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Abstract The problem of a point vortex and N fixed cylinders in a two-dimensional inviscid fluid is studied
and an analytical-numerical solution in the form of an infinite power series for the velocity field is obtained using
complex analysis. The velocity distribution for the case of two cylinders is compared with the existing results of
the problem of a vortex in an annular region which is conformally mapped onto the exterior of two cylinders.
Limiting cases of N cylinders and the vortex, being far away from each other are studied. In these cases, “the dipole
approximation” or “the point-island approximation” is derived, and its region of validity is established by numerical
tests. The velocity distribution for a geometry of four cylinders placed at the vertices of a square and a vortex is
presented. The problem of vortex motion with N cylinders addressed in the paper attracted attention recently owing
to its importance in many applications. However, existing solutions using Abelian function theory are sophisticated
and the theory is not one of the standard techniques used by applied mathematicians and engineers. Moreover, in
the N ≥ 3 cylinder problem, the infinite product involved in the presentation of the Schottky–Klein prime function
must also be truncated. So, the approach used in the paper is simple and an alternative to existing methods. This is
the main motivation for this study.

Keywords Circle theorem · Hydrodynamic interaction · Point vortex · Power-series solution · Vortex dynamics

1 Introduction

Hydrodynamic interaction among surface-piercing cylinders and water waves has been studied by many authors
such as Spring and Monkmeyer [1], Kagemoto and Yue [2], Linton and Evans [3] and Yilmaz [4]. An extensive
review of the literature is given by Martin [5, Chap. 4]. Common to all of these studies is the partial wave decom-
position of incoming and diffracted waves in terms of Bessel functions and the unknown coefficients introduced at
each partial wave component. After the decomposition, the boundary conditions imposed at the boundary of each
cylinder lead to an infinite system of linear equations to determine the unknown coefficients. However, in all of
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these studies the fluid flow has been assumed to be irrotational. Extension of these results to the case of rotational
flow requires an understanding of the fluid flow around cylinders in the presence of vortices.

The goal of the present paper is to study one vortex problem in the presence of N cylinders by decomposing the
velocity field of a vortex in an infinite power series. Interaction that takes place is resolved in a similar fashion to
the problem of diffracted surface waves. Namely, the flow of a vortex without cylinders replaces the incident waves
and the effect of cylinders is treated as diffracted waves.

The problem of a vortex with two cylinders can be conformally mapped onto the vortex problem in an annular
domain. It admits an exact analytic solution in terms of elliptic functions and has been studied by Johnson and
McDonald [6], Burton et al. [7] and Crowdy and Marshall [8]. Analysis of the same problem by the method of
images in terms of the q-calculus has been examined by the present authors in [9]. In the present paper, the previous
study is extended to the problem of a vortex with an arbitrary number of cylinders in a two-dimensional unbounded
fluid domain. It is assumed that fluid motion is irrotational and a line vortex is introduced into the fluid domain.
The vortex problem in multiply connected domains has been studied by Crowdy and Marshall [8], [10] and [11]
from the point of view of Möbius maps and the Schottky–Klein group. The Schottky–Klein prime function for
the annulus is related to the first Jacobi theta function and the methods mentioned above, which uses the elliptic
function and the q-logarithmic function, give the same result. The q-calculus construction of the Schottky–Klein
prime function [9] suggests that this function is a composed object of more elementary q-exponential functions,
also appearing as the quantum dilogarithm, and could be important in the theory of automorphic functions and for
multiply connected domains. Unfortunately, in the multi-cylinder case the explicit form of this function is unknown.
This is why it is desirable to develop another independent approach to this problem. The method presented in this
paper is an alternative mathematical construction of the problem by complex analysis. The mathematical solution
of the problem was obtained by the authors mentioned above using Abelian function theory. This method is quite
sophisticated and abstract and is not part of the standard mathematical syllabus. Due to wide applications of the
problem it is desirable to obtain a solution of the problem by some standard techniques, affordable by applied
mathematicians and engineers. This is the main motivation for our work.

In this paper a series-based method is used which directly sums the image effects of the vortex in each of the
cylinders and the images of these images and so on. Coefficients of this series are found by numerical solution
of a truncated linear system and is thus approximate in this sense. It may be worth noting that in the N ≥ 3
cylinder problem the infinite product involved in the representation of the Schottky–Klein prime function [8,10,11]
must also be truncated. In [8] it is mentioned that the convergence properties of the infinite products defining the
Schottky–Klein prime function is a complicated mathematical issue and that the products are truncated at suitable
levels to ensure convergence.

The power-series method is not new. Indeed, introducing source, doublet or vortex distributions of unknown
strength and then applying the boundary conditions to determine the coefficients was carried out by Katz and
Plotkin [12, Chap. 6]. Also, Fourier–Bessel series are used in hydrodynamic interaction theory by Linton and Evans
[3]. We are claiming that solution of the present problem by this technique is new, simple and alternative to the
existing solutions by Crowdy and Marshall [8] and Johnson and McDonald [13]. The series-expansion method for
solving both the biharmonic and harmonic equations are studied in [14] where the velocity field for two-dimen-
sional flow in a batch stirring device is determined following the work of Price et al. [15]. Hellou and Coutanceau
[16] devised a hybrid polar/Cartesian system to investigate the cellular flow induced by a rotating cylinder in a
rectangular channel. In all of the last three articles the domain is bounded. However, in contrast to the above paper
which treats the boundary condition by truncating the series expansion and then choosing coefficients to a best fit
for the velocity field at the boundary, in our approach we satisfy the boundary condition exactly.

The paper is organized as follows. In Sect. 2 we formulate the problem of a vortex and N cylinders by the
Laurent series expansion with unknown coefficients. In order to determine these coefficients we apply the boundary
conditions and arrive at an infinite linear algebraic system of equations determined by the geometry of the cylinders
and position of the vortex. In Sect. 3 for any potential user, not interested in mathematical detail, we explain a
step-by-step algorithmic procedure to calculate the velocity field at any point of the domain. For solving the linear
algebraic system in Sect. 4 we apply numerical methods. To verify our results, first we solve the two-cylinder
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problem and compare the results with the solution of the annular-domain problem which can be mapped onto the
former problem by a conformal mapping. Then, for an arbitrary number of cylinders far from each other and the
vortex, we derive the dipole (the point-island) approximation. In this case we consider the vortex motion around N
cylinders, illustrating numerical calculations by figures. Finally in the Conclusions we discuss the main results and
the similarities/differences with other papers.

2 Formulation of the problem

We formulate the problem of one vortex and N stationary cylinders in an unbounded two-dimensional domain in
several steps starting with the well-known case of a single vortex and a single cylinder. For simplicity we shall take
all the circulations around the cylinders to be zero. The more general case can be easily obtained by including in
(9), (10) simple pole terms with n = 0. In what follows z denotes the complex variable x + iy.

2.1 A vortex and a cylinder

First, consider a vortex of strength κ at z0 and a cylinder of radius a at the origin. The complex velocity potential
is given by the Circle Theorem of Milne-Thomson [17, Sect. 6.21],

ω = iκ log (z − z0) − iκ log

(
a2

z
− z0

)
, (1)

= iκ log (z − z0) − iκ log
(
z − z′

0

) + iκ log(z) − iκ log (−z0) , (2)

where z0 = a2/z′
0 and z′

0 is called the inverse point of z0 with respect to the cylinder. Equation 2 implies that
the effect of the cylinder introduced at the origin is two extra vortices; one of these is at the inverse point of z0

with negative strength and another at the centre of the cylinder with positive strength. Henceforth, we shall call
the vortices at inverse points and at the centres of cylinders (or at infinity) “vortex images” or simply “images”.
Therefore, the previous statement can be rephrased as “the effect of the cylinder, introduced at the origin, to the
potential is two images, one at the inverse point with negative strength and the other at the centre with positive
strength”.

In order to simplify the calculations and avoid dealing with multi-valuedness of the logarithmic function, it will
be advantageous to work with the complex velocity rather than complex potential,

V̄ = iκ

z − z0
− iκ

z − z′
0

+ iκ

z
, (3)

where V̄ = dω

dz
= u − iv. Next, we consider a vortex of strength κ at z0 and a cylinder of radius a j at z j . In this

case, the complex velocity is obtained by translating the coordinates to z j in (3),

V̄ = iκ

z − z0
− iκ

z − z j − (
z0 − z j

)′ + iκ

z − z j

= iκ

ζ j − ζ0 j
− iκ

ζ j − ζ ′
0 j

+ iκ

ζ j
= V̄ I

j + V̄ D
j , (4)

where ζ j = z − z j and ζ0 j = z0 − z j . It should be noted that (4) satisfies the Circle Theorem. The term V̄ I
j = iκ

ζ j −ζ0 j

in (4) represents the velocity field due to the vortex alone and the superscript I stands for “incident waves” by making
the analogy with the problem of “hydrodynamic interaction between water waves and cylinders” which the second
author investigated previously [4]. Similarly, the term V̄ D

j = − iκ
ζ j −ζ ′

0 j
+ iκ

ζ j
represents the effect of the cylinder

on the velocity field and the superscript D stands for “diffracted waves” again by analogy with the water-wave
diffraction problem.
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Now, the terms in (4) are expanded into a Laurent series around z j . We start with,

V̄ I
j = iκ

ζ j − ζ0 j
= − iκ

ζ0 j

∞∑
n=0

(
ζ j

ζ0 j

)n

, | ζ j |<| ζ0 j | . (5)

Here we assume that the centre of the vortex is outside the cylinder. In this case the condition, | ζ j |<| ζ0 j |, is
certainly true when the boundary condition is applied on the cylinder, z = z j + a j eiθ j .

The last two terms in (4) are treated together,

V̄ D
j = iκ

ζ j
− iκ

ζ j − ζ ′
0 j

= −iκ
∞∑

n=1

(
ζ ′

0 j

)n

ζ n+1
j

, (6)

where ζ ′
0 j = a2

j

ζ 0 j
implies |ζ ′

0 j | ≤ |ζ j |, and corresponds to the vortex images.

2.2 A vortex and N cylinders

Now we assume that there are N cylinders of radii a1, . . . , aN placed in an unbounded two-dimensional fluid
domain at points z1, . . . , zN and that a vortex is placed at z0 outside the cylinders. In order to apply the boundary
condition at the boundaries of the cylinders, we express the total velocity near cylinder j as,

V̄ T
j = V̄ I

j + V̄ D
j +

N∑
i=1(i �= j)

V̄ D
i , (7)

where

V̄ I
j = − iκ

ζ0 j

∞∑
n=0

(
ζ j

ζ0 j

)n

, | ζ j |<| ζ0 j |, (8)

V̄ D
j = −iκ

∞∑
n=1

A j
n

(
ζ ′

0 j

)n

ζ n+1
j

, | ζ ′
0 j |<| ζ j |, (9)

V̄ D
i = −iκ

∞∑
n=1

Ai
n

(
ζ ′

0i

)n

ζ n+1
i

= −iκ
∞∑

n=1

Ai
n

(
ζ ′

0i

)n

(
ζ j + Ri j

)n+1 (10)

and Ai
n are unknown complex coefficients. Notice that in (10) the coordinate transformation is carried out using

the relation ζi = ζ j + Ri j , where Ri j = z j − zi . Notice that the condition in (9), | ζ ′
0 j |<| ζ j |, is always satisfied

unless the vortex is inside the cylinder and that the condition, |ζ j |<| ζ0 j |, is certainly satisfied on the boundary of
cylinder j where the boundary condition is applied. Also, we see that for the case of a single cylinder the unknown
coefficient A j

n in (9) becomes unity. Here the first term in (7) represents the velocity field due to the vortex, whereas
the second and third terms account for the effects of the cylinders and they describe a set of images in cylinders and
the images of images. As we already mentioned in the Introduction, the idea is borrowed from the hydrodynamic
interaction of surface waves with vertical circular cylinders, where the diffracted waves are expanded into a power
series with unknown complex coefficients using the decomposition of incident waves. By analogy, here the flow
of a vortex alone replaces the incident waves and the effect of the cylinders is treated as diffracted waves. As we
mentioned above, the more general case with nonvanishing circulation around the cylinders can be easily treated
by inclusion in the summations (9), (10) a simple pole-term contribution with n = 0.

The boundary condition to be satisfied for each cylinder is that “the normal component of V
T
j = 0, when

|ζ j | = a j ,∀ j”. This condition is equivalent to the statement

a jRe
(

V̄ T
j eiθ j

)
= Re

(
V̄ T

j a j e
iθ j

)
= Re

(
V̄ T

j ζ j

)
= 0, j = 1, . . . , N , (11)
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where Re(z) denotes the real part of z. In the last equality ζ j = a j eiθ j is used, this holds only on the boundary of
cylinder j . Application of this condition yields

Re

[
−iκ

[ ∞∑
n=0

ζ n+1
j

ζ n+1
oj

+
∞∑

n=1

B j
n

ζ n
j

+
N∑

i=1

(
1 − δi j

) ∞∑
n=1

Bi
nζ j(

ζ j + Ri j
)n+1

]]

|ζ j |=a j

= 0, (12)

where B j
n = A j

n
a2n

j

ζ
n
0 j

and δi j = 1 when i = j, δi j = 0 otherwise. The last term in (12) must be expanded into a

series to make the calculations simpler, viz.

1(
ζ j + Ri j

)n+1 = 1

Rn+1
i j

∞∑
k=0

(n + 1)k

k!
(

− ζ j

Ri j

)k

, (13)

where (n + 1)k = (n + 1)(n + 2) . . . (n + k) is the Pochhammer symbol and (n + 1)0 = 1. Equation 12 is
equivalent to,

i

[ ∞∑
n=0

ζ n+1
j

ζ n+1
oj

+
∞∑

n=1

B j
n

ζ n
j

+
N∑

i=1

(
1 − δi j

) ∞∑
n=1

Bi
nζ j

Rn+1
i j

∞∑
k=0

(n + 1)k

k!
(−ζ j

Ri j

)k
]

+ c.c. = 0 (14)

when |ζ j | = a j , where c.c. stands for the complex conjugation. Using ζ jζ j = a2
j in (14) leads to

∞∑
n=0

(
ζ j

ζ0 j

)n+1

+
N∑

i=1

(
1 − δi j

) ∞∑
n=1

Bi
n

Rn+1
i j

∞∑
k=0

(−1)k (n + 1)k

k!
ζ k+1

j

Rk
i j

−
∞∑

n=1

ζ n
j B

j
n

a2n
j

= 0. (15)

This transition has a simple explanation. Equation 14 has the form of a Laurent series:
∞∑

n=0

αnζ n +
∞∑

n=1

βn

ζ n
+

∞∑
n=0

ᾱn ζ̄ n +
∞∑

n=1

β̄n

ζ̄ n
= 0. (16)

By the circle condition ζ ζ̄ = a2 it can be represented as( ∞∑
n=0

αnζ n +
∞∑

n=1

β̄n

a2n
ζ n

)
+

( ∞∑
n=0

ᾱn ζ̄ n +
∞∑

n=1

βn

a2n
ζ̄ n

)
= 0 (17)

or
∞∑

n=0

(
αn + β̄n

a2n

)
ζ n +

∞∑
n=0

(
ᾱn + βn

a2n

)
ζ̄ n = 0, (18)

where β0 = 0. Due to ζ = aeiθ , and the orthogonality of ζ n = aneinθ and ζm = ameimθ for integer values n and
m, when n �= m, the first sum is orthogonal to the second one, and every term in the first sum is orthogonal to the
other terms in the same sum. This is why in (15) we take only one sum without its complex conjugate. Equating
every coefficient for given n to zero gives an algebraic system for the unknown coefficients Bs

l ,

∞∑
l=1

N∑
s=1

D js
nl Bs

l = C j
n , j = 1, . . . , N , n = 0, 1, . . . , (19)

where

D js
nl = −δ

j,s
n+1,l

a2n+2
j

+ (−1)n

n!
∞∑

k=1

N∑
i=1

(1 − δsi )
(
1 − δi j

) (−1)k−1

(k − 1)!
a2k

i (k + 1)n(l + 1)k−1

Rk+l
si R

n+k+1
i j

, (20)

C j
n = −1

ζ
n+1
0 j

− (−1)n

n!
N∑

i=1

(
1 − δi j

) ∞∑
k=1

(k + 1)n)a2k
i

R
n+k+1
i j

1

ζ k
0i

, (21)
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where δ
j,s
n+1,l = δn+1,lδ j,s . Notice that with a single cylinder, the above system gives Bn = a2n

j /ζ
n
0 j , which is

equivalent to An = 1 as expected.
Since there is no vortex inside the cylinders, the force on them should be zero by the Kutta–Joukowski Theorem.

The Blasius’ Theorem is employed to verify this assumption. The square of the velocity is needed for this purpose,
that is,

(
V T

j

)2 =
⎛
⎝V I

j + V D
j +

N∑
i=1(i �= j)

V D
i

⎞
⎠

2

=
(

V I
j

)2 + 2V I
j

N∑
i=1

V D
i +

N∑
i=1

N∑
k=1

V D
i V D

k , (22)

where
(

V̄ I
j

)2 = −κ2

ζ 2
0 j

∞∑
n=0

∞∑
m=0

(
ζ j

ζ0 j

)n+m

,

V̄ I
j V̄ D

i = −κ2

ζ0 j

∞∑
n=0

∞∑
m=1

∞∑
k=0

Ai
mζ n+k

j

(
ζ ′

0i

)m

(
ζ0 j

)n
(−1)k(m + 1)k

k!Rk+m+1
i j

,

V̄ D
i V̄ D

k = −κ2
∞∑

n=1

∞∑
m=1

∞∑
k=0

∞∑
l=0

Ai
m Ai

nζ k+l
j

(
ζ ′

0i

)m+n

Rk+l+m+n+2
i j

(−1)k+l(m + 1)l(n + 1)k

k!l! .

If we integrate (22) with respect to ζ j around cylinder j , we see that all terms give a zero contribution,

Im = −iρ

2

[∫ (
V̄ T

j

)2
dζ j

]
= 0, (23)

where ρ denotes the mass density of the fluid.

3 An algorithm for calculating the velocity field

1. Input the positions of the centres of the cylinders,
(
x j , y j

)
, the radius of each cylinder, a j , j = 1, . . . , N , and

the initial position of the vortex, (x0, y0);
2. Take a truncation level, say, S = 20;
3. There are N ∗ S unknowns, Bs

l , l = 1, . . . , S, s = 1, . . . , N , to be determined. Form the matrices D and C

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D11
01 D12

01 · · · D1S
01 D11

02 D12
02 · · · D1S

02 · · · D1S
0S

D11
11 D12

11 · · · D1S
11 D11

12 D12
12 · · · D1S

12 · · · D1S
1S

...
...

...
...

...
...

...
... · · · ...

D11
(S−1)1 D12

(S−1)1 · · · D1S
(S−1)1 D11

(S−1)2 D12
(S−1)2 · · · D1S

(S−1)2 · · · D1S
(S−1)S

D21
01 D22

01 · · · D2S
01 D21

02 D22
02 · · · D2S

02 · · · D2S
0S

D21
11 D22

11 · · · D2S
11 D21

12 D22
12 · · · D2S

12 · · · D2S
1S

...
...

...
...

...
...

...
... · · · ...

D21
(S−1)1 D22

(S−1)1 · · · D2S
(S−1)1 D21

(S−1)2 D22
(S−1)2 · · · D2S

(S−1)2 · · · D2S
(S−1)S

...
...

...
...

...
...

...
... · · · ...

DN1
01 DN2

01 · · · DN S
01 DN1

02 DN2
02 · · · DN S

02 · · · DN S
0S

DN1
11 DN2

11 · · · DN S
11 DN1

12 DN2
12 · · · DN S

12 · · · DN S
1S

...
...

...
...

...
...

...
... · · · ...

DN1
(S−1)1 DN2

(S−1)1 · · · DN S
(S−1)1 DN1

(S−1)2 DN2
(S−1)2 · · · DN S

(S−1)2 · · · DN S
(S−1)S

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

CT = [
C1

0 C1
1 · · · C1

S−1 C2
0 C2

1 · · · C2
S−1 · · · C N

0 C N
1 · · · C N

S−1

]
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where

D js
nl = −δ

j,s
n+1,l

a2n+2
j

+ (−1)n

n!
s∑

k=1

N∑
i=1

(1 − δsi )
(
1 − δi j

) (−1)k−1

(k − 1)!
a2k

i (k + 1)n(l + 1)k−1

Rk+l
si R

n+k+1
i j

,

C j
n = −1

ζ
n+1
0 j

− (−1)n

n!
N∑

i=1

(
1 − δi j

) s∑
k=1

(k + 1)n)a2k
i

R
n+k+1
i j

1

ζ k
0i

;

4. Solve the matrix equation DB = C where

BT = [
B1

1 B2
1 · · · B N

1 B1
2 B2

2 · · · B N
2 · · · ] ;

5. Determine which of the cylinders’ centres,
(
x j , y j

)
, is closest to the observation point, z;

6. Calculate the velocity at the observation point, z, using the coordinate system of the cylinder determined at the
previous step,

V̄ T
j = V̄ I

j + V̄ D
j +

N∑
i=1(i �= j)

V̄ D
i ,

where

V̄ I
j = − iκ

z − z0
,

V̄ D
j = −iκ

∞∑
n=1

A j
n

(
ζ ′

0 j

)n

ζ n+1
j

,

V̄ D
i = −iκ

∞∑
n=1

Ai
n

(
ζ ′

0i

)n

ζ n+1
i

;

7. Increase the truncation level to S +1, repeat the steps 3 to 6. Calculate the relative error of the velocity obtained
by using truncation levels S and S + 1. If the convergence is sufficient, then stop, if not, continue increasing
the truncation level until the desired accuracy is achieved.

4 Numerical results and limiting cases

In order to obtain numerical values, first the infinite system (19) is truncated and then the standard LU decomposi-
tion is employed to determine the coefficients. The convergence characteristics of the infinite system is, generally
speaking, quite good and is studied in the following subsections. However, when the number of cylinders is large
and/or when one of the cylinders’ radii is large compared to the others, there is a problem of convergence. This
problem is tackled in a recent paper by Antoine et al. [18], where they suggest a fast preconditioned numerical
method. They conclude that, in general, the convergence is faster for the preconditioned algorithm.

We carry out the calculations using the coordinate system of a cylinder which is closest to the observation point.
The superscript j in coefficient A j

n represents the cylinder number. So, power series are valid locally and we divide
the fluid domain into regions, each of which has one cylinder at the centre. Therefore our “local” approach can be
applied to any arbitrary, complicated geometry.

4.1 Two-cylinder problem

The first configuration consists of a vortex placed at (0, 1.618) and two disks of unit radii; one placed at the origin,
another at (3, 0) (“Configuration 1”) (see Fig. 1). This configuration allows us to compare the results of this study
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x

Fig. 1 Velocity distribution around two cylinders with a vortex at (0, 1.618) with strength −0.418. Velocity vectors are scaled down
by the factor 1.3

with those of [9] where the same problem has been tackled in an annular region. The configuration considered here
can be conformally mapped onto the annular region by

ω = z − a

az − 1
,

where a =
1+c2−ρ2+

√(
(c+ρ2)

2−1
)(

(c−ρ2)
2−1

)
2c , ρ is the radius of the circle placed at c on the positive part of the

x-axis. The numerical comparison of the convergence of two results shown in Tables 1 and 2 indicates that the
“direct solution”, which is the one proposed in this paper, converges more slowly than the “indirect solution” of
Pashaev and Yilmaz [9]. In order to get 10−9 accuracy, the direct solution needs 50 terms, whereas the indirect
solution requires only 10 terms. This is expected since the indirect solution is especially designed for the annular
region whereas the direct solution can handle an arbitrary number of cylinders in two-dimensional space. Based on
Table 1, twenty terms were taken to calculate the velocity field in Fig. 1.

4.2 The point-island approximation

Next, we consider the case when the cylinders are far apart and the point vortex is far away; εR = max∀i, j
a j

|Ri j | < 1
2

and εv = max∀ j
a j

|ζ0 j | < 1 are small values. At leading order we get the following,

a2
j D js

0l ≈ −δ
j,s
1,l + O

(
ε3

R

)
,

a2
j C

j
0 ≈ −a jεv exp

(−iβ j
) + O

(
ε2

R

)
.

If εR and εv are of the same order or if εR is much smaller than εv , then B j
1 is by far the most important coefficient,

B j
1 = a jεv exp

(−iβ j
)
,

where −β j is the argument of the complex number ζ0 j . Thus, the total velocity near cylinder j is,

V̄ T
j = iκ

z − z0
− iκεv

N∑
i=1

ai

ζ 2
i

exp (−iβi ). (24)
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Table 1 Convergence of
the complex velocity at
z = (1.5, 0) in Fig. 1 for
various modes, s

s Direct solution Indirect solution

0 (0.13894587,−0.12880990) (0.10165966,−0.18257956)

1 (1.23144822 × 10−2,−0.18278211) (2.83025569 × 10−2,−0.23917957)

2 (9.87628883 × 10−3,−0.24458405) (2.58406346 × 10−2,−0.24024898)

3 (2.82691706 × 10−2,−0.24682966) (2.57877286 × 10−2,−0.24027159)

4 (2.84088388 × 10−2,−0.23889997) (2.57866022 × 10−2,−0.24027208)

5 (2.52694375 × 10−2,−0.23902426) (2.57865782 × 10−2,−0.24027209)

10 (2.57727429 × 10−2,−0.24027770) (2.57865777 × 10−2,−0.24027209)

15 (2.57866454 × 10−2,−0.24027225) (2.57865777 × 10−2,−0.24027209)

20 (2.57865796 × 10−2,−0.24027208) (2.57865777 × 10−2,−0.24027209)

50 (2.57865777 × 10−2,−0.24027209) (2.57865777 × 10−2,−0.24027209)

Table 2 Comparison of the
exact velocity magnitude
with that obtained by the
point-island approximation
at various points, z, in the
z-plane

z PIA ER Error

(1.5,0) 0.1575 0.2416 34.8

(1.5,1) 0.2410 0.2060 17.0

(1.5,1.5) 0.2778 0.2169 28.1

(1.5,2) 0.2653 0.2133 24.4

(1.5,3) 0.1874 0.1681 11.5

(1.5,4) 0.1309 0.1261 3.8

(1.5,5) 0.0987 0.0986 0.2

(1.5,10) 0.0968 0.0808 3.0

(1.5,20) 0.0214 0.0219 3.0

(1.5,100) 0.00042 0.00042 0.5

Equation 24 expresses that, when the cylinders and the point vortex are far away with respect to the largest radius,
then the total velocity is represented as a velocity due to a point vortex plus a velocity generated by dipoles placed
at the centre of each cylinder (the point-island approximation). This approximation was first suggested by Johnson
and McDonald [13] in which the effect of the approximation on the dynamics of two-dimensional vortices was
examined. The image vortex pair of equal but opposite strength we employ, is mathematically equivalent to a
dipole distribution of constant strength (equaling the vortex strength) on the line connecting the two vortices with
a direction perpendicular to that line. On a field point far away the image vortex pairs can thus be approximated by
single dipoles. The images and images of images can then even be summed and might be approximated by a single
dipole, the strength and direction of which can be calculated with the boundary conditions.

The mathematical justification of the approximation is given in this paper. The region of validity of this approx-
imation is established here by extensive numerical results. From (24) and (7) we see that, as the observation point
moves away from the cylinders, “the point-island approximation” should give good results. This is verified in Table 2.
The last column in Table 2 is the relative error in percentages and PIA stands for the point-island approximation
and ER for the exact result.

We can also observe that, as εR gets smaller relative to εv , that is, as the cylinders move far away from each
other but the point vortex is still close to one of the cylinders, the dipole approximation should give good results. In
order to verify this numerically, we consider a second geometry in which there is a cylinder at the origin with unit
radius but the second cylinder is at the position (0, 6), again with unit radius (Configuration 2). Our prediction is
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Table 3 Relative
percentage errors for the
magnitude of the velocity
obtained by the point-island
approximation in
Configurations 1 and 2; z is
the observation point

z Configuration 1 Configuration 2

(1.5,0) 34.8 27.5

(1.5,1) 17.0 1.4

(1.5,1.5) 28.1 7.0

(1.5,2) 24.4 7.4

(1.5,3) 11.5 7.1

(1.5,10) 3.0 0.9
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Fig. 2 Velocity distribution around four cylinders with a vortex at (0, 0) with strength −0.418

that the point-island approximation should give better results with Configuration 2 than with Configuration 1. This
is confirmed by Table 3.

Next, we consider an example of four disks placed at the corners of a square, which resembles the legs of a
Tension Leg Platform (TLP). This application can also be used to model flow around marine risers (see Fig. 2).

4.3 Vortex motion around N cylinders

Up to now, we have considered the velocity distribution at a fixed moment of time. Now we shall observe the motion
of a vortex in the time domain in which the vortex is allowed to move with the flow. Its motion is governed by
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Fig. 3 Trajectory of motion of a single vortex around two cylinders

ż0 = −iκ
N∑

j=1

∞∑
n=1

A j
n

(
ζ ′

0 j

)n

ζ n+1
0 j

= −iκ
N∑

j=1

∞∑
n=1

A j
n

(
a j

|ζ0 j |
)2n 1

ζ0 j
. (25)

If the cylinders and vortex are far away from each other, we have

ż0 = −iκεv

N∑
i=1

ai

(z0 − zi )
2 exp (−iβi ) (26)

by the point-island approximation (24). In order to solve the above nonlinear differential equations, the standard
Runge–Kutta method is used, and this was good enough for the configurations considered in this paper. However,
for more complicated geometries, adaptive stepsize control for Runge–Kutta may be necessary. The trajectory of
motion of a vortex around two cylinders is shown in Fig. 3, which is also given by Johnson and McDonald for
cylinders of differing radii. The trajectory of motion of a vortex around four cylinders placed at the vertices of a
square is interesting (see Fig. 4). We notice that the centre of the geometry is a stable centre point, whereas for two
cylinders, the midpoint of the cylinders is a saddle point (unstable). In both configurations, if the vortex is close
enough to one of the cylinders, it will rotate around that cylinder. In other words, the centre of any cylinder is a
centre point.

5 Conclusions

An analytical–numerical method has been developed, using complex analysis, to solve the hydrodynamic interaction
between an arbitrary number of cylinders and vortices. In this method the infinite power series within its domain of
convergence represents an analytic function of a complex variable. The evaluation of the analytic function at specific
points in the domain was carried out by taking a sufficient number of terms from the series to achieve a desired
accuracy. In this approach there is no approximation of the boundary or the data; the solution exactly satisfies the
boundary conditions at the exact boundary. The convergence of series (13) is not difficult to establish since the rate
test gives convergence in the region |ζ j | < |Ri j | or |z − z j | < |zi − z j |. However, the full system (14) includes
a double series, and it is not easy to establish a region of convergence in this case. This is why the convergence
properties of the solution have not been studied analytically but numerically. The convergence properties of the
infinite system used for determining the unknown coefficients is studied and found to be quite good. The domain
of convergence for the point-island approximation is also studied.
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Fig. 4 Trajectory of motion of a single vortex around four cylinders

Extension of the results of this paper to an arbitrary number of vortices is trivial if the vortices are fixed in the
plane (that is, the problem is solved for fixed moments of time). However, the motion of an arbitrary number of
vortices with an arbitrary number of fixed cylinders is not integrable and this is not the subject of this paper. As
is well known, in unbounded flow with more than N∗ = 3 vortices the problem is not integrable; moreover, the
introduction of boundaries into the fluid domain in general will reduce N∗ [19].
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