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Antimicrobial Activity of Lactoperoxidase System
Incorporated into Cross-Linked Alginate Films

FariH Y.G. YENER, FIGEN KOREL, AND AHMET YEMENICIOGLU

ABSTRACT: In this study, the antimicrobial effect of lactoperoxidase (LPS) incorporated alginate films was inves-
tigated on Escherichia coli (NRRL B-3008), Listeria innocua (NRRL B-33314), and Pseudomonas fluorescens (NRRL
B-253) in presence of different concentrations of H,O, (0.2, 0.4, and 0.8 mM) and KSCN (1, 2, and 4 mM). The incor-
poration of 70 nmol ABTS/min/cm? LPS into alginate films gave 0.66 to 0.85 nmol ABTS/min/cm? enzyme activity
at 0.2 to 0.8 mM H,O0, concentration range. The antimicrobial activity of LPS system on target bacteria changed ac-
cording to the concentrations of KSCN and H,0,. The growth of all tested bacteria was prevented for a 6-h period by
applying LPS system in presence of 0.4 or 0.8 mM H,0, and 4 mM KSCN. At 0.8 mM H,0, and 4 mM KSCN, the LPS
system also inhibited growth of L. innocua and P. fluorescens for a 24-h incubation period, whereas E. coli growth
could not be inhibited for 24 h under these conditions. At 0.2 mM H,0, and 1 to 4 mM KSCN, a considerable in-
hibitory effect was obtained only on P. fluorescens. The decreasing order of the resistance of studied bacteria to LPS
system is as follows: E. coli, L. innocua, and P. fluorescens. The developed antimicrobial system has a good potential
for use in meat, poultry, and seafood since alginate coatings are already used in these products. Further studies are
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needed to test the LPS incorporated edible films in real food systems.
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Introduction

Antimicrobial edible films and coatings have received atten-

tion since they have a good potential to delay microbial
spoilage of food and to reduce the risk of surface contamination
of food by pathogenic microorganisms (Quattara and others 2000;
Cagri and others 2002; Eswaranandam and others 2004). Due to
their greater acceptance by the growing “natural foods” market,
incorporation of biopreservatives, especially bacteriocins and an-
timicrobial enzymes, and plant extracts into edible films have
gained significant interest in the food industry (Hoover and
Steenson 1993; Dean and Zottola 1996; Delves-Broughton and
others 1998; Han 2000).

Lactoperoxidase (LPS) system is considered for use in food pack-
aging since it has a broad antimicrobial spectrum. The enzyme
shows bactericidal effect on Gram (-) bacteria and bacteriostatic
effect on Gram (4) bacteria (Seifu and others 2005). Also, it has an-
tifungal (Jacob and others 2000) and antiviral (Pakkanen and Aalto
1997; Seifu and others 2005) activities. LPS is an enzyme found in
the milk, saliva, and tear secreted in mammary, salivary, and lachry-
mal glands of mammals, respectively (Wolfson and Sumner 1993).
The LPS system consists of 3 components: LPS, thiocyanate, and
hydrogen peroxide (H,0;). The enzyme catalyzes the oxidation of
thiocyanate (SCN™) by use of H,O, and generates intermediate
antimicrobial products such as hypothiocyanite (OSCN™) and hy-
pothiocyanous acid (HOSCN). These highly reactive products in-
hibit microorganisms by the oxidation of sulphydryl (-SH) groups
in their enzyme systems and proteins (Kussendrager and van
Hooijdonk 2000). The structural damage of microbial cytoplasmic
membranes by oxidation of -SH groups is reported as the principal
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reason that causes the death of microbial cells (Reiter and Harnulv
1984; Kussendrager and van Hooijdonk 2000).

In the literature, there are different studies related to antimicro-
bial potential of LPS system against major food pathogenic bac-
teria. In these studies, antimicrobial activity of soluble LPS and
its components has been tested against Listeria monocytogenes,
Staphylococcus aureus, E. coli, Brucella melitensis, and Salmonella
enteritidis (Kennedy and others 2000; Seifu and others 2004; Touch
and others 2004). The soluble enzyme has also been tested in differ-
ent food systems to improve microbial quality of milk, cheese (Seifu
and others 2004, 2005), meat, and vegetable products (Kennedy and
others 2000; Elliot and others 2004; Touch and others 2004). The
concept of using LPS system in antimicrobial packaging is new. In
fact, the LPS and its components have only been incorporated into
edible whey protein films (Min and Krochta 2005; Min and others
2005a, 2005b). Recently, in our laboratories, the LPS has also been
incorporated into alginate films. The enzyme incorporated into
these edible films bound and immobilized effectively onto films fol-
lowing cross-linking and it shows appropriate stability and activity
at a broad temperature and pH range (Mecitoglu and Yemenicioglu
2007). In this study, the antimicrobial activity of LPS incorporated
into alginate films and its components has been tested on differ-
ent bacteria including E. coli, Listeria innocua, and Pseudomonas
fluorescens. The specific objectives of this research were to deter-
mine the effective concentrations of LPS components against the
test bacteria and to test the resistance of different bacteria against
the developed antimicrobial system supposed to be used in food
coating applications.

Materials and Methods

Materials

Toyopearl sulphopropyl (SP) cation-exchanger (SP-550C, fast
flow, size: 100 wm) was purchased from Supelco (Bellefonte,
Pa., U.S.A). Dialysis tubes (cut off: 12000 MW), dextran (from
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Leuconostoc mesenteroides, 73.200 MW), ABTS (2,2-azino-bis-(3-
ethylbenz-thiazoline-6-sulfonic acid)), and the sodium salt of al-
ginic acid (from Macrocystis pyrifera, viscosity of 2% solution at
25 °C is 3500 cp) were obtained from Sigma Chem. Co. (St. Louis,
Mo., U.S.A.). Rennet was purchased from ICN Biomedicals Inc.
(Aurora, Ohio, U.S.A.). Nutrient agar and nutrient broth were ob-
tained from Fluka (Spain). The microorganisms, E. coli (NRRL B-
3008), L. innocua (NRRL B-33314), and P, fluorescens (NRRL B-253),
were supplied from U.S. Department of Agriculture (USDA), Mi-
crobial Genomics and Bioprocessing Research Unit (Peoria, Ill,
U.SA).

Partial purification and preparation of LPS

The partial purification of LPS from bovine whey was con-
ducted with column chromatography by minor modification of the
method of Ye and others (2000). In this method, the LPS was pro-
duced from rennet whey of skimmed milk using Toyopearl sulpho-
propyl (SP) cation-exchange column (11.5 x 2.8 cm). The column
was equilibrated with 0.05 M sodium phosphate buffer at pH 6.5,
washed with 500 mL of the same buffer, and then eluted with a lin-
ear gradient of 600 mL of 0 to 0.55 M NaCl (prepared in the sodium
phosphate buffer). The LPS active fractions eluted between 0.3 and
0.4 M NaCl concentration were detected qualitatively by using the
reaction mixture given in soluble enzyme activity determination.

The enzyme was prepared according to the method of Mecitoglu
and Yemenicioglu (2007). For this purpose, LPS active fractions
were pooled and dialyzed (cut off: 12.000 MW) for 24 h at 4 °C.
The dialyzed extract was then lyophilized in a Labconco freeze-
dryer (FreeZone 61, Kansas City, Mo., U.S.A.), after dissolving 250 to
300 mg dextran in it as a supporting agent. The enzyme prepared
by this method and stored at —18 °C maintained almost 70% of
its activity for at least 2 mo (Mecitoglu and Yemenicioglu 2007).
The activity of lyophilized LPS was determined before each film
preparation.

Preparation of alginate films

The alginate films were prepared according to the method given
by Mecitoglu and Yemenicioglu (2007). Briefly, 0.2 to 0.6 mg of
lyophilized LPS preparation were dissolved per gram of 2% (w/v)
alginic acid solution by mixing slowly with a magnetic stirrer. The
concentration of LPS preparation was selected carefully to set en-
zyme activity of all films at 70 nmol ABTS/min/cm?. Ten-gram
portions of this solution were then spread onto glass Petri dishes
(9.5 cm in diameter). The Petri dishes were covered with a tent and
dried at room temperature for 3 d. To cross-link the dried films,
0.8 mL of 0.3 M CaCl, was pipetted onto the Petri dishes. The films
were peeled from the Petri dishes and washed with 10 mL ster-
ile deionized water for 15 s to remove the excessive CaCl,, which
causes precipitations during LPS activity measurements. The aver-
age thickness of a cross-linked and dried control and LPS incorpo-
rated films prepared by this method was determined by a scanning
electron microscope (Philips XL 30S FEG, FEI Co., Eindhoven, The
Netherlands) as 13.05 and 18.87 um, respectively.

Determination of soluble enzyme activity in LPS
preparations

The soluble LPS activity of enzyme preparations was determined
spectrophotometrically by using a Shimadzu (Model 2450, Tokyo,
Japan) spectrophotometer equipped with a constant temperature
cell holder working at 30 °C. Before activity determination, the
lyophilized LPS was dissolved in distilled water. The reaction mix-
ture consisted of 2.3 mL of 0.65 mM ABTS prepared in 0.1 M sodium
phosphate buffer at pH 6, 0.1 mL of enzyme solution, and 0.1 mL
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of 0.2 mM H,0; solution. All components of the reaction mixture
were brought to 30 °C before mixing. The absorbance was moni-
tored at 412 nm for 5 min. The enzyme activity was calculated from
the slope of the initial portion of absorbance against time curve and
expressed as amount of ABTS oxidized per minute per milligram
of LPS preparation. The molar extinction coefficient of ABTS at
412 nm was 32400 per M/cm (Touch and others 2004). The average
of the 3 measurements was used to calculate enzyme activity.

Determination of soluble or bound LPS activity
in films

To determine the soluble LPS activity in the films, cross-linked
alginate films incorporated with LPS were placed into glass Petri
dishes containing 50 mL of cold deionized water (4 °C). The Petri
dishes, covered with parafilm to prevent evaporation, were incu-
bated at 4 °C for 24 h and stirred at 200 rpm using a magnetic stirrer.
The deionized water was then tested for residual enzyme activity. To
increase the sensitivity of the enzyme activity test, the standard re-
action mixture was changed to 2.2 mL of 0.65 mM ABTS prepared in
0.1 M sodium phosphate buffer at pH 6, 0.2 mL of deionized water
obtained from the test medium, and 0.1 mL of 0.4 mM H,0, solu-
tion. However, in this study, no soluble LPS activity was determined
in the alginate films.

To determine the activity of bound LPS in the alginate films,
the cross-linked and washed (15 s in 10 mL sterile deionized wa-
ter) films were carefully halved with a clean razor. A film half was
then placed into a glass Petri dish containing 23 mL of 0.65 mM
ABTS solution prepared in 0.1 M sodium phosphate buffer at pH 6.0
and 2 mL of 0.2, 0.4, or 0.8 mM H,O, solution. The solutions were
brought to 30 °C before placing the film into the Petri dishes. The
Petri dishes were incubated at 30 °C under continuous stirring at
200 rpm with a magnetic stirrer. The activity monitored by measur-
ing the reaction mixture absorbance at 412 nm at different time in-
tervals was determined from the slope of the initial linear portion of
absorbance against time curve. The measurements were performed
for the remaining half of the films and the average of 2 measure-
ments was considered to calculate the activity. The enzyme activity
was expressed as amount of ABTS oxidized per minute per square
centimeter of the films.

Antimicrobial activity of LPS system

The bacterial strains, E. coli (NRRL B-3008), L. innocua (NRRL
B-33314), and P, fluorescens (NRRL B-253), were maintained in nu-
trient broth containing 15% glycerol at —80 °C prior to the analyses.
During activation of bacteria, E. coli and L. innocua were incubated
using nutrient broth at 37 °C for 16 to 18 h, whereas P. fluorescens
in nutrient broth was incubated at 26 °C for 16 to 18 h. All bacte-
ria reached the stationary phase under these conditions (data not
shown).

The cross-linked alginate films incorporated with LPS (or lack-
ing LPS for controls) were prepared for the test by washing with
25-mL sterile deionized water for 15 s and cutting into 1.3-cm di-
ameter discs using a sterilized cork borer under aseptic conditions.
The discs were placed into test tubes containing nutrient broth
(3 mL), 1 of the cultures (0.5 mL), 1, 2, or 4 mM KSCN (0.1 mL),
and 0.2, 0.4, or 0.8 mM H,0, (0.1 mL). Sterile distilled water
(0.1 mL) was used instead of KSCN and/or H,O, in some reac-
tion mixtures lacking these reactants. The initial number of differ-
ent bacteria in reaction mixtures changed between 3 and 4 logo
CFU/mL. After preparation of reaction mixtures, tubes inoculated
with E. coli or L. innocua were incubated at 37 °C for 24 h, whereas
tubes inoculated with P fluorescens were incubated at 26 °C for
24 h. The microbial growth in the tubes was enumerated on
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nutrient agar by taking samples from reaction mixtures at 0, 6,
and 24 h of incubation by using pour-plate method. The duplicate
plates for each dilution were incubated at 37 °C for 24 h for E. coli, at
37 °Cfor 48 h for L. innocua, and at 26 °C for 48 h for P, fluorescens.
The microbial counts were calculated as CFU per milliliter (N). The
results of antimicrobial tests were expressed by plotting log N¢/N,
against incubation period of reaction mixtures (hours).

Data analysis

Statistical analysis was performed using MINITAB® release 13
(Minitab Inc., State College, Pa., U.S.A.). The data for LPS activity
and the changes in microbial counts during 24 h of incubation were
analyzed using analysis of variance (ANOVA) and Tukey’s HSD sig-
nificance test. Significance was accepted at P < 0.05.

Results and Discussion

LPS activity and concentrations of other components
of antimicrobial system

In this study, the lyophilized LPS was incorporated into algi-
nate films to exploit a naturally occurring antimicrobial mecha-
nism. The results of our previous findings showed tight binding
of lyophilized LPS in alginate films unless its incorporated con-
centration exceeded 700 pug/cm? (Mecitoglu and Yemenicioglu
2007). Thus, the level of LPS incorporated was maintained below
600 pg/cm? to prevent its solubilization from the films. The bind-
ing of LPS to alginate films and lack of its soluble form in films was
also confirmed in this study by conducting soluble enzyme activ-
ity measurements following incubation of films in distilled water
at 4 °C for 24 h. The polymeric chains of alginate can form nega-
tive charges by ionization of their carboxylic acid groups and LPS
has a very high pl value (9.6). Thus, it is proposed that the positive
charges of LPS formed under close to neutral conditions of film-
making caused binding of the enzyme to the film matrix. The LPS
was prepared with dextran. Thus, the H-binding of this polysaccha-
ride to LPS and alginate could also make a contribution to the bind-
ing of enzyme (Mecitoglu and Yemenicioglu 2007).

The bound and retained activity in alginate films incorporated
with 70 nmol ABTS/min/cm? LPS was determined at H,O, con-
centrations of 0.2, 0.4, or 0.8 mM (Figure 1). The results revealed
that the activity of LPS did not change significantly (P > 0.05) at the
studied concentration range of H,O,. However, a slight reduction
in average enzyme activity at 0.4 and 0.8 mM suggested a possible
inhibitory effect of H,O, on LPS. This result complies with that of
Fonteh and others (2005) who reported substrate inhibitory activity
of H>O, on LPS above 0.2 mM concentration. In the literature, the
H,0, concentrations used to investigate antimicrobial activity of
LPS changed between 0.25 and 0.5 mM (Zapico and others 1998;
Jacob and others 2000; Garcia-Graells and others 2003). It seems
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Figure 1 —Immobilized LPS activity of cross-linked algi-
nate films at different H,0, concentrations.

that the higher concentrations of H,O, have been preferred due to
the rapid degradation of H,O, by the LPS used in tests and other
H,0, decomposing factors such as bacterial enzyme systems and
reducing compounds in the test medium.

The range of KSCN concentrations applied in this study (1 and
4 mM) was selected from 8 different concentrations between 0.1
and 40 mM with a preliminary test by considering minimum
amounts of this chemical necessary for consumption of > 90% of
0.4 mM H,0, (H,0; concentration was determined by semiquan-
titative test papers, Merck, Darmstadt, Germany) in a reaction mix-
ture containing LPS incorporated discs and E. coli culture within
24 h of incubation at 37 °C.

Antimicrobial activity of LPS system

The antimicrobial activity of LPS system employed in presence
0f 0.2, 0.4, or 0.8 mM H,0, and 4 mM KSCN was seen in Figure 2A.
The LPS system caused low inhibitory effect on growth of E. coli in
presence of 0.2 mM H,0, and 4 mM KSCN. However, a significant
inhibitory effect on this bacterium was observed at 6 h of incuba-
tion when H,0, was increased to 0.4 or 0.8 mM in presence of 4 mM
KSCN. In all reaction mixtures, the inhibitory effect of LPS system
on E. coli exhausted when incubation periods were extended to
24 h. Figure 2B shows the antimicrobial effect of LPS system on E.
coliin presence of 0.2 mM H,0; and 1 or 2 mM KSCN. Under these
conditions, the LPS system did not show a considerable antimicro-
bial activity on E. coli, and interestingly it became more effective
with 1 mM KSCN than 2 mM KSCN at the end of 6-h incubation. It
seems that the low concentration of H,O, and KSCN controlled the
rate of enzymatic transformation and prevented the rapid exhaus-
tion of formed antimicrobial metabolites.

Figure 3A shows the antimicrobial activity of LPS system on L.
innocua at 0.2 to 0.8 mM H,0, and 4 mM KSCN concentrations.
Similar to results obtained for E. coli, the LPS system was not very
effective on L. innocua in presence of 0.2 mM H,0, and 4 mM
KSCN. The LPS system prevented the growth of L. innocua for a 6-
h period at 0.4 mM H,0, and 4 mM KSCN concentrations, but the
growth of bacteria under these conditions could not be prevented
at the end of 24 h of incubation. The elevation of H»O, concentra-
tion to 0.8 mM at the same KSCN concentration became very effec-
tive on inhibition of L. innocua by reducing and keeping its counts
below the initial counts for a 24 h period. This result clearly showed
the greater inhibitory effect of LPS system on L. innocua than E.
coli at highest H,0, and KSCN concentrations. On the other hand,
in presence of 0.2 mM H,0; and 1 or 2 mM KSCN, the LPS system
showed low inhibitory effect on growth of L. innocua (Figure 3B).

The effect of LPS system on P, fluorescens was given in Figure 4A.
The growth of P fluorescens was inhibited by the LPS system for a
6-h incubation period in presence of 0.2, 0.4, or 0.8 mM H,0; and
4 mM KSCN. The LPS system employed in presence of 0.2 mM H,0,
and 4 mM KSCN could not prevent growth of P fluorescens at the
end of 24 h. However, LPS system employed in presence of 0.4 or
0.8 mM H,0, at the same KSCN concentration delayed and pre-
vented the growth of P fluorescens at the end of 24 h, respectively.
In presence of 0.2 mM H,0, and 1 or 2 mM KSCN, the LPS sys-
tem showed an inhibitory effect and maintained the P, fluorescens
counts below initial count for a 6-h period (Figure 4B). However,
at these concentrations, the effect of LPS system exhausted and it
showed no antimicrobial activity at the end of 24 h. On the other
hand, itis interesting to note that the counts of P, fluorescensin reac-
tion mixtures lacking H,O, but containing other components of re-
action mixtures were higher than those of the control and reaction
mixture containing only LPS. This occurred due to the activatory
effect of KSCN on P, fluorescens and it was confirmed by repeated
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tests with same reaction mixtures (data not given). Thus, it is clear In the literature, there are very few reports related to use
that the use of LPS system against this bacterium needs applica- of LPS system in food antimicrobial packaging. The en-
tion of high H,0, concentrations to prevent excessive amounts of zyme system was first incorporated into whey protein films

untransformed KSCN. by Min and others (2005a). These researchers supported the
A Reaction mixtures _Figure 2—Antimi_crobia_l effect of LPS_
incorporated alginate films on E. coli
—e— control (without LPS) —&— LPSonly in reaction mixtures having different
A . H,0, (A) and KSCN (B)
—&— LPS with 4 mM KSCN —0— LPSwith02mMH,0,and 4mMKSCN o gncentrations (in both Figure 2A and
—O— LPS with 0.4 mM H,0,and 4 mM KSCN —A— LPS with 0.8 mM H,0,and 4mMKSCN 2B, statistically significant
differences were observed regarding
7 the incubation time effect [P < 0.05],
except between 0 and 6 h of
incubation for reaction mixture
6 1 shown with legend of — {—in B).
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lactoperoxidase-KSCN-H, 0, system with glucose oxidase-glucose
system to generate additional H,O, for the LPS. The LPS sys-
tem was then activated to form the antimicrobial metabolites
and the reaction mixture was incorporated into whey protein
isolate films. These films completely inhibited S. enterica and
E. coli O157:H7, inoculated onto agar either before placing the

film disc or after placing the film discs. It was also reported in an-
other study by the same research group that the whey protein iso-
late films incorporated with LPS metabolites were also effective
on L. monocytogenes and the developed system successfully ex-
tended the shelf life of smoked refrigerated salmon (Min and others
2005b).

Reaction mixtures
—m— LPSonly

A

—@— control (without LPS)
—A— LPS with4 mM KSCN

—0O— LPS with 0.4 mM H,0, and 4 mM KSCN

—o— LPS with 0.2 mM H,0, and 4 mM KSCN
—A— LPS with 0.8 mM H,0, and 4 mM KSCN

Figure 3 — Antimicrobial effect of LPS
incorporated alginate films on

L. innocua in reaction mixtures
having different H,0, (A) and KSCN
(B) concentrations (in both Figure 3A
and 3B, statistically significant
differences were observed regarding

—O— LPS with 2mM KSCN

7 the incubation time effect [P < 0.05],
except between 0 and 6 h of
6 - incubation for reaction mixture
shown with legend of =0 —in A).
5
4 4
Z 31
~
Z 21
N
Q 1 4
—
0 1 —— T 7 T T T T
| W 25 30
2
-3
Time (h)
B Reaction mixtures
—&— control (without LPS) —m— LPSonly
—A— LPS with | mM KSCN —O— LPS with 0.2 mM H,0, and 1 mM KSCN

—A— LPS with 0.2 mM H,0, and 2 mM KSCN
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Conclusions
he antimicrobial system formed by LPS incorporated alginate
films, KSCN and H, 0, showed antimicrobial activity on differ-
ent tested bacteria. The decreasing order of the resistance of bac-
teria to LPS system at the studied conditions is as follows: E. coli,
L. innocua, and P, fluorescens. The duration of antimicrobial effect
of LPS system depends on activity of enzyme and initial concen-

trations of H,O, and KSCN. During antimicrobial tests, the LPS
has been employed at high incubation temperatures necessary for
the bacterial growth, but this accelerated the enzyme activity and
formation and degradation of reactive antimicrobial metabolites.
Thus, the duration of antimicrobial effect of the developed sys-
tem would be extended when the alginate films will be applied to
refrigerated foods. Most of the patented applications of alginate

A Reaction mixtures

—&@— control (without LPS)
—4A— LPS with 4 mM KSCN

—— LPS only

—0O— LPS with 0.4 mM H,0, and 4 mM KSCN

7

—<O— LPS with 0.2 mM H,0, and 4 mM KSCN
—A— LPSwith 0.8 mM H,0, and 4 mM KSCN

Figure 4 — Antimicrobial effect of LPS
incorporated alginate films on

P. fluorescens in reaction mixtures
having different H,0, (A) and KSCN
(B) concentrations (in both Figure 4A
and 4B, statistically significant
differences were observed regarding
the incubation time effect [P < 0.05],

6 4

w SN (O}
1 1 1

Log Nt/ No
—_ [V}

except between 0 and 6 h of
incubation for reaction mixtures
shown with legends of — O —in

A,— ¢—-and - {—in B, and between 6
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mixture shown with legend of = A =in
A).

Time (h)
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films have been developed for coating of meat, poultry, and seafood
(Lindstrom and others 1992). Thus, the LPS incorporated antimi-
crobial films have a good potential to find food applications. Fur-
ther studies are needed to test the LPS incorporated edible films in
real food systems.
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