models have a history of successful use, and it is

appropriate to establish a NNs-based model and compare its overall performance with

the proposed FRBS and GFRBS designs. The next sections of this paper cover

calibration, training, and implementation issues for these benchmark models.

54

5.4.1. Doubly-Constraint Gravity Model (DCGM)

 Traditional DCGM calibration process generally involves the determination of

the friction function parameter(s) introduced earlier. Many studies have suggested

statistical or numerical computational procedures to calibrate these friction parameters

(Hyman, 1969; Wilson, 1970; Evans, 1971; Williams, 1976; Sen and Soot, 1981; Gray

and Sen, 1983, Dickey, 1983; Sen, 1986). Among these procedures, statistical least

squares and maximum likelihood approaches, and TLD based numerical approaches are

reasonably found efficient for our analysis.

 The regression based techniques and maximum likelihood approaches have

well-known desirable statistical properties, and they have consistently been proven the

calibration abilities. The TLD based numerical approaches have also some advantages,

especially when a great number of inter-zonal trips are missing as in our case. In these

cases, a macro level measure of the interactions, such as trip length frequency

distributions or mean travel cost, would enable a better understanding of the systems'

behaviour. The selected three principally distinct calibration procedures are listed below

and described with specific formulations next.

• The Maximum Likelihood Estimation which maximizes the likelihood function

of a theoretical poison distribution of interactions and is described in Sen (1986)

and Fortheringham and O'kelly (1989),

• The Weighted Least Squares Estimation which is based on the 'odds ratio

technique' and logarithmic transformation proposed by Sen and Soot (1981) for

rectangular interaction matrices,

• The Trip Length Distribution Based Estimation which is based on a line search

algorithm that minimizes the root mean squared error (RMSE) between

observed and estimated trip length frequency distributions.

Maximum Likelihood (ML) Estimation:

ML estimations are widely used in gravity type of model calibrations. The main steps

involved in the estimation include: (i) identifying a theoretical distribution for the

interactions, generally a Poisson distribution (Flowerdew and Aitkin, 1982; Sen 1986),

(ii) maximizing the likelihood function of this distribution, and (iii) then deriving

55

equations that ensure the maximization of the likelihood function with its logarithmic

transformations (Fortheringham and O'kelly, 1989). The derived ML equation for power

cost function parameter, say beta (β), is:

∑ ∑ ௜ܶ௝
଴ln ሺܿ௜௝ሻ௝௜ ൌ ∑ ∑ ௜ܶ௝ln ሺܿ௜௝ሻ௝௜ (5.2)

 It is possible to derive the same equation using Wilson's (1970) entropy-

maximizing or Hyman's (1969) Bayesian approaches. The equation can be solved

iteratively starting with an initial estimate of beta value, β0. Then, the use of DCGM

equations, initiated in equations 2-17, 2-18 and 2-19, produce an estimated trip matrix.

The value is then gradually decreased or increased through a convergence that satisfies

the ML equation 5-2. Hyman's (1969) suggestion for the initial β value, and his second

order formula for rest of the β values produce rapid convergence to final estimate as:

଴ߚ ൌ 3 ⁄ҧܥ2 (5.3)

ଵߚ ൌ ҧ଴ܥ଴ߚ ⁄ҧܥ (5.4)

௞ାଵߚ ൌ ሺ஼ҧି஼ҧೖషభሻఉೖି ሺ஼ҧି஼ҧೖሻఉೖషభ
ሺ஼ҧೖି஼ҧೖషభሻ

 (5.5)

where ܥҧ is the observed mean travel cost and the ܥҧ௞ is the estimated mean travel cost

using DCGM equations with ߚ௞.

Weighted Least Squares (WLS) Estimation:

The regression based calibration of spatial interaction models is required a linearized

model form. The unconstrained models can easily be linearized with logarithmic

transformations, then the parameter values can be computed with ordinarily least

squares estimation. Unfortunately, it is a bit more complicated for constrained models.

The 'odds ratio technique' for calibration of DCGMs provided by Sen and Soot (1981)

and Gray and Sen (1983) is a valuable contribution at this point.

 The technique separates the estimation of the friction parameters from the

calculation of balancing factors, then takes ratios of interactions so that the ܣ௜ ௜ܱ and

56

 ௝ terms in the model can be canceled out (Fortheringham and O'kelly, 1989). With aܦ௝ܤ

power cost function, the equation takes the form of:

 ൫ ௜ܶ௝ ௜ܶ௜⁄ ൯. ൫ ௝ܶ௜ ௝ܶ௝⁄ ൯ ൌ ൫ܿ௜௝ ܿ௜௜⁄ ൯. ൫ ௝ܿ௜ ௝ܿ௝⁄ ൯ିఉ
 (5.6)

where, with a logarithmic transformation, its linearized form is,

݈݊ ௜ܶ௝ ൅ ݈݊ ௜ܶ௜െ݈݊ ௜ܶ௝ െ ݈݊ ௜ܶ௜ ൌ െߚሺ݈݊ܿ௜௝ ൅ ݈݊ܿ௜௜െ݈݊ܿ௜௝ െ ݈݊ܿ௜௜ሻ (5.7)

 Once the β parameter is estimated with ordinarily least squares or weighted least

squares (WLS) with the weight being ൫ ௜ܶ௝
ିଵ ൅ ௜ܶ௜

ିଵ ൅ ௝ܶ௜
ିଵ ൅ ௝ܶ௝

ିଵ൯ି଴.ହ
 (sen and Soot,

1981), the balancing factors can easily been computed from the equations 2-18 and 2-

19. However, our data matrices are rectangular and cannot be computed with the above

equations. Sen and Soot (1981) also proposed an alternative method of transformation

for equation 5-8, which can also be used in calibrating our matrices.

 ݈݊ ௜ܶ௝ െ ቀଵ
௡

ቁ ∑ ݈݊ ௜ܶ௝ െ௝ ቀ ଵ
௠

ቁ ∑ ݈݊ ௜ܶ௝ ൅ ቀ ଵ
௠௡

ቁ௜ ∑ ∑ ݈݊ ௜ܶ௝௝௜

 ൌ െߚ ቂ݈݊ܿ௜௝ െ ቀଵ
௡

ቁ ∑ ݈݊ܿ௜௝ െ௝ ቀ ଵ
௠

ቁ ∑ ݈݊ܿ௜௝ ൅ ቀ ଵ
௠௡

ቁ௜ ∑ ∑ ݈݊ܿ௜௝௝௜ ቃ (5.8)

 In its application, a weighted least squares estimation technique with the weight

being ௜ܶ௝
଴.ହ is preferred to exclude the heteroscedastic error terms caused by the

logarithmic transformations of equation 5-8.

Trip Length Distribution (TLD) Based Estimation:

Several search procedures are exist, especially for the one-parameter functions

minimization. However, one of the simplest procedure is to run the model for a wide

range of β values, and chose the best β value that optimizes a predetermined goodness-

of-fit statistic (Wilson, 1974).

 The proposed TLD based estimation uses a simple line search algorithm to find

the best value of β. Firstly, trip matrices are estimated using β values in the search

interval (0-4), then TLD of these matrices are computed, and finally, observed and

estimated TLDs are compared with the root mean squared error (RMSE). The β value

57

with the lowest RMSE score determined as the impedance parameter. The RMSEs

between observed and estimated TLDs are computed as in equation 5.22 which is

described in goodness-of-fit statistics section.

 During the calibration process, the use of combined gamma function is not

concerned. Because Istanbul is a pedestrian oriented city, and the home-based-work

trips data includes both motorized and pedestrian travels. This situation gives shape to

the trip length frequency distribution (see Figure 5.3) where the frequencies decrease

continuously starting from the first time intervals. So, the use of power and exponential

cost functions other than combined gamma function would produce more appropriate

distributions. Including these two cost functions, each of the three calibration

procedures are applied to traditional DCGM initiated in equations 2.17, 2.18 and 2.19.

All calibration procedures and algorithms are created in MATLAB programming

environment, and the impedance parameters (say beta) of each procedures are computed

using the training data set. The computer codes of all calibration procedures can be seen

in Appendix A.

 Afterwards, using calibrated impedance parameters, trip matrices of power and

exponential cost functions are estimated and compared with various goodness-of-fit

statistics (see the statistics in section 5.5). The overall results with training data set show

that the use of power cost function produces considerably more accurate estimations for

the Istanbul case. The results for both parameter estimates and related goodness-fit-

statistics are shown numerically in Table 5.3. The changes in DCGM performance with

respect to various parameter values are shown visually in Figures 5.9 and 5.10.

Table 5.3. DCGM Parameter Estimates and Related Goodness of Fit Statistics for
 Training Data Set

DCGM
Calibration
Procedure B

et
a

Pa
ra

m
et

er

SR
M

SE

r
sq

ua
re

Sl
op

e

A
R

V

Ph
i

St
at

is
tic

M
T

C
E

T
L

D

R
M

SE

A
R

A
E

T

L
D

 F
5

A
R

A
E

T

L
D

 L
5

Power Cost Function
ML Est. -1.94 4.17 0.85 0.99 0.17 0.94 -2.77 0.10 0.10 9.46

WLS Est. -2.05 4.16 0.86 0.94 0.17 0.96 -1.65 0.18 0.14 8.92

TLD Based Est. -1.84 4.29 0.85 1.06 0.18 0.93 -4.18 0.07 0.07 10.56

Exponential Cost Function
ML Est. -0.12 6.78 0.64 1.15 0.45 1.18 0.17 0.62 0.48 0.77

WLS Est. -0.21 5.94 0.72 0.88 0.34 1.49 4.45 0.45 0.35 0.91

TLD Based Est. -0.31 6.12 0.76 0.76 0.36 2.11 6.45 0.40 0.30 0.94

58

Figure 5.9. Changes in DCGM Performance Against Various Impedance Parameter
 Values: Measure for The Power Cost Function on Training Data Set

Figure 5.10. Changes in DCGM Performance Against Various Impedance Parameter
 Values: Measure for The Exponential Cost Function on Training Data Set

0 1 2 3 4
4

6

8

10

12
SRMSE CHANGE

S
td

.
R

oo
t

M
ea

n
S

q.
 E

rr
or

0 1 2 3 4
0

0.5

1
R SQUARE CHANGE

r
S

qu
ar

e
(D

is
ta

nc
e

to
 1

)

0 1 2 3 4
0

0.5

1

1.5
SLOPE CHANGE

S
lo

pe
 (

A
bs

.
D

is
ta

nc
e

to
 1

)

0 1 2 3 4
0

0.5

1

1.5
ARV CHANGE

A
ve

ra
ge

 R
el

at
iv

e
V

ar
ia

nc
e

0 1 2 3 4
0.5

1

1.5

2

2.5
PHI STATISTIC CHANGE

P
si

 S
ta

tis
tic

0 1 2 3 4
0

10

20

30

40
MTCE CHANGE

M
T

C
E

 (
A

bs
.

D
is

ta
nc

e
to

 0
)

0 1 2 3 4
0

0.5

1

1.5
TLD RMSE CHANGE

beta parameter (b)

T
LD

 R
M

S
E

0 1 2 3 4
0

0.2

0.4

0.6

0.8
TLD ARAE FIRST FIVE CHANGE

beta parameter (b)

T
LD

 A
R

A
E

 F
5

0 1 2 3 4
0

10

20

30
TLD ARAE LAST FIVE CHANGE

beta parameter (b)

T
LD

 A
R

A
E

 L
5

0 1 2 3 4
5

10

15
SRMSE CHANGE

S
td

.
R

oo
t

M
ea

n
S

q.
 E

rr
or

0 1 2 3 4
0.2

0.4

0.6

0.8
R SQUARE CHANGE

r
S

qu
ar

e
(D

is
ta

nc
e

to
 1

)

0 1 2 3 4
0

0.2

0.4

0.6

0.8
SLOPE CHANGE

S
lo

pe
 (

A
bs

.
D

is
ta

nc
e

to
 1

)

0 1 2 3 4
0

0.5

1

1.5
ARV CHANGE

A
ve

ra
ge

 R
el

at
iv

e
V

ar
ia

nc
e

0 1 2 3 4
0

5

10

15

20
PHI STATISTIC CHANGE

P
si

 S
ta

tis
tic

0 1 2 3 4
0

5

10
MTCE CHANGE

M
T

C
E

 (
A

bs
.

D
is

ta
nc

e
to

 0
)

0 1 2 3 4
0.4

0.6

0.8

1
TLD RMSE CHANGE

beta parameter (b)

T
LD

 R
M

S
E

0 1 2 3 4
0.2

0.3

0.4

0.5
TLD ARAE FIRST FIVE CHANGE

beta parameter (b)

T
LD

 A
R

A
E

 F
5

0 1 2 3 4

0.8

1

1.2

1.4
TLD ARAE LAST FIVE CHANGE

beta parameter (b)

T
LD

 A
R

A
E

 L
5

59

5.4.2. Neural Networks Based Trip Distribution Model (NNTDM)

 The natural structure of NN based spatial interaction models involves three

inputs (production, attraction and friction) and one output (interactions) as in traditional

spatial interaction problem. Also called as "Neural Spatial Interaction Models" (see

Fischer, 2001; 2009), they are more closely related to conventional spatial interaction

models then they are to neurobiological models (Fischer, 2003). There are many types

of NN models with various functionality and architecture. However, the subject of the

past studies mentioned earlier and this paper also is a multilayer feed-forward network

with (error) back-propagation training algorithm.

 A multilayer feed-forward network generally consists of one input, one or more

hidden and one output layers, where all the neurons in the layers transfer the

information through only the neurons in the next layer. The weights, assigned to the

links between neurons, are adjusted to minimize the mean square error between the

networks' output values and actual target values in an iterative manner. This process is

also a supervised learning process, generally adopted with a gradient descent method,

the so-called (error) back-propagation training algorithm (see Rumelhart et.al.,1986).

 A general illustration of a Neural Network based Trip Distribution Model

(NNTDM), which is also used in this study, is presented at Figure 5.11. The number of

neurons in the hidden layers, the number of hidden layers, type of transfer functions and

learning algorithms as well as the number of inputs can be changed for the proper use.

A brief explanation of the mathematical procedure for this three-layer feed-forward

back-propagation network is given with mathematical expressions as follows. Please see

in depth theoretical explanations in Munakata (2008) and Haykin (1999).

 Each neurons in the proposed network (Figure 5.11) are composed of two units.

The first unit evaluates the weighted sum of input signals, and the second unit transfers

this weighted sum through the next layer. The most widely used transfer functions are

sigmoidal functions, which also ensure the non-linear mapping of the network. With a

logistic sigmoid activation functions in the hidden and output layers, the network

outputs can be computed as following:

௝ܪ ൌ 1
1 ൅ ݁ିሺ∑ ௐ೔ೕ௑೔ሻൗ (5.9)

60

Figure 5.11. An Illustration of NN based Trip Distribution Model: A Three-Layer
 Feed-Forward Neural Network with Error Back-Propagation

where, ௜ܺ is the ith element of the input vector, ௜ܹ௝ is the weight associated with the

input and hidden layer neurons, ܪ௝ is the output signal of jth neuron at hidden layer, and,

௞ܻ ൌ 1
1 ൅ ݁ିሺ∑ ௐೕೖுೕሻൗ (5.10)

where, ௝ܹ௞ is the weight associated with hidden and output layer neurons, ௞ܻ is the

output signal of kth neuron at output layer, which stands for "interactions" for this

network. Note that there is an additional (imaginary - bias) neuron in each of the input

and hidden layers, which accelerates the network's learning. These neurons are

generally set as to 1, and are computed as other neurons in the related layers. If the

optimal values of weights are already known, the network is ready to use for modeling

purposes. If not, it is needed to train the network and adjust weights to minimize the

error between observed and modeled outputs. Overall error, E, is usually computed as,

ܧ ൌ 1
2ൗ ෌ ሺ ௞ܶ െ ௞ܻሻଶ

ே (5.11)

61

where, ௞ܶ stands for the target (desired) values, ௞ܻ stands for the network produced

output values introduced earlier and N stands for the number of examples in the pattern.

The changes in the weights are inversely proportional to the derivative of the error with

respect to the weights, and can be adjusted using a recursive algorithm starting from the

output nodes as,

ܹ′௝௞ ൌ ௝ܹ௞ ൅ ௝ (5.12)ܪ௞ߜߟ

ܹ′௜௝ ൌ ௜ܹ௝ ൅ ௝ߜߟ ௜ܺ (5.13)

where,
௞ߜ ൌ ௞ܻሺ1 െ ௞ܻሻሺ ௞ܶ െ ௞ܻሻ (5.14)

௝ߜ ൌ ௝൫1ܪ െ ௝൯ܪ ∑ ௞ߜ ௝ܹ௞ (5.15)

where, ܹ′௝௞ is the new weight associated with the hidden and output layers, ܹ′௜௝ is the

new weight associated with the input and hidden layers, η is a constant, also known as

learning rate usually set between 0 and 1, and ߜ௞ and ߜ௝ are the error terms changeable

with the selected type of transfer functions.

 Defining the variables and the main architecture of the network is the first step

of the NNs modelling. The other steps include, developing a strategy to avoid over-

training (where the network learns incorrect information/noise, instead of the general

pattern), and selecting appropriate training styles, activation functions, learning

algorithms and parameter values.

 In order to prevent the network from over-training and obtain the best

generalization performance, the training data set further separated randomly into two:

80% for training the network, and 20% for cross-validation. As in common practice

other network configuration and training issues are proceeded by trial and error

selection. All the process is realized in Matlab environment using The Neural Network

Toolbox (see Appendix A). Use of this toolbox and required explanations can be seen in

Demuth et.al (2009). Table 5.4 indicates the experimented and selected cases for

network training and Figure 5.12 shows the convergence of the network with the

Levenberg-Marquardt learning algorithm.

62

 The trained network is then used to simulate data sets and to produce

unconstrained trip interactions. Finally, a balancing process was applied to predicted

flows as in FRBS design in order to satisfy the origin-destination constraints.

Table 5.4. NNTDM Implementation Issues: Experimented and Selected Cases
Implementation Issues Experimented Cases Selected Cases

Normalization Technique • Z-score Normalization
• Min-Max Normalization • Min-Max Normalization

Number of Hidden Layer

Neurons
• 3-6-9-12-15
• 20-25-30-40 • 9

Activation Function of

Hidden Layer
• Hyperbolic Tangent Function
• Logistic Sigmoid Function • Logistic Sigmoid

Activation Function of

Output Layer

• Hyperbolic Tangent Function
• Logistic Sigmoid Function
• Linear Function

• Logistic Sigmoid

Training Style • Batch Training
• Incremental Training • Batch Training

Learning Algorithm
• Gradient Descent with Learning Rate
• Gradient Descent with Adaptive

Learning Rate and Momentum Term
• Levenberg-Marquardt

• Levenberg-Marquardt

Performance Measure • Mean Squared / Absolute Error
• r square

• Mean Squared Error
• r square

Termination Criteria • Maximum Epochs
• Validation Performance • Validation Performance

Figure 5.12. NNTDM Back-Propagation Training With Levenberg-Marquardt Learning

63

5.5. Performance Measures and Goodness-of-Fit Statistics

 A spatial interaction model generally tries to identify any system characteristics

from observed flows. As being the main prerequisite, a good estimate of observed

flows also increases the generalizability of the model and intensifies the theoretical

assumptions. Thus, over the years, various goodness-of-fit statistics have been proposed

to measure the accuracy of models' estimations.

 Commonly, a goodness-of-fit statistic is a quantitative description of some

aspect of the difference between observed and estimated values. Especially in spatial

interaction and trip distribution modelling, the used statistics can be classified into four

main groups as: (i) general distance statistics such as standardized root mean squared

error and index of dissimilarity, (ii) information based statistics such as information

gain, phi statistic and psi statistic, iii) traditional statistics such as regression statistics (r

square, slope and intercept) and Pearson Chi-square, and iv) log-likelihood statistics.

(Fotheringham and Knudsen;1987). In addition to these, goodness-of-fit measures of

trip distribution modelling can be classified into two levels: micro and macro. The first

one is based on the entry by entry comparison of flows with one of the above mentioned

statistics. The second one is based on the similarity comparison of certain macro

characteristics such as the trip length distributions and mean travel costs of trip

matrices. (Smith and Hutchinson;1981).

 For the purpose of performance measure and model evaluation in this analysis,

several different goodness-of-fit statistics are selected at both micro and macro levels of

measure. Among the nine selected statistics having all different properties, five of them

measures entry by entry micro level performance: (i) Standardized Root Mean Squared

Error (SRMSE), (ii) Coefficient of Determination (r square), (iii) The Regression Slope

(Slope), (iv) Average Relative Variance (ARV), (v) The Phi Statistic (Phi), and four of

them measures some of macro level performance: (vi) Mean Travel Cost Error (MTCE),

(vii) Trip Length Distribution Root Mean Squared Error (TLD RMSE), (viii) Trip

Length Distribution Average Relative Absolute Error for the First Five Interval (TLD

ARAE F5), (ix) Trip Length Distribution Average Relative Absolute Error for the Last

Five Interval (TLD ARAE L5). Each of these statistics is described in turn at following

sections. Further reviews can be found in the works by Smith and Hutchinson (1981),

Knudsen and Fotheringham (1986) and Fotheringham and Knudsen (1987).

64

5.4.1. Micro Level Statistics

Description of Mathematical Notations:

௜ܶ௝
଴ is the number of observed trips from zone i to zone j,

T୧୨ is the number of estimated trips from zone i to zone j,

തܶ ଴ is the mean of the observed trips
തܶ is the mean of the estimated trips

 is the number of origins ܫ

 is the number of destinations ܬ

 ොଶ is the variance of observed tripsߪ

∑ ܶ଴ is the total number of observed trips

∑ ܶ is the total number of estimated trips

 ௜௝ is the travel cost/time between origin i and destination jܥ

௜ܨ
଴ is the observed trip length frequency percentage for the ith time interval

 ௜ is the estimated trip length frequency percentage for the ith time intervalܨ

݊ is the number of time intervals associated with trip length frequencies

 is the friction parameter for DCGM ߚ

 ҧ is the observed mean travel costܥ

 ௞ߚ ҧ௞ is the estimated mean travel cost usingܥ

Standardized Root Mean Squared Error (SRMSE): SRMSE is one of the most accurate

comparative measure of model performances (see Knudsen and Fotheringham, 1986).

It is a measure of micro level dissimilarities and it has a lower limit of 0 and upper limit

of 1.

ܧܵܯܴܵ ൌ ට∑ ሺ ೔்ೕ
బି்೔ೕሻమ೔ೕ

ூ௫௃

∑ ሺ ೔்ೕ
బሻ೔ೕ

ூ௫௃
൘ (5.16)

 However, SRMSE values can be greater than this upper limit if the computed

average error is greater than the mean. In our case, the latter is valid, thus, a smaller

value of SRMSE statistic indicates the more accurate set of estimations.

65

Coefficient of Determination (r square): Coefficient of determination is the most widely

used measure of model performance with well known statistical properties. It is a

measure of linear association between observed and estimated values. Its range is

between 0 and 1, where the value of 1 indicates a perfect correspondence.

ଶݎ ൌ 1 െ
∑ ሺ ೔்ೕ

బି்೔ೕሻమ
೔ೕ

∑ ሺ ೔்ೕ
బି ത்బሻమ೔ೕ

 (5.17)

 Several studies have also showed the error insensitivity of r square statistic in

some specific cases (see Smith and Hutchinson, 1981; Knudsen and

Fotheringham,1986; Fotheringham and Knudsen; 1987). Therefore, the interpretation

of r square measures should be made cautiously.

The Regression Slope (Slope): Another comparison of model fits can be made with the

use of linear regression parameters. Plotting the observed values, ݔ௜, against the

estimated values, ݕ௜, and to fit a straight line between them with least squares estimate,

௜ݕ ൌ ݐ݌݁ܿݎ݁ݐ݊݅ ൅ ௜ሻ, give useful statistics for performance measure. Theݔሺ݁݌݋݈ݏ

intercept should be zero and the slope should be 1 for a perfect fit and the deviation

from these values shows worsening fit of the model (Wilson, 1974).

݁݌݋݈ܵ ൌ
∑ ሺ ೔்ೕ

బି ത்బሻሺ்೔ೕି ത்ሻ೔ೕ

∑ ሺ ೔்ೕ
బି ത்బሻమ೔ೕ

 (5.8)

 The intercept and the slope statistics are highly correlated. Therefore, the use of

slope is found sufficient for performance measure. As emphasized in Fotheringham and

Knudsen (1987): if the slope is less than 1, large values tend to be under predicted and

small values over predicted, and if the slope is greater than 1, large values tend to be

over predicted and small values under predicted.

Average Relative Variance (ARV): ARV is a measure of normalized mean squared

error that is used widely in NNs literature (see Fischer and Gopal,1994; Fischer et.al.,

2003). It is similar and highly correlated with the SRMSE statistic.

ܸܴܣ ൌ ଵ
ఙෝమ ଵ

ூ௫௃
∑ ሺ ௜ܶ௝

଴ െ ௜ܶ௝ሻଶ
௜௝ (5.19)

66

 It has a lower limit of 0 and upper limit of 1. However, as in SRMSE values, it

can be greater than 1, when the computed average error is greater than the mean. In this

situation, a smaller value of ARV statistic indicates more accurate fit.

The Phi Statistic (Phi): The Phi statistic is similar to information gain statistic. The

larger the value of Phi statistic the poorer the model fit. Its usage in spatial interaction

and trip distribution modelling is reviewed and proposed in the works of Smith and

Hutchinson (1981), Knudsen and Fotheringham (1986).

݄ܲ݅ ൌ ∑ ೔்ೕ
బ

∑ ்బ௜௝ ฬln ൬ ೔்ೕ
బ

்೔ೕ
൰ฬ (5.20)

 One of the main handicap of the Phi statistic is its sensitivity to zero entries. If

necessary this problem can be solved with substituting a small non-zero elements to

these entries.

5.4.2. Macro level Statistics

Mean Travel Cost Error (MTCE): MTCE is a macro level of performance measure in

trip distribution modelling. It is additionally in use as a standard calibration procedure

for years (see Hyman,1969 for instance).

ܧܥܶܯ ൌ ൬
∑ ሺ ೔்ೕ

బ஼೔ೕሻ೔ೕ

∑ ்బ ൰ െ ቀ
∑ ሺ்೔ೕ஼೔ೕሻ೔ೕ

∑ ்
ቁ (5.21)

 If the deviation (negative or positive) from observed mean travel cost is larger,

so the error in estimated friction factors are larger.

Trip Length Distribution Root Mean Squared Error (TLD RMSE): TLD based measure

is also a macro level of measure for trip distribution modelling., and in use for years

both in calibration (see Dickey,1983; TRB,1998 for some different applications) and the

model evaluation phases. Simply a TLDE RMSE measures the root mean squared

67

differences between observed and estimated trip length frequency distributions

associated with usually time intervals.

ܧܵܯܴ ܦܮܶ ൌ ට∑ ሺி೔
బିி೔ሻమ೙

೔సభ
௡

 (5.22)

 The larger value of TLDE RMSE indicates higher error between observed and

estimated TLDs.

Trip Length Distribution Average Relative Absolute Error for the First Five Interval

(TLD ARAE F5): Average Relative Absolute Error (ARAE) is a useful statistic when it

is preferred to measure the proportion of errors rather than magnitudes. It can also be

used in entry by entry measures (see Roy, 2004), however, in our case, it is a measure of

proportional errors between the observed and estimated trip length frequencies for the

first five time intervals.

5ܨ ܧܣܴܣ ܦܮܶ ൌ ଵ
௡

∑ ൫หܨ௜
଴ െ ௜หܨ ௜ܨ

଴ൗ ൯௡
௜ୀଵ (5.23)

 Its usage could be effective where especially searching out the relative errors

related with short trips. When having a perfect fit of the observed and the estimated first

five trip length frequencies, the TLD ARAE F5 is zero. But considering its upper level,

its value has no restriction.

Trip Length Distribution Average Relative Absolute Error for the Last Five Interval

(TLD ARAE L5): TLD ARAE L5 is a similar performance measure with the previously

described TLD ARAE F5. The only difference is, it searches the relative errors in

estimating trips with long travel times.

5ܮ ܧܣܴܣ ܦܮܶ ൌ ଵ
௡ିሺ௡ିହሻ

∑ ൫หܨ௜
଴ െ ௜หܨ ௜ܨ

଴ൗ ൯௡
௜ୀሺ௡ିହሻ (5.24)

It measures proportional errors between the observed and the estimated trip length

frequencies for the last five time intervals and it has a negative correlation with TLD

RMSE and TLD ARAE F5.

68

CHAPTER 6

RESULTS

 This chapter presents goodness-of-fit statistics of the previously introduced trip

distribution models: a Doubly-Constrained Gravity Model with Maximum Likelihood

(DCGM ML) estimation, a Doubly-Constrained Gravity Model with Weighted Least

Squares (DCGM WLS) estimation, a Doubly-Constrained Gravity Model with Trip

Length Distribution (DCGM TLD) based estimation, a Neural Network based Trip

Distribution Model (NNTDM), a Fuzzy Rule-Based System (FRBS) design and a

Genetic Fuzzy Rule-Based System (FRBS) design.

 All the models have simulated for each of the training, testing and whole data

sets. Their performances in each case have measured with various goodness-of fit

statistics. Five of the statistics measure entry by entry, micro level performance: i)

Standardized Root Mean Squared Error (SRMSE), ii) Coefficient of Determination (r

square), iii) The Regression Slope (Slope), iv) Average Relative Variance (ARV), v)

The Phi Statistic (Phi), and four of them measure some of macro level performance: vi)

Mean Travel Cost Error (MTCE), vii) Trip Length Distribution Root Mean Squared

Error (TLD RMSE), viii) Trip Length Distribution Average Relative Absolute Error for

the First Five Interval (TLD ARAE F5), ix) Trip Length Distribution Average Relative

Absolute Error for the Last Five Interval (TLD ARAE L5). Finally, the performance of

the models further measured with respect to the results of district-based aggregation and

trip shares such as among intra-zonal vs. inter-zonal, intra-district vs. inter-district trips.

6.1. Training Results

 The training results reported in Table 6.1. show the learning capacity of the

implemented trip distribution models. As an overall evaluation, it can be stated that the

GFRBS design demonstrates a certain superiority for almost all goodness-of-fit

statistics. It has showed a considerably good performance especially with having 3.42

SRMSE, 0.90 r square and 0.07 TLD RMSE scores. The DCGMs and FRBS design

follow the GFRBS design with respect to their modelling performances. Their statistics

69

are close to each other and they all have produced fair predictions having a 0.85 or more

r square scores. Especially, the DCGM ML estimation is good at both micro and macro

level statistics, whereas the DCGM WLS estimation is good at micro level, and the

DCGM TLD based estimation is good at macro level statistics. The FRBS design

achieved better results when the micro level statistics are taken into account. It has the

second best scores of SRMSE and r square with 4.10 and 0.87, but the second worst

scores with the MTCE and TLD RMSE with -4.29 and 0.11. Finally, the NNTDM has

obtained unexpected results in the training phase especially with the lowest SRMSE and

r square scores. The reason for that can be one of its implementation procedures that the

NNTDM was subjected to a row-column balancing, and it was stopped to train before a

possible over-training problem.

 Apart from these, as it is indicated with the graphical analysis of the TLDs

(Figures 6.1 - 6.6), all the models have captured the general trend of the observed TLD,

except for the DCGM WLS estimation. Especially, GFRBS design and DCGM TLD

based estimation have caught nearly a perfect fit to the observed TLD. Additionally,

when the regression plots of the models (Figures 6.7 - 6.12) are analyzed, it can be said

that: all the models have showed a little tendency to under predict larger flows and over

predict smaller flows. It can be explained with general structure of the observed flow

matrix that is mostly involved small amount of flows. The GFRBS design and the

DCGM WLS estimation is still successful in this respect. They have produced

considerably good predictions with a slope score that is close to unity.

Table 6.1. Model Results: Goodness-of-Fit Statistics for Training Data Set

Trip
Distribution

Models SR
M

SE

r
sq

ua
re

Sl
op

e

A
R

V

Ph
i

St
at

is
tic

M
T

C
E

T
L

D

R
M

SE

A
R

A
E

T

L
D

 F
5

A
R

A
E

T

L
D

 L
5

DCGM ML Est. 4.17 0.86 0.86 0.17 0.94 -2.77 0.10 0.10 9.46

DCGM WLS Est. 4.16 0.86 0.92 0.17 0.96 -1.65 0.18 0.14 8.92

DCGM TLD Based Est. 4.29 0.85 0.80 0.18 0.93 -4.18 0.07 0.07 10.56

NNTDM 4.75 0.82 0.74 0.22 1.00 -4.14 0.11 0.10 7.5

FRBS Design 4.10 0.87 0.79 0.16 1.00 -4.29 0.11 0.10 11.03

GFRBS Design 3.42 0.90 0.92 0.11 0.92 -1.07 0.07 0.06 10.58

70

Figure 6.1. TLD Comparison - DCGM ML Estimation on Training Data Set

Figure 6.2. TLD Comparison - DCGM WLS Estimation on Training Data Set

Figure 6.3. TLD Comparison - DCGM TLD Based Estimation on Training Data Set

71

Figure 6.4. TLD Comparison - NNTDM on Training Data Set

Figure 6.5. TLD Comparison - FRBS Design on Training Data Set

Figure 6.6. TLD Comparison - GFRBS Design on Training Data Set

72

Figure 6.7. Regression Plots - DCGM ML Estimation on Training Data Set

Figure 6.8. Regression Plots - DCGM WLS Estimation on Training Data Set

Figure 6.9. Regression Plots - DCGM TLD Based Estimation on Training Data Set

73

Figure 6.10. Regression Plots - NNTDM on Training Data Set

Figure 6.11. Regression Plots - FRBS Design on Training Data Set

Figure 6.12. Regression Plots - GFRBS Design on Training Data Set

74

6.2. Testing Results

 The testing results of the models are more important than the training results.

They represent predictive ability of the models better, and give an idea about trained

models generalizability performance. According to the testing scores (Table 6.2), the

GFRBS design outperforms all other models in almost every statistics except for the

regression slope and phi statistic. In comparison to the training results, the GFRBS

design have recorded a small decrease in SRMSE (3.91) and r square (0.81) scores,

whereas an increase in MTCE (-0.85) and TLD RMSE (0.05) scores. This is a desired

and expected situation that the GFRBS design have successfully learnt macro behaviour

of the analyzed system. A similar observation is valid for the FRBS design. On the

contrary to training, FRBS design have showed a better performance than DCGMs in

testing case. FRBS design has achieved the second best performance with respect to the

three important statistics SRMSE (4.15), r square (0.78) and TLD RMSE (0.10) scores.

Apart from these, it can be said that the DCGM ML and DCGM TLD based estimations

have preserved their performance and produced fairly good predictions. However, the

DCGM WLS estimation has got worse especially when its TLD RMSE score is taken

into account. The NNTDM model catch up with the other models a little. Its SRMSE

score in testing has decreased to 4.42 from 4.75 and its TLD RMSE score has remained

nearly the same. This is meaningful that the over-training strategy has worked well with

NNTDM. The visual analysis of the TLD comparisons and the regression plots of the

testing case follow approximately the same pattern of the training estimations. The

following figures from Figure 6.13 to Figure 6.24 presents visual comparison of results.

Table 6.2. Model Results: Goodness-of-Fit Statistics for Testing Data Set

Trip
Distribution

Models SR
M

SE

r
sq

ua
re

Sl
op

e

A
R

V

Ph
i

St
at

is
tic

M
T

C
E

T
L

D

R
M

SE

A
R

A
E

T

L
D

 F
5

A
R

A
E

T

L
D

 L
5

DCGM ML Est. 4.25 0.78 0.86 0.19 0.94 -2.89 0.15 0.12 11.51

DCGM WLS Est. 4.34 0.78 0.92 0.20 0.97 -1.71 0.22 0.15 10.90

DCGM TLD Based Est. 4.27 0.77 0.79 0.19 0.93 -4.39 0.11 0.09 12.74

NNTDM 4.42 0.75 0.69 0.20 1.00 -4.19 0.12 0.11 4.25

FRBS Design 4.15 0.78 0.75 0.18 1.02 -4.25 0.10 0.08 18.02

GFRBS Design 3.91 0.81 0.86 0.16 0.97 -0.85 0.05 0.02 11.03

75

Figure 6.13. TLD Comparison - DCGM ML Estimation on Testing Data Set

Figure 6.14. TLD Comparison - DCGM WLS Estimation on Testing Data Set

Figure 6.15. TLD Comparison - DCGM TLD Based Estimation on Testing Data Set

76

Figure 6.16. TLD Comparison - NNTDM on Testing Data Set

Figure 6.17. TLD Comparison - FRBS Design on Testing Data Set

Figure 6.18. TLD Comparison - GFRBS Design on Testing Data Set

77

Figure 6.19. Regression Plots - DCGM ML Estimation on Testing Data Set

Figure 6.20. Regression Plots - DCGM WLS Estimation on Testing Data Set

Figure 6.21. Regression Plots - DCGM TLD Based Estimation on Testing Data Set

78

Figure 6.22. Regression Plots - NNTDM on Testing Data Set

Figure 6.23. Regression Plots - FRBS Design on Testing Data Set

Figure 6.24. Regression Plots - GFRBS Design on Testing Data Set

79

6.3. Overall Results

 The GFRBS design has achieved the best scores in almost all goodness-of-fit

statistics, when the models are simulated with the whole data set. It has gained a 4.30

SRMSE, 0.82 r square and 0.08 TLD RMSE score that is consistent with the training

and the testing cases. FRBS design has showed the second best performance in whole

data simulation, especially with the 4.56 SRMSE, 0.79 r square and 0.09 TLD RMSE

scores. DCGM ML and DCGM TLD based estimation has followed the FRBS design

with a nearby performance and fairly good predictions. DCGM WLS estimation has

showed a worsening performance in whole data simulation. On the contrary to the

training and testing, its performance is poorer than the NNTDM with the worst TLD

RMSE (0.26) and SRMSE (5.10) scores. Table 6.3 indicates the goodness-of fit

statistics for the whole data set model simulations.

 As it is indicated from the visual analysis of the TLDs (Figures 6.25 - 6.30), all

the models have captured the general trend of the observed TLD, except for the DCGM

WLS and DCGM ML estimations. Especially, the GFRBS and the FRBS designs have

caught an outstanding fit to the observed TLD. Similar with the training case, all the

models have showed a little tendency to under predict larger flows and over predict

smaller flows as it can be seen in Figures 6.31-6.36. It can be explained with the

structure of the observed trip matrix that is dominated with the small amount of flows.

The DCGM WLS estimation and the GFRBS design are the most successful in this

respect with 0.94 and 0.87 slope scores.

Table 6.3. Model Results: Goodness-of-Fit Statistics for the Whole Data Set

Trip
Distribution

Models SR
M

SE

r
sq

ua
re

Sl
op

e

A
R

V

Ph
i

St
at

is
tic

M
T

C
E

T
L

D

R
M

SE

A
R

A
E

T

L
D

 F
5

A
R

A
E

T

L
D

 L
5

DCGM ML Est. 4.88 0.77 0.87 0.23 0.97 -2.68 0.17 0.13 10.40

DCGM WLS Est. 5.10 0.77 0.94 0.26 1.00 -1.44 0.26 0.18 9.80

DCGM TLD Based Est. 4.82 0.77 0.79 0.23 0.96 -4.33 0.11 0.10 11.76

NNTDM 5.02 0.75 0.71 0.25 1.07 -4.30 0.13 0.14 5.91

FRBS Design 4.56 0.79 0.75 0.21 1.02 -3.19 0.09 0.07 13.65

GFRBS Design 4.30 0.82 0.88 0.19 0.96 -0.33 0.08 0.07 10.59

80

Figure 6.25. TLD Comparison - DCGM ML Estimation on Whole Data Set

Figure 6.26. TLD Comparison - DCGM WLS Estimation on Whole Data Set

Figure 6.27. TLD Comparison - DCGM TLD Based Estimation on Whole Data Set

81

Figure 6.28. TLD Comparison - NNTDM on Whole Data Set

Figure 6.29. TLD Comparison - FRBS Design on Whole Data Set

Figure 6.30. TLD Comparison - GFRBS Design on Whole Data Set

82

Figure 6.31. Regression Plots - DCGM ML Estimation on Whole Data Set

Figure 6.32. Regression Plots - DCGM ML Estimation on Whole Data Set

Figure 6.33. Regression Plots - DCGM TLD Based Estimation on Whole Data Set

83

Figure 6.34. Regression Plots - NNTDM on Whole Data Set

Figure 6.35. Regression Plots - FRBS Design on Whole Data Set

Figure 6.36. Regression Plots - GFRBS Design on Whole Data Set

84

 As it can be observed in the majority of previous cases, the proposed GFRBS

design have produced superior predictions. The FRBS design, the DCGM TLD based

estimation and the DCGM ML estimation in turn have followed the GFRBS design.

They have also achieved high level of accuracy and good level of generalizability after

the GFRBS design. The DCGM WLS estimation and the NNTDM have not showed the

expected performance. Especially, the performance of the DCGM WLS estimation has

decreased within the testing and the whole data set simulations.

 The performance of the models is further tested with a district-based aggregation

of trip interchanges. All of the model results for traffic analysis zones were aggregated

within the corresponding 31 districts in Istanbul Metropolitan Area. Then observed and

predicted flows for the districts compared using three micro level goodness-of-statistics

as shown in Table 6.4. The GFRBS design has outperformed the other models as in

previous cases. In general all the models have achieved good results with having at least

0.92 r square score in district-based measure.

Table 6.4. Model Results: District-Based Goodness-of-Fit Statistics

Goodness-of-Fit
Statistics D

C
G

M

M
L

E

st
im

at
io

n

D
C

G
M

 W

L
S

E
st

im
at

io
n

D
C

G
M

T

L
D

 B
as

ed

E
st

im
at

io
n

N
N

T
D

M

FR
B

S

D
es

ig
n

G
FR

B
S

D
es

ig
n

SRMSE 0.78 0.72 0.88 1.04 0.86 0.63

r square 0.95 0.95 0.94 0.92 0.95 0.97

Slope 1.08 1.05 1.15 1.18 1.14 1.05

 Finally, the spatial distribution of modelled trip interchanges have further

measured with a trip share comparison. Observed and modelled trip shares among intra-

zonal vs. inter-zonal, intra-district vs. inter-district and bridge crossing vs. not bridge

crossing trips has measured. The results of this measure is indicated in Table 6.5. Nearly

all the models have successfully estimated trip shares approximately with 10-15% error

in most of the cases. Surprisingly, the DCGM WLS estimation has outperformed the

other models. We had mandatorily seeded the trip matrix with a very small number

before calibrating DCGM WLS estimation. Spatial distribution of the modelled trip

interchanges could be affected from this implementation leading to a better performance

of the model with respect to trip shares.

85

Table 6.5. Observed and modelled trip shares: intra-zonal vs. inter-zonal, intra-district
 vs. inter-district and bridge crossing vs. not bridge crossing trips

Trips

O
B

SE
R

V
E

D

D
C

G
M

M
L

 E
st

.

D
C

G
M

W
L

S
E

st
.

D
C

G
M

 T
L

D

B
as

ed
 E

st
.

N
N

T
D

M

FR
B

S

D
es

ig
n

G
FR

B
S

D
es

ig
n

Intra-Zonal 24.5% 24.3% 27.0% 21.4% 18.6% 18.5% 21.7%

Percentage Error ----- -1.1% +9.8% -12.9% -24.1% -24.4% -11.8%

Inter-Zonal 75.5% 75.7% 73.0% 78.6% 81.4% 81.5% 78.3%

Percentage Error ----- +0.3% -3.2% +4.2% +7.8% +7.9% +3.8%

Intra-District 47.2% 42.7% 45.7% 39.4% 38.8% 38.5% 42.7%

Percentage Error ----- -9.44 -3.20 -16.55 -17.78 -18.47 -9.39

Inter-District 52.8% 57.3% 54.3% 60.6% 61.2% 61.5% 57.3%

Percentage Error ----- 8.43 2.86 14.78 15.88 16.49 8.39

Bridge Crossing 6.8% 8.2% 7.4% 9.2% 10.5% 7.7% 5.7%

Percentage Error ----- +20.4% +8.6% +34.4% +53.1% +12.1% -15.8%

Not Bridge Crossing 93.2% 91.8% 92.6% 90.8% 89.5% 92.3% 94.3%

Percentage Error ----- -1.5% -0.6% -2.5% -3.8% -0.9% +1.2%

86

CHAPTER 7

CONCLUSION

 The general purpose of this study was to set out a fuzzy and a genetic fuzzy

system to estimate intra-city passenger flows, thus, to contribute to the literature

representing their potential use in trip distribution modelling. For this purpose, a simple

Mamdani-type FRBS was developed to estimate trip interchanges in Istanbul

Metropolitan Area. Its rule base and fuzzy partitions were constructed with a mixed

procedure including both learning from examples and expertise. Aggregate variables of

the traditional trip distribution problem (production, attraction and friction) were used

as inputs. Afterwards, the rule base of the proposed FRBS was further improved with a

novel GFRBS design. The rule base learning process in GFRBS design was shifted to a

combinatorial optimization problem and solved with a probabilistic and adaptive

genetic algorithm. Both of the two model outputs was enforced to satisfy production

and attraction constraints giving access to use of them as a part of sequential travel

demand modelling.

 The performance of the proposed models was evaluated comparatively with

respect to the benchmark models: a traditional doubly-constrained gravity model and a

multilayer feed-forward neural network. Various goodness-of-fit statistics were used in

the performance evaluation. According to the results achieved, a straightforward

consequence is that the FRBSs and the GFRBSs can be used in predicting intra-city

passenger flows with high level of accuracy.

 The present study has also examined the proposed and the benchmark models in

many respects and achieved a plenty of empirical results. Additionally, all the models

have evaluated according to their simplicity, predictive ability, interpretability,

flexibility, data dependency etc. in trip distribution modelling. The following statements

below, briefly demonstrate findings of the empirical analysis, and Table 7.1 summarizes

evaluation of the main characteristics of the models for a doubly-constrained case:

i. traditional doubly-constrained gravity models are still simple and efficient; they

are steady and strong, yet they suffer from one-parameter generalization; they

87

should be tried first in almost every case, at least for a comparison; they offer

better predictions with maximum likelihood or TLD based parameter estimation.

ii. neural networks may not show expected performance if they are forced to satisfy

production-attraction constraints; they are unsteady, non-interpretable and

case/data dependent; its equation-free structure and potential usage with

additional inputs provide an outstanding advantage.

iii. simply-designed FRBSs, learning from numerical data and expertise, are both

interpretable and efficient in forecasting trip interchanges even if the data is

large and noisy; they do not require data and can be established with only basic

human reasoning; additional inputs can be introduced to the model easily as in

neural networks.

iv. GFRBSs offer high level of accuracy in trip distribution modelling, although it

brings additional computation cost; they should be preferred especially when

high accuracy is needed or when system's complexity increases and classical

rule base learning approaches fail.

Table 7.1: An Evaluation of Trip Distribution Models for the Doubly-Constrained Case

CRITERIA DCGM ML
Estimation

DCGM WLS
Estimation

DCGM TLD
Based Est.

NNTDM

FRBS
Design

GFRBS
Design

Mathematical
Simplicity Moderate Moderate Strong Moderate Strong Moderate

Application
Simplicity Strong Strong Strong Moderate Strong Weak

Statistical
Interpretability Strong Strong Strong Unknown Unknown Unknown

System
Interpretability Moderate Moderate Moderate Weak Strong Strong

Prediction
Ability Moderate Weak Moderate Weak Moderate Strong

Improvement with
Additional Variables Weak Weak Weak Strong Strong Strong

Dependency to
Data Existence Strong Strong Strong Weak Strong Weak

Hybridization
Ability Weak Weak Weak Strong Strong Strong

Computational
Costs Strong Strong Strong Moderate Strong Weak

Ready to Use
Software Packages Strong Weak Strong Strong Strong Weak

88

 It is appropriate to stress here again that the present study has demonstrated how

soft computing techniques, neural networks, fuzzy and genetic fuzzy systems, can

successfully be used in modelling any spatial interactions. Among the other soft

computing techniques, use of fuzzy set theory and fuzzy logic in spatial sciences has

very promising features. In several scientific disciplines such as urban planning,

transportation modelling, urban geography and regional science, the field data is

generally involved uncertainty, vagueness and incompleteness. FRBSs provide an

outstanding opportunity to deal with this drawback. They enable using linguistic terms

and human like reasoning in modelling complex real-life systems. Additionally, they

have an equation-free structure; they are not black-box, in contrast interpretable ; they

can be used without numerical data; they can incorporate expert knowledge into

modelling procedure; they provide a flexible framework for hybridization with other

soft computing techniques such as genetic algorithms and neural networks.

 In conclusion, fuzzy and genetic fuzzy systems offer an alternative way to

traditional gravity models and neural networks in modelling trip distributions. The

present study has demonstrated their applicability to a challenging city region with a

desired level of accuracy and interpretability. There are several positive reasons for

continuing to develop trip distribution models in this fields.

 This study differs from similar previous works (Kalic and Teodorovic, 1996;

2003 and Shafahi et al., 2008) in several respects: i) a genetic fuzzy system was

proposed to model intra-city passenger flows for the first time; ii) original solutions to

the fuzzy rule base learning problem were developed; iii) an extensive performance

comparison was established for the first time, among the fuzzy, genetic fuzzy, doubly-

constrained gravity and neural networks based trip distribution models.

 Further researches should explore designing such fuzzy and genetic fuzzy

systems with some new features such as : with additional variables, for instance a zonal

land use variable or a geographical barrier can be introduced as additional inputs; with

same variables but different configurations such as with a Sugeno-type FRBS; with

innovative evolutionary algorithms and learning strategies; and most importantly with

an approximate FRBS design that works properly in a low quality data environment or

under uncertainty and imprecision. There is still a few number of studies that

demonstrate such systems' ability on an environment where uncertainty and imprecision

exist.

89

REFERENCES

Alonso, W. 1973, National interregional demographic accounts: a prototype, Institute
 of Urban and Regional Development, University of California, Berkeley, Rep.
 No. 17.

Alonso, W. 1978, "A theory of movements," In Human Settlement Systems:
 International Perspectives on Structure, Change and Public Policy, N. M.
 Hansen, ed., Cambridge, Massachusetts: Ballinger Publishing Company, pp.
 197-211.

Avineri, E. 2005. Soft computing applications in traffic and transport systems: a
 review. Advances in Soft Computing, 1, 17-25

Batten, D. F. & Boyce, D. E. 1987, "Spatial interaction, transportation, and interregional
 commodity flow models," In Handbook of Regional and Urban Economics -
 Volume 1, ed. N. Peter, ed., Elsevier, pp. 357-406.

Bezdek, J. C. 1994, "What is computational intelligence?," In Computational
 Intelligence Imitating Life, J. M. Zurada, R. J. Marks, & C. J. Robinson, eds.,
 NY: IEEE Press, pp. 1-12.

Black, W.R. 1995. Spatial interaction modeling using artificial neural networks. Journal
 of Transport Geography, 3, (3) 159-166

Black, W.R. 2003. Transportation: a geographical analysis New York - London, The
 Guilford Press.

Bodenhofer, U. & Herrera, F. 1997, Ten Lectures on Genetic Fuzzy Systems, Software
 Competence Center Hagenberg, Austria, SCCH-TR-0021.

Bodenhofer, U. 1999, Genetic Algorithms: theory and applications, Software
 Competence Center Hagenberg, Austria, SCCH-TR-0019.

Boyce, D. 2002. Is the sequential travel forecasting paradigm counterproductive?
 Journal of Urban Planning and Development, 128, (4) 169-183

Carey, H.C. 1858. Principles of social sciences Philadelphia, J. B. Lippincott.

Cascetta, E., Pagliara, F., & Papolla, A. 2007. Alternative approaches to trip
 distribution modelling: a retrospective review and suggestions for
 combining different approaches. Papers in Regional Science , 86, (4) 597-620

Casey, H.J. 1955. Applications to traffic engineering of the law of retail gravitation.
 Traffic Quarterly, 9, 23-25

Celik, M.H. 2004. Forecasting Interregional commodity flows using artificial neural
 networks: an evaluation. Transportation Planning and Technology, 27, (6)
 449-467

90

Chiou, Y.C. & Lan, L.W. 2005. Genetic fuzzy logic controller: an iterative evolution
 algorithm with new encoding method. Fuzzy Sets and Systems, 152, (3)
 617-635

Cordon, O., Herrera, F., Hoffmann, F., & Magdalena, L. 2001. Genetic fuzzy systems:
 evolutionary tuning and learning of fuzzy knowledge bases Singapore, World
 Scientific.

Cordon, O., Gomide, F., Herrera, F., Hoffmann, F., & Magdalena, L. 2004. Ten years
 of genetic fuzzy systems: current framework and new trends. Fuzzy Sets and
 Systems, 141, (1) 5-31

Demuth, H., Beale, M., & Hagan, M. 2009. Neural Network Toolbox 6: users guide
 Natick, MA, The MathWorks, Inc.

Dickey, J.W. 1983. Metropolitan transportation planning, 2nd edition ed. New York,
 McGraw-Hill.

Diplock, G. & Openshaw, S. 1996. Using Simple genetic algorithms to calibrate spatial
 interaction models. Geographical Analysis, 28, (3) 262-279

Dougherty, M. 1995. A Review Of Neural Networks Applied To Transport.
 Transportation Research Part C: Emerging Technologies, 3, (4) 247-260

Easa, S.M. 1993. Urban trip distribution in practice .1. conventional analysis. Journal
 of Transportation Engineering-Asce, 119, (6) 793-815

Evans, A.W. 1971. The calibration of trip distribution models with exponential or
 similar cost functions. Transportation Research, 5, (1) 15-38

Fischer, M.M. & Gopal, S. 1994. Artificial neural networks - a new approach to
 modeling interregional telecommunication flows. Journal of Regional Science,
 34, (4) 503-527

Fischer, M. M. 2001, "Neural spatial interaction models," In Geocomputational
 Modelling: Techniques and Applications, M. M. Fischer & Y. Leung, eds.,
 Heidelberg: Springer, pp. 195-219.

Fischer, M.M., Reismann, M., & Hlavackova-Schindler, K. 2003. Neural Network
 modeling of constrained spatial interaction flows: design, estimation, and
 performance issues. Journal of Regional Science, 43, (1) 35-61

Fischer, M. M. 2009, "Principles of neural spatial interaction modeling," In Tool Kits
 in Regional Science:Theory, Models, and Estimation, M. Sonis & J. D. H.
 Hewings, eds., Springer Berlin Heidelberg, pp. 199-214.

Fotheringham, A.S. 1983. A new set of spatial-interaction models: the theory of
 competing destinations. Environment and Planning A, 15, (1) 15-36

91

Fotheringham, A.S. & Knudsen, D.C. 1987. Goodness-of-fit statistics Norvich, Geo
 Books.

Fotheringham, A.S. & O'Kelly, M.E. 1989. Spatial Interaction models: formulations
 and applications Dordrecht - Boston - London, Kluwer Academic Publishers.

Furness, K.P. 1965. Time Function Iteration. Traffic Engineering and Control, 7,
 458-460

Gen, M. & Cheng, R. 2000. Genetic algorithms & engineering optimization New
 York, John Wiley & Sons.

Goldberg, D.E. 1989. Genetic algorithms in search, optimization, and machine
 learning Boston , Addison-Wesley.

Gray, R.H. & Sen, A.K. 1983. Estimating gravity model parameters: A simplified
 approach based on the odds ratio. Transportation Research Part B:
 Methodological, 17, (2) 117-131

Hansen, W.G. 1959. How accessibility shapes land use. Journal of the American
 Institute of Planners, 25, (2) 73-76

Haupt, R.L. & Haupt, S.E. 2004. Practical genetic algorithms, 2nd ed. New Jersey,
 John Wiley & Sons.

Haykin, S. 1999. Neural Networks: a comprehensive foundation, 2nd ed. India,
 Pearson Prentice Hall.

Henn, V. 2000. Fuzzy route choice model for traffic assignment. Fuzzy Sets and
 Systems, 116, (1) 77-101

Herrera, F. 2005. Genetic fuzzy sstems status critical considerations and future
 directions. International Journal of Computational Intelligence Research, 1, (1)
 59-67

Herrera, F. 2008. Genetic fuzzy systems: taxonomy, current research trends and
 prospects. Evolutionary Intelligence, 1, (1) 27-46

Herrera, F. & Vergeday J.L. (eds.) 1996. Genetic algorithms and soft computing,
 Heidelberg, Physica-Verlag.

Holland, J.H. 1975. Adaptation in natural and artificial systems Ann Arbor, University
 of Michigan Press.

Hornik, K., Stinchcombe, M., & White, H. 1989. multilayer feedforward networks are
 universal approximators. Neural Networks, 2, (5) 359-366

Hornik, K. 1991. Approximation capabilities of multilayer feedforward networks.
 Neural Networks, 4, (2) 251-257

92

Huff, D.L. 1963. A probabilistic analysis of shopping center trade areas. Land
 Economics, 39, (1) 81-90

Huff, D.L. 1965. A note on the limitations of intraurban gravity models. Land
 Economics, 38, (1) 64-66

Hyman, G.M. 1969. The calibration of trip distribution models. Environment and
 Planning A, 1, (1) 105-112

Ishak, S. & Franco, T. 2007, "Neural Networks," In Transportation Research Circular
 E-C113: Artificial Intelligence in Transportation Information for Application,
 TRB Artificial Intelligence and Advanced Computing committee, ed.,
 Washington, DC: Transportation Research Board, pp. 17-32.

Ishibuchi, H. 2007. Multiobjective genetic fuzzy systems: review and future
 research directions, In Fuzzy Systems Conference, 2007. FUZZ-IEEE 2007.
 IEEE International, pp. 1-6.

Istanbul Metropolitan Municipality Transportation Planning Department 2008. Istanbul
 Transportation Master Plan Household Survey: analytic study and model
 Calibration Istanbul, Metropolitan Municipality of Istanbul.

Istanbul Metropolitan Planning Centre (IMP) 2006, Istanbul Metropolitan Area Master
 Plan Report, Metropolitan Municipality of Istanbul, Istanbul.

Ji-Rong, X. 2000. A neural network approach to modelling and predicting intercity
 passenger flows. (PhD Dissertation). Indiana University.

Kalic, M. & Teodorovic, D. 2003. Trip distribution modelling using fuzzy logic and
 a genetic algorithm. Transportation Planning and Technology, 26, (3) 213-238

Kalic, M. & Teodorovic, D. 1996. Solving the trip distribution problem by fuzzy
 rules generated by learning from examples (in Serbian), In Proceedings of
 the XXIII Yugoslav Symposium on Operations Research, pp. 777-780.

Kanafani, A. 1983. Transportation demand analysis New York, McGraw-Hill.

Karr, C. 1991. Genetic algorithms for fuzzy controllers. AI Expert, 6, (2) 26-33

Kim, D. 2001. Neural Networks for trip generation model. Journal of the Eastern Asia
 Society for Transportation Studies, 4, (2) 201-208

Knudsen, D.C. & Fotheringham, A.S. 1986. Matrix comparison, goodness-of-fit and
 spatial interaction modeling. Journal of Regional Science Review, 10, (2)
 127-147

Konar, A. 2005. Computational intelligence: principles, techniques and applications
 Netherlands, Springer-Verlag Berlin Heidelberg.

93

Kosko, B. 1994. Fuzzy systems as universal approximators. Computers, IEEE
 Transactions on, 43, (11) 1329-1333

Leung, S.C.H. 2007. A non-linear goal programming model and solution method for the
 multi-objective trip distribution problem in transportation engineering.
 Optimization and Engineering, 8, (3) 277-298

Lotan, T. & Koutsopoulos, H.N. 1993. Models for route choice behavior in the presence
 of information using concepts from fuzzy set theory and approximate reasoning.
 Transportation, 20, (2) 129-155

Lowry, I. S. 1964, A model of metropolis, The Rand Corporation, Santa Monica ,
 Memorandum, RM-4035-RC.

Mamdani, E.H. 1974. Application of fuzzy algorithms for control of simple dynamic
 plant. Procedings of IEEE, 121, (12) 1585-1588

Mamdani, E.H. & Assilian, S. 1975. An experiment in linguistic synthesis with a fuzzy
 logic controller. International Journal of Man-Machine Studies, 7, (1) 1-13

Martin, B. V., Memmott, F. W., & Bone, A. j. 1961, Principles and techniques of
 predicting future demand for urban area transportation M.I.T., Rep. No. 38.

McFadden, D. 1974, "Conditional logit analysis of qualitative choice behavior," In
 Frontiers In Econometrics, P. Zarembka, ed., New york: Academic press, pp.
 105-142.

Mendel, J.M. & Mouzouris, G.C. 1997. Designing fuzzy logic systems. Circuits and
 Systems II: Analog and Digital Signal Processing, IEEE Transactions on, 44,
 (11) 885-895

Meyer, M.D. & Miller, E.J. 2001. Urban transportation planning: a decision-
 oriented approach, Second Edition ed. Boston, McGraw-Hill.

Mozolin, M., Thill, J.-C., & Lynn Usery, E. 2000. Trip distribution forecasting with
 multilayer perceptron neural networks: A critical evaluation. Transportation
 Research Part B: Methodological, 34, (1) 53-73

Munakata, T. 2008. Fundamentals of the new artificial intelligence: neural
 evolutionary fuzzy and more, 2nd ed. ed. Springer.

Mussone, L. 1999. A review of feedforward neural networks in transportation research.
 e & i Elektrotechnik und Informationstechnik, 116, (6) 360-365

Openshaw, S. 1993, "Modeling spatial interaction using neural net," In Geographical
 Information Systems, Spatial Modeling, and Policy evaluation , M. M. Fischer &
 P. Nijkamp, eds., New York: Springer Berlin, pp. 147-164.

Openshaw, S. 1997, "Building fuzzy spatial interaction models," In Advances in Spatial
 Analysis, A. Getis & M. M. Fischer, eds., Berlin: Springer, pp. 360-383.

94

Openshaw, S. 1998. Neural network, genetic, and fuzzy logic models of spatial
 interaction. Environment and Planning A, 30, (10) 1857-1872

Oppenheim, N. 1995. Urban travel demand modeling: From Individual Choices to
 General Equilibrium New York, Wiley Interscience.

Ortuzar Juan de Dios & Willumsen Luis G. 2001. Modelling transport, Third Ed. ed.
 Chichester, John Wiley & Sons.

Pedrycz, J. 1996. Fuzzy sets engineering Boca Raton, CRC Press.

Pedrycz, J. & Gomide, F. 1998. An introduction to fuzzy sets: Analysis and Design
 Cambridge, Massachusetts, MIT Press.

Pham, D.T. & Karaboga, D. 1991. Optimum design of fuzzy logic controllers using
 genetic algorithms. Journal of Systems Engineering, 2, (1), 114-118

Ravenstein, E.G. 1885. The laws of migration. Journal of the Statistical Society of
 London, 48, (2) 167-235

Ravenstein, E.G. 1889. The laws of migration. Journal of the Royal Statistical Society,
 52, (2) 241-305

Ross, T.J. 2004. Fuzzy logic with engineering applications, Second edition ed.
 England, John Wiley & Sons.

Roy, J.R. 2004. Spatial interaction modelling: A Regional Science Context Berlin,
 Springer - Verlag .

Roy, J.R. & Thill, J.C. 2004. Spatial interaction modelling. Papers in Regional Science,
 83, (1) 339-361

Rumelhart, D.E., Hinton, G.E., & Williams, R.J. 1986. Learning representations by
 back-propagating errors. Nature, 323, (6088) 533-536

Sadek, A. W. 2007, "Artificial intelligence applications in transportation," In
 Transportation Research Circular E-C113: Artificial Intelligence in
 Transportation Information for Application, TRB Artificial Intelligence and
 Advanced Computing committee, ed., Washington, DC: Transportation
 Research Board, pp. 1-6.

Schneider, M. 1959. Gravity models and trip distribution theory. Papers and
 Proceedings of the Regional Science Association, 5, 51-56

Sen, A. & Soot, S. 1981. Selected procedures for calibrating the generalized gravity
 model. Papers in Regional Science, 48, (1) 165-176

Sen, A. 1986. Maximum-likelihood-estimation of gravity model parameters. Journal
 of Regional Science, 26, (3) 461-474

95

Sen, A. & Smith, T.E. 1995. Gravity models of spatial interaction behavior Berlin -
 Heidelberg, Springer-Verlag.

Shafahi, Y., Nourbakhsh, S. M., & Seyedabrishami, S. 2008. Fuzzy trip distribution
 models for discretionary trips, In Intelligent Transportation Systems, 2008. 11th
 International IEEE Conference on, pp. 557-562.

Sivanandam, S.N. & Deepa, S.N. 2008. Introduction to genetic algorithms Berlin
 Heidelberg, Springer-Verlag.

Smith, D.P. & Hutchinson, B.G. 1981. Goodness of fit statistics for trip distribution
 models. Transportation Research Part A: General, 15, (4) 295-303

Smith, S.F. 1980. A learning system based on genetic adaptive algorithms. (Doctoral
 Dissertation). Department of Computer Science.

Stouffer, S.A. 1940. Intervening opportunities: a theory relating mobility and
 distance. American Sociological Review, 5, (6) 845-867

Sugeno, M. & Kang, G.T. 1988. Structure identification of fuzzy model. Fuzzy Sets and
 Systems, 28, (1) 15-33

Taaffe, E.J., Gauthier, H.L., & O'Kelly, M.E. 1996. Geography of transportation, 2nd
 ed. New Jersey, Prentice Hall.

Takagi, T. & Sugeno, M. 1985. Fuzzy Identification of systems and its applications to
 modeling and control. IEEE Transactions on Systems, Man, and Cybernetics,
 15, (1) 116-132

Tapkin, S. & Akyilmaz, Ö. 2009. A new approach to neural trip distribution models:
 NETDIM. Transportation Planning and Technology, 32, (1) 93-114

Teodorovic, D. & Kikuchi, S. 1990. Transportation route choice model using fuzzy
 inference technique, In Uncertainty Modeling and Analysis, 1990.
 Proceedings., First International Symposium on, pp. 140-145.

Teodorovic, D. 1994. Fuzzy sets theory applications in traffic and transportation.
 European Journal of Operational Research, 74, (3) 379-390

Teodorovic, D. & Vukadinovic, K. 1998. Traffic control and transport planning: a
 fuzzy sets and neural networks Approach Dordrecht, Kluwer.

Teodorovic, D. 1999. Fuzzy logic systems for transportation engineering: the state of
 the art. Transportation Research Part A: Policy and Practice, 33, (5) 337-364

Thrift, P. 1991. Fuzzy logic synthesis with genetic algorithms. In Proceedings of fourth
 international conference on henetic algorithms (ICGA'91), Morgan Kaufman,
 San Diego, pp. 509-513.

96

Tillema, F., van Zuilekom, K.M., & van Maarseveen, M.F.A.M. 2006. Comparison of
 neural networks and gravity models in trip distribution. Computer-Aided Civil
 and Infrastructure Engineering, 21, 104-119
TRB - Transportation Reseach Board 1998. Travel estimation techniques for urban
 planning (NCHRP Report 365) Washington, D.C., National Academy Press.

TRB - Transportation Reseach Board 2007. Artificial intelligence in transportation:
 information for application Washignton.

TurkStat 2010, Press Release: address based population registration system
 population census results, 2009, Turkish Statistical Institute, Ankara, 15.

Valenzula-Rendon, M. 1991. The fuzzy classifier system: motivations and first results.
 In Proceedings of first international conference on parallel problem solving
 from nature, Scwefel H.P. & Manner R., eds., Berlin: Springer, pp. 330- 334.

Vuchic, V.R. 2005. Urban transit: operations, planning, and economics New Jersey,
 John Wiley & Sons.

Wang, L. X. Fuzzy systems are universal approximators, In Fuzzy Systems, 1992., IEEE
 International Conference on, pp. 1163-1170.

Wang, L.-X. & Mendel, J.M. 1992. Generating fuzzy rules by learning from examples.
 Systems, Man and Cybernetics, IEEE Transactions on, 22, (6) 1414-1427

Williams, H.C.W.L. 1977. On the formation of travel demand models and economic
 evaluation measures of user benefit. Environment and Planning A, 9, (3) 285-
 344

Williams, I. 1976. A comparison of some calibration techniques for doubly constrained
 models with an exponential cost function. Transportation Research, 10, (2)
 91-104

Wilson, A.G. 1967. A statistical theory of spatial distributions. Transportation
 Research, 1, 253-269

Wilson, A.G. 1970. Entropy in urban and regional modelling London, Pion.

Wilson, A.G. 1974. Urban and regional models in geography and planning London -
 New York, John Wiley & Sons.

Zadeh, L.A. 1965. Fuzzy sets. Information and Control, 8, (3) 338-353

Zadeh, L.A. 1973. Outline of a new approach to the analysis of complex systems and
 decision processes. Systems, Man and Cybernetics, IEEE Transactions on,
 SMC-3, (1) 28-44

97

APPENDIX A

COMPUTER PROGRAMS

 Present study deals with large data sets and includes a number of iterative

mathematical algorithms. Additionally, many of the algorithms used in this study are

not included in built-up software packages. So, it is found appropriate to create own

computer programs/codes for nearly all mathematical and statistical algorithms.

 The selected programming/computing software is MATLAB and used version is

R2009b. The MATLAB product family provides a high-level programming language,

an interactive technical computing environment, and functions for: algorithm

development, data analysis and numeric computation.

 The following sections include calibration, training and learning algorithms for

each of the trip distribution models introduced earlier. Description of the program and

algorithm details are given with '%' denotes. One can run any of the program, if he or

she copy and paste the code to a MATLAB script file (.m - file) and load a suitable data

set.

98

A.1. Doubly-Constrained Gravity Model Calibration with Maximum
 Likelihood Estimation

%% MAXIMUM LIKELIHOOD CALIBRATION ALGORITHM FOR DOUBLYCONSTRAINED GRAVITY
MODEL

%% Definition of the Program
%This program calibrates friction factor parameter (beta) for Doubly Constraint GM
%The code is written for both of the Cost Functions: Power (cij^-b) and Exponential(e^-b*cij)
%Calibration criteria is to replicate the Observed Total Travel Cost
%See detailed formula and its explanations in Fortheringham and O'Kelly (1989), at pages 49-56
%See Hyman's iterative parameter estimation method in Hyman (1969)
%At the end, code produces an estimate of beta parameter (b) and modelled trip matrix with the parameter estimate
%Produced in :13.08.2009
%Last Modified in :08.06.2010 ***written by Mert Kompil ***mertkompil@gmail.com

%% Load Data
clc;
clear;
load -mat HBW_TRAIN_DATA; %load data from a -mat file (-mat file includes FRICTION_TRAIN and
 OBS_TRIPS_TRAIN matrices)

%% Select Cost Function Type (Power or Exponential)
answer = input(' Please Select The Cost Function :\n Enter "1" for POWER and "2" for EXPONENTIAL
FUNCTIONS ----- > ');
if answer ==1;
 type=1;
else
 type=2;
end;

%% Rename Data Matrices
t_time=HBW_FRICTION_TRAIN; %enter the name of friction matrix here (distanc/time)(cij)
obs_trips=HBW_OBS_TRAIN; %enter the name of trip matrix (Tij)
clear ('HBW_FRICTION_TRAIN','answer','HBW_OBS_TRAIN', 'HBW_ROW_DATA_TRAIN')
 %Clear old matrixes

%% Enter Maximum Iteration Numbers and Convergence Criteria
iter1=100; %maximum iteration number for the loop finding beta (b) parameter
iter2=100; %maximum iteration number for the loop finding the balancing factors (Ai&Bj)
conv1=0.001; %convergence criteria for balancing factors (Ai&Bj)
conv2=0.0001; %convergence criteria for beta (b)parameter estimate

%% Create Starting matrices and parameters
prod_tot=sum(obs_trips,2)'; %produce production totals matrix
attr_tot=sum(obs_trips); %produce attraction totals matrix
logt_time=log(t_time); %take log of friction matrix
if type==1 %compute Observed Total Travel Cost
 obs_ttc=sum(sum(obs_trips.*logt_time)); %use "log(cij)" for Power Cost Function
else
 obs_ttc=sum(sum(obs_trips.*t_time)); %use only "cij" for Exponential Cost Function
end;
b=ones(iter1+1,1); %produce a row vector for beta (b) parameters
b(1)=(3/(2*obs_ttc)); %compute the initial beta (b0) parameter
mod_ttc=ones(iter1+1,1); %produce a row vector for Modeled Total Travel Costs (c0,c1,...cn) values
[m,n]=size(obs_trips); %produce matrix index
mod_trips=ones(m,n); %modelled trip matrix
A0=ones(m,n); %computation table for Ais
B0=ones(m,n); %computation table for Bjs
Ai=ones(m,iter2); %produce a matrix for Ais to make comparison through iterations
Bj=ones(iter2,n); %produce a matrix for Bjs to make comparison through iterations
B=ones(1,n); %set the initial Bjs as one
 %% Start Iteration Loops
for r=1:iter1 %START LOOP 1: for beta (b) parameter

99

%% Find Balancing Factors (Ais&Bjs)
 for k=1:iter2 %START LOOP 2: for balancing factors (Ai&Bj)
 if type==1 %if the Power Cost function is selected
 for i=1:m, %find Ais
 for j=1:n
 A0(i,j)=B(j)*attr_tot(j)*(t_time(i,j)^b(r));
 end;
 end;
 A=(1./sum(A0,2))';
 for i=1:m %find Bjs
 for j=1:n
 B0(i,j)=A(i)*prod_tot(i)*(t_time(i,j)^b(r));
 end;
 end;
 end;
 if type==2 %if the Exponential Cost function is selected
 for i=1:m, %find Ais
 for j=1:n
 A0(i,j)=B(j)*attr_tot(j)*(exp(t_time(i,j)*b(r)));
 end;
 end;
 A=(1./sum(A0,2))';
 for i=1:m %find Bjs
 for j=1:n
 B0(i,j)=A(i)*prod_tot(i)*(exp(t_time(i,j)*b(r)));
 end;
 end;
 end;
 B=(1./sum(B0));
 Ai(:,k)=A; %write Ais to the related column in matrix for comparison
 Bj(k,:)=B; %write Bjs to the related row in matrix for comparison
 if k>1 %compare balancing factors
 if sqrt((sum((Ai(:,k)-Ai(:,(k-1))).^2))/k)< conv1 && sqrt(sum((Bj(k,:)-Bj((k-1),:).^2),2)/k) < conv1;
 break %if convergence criteria is satisfied, stop process, otherwise continue
 end;
 end;
 end; %END OF LOOP 2: for balancing factors (Ai&Bj)

%% Compute Modeled Trip Matrix
 if type==1 %if the Power Cost function is selected
 for i=1:m,
 for j=1:n
 mod_trips(i,j)= A(i)*B(j)*prod_tot(i)*attr_tot(j)*(t_time(i,j)^b(r)); %compute the modelled trips
 end;
 end;
 end;
 if type==2 %if the Exponential Cost function is selected
 for i=1:m,
 for j=1:n
 mod_trips(i,j)= A(i)*B(j)*prod_tot(i)*attr_tot(j)*(exp(t_time(i,j)*b(r))); %compute the modelled trips
 end;
 end;
 end;

%% Estimate a Better beta (b) Parameter
 if type==1 %compute Modeled Total Travel Cost (C0,C1,...Cn)
 mod_ttc(r)=sum(sum(mod_trips.*logt_time)); %use "log(cij)" for Power Cost Function
 else
 mod_ttc(r)=sum(sum(mod_trips.*t_time)); %use only "cij" for Exponential Cost Function
 end;
 if r==1 % use this formula for the first iteration (b1) to estimate beta parameter
 b(r+1)=b(r)*mod_ttc(r)/obs_ttc;
 else % use this formula for subsequent iterations (b2,b3,...bn)
 b(r+1)=((obs_ttc-mod_ttc(r-1))*b(r)-((obs_ttc-mod_ttc(r))*b(r-1)))/(mod_ttc(r)-mod_ttc(r-1));
 end;
 if r>1
 if abs((b(r+1))-(b(r))) < (conv2) % compare the last two beta (b) estimates

100

 break % if convergence criteria is satisfied, stop process, otherwise continue
 end;
 end;
end; %END OF LOOP 1: for beta (b) parameter

%% Show the Estimated Parameter on Screen
beta=b(r+1);
if type==1
 fprintf('\n beta calibration for Power Cost Function is successfully completed in %g iterations \n',r)
else
 fprintf('\n beta calibration for Exponential Cost Function is successfully completed in %g iterations \n',r)
end;
fprintf('\n beta ----> %f\n',beta) %show the best value estimate for beta (b) parameter on the screen
clear ('obs_ttc','iter1','iter2','conv1','conv2','A','B','m','n','mod_ttc','logt_time',...
 'k','r','i','j','b','c','prod_tot','attr_tot','type','A0','Ai','B0','Bj') %clear temporary matrixes

%% Output of the Program
i) the modelled trips (mod_trips) and,
ii) the beta (beta) parameter estimate

101

A.2. Doubly-Constrained Gravity Model Calibration with Trip Length
 Distribution Based Estimation

--
%% MINIMIZING TRIP LENGTH DISTRIBUTION RMSE WİTH A LINE SEARCH ALGORITHM

%% Definition of the Program
%The code is written for both of the Cost Functions: Power (cij^-b) and Exponential(e^-b*cij)
%Calibration criteria is to replicate the Observed Trip Length Distribution according to the given trip length intervals
%During the process, you have to set an interval number (bin interval) and a maximum value (end of bins)
%At the end, code produces an estimate of beta parameter (b) and, Observed and Modelled Trip Length Distributions
%Produced in :10.08.2009
%Last Modified in :08.06.2010 ***written by Mert Kompil ***mertkompil@gmail.com

%% Load Data
clc;
clear;
load -mat HBW_Train_Data; %load data from a -mat file (-mat file includes DISTANCE_TRAIN,
 OBS_TRIPS_TRAIN and ROW_DATA_TRAIN matrices)

%% Select Cost Function Type (Power or Exponential)
answer = input(' Please Select The Cost Function :\n Enter "1" for POWER and "2" for EXPONENTIAL
FUNCTIONS ----- > ');
if answer ==1;
 type=1;
else
 type=2;
end;
%% Set an Interval Number for Each Bins
answer1 = input('\n Please Enter an Interval Number for Each Bins ----- > ');

%% Set a Value That The Bins End
answer2 = input('\n Please Enter a Value that the Bins End ----- > ');

%% Rename Data Matrices
t_time=HBW_FRICTION_TRAIN; %enter the name of friction matrix here (distanc/time)(cij)
obs_trips=HBW_OBS_TRAIN; %enter the name of trip matrix (Tij)
row_data=HBW_ROW_DATA_TRAIN;
clear ('HBW_FRICTION_TRAIN','answer','HBW_OBS_TRIPS_TRAIN', 'HBW_ROW_DATA_TRAIN')
%Clear old matrixes

%% Set a Vector of beta (b) parameters for line search
b=(-0.1:-0.1:3)'; %For more than one parameter, the input should be a column vector
[w,c]=size(b); %matrix index

%% Compute Observed Trip Length Distribution
maxi=max(max(t_time)); %the maximum friction value
mini=0; %the minimum friction value - set zero as default value
bin_int=answer1; %interval for each bins
max_bin=answer2; %the value that bins end
num_bins=floor((max_bin/bin_int)+1); %number of bins
OTLD=zeros(num_bins,4); %create a matrix for observed trip length distribution
OTLD(:,1)=(1:1:num_bins);
OTLD(:,2)=(bin_int:bin_int:(max_bin+bin_int))';
OTLD(num_bins,2)=maxi;
[h,s]=size(row_data); %matrix index
for i=1:h %produce observed trip length distribution
 for k=1:num_bins-1
 if mini <= row_data(i,5) && row_data(i,5)< OTLD(1,2)
 OTLD(1,3)= OTLD(1,3)+row_data(i,6);
 break
 end;
 if OTLD(k,2) <= row_data(i,5) && row_data(i,5)< OTLD(k+1,2)
 OTLD(k+1,3)= OTLD(k+1,3)+row_data(i,6);
 break

102

 end;
 end;
end;
clear ('answer1','answer2','k') %Clear temporary values

%% Enter Maximum Iteration Number and Convergence Criteria for Balancing Factors
iter=100; %maximum iteration number for the loop finding the balancing
factors (Ai&Bj)
conv=0.001; %convergence criteria for balancing factors (Ai&Bj)

%% Create Starting matrices and parameters for modeled trips
prod_tot=sum(obs_trips,2)'; %produce production totals matrix
attr_tot=sum(obs_trips); %produce attraction totals matrix
rmse=ones(w,1); %create a column vector for RMSE Results
row_data_2=ones(h,c); %create a matrix to write modeled tirps in rows
MTLD00=zeros(num_bins,w); %create a matrix to write modeled Trip Length Distribution Counts
MTLD01=MTLD00; %create a matrix to write modeled TLD Percents
[m,n]=size(obs_trips); %matrix index
mod_trips=ones(m,n); %create a matrix for modeled trip matrix
A0=ones(m,n); %computation table for Ais
B0=ones(m,n); %computation table for Bjs
Ai=ones(m,iter); %produce a matrix for Ais to make comparison through iterations
Bj=ones(iter,n); %produce a matrix for Bjs to make comparison through iterations
B=ones(1,n); %set the initial Bjs as one
%% Start Computation for each beta (b) input
for g=1:w %START LOOP 1: produce modeled trip matrix for given beta (b)

%% Find Balancing Factors (Ais&Bjs)
 for k=1:iter %START LOOP 2: for balancing factors (Ai&Bj)
 if type==1 %if the Power Cost function is selected
 for i=1:m, %find Ais
 for j=1:n
 A0(i,j)=B(j)*attr_tot(j)*(t_time(i,j)^b(g));
 end;
 end;
 A=(1./sum(A0,2))';
 for i=1:m %find Bjs
 for j=1:n
 B0(i,j)=A(i)*prod_tot(i)*(t_time(i,j)^b(g));
 end;
 end;
 end;
 if type==2 %if the Exponential Cost function is selected
 for i=1:m, %find Ais
 for j=1:n
 A0(i,j)=B(j)*attr_tot(j)*(exp(t_time(i,j)*b(g)));
 end;
 end;
 A=(1./sum(A0,2))';
 for i=1:m %find Bjs
 for j=1:n
 B0(i,j)=A(i)*prod_tot(i)*(exp(t_time(i,j)*b(g)));
 end;
 end;
 end;
 B=(1./sum(B0));
 Ai(:,k)=A; %write Ais to the related column in matrix for comparison
 Bj(k,:)=B; %write Bjs to the related row in matrix for comparison
 if k>1 %compare balancing factors
 if sqrt((sum((Ai(:,k)-Ai(:,(k-1))).^2))/k)< conv && sqrt(sum((Bj(k,:)-Bj((k-1),:).^2),2)/k) < conv;
 break %if convergence criteria is satisfied, stop process, otherwise continue
 end;
 end;
 end; %END OF LOOP 2: for balancing factors (Ai&Bj)
 clear ('k','i','j') %clear temporary values

%% Compute Modeled Trip Matrix

103

 if type==1 %if the Power Cost function is selected
 for i=1:m,
 for j=1:n
 mod_trips(i,j)= A(i)*B(j)*prod_tot(i)*attr_tot(j)*(t_time(i,j)^b(g)); %compute the modeled trips
 end;
 end;
 end;
 if type==2 %if the Exponential Cost function is selected
 for i=1:m,
 for j=1:n
 mod_trips(i,j)= A(i)*B(j)*prod_tot(i)*attr_tot(j)*(exp(t_time(i,j)*b(g))); %compute the modeled trips
 end;
 end;
 end;

%% Write Modeled Trip Matrix to Rows to Compute Modeled TLD
 v=1;
 for o=1:m
 temp=mod_trips(:,v);
 row_data_2(o,g)=temp(o);
 end;
 v=v+1;
 t=1;
 x=0;
 for u=1:n-1
 for f=t:m*u
 temp=mod_trips(:,v);
 row_data_2(m+f,g)=temp(x+f);
 end;
 t=t+m;
 v=v+1;
 x=x-m;
 end;

%% Compute Modeled TLD
 for i=1:h
 for k=1:num_bins-1
 if mini <= row_data(i,5) && row_data(i,5)< OTLD(1,2)
 MTLD00(1,g)= MTLD00(1,g)+row_data_2(i,g);
 break
 end;
 if OTLD(k,2) <= row_data(i,5) && row_data(i,5)< OTLD(k+1,2)
 MTLD00(k+1,g)= MTLD00(k+1,g)+row_data_2(i,g);
 break
 end;
 end;
 end;

%% Compute RMSE
 for i=1:num_bins
 OTLD(i,4)=(OTLD(i,3)/sum(OTLD(:,3)))*100;
 MTLD01(i,g)=(MTLD00(i,g)/sum(MTLD00(:,g)))*100;
 end;
 rmse(g) =(sqrt((sum((OTLD(:,4)-MTLD01(:,g)).^2))))/num_bins;
end; %END OF LOOP 1: for beta (b) line search

%% Write Results in Matrices
results=ones(w,2);
results(:,1)=b;
results(:,2)=rmse(:,1); %combine parameter values and rmse results in matrix
sorted_results=sortrows(results,2); %sort the rows according to the minimum to maximum rmse
beta=sorted_results(1,1); %beta is the value which has minimum rmse
for i=1:w %find the beta value previous index and call TLDs results from
 previously created matrices
 if beta==b(i,1);
 break
 end;

104

 index=i;
end;
TLD=OTLD;
TLD(:,5)=MTLD00(:,i); %write modeled TLD counts and percents next to observed TLD counts and percents
TLD(:,6)=MTLD01(:,i);

%% Show the Estimated Parameter and RMSE Plot on Screen
if type==1
 fprintf('\n Line Search ALgorithm for Power Cost Function is successfully completed. \n %g paremeters have tried
\n',w)
else
 fprintf('\n Line Search ALgorithm for Exponential Cost Function is successfully completed. \n %g paremeters have
tried \n',w)
end;
fprintf('\n beta ----> %f\n',beta) %show the best value estimate for beta (b) parameter on the screen
plot(results(:,2)); figure(gcf); title('RMSE CHANGE') %plot RMSE change

clear('A','A0','Ai','B','B0','Bj','MTLD00','MTLD01','OTLD','attr_tot','prod_tot','b','bin_int','num_bins',...
 'c', 'conv','f','g','h','i','index','iter','j','k','m','max_bin','maxi','mini','mod_trips','n','o',...
 'x', 'v','u','w','type','temp','t_time','s','t','row_data_2','row_data','rmse','results0','obs_trips');
%clear temporary matrices

%% Output of the Program
% The outputs of the program is :
% i) The beta (b) parameter estimate which minimizes the difference between OTLD and MTLD
% ii) The result matrix that includes beta (b) values and paired RMSEs
% iii)A plot of RMSE Change
% iv) Sorted result matrix that includes beta values with RMSE from lowest to highest order
% v) A final matrix that includes in order: bin no, bin interval, OTLD counts, OTLD percentage, MTLD counts and
MTLD percentage

105

A.3. Weighted Least Squares Transformation for Doubly-Constrained
 Gravity Model Calibration

%% WEIGHTED LEAST SQUARES TRANSFORMATION FOR DOUBLY-CONSTRAINED GM
% Transform Approach: Add a Constant to Zero Interaction Cells or to Zero and Non-Zero Interaction Cells

%% Definition of the Program
%This transformation is especially for rectangle trip matrices, also it can be used for square matrices
%You can select one of the two cost functions (power and exponential)during the transformation
%The problem of zero interactions will be eliminated with the addition of a constant to trip matrix(to Zero Interaction
Cells or to Whole Cells)
%The regression equation and its definitions can be found in Sen and Soot(1981)or Fortheringham and O'Kelly
(1989) at pages 46-47
%At the end ,the code produces dependent variable(Y), independent variable(X) and Weight variable (W), all column
vectors in result matrix
%The output of the code can be calibrated in any statistical software having a tool for weighted least squares
estimation
%Produced in:07.08.2009
%Modified in:08.06.2010 ***written by Mert Kompil ***mertkompil@gmail.com

%% Load Data
clc;
clear;
load -mat HBW_TRAIN_DATA; %load data from a -mat file (-mat file includes DISTANCE_TRAIN,
 OBS_TRIPS_TRAIN and ROW_DATA_TRAIN matrices)

%% Select the Type of Cost Function (Power or Exponential)
answer1= input(' Please Select The Cost Function :\n Enter "1" for POWER and "2" for EXPONENTIAL
FUNCTIONS ----- > ');
if answer1==1;
 type=1;
else
 type=2;
end;

%% Select the Type of Adding a Constant to Trip Matrix: to Zero Interaction Cells or to Whole Cells
fprintf('\n Please Select to Add Predetermined Constant:')
answer2= input('\n Enter "1" for ZERO Interaction Cells or "2" for both ZERO and NON-ZERO Interaction Cells ----
- > ');
if answer2==1;
 zeros=1;
else
 zeros=2;
end;

%% Set the Constant to add Trip Matrix
answer3= input('\n Enter the Constant to Add (such as "0.1","0.5" etc..) ----- > ');
add=answer3; %constant to add zero interaction cells or both zero and non-zero cells

%% Rename Data Matrices
t_time=HBW_FRICTION_TRAIN; %enter the name of friction matrix here (distance/time)(cij)
obs_trips=HBW_OBS_TRAIN; %enter the name of trip matrix (Tij)
row_data=HBW_ROW_DATA_TRAIN; %enter the name of row data matrix
 %here the row_data includes TAZ IDs in column 1-2, frictions in
 %column 5 and interactions in column 6
clear
('HBW_FRICTION_TRAIN','HBW_OBS_TRIPS_TRAIN','HBW_ROW_DATA_TRAIN','answer1','answer2','answ
er3') %Clear old matrixes

%% Create Starting matrices and Index Numbers
[m,n]=size(obs_trips); %Matrix Index
[k,r]=size(row_data); %Matrix Index
obs_trips2=ones(m,n);
row_data2=ones(k,2);

106

if type==1
 t_time2=log(t_time); %Take Log of friction matrix for power cost function
 row_data2(:,1)=log(row_data(:,5));
else
 t_time2=t_time; %There is no need to take log of friction matrix for exponential cost function
 row_data2(:,1)=row_data(:,5);
end;
if zeros==1 %Add the predetermined constant only to zero interaction cells
 for i=1:m
 for j=1:n
 if obs_trips(i,j)==0;
 obs_trips2(i,j)=log(add);
 else
 obs_trips2(i,j)=log(obs_trips(i,j));
 end;
 end;
 end;
 for s=1:k
 if row_data (s,6)==0;
 row_data2(s,2)=add;
 else
 row_data2(s,2)=row_data(s,6);
 end;
 end;
else %Add the predetermined constant to both zero and non-zero interaction cells
 obs_trips2=log((obs_trips+add));
 row_data2(:,2)=(row_data(:,6)+add);
end;
row_mean=mean(obs_trips2,2); %compute row means for trips
row_mean2=mean(t_time2,2); %compute row means for frictions
column_mean=mean(obs_trips2)'; %compute column means for trips
column_mean2=mean(t_time2)'; %compute column means for frictions
grand_mean=mean(mean(obs_trips2)); %compute grand mean for trips
grand=(ones(k,1))*grand_mean; %write grand mean in a vector
grand_mean2=mean(mean(t_time2)); %compute grand mean for frictions
grand2=(ones(k,1))*grand_mean2; %write grand mean in a vector
weight=(row_data2(:,2).^0.5); %compute the weight (W) variable from interactions
reg_mat=ones(k,8); %Create a matrix to write 8 columns of transformation variables

%% Compute Each Transformation Variables to Calculate Dependent (Y) and Independent (X) Variables
% Column 1
 reg_mat(:,1)=log(row_data2(:,2));
%%
% Column 2
for t=1:n-1
 if t==1
 for i=1:m
 reg_mat(i,2)=row_mean(i,1);
 reg_mat(((t*m)+i),2)=row_mean(i,1);
 end;
 else
 for i=1:m
 reg_mat(((t*m)+i),2)=row_mean(i,1);
 end;
 end;
end;
% Column 3
h=0;
for t=1:n
 for i=1:m
 reg_mat(((h*m)+i),3)=column_mean(t);
 end;
 h=h+1;
end;

% Column 4
 reg_mat(:,4)=grand(:,1);

107

% Column 5
 reg_mat(:,5)=row_data2(:,1);
% Column 6
for t=1:n-1
 if t==1
 for i=1:m
 reg_mat(i,6)=row_mean2(i,1);
 reg_mat(((t*m)+i),6)=row_mean2(i,1);
 end;
 else
 for i=1:m
 reg_mat(((t*m)+i),6)=row_mean2(i,1);
 end;
 end;
end;
% Column 7
h=0;
for t=1:n
 for i=1:m
 reg_mat(((h*m)+i),7)=column_mean2(t);
 end;
 h=h+1;
end;
% Column 8
 reg_mat(:,8)=grand2(:,1);

%% Compute Dependent Variable (Y), Independent Variable (X) and Weight (W)
regression_transformation=ones(k,3); %result matrix
regression_transformation(:,1)=(reg_mat(:,1)-reg_mat(:,2)-reg_mat(:,3)+reg_mat(:,4)); %dependent variable (Y)
regression_transformation(:,2)=(reg_mat(:,5)-reg_mat(:,6)-reg_mat(:,7)+reg_mat(:,8)); %independent variable (X)
regression_transformation(:,3)=weight; %weight (W)
if type==1 %Show transformation selections on screen
 fprintf('\n Transformation sucsessfully completed for Power Cost Function \n')
else
 fprintf('\n Transformation sucsessfully completed for Exponential Cost Function \n')
end;
if zeros==1
 fprintf('\n The constant "%g" added to zero interaction cells \n',add)
else
 fprintf('\n The constant "%g" added to both zero and non-zero interaction cells \n',add)
end;
clear('i','m','n','k','r','t','s','j','t_time','t_time2','obs_trips','obs_trips2','zeros',...
 'column_mean','column_mean2','grand_mean','grand_mean2','add','reg_mat','type',...
 'h','des_tot','orj_tot','weight','row_data','row_data2','row_mean','row_mean2','grand','grand2')
%clear temporary inputs

%% Output of the Program
%The outputs is 'regression_transformation' matrix which includes Y,X and W variables in an order
%You can save the matrix as a text file, writing command window "save filename.txt -ascii"
%Then saved file can be opened in any statistical software (SPSS) in order to run weighted least squares estimation

108

A.4. Neural Network Based Trip Distribution Model (NNTDM)
 Training Algorithm

%% NEURAL NETWORK BASED TRIP DISTRIBUTION MODEL (NNTDM) TRAINING ALGORITHM

%% Definition of the Program
%This program trains a Neural Network using Matlab - Neural Network Toolbox
%The Neural Network Toolbox implementation issues can be seen in Demuth et.al (2009)
%The learning of the network is based on Levenberg-Marquardt Learning Algorithm
%The production, attraction and friction are the inputs, and trips are the output of the network
%At the end, code produces trained network and unscaled network outputs
%Produced in :January - 2009
%Last Modified in :23.06.2010 ***written by Mert Kompil ***mertkompil@gmail.com

%% Load Data
clc;
clear;
load HBW_TRAIN_DATA.mat %load data from a -mat file (-mat file includes training data inputs and outputs)

%% Min-Max Normalization of data set between 0.1 and 1
input_data=HBW_ROW_DATA_TRAIN(:,3:5)'; %rename input matrix
output_data=HBW_ROW_DATA_TRAIN(:,6)'; %rename output vector
[sc_input,sc_tr_in] = mapminmax(input_data,0.1,1); %normalize (scale)inputs
[sc_output,sc_tr_out] = mapminmax(output_data,0.1,1); %normalize (scale)output
%unscale = mapminmax('reverse',simulated_result,sc_tr_out) %use this expression in order
 %to unscale the network output

%% Create and Configurate the Network
net = newff(sc_input,sc_output,9,{'logsig','logsig'}); %determine number of neurons and activation functions
rand('seed',333) %set a random seed
net = init(net); %initialize the network with random seed
net.inputs{1}.processParams{3}.ymin=0; %change predefined lower range for input activation
net.outputs{2}.processParams{2}.ymin=0; %change predefined lower range for output activation
net.divideParam.trainRatio = 0.8; %adjust training data ratio for over-training process
net.divideParam.valRatio = 0.2; %adjust validation data ratio for over-training process
net.divideParam.testRatio = 0; %set third part ratio as zero

%% Adjust Learning Algorithm and Parameters
net.trainFcn='trainlm';
net.trainParam.mu=0.2; %set Initial Learning Rate
net.trainParam.mu_dec=0.1; %set Learning Rate decrease factor
net.trainParam.mu_inc=3; %set Learning Rate increase factor
net.trainParam.epochs=12; %determine maximum number of epoch
net.trainParam.max_fail=125; %determine maximum number of cross-validation checks to stop

%% Train Network
[net,tr] = train(net,sc_input,sc_output); %train the network

%% Output of the Program
%The outputs are i)the trained network (net) and ii) training parameters and configuration (tr)
%After some trials, the network training has to be stopped at best epoch
%Then the best trained parameters can be used to simulate any appropriate data set
%The expression "sim(net,sc_input)" can be used to simulate the network

109

A.5. Goodness-of-Fit Statistics - Micro Level

%% GOODNESS OF FIT STATISTICS FOR DOUBLY CONSTRAINT GRAVITY MODEL - MICRO LEVEL
% For SRMSE, r square, Slope, ARV, Phi Statistic

%% Definition of the Program
%This program uses previously estimated beta (b)parameter as an input to produce modeled trip matrix
%Then produces goodness of fit statistics comparing observed and modeled trips
%The code can be used for both of the Cost Functions: Power (cij^-b) and Exponential(e^-b*cij)
%The observed trip matrix can be square or rectangle
%See formulas of some of the used goodness of fit statistics in Fortheringham and O'Kelly (1986; 1989)and Smith
and Hutchinson (1981)
%At the end, the code produces i) Standardized Root Mean Square Error (SRMSE),ii) Straigt Line Statistics
(intercept, slope, r square), %iii)Average Relative Variance (ARV), iv)Phi Statistic (phi)

%Produced in :09.08.2009
%Last Modified in :08.06.2010 ***written by Mert Kompil ***mertkompil@gmail.com

%% Load Data
clc;
clear;
load -mat HBW_TRAIN_DATA; %load data from a -mat file (-mat file includes
FRICTION_TRAIN,OBS_TRIPS_TRAIN and ROW_DATA_TRAIN matrices)

%% Select Cost Function Type (Power or Exponential)
answer = input(' Please Select The Cost Function :\n Enter "1" for POWER and "2" for EXPONENTIAL
FUNCTIONS ----- > ');
if answer ==1;
 type=1;
else
 type=2;
end;

%% Rename Data Matrices
t_time=HBW_FRICTION_TRAIN; %enter the name of friction matrix here (distance/time)(cij)
obs_trips=HBW_OBS_TRAIN; %enter the name of trip matrix (Tij)
row_data=HBW_ROW_DATA_TRAIN; %enter the name of row data matrix
 %here the row_data includes TAZ IDs in column 1-2, frictions in
 %column 5 and interactions in column 6
clear ('HBW_FRICTION_TRAIN','HBW_OBS_TRAIN', 'HBW_ROW_DATA_TRAIN','answer')
%Clear old matrixes

%% Enter Maximum Iteration Number and Convergence Criteria for Balancing Factors
iter=100; %maximum iteration number for the loop finding the balancing factors (Ai&Bj)
conv=0.001; %convergence criteria for balancing factors (Ai&Bj)

%% Set Pre-Calibrated beta (b) parameter or parameters
b=[-1.94 -2.05 -1.84]'; %optimum parameter estimates (MLH, WLS, TLD RMSE)for power cost function
%b=[-0.12 -0.21 -0.31]'; %optimum parameter estimates (MLH, WLS, TLD RMSE)for exponential cost function
%b=(-0.05:-0.05:-4)'; %For more than one parameter, the input should be a column vector
[w,c]=size(b); %matrix index

%% Create Starting matrices and parameters
prod_tot=sum(obs_trips,2)'; %produce production totals matrix
attr_tot=sum(obs_trips); %produce attraction totals matrix
tot_trips=sum(sum(obs_trips)); %compute total trips
srmse=ones(w,1); %create a column vector for SRMSE Results
arv=ones(w,1); %create a column vector for ARAE Results
phi=ones(w,1); %create a column vector for Phi Statistic Results
nrmse=ones(w,1); %create a column vector for NRMSE Results
intercept=ones(w,1); %create a column vector for Intercept value Results
slope=ones(w,1); %create a column vector for Slope value Results
rsquare=ones(w,1); %create a column vector for R square Results

110

chisquare=ones(w,1); %create a column vector for Chi Square Results
[m,n]=size(obs_trips); %matrix index
[h,s]=size(row_data); %matrix index
mod_trips=ones(m,n); %create a matrix for modeled trip matrix
result_matrix=row_data; %create a matrix to write modeled trips in rows
A0=ones(m,n); %computation table for Ais
B0=ones(m,n); %computation table for Bjs
Ai=ones(m,iter); %produce a matrix for Ais to make comparison through iterations
Bj=ones(iter,n); %produce a matrix for Bjs to make comparison through iterations
B=ones(1,n); %set the initial Bjs as one

%% Start Computation for each beta (b) input
for g=1:w %START LOOP 1: produce modeled trip matrix for given beta (b)

%% Find Balancing Factors (Ais&Bjs)
 for k=1:iter %START LOOP 2: for balancing factors (Ai&Bj)
 if type==1 %if the Power Cost function is selected
 for i=1:m, %find Ais
 for j=1:n
 A0(i,j)=B(j)*attr_tot(j)*(t_time(i,j)^b(g));
 end;
 end;
 A=(1./sum(A0,2))';
 for i=1:m %find Bjs
 for j=1:n
 B0(i,j)=A(i)*prod_tot(i)*(t_time(i,j)^b(g));
 end;
 end;
 end;
 if type==2 %if the Exponential Cost function is selected
 for i=1:m, %find Ais
 for j=1:n
 A0(i,j)=B(j)*attr_tot(j)*(exp(t_time(i,j)*b(g)));
 end;
 end;
 A=(1./sum(A0,2))';
 for i=1:m %find Bjs
 for j=1:n
 B0(i,j)=A(i)*prod_tot(i)*(exp(t_time(i,j)*b(g)));
 end;
 end;
 end;
 B=(1./sum(B0));
 Ai(:,k)=A; %write Ais to the related column in matrix for comparison
 Bj(k,:)=B; %write Bjs to the related row in matrix for comparison
 if k>1 %compare balancing factors
 if sqrt((sum((Ai(:,k)-Ai(:,(k-1))).^2))/k)< conv && sqrt(sum((Bj(k,:)-Bj((k-1),:).^2),2)/k) < conv;
 break %if convergence criteria is satisfied, stop process, otherwise continue
 end;
 end;
 end; %END OF LOOP 2: for balancing factors (Ai&Bj)

%% Compute Modeled Trip Matrix
 if type==1 %if the Power Cost function is selected
 for i=1:m,
 for j=1:n
 mod_trips(i,j)= A(i)*B(j)*prod_tot(i)*attr_tot(j)*(t_time(i,j)^b(g)); %compute the modeled trips
 end;
 end;
 end;
 if type==2 %if the Exponential Cost function is selected
 for i=1:m,
 for j=1:n
 mod_trips(i,j)= A(i)*B(j)*prod_tot(i)*attr_tot(j)*(exp(t_time(i,j)*b(g))); %compute the modeled trips
 end;
 end;
 end;

111

 %% Write Modeled Trip Matrix to Rows for Statistical Computation
v=1;
p=s+g;
for o=1:m
 temp=mod_trips(:,v);
 result_matrix(o,p)=temp(o);
end;
v=v+1;
t=1;
x=0;
for u=1:n-1
 for f=t:m*u
 temp=mod_trips(:,v);
 result_matrix(m+f,p)=temp(x+f);
 end;
 t=t+m;
 v=v+1;
 x=x-m;
end;

%% Calculate Goodness of Fit Statistics
%SRMSE (Standardized Root Mean Squared Error)
srmse(g)=(sqrt((sum((result_matrix(:,6)-result_matrix(:,p)).^2)./(m*n))))/(sum(result_matrix(:,6))/(m*n));
%Straight Line Statistics (Intercept, Slope and R square)
stats={'beta','rsquare',};
obs=result_matrix(:,6);
mod=result_matrix(:,p);
str_line = regstats(obs,mod,'linear',stats);
rsquare(g) = str_line.rsquare(1,1);
intercept (g)=str_line.beta(1,1);
slope(g)=str_line.beta(2,1);
%ARV (Average Relative Variance)
var_full=39.0287; %variance of full data
%var_train= var(result_matrix(:,6)); %variance of train data
arv(g)= (sum((result_matrix(:,6)-result_matrix(:,p)).^2))/(var_full*m*n);
% Phi Statistic
phi_trip_0=(result_matrix(:,6)+0.000001); %add a small constant before computation of phi statistic
phi_trip=phi_trip_0./tot_trips;
phi (g)= sum(phi_trip.*(abs(log(phi_trip_0./result_matrix(:,p)))));
%Chi Square (Pearson Chi Square Statistic)
%chisquare(g)=nansum(((result_matrix(:,6)-result_matrix(:,p)).^2)./(result_matrix(:,p)));
%NRMSE (Normalized Root Mean Squared Error)
%nrmse(g)=(sqrt((sum((result_matrix(:,6)-result_matrix(:,p)).^2)./(m*n)))/(max(max(obs_trips))-
min(min(obs_trips))));
end; %END OF LOOP 2: for each beta (b) parameter

%% Show the Results in Workplace
type_1_results_structure={'beta', 'SRMSE','r square','Slope','ARV', 'phi',;...
b, srmse, rsquare, slope, arv, phi};
type_1_results=[b srmse rsquare slope arv phi];
fprintf('\n Goodness of Fit Statistics for Doubly Constraint SIM has produced\n')
clear ('A','B','attr_tot','prod_tot','conv','type','i','j','g','w','r','m','n','iter','k','i','srmse','nrmse','rsquare','phi_trip','phi',...

'obs_mtc','mod_mtc','t_time','mod_trips','obs_trips','row_data','u','v','x','t','temp','b','intercept','slope','arv','phi_trip_0',...
 'str_line','stats','obs','mod','f','h','o','p','s','c','result_matrix','A0','Ai','B0','Bj','chisquare','var_full','tot_trips')
%clear temporary variables

%% Output of the Program
%The outputs are combined into a result matrix and also into a structure.
%In an order of columns, the result matrix includes
%i) beta (b) values used as an input
%ii) Standardized Root Mean Square Error (SRMSE)
%ii) Regression Statistics (R square,Slope,Intercept),
%iii) Average Relative Variance (ARV)
%iv) Phi Statistic (phi)
%v) Mean Travel Cost Error (MTCE)

112

A.6. Goodness-Of-Fit Statistics - Macro Level

%% GOODNESS OF FIT STATISTICS FOR DOUBLY CONSTRAINT GRAVITY MODEL - MACRO LEVEL
% For MTCE, TLD RMSE, TLD ARAE F5, TLD ARAE L5

%% Definition of the Program
%This program uses previously estimated beta (b)parameter as an input to produce modeled trip matrix
%Then produces goodness of fit statistics comparing observed and modeled Trip Length Distribution (TLD)
%The code can be used for both of the Cost Functions: Power (cij^-b) and Exponential(e^-b*cij)
%During the process, you have to set an interval number (bin interval) and a maximum value (end of bins)
%At the end, the code produces i) Mean Travel Cost Error, ii) Trip Length Distribution Root Mean Square Error
(TLD RMSE),
%iii)Trip Length Distribution Average Relative Absolute Error for the first five intervals (TLD ARAE F5)
%iv)Trip Length Distribution Mean Absolute Percentage Error for the last five intervals (TLD ARAE L5)

%Produced in :15.08.2009
%Last Modified in :06.08.2010 ***written by Mert Kompil ***mertkompil@gmail.com

%% Load Data
clc;
clear;
load -mat HBW_Train_Data; %load data from a -mat file (-mat file includes
FRICTION_TRAIN,OBS_TRIPS_TRAIN and ROW_DATA_TRAIN matrices)

%% Select Cost Function Type (Power or Exponential)
answer = input(' Please Select The Cost Function :\n Enter "1" for POWER and "2" for EXPONENTIAL
FUNCTIONS ----- > ');
if answer ==1;
 type=1;
else
 type=2;
end;

%% Set an Interval Number for Each Bins
answer1 = input('\n Please Enter an Interval Number for Each Bins ----- > ');

%% Set a Value That The Bins End
answer2 = input('\n Please Enter a Value that the Bins End ----- > ');

%% Rename Data Matrices
t_time=HBW_FRICTION_TRAIN; %enter the name of friction matrix here (distance/time)(cij)
obs_trips=HBW_OBS_TRAIN; %enter the name of trip matrix (Tij)
row_data=HBW_ROW_DATA_TRAIN; %enter the name of row data matrix
 %here the row_data includes TAZ IDs in column 1-2, frictions in
 %column 5 and interactions in column 6

clear ('HBW_FRICTION_TRAIN','HBW_OBS_TRAIN', 'HBW_ROW_DATA_TRAIN','answer')
%Clear old matrixes

%% Enter Maximum Iteration Number and Convergence Criteria for Balancing Factors
iter=100; %maximum iteration number for the loop finding the balancing factors (Ai&Bj)
conv=0.001; %convergence criteria for balancing factors (Ai&Bj)

%% Set Pre-Calibrated beta (b) parameter or parameters
b=[-1.94 -2.05 -1.84]'; %optimum parameter estimates (MLH, WLS, TLD RMSE)for power cost function
%b=[-0.12 -0.21 -0.31]'; %optimum parameter estimates (MLH, WLS, TLD RMSE)for exponential cost function
%b=(-0.05:-0.05:-4)'; %For more than one parameter, the input should be a column vector
[w,c]=size(b); %matrix index

%% Compute Observed Trip Length Distribution
maxi=max(max(t_time)); %the maximum friction value
mini=0; %the minimum friction value - set zero as default value
bin_int=answer1; %interval for each bins

113

max_bin=answer2; %the value that bins end
num_bins=floor((max_bin/bin_int)+1); %number of bins
OTLD=zeros(num_bins,4); %create a matrix for observed trip length distribution
OTLD(:,1)=(1:1:num_bins);
OTLD(:,2)=(bin_int:bin_int:(max_bin+bin_int))';
OTLD(num_bins,2)=maxi;
[h,s]=size(row_data); %matrix index
for i=1:h %produce observed trip length distribution
 for k=1:num_bins-1
 if mini <= row_data(i,5) && row_data(i,5)< OTLD(1,2)
 OTLD(1,3)= OTLD(1,3)+row_data(i,6);
 break
 end;
 if OTLD(k,2) <= row_data(i,5) && row_data(i,5)< OTLD(k+1,2)
 OTLD(k+1,3)= OTLD(k+1,3)+row_data(i,6);
 break
 end;
 end;
end;
clear ('answer1','answer2','k') %Clear temporary values

%% Create Starting matrices and parameters for modeled trips
prod_tot=sum(obs_trips,2)'; %produce production totals matrix
attr_tot=sum(obs_trips); %produce attraction totals matrix
tot_trips=sum(sum(obs_trips)); %Sum observed trips
obs_mtc=sum(sum(obs_trips.*t_time))/tot_trips; %compute Observed Mean Travel Cost
MTCE=ones(w,1); %create a column vector for MTCE Results
TLD_RMSE=ones(w,1); %create a column vector for TLD RMSE Results
TLD_ARAE_F5=ones(w,1); %create a column vector for TLD ARAE Results for first 5 bins
TLD_ARAE_L5=ones(w,1); %create a column vector for TLD ARAE Results for last 5 bins
arae=ones(5,2); %create a temporary matrix for arae calculations
row_data_2=ones(h,c); %create a matrix to write modeled tirps in rows
MTLD00=zeros(num_bins,w); %create a matrix to write modeled Trip Length Distribution Counts
MTLD01=MTLD00; %create a matrix to write modeled TLD Percents
[m,n]=size(obs_trips); %matrix index
mod_trips=ones(m,n); %create a matrix for modeled trip matrix
A0=ones(m,n); %computation table for Ais
B0=ones(m,n); %computation table for Bjs
Ai=ones(m,iter); %produce a matrix for Ais to make comparison through iterations
Bj=ones(iter,n); %produce a matrix for Bjs to make comparison through iterations
B=ones(1,n); %set the initial Bjs as one

%% Start Computation for each beta (b) input
for g=1:w %START LOOP 1: produce modeled trip matrix for given beta (b)

%% Find Balancing Factors (Ais&Bjs)
 for k=1:iter %START LOOP 2: for balancing factors (Ai&Bj)
 if type==1 %if the Power Cost function is selected
 for i=1:m, %find Ais
 for j=1:n
 A0(i,j)=B(j)*attr_tot(j)*(t_time(i,j)^b(g));
 end;
 end;
 A=(1./sum(A0,2))';
 for i=1:m %find Bjs
 for j=1:n
 B0(i,j)=A(i)*prod_tot(i)*(t_time(i,j)^b(g));
 end;
 end;
 end;
 if type==2 %if the Exponential Cost function is selected
 for i=1:m, %find Ais
 for j=1:n
 A0(i,j)=B(j)*attr_tot(j)*(exp(t_time(i,j)*b(g)));
 end;
 end;
 A=(1./sum(A0,2))';

114

 for i=1:m %find Bjs
 for j=1:n
 B0(i,j)=A(i)*prod_tot(i)*(exp(t_time(i,j)*b(g)));
 end;
 end;
 end;
 B=(1./sum(B0));
 Ai(:,k)=A; %write Ais to the related column in matrix for comparison
 Bj(k,:)=B; %write Bjs to the related row in matrix for comparison
 if k>1 %compare balancing factors
 if sqrt((sum((Ai(:,k)-Ai(:,(k-1))).^2))/k)< conv && sqrt(sum((Bj(k,:)-Bj((k-1),:).^2),2)/k) < conv;
 break %if convergence criteria is satisfied, stop process, otherwise continue
 end;
 end;
 end; %END OF LOOP 2: for balancing factors (Ai&Bj)

%% Compute Modeled Trip Matrix
 if type==1 %if the Power Cost function is selected
 for i=1:m,
 for j=1:n
 mod_trips(i,j)= A(i)*B(j)*prod_tot(i)*attr_tot(j)*(t_time(i,j)^b(g)); %compute the modeled trips
 end;
 end;
 end;
 if type==2 %if the Exponential Cost function is selected
 for i=1:m,
 for j=1:n
 mod_trips(i,j)= A(i)*B(j)*prod_tot(i)*attr_tot(j)*(exp(t_time(i,j)*b(g))); %compute the modeled trips
 end;
 end;
 end;

%% Write Modeled Trip Matrix to Rows to Compute Modeled TLD
 v=1;
 for o=1:m
 temp=mod_trips(:,v);
 row_data_2(o,g)=temp(o);
 end;
 v=v+1;
 t=1;
 x=0;
 for u=1:n-1
 for f=t:m*u
 temp=mod_trips(:,v);
 row_data_2(m+f,g)=temp(x+f);
 end;
 t=t+m;
 v=v+1;
 x=x-m;
 end;

%% Compute Modeled TLD
 for i=1:h
 for k=1:num_bins-1
 if mini <= row_data(i,5) && row_data(i,5)< OTLD(1,2)
 MTLD00(1,g)= MTLD00(1,g)+row_data_2(i,g);
 break
 end;
 if OTLD(k,2) <= row_data(i,5) && row_data(i,5)< OTLD(k+1,2)
 MTLD00(k+1,g)= MTLD00(k+1,g)+row_data_2(i,g);
 break
 end;
 end;
 end;

%% Compute MTCE (Mean Travel Cost Error)
 mod_mtc=sum(sum(mod_trips.*t_time))/sum(sum(mod_trips));

115

 MTCE(g)=(obs_mtc-mod_mtc);

%% Compute TLD RMSE
 for i=1:num_bins
 OTLD(i,4)=(OTLD(i,3)/sum(OTLD(:,3)))*100;
 MTLD01(i,g)=(MTLD00(i,g)/sum(MTLD00(:,g)))*100;
 end;
 TLD_RMSE(g) =(sqrt((sum((OTLD(:,4)-MTLD01(:,g)).^2))))/num_bins;

%% Compute TLD ARAE for the First and the Last Five Length Intervals
 for i=1:5
 arae(i,1)=(abs(OTLD(i,4)-MTLD01(i,g))./OTLD(i,4));
 arae(i,2)=(abs(OTLD((num_bins-5)+i,4)-MTLD01((num_bins-5)+i,g))./OTLD((num_bins-5)+i,4));
 end;
 TLD_ARAE_F5(g) =(sum(arae(:,1))./5);
 TLD_ARAE_L5(g) =(sum(arae(:,2))./5);
end; %END OF LOOP 1: for beta (b) line search

%% Write Results in a matrix
type_2_results_structure={'beta', 'MTCE','TLD_RMSE','TLD_ARAE_F5','TLD_ARAE_L5';...
b, MTCE, TLD_RMSE, TLD_ARAE_F5, TLD_ARAE_L5};
type_2_results=[b MTCE TLD_RMSE TLD_ARAE_F5 TLD_ARAE_L5];
%show parameter values, TLD RMSE and TLD ARAE values in same matrix

%% Show Results and Plots on Screen
if type==1
 fprintf('\n Line Search ALgorithm for Power Cost Function is successfully completed. \n %g paremeters have tried
\n',w)
else
 fprintf('\n Line Search ALgorithm for Exponential Cost Function is successfully completed. \n %g paremeters have
tried \n',w)
end;
figure;
plot(type_2_results(:,2)); title('RMSE CHANGE') %plot RMSE change
figure;
plot(type_2_results(:,3)); title('TLD FIRST FIVE ARAE ') %plot TLD FIRST FIVE ARAE

clear('A','A0','Ai','B','B0','Bj','MTLD00','MTLD01','OTLD','attr_tot','prod_tot','b','bin_int','num_bins','TLD_RMSE','to
t_trips',...
 'c', 'conv','f','g','h','i','index','iter','j','k','m','max_bin','maxi','mini','mod_trips','n','o','arae','MTCE', 'obs_mtc',...
 'x',
'v','u','w','type','temp','t_time','s','t','row_data_2','row_data','rmse','TLD_ARAE_F5','TLD_ARAE_L5','obs_trips','mod_
mtc');

%% Output of the Program
% The output of the program is included in a result matrix. The columns contain orderly,
% i) The beta (b) parameters used as input
% ii) Mean Travel Cost Error (MTCE)
% iii) Trip Length Distribution Root Mean Squared Error (TLD RMSE)
% iv) Trip Length Distribution Mean Absolute Percentage Error for the first five Bins (TLD ARAE First Five)
% v) Trip Length Distribution Mean Absolute Percentage Error for the last five Bins (TLD ARAE Last Five)

116

A.7. Fuzzy Rule-Based System (FRBS) - Rule Learning Algorithm

%% FUZZY RULE-BASED SYSTEM (FRBS) - RULE LEARNING ALGORITHM

%% Definition of the Program
%This program includes a fuzzy rulebase learning algorithm for the trip distribution problem
%The code uses production, attraction, friction data vectors as inputs and trip interactions as output
%The code uses predefined fuzzy membership functions and establishes a rulebase from numerical data
%The learning procedure basis on a modififed 'Wang-Mendel'(1992)rule learning process
%The final rules are selected after computing the weighted averages of the conflicting rules
%At the end, the code produces i)Observed rules for each of the data pairs (obs_rules),
%ii)Counted and summarized rule candidates (summarized_rules),
%iii)Finally established rule base (final_rulebase).

%Produced in :10.02.2010
%Last Modified in :20.06.2010 ***written by Mert Kompil ***mertkompil@gmail.com

%% Load Data
clc; clear;
load -mat HBW_TRAIN_DATA.mat; %include data vectors
load -mat MF_VECTORS.mat; %include MF points in a structure named 'mfvec'
 %% Construct Data Vectors
row_data=HBW_ROW_DATA_TRAIN; %HBW train data in the row format
input_data=[row_data(:,3) row_data(:,4) row_data(:,5) row_data(:,6)];
round_data=[input_data(:,1) input_data(:,2) roundn(input_data(:,3),-1) input_data(:,4)];
data=round_data; %vectors of Production, Attraction, Friction and Trips
[m,~]=size(data);
clear ('HBW_ROW_DATA_TRAIN','HBW_OBS_TRAIN','HBW_FRICTION_TRAIN',...
 'input_data','row_data','round_data') %clear temporary files
 %% Establish Variable Intervals - Membership function Domains
x_prod=0:1:1200; %production variable domain
x_attr=0:1:2050; %attraction variable domain
x_fric=0:0.1:300; %friction variable domain
x_fric=roundn(x_fric,-1); %round friction variable domain
x_trips=0:1:885; %trips variable domain
 %% CONSTRUCT MEMBERSHIP DOMAINS %%
%% production MFs
prodmf_1=trapmf(x_prod,mfvec.prod(1:4)); %call MF points from MF_VECTORS.mat
prodmf_2=trimf(x_prod,mfvec.prod(5:7));
prodmf_3=trimf(x_prod,mfvec.prod(8:10));
prodmf_4=trimf(x_prod,mfvec.prod(11:13));
prodmf_5=trapmf(x_prod,mfvec.prod(14:17));
%production MFS - Antecedents
ant_prod=[prodmf_1;prodmf_2;prodmf_3;prodmf_4;prodmf_5];
%% attraction MFs
attrmf_1=trapmf(x_attr,mfvec.attr(1:4)); %call MF points from MF_VECTORS.mat
attrmf_2=trimf(x_attr,mfvec.attr(5:7));
attrmf_3=trimf(x_attr,mfvec.attr(8:10));
attrmf_4=trimf(x_attr,mfvec.attr(11:13));
attrmf_5=trapmf(x_attr,mfvec.attr(14:17));
%attraction MFS - Antecedents
ant_attr=[attrmf_1;attrmf_2;attrmf_3;attrmf_4;attrmf_5];
%% friction MFs
fricmf_1=trapmf(x_fric,mfvec.fric(1:4)); %call MF points from MF_VECTORS.mat
fricmf_2=trimf(x_fric,mfvec.fric(5:7));
fricmf_3=trimf(x_fric,mfvec.fric(8:10));
fricmf_4=trimf(x_fric,mfvec.fric(11:13));
fricmf_5=trimf(x_fric,mfvec.fric(14:16));
fricmf_6=trapmf(x_fric,mfvec.fric(17:20));
%friction MFS - Antecedents
ant_fric=[fricmf_1;fricmf_2;fricmf_3;fricmf_4;fricmf_5;fricmf_6];
%% trips MFs
tripsmf_1=trapmf(x_trips,mfvec.trips(1:4)); %call MF points from MF_VECTORS.mat
tripsmf_2=trimf(x_trips,mfvec.trips(5:7));

117

tripsmf_3=trimf(x_trips,mfvec.trips(8:10));
tripsmf_4=trimf(x_trips,mfvec.trips(11:13));
tripsmf_5=trimf(x_trips,mfvec.trips(14:16));
tripsmf_6=trimf(x_trips,mfvec.trips(17:19));
tripsmf_7=trimf(x_trips,mfvec.trips(20:22));
tripsmf_8=trimf(x_trips,mfvec.trips(23:25));
tripsmf_9=trimf(x_trips,mfvec.trips(26:28));
tripsmf_10=trimf(x_trips,mfvec.trips(29:31));
tripsmf_11=trimf(x_trips,mfvec.trips(32:34));
tripsmf_12=trimf(x_trips,mfvec.trips(35:37));
tripsmf_13=trimf(x_trips,mfvec.trips(38:40));
tripsmf_14=trimf(x_trips,mfvec.trips(41:43));
tripsmf_15=trimf(x_trips,mfvec.trips(44:46));
tripsmf_16=trimf(x_trips,mfvec.trips(47:49));
tripsmf_17=trimf(x_trips,mfvec.trips(50:52));
tripsmf_18=trimf(x_trips,mfvec.trips(53:55));
tripsmf_19=trimf(x_trips,mfvec.trips(56:58));
tripsmf_20=trapmf(x_trips,mfvec.trips(59:62));
%Trips MFS - Consequents
cons_trips=[tripsmf_1;tripsmf_2;tripsmf_3;tripsmf_4;tripsmf_5;tripsmf_6;tripsmf_7;tripsmf_8;
 tripsmf_9;tripsmf_10;tripsmf_11;tripsmf_12;tripsmf_13;tripsmf_14;tripsmf_15;
 tripsmf_16;tripsmf_17;tripsmf_18;tripsmf_19;tripsmf_20;];
clear('prodmf_1','prodmf_2','prodmf_3','prodmf_4','prodmf_5','attrmf_1','attrmf_2','attrmf_3',...
'attrmf_4','attrmf_5','fricmf_1','fricmf_2','fricmf_3','fricmf_4','fricmf_5','fricmf_6',...
'tripsmf_1','tripsmf_2','tripsmf_3','tripsmf_4','tripsmf_5','tripsmf_6','tripsmf_7','tripsmf_8',...
'tripsmf_9','tripsmf_10','tripsmf_11','tripsmf_12','tripsmf_13','tripsmf_14','tripsmf_15',...
'tripsmf_16','tripsmf_17','tripsmf_18','tripsmf_19','tripsmf_20',); %clear temporary files

%% IDENTIFY MEMBERSHIP DEGREES FOR EACH DATA PAIRS %%
%% production labels
res_prod=ones(5,m);
[~,s]=size(x_prod);
for i=1:m
 k=data(i,1);
 for j=1:s
 if k==x_prod(j)
 ind=j;
 break
 end;
 end;
 res_prod(:,i)=ant_prod(:,ind);
end;
 %% attraction labels
res_attr=ones(5,m);
[~,s]=size(x_attr);
for i=1:m
 k=data(i,2);
 for j=1:s
 if k==x_attr(j)
 ind=j;
 break
 end;
 end;
 res_attr(:,i)=ant_attr(:,ind);
end;
 %% friction labels
res_fric=ones(6,m);
[~,s]=size(x_fric);
for i=1:m
 k=data(i,3);
 for j=1:s
 if k==x_fric(j)
 ind=j;
 break
 end;
 end;
 res_fric(:,i)=ant_fric(:,ind);

118

end;
 %% trips labels
res_trips=ones(20,m);
[~,s]=size(x_trips);
for i=1:m
 k=data(i,4);
 for j=1:s
 if k==x_trips(j)
 ind=j;
 break
 end;
 end;
 res_trips(:,i)=cons_trips(:,ind);
end;
clear ('x_attr','x_trips','x_prod','x_fric','h','s','k','i','j','ind') %clear temporary files
 %% ASSIGN MF LABELS HAVING MAXIMUM MEMBERSHIP DEGREE %%
%% production labels
[h,s]=size(res_prod);
rules=zeros(s,9);
for i=1:s
 max_prod=max(res_prod(:,i));
 for j=1:h
 if res_prod(j,i)==max_prod
 rules(i,1)=j;
 break
 end;
 end;
 rules(i,5)=max_prod;
end;
 %% attraction labels
[h,s]=size(res_attr);
for i=1:s
 max_attr=max(res_attr(:,i));
 for j=1:h
 if res_attr(j,i)==max_attr
 rules(i,2)=j;
 break
 end;
 end;
 rules(i,6)=max_attr;
end;
%% friction labels
[h,s]=size(res_fric);
for i=1:s
 max_fric=max(res_fric(:,i));
 for j=1:h
 if res_fric(j,i)==max_fric
 rules(i,3)=j;
 break
 end;
 end;
 rules(i,7)=max_fric;
end;
%% trips labels
[h,s]=size(res_trips);
for i=1:s
 max_trips=max(res_trips(:,i));
 for j=1:h
 if res_trips(j,i)==max_trips
 rules(i,4)=j;
 break
 end;
 end;
 rules(i,8)=max_trips;
end;
%% IDENTIFY RULE CANDIDATES AND COMPUTE THEIR STRENGTHS FOR EACH OF THE DATA
PAIRS %%

119

rules(:,9)=rules(:,5).*rules(:,6).*rules(:,7).*rules(:,8); %Com
obs_rules=rules; % Observed Rule Candidates and Membership Degrees for Each Data Pairs
 clear ('max_attr','max_trips','max_prod','max_fric','res_attr','res_trips','res_prod','res_fric',...
'h','s','i','j','m','n','ant_attr','cons_trips','ant_prod','ant_fric','mfvec') %clear temporary files

%% COUNT AND SUMMARIZE RULE CANDIDATES
[m,~]=size(rules);
mf_prod=5; mf_attr=5; mf_fric=6; mf_trips=20; % Assign number of MFs
write=zeros(m,5);
t=1;
for i=1:mf_prod
 for r=1:mf_attr
 for j=1:mf_fric
 for h=1:mf_trips
 for k=1:m
 if rules(k,1)==i && rules(k,2)==r && rules(k,3)==j && rules(k,4)==h
 write(t,:)=[i r j h rules(k,9)];
 t=t+1;
 end;
 end;
 end;
 end;
 end;
end;
write2=write(:,1:1:4);
write2(m+1,:)=write2(1,:);
t=1; p=1; g=1;
summarized_rules=zeros(1,5);
for i=p:m
 if write2(i,:)-write2(i+1,:)==0
 g=g+1;
 else
 summarized_rules(t,:)=write(i,:);
 summarized_rules(t,5)=g;
 p=p+1;
 t=t+1;
 g=1;
 end;
end;
[v,~]=size(summarized_rules);
ssum=ones(v,2);
ssum(1,1)=summarized_rules(1,5);
k=2;
for i=1:v-1
 h=summarized_rules(i+1,5);
 ssum(k,1)=ssum(k-1,1)+h;
 k=k+1;
end;
[v,~]=size(ssum);
k=1;
for i=1:v
 s=ssum(i);
 ssum(i,2)=sum(write(k:s,5));
 k=s+1;
end
summarized_rules=[summarized_rules ssum(:,2)];
summarized_rules(:,6)=summarized_rules(:,6)./summarized_rules(:,5); % Counted and Summarized Rule Candidates
clear ('g','h','i','j','k','m','n','p','s','t','v','y','write','write2','ssum','r') %clear temporary files
 %% COMPUTE WEIGHTED AVERAGE OF RULE CANDIDATES - ESTABLISH RULE BASE %%
srules=[summarized_rules summarized_rules(:,4).*summarized_rules(:,5)];
[m,n]=size(srules);
n_rules=mf_prod*mf_attr*mf_fric;
write=zeros(n_rules,7);
t=1;
for i=1:mf_prod
 for r=1:mf_attr
 for j=1:mf_fric

120

 for k=1:m
 if srules(k,1)==i && srules(k,2)==r && srules(k,3)==j
 write(t,1:4)=[i r j k];
 end;
 end;
 t=t+1;
 end;
 end;
end;
write2=write;
z=0; h=0;
for i=1:n_rules
 if write2(i,4)==0
 z=z+1;
 end;
end;
write3=zeros(n_rules-z,7);
for s=1:n_rules-z
 for i=1+h:n_rules
 if write2(i,4)~=0
 h=i;
 write3(s,:)=write2(i,:);
 break
 end;
 end;
end;
write3(1,5)=write3(1,4);
for i=1:n_rules-z-1
 b=write3(i+1,4);
 c=write3(i,4);
 write3(i+1,5)=b-c;
end
k=0; y=0;
for i=1:n_rules-z
 p=write3(i,5);
 for j=k+1:p+k
 y=y+srules(j,7);
 end;
 write3(i,6)=y;
 y=0;
 k=k+p;
end;
k=0; y=0; p=0;
for i=1:n_rules-z
 p=write3(i,5);
 for j=k+1:p+k
 y=y+srules(j,5);
 end;
 write3(i,7)=y;
 y=0;
 k=k+p;
end;
z=write3(:,6)./write3(:,7);
z=round(z);
final_rulebase=[write3(:,1:3) z]; %Establish Final Rule Base

clear ('m','n','i','j','p','k','y','t','write','write2','write3','c','b','h','mf_attr','mf_prod','mf_fric',...
 'r','s','z','mf_trips','n_rules','rules','srules','data') %clear temporary files

%% OUTPUT OF THE PROGRAM %%
% The present code produces three outputs:
% i)Observed rules for each of the data pairs => obs_rules,
% ii)Counted and summarized rule candidates => summarized_rules,
% iii)Finally established rule base (before experts control) => final_rulebase.

121

A.8. Fuzzy Rule-Based System (FRBS) - Implication Algorithm

%% FUZZY RULE-BASED SYSTEM (FRBS) - IMPLICATION ALGORITHM

%% Definition of the Program
%This program is a fuzzy implication of the trip distribution problem
%The code uses production, attraction, friction data vectors as inputs
%And estimates trip interactions as output
%The code uses the predefined fuzzy membership functions and rulebase
%The implication and the defuzzification techniques are: the "max-product" and the "centroid" techniques
%At the end, the code produces i) Fuzzy System Output (fuzzy_output),
%ii) Modelled and Balanced Trip Matrix (Modelled_trips), %iii)Mean Squared Error (MSE),
%iv)Standardized Root Mean Squared Error (SRMSE)

%Produced in :15.04.2010
%Last Modified in :20.06.2010 ***written by Mert Kompil ***mertkompil@gmail.com

%% Load Data
clc;
clear all;
load -mat HBW_TRAIN_DATA.mat; %include data vectors
load -mat MF_VECTORS.mat; %include MF points in a structure named 'mfvec'
load -mat RULEBASE.mat %include rulebase (150*1)

%% Construct Data Vectors
row_data=HBW_ROW_DATA_TRAIN; %HBW train data in the row format
obs_trips=HBW_OBS_TRAIN; %Observed trips in matrix format
ttime=HBW_FRICTION_TRAIN; %Friction in matrix format
obs_input=row_data(:,3:5);
obs_output=row_data(:,6);
round_input=[obs_input(:,1) obs_input(:,2) roundn(obs_input(:,3),-1)];
in1=round_input(:,1); in2=round_input(:,2); in3=round_input(:,3); % Input vectors
[m,~]=size(row_data);
clear ('HBW_ROW_DATA_TRAIN','HBW_FRICTION_TRAIN','HBW_OBS_TRAIN') %clear temporary files

%% Establish Variable Intervals - Membership function Domains
x_prod=0:1:1200; x_attr=0:1:2050; x_fric=0:0.1:300; x_fric=roundn(x_fric,-1); %x_trips=0:1:885;
x_trips0=0:0.005:0.2; x_trips1=1:1:39; x_trips2=40:5:140; x_trips3=145:10:235; x_trips4=245:20:885;
x_trips=[x_trips0 x_trips1 x_trips2 x_trips3 x_trips4];
clear ('x_trips0','x_trips1','x_trips2','x_trips3','x_trips4') %clear temporary files

%% CONSTRUCT MEMBERSHIP DOMAINS %%
%% production MFs
prodmf_1=trapmf(x_prod,mfvec.prod(1:4)); %call MF points from MF_VECTORS.mat
prodmf_2=trimf(x_prod,mfvec.prod(5:7));
prodmf_3=trimf(x_prod,mfvec.prod(8:10));
prodmf_4=trimf(x_prod,mfvec.prod(11:13));
prodmf_5=trapmf(x_prod,mfvec.prod(14:17));
%production MFS - Antecedents
ant_prod=[prodmf_1;prodmf_2;prodmf_3;prodmf_4;prodmf_5]';
%% attraction MFs
attrmf_1=trapmf(x_attr,mfvec.attr(1:4)); %call MF points from MF_VECTORS.mat
attrmf_2=trimf(x_attr,mfvec.attr(5:7));
attrmf_3=trimf(x_attr,mfvec.attr(8:10));
attrmf_4=trimf(x_attr,mfvec.attr(11:13));
attrmf_5=trapmf(x_attr,mfvec.attr(14:17));
%attraction MFS - Antecedents
ant_attr=[attrmf_1;attrmf_2;attrmf_3;attrmf_4;attrmf_5]';
%% friction MFs
fricmf_1=trapmf(x_fric,mfvec.fric(1:4)); %call MF points from MF_VECTORS.mat
fricmf_2=trimf(x_fric,mfvec.fric(5:7));
fricmf_3=trimf(x_fric,mfvec.fric(8:10));
fricmf_4=trimf(x_fric,mfvec.fric(11:13));

122

fricmf_5=trimf(x_fric,mfvec.fric(14:16));
fricmf_6=trapmf(x_fric,mfvec.fric(17:20));
%friction MFS - Antecedents
ant_fric=[fricmf_1;fricmf_2;fricmf_3;fricmf_4;fricmf_5;fricmf_6]';
%% trips MFs
tripsmf_1=trapmf(x_trips,mfvec.trips(1:4)); %call MF points from MF_VECTORS.mat
tripsmf_2=trimf(x_trips,mfvec.trips(5:7));
tripsmf_3=trimf(x_trips,mfvec.trips(8:10));
tripsmf_4=trimf(x_trips,mfvec.trips(11:13));
tripsmf_5=trimf(x_trips,mfvec.trips(14:16));
tripsmf_6=trimf(x_trips,mfvec.trips(17:19));
tripsmf_7=trimf(x_trips,mfvec.trips(20:22));
tripsmf_8=trimf(x_trips,mfvec.trips(23:25));
tripsmf_9=trimf(x_trips,mfvec.trips(26:28));
tripsmf_10=trimf(x_trips,mfvec.trips(29:31));
tripsmf_11=trimf(x_trips,mfvec.trips(32:34));
tripsmf_12=trimf(x_trips,mfvec.trips(35:37));
tripsmf_13=trimf(x_trips,mfvec.trips(38:40));
tripsmf_14=trimf(x_trips,mfvec.trips(41:43));
tripsmf_15=trimf(x_trips,mfvec.trips(44:46));
tripsmf_16=trimf(x_trips,mfvec.trips(47:49));
tripsmf_17=trimf(x_trips,mfvec.trips(50:52));
tripsmf_18=trimf(x_trips,mfvec.trips(53:55));
tripsmf_19=trimf(x_trips,mfvec.trips(56:58));
tripsmf_20=trapmf(x_trips,mfvec.trips(59:62));
cons_trips=[tripsmf_1;tripsmf_2;tripsmf_3;tripsmf_4;tripsmf_5;tripsmf_6;tripsmf_7;
 tripsmf_8;tripsmf_9;tripsmf_10;tripsmf_11;tripsmf_12;tripsmf_13;tripsmf_14;
 tripsmf_15;tripsmf_16;tripsmf_17;tripsmf_18;tripsmf_19;tripsmf_20];

clear ('prodmf_1','prodmf_2','prodmf_3','prodmf_4','prodmf_5','attrmf_1','attrmf_2','attrmf_3',...
'attrmf_4','attrmf_5','fricmf_1','fricmf_2','fricmf_3','fricmf_4','fricmf_5','fricmf_6',...
'tripsmf_1','tripsmf_2','tripsmf_3','tripsmf_4','tripsmf_5','tripsmf_6','tripsmf_7','tripsmf_8',...
'tripsmf_9','tripsmf_10','tripsmf_11','tripsmf_12','tripsmf_13','tripsmf_14','tripsmf_15',...
'tripsmf_16','tripsmf_17','tripsmf_18','tripsmf_19','tripsmf_20'); %clear temporary files

%% COMPUTE ANTECEDENTS OF INPUT PAIRS WITH MAX-PRODUCT IMPLICATION %%
antecedents=zeros(150,m);
parfor i=1:m
mf_p=interp1q(x_prod,ant_prod,in1(i)); %Identify MF labels for production variable
mf_a=interp1q(x_attr,ant_attr,in2(i)); %Identify MF labels for attraction variable
mf_f=interp1q(x_fric,ant_fric,in3(i)); %Identify MF labels for friction variable
antecedents(:,i)=[...
(mf_p(1).*mf_a(1).*mf_f(1));(mf_p(1).*mf_a(2).*mf_f(1));(mf_p(1).*mf_a(3).*mf_f(1));
(mf_p(1).*mf_a(4).*mf_f(1));(mf_p(1).*mf_a(5).*mf_f(1));(mf_p(2).*mf_a(1).*mf_f(1));
(mf_p(2).*mf_a(2).*mf_f(1));(mf_p(2).*mf_a(3).*mf_f(1));(mf_p(2).*mf_a(4).*mf_f(1));
(mf_p(2).*mf_a(5).*mf_f(1));(mf_p(3).*mf_a(1).*mf_f(1));(mf_p(3).*mf_a(2).*mf_f(1));
(mf_p(3).*mf_a(3).*mf_f(1));(mf_p(3).*mf_a(4).*mf_f(1));(mf_p(3).*mf_a(5).*mf_f(1));
(mf_p(4).*mf_a(1).*mf_f(1));(mf_p(4).*mf_a(2).*mf_f(1));(mf_p(4).*mf_a(3).*mf_f(1));
(mf_p(4).*mf_a(4).*mf_f(1));(mf_p(4).*mf_a(5).*mf_f(1));(mf_p(5).*mf_a(1).*mf_f(1));
(mf_p(5).*mf_a(2).*mf_f(1));(mf_p(5).*mf_a(3).*mf_f(1));(mf_p(5).*mf_a(4).*mf_f(1));
(mf_p(5).*mf_a(5).*mf_f(1));(mf_p(1).*mf_a(1).*mf_f(2));(mf_p(1).*mf_a(2).*mf_f(2));
(mf_p(1).*mf_a(3).*mf_f(2));(mf_p(1).*mf_a(4).*mf_f(2));(mf_p(1).*mf_a(5).*mf_f(2));
(mf_p(2).*mf_a(1).*mf_f(2));(mf_p(2).*mf_a(2).*mf_f(2));(mf_p(2).*mf_a(3).*mf_f(2));
(mf_p(2).*mf_a(4).*mf_f(2));(mf_p(2).*mf_a(5).*mf_f(2));(mf_p(3).*mf_a(1).*mf_f(2));
(mf_p(3).*mf_a(2).*mf_f(2));(mf_p(3).*mf_a(3).*mf_f(2));(mf_p(3).*mf_a(4).*mf_f(2));
(mf_p(3).*mf_a(5).*mf_f(2));(mf_p(4).*mf_a(1).*mf_f(2));(mf_p(4).*mf_a(2).*mf_f(2));
(mf_p(4).*mf_a(3).*mf_f(2));(mf_p(4).*mf_a(4).*mf_f(2));(mf_p(4).*mf_a(5).*mf_f(2));
(mf_p(5).*mf_a(1).*mf_f(2));(mf_p(5).*mf_a(2).*mf_f(2));(mf_p(5).*mf_a(3).*mf_f(2));
(mf_p(5).*mf_a(4).*mf_f(2));(mf_p(5).*mf_a(5).*mf_f(2));(mf_p(1).*mf_a(1).*mf_f(3));
(mf_p(1).*mf_a(2).*mf_f(3));(mf_p(1).*mf_a(3).*mf_f(3));(mf_p(1).*mf_a(4).*mf_f(3));
(mf_p(1).*mf_a(5).*mf_f(3));(mf_p(2).*mf_a(1).*mf_f(3));(mf_p(2).*mf_a(2).*mf_f(3));
(mf_p(2).*mf_a(3).*mf_f(3));(mf_p(2).*mf_a(4).*mf_f(3));(mf_p(2).*mf_a(5).*mf_f(3));
(mf_p(3).*mf_a(1).*mf_f(3));(mf_p(3).*mf_a(2).*mf_f(3));(mf_p(3).*mf_a(3).*mf_f(3))
(mf_p(3).*mf_a(4).*mf_f(3));(mf_p(3).*mf_a(5).*mf_f(3));(mf_p(4).*mf_a(1).*mf_f(3))
(mf_p(4).*mf_a(2).*mf_f(3));(mf_p(4).*mf_a(3).*mf_f(3));(mf_p(4).*mf_a(4).*mf_f(3));
(mf_p(4).*mf_a(5).*mf_f(3));(mf_p(5).*mf_a(1).*mf_f(3));(mf_p(5).*mf_a(2).*mf_f(3));
(mf_p(5).*mf_a(3).*mf_f(3));(mf_p(5).*mf_a(4).*mf_f(3));(mf_p(5).*mf_a(5).*mf_f(3));

123

(mf_p(1).*mf_a(1).*mf_f(4));(mf_p(1).*mf_a(2).*mf_f(4));(mf_p(1).*mf_a(3).*mf_f(4));
(mf_p(1).*mf_a(4).*mf_f(4));(mf_p(1).*mf_a(5).*mf_f(4));(mf_p(2).*mf_a(1).*mf_f(4));
(mf_p(2).*mf_a(2).*mf_f(4));(mf_p(2).*mf_a(3).*mf_f(4));(mf_p(2).*mf_a(4).*mf_f(4));
(mf_p(2).*mf_a(5).*mf_f(4));(mf_p(3).*mf_a(1).*mf_f(4));(mf_p(3).*mf_a(2).*mf_f(4));
(mf_p(3).*mf_a(3).*mf_f(4));(mf_p(3).*mf_a(4).*mf_f(4));(mf_p(3).*mf_a(5).*mf_f(4));
(mf_p(4).*mf_a(1).*mf_f(4));(mf_p(4).*mf_a(2).*mf_f(4));(mf_p(4).*mf_a(3).*mf_f(4));
(mf_p(4).*mf_a(4).*mf_f(4));(mf_p(4).*mf_a(5).*mf_f(4));(mf_p(5).*mf_a(1).*mf_f(4));
(mf_p(5).*mf_a(2).*mf_f(4));(mf_p(5).*mf_a(3).*mf_f(4));(mf_p(5).*mf_a(4).*mf_f(4));
(mf_p(5).*mf_a(5).*mf_f(4));(mf_p(1).*mf_a(1).*mf_f(5));(mf_p(1).*mf_a(2).*mf_f(5));
(mf_p(1).*mf_a(3).*mf_f(5));(mf_p(1).*mf_a(4).*mf_f(5));(mf_p(1).*mf_a(5).*mf_f(5));
(mf_p(2).*mf_a(1).*mf_f(5));(mf_p(2).*mf_a(2).*mf_f(5));(mf_p(2).*mf_a(3).*mf_f(5));
(mf_p(2).*mf_a(4).*mf_f(5));(mf_p(2).*mf_a(5).*mf_f(5));(mf_p(3).*mf_a(1).*mf_f(5));
(mf_p(3).*mf_a(2).*mf_f(5));(mf_p(3).*mf_a(3).*mf_f(5));(mf_p(3).*mf_a(4).*mf_f(5));
(mf_p(3).*mf_a(5).*mf_f(5));(mf_p(4).*mf_a(1).*mf_f(5));(mf_p(4).*mf_a(2).*mf_f(5));
(mf_p(4).*mf_a(3).*mf_f(5));(mf_p(4).*mf_a(4).*mf_f(5));(mf_p(4).*mf_a(5).*mf_f(5));
(mf_p(5).*mf_a(1).*mf_f(5));(mf_p(5).*mf_a(2).*mf_f(5));(mf_p(5).*mf_a(3).*mf_f(5));
(mf_p(5).*mf_a(4).*mf_f(5));(mf_p(5).*mf_a(5).*mf_f(5));(mf_p(1).*mf_a(1).*mf_f(6));
(mf_p(1).*mf_a(2).*mf_f(6));(mf_p(1).*mf_a(3).*mf_f(6));(mf_p(1).*mf_a(4).*mf_f(6));
(mf_p(1).*mf_a(5).*mf_f(6));(mf_p(2).*mf_a(1).*mf_f(6));(mf_p(2).*mf_a(2).*mf_f(6));
(mf_p(2).*mf_a(3).*mf_f(6));(mf_p(2).*mf_a(4).*mf_f(6));(mf_p(2).*mf_a(5).*mf_f(6));
(mf_p(3).*mf_a(1).*mf_f(6));(mf_p(3).*mf_a(2).*mf_f(6));(mf_p(3).*mf_a(3).*mf_f(6));
(mf_p(3).*mf_a(4).*mf_f(6));(mf_p(3).*mf_a(5).*mf_f(6));(mf_p(4).*mf_a(1).*mf_f(6));
(mf_p(4).*mf_a(2).*mf_f(6));(mf_p(4).*mf_a(3).*mf_f(6));(mf_p(4).*mf_a(4).*mf_f(6));
(mf_p(4).*mf_a(5).*mf_f(6));(mf_p(5).*mf_a(1).*mf_f(6));(mf_p(5).*mf_a(2).*mf_f(6));
(mf_p(5).*mf_a(3).*mf_f(6));(mf_p(5).*mf_a(4).*mf_f(6));(mf_p(5).*mf_a(5).*mf_f(6))];
end;

%% AGGREGATE WITH CONSEQUENTS AND DEFUZZIFY USING CENTROID DEFUZZIFICATION %%
rules=rulebase;
[y,z]=size(x_trips);
[nrules,g]=size(rulebase);
fuzzy_output=zeros(m,1);
consequent=zeros(nrules,z);
cons0=zeros(nrules,z);
for i=1:nrules
cons0(i,:)=cons_trips(rules(i),:);
end;
for i=1:m
 for j=1:z
 consequent(:,j)=(cons0(:,j).*antecedents(:,i));
 end;
aggregation= max(consequent); %Aggregation
output0= defuzz(x_trips,aggregation,'centroid'); %Defuzzifization
fuzzy_output(i)=output0; %Fuzzy Output (Modelled trips before balancing)
end;
clear ('x_attr','x_prod','x_fric','x_trips','rules','rulebase','y','z','output0',...
'm','n','nrules','mfvec','i','j','g','ant_attr','ant_fric','ant_prod','cons0','cons_trips',...
'consequent','antecedents','aggregation','in1','in2','in3','round_input')

%% APPLY BALANCING WITH FURNESS ITERATION AND PRODUCE MODELLED MATRIX %%
mod=fuzzy_output;
obsmat=obs_trips;
[m,n]=size(obsmat);
modmat=zeros(m,n);
%% Convert Row Vector to Matrix
t=1;
c=m;
for i=1:n
 modmat(:,i)=mod((t:1:c)',1);
 t=t+m;
 c=c+m;
end;
%% Balance Matrix with Iterations
iter=100;
prodtot=sum(obs_trips,2)';
attrtot=sum(obs_trips);
attr_mod=sum(modmat);

124

diff_1=ones(iter,n); diff_2=ones(m,iter);
for d=1:iter
 diff_1(d,:)=attrtot./attr_mod;
 for i=1:m
 for j=1:n
 modmat(i,j)=diff_1(d,j).*modmat(i,j);
 end;
 end;
 prod_mod=sum(modmat,2)';
 diff_2(:,d)=prodtot./prod_mod;
 for i=1:m
 for j=1:n
 modmat(i,j)=diff_2(i,d).*modmat(i,j);
 end;
 end;
 attr_mod=sum(modmat);
end;
modelled_trips=modmat; %Modelled Trip Matrix

%% CALCULATE MSE and SRMSE
MSE=mse(obsmat-modmat); %Mean Squared error
SRMSE=(sqrt((sum(sum((modmat-obsmat).^2)))./(m*n)))/(sum(sum(obsmat))/(m*n)); %Std. Root Mean Squ. Error

clear ('attr_mod','attrtot','prodtot','c','d','i','iter','j','m','n','mod','diff_1','diff_2',...
 'modmat','obs_input','obs_output','obs_trips','obsmat','prod_mod','row_data','t','ttime')

%% OUTPUT OF THE PROGRAM %%
% The present code produces three outputs:
% i)Fuzzy System Output =>fuzzy_output,
% ii)Modelled Trip Matrix After Balancing =>Modelled_trips,
% iii)Mean Squared Error =>MSE,
% iv)Standardized Root Mean Squared Error =>SRMSE.

125

A.9. Genetic Fuzzy Rule-Based System (GFRBS) - Training Algorithm

%% GENETIC FUZZY RULE-BASED SYSTEM (GFRBS) - TRAINING ALGORITHM

%% Definition of the Program
%This program learns rulebase of a fuzzy system for the trip distribution problem with GAs
%The code uses production, attraction, friction data vectors as inputs and trip interactions as output
%The GA code uses predefined fuzzy membership functions and finds an optimum rule base from numerical data
%The framework of the genetic algorithm is developed from the original work of D.E. Goldberg
%See his Pascal Codes in 'Genetic Algorithms in Search, Optimization and Machine Learning' 1986, pages:342-349
%Goldberg's SGA code is improved with elitisizm, ranking, and probabilistic - adaptive mutation
%And adopted to a GFRBS design
%The code calls 12 functions which are introduced next: binvecdec.m; flip.m; mfout.m; obj_function.m;...
%plotGA.m; randint.m; rw_selection.m; reportGA_1; reportGA_2; sp_crossover.m; stats.m; tld.m.
%At the end, the code produces i)Best Individual Progress (progress1),
%ii)Average Individual Progress (progress2),
%iii)A data structure including final population statistics and model results (result_pop).

%Produced in :10.05.2010
%Last Modified in :20.06.2010 ***written by Mert Kompil ***mertkompil@gmail.com

%% LOAD DATA
clc;
clear all;
load -mat HBW_DATA_STRUCTURE.mat;
load -mat MF_VECTORS.mat;
load -mat RULEBASE.mat
%% CREATE GLOBAL VARIABLES for FUNCTION CALLS
tic
global psize; global lbit; global maxgen; global crossprob; global mutprob; global nmutation;
global totcross; global maximum; global minimum; global avg; global sumfitness;
%% SET STARTING PARAMETERS FOR THE GA
 psize=20; %Population Size
 lbit=450; %Chromosome Length
 rbit=lbit/3; %Rulebase Length
 maxgen =250; %Maximum Number of Generations
 crossprob=1; %Crossover Probability
 mutprob=.001; %Mutation Probability
%% CREATE DATA SETS - WRITE VARIABLES INTO STRUCTURES
 %Trip Data
data=train_data;
data.bal_iter=100;
data.diff_1=ones(data.bal_iter,data.n);
data.diff_2=ones(data.m,data.bal_iter);
 %TLD Data
tlddata.trips=data.rowmat(:,6);
tlddata.ttime=data.rowmat(:,5);
tlddata.maxi=max(data.rowmat(:,5)); %the maximum friction value
tlddata.mini=0; %the minimum friction value - set zero as default value
tlddata.bin_int=5; %interval for each bins
tlddata.max_bin=150; %the value that bins end
tlddata.num_bins=floor((tlddata.max_bin/tlddata.bin_int)+1); %number of bins
tlddata.TLD=zeros(tlddata.num_bins,4); %create a matrix for observed trip length distribution
tlddata.TLD(:,1)=(1:1:tlddata.num_bins);
tlddata.TLD(:,2)=(tlddata.bin_int:tlddata.bin_int:(tlddata.max_bin+tlddata.bin_int))';
tlddata.TLD(tlddata.num_bins,2)=tlddata.maxi;
tlddata.OTLD=tld(data.rowmat(:,6),tlddata);
tlddata.MTLD=zeros(tlddata.num_bins,4);
tlddata.obs_mtc=sum(sum(data.obsmat.*data.ttime))/sum(sum(data.obsmat));
 %Fuzzy Data - Fuzzy Domains, MFs, Antecedents, Consequents
in1=data.rowmat(:,3);
in2=data.rowmat(:,4);

126

in3=roundn(data.rowmat(:,5),-1);
x_prod=0:1:1200; x_attr=0:1:2050; x_fric=0:0.1:300; x_fric=roundn(x_fric,-1);
x_trips0=0:0.005:0.2; x_trips1=1:1:39; x_trips2=40:5:140; x_trips3=145:10:235; x_trips4=245:20:885;
x_trips=[x_trips0 x_trips1 x_trips2 x_trips3 x_trips4];
fdata=mfout(data,mfvec,x_prod,x_attr,x_fric,x_trips,in1,in2,in3);
fdata.xtr=x_trips;
[~,fdata.nxtr]=size(x_trips);
[fdata.nrules,~]=size(rulebase);
fdata.consequent=zeros(fdata.nrules,fdata.nxtr);
fdata.fuzzyout= zeros(data.k,1);
fdata.cons0=zeros(fdata.nrules,fdata.nxtr);
 %Rulebase
ruleadd=rulebase(rbit+1:1:fdata.nrules); %Enables partly search of rulebase
%%
%% CREATE INITIAL POPULATION RANDOMLY
for j = 1:psize
 sol.chrom = round(rand(1,lbit));
 sol.indbin = zeros(rbit,3);
 sol.indreal = 0;
 sol.rules = 0;
 sol.rulebase = 0;
 sol.tlds = tlddata.OTLD(:,4);
 sol.modmat = 0;
 sol.modrow = 0;
 sol.mserr = 0;
 sol.srmse = 0;
 sol.mtce = 0;
 sol.tldrmse = 0;
 sol.fitness = 0;
 sol.p1 = 0;
 sol.p2 = 0;
 sol.xsite = 0;
 prevgen(j) = sol; %Initial Population
end
%% DECODE BINARY NUMBERS INTO DECIMAL NUMBERS (RULE NUMBER)
for j=1:psize
 for i=3:3:lbit
 prevgen(j).indbin(i/3,:) =prevgen(j).chrom(i-2:i);
 end
 for i=1:rbit
 prevgen(j).indreal(i,1) =binvec2dec(prevgen(j).indbin(i,:))+1;
 end
 for i=1:rbit
 prevgen(j).rules(i,1) =rulepool(i,prevgen(j).indreal(i));
 end
end
%% SET NEW VARIABLES INTO INITIAL POPULATION - EVALUATE FITNESS
parfor j=1:psize
 prevgen(j).rulebase =[prevgen(j).rules; ruleadd];
 [modmat,mserr,srmse] =obj_function(prevgen(j).rulebase,data,fdata);
 prevgen(j).modmat =modmat;
 prevgen(j).mserr =mserr;
 prevgen(j).srmse =srmse;
 [modrow,mtce,tldrmse,MTLD] =stats(prevgen(j).modmat,data,tlddata);
 prevgen(j).modrow =modrow;
 prevgen(j).mtce =mtce;
 prevgen(j).tldrmse =tldrmse;
 prevgen(j).tlds(:,2) =MTLD(:,4);
 prevgen(j).fitness =prevgen(j).mserr;
end
%% CALCULATE STARTING STATISTICS %%
maximum = max([prevgen.fitness]);
avg = mean([prevgen.fitness]);
minimum = min([prevgen.fitness]);
fitnesssum = sum([prevgen.fitness]);
nmutation = 0;
totcross = 0;

127

reportGA_1;
%%
%% CREATE SOME VARIABLES %%
progress1= ones(maxgen,1); progress2= ones(maxgen,1); gen = 0;
%% CREATE MUTATION VARIABLES (POISSON DISTRIBUTION) %%
 nmut0 = ceil(psize*lbit*mutprob);
 nmut1 = ceil(poissrnd(nmut0,maxgen,1).^2);
 nmut = sort(nmut1,'descend');
%% SET ELITISIZM %%
elit=psize/10; %Store 10% of the best chromosome
[s,ind] = sort([prevgen.fitness],'ascend');
for i=1:elit
 z=ind(i);
 nextgen(i)=prevgen(z);
end;
%% SET RANKING %%
pow=2.5; %Use a power function
rank=zeros(psize,4);
rank(:,1)=(psize:-1:1)';
rank(:,2)=rank(:,1).^pow;
for i=1:psize
rank(i,3)=rank(i,2)./sum(rank(:,2));
end
rank(:,4)=ind';
%%
%% GENERATE POPULATIONS THROUGH FINAL SOLUTION - START GENERATIONS %%
while gen < maxgen
 gen = gen + 1
 k = elit+1;
 %APPLY SELECTION & CROSSOVER OPERATIONS
 while k <= psize %%%%%%%
 % Apply Roulette Wheel Selection
 mate1 = rw_selection(psize, rank);
 mate2 = rw_selection(psize, rank);
 % Apply Single Point Crossover
 [nextgen(k).chrom nextgen(k+1).chrom jcross] = ...
 sp_crossover(prevgen(mate1).chrom, prevgen(mate2).chrom);
%%
 for i=3:3:lbit
 nextgen(k).indbin(i/3,:) =nextgen(k).chrom(i-2:i);
 end
 for i=1:rbit
 nextgen(k).indreal(i,1) =binvec2dec(nextgen(k).indbin(i,:))+1;
 end
 for i=1:rbit
 nextgen(k).rules(i,1) =rulepool(i,nextgen(k).indreal(i));
 end
 nextgen(k).p1 = mate1;
 nextgen(k).p2 = mate2;
 nextgen(k).xsite = jcross;

 for i=3:3:lbit
 nextgen(k+1).indbin(i/3,:) =nextgen(k+1).chrom(i-2:i);
 end
 for i=1:rbit
 nextgen(k+1).indreal(i,1) =binvec2dec(nextgen(k+1).indbin(i,:))+1;
 end
 for i=1:rbit
 nextgen(k+1).rules(i,1) =rulepool(i,nextgen(k+1).indreal(i));
 end
 nextgen(k+1).p1 = mate1;
 nextgen(k+1).p2 = mate2;
 nextgen(k+1).xsite = jcross;
 k = k + 2;
 end %%%%%
 %EVALUATE FITNESS
parfor j=1:psize

128

 nextgen(j).rulebase =[nextgen(j).rules; ruleadd];
 [modmat,mserr,srmse] =obj_function(nextgen(j).rulebase,data,fdata);
 nextgen(j).modmat =modmat;
 nextgen(j).mserr =mserr;
 nextgen(j).srmse =srmse;
 nextgen(j).fitness =nextgen(j).mserr;
end
 %APPLY MUTATION
 next = nextgen;
 w1 = ceil(psize.*rand(nmut(gen),1));
 y1 = ceil(lbit.*rand(nmut(gen),1));
 for i = 1:length(w1)
 if next(w1(i)).chrom(y1(i))==1;
 next(w1(i)).chrom(y1(i))=0;
 else
 next(w1(i)).chrom(y1(i))=1;
 end
 end
 %COMPUTE MUTATED CHROMOSOMES FITNESS
 %Decode Choromosomes
for j=1:psize
 for i=3:3:lbit
 next(j).indbin(i/3,:) =next(j).chrom(i-2:i);
 end
 for i=1:rbit
 next(j).indreal(i,1) =binvec2dec(next(j).indbin(i,:))+1;
 end
 for i=1:rbit
 next(j).rules(i,1) =rulepool(i,next(j).indreal(i));
 end
end
 %Evaluate Fitness
parfor j=1:psize
 next(j).rulebase =[next(j).rules; ruleadd];
 [modmat,mserr,srmse] =obj_function(next(j).rulebase,data,fdata);
 next(j).modmat =modmat;
 next(j).mserr =mserr;
 next(j).srmse =srmse;
 next(j).fitness =next(j).mserr;
end
 %APPLY ELITISIZM
 [t,ind0] = sort([nextgen.fitness],'ascend');
 [s,ind1] = sort([next.fitness],'ascend');
 for i=1:elit
 y=ind0(i);
 z=ind1(i);
 poolgen(i)=nextgen(y);
 poolgen(elit+i)=next(z);
 end;
 [g,ind2] = sort([poolgen.fitness],'ascend');
 for i=1:elit
 z=ind2(i);
 next(i)=poolgen(z);
 end;
 %APPLY RANKING
 [~,ind3] = sort([next.fitness],'ascend');
 rank(:,4)=ind3';
 %CALCULATE STATISTICS and REPORT FOR NEW GENERATION
 sumfitness = sum([next.fitness]);
 maximum = max([next.fitness]);
 minimum = min([next.fitness]);
 avg = mean([next.fitness]);
 bestofgen = minimum;
 progress1(gen) = bestofgen;
 progress2(gen) = avg;
 reportGA_2;
 prevgen = next;

129

end
%%
%% END OF GENERATIONS %%

%% RENAME FINAL POPULATION - COMPUTE TLDs of EACH INDIVIDUAL
result_pop=next;
parfor j=1:psize
 [modrow,mtce,tldrmse,MTLD] =stats(result_pop(j).modmat,data,tlddata);
 result_pop(j).modrow =modrow;
 result_pop(j).mtce =mtce;
 result_pop(j).tldrmse =tldrmse;
 result_pop(j).tlds(:,1) =tlddata.OTLD(:,4);
 result_pop(j).tlds(:,2) =MTLD(:,4);
end
%% SHOW BEST RESULT ON SCREEN - PLOT CONVERGENCE
result=min(progress1)
plotGA(progress1,progress2)
toc
%% CLEAR TEMPORARY FILES %%
clear('avg','bestofgen','crossprob','data','elit','fdata','fitnesssum','full_data','g','gen','i',...
 'in1','in2','in3','ind','ind0','ind1','ind2','ind3','j','jcross','k','lbit','mate1','mate2',...
 'maxgen','maximum','mfvec','minimum','mutprob','next','nextgen','nmut','nmut0','nmut1','test_data',...
 'nmutation','poolgen','pow','prevgen','psize','rank','rbit','ruleadd','rulebase','rulepool',...
 's','sol','sumfitness','t','testdata','tlddata','totcross','traindata','w1','x_attr','x_fric','result',...
 'x_prod','x_trips','x_trips0','x_trips1','x_trips2','x_trips3','x_trips4','y','y1','z','train_data')

%% OUTPUT OF THE PROGRAM %%
% The present code produces three outputs:
% i)Best Individual Progress Through Generations =>progress1,
% i)Average Population Progress Through Generations =>progress1,
% iii)Final Population Results =>resultpop
% resultpop includes best individuals with corresponding
 %rulebase,
 %modelled trips,
 %statistics of the modelled trips including MSE, SRMSE,TLD etc..

binvec2dec.m

%% Convert Binary Numbers to Decimal Numbers
function out = binvec2dec(vec)
% Example:
% binvec2dec([1 1 1 0 1]) returns 23
 if isempty(vec)
 error('daq:binvec2dec:argcheck', 'B must be defined. Type ''daqhelp binvec2dec'' for more information.');
end
 % Error if B is not a double.
if (~isa(vec, 'double') && ~isa(vec, 'logical'))
 error('daq:binvec2dec:argcheck', 'B must be a binvec.');
end
 % Non-zero values map to 1.
vec = vec~=0;
 % Convert the binvec [0 0 1 1] to a binary string '1100';
h = deblank(num2str(fliplr(vec)'))';
 % Convert the binary string to a decimal number.
out = bin2dec(h);

flip.m

% Decide 1 or 0 with Bit-Flip
function bit = flip(p)
 if p == 1
 bit = 1;
 elseif p == 0
 bit = 0;

130

 else
 bit = rand <= p;
 end

mfout.m

%% Set Fuzzy MFs - Identify Antecedents
function fuzzydata = mfout(data,mfvec,x_prod,x_attr,x_fric,x_trips,in1,in2,in3)
%% MEMBERSHIP FUNCTIONS
 %production
prodmf_1=trapmf(x_prod,mfvec.prod(1:4));
prodmf_2=trimf(x_prod,mfvec.prod(5:7));
prodmf_3=trimf(x_prod,mfvec.prod(8:10));
prodmf_4=trimf(x_prod,mfvec.prod(11:13));
prodmf_5=trapmf(x_prod,mfvec.prod(14:17));
ant_prod=[prodmf_1;prodmf_2;prodmf_3;prodmf_4;prodmf_5]';
 %attraction
attrmf_1=trapmf(x_attr,mfvec.attr(1:4));
attrmf_2=trimf(x_attr,mfvec.attr(5:7));
attrmf_3=trimf(x_attr,mfvec.attr(8:10));
attrmf_4=trimf(x_attr,mfvec.attr(11:13));
attrmf_5=trapmf(x_attr,mfvec.attr(14:17));
ant_attr=[attrmf_1;attrmf_2;attrmf_3;attrmf_4;attrmf_5]';
 %friction
fricmf_1=trapmf(x_fric,mfvec.fric(1:4));
fricmf_2=trimf(x_fric,mfvec.fric(5:7));
fricmf_3=trimf(x_fric,mfvec.fric(8:10));
fricmf_4=trimf(x_fric,mfvec.fric(11:13));
fricmf_5=trimf(x_fric,mfvec.fric(14:16));
fricmf_6=trapmf(x_fric,mfvec.fric(17:20));
ant_fric=[fricmf_1;fricmf_2;fricmf_3;fricmf_4;fricmf_5;fricmf_6]';
 %trips
tripsmf_1=trapmf(x_trips,mfvec.trips(1:4));
tripsmf_2=trimf(x_trips,mfvec.trips(5:7));
tripsmf_3=trimf(x_trips,mfvec.trips(8:10));
tripsmf_4=trimf(x_trips,mfvec.trips(11:13));
tripsmf_5=trimf(x_trips,mfvec.trips(14:16));
tripsmf_6=trimf(x_trips,mfvec.trips(17:19));
tripsmf_7=trimf(x_trips,mfvec.trips(20:22));
tripsmf_8=trimf(x_trips,mfvec.trips(23:25));
tripsmf_9=trimf(x_trips,mfvec.trips(26:28));
tripsmf_10=trimf(x_trips,mfvec.trips(29:31));
tripsmf_11=trimf(x_trips,mfvec.trips(32:34));
tripsmf_12=trimf(x_trips,mfvec.trips(35:37));
tripsmf_13=trimf(x_trips,mfvec.trips(38:40));
tripsmf_14=trimf(x_trips,mfvec.trips(41:43));
tripsmf_15=trimf(x_trips,mfvec.trips(44:46));
tripsmf_16=trimf(x_trips,mfvec.trips(47:49));
tripsmf_17=trimf(x_trips,mfvec.trips(50:52));
tripsmf_18=trimf(x_trips,mfvec.trips(53:55));
tripsmf_19=trimf(x_trips,mfvec.trips(56:58));
tripsmf_20=trapmf(x_trips,mfvec.trips(59:62));
cons_trips=[tripsmf_1;tripsmf_2;tripsmf_3;tripsmf_4;tripsmf_5;tripsmf_6;tripsmf_7;
 tripsmf_8;tripsmf_9;tripsmf_10;tripsmf_11;tripsmf_12;tripsmf_13;tripsmf_14;
 tripsmf_15;tripsmf_16;tripsmf_17;tripsmf_18;tripsmf_19;tripsmf_20];

%%
antecedents=zeros(150,data.k);
parfor i=1:data.k
mf_p=interp1q(x_prod,ant_prod,in1(i));
mf_a=interp1q(x_attr,ant_attr,in2(i));
mf_f=interp1q(x_fric,ant_fric,in3(i));
antecedents(:,i)=[...
(mf_p(1).*mf_a(1).*mf_f(1));(mf_p(1).*mf_a(2).*mf_f(1));(mf_p(1).*mf_a(3).*mf_f(1));
(mf_p(1).*mf_a(4).*mf_f(1));(mf_p(1).*mf_a(5).*mf_f(1));(mf_p(2).*mf_a(1).*mf_f(1));
(mf_p(2).*mf_a(2).*mf_f(1));(mf_p(2).*mf_a(3).*mf_f(1));(mf_p(2).*mf_a(4).*mf_f(1));

131

(mf_p(2).*mf_a(5).*mf_f(1));(mf_p(3).*mf_a(1).*mf_f(1));(mf_p(3).*mf_a(2).*mf_f(1));
(mf_p(3).*mf_a(3).*mf_f(1));(mf_p(3).*mf_a(4).*mf_f(1));(mf_p(3).*mf_a(5).*mf_f(1));
(mf_p(4).*mf_a(1).*mf_f(1));(mf_p(4).*mf_a(2).*mf_f(1));(mf_p(4).*mf_a(3).*mf_f(1));
(mf_p(4).*mf_a(4).*mf_f(1));(mf_p(4).*mf_a(5).*mf_f(1));(mf_p(5).*mf_a(1).*mf_f(1));
(mf_p(5).*mf_a(2).*mf_f(1));(mf_p(5).*mf_a(3).*mf_f(1));(mf_p(5).*mf_a(4).*mf_f(1));
(mf_p(5).*mf_a(5).*mf_f(1));(mf_p(1).*mf_a(1).*mf_f(2));(mf_p(1).*mf_a(2).*mf_f(2));
(mf_p(1).*mf_a(3).*mf_f(2));(mf_p(1).*mf_a(4).*mf_f(2));(mf_p(1).*mf_a(5).*mf_f(2));
(mf_p(2).*mf_a(1).*mf_f(2));(mf_p(2).*mf_a(2).*mf_f(2));(mf_p(2).*mf_a(3).*mf_f(2));
(mf_p(2).*mf_a(4).*mf_f(2));(mf_p(2).*mf_a(5).*mf_f(2));(mf_p(3).*mf_a(1).*mf_f(2));
(mf_p(3).*mf_a(2).*mf_f(2));(mf_p(3).*mf_a(3).*mf_f(2));(mf_p(3).*mf_a(4).*mf_f(2));
(mf_p(3).*mf_a(5).*mf_f(2));(mf_p(4).*mf_a(1).*mf_f(2));(mf_p(4).*mf_a(2).*mf_f(2));
(mf_p(4).*mf_a(3).*mf_f(2));(mf_p(4).*mf_a(4).*mf_f(2));(mf_p(4).*mf_a(5).*mf_f(2));
(mf_p(5).*mf_a(1).*mf_f(2));(mf_p(5).*mf_a(2).*mf_f(2));(mf_p(5).*mf_a(3).*mf_f(2));
(mf_p(5).*mf_a(4).*mf_f(2));(mf_p(5).*mf_a(5).*mf_f(2));(mf_p(1).*mf_a(1).*mf_f(3));
(mf_p(1).*mf_a(2).*mf_f(3));(mf_p(1).*mf_a(3).*mf_f(3));(mf_p(1).*mf_a(4).*mf_f(3));
(mf_p(1).*mf_a(5).*mf_f(3));(mf_p(2).*mf_a(1).*mf_f(3));(mf_p(2).*mf_a(2).*mf_f(3));
(mf_p(2).*mf_a(3).*mf_f(3));(mf_p(2).*mf_a(4).*mf_f(3));(mf_p(2).*mf_a(5).*mf_f(3));
(mf_p(3).*mf_a(1).*mf_f(3));(mf_p(3).*mf_a(2).*mf_f(3));(mf_p(3).*mf_a(3).*mf_f(3))
(mf_p(3).*mf_a(4).*mf_f(3));(mf_p(3).*mf_a(5).*mf_f(3));(mf_p(4).*mf_a(1).*mf_f(3))
(mf_p(4).*mf_a(2).*mf_f(3));(mf_p(4).*mf_a(3).*mf_f(3));(mf_p(4).*mf_a(4).*mf_f(3));
(mf_p(4).*mf_a(5).*mf_f(3));(mf_p(5).*mf_a(1).*mf_f(3));(mf_p(5).*mf_a(2).*mf_f(3));
(mf_p(5).*mf_a(3).*mf_f(3));(mf_p(5).*mf_a(4).*mf_f(3));(mf_p(5).*mf_a(5).*mf_f(3));
(mf_p(1).*mf_a(1).*mf_f(4));(mf_p(1).*mf_a(2).*mf_f(4));(mf_p(1).*mf_a(3).*mf_f(4));
(mf_p(1).*mf_a(4).*mf_f(4));(mf_p(1).*mf_a(5).*mf_f(4));(mf_p(2).*mf_a(1).*mf_f(4));
(mf_p(2).*mf_a(2).*mf_f(4));(mf_p(2).*mf_a(3).*mf_f(4));(mf_p(2).*mf_a(4).*mf_f(4));
(mf_p(2).*mf_a(5).*mf_f(4));(mf_p(3).*mf_a(1).*mf_f(4));(mf_p(3).*mf_a(2).*mf_f(4));
(mf_p(3).*mf_a(3).*mf_f(4));(mf_p(3).*mf_a(4).*mf_f(4));(mf_p(3).*mf_a(5).*mf_f(4));
(mf_p(4).*mf_a(1).*mf_f(4));(mf_p(4).*mf_a(2).*mf_f(4));(mf_p(4).*mf_a(3).*mf_f(4));
(mf_p(4).*mf_a(4).*mf_f(4));(mf_p(4).*mf_a(5).*mf_f(4));(mf_p(5).*mf_a(1).*mf_f(4));
(mf_p(5).*mf_a(2).*mf_f(4));(mf_p(5).*mf_a(3).*mf_f(4));(mf_p(5).*mf_a(4).*mf_f(4));
(mf_p(5).*mf_a(5).*mf_f(4));(mf_p(1).*mf_a(1).*mf_f(5));(mf_p(1).*mf_a(2).*mf_f(5));
(mf_p(1).*mf_a(3).*mf_f(5));(mf_p(1).*mf_a(4).*mf_f(5));(mf_p(1).*mf_a(5).*mf_f(5));
(mf_p(2).*mf_a(1).*mf_f(5));(mf_p(2).*mf_a(2).*mf_f(5));(mf_p(2).*mf_a(3).*mf_f(5));
(mf_p(2).*mf_a(4).*mf_f(5));(mf_p(2).*mf_a(5).*mf_f(5));(mf_p(3).*mf_a(1).*mf_f(5));
(mf_p(3).*mf_a(2).*mf_f(5));(mf_p(3).*mf_a(3).*mf_f(5));(mf_p(3).*mf_a(4).*mf_f(5));
(mf_p(3).*mf_a(5).*mf_f(5));(mf_p(4).*mf_a(1).*mf_f(5));(mf_p(4).*mf_a(2).*mf_f(5));
(mf_p(4).*mf_a(3).*mf_f(5));(mf_p(4).*mf_a(4).*mf_f(5));(mf_p(4).*mf_a(5).*mf_f(5));
(mf_p(5).*mf_a(1).*mf_f(5));(mf_p(5).*mf_a(2).*mf_f(5));(mf_p(5).*mf_a(3).*mf_f(5));
(mf_p(5).*mf_a(4).*mf_f(5));(mf_p(5).*mf_a(5).*mf_f(5));(mf_p(1).*mf_a(1).*mf_f(6));
(mf_p(1).*mf_a(2).*mf_f(6));(mf_p(1).*mf_a(3).*mf_f(6));(mf_p(1).*mf_a(4).*mf_f(6));
(mf_p(1).*mf_a(5).*mf_f(6));(mf_p(2).*mf_a(1).*mf_f(6));(mf_p(2).*mf_a(2).*mf_f(6));
(mf_p(2).*mf_a(3).*mf_f(6));(mf_p(2).*mf_a(4).*mf_f(6));(mf_p(2).*mf_a(5).*mf_f(6));
(mf_p(3).*mf_a(1).*mf_f(6));(mf_p(3).*mf_a(2).*mf_f(6));(mf_p(3).*mf_a(3).*mf_f(6));
(mf_p(3).*mf_a(4).*mf_f(6));(mf_p(3).*mf_a(5).*mf_f(6));(mf_p(4).*mf_a(1).*mf_f(6));
(mf_p(4).*mf_a(2).*mf_f(6));(mf_p(4).*mf_a(3).*mf_f(6));(mf_p(4).*mf_a(4).*mf_f(6));
(mf_p(4).*mf_a(5).*mf_f(6));(mf_p(5).*mf_a(1).*mf_f(6));(mf_p(5).*mf_a(2).*mf_f(6));
(mf_p(5).*mf_a(3).*mf_f(6));(mf_p(5).*mf_a(4).*mf_f(6));(mf_p(5).*mf_a(5).*mf_f(6))];
end;
fuzzydata.const=cons_trips;
fuzzydata.ant=antecedents;

obj_function.m

%% Evaluate Fitness of the Chromosomes
function [modmat,mse_out,srmse_out]= obj_function(rules,data,fdata)
%% FIND FUZZY OUTPUT %%%%%%%%%%
for i=1:fdata.nrules
fdata.cons0(i,:)=fdata.const(rules(i),:);
end;
%%
for i=1:data.k
 for j=1:fdata.nxtr
 fdata.consequent(:,j)=(fdata.cons0(:,j).*fdata.ant(:,i));
 end;
aggregation= max(fdata.consequent);
output0= defuzz(fdata.xtr,aggregation,'centroid');

132

fdata.fuzzyout(i)=output0;
end;

%% FIND SRMSE %%%%%%%%
mod=fdata.fuzzyout;
obsmat=data.obsmat;
m=data.m;
n=data.n;
%% Convert to Matrix
t=1;
c=m;
for i=1:n
 data.modmat(:,i)=mod((t:1:c)',1);
 t=t+m;
 c=c+m;
end;
%% Balance Matrix
modmat=data.modmat;
attr_mod=sum(modmat);
for d=1:data.bal_iter
 data.diff_1(d,:)=data.attrtot./attr_mod;
 for i=1:m
 for j=1:n
 modmat(i,j)=data.diff_1(d,j).*modmat(i,j);
 end;
 end;
 prod_mod=sum(modmat,2)';
 data.diff_2(:,d)=data.prodtot./prod_mod;
 for i=1:m
 for j=1:n
 modmat(i,j)=data.diff_2(i,d).*modmat(i,j);
 end;
 end;
 attr_mod=sum(modmat);
end;
 %% Calculate MSE
mse_out=mse(obsmat-modmat);
%% Calculate SRMSE
srmse_out=(sqrt((sum(sum((modmat-obsmat).^2)))./(m*n)))/(sum(sum(obsmat))/(m*n));

plotGA.m

%% Plot Convergence
function plotGA(progress1,progress2)
% DRAW CONVERGENCE I
figure;
semilogy(progress1);
title('Convergence to Solution');
xlabel('Iterations');
ylabel('Best Individual in Whole Generation')
fprintf('\n')
% DRAW CONVERGENCE II
figure;
semilogy(progress2);
title('Average Population Progress ');
xlabel('Iterations');
ylabel('Average Fitness')
fprintf('\n')

randint.m

% Creat a random integer from a closed interval [a,b]
function r = randint(low,high)
 if low >= high
 r = low;

133

 else
 r = low + fix(rand* (high - low + 1));
 end

reportGA_1.m

%% Report Starting Options
fprintf('\n')
fprintf('\n')
fprintf(' GA Parameters\n')
fprintf(' ---\n')
fprintf(' Population size (psize) = %d\n', psize)
fprintf(' Chromosome length (lbit) = %d\n',lbit)
fprintf(' Maximum # of generation (maxgen) = %d\n',maxgen)
fprintf(' Crossover probability (crossprob) = %f\n' ,crossprob)
fprintf(' Mutation probability (mutprob) = %f\n',mutprob)
fprintf(' ---\n')
fprintf('\n')
fprintf('\n')
fprintf(' Starting Population Statistics\n')
fprintf(' ---\n')
fprintf(' Maximum fitness = %f\n',maximum)
fprintf(' Average fitness = %f\n',avg)
fprintf(' Minimum fitness = %f\n',minimum)
fprintf(' Sum of fitness = %f\n',fitnesssum)
fprintf(' ---\n')

reportGA_2.m

%% Report Population Fitness in Each Genration
fprintf('\n')
fprintf('\n')
fprintf('Generation Report\n')
fprintf('---\n');
fprintf('%1s %d %46s %d\n', 'Generation', gen-1, '|Generation', gen);
fprintf('------------- |-------------\n')
fprintf(' # code x fitness | # mates xsite code x fitness ');
fprintf(' \n')
fprintf('--|---\n');

for j = 1:psize
 fprintf('%2d) ', j);
 fprintf('%d', prevgen(j).chrom);
 fprintf(' %10d', prevgen(j).srmse);
 fprintf(' %10d', prevgen(j).fitness);
 fprintf('%9s %3d) (%2d,%2d) ', '|', j, next(j).p1, next(j).p2);
 if next(j).xsite(1) ~= -1
 fprintf('[%2d] ', next(j).xsite(1));
 else
 fprintf('[No] ');
 end
 fprintf('%d', next(j).chrom);
 fprintf(' %10d', next(j).srmse);
 fprintf(' %11d\n', next(j).fitness);
end
fprintf('---\n');
fprintf('Generation %d', gen);
fprintf('\n')
fprintf('Statistics:')
fprintf(' sum = %g', fitnesssum);
fprintf(' max = %g', maximum);
fprintf(' min = %g', minimum);
fprintf(' avg = %g', avg);
fprintf('\n')
fprintf(' ')

134

fprintf(' nmutation = %d', nmut(gen));
fprintf(' totcross = %d', totcross);
fprintf(' solution for the generation -----> %d\n', bestofgen);
fprintf('---\n');
fprintf('\n')
fprintf('\n')

rw_selection.m

% Apply Roulette Wheel Slection
function p = rw_selection(psize, rank)
 partsum = 0;
 j = 0;
 randnum = rand;
 while (partsum < randnum && j < psize)
 j = j+1;
 partsum = partsum + rank(j,3);
 end
p=rank(j,4);

sp_crossover.m

%% Apply Crossover
function [child1 child2 jcross] = sp_crossover(parent1, parent2)
 global crossprob;
 global totcross;
 global lbit;

 if flip(crossprob) == 1
 jcross = randint(1, lbit - 1);
 totcross = totcross + 1;

 for j = 1:jcross
 child1(j) = (parent1(j));
 child2(j) = (parent2(j));
 end

 for j = jcross+1:lbit
 child1(j) = (parent2(j));
 child2(j) = (parent1(j));
 end
 else
 jcross = -1;
 for j = 1:lbit
 child1(j) = (parent1(j));
 child2(j) = (parent2(j));
 end
 end

stats.m

%% Calculate Statistics
function [mod_row,mtce_out,tldrmse_out,tld_out]= stats(modmat,data,tlddata)
m=data.m;
n=data.n;
k=data.k;
%% Calculate MTCE
mod_mtc=sum(sum(modmat.*data.ttime))/sum(sum(modmat));
mtce=(tlddata.obs_mtc-mod_mtc);
%% Calculate TLD RMSE
 convert=ones(k,1);
 v=1;
 for o=1:m
 temp=modmat(:,v);

135

 convert(o,1)=temp(o);
 end;
 v=v+1;
 t=1;
 x=0;
 for u=1:n-1
 for f=t:m*u
 temp=modmat(:,v);
 convert(m+f,1)=temp(x+f);
 end;
 t=t+m;
 v=v+1;
 x=x-m;
 end;
 mod_row=convert;
tld_out=tld(mod_row,tlddata);
tlddata.MTLD=tld_out;
tld_rmse =(sqrt((sum((tlddata.OTLD(:,4)-tlddata.MTLD(:,4)).^2))))/tlddata.num_bins;
%%
mtce_out=mtce;
tldrmse_out=tld_rmse;

tld.m

%% Compute Trip Length Distribution
function tld_output = tld(trips,tlddata)
row_trips=trips;
row_ttime=tlddata.ttime;
TLD0=tlddata.TLD;
[h,~]=size(row_trips); %matrix index
for i=1:h %produce observed trip length distribution
 for k=1:tlddata.num_bins-1
 if tlddata.mini <= row_ttime(i) && row_ttime(i) < TLD0(1,2)
 TLD0(1,3)= TLD0(1,3)+row_trips(i);
 break
 end;
 if TLD0(k,2) <= row_ttime(i) && row_ttime(i)< TLD0(k+1,2)
 TLD0(k+1,3)= TLD0(k+1,3)+row_trips(i);
 break
 end;
 end;
end;

for i=1:tlddata.num_bins
 TLD0(i,4)=(TLD0(i,3)/sum(TLD0(:,3)))*100;
end;
tld_output=TLD0;

136

APPENDIX B

RULE BASES

B.1. Rule Base of the Fuzzy Rule-Based System (FRBS)

Rule Number Antecedents Consequents
Rule 1 IF Pi is MF1 and Ai is MF1 and Fi is MF1 THEN Ti is MF3
Rule 2 IF Pi is MF1 and Ai is MF2 and Fi is MF1 THEN Ti is MF3
Rule 3 IF Pi is MF1 and Ai is MF3 and Fi is MF1 THEN Ti is MF4
Rule 4 IF Pi is MF1 and Ai is MF4 and Fi is MF1 THEN Ti is MF5
Rule 5 IF Pi is MF1 and Ai is MF5 and Fi is MF1 THEN Ti is MF6
Rule 6 IF Pi is MF2 and Ai is MF1 and Fi is MF1 THEN Ti is MF5
Rule 7 IF Pi is MF2 and Ai is MF2 and Fi is MF1 THEN Ti is MF8
Rule 8 IF Pi is MF2 and Ai is MF3 and Fi is MF1 THEN Ti is MF11
Rule 9 IF Pi is MF2 and Ai is MF4 and Fi is MF1 THEN Ti is MF11
Rule 10 IF Pi is MF2 and Ai is MF5 and Fi is MF1 THEN Ti is MF15
Rule 11 IF Pi is MF3 and Ai is MF1 and Fi is MF1 THEN Ti is MF11
Rule 12 IF Pi is MF3 and Ai is MF2 and Fi is MF1 THEN Ti is MF11
Rule 13 IF Pi is MF3 and Ai is MF3 and Fi is MF1 THEN Ti is MF11
Rule 14 IF Pi is MF3 and Ai is MF4 and Fi is MF1 THEN Ti is MF12
Rule 15 IF Pi is MF3 and Ai is MF5 and Fi is MF1 THEN Ti is MF17
Rule 16 IF Pi is MF4 and Ai is MF1 and Fi is MF1 THEN Ti is MF6
Rule 17 IF Pi is MF4 and Ai is MF2 and Fi is MF1 THEN Ti is MF13
Rule 18 IF Pi is MF4 and Ai is MF3 and Fi is MF1 THEN Ti is MF15
Rule 19 IF Pi is MF4 and Ai is MF4 and Fi is MF1 THEN Ti is MF14
Rule 20 IF Pi is MF4 and Ai is MF5 and Fi is MF1 THEN Ti is MF19
Rule 21 IF Pi is MF5 and Ai is MF1 and Fi is MF1 THEN Ti is MF8
Rule 22 IF Pi is MF5 and Ai is MF2 and Fi is MF1 THEN Ti is MF16
Rule 23 IF Pi is MF5 and Ai is MF3 and Fi is MF1 THEN Ti is MF18
Rule 24 IF Pi is MF5 and Ai is MF4 and Fi is MF1 THEN Ti is MF19
Rule 25 IF Pi is MF5 and Ai is MF5 and Fi is MF1 THEN Ti is MF20
Rule 26 IF Pi is MF1 and Ai is MF1 and Fi is MF2 THEN Ti is MF2
Rule 27 IF Pi is MF1 and Ai is MF2 and Fi is MF2 THEN Ti is MF2
Rule 28 IF Pi is MF1 and Ai is MF3 and Fi is MF2 THEN Ti is MF4
Rule 29 IF Pi is MF1 and Ai is MF4 and Fi is MF2 THEN Ti is MF4
Rule 30 IF Pi is MF1 and Ai is MF5 and Fi is MF2 THEN Ti is MF5
Rule 31 IF Pi is MF2 and Ai is MF1 and Fi is MF2 THEN Ti is MF2
Rule 32 IF Pi is MF2 and Ai is MF2 and Fi is MF2 THEN Ti is MF4
Rule 33 IF Pi is MF2 and Ai is MF3 and Fi is MF2 THEN Ti is MF6
Rule 34 IF Pi is MF2 and Ai is MF4 and Fi is MF2 THEN Ti is MF7
Rule 35 IF Pi is MF2 and Ai is MF5 and Fi is MF2 THEN Ti is MF8
Rule 36 IF Pi is MF3 and Ai is MF1 and Fi is MF2 THEN Ti is MF3
Rule 37 IF Pi is MF3 and Ai is MF2 and Fi is MF2 THEN Ti is MF6
Rule 38 IF Pi is MF3 and Ai is MF3 and Fi is MF2 THEN Ti is MF7
Rule 39 IF Pi is MF3 and Ai is MF4 and Fi is MF2 THEN Ti is MF8
Rule 40 IF Pi is MF3 and Ai is MF5 and Fi is MF2 THEN Ti is MF13
Rule 41 IF Pi is MF4 and Ai is MF1 and Fi is MF2 THEN Ti is MF5
Rule 42 IF Pi is MF4 and Ai is MF2 and Fi is MF2 THEN Ti is MF7
Rule 43 IF Pi is MF4 and Ai is MF3 and Fi is MF2 THEN Ti is MF9
Rule 44 IF Pi is MF4 and Ai is MF4 and Fi is MF2 THEN Ti is MF10
Rule 45 IF Pi is MF4 and Ai is MF5 and Fi is MF2 THEN Ti is MF12

137

Rule 46 IF Pi is MF5 and Ai is MF1 and Fi is MF2 THEN Ti is MF3
Rule 47 IF Pi is MF5 and Ai is MF2 and Fi is MF2 THEN Ti is MF8
Rule 48 IF Pi is MF5 and Ai is MF3 and Fi is MF2 THEN Ti is MF11
Rule 49 IF Pi is MF5 and Ai is MF4 and Fi is MF2 THEN Ti is MF15
Rule 50 IF Pi is MF5 and Ai is MF5 and Fi is MF2 THEN Ti is MF16
Rule 51 IF Pi is MF1 and Ai is MF1 and Fi is MF3 THEN Ti is MF1
Rule 52 IF Pi is MF1 and Ai is MF2 and Fi is MF3 THEN Ti is MF1
Rule 53 IF Pi is MF1 and Ai is MF3 and Fi is MF3 THEN Ti is MF2
Rule 54 IF Pi is MF1 and Ai is MF4 and Fi is MF3 THEN Ti is MF2
Rule 55 IF Pi is MF1 and Ai is MF5 and Fi is MF3 THEN Ti is MF2
Rule 56 IF Pi is MF2 and Ai is MF1 and Fi is MF3 THEN Ti is MF2
Rule 57 IF Pi is MF2 and Ai is MF2 and Fi is MF3 THEN Ti is MF2
Rule 58 IF Pi is MF2 and Ai is MF3 and Fi is MF3 THEN Ti is MF4
Rule 59 IF Pi is MF2 and Ai is MF4 and Fi is MF3 THEN Ti is MF6
Rule 60 IF Pi is MF2 and Ai is MF5 and Fi is MF3 THEN Ti is MF4
Rule 61 IF Pi is MF3 and Ai is MF1 and Fi is MF3 THEN Ti is MF2
Rule 62 IF Pi is MF3 and Ai is MF2 and Fi is MF3 THEN Ti is MF4
Rule 63 IF Pi is MF3 and Ai is MF3 and Fi is MF3 THEN Ti is MF5
Rule 64 IF Pi is MF3 and Ai is MF4 and Fi is MF3 THEN Ti is MF1
Rule 65 IF Pi is MF3 and Ai is MF5 and Fi is MF3 THEN Ti is MF7
Rule 66 IF Pi is MF4 and Ai is MF1 and Fi is MF3 THEN Ti is MF3
Rule 67 IF Pi is MF4 and Ai is MF2 and Fi is MF3 THEN Ti is MF5
Rule 68 IF Pi is MF4 and Ai is MF3 and Fi is MF3 THEN Ti is MF6
Rule 69 IF Pi is MF4 and Ai is MF4 and Fi is MF3 THEN Ti is MF10
Rule 70 IF Pi is MF4 and Ai is MF5 and Fi is MF3 THEN Ti is MF10
Rule 71 IF Pi is MF5 and Ai is MF1 and Fi is MF3 THEN Ti is MF3
Rule 72 IF Pi is MF5 and Ai is MF2 and Fi is MF3 THEN Ti is MF4
Rule 73 IF Pi is MF5 and Ai is MF3 and Fi is MF3 THEN Ti is MF7
Rule 74 IF Pi is MF5 and Ai is MF4 and Fi is MF3 THEN Ti is MF9
Rule 75 IF Pi is MF5 and Ai is MF5 and Fi is MF3 THEN Ti is MF10
Rule 76 IF Pi is MF1 and Ai is MF1 and Fi is MF4 THEN Ti is MF1
Rule 77 IF Pi is MF1 and Ai is MF2 and Fi is MF4 THEN Ti is MF1
Rule 78 IF Pi is MF1 and Ai is MF3 and Fi is MF4 THEN Ti is MF1
Rule 79 IF Pi is MF1 and Ai is MF4 and Fi is MF4 THEN Ti is MF2
Rule 80 IF Pi is MF1 and Ai is MF5 and Fi is MF4 THEN Ti is MF2
Rule 81 IF Pi is MF2 and Ai is MF1 and Fi is MF4 THEN Ti is MF1
Rule 82 IF Pi is MF2 and Ai is MF2 and Fi is MF4 THEN Ti is MF2
Rule 83 IF Pi is MF2 and Ai is MF3 and Fi is MF4 THEN Ti is MF2
Rule 84 IF Pi is MF2 and Ai is MF4 and Fi is MF4 THEN Ti is MF3
Rule 85 IF Pi is MF2 and Ai is MF5 and Fi is MF4 THEN Ti is MF4
Rule 86 IF Pi is MF3 and Ai is MF1 and Fi is MF4 THEN Ti is MF1
Rule 87 IF Pi is MF3 and Ai is MF2 and Fi is MF4 THEN Ti is MF2
Rule 88 IF Pi is MF3 and Ai is MF3 and Fi is MF4 THEN Ti is MF3
Rule 89 IF Pi is MF3 and Ai is MF4 and Fi is MF4 THEN Ti is MF5
Rule 90 IF Pi is MF3 and Ai is MF5 and Fi is MF4 THEN Ti is MF6
Rule 91 IF Pi is MF4 and Ai is MF1 and Fi is MF4 THEN Ti is MF1
Rule 92 IF Pi is MF4 and Ai is MF2 and Fi is MF4 THEN Ti is MF3
Rule 93 IF Pi is MF4 and Ai is MF3 and Fi is MF4 THEN Ti is MF4
Rule 94 IF Pi is MF4 and Ai is MF4 and Fi is MF4 THEN Ti is MF6
Rule 95 IF Pi is MF4 and Ai is MF5 and Fi is MF4 THEN Ti is MF7
Rule 96 IF Pi is MF5 and Ai is MF1 and Fi is MF4 THEN Ti is MF1
Rule 97 IF Pi is MF5 and Ai is MF2 and Fi is MF4 THEN Ti is MF3
Rule 98 IF Pi is MF5 and Ai is MF3 and Fi is MF4 THEN Ti is MF4
Rule 99 IF Pi is MF5 and Ai is MF4 and Fi is MF4 THEN Ti is MF7
Rule 100 IF Pi is MF5 and Ai is MF5 and Fi is MF4 THEN Ti is MF8
Rule 101 IF Pi is MF1 and Ai is MF1 and Fi is MF5 THEN Ti is MF1
Rule 102 IF Pi is MF1 and Ai is MF2 and Fi is MF5 THEN Ti is MF1
Rule 103 IF Pi is MF1 and Ai is MF3 and Fi is MF5 THEN Ti is MF1
Rule 104 IF Pi is MF1 and Ai is MF4 and Fi is MF5 THEN Ti is MF2
Rule 105 IF Pi is MF1 and Ai is MF5 and Fi is MF5 THEN Ti is MF1

138

Rule 106 IF Pi is MF2 and Ai is MF1 and Fi is MF5 THEN Ti is MF1
Rule 107 IF Pi is MF2 and Ai is MF2 and Fi is MF5 THEN Ti is MF1
Rule 108 IF Pi is MF2 and Ai is MF3 and Fi is MF5 THEN Ti is MF2
Rule 109 IF Pi is MF2 and Ai is MF4 and Fi is MF5 THEN Ti is MF4
Rule 110 IF Pi is MF2 and Ai is MF5 and Fi is MF5 THEN Ti is MF2
Rule 111 IF Pi is MF3 and Ai is MF1 and Fi is MF5 THEN Ti is MF1
Rule 112 IF Pi is MF3 and Ai is MF2 and Fi is MF5 THEN Ti is MF2
Rule 113 IF Pi is MF3 and Ai is MF3 and Fi is MF5 THEN Ti is MF2
Rule 114 IF Pi is MF3 and Ai is MF4 and Fi is MF5 THEN Ti is MF3
Rule 115 IF Pi is MF3 and Ai is MF5 and Fi is MF5 THEN Ti is MF3
Rule 116 IF Pi is MF4 and Ai is MF1 and Fi is MF5 THEN Ti is MF1
Rule 117 IF Pi is MF4 and Ai is MF2 and Fi is MF5 THEN Ti is MF2
Rule 118 IF Pi is MF4 and Ai is MF3 and Fi is MF5 THEN Ti is MF2
Rule 119 IF Pi is MF4 and Ai is MF4 and Fi is MF5 THEN Ti is MF6
Rule 120 IF Pi is MF4 and Ai is MF5 and Fi is MF5 THEN Ti is MF5
Rule 121 IF Pi is MF5 and Ai is MF1 and Fi is MF5 THEN Ti is MF1
Rule 122 IF Pi is MF5 and Ai is MF2 and Fi is MF5 THEN Ti is MF2
Rule 123 IF Pi is MF5 and Ai is MF3 and Fi is MF5 THEN Ti is MF2
Rule 124 IF Pi is MF5 and Ai is MF4 and Fi is MF5 THEN Ti is MF4
Rule 125 IF Pi is MF5 and Ai is MF5 and Fi is MF5 THEN Ti is MF5
Rule 126 IF Pi is MF1 and Ai is MF1 and Fi is MF6 THEN Ti is MF1
Rule 127 IF Pi is MF1 and Ai is MF2 and Fi is MF6 THEN Ti is MF1
Rule 128 IF Pi is MF1 and Ai is MF3 and Fi is MF6 THEN Ti is MF1
Rule 129 IF Pi is MF1 and Ai is MF4 and Fi is MF6 THEN Ti is MF1
Rule 130 IF Pi is MF1 and Ai is MF5 and Fi is MF6 THEN Ti is MF1
Rule 131 IF Pi is MF2 and Ai is MF1 and Fi is MF6 THEN Ti is MF1
Rule 132 IF Pi is MF2 and Ai is MF2 and Fi is MF6 THEN Ti is MF1
Rule 133 IF Pi is MF2 and Ai is MF3 and Fi is MF6 THEN Ti is MF1
Rule 134 IF Pi is MF2 and Ai is MF4 and Fi is MF6 THEN Ti is MF1
Rule 135 IF Pi is MF2 and Ai is MF5 and Fi is MF6 THEN Ti is MF2
Rule 136 IF Pi is MF3 and Ai is MF1 and Fi is MF6 THEN Ti is MF1
Rule 137 IF Pi is MF3 and Ai is MF2 and Fi is MF6 THEN Ti is MF1
Rule 138 IF Pi is MF3 and Ai is MF3 and Fi is MF6 THEN Ti is MF1
Rule 139 IF Pi is MF3 and Ai is MF4 and Fi is MF6 THEN Ti is MF1
Rule 140 IF Pi is MF3 and Ai is MF5 and Fi is MF6 THEN Ti is MF1
Rule 141 IF Pi is MF4 and Ai is MF1 and Fi is MF6 THEN Ti is MF1
Rule 142 IF Pi is MF4 and Ai is MF2 and Fi is MF6 THEN Ti is MF1
Rule 143 IF Pi is MF4 and Ai is MF3 and Fi is MF6 THEN Ti is MF1
Rule 144 IF Pi is MF4 and Ai is MF4 and Fi is MF6 THEN Ti is MF1
Rule 145 IF Pi is MF4 and Ai is MF5 and Fi is MF6 THEN Ti is MF1
Rule 146 IF Pi is MF5 and Ai is MF1 and Fi is MF6 THEN Ti is MF1
Rule 147 IF Pi is MF5 and Ai is MF2 and Fi is MF6 THEN Ti is MF1
Rule 148 IF Pi is MF5 and Ai is MF3 and Fi is MF6 THEN Ti is MF1
Rule 149 IF Pi is MF5 and Ai is MF4 and Fi is MF6 THEN Ti is MF1
Rule 150 IF Pi is MF5 and Ai is MF5 and Fi is MF6 THEN Ti is MF2

139

B.2. Rule Base of the Genetic Fuzzy Rule-Based System (GFRBS)

Rule Number Antecedents Consequents
Rule 1 IF Pi is MF1 and Ai is MF1 and Fi is MF1 THEN Ti is MF5
Rule 2 IF Pi is MF1 and Ai is MF2 and Fi is MF1 THEN Ti is MF5
Rule 3 IF Pi is MF1 and Ai is MF3 and Fi is MF1 THEN Ti is MF5
Rule 4 IF Pi is MF1 and Ai is MF4 and Fi is MF1 THEN Ti is MF6
Rule 5 IF Pi is MF1 and Ai is MF5 and Fi is MF1 THEN Ti is MF5
Rule 6 IF Pi is MF2 and Ai is MF1 and Fi is MF1 THEN Ti is MF7
Rule 7 IF Pi is MF2 and Ai is MF2 and Fi is MF1 THEN Ti is MF8
Rule 8 IF Pi is MF2 and Ai is MF3 and Fi is MF1 THEN Ti is MF10
Rule 9 IF Pi is MF2 and Ai is MF4 and Fi is MF1 THEN Ti is MF10
Rule 10 IF Pi is MF2 and Ai is MF5 and Fi is MF1 THEN Ti is MF13
Rule 11 IF Pi is MF3 and Ai is MF1 and Fi is MF1 THEN Ti is MF9
Rule 12 IF Pi is MF3 and Ai is MF2 and Fi is MF1 THEN Ti is MF11
Rule 13 IF Pi is MF3 and Ai is MF3 and Fi is MF1 THEN Ti is MF10
Rule 14 IF Pi is MF3 and Ai is MF4 and Fi is MF1 THEN Ti is MF13
Rule 15 IF Pi is MF3 and Ai is MF5 and Fi is MF1 THEN Ti is MF15
Rule 16 IF Pi is MF4 and Ai is MF1 and Fi is MF1 THEN Ti is MF7
Rule 17 IF Pi is MF4 and Ai is MF2 and Fi is MF1 THEN Ti is MF13
Rule 18 IF Pi is MF4 and Ai is MF3 and Fi is MF1 THEN Ti is MF15
Rule 19 IF Pi is MF4 and Ai is MF4 and Fi is MF1 THEN Ti is MF16
Rule 20 IF Pi is MF4 and Ai is MF5 and Fi is MF1 THEN Ti is MF16
Rule 21 IF Pi is MF5 and Ai is MF1 and Fi is MF1 THEN Ti is MF9
Rule 22 IF Pi is MF5 and Ai is MF2 and Fi is MF1 THEN Ti is MF17
Rule 23 IF Pi is MF5 and Ai is MF3 and Fi is MF1 THEN Ti is MF19
Rule 24 IF Pi is MF5 and Ai is MF4 and Fi is MF1 THEN Ti is MF20
Rule 25 IF Pi is MF5 and Ai is MF5 and Fi is MF1 THEN Ti is MF20
Rule 26 IF Pi is MF1 and Ai is MF1 and Fi is MF2 THEN Ti is MF4
Rule 27 IF Pi is MF1 and Ai is MF2 and Fi is MF2 THEN Ti is MF3
Rule 28 IF Pi is MF1 and Ai is MF3 and Fi is MF2 THEN Ti is MF6
Rule 29 IF Pi is MF1 and Ai is MF4 and Fi is MF2 THEN Ti is MF5
Rule 30 IF Pi is MF1 and Ai is MF5 and Fi is MF2 THEN Ti is MF5
Rule 31 IF Pi is MF2 and Ai is MF1 and Fi is MF2 THEN Ti is MF2
Rule 32 IF Pi is MF2 and Ai is MF2 and Fi is MF2 THEN Ti is MF5
Rule 33 IF Pi is MF2 and Ai is MF3 and Fi is MF2 THEN Ti is MF6
Rule 34 IF Pi is MF2 and Ai is MF4 and Fi is MF2 THEN Ti is MF7
Rule 35 IF Pi is MF2 and Ai is MF5 and Fi is MF2 THEN Ti is MF7
Rule 36 IF Pi is MF3 and Ai is MF1 and Fi is MF2 THEN Ti is MF3
Rule 37 IF Pi is MF3 and Ai is MF2 and Fi is MF2 THEN Ti is MF6
Rule 38 IF Pi is MF3 and Ai is MF3 and Fi is MF2 THEN Ti is MF6
Rule 39 IF Pi is MF3 and Ai is MF4 and Fi is MF2 THEN Ti is MF7
Rule 40 IF Pi is MF3 and Ai is MF5 and Fi is MF2 THEN Ti is MF11
Rule 41 IF Pi is MF4 and Ai is MF1 and Fi is MF2 THEN Ti is MF4
Rule 42 IF Pi is MF4 and Ai is MF2 and Fi is MF2 THEN Ti is MF5
Rule 43 IF Pi is MF4 and Ai is MF3 and Fi is MF2 THEN Ti is MF9
Rule 44 IF Pi is MF4 and Ai is MF4 and Fi is MF2 THEN Ti is MF12
Rule 45 IF Pi is MF4 and Ai is MF5 and Fi is MF2 THEN Ti is MF13
Rule 46 IF Pi is MF5 and Ai is MF1 and Fi is MF2 THEN Ti is MF6
Rule 47 IF Pi is MF5 and Ai is MF2 and Fi is MF2 THEN Ti is MF7
Rule 48 IF Pi is MF5 and Ai is MF3 and Fi is MF2 THEN Ti is MF11
Rule 49 IF Pi is MF5 and Ai is MF4 and Fi is MF2 THEN Ti is MF12
Rule 50 IF Pi is MF5 and Ai is MF5 and Fi is MF2 THEN Ti is MF14
Rule 51 IF Pi is MF1 and Ai is MF1 and Fi is MF3 THEN Ti is MF3
Rule 52 IF Pi is MF1 and Ai is MF2 and Fi is MF3 THEN Ti is MF2
Rule 53 IF Pi is MF1 and Ai is MF3 and Fi is MF3 THEN Ti is MF4
Rule 54 IF Pi is MF1 and Ai is MF4 and Fi is MF3 THEN Ti is MF3
Rule 55 IF Pi is MF1 and Ai is MF5 and Fi is MF3 THEN Ti is MF5

140

Rule 56 IF Pi is MF2 and Ai is MF1 and Fi is MF3 THEN Ti is MF1
Rule 57 IF Pi is MF2 and Ai is MF2 and Fi is MF3 THEN Ti is MF2
Rule 58 IF Pi is MF2 and Ai is MF3 and Fi is MF3 THEN Ti is MF5
Rule 59 IF Pi is MF2 and Ai is MF4 and Fi is MF3 THEN Ti is MF6
Rule 60 IF Pi is MF2 and Ai is MF5 and Fi is MF3 THEN Ti is MF5
Rule 61 IF Pi is MF3 and Ai is MF1 and Fi is MF3 THEN Ti is MF2
Rule 62 IF Pi is MF3 and Ai is MF2 and Fi is MF3 THEN Ti is MF3
Rule 63 IF Pi is MF3 and Ai is MF3 and Fi is MF3 THEN Ti is MF5
Rule 64 IF Pi is MF3 and Ai is MF4 and Fi is MF3 THEN Ti is MF5
Rule 65 IF Pi is MF3 and Ai is MF5 and Fi is MF3 THEN Ti is MF6
Rule 66 IF Pi is MF4 and Ai is MF1 and Fi is MF3 THEN Ti is MF3
Rule 67 IF Pi is MF4 and Ai is MF2 and Fi is MF3 THEN Ti is MF5
Rule 68 IF Pi is MF4 and Ai is MF3 and Fi is MF3 THEN Ti is MF6
Rule 69 IF Pi is MF4 and Ai is MF4 and Fi is MF3 THEN Ti is MF8
Rule 70 IF Pi is MF4 and Ai is MF5 and Fi is MF3 THEN Ti is MF9
Rule 71 IF Pi is MF5 and Ai is MF1 and Fi is MF3 THEN Ti is MF3
Rule 72 IF Pi is MF5 and Ai is MF2 and Fi is MF3 THEN Ti is MF4
Rule 73 IF Pi is MF5 and Ai is MF3 and Fi is MF3 THEN Ti is MF6
Rule 74 IF Pi is MF5 and Ai is MF4 and Fi is MF3 THEN Ti is MF8
Rule 75 IF Pi is MF5 and Ai is MF5 and Fi is MF3 THEN Ti is MF10
Rule 76 IF Pi is MF1 and Ai is MF1 and Fi is MF4 THEN Ti is MF1
Rule 77 IF Pi is MF1 and Ai is MF2 and Fi is MF4 THEN Ti is MF1
Rule 78 IF Pi is MF1 and Ai is MF3 and Fi is MF4 THEN Ti is MF2
Rule 79 IF Pi is MF1 and Ai is MF4 and Fi is MF4 THEN Ti is MF3
Rule 80 IF Pi is MF1 and Ai is MF5 and Fi is MF4 THEN Ti is MF3
Rule 81 IF Pi is MF2 and Ai is MF1 and Fi is MF4 THEN Ti is MF1
Rule 82 IF Pi is MF2 and Ai is MF2 and Fi is MF4 THEN Ti is MF2
Rule 83 IF Pi is MF2 and Ai is MF3 and Fi is MF4 THEN Ti is MF2
Rule 84 IF Pi is MF2 and Ai is MF4 and Fi is MF4 THEN Ti is MF4
Rule 85 IF Pi is MF2 and Ai is MF5 and Fi is MF4 THEN Ti is MF3
Rule 86 IF Pi is MF3 and Ai is MF1 and Fi is MF4 THEN Ti is MF1
Rule 87 IF Pi is MF3 and Ai is MF2 and Fi is MF4 THEN Ti is MF2
Rule 88 IF Pi is MF3 and Ai is MF3 and Fi is MF4 THEN Ti is MF3
Rule 89 IF Pi is MF3 and Ai is MF4 and Fi is MF4 THEN Ti is MF3
Rule 90 IF Pi is MF3 and Ai is MF5 and Fi is MF4 THEN Ti is MF6
Rule 91 IF Pi is MF4 and Ai is MF1 and Fi is MF4 THEN Ti is MF2
Rule 92 IF Pi is MF4 and Ai is MF2 and Fi is MF4 THEN Ti is MF1
Rule 93 IF Pi is MF4 and Ai is MF3 and Fi is MF4 THEN Ti is MF5
Rule 94 IF Pi is MF4 and Ai is MF4 and Fi is MF4 THEN Ti is MF5
Rule 95 IF Pi is MF4 and Ai is MF5 and Fi is MF4 THEN Ti is MF6
Rule 96 IF Pi is MF5 and Ai is MF1 and Fi is MF4 THEN Ti is MF1
Rule 97 IF Pi is MF5 and Ai is MF2 and Fi is MF4 THEN Ti is MF2
Rule 98 IF Pi is MF5 and Ai is MF3 and Fi is MF4 THEN Ti is MF5
Rule 99 IF Pi is MF5 and Ai is MF4 and Fi is MF4 THEN Ti is MF6
Rule 100 IF Pi is MF5 and Ai is MF5 and Fi is MF4 THEN Ti is MF7
Rule 101 IF Pi is MF1 and Ai is MF1 and Fi is MF5 THEN Ti is MF1
Rule 102 IF Pi is MF1 and Ai is MF2 and Fi is MF5 THEN Ti is MF1
Rule 103 IF Pi is MF1 and Ai is MF3 and Fi is MF5 THEN Ti is MF1
Rule 104 IF Pi is MF1 and Ai is MF4 and Fi is MF5 THEN Ti is MF1
Rule 105 IF Pi is MF1 and Ai is MF5 and Fi is MF5 THEN Ti is MF1
Rule 106 IF Pi is MF2 and Ai is MF1 and Fi is MF5 THEN Ti is MF1
Rule 107 IF Pi is MF2 and Ai is MF2 and Fi is MF5 THEN Ti is MF1
Rule 108 IF Pi is MF2 and Ai is MF3 and Fi is MF5 THEN Ti is MF1
Rule 109 IF Pi is MF2 and Ai is MF4 and Fi is MF5 THEN Ti is MF4
Rule 110 IF Pi is MF2 and Ai is MF5 and Fi is MF5 THEN Ti is MF2
Rule 111 IF Pi is MF3 and Ai is MF1 and Fi is MF5 THEN Ti is MF1
Rule 112 IF Pi is MF3 and Ai is MF2 and Fi is MF5 THEN Ti is MF1
Rule 113 IF Pi is MF3 and Ai is MF3 and Fi is MF5 THEN Ti is MF2
Rule 114 IF Pi is MF3 and Ai is MF4 and Fi is MF5 THEN Ti is MF3
Rule 115 IF Pi is MF3 and Ai is MF5 and Fi is MF5 THEN Ti is MF3

141

Rule 116 IF Pi is MF4 and Ai is MF1 and Fi is MF5 THEN Ti is MF1
Rule 117 IF Pi is MF4 and Ai is MF2 and Fi is MF5 THEN Ti is MF1
Rule 118 IF Pi is MF4 and Ai is MF3 and Fi is MF5 THEN Ti is MF2
Rule 119 IF Pi is MF4 and Ai is MF4 and Fi is MF5 THEN Ti is MF4
Rule 120 IF Pi is MF4 and Ai is MF5 and Fi is MF5 THEN Ti is MF3
Rule 121 IF Pi is MF5 and Ai is MF1 and Fi is MF5 THEN Ti is MF1
Rule 122 IF Pi is MF5 and Ai is MF2 and Fi is MF5 THEN Ti is MF1
Rule 123 IF Pi is MF5 and Ai is MF3 and Fi is MF5 THEN Ti is MF2
Rule 124 IF Pi is MF5 and Ai is MF4 and Fi is MF5 THEN Ti is MF4
Rule 125 IF Pi is MF5 and Ai is MF5 and Fi is MF5 THEN Ti is MF4
Rule 126 IF Pi is MF1 and Ai is MF1 and Fi is MF6 THEN Ti is MF1
Rule 127 IF Pi is MF1 and Ai is MF2 and Fi is MF6 THEN Ti is MF1
Rule 128 IF Pi is MF1 and Ai is MF3 and Fi is MF6 THEN Ti is MF1
Rule 129 IF Pi is MF1 and Ai is MF4 and Fi is MF6 THEN Ti is MF1
Rule 130 IF Pi is MF1 and Ai is MF5 and Fi is MF6 THEN Ti is MF1
Rule 131 IF Pi is MF2 and Ai is MF1 and Fi is MF6 THEN Ti is MF1
Rule 132 IF Pi is MF2 and Ai is MF2 and Fi is MF6 THEN Ti is MF1
Rule 133 IF Pi is MF2 and Ai is MF3 and Fi is MF6 THEN Ti is MF1
Rule 134 IF Pi is MF2 and Ai is MF4 and Fi is MF6 THEN Ti is MF1
Rule 135 IF Pi is MF2 and Ai is MF5 and Fi is MF6 THEN Ti is MF1
Rule 136 IF Pi is MF3 and Ai is MF1 and Fi is MF6 THEN Ti is MF1
Rule 137 IF Pi is MF3 and Ai is MF2 and Fi is MF6 THEN Ti is MF1
Rule 138 IF Pi is MF3 and Ai is MF3 and Fi is MF6 THEN Ti is MF1
Rule 139 IF Pi is MF3 and Ai is MF4 and Fi is MF6 THEN Ti is MF1
Rule 140 IF Pi is MF3 and Ai is MF5 and Fi is MF6 THEN Ti is MF1
Rule 141 IF Pi is MF4 and Ai is MF1 and Fi is MF6 THEN Ti is MF1
Rule 142 IF Pi is MF4 and Ai is MF2 and Fi is MF6 THEN Ti is MF1
Rule 143 IF Pi is MF4 and Ai is MF3 and Fi is MF6 THEN Ti is MF1
Rule 144 IF Pi is MF4 and Ai is MF4 and Fi is MF6 THEN Ti is MF1
Rule 145 IF Pi is MF4 and Ai is MF5 and Fi is MF6 THEN Ti is MF1
Rule 146 IF Pi is MF5 and Ai is MF1 and Fi is MF6 THEN Ti is MF1
Rule 147 IF Pi is MF5 and Ai is MF2 and Fi is MF6 THEN Ti is MF1
Rule 148 IF Pi is MF5 and Ai is MF3 and Fi is MF6 THEN Ti is MF1
Rule 149 IF Pi is MF5 and Ai is MF4 and Fi is MF6 THEN Ti is MF1
Rule 150 IF Pi is MF5 and Ai is MF5 and Fi is MF6 THEN Ti is MF1

VITA

PERSONAL INFORMATION

Date of Birth 1977

Place of Birth Denizli

e-mail mertkompil@iyte.edu.tr or mertkompil@gmail.com

EDUCATION

2004 – 2010 Ph.D. Program in City Planning
 Izmir Institute of Technology, Faculty of Architecture,
 Dep. of City and Regional Planning, Izmir, Turkey.

2001 – 2004 Master of Science Program in City Planning
 Izmir Institute of Technology, Faculty of Architecture,
 Dep. of City and Regional Planning, Izmir, Turkey.

2000 – 2001 Non-Degree Advanced English Education Course
 Izmir Institute of Technology, Graduate School of
 Engineering and Science, The English Preparatory
 School, Izmir, Turkey.

1996 – 2000 Bachelor of City and Regional Planning
 Dokuz Eylül University, Faculty of Architecture,
 Dep. of City and Regional Planning, Izmir, Turkey.

WORK EXPERIENCE

2002 – 2010 Research and Teaching Assistant
 Izmir Institute of Technology, Faculty of Architecture,
 Dep. of City and Regional Planning, Izmir, Turkey.

Teaching Experience Quantitative Techniques in Planning, 8 semesters.
 Statistical Methods for Planners, 4 semesters.
 Real Estate Economics, 7 semesters.
 Planning Design Studios, 6 semesters.

RESEARCH INTERESTS

Primary Interests Spatial Interaction Models, Trip Distribution Models,
 Transport Modelling, Soft Computing Applications
 (Fuzzy Logic – Artificial Neural Networks – Genetic
 Algorithms) in Transportation and Urban Geography.

Secondary Interests Retail Geography and Retail Location Analysis,
 Quantitative Techniques in Regional Science, Statistical
 Analysis and Probabilistic Modelling, Real Estate
 Appraisal and Engineering Economics.

	01_TITLE.pdf
	02_TABLE_OF_CONTENTS.pdf
	03_CHAPTER_1.pdf
	04_CHAPTER_2.pdf
	05_CHAPTER_3.pdf
	06_CHAPTER_4.pdf
	07_CHAPTER_5.pdf
	08_CHAPTER_6.pdf
	09_CHAPTER_7.pdf
	10_REFERENCES.pdf
	11_APPENDIX.pdf
	12_VITA.pdf

