
Applied Mathematics and Computation 209 (2009) 425–429
Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate/amc
Analytic study on two nonlinear evolution equations
by using the (G0/G)-expansion method
_Ismail Aslan a,*, Turgut Özis� b

a Department of Mathematics, Izmir Institute of Technology, 35430 Gulbahce, Urla, _Izmir, Turkey
b Department of Mathematics, Ege University, 35100 Bornova, _Izmir, Turkey

a r t i c l e i n f o a b s t r a c t
Keywords:
(G0/G)-expansion method
Modified Camassa–Holm equation
Two-dimensional Korteweg–de-Vries–
Burgers equation
Exact solutions
Traveling wave solutions
0096-3003/$ - see front matter � 2008 Elsevier Inc
doi:10.1016/j.amc.2008.12.064

* Corresponding author.
E-mail address: ismailaslan@iyte.edu.tr (_I. Aslan)
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1. Introduction

In the nonlinear sciences, it is well known that many nonlinear partial differential equations (PDEs) are widely used to
describe the complex phenomena. So, the powerful and efficient methods to find analytic solutions of nonlinear equations
have drawn a lot of interest by a diverse group of scientists, for example, Painleve expansion method [1], Jacobi elliptic func-
tion method [2], Hirota’s bilinear method [3], the Sine–Cosine function method [4], the Tanh–Coth function method [5], the
Exp-function method [6] and so on.

Recently, Wang et al. [7] proposed the (G0/G)-expansion method and showed that it is powerful for finding analytic solu-
tions of PDEs. Next, Bekir [8] applied the method to some nonlinear evolution equations gaining traveling wave solutions.
Later, Zhang et al. [9] have generalized the method to obtain non-traveling wave solutions and coefficient function solutions
and Zhang et al. [10] further extended the method to solve an evolution equation with variable coefficients.

In this paper, we choose the modified Camassa–Holm (mCH) equation and the two-dimensional Korteweg–de-Vries–Bur-
gers (2D-KdVB) equation to illustrate the (G0/G)-expansion method. In the literature, researchers have obtained explicit exact
solutions to the mCH equation independently by various methods. To mention, Wazwaz [11,12] successfully examined sol-
itary wave solutions to the mCH equation by means of the tanh method, the sine–cosine method, the extended tanh method,
etc. Elcin [13] studied the mCH equation using the Exp-function method and revealed new solutions. There are many studies
for the 2D-KdVB equation, and some profound results have been established by the authors [14–20] using the well-known
techniques; the extended tanh method, the homotopy perturbation method, the Adomian decomposition method, the first
integral method, etc.

2. Description of the (G0/G)-expansion method

We suppose that the given nonlinear partial differential equation for u(x,t) to be in the form
Pðu;ux;ut ;uxx;uxt ;utt ; . . .Þ ¼ 0; ð1Þ
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where P is a polynomial in its arguments. The essence of the (G0/G)-expansion method can be presented in the following
steps:

Step 1. Seek traveling wave solutions of Eq. (1) by taking u(x,t) = U(n), n = x � ct, and transform Eq. (1) to the ordinary dif-
ferential equation
QðU;U0;U00; . . .Þ ¼ 0; ð2Þ

where prime denotes the derivative with respect to n.

Step 2. If possible, integrate Eq. (2) term by term one or more times. This yields constant(s) of integration. For simplicity, the

integration constant(s) can be set to zero.
Step 3. Introduce the solution U(n) of Eq. (2) in the finite series form
UðnÞ ¼
XN

i¼0

ai
G0ðnÞ
GðnÞ

� �i

; ð3Þ

where ai are real constants with aN – 0 to be determined, N is a positive integer to be determined. The function G(n)
is the solution of the auxiliary linear ordinary differential equation

G00ðnÞ þ kG0ðnÞ þ lGðnÞ ¼ 0; ð4Þ

where k and l are real constants to be determined.

Step 4. Determine N. This, usually, can be accomplished by balancing the linear term(s) of highest order with the highest

order nonlinear term(s) in Eq. (2).
Step 5. Substituting (3) together with (4) into Eq. (2) yields an algebraic equation involving powers of (G0/G). Equating the

coefficients of each power of (G0/G) to zero gives a system of algebraic equations for ai, k, l and c. Then, we solve the
system with the aid of a computer algebra system (CAS), such as Mathematica, to determine these constants. On the
other hand, depending on the sign of the discriminant D = k2 � 4l, the solutions of Eq. (4) are well known to us. So,
as a final step, we can obtain exact solutions of the given Eq. (1).

3. Applications

In this section, we will demonstrate the (G0/G)-expansion method on two of the well-known nonlinear evolution equa-
tions, namely, the mCH equation and the 2D-KdVB equation.

3.1. The mCH equation

Let us consider the following celebrated mCH equation in the form:
ut � uxxt þ 3u2ux ¼ 2uxuxx þ uuxxx: ð5Þ
Eq. (5) models shallow water waves, and is well known to be integrable, possessing multi-soliton solutions with peaks, so-
called multi-peakons, see [11–13] and references therein. To look for the traveling wave solution of Eq. (5), we make the
transformation u(x,t) = U(n), n = x � ct, where c is the wave speed. Then, after integrating the obtained ODE once and setting
the integration constant to zero, we get
cðU00 � UÞ þ U3 � UU00 � 1
2
ðU0Þ2 ¼ 0; ð6Þ
where prime denotes the derivative with respect to n. Now, we make an ansatz (3) for the solution of Eq. (6). Balancing the
terms U3 and UU

00
in Eq. (6) yields the leading order N = 2. Therefore, we can write the solution of Eq. (6) in the form
U ¼ a0 þ a1
G0

G

� �
þ a2

G0

G

� �2

: ð7Þ
By (4) and (7) we derive that
U0ðnÞ ¼ �2a2
G0

G

� �3

� ða1 þ 2a2kÞ
G0

G

� �2

� ða1kþ 2a2lÞ
G0

G

� �
� a1l; ð8Þ

U00ðnÞ ¼ 6a2
G0

G

� �4

þ ð2a1 þ 10a2kÞ
G0

G

� �3

þ ð8a2lþ 3a1kþ 4a2k
2Þ G0

G

� �2

þ ð6a2klþ 2a1lþ a1k
2Þ G0

G

� �
þ 2a2l2 þ a1kl: ð9Þ
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Substituting (7)–(9) into (6), setting the coefficients of (G0(n)/G(n))i(i = 0,1, . . . ,6) to zero, we obtain the following under-
determined system of algebraic equations for a0, a1, a2, c, k and l:
G0

G

� �0

: �ca0 þ a3
0 þ ckla1 � kla0a1 �

1
2
l2a2

1 þ 2cl2a2 � 2l2a0a2 ¼ 0;

G0

G

� �1

: �ca1 þ ck2a1 þ 2cla1 � k2a0a1 � 2la0a1 � 3a2
0a1 � 2kla2

1 þ 6ckla2 � 6kla0a2 � 4l2a1a2 ¼ 0;

G0

G

� �2

: 3cka1 � 3ka0a1 �
3
2

k2a2
1 � 3la2

1 þ 3a0a2
1 � ca2 þ 4ck2al2þ 8cla2 � 4k2a0a2

� 8la0a2 þ 3a2
0a2 � 11kla1a2 � 4l2a2

2 ¼ 0;

G0

G

� �3

: 2ca1 � 2a0a1 � 4ka2
1 þ a3

1 þ 10cka2 � 7k2a1a2 � 14la1a2 þ 6a0a1a2 � 10kla2
2 ¼ 0;

G0

G

� �4

: �5
2

a2
1 þ 6ca2 � 6a0a2 � 17ka1a2 þ 3a2

1a2 � 6k2a2
2 � 12la2

2 þ 3a0a2
2 ¼ 0;

G0

G

� �5

: �10a1a2 � 14ka2
2 þ 3a1a2

2 ¼ 0;

G0

G

� �6

: �8a2
2 þ a3

2 ¼ 0:
Solving the above system with the aid of Mathematica, we have the following three sets of solutions:
First solution set : a0 ¼
a2

1

32
; a2 ¼ 8; k ¼ a1

8
; l ¼ a2

1

256
; c ¼ 0; ð10Þ

Second solution set : a0 ¼ 1þ a2
1

32
; a2 ¼ 8; k ¼ a1

8
; l ¼ 64þ a2

1

256
; c ¼ 1; ð11Þ

Third solution set : a0 ¼
�64þ a2

1

32
; a2 ¼ 8; k ¼ a1

8
; l ¼ �64þ a2

1

256
; c ¼ 2: ð12Þ
Substituting the solutions (10)–(12) into (7), we obtain the hyperbolic function traveling wave solutions
u1ðx; tÞ ¼ 2 �1þ
C1 cosh 1

2 ðx� 2tÞ þ C2 sinh 1
2 ðx� 2tÞ

C1 sinh 1
2 ðx� 2tÞ þ C2 cosh 1

2 ðx� 2tÞ

 !2
2
4

3
5; ð13Þ
where C1 and C2 are arbitrary constants; the trigonometric function traveling wave solutions
u2ðx; tÞ ¼ 1þ 2
�C1 sin 1

2 ðx� tÞ þ C2 cos 1
2 ðx� tÞ

C1 cos 1
2 ðx� tÞ þ C2 sin 1

2 ðx� tÞ

 !2

; ð14Þ
where C1 and C2 are arbitrary constants; the rational function solutions
u3ðx; tÞ ¼
8C2

2

ðC1 þ C2xÞ2
; ð15Þ
where C1 and C2 are arbitrary constants.
In particular, if we take C2 – 0;C2

1 < C2
2 above, then the solutions (13) and (14) become
u1ðx; tÞ ¼ �2 sec h2 1
2
ðx� 2tÞ þ n0

� �
; n0 ¼ tanh�1 C1

C2

� �
; ð16Þ

u2ðx; tÞ ¼ 1þ 2cot2 1
2
ðx� tÞ þ n0

� �
; n0 ¼ tan�1 C1

C2

� �
: ð17Þ
Further, taking n0 = 0 in (16) and (17) recovers the bell-shaped solitary solutions and the periodic solutions obtained in
[11,12]. The rational function solution (15) has not been reported previously to the best of our knowledge.

3.2. The 2D-KdVB equation

A second instructive model is the following 2D-KdVB equation in the form:
ðut þ uux þ auxxx � buxxÞx þ cuyy ¼ 0; ð18Þ
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where a, b, and c are nonzero arbitrary constants. Eq. (18) models waves of fluid in an elastic tube, liquid with small bubbles
and turbulance, see [14–20] and references therein. Letting u(x,y, t) = U(n), n = x + ly � ct in Eq. (18), after integrating the ob-
tained ODE twice, setting the integration constant to zero, we get
aU00 � bU0 þ 1
2

U2 þ ðcl2 � cÞU ¼ 0: ð19Þ
Balancing the terms U
00

and U2 in Eq. (19) yields the leading order N = 2. Therefore, we can write the solution of Eq. (19) in the
form (7). Then, substituting (7) and its derivatives (8) and (9) into Eq. (19), and setting the coefficients of (G0(n)/
G(n))i(i = 0,1, . . . ,4) to zero, we obtain the following under-determined system of algebraic equations for a0, a1, a2, l, c, k
and l:
G0

G

� �0

: �ca0 þ l2ca0 þ
a2

0

2
þ bla1 þ akla1 þ 2al2a2 ¼ 0;

G0

G

� �1

: �ca1 þ l2ca1 þ bka1 þ ak2a1 þ 2ala1 þ a0a1 þ 2bla2 þ 6akla2 ¼ 0;

G0

G

� �2

: ba1 þ 3aka1 þ
a2

1

2
� ca2 þ l2ca2 þ 2bka2 þ 4ak2a2 þ 8ala2 þ a0a2 ¼ 0;

G0

G

� �3

: 2aa1 þ 2ba2 þ 10aka2 þ a1a2 ¼ 0;

G0

G

� �4

: 6aa2 þ
a2

2

2
¼ 0:
Solving the above system, we have the following two sets of solutions:
First solution set : a0 ¼ �
a2

1

48a
; a2 ¼ �12a; k ¼ �12b� 5a1

60a
; l ¼ 24ba1 þ 5a2

1

2880a2 ; c ¼ �6b2

25a
þ l2c; ð20Þ

Second solution set : a0 ¼
576b2 � 25a2

1

1200a
; a2 ¼ �12a; k ¼ �12b� 5a1

60a
; l ¼ 24ba1 þ 5a2

1

2880a2 ; c ¼ 6b2

25a
þ l2c:

ð21Þ
Substituting the solutions (20) into (7), we obtain the hyperbolic function traveling wave solutions
u�ðx; y; tÞ ¼ �
3b2

25a
1�

C1 cosh 1
10

b
a

�� ��nþ C2 sinh 1
10

b
a

�� ��n
C1 sinh 1

10
b
a

�� ��nþ C2 cosh 1
10

b
a

�� ��n
 !2

; n ¼ xþ ly� �6b2

25a
þ l2c

 !
t;
where ab > 0 in the solution function u+(x,y, t), ab < 0 in the solution function u-(x,y, t), C1 and C2 are arbitrary constants. Also,
substituting the solutions (21) into (7), we obtain the hyperbolic function traveling wave solutions
u�ðx; y; tÞ ¼ � 3b2

25a
�4þ 1�

C1 cosh 1
10

b
a

�� ��nþ C2 sinh 1
10

b
a

�� ��n
C1 sinh 1

10
b
a

�� ��nþ C2 cosh 1
10

b
a

�� ��n
 !2

2
4

3
5; n ¼ xþ ly� 6b2

25a
þ l2c

 !
t;
where ab > 0 in the solution function u+(x,y, t), ab < 0 in the solution function u�(x,y, t), C1 and C2 are arbitrary constants.
In particular, if we take C2 – 0; C2

1 < C2
2 above, then the solution functions become
u�ðx; y; tÞ ¼ �
3b2

25a
1� tanh

1
10

b
a

����
����nþ n0

� �� �2

; n ¼ xþ ly� �6b2

25a
þ l2c

 !
t; ð22Þ

u�ðx; y; tÞ ¼ � 3b2

25a
�4þ 1� tanh

1
10

b
a

����
����nþ n0

� �� �2
" #

; n ¼ xþ ly� 6b2

25a
þ l2c

 !
t; ð23Þ
where n0 ¼ tanh�1 C1
C2

� �
. Further, taking n0 = 0 in (22) and (23), the solitary solutions obtained in [17] can be recovered by the

solution functions u+(x,y, t) and u+(x,y, t).

4. Conclusion

In this paper, an implementation of the (G0/G)-expansion method is given by applying it to two nonlinear equations to
illustrate the validity and advantages of the method. The exact traveling wave solutions being determined in this study
are more general, and it is not difficult to arrive at some known analytic solutions for certain choices of the parameters
C1 and C2. Compared with the methods used in [1–6], one can see that the (G0/G)-expansion method is not only simple
and straightforward, but also avoids tedious calculations. This verifies that the method can be used for many other nonlinear
evolution equations.
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