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ABSTRACT

EXACTLY SOLVABLE GENERALIZED QUANTUM HARMONIC
OSCILLATORS RELATED WITH THE CLASSICAL ORTHOGONAL

POLYNOMIALS

In this thesis, we study exactly solvable generalized parametric oscillators related

with the classical orthogonal polynomials of Hermite, Laguerre and Jacobi type. These

quantum models with specific damping term, frequency and external forces are solved

using Wei-Norman Lie algebraic approach. The exact form of the evolution operator is

explicitly obtained in terms of two linearly independent homogeneous solutions and a par-

ticular solution of the corresponding classical equation of motion. Then, time evolution

of wave functions and Glauber coherent states are constructed. Probability densities, ex-

pectation values and uncertainty relations are found and their properties are investigated

according to the influence of the external forces. Besides, some examples with explicit

solutions are given and their plots are constructed for the probability densities and uncer-

tainty relations.
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ÖZET

KLASİK ORTOGONAL POLİNOMLARLA İLGİLİ TAM
ÇÖZÜLEBİLEN GENELLEŞTİRİLMİŞ KUANTUM HARMONİK

OSİLATÖRLER

Bu tezde Hermite, Laguerre ve Jacobi tipi klasik ortogonal polinomlarla ilişkili

tam çözülebilen genelleştirilmiş parametrik osilatörler çalışılmıştır. Bu özel sönümleyici

terimli, frekanslı ve dış kuvvetli kuantum modeller Wei-Norman Lie cebri yaklaşımı kul-

lanılarak çözülmüştür. Evrim operatörünün tam formu buna karşılık gelen hareket den-

kleminin homojen iki lineer bağımsız ve bir özel çözümü cinsinden açıkça elde edilmiştir.

Daha sonra, dalga fonksiyonlarının ve Glauber eş uyumlu durumlarının zamanla evrimi

inşa edilmiştir. Olasılık yoğunlukları, beklenen değerler ve belirsizlik ilişkileri bulunmuş

ve bunların özellikleri dış kuvvetlerin etkisine göre incelenmiştir. Bunun yanı sıra, açık

çözümlü bazı örnekler verilmiş ve bunların grafikleri olasılık yoğunlukları ve eş uyumlu

durumları için oluşturulmuştur.
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CHAPTER 1

INTRODUCTION

The standard harmonic oscillator is one of the most important physical models.

In this model, a particle is subject to the restoring force proportional to the distance.

For more realistic situation, one can consider the damped quantum oscillator with an

addition of a frictional forcing term. It can be formulated as a quantum model with time

dependent mass (Caldirola, 1941), (Kanai, 1948). Time evolution of quantum systems

with time-variable parameters has been studied in many works (Lewis, & Riesenfeld,

1969), (Khandekar, & Lawande, 1979), (Pedrosa, 1997), (Dantas, & Pedrosa, & Baseia,

1992), (Fernandez, 1989), (Yeon, & Pandey, 1997), (Song, 1999).

The quantum harmonic oscillator with explicitly time-dependent Hamiltonian is

one of the most fundamental models. It has applications in various areas of physics such as

quantum optics (Colegrave & Abdalla, 1981), (Pedrosa, & Rosas, & Guedes), quantum

fluid dynamics (Nassar, 1984), ion-traps (Malkin, & Manko, &Trifonov, 1979), and

cosmology (Sakharov, 1965). It is a useful model also in quantum information (Schleich,

& Walther, 2007) and quantum computation (Sarandy, & Duzzioni, & Serra, 2011). As

known, the Caldirola-Kanai quantum oscillator has exact solutions and is used to study

dissipation in quantum mechanics (Dekker, 1981). To obtain quantum states of a time-

dependent oscillator, several methods have been developed, such as path integral method

(Feynman, 1951), the Lewis-Riesenfeld time invariant method (Lewis, & Riesenfeld,

1969), the Wei-Norman dynamical symmetry method (Wei, & Norman, 1963), etc.

Quantum systems with the generalized quadratic Hamiltonian and time-variable

parameters can be solved using the several approaches given above and formal solutions

are obtained. But exact solutions are investigated mostly for the driven Caldirola-Kanai

oscillator. In (Büyükaşık & Pashaev& Ulaş-Tigrak, 2009) exactly solvable models with

specific damping and frequency are introduced in terms of the quantum Sturm-Liouville

problems for the classical orthogonal polynomials. The aim of this thesis is to provide

exact explicit solutions of the general quadratic oscillator models related with the clas-

sical orthogonal polynomials. For this, we use Wei-Norman algebraic approach (Wei,

& Norman, 1963), also known as evolution operator approach. This technique is useful

for solving evolution problems whose Hamiltonian is a linear combination of generators

of a finite dimensional Lie group, so that the evolution operator can be represented as a
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product of exponential operators. The thesis is organized in the following way:

In Chapter 2 we give the definitions of some basic tools and their properties which

are useful for our further studies. Also, we mention about the fundamental postulates of

quantum mechanics and some of their consequences.

In Chapter 3 we introduce the IVP for the time-dependent Schrödinger equation

related with the standard Hamiltonian Ĥ0 = p̂2/2m + (mω2
0/2)q̂2. To solve this problem,

we first find the eigenstates of Ĥ0. Then we give the solution of the IVP in terms of these

states. Also, we recall the definitions of coherent states for standard harmonic oscillator

and review some of their properties.

In Chapter 4 we introduce the quantum evolution problem related with the general

quadratic Hamiltonian with time-dependent parameters. Using Wei-Norman algebraic

approach, we obtain the evolution operator explicitly, in terms of two linearly independent

homogeneous solutions and a particular solution of the corresponding classical equation

of motion. Then, using the exact evolution operator we find the corresponding wave

functions and probability densities. Also, we obtain time evolution of Glauber coherent

states under the generalized evolution operator. We show that time-evolved coherent states

of the generalized harmonic oscillator are the eigenstates of time-dependent annihilation

operator. Furthermore, we obtain the position and momentum operators in Heisenberg

picture, and find the expectation values and uncertainty relation in wave functions and

coherent states.

In Chapter 5 we introduce the generalized oscillator models related with the clas-

sical orthogonal polynomials. The original frequency ω2(t) of these models depends on

the eigenvalues of the related Sturm-Liouville problem. Moreover, the mixed term pa-

rameter B(t) modifies the original frequency and by the special choice of this parameter,

we obtain the modified frequency Ω2(t) in terms of different eigenvalues of the same

Sturm-Liouville problem. Then, we define the Hermite type generalized quantum oscil-

lator including also the linear external terms. We find the solution of the corresponding

classical equation of motion with specific initial conditions as a linear combination of a

Hermite polynomial and a confluent hypergeometric function of the first-kind. We also

give examples with explicit solutions of Hermite type general oscillator with and without

linear external terms. And we discuss their properties according to the influence of the ex-

ternal terms. Illustrative plots are constructed for the probability densities and uncertainty

relations.

In Chapter 6 we formulate the Laguerre type generalized quantum oscillator. By

the special choice of the mixed term parameter B(t), the corresponding classical equation

2



of motion is a forced Laguerre differential equation. Assuming the total force of this

equation is continuous for t > 0, solution of the quantum oscillator is written in terms of

two linearly independent homogeneous solutions and a particular solution satisfying some

initial conditions. Furthermore, we give some examples of Laguerre type generalized

oscillator with exact solutions and their plots are analyzed according to the influence of

the linear external terms.

In Chapter 7 we define Jacobi type generalized quantum oscillator. Here, we treat

explicitly two special cases, the Legendre generalized oscillator and the first-kind Cheby-

shev oscillator. For the Legendre type oscillator, we obtain the homogeneous solution

of the classical equation of motion, which is a forced Legendre differential equation, as

a linear combination of a Legendre polynomial and a Legendre function of the second

kind. For the fist-kind Chebyshev oscillator, we introduce the homogenous solution of

the classical oscillator as a linear combination of Chebyshev polynomials of the first and

second kind. And for each oscillator type, we give examples with exact explicit solutions

and discuss their properties.

In Conclusion we summarize the main results obtained in this thesis.

3



CHAPTER 2

PRELIMINARIES

This chapter consists of basic concepts about Hilbert spaces, linear operators and

quantum mechanics which are used in the next chapters.

2.1. Hilbert Space

Definition 2.1 Let X be a vector space over the field F.

(a) A mapping ⟨.|.⟩ : X × X → F is called an inner product in X if ∀x, y, z ∈ X and

∀α ∈ F the following conditions are satisfied:

(i) ⟨x|x⟩ ≥ 0 and ⟨x|x⟩ = 0 if and only if x = 0;

(ii) ⟨αx + y|z⟩ = α⟨x|z⟩ + ⟨y|z⟩;

(iii) ⟨x|y⟩ = ⟨y|x⟩∗ (* denotes the complex conjugate).

(b) A vector space with an inner product defined on it is called an inner product space.

(c) A complete inner product space is called a Hilbert space.

Proposition 2.1 An inner product space is a normed space with a norm defined by

∥x∥ =
√
⟨x|x⟩.

Theorem 2.1 (Cauchy-Schwarz inequality) For any two elements x and y of an inner

product space X over F, we have

|⟨x|y⟩| ≤ ∥x∥ ∥y∥,

where the equality |⟨x|y⟩| = ∥x∥ ∥y∥ holds if and only if x and y are linearly dependent.

Definition 2.2 Let X be an inner product space. Then

4



(a) the vectors x and y in X are called orthogonal vectors if ⟨x|y⟩ = 0,

(b) the sequence {xn}∞n=1 in X is called orthonormal sequence if

⟨xi|x j⟩ =

 0 if i , j,

1 if i = j.

Definition 2.3 An orthonormal sequence {xn}∞n=1 in a Hilbert space H is called an or-

thonormal basis if ⟨x|xn⟩ = 0 for all n ∈ N implies x = 0.

Definition 2.4 An orthonormal sequence {xn}∞n=1 in a Hilbert spaceH is called complete

(total) sequence if the set

span {xn}∞n=1 =

 n∑
k=1

αkxk

∣∣∣ n ∈ N, αk ∈ C


is dense inH , that is if span {xn} = H .

Proposition 2.2 Let {xn}∞n=1 be an orthonormal sequence in a Hilbert space H . Then

{xn}∞n=1 is an orthonormal basis forH if and only if {xn}∞n=1 is a complete sequence forH .

Theorem 2.2 Let {xn}∞n=1 be an orthonormal sequence in a Hilbert space H . Then the

following statements are equivalent:

(a) {xn}∞n=1 is an orthonormal basis forH;

(b) for every x ∈ H , one has the unique representation

x =
∞∑

n=1

⟨x|xn⟩xn;

(c)
∞∑

n=1

|⟨x|xn⟩|2 = ∥x∥2 (Parseval’s Identity).

Definition 2.5 The space L2(R) is the space of all complex-valued functions f (x) for

which

|| f ||2 :=
( ∫
| f (x)|2dx

)1/2

< ∞.

5



Then the function f (x) is said to be square integrable. For any two functions f (x), g(x) in

L2(R) the inner product is defined by

⟨ f |g⟩ :=
∫ ∞

−∞
f (x)g(x)dx.

The space L2(R) is a Hilbert space, that is, it is complete inner product space.

2.2. Linear Operators

Definition 2.6 Let X and Y be two normed spaces. An operator T̂ : X → Y is said to be

linear if for all x1, x2 ∈ X and α, β ∈ F,

T̂ (αx1 + βx2) = αT̂ (x1) + βT̂ (x2).

Definition 2.7 Let X and Y be normed spaces and T̂ : X → Y be a linear operator. Then,

T̂ is a bounded operator if there exists a real number c > 0 such that

∥T̂ x∥ ≤ c∥x∥ for all x ∈ D(T̂ ).

Theorem 2.3 Let H1 and H2 be two Hilbert spaces over the field F. Then for every

linear bounded operator T̂ : H1 → H2 there exists a unique linear bounded operator

T̂ † : H2 → H1 such that

⟨T̂ x|y⟩ = ⟨x|T̂ †y⟩ ∀x ∈ H1, ∀y ∈ H2 and ∥T̂ †∥ = ∥T̂∥.

Definition 2.8 Let T̂ be a bounded linear operator on a Hilbert space H . The operator

T̂ † : H → H defined by

⟨T̂ x|y⟩ = ⟨x|T̂ †y⟩ ∀x, y ∈ H

is called the adjoint operator of T̂ and if T̂ = T̂ †, then T̂ is called self-adjoint.

Theorem 2.4 Let T̂ be a bounded self-adjoint operator on a Hilbert spaceH . Then,

6



(a) all eigenvalues of T̂ are real,

(b) eigenvectors corresponding to distinct eigenvalues are orthogonal.

Definition 2.9 A bounded linear operator Û : H → H on a Hilbert space H is said to

be unitary if Û is one-to-one, onto and Û† = Û−1, or equivalently

Û†Û = ÛÛ† = Î.

Definition 2.10 An operator T̂ : X → Y, where X and Y are normed spaces, is called an

unbounded operator if there exists a sequence {xn} ∈ D(T̂ ) with ∥xn∥ = 1 for all n ∈ N

which implies ∥T̂ xn∥ → ∞.

Definition 2.11 An operator T̂ defined in a Hilbert space H is called densely defined if

its domain is a dense subset ofH , that is,D(T̂ ) = H .

Definition 2.12 (Adjoint of a densely defined operator)

Let T̂ be a densely defined operator in a Hilbert space H . The adjoint T̂ † of T is the

operator defined on the set of all y ∈ H for which ⟨T̂ x|y⟩ is a continuous functional on

D(T̂ ) and such that

⟨T̂ x|y⟩ = ⟨x|T̂ †y⟩ for all x ∈ D(T̂ ) and y ∈ D(T̂ †).

Definition 2.13 Let T̂ be a densely defined linear operator in a Hilbert spaceH . Then,

(a) T̂ is called symmetric (Hermitian) if

⟨T̂ x|y⟩ = ⟨x|T̂ y⟩ ∀x, y ∈ D(T̂ ).

In other words, T̂ is symmetric if T̂ ⊂ T̂ †, which means T̂ = T̂ † on D(T̂ ), and

D(T̂ ) ⊂ D(T̂ †),

(b) T̂ is called self-adjoint if T̂ = T̂ †, which means ⟨T̂ x|y⟩ = ⟨x|T̂ y⟩ ∀x ∈ D(T̂ ), ∀y ∈
D(T̂ †) andD(T̂ ) = D(T̂ †).
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2.3. The Fundamental Postulates of Quantum Mechanics

In this section, we present the basic principles of quantum mechanics as postulates

and some of their consequences.

Postulate 1 The state of a quantum mechanical system is completely specified by a wave

function Ψ(x, t) in a Hilbert space.

According to the probabilistic interpretation of the wave function, the probability

that a particle lies in the volume element dσ located at x at time t is

ρ(x, t)dσ = Ψ∗(x, t)Ψ(x, t)dσ = |Ψ(x, t)|2dσ,

and since the probability of a particle being somewhere in space is one, we have

∫ ∞

−∞
|Ψ(x, t)|2dσ = 1,

which in fact is the normalization of Ψ(x, t), that is, ∥Ψ(x, t)∥2 = 1.

The function ρ(x, t) = |Ψ(x, t)|2 is called the probability density function.

Postulate 2 To every physical observable in quantum mechanics, there corresponds a

linear Hermitian operator Â in the Hilbert space. Conversely, to each such operator in

the Hilbert space there corresponds some physical observable.

As a consequence of this postulate, a quantum observable is mathematically rep-

resented by a linear Hermitian operator on a Hilbert space and there is one such operator

for each quantum observable such as the position, the momentum, the energy, and so on.

Some examples of Hermitian operators are:
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Observable Classical quantities Quantum operators

Position x x̂ (multiplication by x)

Momentum p = mv p̂ = −i~ ∂
∂x

Potential Energy V(x) V̂(x) (multiplication by V(x))

Kinetic Energy T = 1
2mv2 T̂ = p̂2

2m = −
~2

2m
∂2

∂x2

Hamiltonian H(x, p) = p2

2m + V(x) Ĥ(x, p) = − ~2

2m
∂2

∂x2 + V̂(x)

Table 2.1. Physical quantities in classical mechanics and the corresponding quantum
mechanical operators.

Postulate 3 In any measurement of an observable associated with the operator Â, the

only values that will ever be observed are the eigenvalues λn, that satisfy the eigenvalue

equation

Âψn = λnψn, n = 0, 1, 2, . . . .

This postulate asserts that if the system is in an eigenstate ψn of Â with eigenvalue

λn, then any measurement of the observable A will always yield the value λn.

Although measurement will always yield an eigenvalue λn, the initial state does

not have to be an eigenstate of Â, so we do not know which eigenvalue it is. What we can

predict is the expectation value of Â, which is defined as follows:

Definition 2.14 The expectation value ⟨Â⟩ of an observable operator Â in the state ψ of

a physical system is defined by

⟨Â⟩ψ = ⟨ψ|Â|ψ⟩.

Note that, since expectation value must be real, it shows why Â must be Hermitian.

As a consequence of the third postulate, if {ψn} is a complete set of eigenfunctions

corresponding to Â such that ⟨ψn|ψm⟩ = δnm and ||ψn(x)|| = 1 for all n = 0, 1, 2, . . . ,

then {ψn} forms an orthonormal basis in the associated Hilbert space. So any arbitrary

state ψ(x, t) can be expanded in terms of eigenvectors {ψn} as ψ(x, t) =
∑∞

n=1 cnψn(x) =∑∞
n=1⟨ψ|ψn⟩ψn. Then from Parseval’s identity, we have

∑∞
n=1 |cn|2 =

∑∞
n=1 |⟨ψ|ψn⟩|2 = ||ψ||2 =

1. In that case;

⟨Â⟩ψ =
⟨
ψ

∣∣∣ Â
∣∣∣ψ⟩ = ⟨ ∞∑

n=1

cnψm

∣∣∣∣∣∣∣
∞∑

n=1

cnÂψn

⟩
=

⟨ ∞∑
n=1

cnψm

∣∣∣∣∣∣∣
∞∑

n=1

cnλnψn

⟩
=

∞∑
n=1

λn|cn|2.
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The probability of observing the eigenvalue λn is ρn = |cn|2 = |⟨ψ|ψn⟩|2, if Â is in the state

ψ.

This postulate also implies that, after the measurement of Â the wave function

ψ collapses into the eigenstate {ψn} corresponding to λn. Thus the act of measurement

affects the state of the system.

In terms of the expectation value of Â,we define the mean square deviation, (∆Â)ψ,

which measures the dispersion around the mean value ⟨Â⟩ψ.

Definition 2.15 The mean square deviation (or uncertainty) (∆Â)ψ is defined by the

square root of the expectation (mean) value of
(
Â − ⟨Â⟩ψ

)2 in the state ψ in which ⟨Â⟩ψ is

computed.

Theorem 2.5 For any Hermitian operator Â and any normalized state ψ, we have

(a) (∆Â)2
ψ = ⟨Â2⟩ψ − ⟨Â⟩2ψ,

(b) ⟨Â2⟩ψ = ||Âψ||2.

Proof

(a) By using the fact that the states ψ are normalized, we obtain

(∆Â)2
ψ = ⟨(Â − ⟨Â⟩ψ)2⟩ψ = ⟨ψ|(Â − ⟨Â⟩ψ)2ψ⟩ = ⟨ψ|(Â2 − 2Â⟨Â⟩ψ + ⟨Â⟩2ψ)ψ⟩

= ⟨ψ|Â2ψ⟩ − 2⟨Â⟩ψ⟨ψ|Âψ⟩ + ⟨Â⟩2⟨ψ|ψ⟩ = ⟨Â2⟩ψ − ⟨Â⟩2ψ.

(b) Since Â is Hermitian,

⟨Â2⟩ψ = ⟨ψ|Â2ψ⟩ = ⟨Âψ|Âψ⟩ = ||Âψ||2.
�

Definition 2.16 Let Â and B̂ be two linear operators on a Hilbert space H, then the

commutator of these operators is defined by

[Â, B̂] = ÂB̂ − B̂Â.
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From the definition, we have [x̂, p̂] = i~, where x̂ is the position operator, p̂ =

−i~(∂/∂x) is the momentum operator and ~ is the Planck constant.

2.4. The Heisenberg Uncertainty Principle

Theorem 2.6 (Uncertainty Principle) Let Â and B̂ be two Hermitian operators on a

Hilbert space H, then for any state vector ψ

(∆Â)ψ(∆B̂)ψ ≥
1
2
| ⟨[Â, B̂]⟩ |.

Proof We have (∆Â)ψ = ∥(Â−⟨Â⟩)ψ∥, and (∆B̂)ψ = ∥(B̂−⟨B̂⟩)ψ∥. So using these we get

(∆Â)ψ(∆B̂)ψ = ∥(Â − ⟨Â⟩)ψ∥∥(B̂ − ⟨B̂⟩)ψ∥

≥ | ⟨(Â − ⟨Â⟩)ψ|(B̂ − ⟨B̂⟩)ψ⟩ |, by Cauchy-Schwarz inequality,

= | ⟨ψ|(Â − ⟨Â⟩)(B̂ − ⟨B̂⟩)|ψ⟩ |

≥ |Im ⟨ψ|(Â − ⟨Â⟩)(B̂ − ⟨B̂⟩)|ψ⟩ |

=
1
2
| ⟨ψ|(Â − ⟨Â⟩)(B̂ − ⟨B̂⟩) − (B̂ − ⟨B̂⟩)(Â − ⟨Â⟩)|ψ⟩ |

=
1
2
| ⟨ψ|[Â, B̂]|ψ⟩ | = 1

2
| ⟨[Â, B̂]⟩ |.

�

Corollary 2.1 For any state vector ψ, the Heisenberg uncertainty principle states that

(∆x̂)ψ(∆ p̂)ψ ≥
~

2
.

Proof Since x̂ and p̂ are Hermitian operators and since [x̂, p̂] = i~, we can apply the

Uncertainty principle to these operators and obtain

(∆x̂)ψ(∆ p̂)ψ ≥
1
2
| ⟨[x̂, p̂]⟩ | = ~

2
.

�

Definition 2.17 States which the Heisenberg uncertainty principle holds with equality

are called the minimum uncertainty states.
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Postulate 4 If a physical system is not disturbed by any experiment, the Hamiltonian

operator Ĥ determines the time evolution of the state vector of the system Ψ(x, t) through

the partial differential equation

i~
∂Ψ

∂t
= ĤΨ(x, t).

This is called the time-dependent Schrödinger equation, and represents the funda-

mental equation of motion in quantum mechanics first discovered by Erwin Schrödinger

(1887-1961).

2.5. The Evolution Operator

If we consider the Schrödinger equation

 i~ ∂
∂tΨ(x, t) = Ĥ(t)Ψ(x, t),

Ψ(x, t0) = Ψ0(x),
(2.1)

the wave function solution Ψ(x, t) of this problem can be obtained by applying an evolu-

tion operator Û(t, t0) to the initial state Ψ(x, t0), that is

Ψ(x, t) = Û(t, t0)Ψ(x, t0). (2.2)

As we know, a state must be normalized, that is ∥Ψ(x, t)∥ = 1 for all t. Therefore, normal-

ization does not depend on time and this implies that

1 = ⟨Ψ(x, t)|Ψ(x, t)⟩ = ⟨Ψ(x, t0)|Û†Û |Ψ(x, t0)⟩ = ⟨Ψ(x, t0)|Ψ(x, t0)⟩ ,

so that Û†Û = Î. Thus, we conclude that Û(t, t0) is a unitary operator. Also, the operator

Û(t, t0) does not depend on Ψ(x, t0). Consequently,

Ψ(x, t2) = Û(t2, t1)Ψ(x, t1) = Û(t2, t1)Û(t1, t0)Ψ(x, t0) = Û(t2, t0)Ψ(x, t0).
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Therefore, the evolution operator has the property

Û(t2, t0) = Û(t2, t1)Û(t1, t0). (2.3)

From the equation (2.2), we have that Û(t, t) = Î. So, Û(t, t0)Û(t0, t) = Û(t0, t)Û(t, t0) = Î,

which means Û−1(t, t0) = Û(t0, t).

Replacing t2 by t and t1 by t − δt, where δt is infinitesimal in (2.3), we obtain

Û(t, t0) = Û(t, t − δt)Û(t − δt, t0). (2.4)

Now, Û(t, t − δt) is an infinitesimal unitary operator, which may be written in the form

Û(t, t − δt) = 1 − i
~
δtĤ(t), (2.5)

Substituting (2.5) into (2.4), we get

Û(t, t0) = Û(t − δt, t0) − i
~
δtĤ(t)Û(t − δt, t0)

or

lim
δt→0

1
δt

[
Û(t, t0) − Û(t − δt, t0)

]
=

1
i~

Ĥ(t)Û(t, t0).

Thus, we obtain the corresponding operator equation

 i~ ∂
∂t Û(t, t0) = Ĥ(t)Û(t, t0),

Û(t0, t0) = Î.
(2.6)

We note that, if the Hamiltonian is time-independent, then Û(t, t0) = e−
i
~ (t−t0)Ĥ, and

Ψ(x, t) = e−
i
~ (t−t0)ĤΨ(x, t0). But if the Hamiltonian depends explicitly on time, then we

have Û(t, t0) = e−
i
~

∫ t
t0

Ĥ(t′)dt′
.
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2.6. Lie Group and Lie Algebra

Definition 2.18 A group G is a set together with a binary operation ⋆ : G ×G → G with

the following properties:

a) g ⋆ (h ⋆ k) = (g ⋆ h) ⋆ k for all g, h, k ∈ G, that is, ⋆ is associative.

b) There exists a unique element e ∈ G called the identity such that e ⋆ g = g ⋆ e = g.

c) For every element g ∈ G, there exists an element g−1, called the inverse of g, such

that g ⋆ g−1 = g−1 = g−1 ⋆ g = e.

If ⋆ is commutative, i.e. g ⋆ h = h ⋆ g for all g, h ∈ G, then G is called an abelian group.

Definition 2.19 An algebra A over C(or R) is a vector space over C(or R), together

with a binary operationA×A → A, called multiplication. The image of (T, S ) ∈ A×A
under this mapping is denoted by TS , and it satisfies the following two relations

T (aS + bU) = aTS + bTU,

(aS + bU)T = aS T + bUT

for all T, S ,U ∈ A and a, b ∈ C(or R).

Definition 2.20 A Lie group G is a differentiable manifold endowed with a group struc-

ture such that the group operation G × G → G and the map G → G given by g → g−1

are differentiable. If the dimension of the underlying manifold is r, we say that G is an

r-parameter Lie group.

Definition 2.21 A Lie algebra is a vector space over some field F (R or C) together with

a binary operation [., .] : L × L → L, called the Lie bracket, which has the following

properties:

a) Bilinearity

[aT + bS ,U] = a[T,U] + b[S ,U],

[U, aT + bS ] = a[U,T ] + b[U, S ]

b) Jacobi identity [
[T, S ],U

]
+

[
[U,T ], S

]
+

[
[S ,U],T

]
= 0
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c) Antisymmetry

[T, S ] = −[S ,T ]

for all a, b ∈ F and T, S ,U ∈ L.

Example 2.1 The operators Ê1 = iq, Ê2 = ∂/∂q, Ê3 = iÎ generate Heisenberg-Weyl

algebra with the given commutation relations:

[Ê1, Ê2] = −Ê3, [Ê1, Ê3] = 0, [Ê2, Ê3] = 0.

Example 2.2 The operators

K̂− = −
i
2
∂2

∂q2 , K̂+ =
i
2

q2, K̂0 =
1
2

(q
∂

∂q
+

1
2

)

generate su(1,1) algebra with commutation relations

[K̂−, K̂+] = 2K̂0, [K̂+, K̂0] = −K̂+, [K̂−, K̂0] = K̂−.

Example 2.3 All the operators Ê1, Ê2, Ê3, K̂−, K̂+ and K̂0 generate a Lie algebra with

commutation relations given in the previous two examples and

[Ê1, K̂−] = −Ê2, [Ê1, K̂+] = 0, [Ê1, K̂0] = −1
2

Ê1,

[Ê2, K̂−] = 0, [Ê2, K̂+] = Ê1, [Ê2, K̂0] =
1
2

Ê2,

[Ê3, K̂−] = 0, [Ê3, K̂+] = 0, [Ê3, K̂0] = 0.
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CHAPTER 3

STANDARD HARMONIC OSCILLATOR

In this chapter, we find the eigenstates of the standard Hamiltonian Ĥ0 = p̂2/2m+

(mω2
0/2)q̂2 and we give the solution of the IVP for the time-dependent Schrödinger equa-

tion corresponding to Ĥ0. Then coherent states of the standard harmonic oscillator (Glauber

coherent states) and their properties are examined.

3.1. Solution of the IVP for the Time-Dependent Schrödinger

Equation

We consider the IVP for the time-dependent Schrödinger equation

 i~ ∂
∂tΨ(q, t) = Ĥ0Ψ,

Ψ(q, t0) = Ψ0(q), −∞ < q < ∞,
(3.1)

related with the standard Hamiltonian

Ĥ0 = −
~2

2m
∂2

∂q2 +
1
2

mω2
0q̂2, (3.2)

where m is the constant mass and ω2
0 is the constant frequency. Since Ĥ0 does not depend

on time, then we can solve the IVP (3.1) by the method of separation of variables. So we

look for solutions of the form

Ψ(q, t) = φ(q) f (t), (3.3)

where φ is a function of q alone, and f is a function of t alone. Substituting the equation

(3.3) into the Schrödinger equation, we obtain

i~φ
d f
dt
= − ~

2

2m
d2φ

dq2 f +
mω2

0

2
q2φ f .
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Dividing through by φ f :

i~
1
f

d f
dt
= − ~

2

2m
1
φ

d2φ

dq2 +
mω2

0

2
q2. (3.4)

Now, the left side of the equation (3.4) is a function of t alone, and the right side is a

function of q alone. This is true only if both sides equal to a constant, E. Then, we get

f (t) = e−
i
~E(t−t0). (3.5)

Also, we have

− ~
2

2m
d2φ

dq2 +
mω2

0

2
q2φ = Eφ,

which is in fact an eigenvalue equation for Ĥ0, that is Ĥ0φk = Ekφk.

The eigenstates of the standard Hamiltonian can be determined using the ladder

operators given by

â =

(mω0

2~

)1/2
q̂ + i

(
1

2mω0~

)1/2

p̂, (3.6)

â† =
(mω0

2~

)1/2
q̂ − i

(
1

2mω0~

)1/2

p̂. (3.7)

Here, â is called the annihilation operator, and â† is called the creation operator. The

Hamiltonian (3.2) can be expressed in terms of these operators as

â†â =
mω0

2~
q̂2 +

1
2mω0~

p̂2 +
i

2~
[q̂, p̂] =

1
~ω0

Ĥ0 −
1
2
.

Thus, Ĥ0 = ~ω0

(
â†â + 1/2

)
. The operators â, â† and Ĥ0 satisfy the following commuta-

tion relations which will be useful for us,

[â, â†] = 1, [â, Ĥ0] = ~ω0â, [â†, Ĥ0] = −~ω0â†.

Imagine that φk(q) is the k-th eigenstate of Ĥ0 corresponding to eigenvalue Ek, then we
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claim that â†φk(q) is also an eigenstate:

Ĥ0(â†φk) = (â†Ĥ0 + ~ω0â†)φk = â†(Ekφk) + ~ω0â†φk = (Ek + ~ω0)â†φk.

This proves our claim, that â†φk(q) is indeed an eigenstate of Ĥ0 corresponding to eigen-

value Ek+~ω0. Likewise, we find that âφk(q) yields Ĥ0(âφk) = (Ek−~ω0)â†φk. Repeatedly

applying creation and annihilation operators to eigenstates of Ĥ0, we can generate new

eigenstates, with â† raising the energy, â lowering it and the change in energy is always

~ω0. Because of our choice of potential, the energy must be positive, so there must be a

lower limit on the energy, such that âφ0(q) = 0. Then â†âφ0 =
(
Ĥ0/(~ω0) − 1/2

)
φ0 = 0,

that is Ĥ0φ0 = (~ω0/2)φ0. Therefore, the minimum energy of the standard harmonic os-

cillator is (~ω0)/2. Additionally, for normalized eigenstates {φk}, k = 0, 1, 2, . . . , of the

Hamiltonian (3.2) we find the following relations

âφk =
√

kφk−1, â†φk =
√

k + 1φk+1, â†âφk = kφk.

The normalized eigenstates of the standard harmonic oscillator are found by start-

ing with the ground state âφ0(q) = 0, such as

âφ0(q) =
√mω0

2~
q̂ + i

√
1

2mω0~
p̂
φ0(q) =


√

mω0

2~
q +

√
~

2mω0

∂

∂q

φ0(q) = 0.

Solving this first order differential equation results in the following expression for the

ground state φ0(q) = N0e−(mω0)/(2~)q2
. By doing normalization,

1 = ∥φ0(q)∥2 = |N0|2
∫ ∞

−∞
e−

mω0
~ q2

dq,

we can find N0 = (mω0/π~)1/4 . So the ground state of the standard harmonic oscillator is

φ0(q) =
(mω0

π~

)1/4
e−

mω0
2~ q2

. (3.8)
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Therefore, other states are constructed by applying the raising operator to state (3.8) as

follows

φk(q) = (â†)kφ0(q) =
(mω0

π~

)1/4

√

mω0

2~
q −

√
~

2mω0

∂

∂q


k

e−
mω0
2~ q2

.

Substituting
√

(mω0)/~q = ξ, we obtain φk(q) = Nke−ξ
2/2eξ

2/2 (ξ − d/dξ)k e−ξ
2/2, where

eξ
2/2(ξ − d/dξ)ke−ξ

2/2 = Hk(ξ) represents the k-th order Hermite polynomial and Nk is

the normalization constant that can be found as Nk = (2kk!)−1/2 (mω0/π~)1/4 . Hence, the

normalized eigenstates of the Hamiltonian (3.2) are

φk(q) =
1
√

2kk!

(mω0

π~

)1/4
e−

mω0
2~ q2

Hk

(√
mω0

~
q
)
, k = 0, 1, 2, · · · , (3.9)

corresponding to eigenvalues Ek = (k + 1/2)~ω0.

Proposition 3.1 The ground state wave function of the standard harmonic oscillator rep-

resents the minimum uncertainty state.

Proof Using the relations q̂ =
√
~/(2mω0)(â + â†), p̂ = −i

√
(mω0~)/2(â − â†), and

the fact that the wave functions are orthonormal, we find the following expectation values

⟨q̂⟩0 = ⟨φ0|q̂|φ0⟩ =

√
~

2mω0
⟨φ0|â + â†|φ0⟩ = 0,

and

⟨ p̂⟩0 = ⟨φ0| p̂|φ0⟩ = −i

√
mω0~

2
⟨φ0|â − â†|φ0⟩ = 0.

Furthermore, we compute

⟨q̂2⟩0 = ⟨φ0|q̂2|φ0⟩ =
~

2mω0
⟨φ0|â2 + ââ† + â†â + (â†)2|φ0⟩

=
~

2mω0
⟨φ0|2â†â + 1|φ0⟩ =

~

2mω0
,

⟨ p̂2⟩0 = ⟨φ0| p̂2|φ0⟩ = −
mω0~

2
⟨φ0|â2 − ââ† − â†â + (â†)2|φ0⟩

= −mω0~

2
⟨φ0| − (2â†â + 1)|φ0⟩ =

mω0~

2
.
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Now, the uncertainties in q̂ and p̂ are as follows:

(∆q̂)2
0 = ⟨q̂2⟩0 − ⟨q̂⟩20 =

~

2mω0
, (∆p̂)2

0 = ⟨ p̂2⟩0 − ⟨ p̂⟩20 =
mω0~

2
.

Therefore, the Heisenberg uncertainty principle is (∆q̂)0(∆p̂)0 = ~/2, which proves the

proposition. �

Proposition 3.2 The wave functions φk(q) (k , 0), of the standard harmonic oscillator

are not minimum uncertainty wave functions.

Proof Since the wave functions are orthonormal, we obtain that

⟨q̂⟩k = ⟨φk|q̂|φk⟩ =

√
~

2mω0
⟨φk|â + â†|φk⟩

=

√
~

2mω0

(√
k ⟨φk|φk−1⟩ +

√
k + 1 ⟨φk|φk+1⟩

)
= 0,

⟨ p̂⟩k = ⟨φk| p̂|φk⟩ = −i

√
mω0~

2
⟨φk|â − â†|φk⟩

= −i

√
mω0~

2
(√

k ⟨φk|φk−1⟩ −
√

k + 1 ⟨φk|φk+1⟩
)
= 0.

Also we calculate

⟨q̂2⟩k = ⟨φk|q̂2|φk⟩ =
~

2mω0
⟨φk|â2 + ââ† + â†â + (â†)2|φk⟩

=
~

2mω0
⟨φk|2â†â + 1|φk⟩ =

~

mω0

(
k +

1
2

)
,

⟨p̂2⟩k = ⟨φk| p̂2|φk⟩ = −
mω0~

2
⟨φk|â2 − ââ† − â†â + (â†)2|φk⟩

= −mω0~

2
⟨φk| − (2â†â + 1)|φk⟩ = mω0~

(
k +

1
2

)
.

Using the above results, the uncertainty relation can be found as

(∆q̂)k(∆p̂)k = ~

(
k +

1
2

)
, k = 1, 2, 3, · · · ,

>
~

2
.
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Thus, it is not a minimum uncertainty. �

The eigenstates {φk(q)}∞k=0 of the standard Hamiltonian Ĥ0 is an orthonormal basis

for L2(R), so any initial wave function Ψ0(q) ∈ L2(R) has expansion of the form Ψ0(q) =∑∞
k=0 ⟨Ψ0|φk⟩φk(q). Thus, solution of the IVP (3.1) is explicitly

Ψ(q, t) = f (t)Ψ0(q) =
∞∑

k=0

⟨Ψ0|φk⟩ f (t)φk(q),

where

Ψk(q, t) = f (t)φk(q) = e−i/~Ek(t−t0)φk(q), k = 0, 1, 2, · · · .

The corresponding probability density functions are then

ρk(q, t) = |Ψk(q, t)|2 = N2
k e−

mω0
~ q2

H2
k

(√
mω0

~
q
)
, k = 0, 1, 2, · · · .

3.2. Coherent States of the Standard Harmonic Oscillator

Glauber coherent states have many useful physical and mathematical properties,

and they can be defined in different, but equivalent ways, (Glauber, 1963), (Perelomov,

1986), (Nieto, & Simmons, 1979).

3.2.1. Minimum Uncertainty Coherent States (MUCS)

Minimum uncertainty coherent states are defined as states ϕ(q) satisfying

(∆q̂)ϕ(∆ p̂)ϕ =
~

2
,

and therefore they are closest to the classical states. To find ϕ(q) in closed form, we first

define the Hermitian operators Q̂ = q̂− ⟨q̂⟩ϕ , P̂ = p̂− ⟨ p̂⟩ϕ . Then by the definition (2.15),
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we obtain that

(∆q̂)2
ϕ(∆p̂)2

ϕ = ⟨ϕ|Q̂2|ϕ⟩ ⟨ϕ|P̂2|ϕ⟩

= ⟨Q̂ϕ|Q̂ϕ⟩ ⟨P̂ϕ|P̂ϕ⟩

≥ | ⟨Q̂ϕ|P̂ϕ⟩ |2, (by Cauchy-Schwarz inequality),

= | ⟨ϕ|Q̂P̂|ϕ⟩ |2

=

∣∣∣∣∣ ⟨ϕ ∣∣∣∣∣ 1
2

(Q̂P̂ + P̂Q̂)
∣∣∣∣∣ ϕ⟩ + ⟨

ϕ

∣∣∣∣∣ 1
2

[Q̂, P̂]
∣∣∣∣∣ ϕ⟩ ∣∣∣∣∣2.

Now, the inequality in Cauchy-Schwarz becomes equality if and only if both functions

are linearly dependent, that is,

P̂ϕ = λQ̂ϕ (3.10)

for some λ. And we want to have

(∆q̂)2
ϕ(∆ p̂)2

ϕ =

∣∣∣∣∣ ⟨ϕ ∣∣∣∣∣ 1
2

[Q̂, P̂]
∣∣∣∣∣ ϕ⟩ ∣∣∣∣∣2 = ~2

4
,

which implies the condition

⟨
ϕ

∣∣∣∣∣ 1
2

(Q̂P̂ + P̂Q̂)
∣∣∣∣∣ ϕ⟩ = 0. (3.11)

Substituting Eqn. (3.10) into Eqn. (3.11), we get

⟨
ϕ

∣∣∣∣∣ 1
2

(Q̂P̂ + P̂Q̂)
∣∣∣∣∣ ϕ⟩ = 1

2

(
⟨ϕ|Q̂P̂|ϕ⟩ + ⟨ϕ|P̂Q̂|ϕ⟩

)
=

1
2

(
⟨ϕ|Q̂|λQ̂ϕ⟩ + ⟨λ∗ϕ|Q̂2|ϕ⟩

)
=

(
λ + λ∗

2

)
⟨ϕ|Q̂2|ϕ⟩ = 0.

Then λ + λ∗ = 0, that is λ is pure imaginary. As a result,

(
p̂ − ⟨ p̂⟩ϕ

)
ϕ = λ

(
q̂ − ⟨q̂⟩ϕ

)
ϕ, (3.12)
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where ⟨ p̂⟩ϕ , ⟨q̂⟩ϕ are constants and λ is pure imaginary. Substituting p̂ = −i~(∂/∂q) in the

equation (3.12), it reduces to an ordinary differential equation and solving this equation,

we find ϕ(q), depending on λ as

ϕλ(q) = cei/~⟨p̂⟩qe−
iλ
2~ (q−⟨q̂⟩)2

.

Let λ = iα, α ∈ R, and by doing normalization we obtain normalized coherent states of

the standard harmonic oscillator in closed form

ϕα(q) =
(mω0

π~

)1/4
e

i
~ ⟨p̂⟩αqe−

mω0
2~ (q−⟨q̂⟩α)2

. (3.13)

3.2.2. Annihilation Operator Coherent States (AOCS)

Coherent states are known also as annihilation operator eigenstates, that is for

the operator â, the coherent states satisfy âϕα(q) = αϕα(q), for any complex number

α = α1 + iα2, α1, α2−real.

Proposition 3.3 The oscillator states ϕα(q) satisfying

âϕα(q) = αϕα(q) (3.14)

can be represented in terms of energy eigenstates φk(q) of the standard harmonic oscilla-

tor as

ϕα(q) = e−|α|
2/2

∞∑
k=0

αk

√
k!
φk(q), (3.15)

for all α ∈ C.
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Proof Assume Eqn. (3.14) has solution of the form ϕα(q) =
∑∞

k=0 ckφk(q), where ck =

⟨ϕα(q)|φk(q)⟩ . Taking the inner product of (3.14) by φk(q) gives

⟨âφk(q)|φk(q)⟩ = α ⟨ϕα(q)|φk(q)⟩ .

That is,

α ⟨ϕα(q)|φk(q)⟩ = ⟨ϕα(q)|â†φk(q)⟩ = ⟨ϕα(q)|
√

k + 1φk+1(q)⟩ .

Then we get the equality ⟨ϕα(q)|φk+1(q)⟩ = α(k + 1)−1/2 ⟨ϕα(q)|φk(q)⟩, which gives ck =

⟨ϕα(q)|φk(q)⟩ = αk(k!)−1/2 ⟨ϕα(q)|φ0(q)⟩ . Thus, we can write

ϕα(q) = ⟨ϕα(q)|φ0(q)⟩
∞∑

k=0

αk

√
k!
φk(q).

By doing normalization,

⟨ϕα|ϕα⟩ = | ⟨ϕα|φ0⟩ |2
⟨ ∞∑

k=0

(α∗)k

√
k!
φk

∣∣∣∣∣∣∣
∞∑

m=0

αm

√
m!
φm

⟩

= | ⟨ϕα|φ0⟩ |2
∞∑

k=0

|α|2k

k!
= | ⟨ϕα|φ0⟩ |2e|α|

2
= 1,

we obtain ⟨ϕα|φ0⟩ = e−|α|
2/2eiθ, where eiθ is the phase factor. W.l.o.g. choosing the phase

factor as 1 proves our proposition and also shows that coherent states belong to L2(R). �

Proposition 3.4 Coherent states do not form an orthogonal system.

Proof For any two complex numbers α and β, we have the following

⟨ϕα|ϕβ⟩ = e−
|α|2

2 −
|β|2
2

⟨ ∞∑
k=0

(α∗)k

√
k!
φk

∣∣∣∣∣∣∣
∞∑

m=0

βm

√
m!
φm

⟩
= e−

1
2 (|α|2+|β|2)

∞∑
k=0

(α∗β)k

k!
= e−

|α|2
2 −

|β|2
2 +α

∗β

Similarly, we can write ⟨ϕβ|ϕα⟩ = e−
|α|2

2 −
|β|2
2 +αβ

∗
, and thus obtain the equation | ⟨ϕα|ϕβ⟩ |2 =

e−|α−β|
2
, from which we see that ⟨ϕα|ϕβ⟩ , 0 for any α, β ∈ C. Therefore, coherent states
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are not orthogonal.

�

Proposition 3.5 The collection of coherent states ϕα(q) forms an overcomplete set for

any complex number α.

Proof The closure relation for coherent states can be found as

∫
|ϕα⟩ ⟨ϕα| d2α =

∫ e−|α|2 ∞∑
m,n=0

αn(α∗)m

√
n!m!

|φn⟩ ⟨φm|
 d2α

=

∞∑
m,n=0

(∫
e−|α|

2
αn(α∗)md2α

)
|φn⟩ ⟨φm|√

n!m!
.

Let I1 =
∫

e−|α|
2
αn(α∗)md2α, then writing α in polar form, α = reiθ and d2α = rdrdθ, gives

I1 =

∫ 2π

0

∫ ∞

0
e−r2

rnrmeinθe−imθrdrdθ =
(∫ ∞

0
rn+mre−r2

dr
) (∫ 2π

0
ei(n−m)θdθ

)
︸              ︷︷              ︸

2πδn,m

.

If n = m, then I1 = 2π
∫ ∞

0
r2nre−r2

dr = πn!. But if n , m, then I1 = 0. It follows that

∫
|ϕα⟩ ⟨ϕα| d2α =

∞∑
n=0

πn!
|φn⟩ ⟨φn|

n!

and
1
π

∫
|ϕα⟩ ⟨ϕα| d2α = Î,

which shows completeness of coherent states. �

Now, we find the expectation values of position and momentum operators in co-

herent state ϕα(q) using the equations (4.52), (4.53) and (3.14) as follows

⟨q̂⟩α = ⟨ϕα|q̂|ϕα⟩ =

√
2~

mω0
α1, (3.16)

⟨ p̂⟩α = ⟨ϕα|p̂|ϕα⟩ =
√

2mω0~α2. (3.17)
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Then, expectations of squares are

⟨q̂2⟩α =
~

2mω0
⟨ϕα|(â + â†)2|ϕα⟩ =

2~
mω0

α2
1 +

~

2mω0
, (3.18)

⟨p̂2⟩α =
mω0~

2
⟨ϕα|(â − â†)2|ϕα⟩ = 2mω0~α

2
2 +

mω0~

2
. (3.19)

Hence, fluctuations of q̂ and p̂ are found as (∆q̂)α =
√
~/(2mω0), (∆p̂)α =

√
(mω0~)/2,

and uncertainty relation is (∆q̂)α(∆p̂)α = ~/2. This shows that AOCS are MUCS.

3.2.3. Displacement Operator Coherent States (DOCS)

The coherent states ϕα(q) are also expressed in terms of the displacement operator

D̂0(α), acting on the ground state and is given by D̂0(α) = eαâ†−α∗â. From Eqn. (3.15), we

have

ϕα(q) = e−
1
2 |α|2

∞∑
k=0

αk

√
k!
φk(q) = e−

1
2 |α|2

∞∑
k=0

αk

k!
(â†)kφ0(q) = e−

1
2 |α|2+αâ†φ0(q).

We rewrite this expression by using the Baker-Campbell-Hausdorff formula which states

that if X̂ and Ŷ are any two operators in a Hilbert space, that both commute with [X̂, Ŷ],

then

eX̂+Ŷ = e−
1
2 [X̂,Ŷ]eX̂eŶ .

Since the commutator of the operators αâ† and −α∗â is [αâ†,−α∗â] = −|α|2 and it com-

mutes with both of these operators, Baker-Campbell-Hauusdorff formula gives

eαâ†−α∗â = eαâ†e−α
∗âe−

1
2 |α|2 .

Thus, using e−α
∗âφ0 = e0 = 1, we obtain

ϕα(q) = e−
1
2 |α|2eαâ†φ0 = eαâ†e−α

∗âe−
1
2 |α|2φ0

= eαâ†−α∗âφ0 = D̂0(α)φ0(q).
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3.2.4. Time Evolution of Coherent States of Standard Harmonic

Oscillator

This section gives the explicit form of time-evolved coherent states of standard

harmonic oscillator.

Proposition 3.6 Time-evolved coherent state ϕα(q, t) is also an eigenstate of the annihi-

lation operator â.

Proof For standard harmonic oscillator the evolution operator is defined as Û(t, t0) =

e−
i
~ (t−t0)Ĥ0 , and we have Û†âÛ = e−iω0 â. So using these relations, we get

âϕα(q, t) = âÛϕα(q, t0) = ÛÛ†âÛϕα(q, t0) = Û(e−iω0tâ)ϕα(q, t0)

= Û(e−iω0tα(t0)ϕα(q, t0)) = e−iω0tα(t0)ϕα(q, t).

Denoting α(t) = e−iω0tα(t0), we see that ϕα(q, t) is an eigenstate of â corresponding to

time-dependent eigenvalue α(t), that is âϕα(q, t) = α(t)ϕα(q, t). So it is also a coherent

state, showing that coherent states remain coherent under time evolution operator. �

Then, time-evolved coherent states for the standard oscillator are explicitly written

as

ϕα(q, t) = e−
iω
2 te−|α(t)|2/2

∞∑
k=0

α(t)k

√
k!
φk(q),

where α(t) = e−iωtα(t0).
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CHAPTER 4

GENERALIZED TIME-DEPENDENT QUANTUM

HARMONIC OSCILLATOR

In this chapter, we introduce the quantum evolution problem related with the

generalized quadratic Hamiltonian. Exact explicit solutions to this problem is given by

Wei-Norman algebraic approach. This technique is useful for solving evolution problems

whose Hamiltonian is a linear combination of generators of a finite dimensional Lie group,

so that the evolution operator can be represented as a product of exponential operators.

In this process, we obtain exact evolution operator and wave function solutions. Then,

time evolution of the Glauber coherent states under the generalized evolution operator are

obtained and discussed.

4.1. Quantization of the Generalized Quadratic Oscillator

The generalized Hamiltonian for classical oscillator with time-dependent param-

eters is of the form

Hg(x, p, t) =
p2

2µ(t)
+
µ(t)ω2(t)

2
x2 + B(t)xp + D(t)x + E(t)p + F(t). (4.1)

We note that, since Hamiltonian is a total energy of the system, then the Hamilto-

nian Hg(x, p, t) in Eq. (4.1) must be written in phase space, i.e. energy space. That means,

the dimension of Hamiltonian must be in terms of energy dimension ML2/T 2, where basic

quantities are M mass, T time and L position. In (4.1), first and second terms are already

of energy dimension. Third terms is right if the dimension B(t)→ 1/T is chosen. In order

to have D(t), E(t), F(t) in energy space, they should be chosen in terms of basic quantities

as D(t) → ML/T 2 dimension, E(t) → L/T 2 dimension and F(t) → ML2/T 2 dimension.

It is indicated that D(t), E(t), F(t) could not have been chosen only in time dimension.
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The corresponding equations of motion are

ẋ =
∂H
∂p
= B(t)x +

p
µ(t)
+ E(t), (4.2)

ṗ = −∂H
∂x
= −(µ(t)ω2(t)x + B(t)p + D(t)). (4.3)

Then, we have the classical equation of motion in position space

ẍ +
µ̇

µ
ẋ +

(
ω2(t) −

(
Ḃ + B2 +

µ̇

µ
B
))

x = −1
µ

D + Ė +
(
µ̇

µ
+ B

)
E, (4.4)

the oscillator equation in momentum space

p̈ −
˙(µω2)

µω2 ṗ +
(
ω2(t) +

(
Ḃ − B2 −

˙(µω2)
µω2 B

))
p = −Ḋ +

( ˙(µω2)
µω2 + B

)
D − µω2E. (4.5)

We notice that, the parameter B(t) of the mixed term in Hamiltonian (4.1) leads to modi-

fication of the original frequency ω2(t), and the external parameters D(t), E(t), and F(t),

all contribute to the forcing term of the oscillator. Replacing the canonical variables in

classical Hamiltonian (4.1) by the quantum operators,

x→ q̂, p→ p̂, xp→ p̂q̂ + q̂ p̂
2

, (4.6)

we consider the evolution problem for the quantum harmonic oscillator

 i~ ∂
∂tΨ(q, t) = Ĥg(t)Ψ(q, t),

Ψ(q, t0) = Ψ0(q), −∞ < q < ∞,
(4.7)

with general quadratic Hamiltonian

Ĥg(t) =
p̂2

2µ(t)
+
µ(t)ω2(t)

2
q̂2 +

B(t)
2

(q̂ p̂ + p̂q̂) + D(t)q̂ + E(t) p̂ + F(t)Î, (4.8)
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where µ(t) > 0, ω2(t), B(t), D(t), E(t), and F(t) are real parameters depending on time.

4.2. The Generalized Evolution Operator

To solve the evolution problem

 i~ ∂
∂tΨ(q, t) = Ĥg(t)Ψ(q, t),

Ψ(q, t0) = Ψ0(q), −∞ < q < ∞,

we use the Lie algebraic approach. Indeed, the Hamiltonian (4.8) can be written as time-

dependent linear combination of Lie algebra generators

Ĥg(t) = −i
(
~2

µ(t)
K̂− + µ(t)ω2(t)K̂+ + 2~B(t)K̂0 + D(t)Ê1 + ~E(t)Ê2 + F(t)Ê3

)
, (4.9)

where

Ê1 = iq, Ê2 =
∂

∂q
, Ê3 = iÎ

are generators of the Heisenberg-Weyl algebra, and

K̂− = −
i
2
∂2

∂q2 , K̂+ =
i
2

q2, K̂0 =
1
2

(q
∂

∂q
+

1
2

)

are generators of the su(1, 1) algebra. Then, the evolution operator for the general oscil-

lator can be written as product of exponential operators

Ûg(t, t0) = ÛE(t, t0)ÛK(t, t0), (4.10)

where

ÛE(t, t0) ≡ ec(t)Ê3e
a(t)
~ Ê1e−b(t)Ê2 , ÛK(t, t0) ≡ e f (t)K̂+e2h(t)K̂0eg(t)K̂− , (4.11)
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and f (t), g(t), h(t), a(t), b(t), c(t) are unknown real-valued functions to be determined from

the IVP, defining the unitary operator Ûg, that is

i~
d
dt

Ûg(t, t0) = Ĥg(t)Ûg(t, t0), (4.12)

Ûg(t0, t0) = Î.

After performing time differentiation we get

∂

∂t
Û(t, t0) =

(
ċÊ3

)
ec(t)Ê3e

a(t)
~ Ê1e−b(t)Ê2e f (t)K̂+e2h(t)K̂0eg(t)K̂− (4.13)

+ec(t)Ê3

( ȧ
~

Ê1

)
e

a(t)
~ Ê1e−b(t)Ê2e f (t)K̂+e2h(t)K̂0eg(t)K̂−

+ec(t)Ê3e
a(t)
~ Ê1

(
− ḃÊ2

)
e−b(t)Ê2e f (t)K̂+e2h(t)K̂0eg(t)K̂−

+ec(t)Ê3e
a(t)
~ Ê1e−b(t)Ê2

(
ḟ K̂+

)
e f (t)K̂+e2h(t)K̂0eg(t)K̂−

+ec(t)Ê3e
a(t)
~ Ê1e−b(t)Ê2e f (t)K̂+

(
2ḣK̂0

)
e2h(t)K̂0eg(t)K̂−

+ec(t)Ê3e
a(t)
~ Ê1e−b(t)Ê2e f (t)K̂+e2h(t)K̂0

(
ġK̂−

)
eg(t)K̂− .

Now, we need to collect the exponentials in the right. For this, we use the Baker-

Campbell-Hausdorff relation:

Proposition 4.1 If Â and B̂ are two fixed non-commuting operators and ξ is a parameter,

then

eξÂB̂e−ξÂ = B̂ + ξ[Â, B̂] +
ξ2

2!
[Â, [Â, B̂]] +

ξ3

3!
[Â, [Â, [Â, B̂]]] + · · · . (4.14)

Proof Let f (ξ) = eξÂB̂e−ξÂ, f (0) = B̂. We need to expand f (ξ) in a Maclaurin series

in powers of ξ, so we first find the derivatives of f (ξ) with respect to ξ as follows:

d f
dξ
= ÂeξÂB̂e−ξÂ − eξÂB̂e−ξÂÂ = [Â, f (ξ)],
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then (d f /dξ)|ξ=0 = [Â, B̂]. Thus second derivative is found as,

d2 f
dξ2 = Â2eξÂB̂e−ξÂ − 2ÂeξÂB̂e−ξÂÂ + eξÂB̂e−ξÂÂ2

= Â
(
ÂeξÂB̂e−ξÂ − eξÂB̂e−ξÂÂ

)
−

(
ÂeξÂB̂e−ξÂ − eξÂB̂e−ξÂÂ

)
Â

=

[
Â,

d f
dξ

]
= [Â, [Â, f (ξ)]],

then (d2 f /dξ2)|ξ=0 = [Â, [Â, B̂]]. Continuing in this fashion, we prove the identity (4.14).

�

So, using the above Proposition, we write Eqn. (4.13) in the form

i~
d
dt

Ûg(t, t0) = i~
[(

ċ +
1
~

aḃ +
1
2

ḟ b2 +
1
~

ḣab − f ḣb2

+ġe−2h
( 1
2~2 a2 − 1

~
f ab +

1
2

f 2b2
))

Ê3

+

(
− ḃ − ḣb + ġe−2h

(
− 1
~

a + f b
))

Ê2

+

(1
~

ȧ − ḟ b − 1
~

ḣa + 2 f ḣb + ġe−2h
(1
~

f a − f 2b
))

Ê1

+

(
ḟ − 2 f ḣ + f 2ġe−2h

)
K̂+

+2
(
ḣ − f ġe−2h

)
K̂0 +

(
ġe−2h

)
K̂−

]
Ûg(t, t0). (4.15)

Using the equations (4.15) and (4.9), we compare both sides of the operator equation

(4.12) and obtain that Ûg(t, t0) is solution of the problem, if the unknown functions satisfy

the nonlinear system of six first-order equations

ḟ +
~

µ(t)
f 2 + 2B(t) f +

µ(t)ω2(t)
~

= 0, f (t0) = 0, (4.16)

ġ +
~

µ(t)
e2h = 0, g(t0) = 0,

ḣ +
~

µ(t)
f + B(t) = 0, h(t0) = 0.
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ȧ + B(t)a + µ(t)ω2(t)b + D(t) = 0, a(t0) = 0, (4.17)

ḃ − B(t)b − 1
µ(t)

a − E(t) = 0, b(t0) = 0,

ċ +
1

2~µ(t)
a2 +

E(t)
~

a − µ(t)ω2(t)
2~

b2 +
F(t)
~

= 0, c(t0) = 0

In fact, (4.16) and (4.17) are two independent systems, one for f , g, h and second for

a, b, c. System (4.16) can be easily solved by realizing that first line is an initial value

problem for the non-linear Riccatti equation, and using substitution

f (t) =
µ(t)
~

( ẋ
x
− B(t)

)
,

it transforms to the classical homogeneous equation of motion

ẍ +
µ̇

µ
ẋ +

(
ω2(t) − (Ḃ + B2 +

µ̇

µ
B)

)
x = 0, (4.18)

with initial conditions

x(t0) = x0 , 0, ẋ(t0) = x0B(t0). (4.19)

Denoting by x1(t), the solution of this IVP (4.18)-(4.19), solution of system (4.16) be-

comes

f (t) =
µ(t)
~

(
ẋ1(t)
x1(t)

− B(t)
)
, (4.20)

g(t) = −~x2
1(t0)

∫ t

t0

1
µ(s)x2

1(s)
ds,

h(t) = − ln |x1(t)| + ln |x1(t0)|.
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Assuming all coefficients in Eq.(4.18) are continuous on time interval containing t0, by

x2(t) we denote a second solution of Eq.(4.18) and using Abel’s formula, we obtain that

x2(t) = cx1(t)
∫ t 1

µ(s)x2
1(s)

ds. (4.21)

Since

g(t) = −~x2
1(t0)

∫ t 1
µ(s)x2

1(s)
ds, g(t0) = 0, (4.22)

using (4.21), g(t) can be expressed in terms of these two independent solutions in the form

g(t) = −~x2
1(t0)

(
x2(t)
x1(t)

)
.

Now, we find the initial conditions for x2(t) so that g(t0) = 0 and ġ(t0) = −~/µ(t0) as

x2(t0) = 0, ẋ2(t0) = 1/µ(t0)x1(t0).

This gives the solution of system (4.16) in terms of two linearly independent solutions

x1(t) and x2(t) of the homogeneous equation as

f (t) =
µ(t)
~

(
ẋ1(t)
x1(t)

− B(t)
)
, (4.23)

g(t) = −~x2
1(t0)

(
x2(t)
x1(t)

)
h(t) = − ln

∣∣∣∣∣ x1(t)
x1(t0)

∣∣∣∣∣ .
On the other hand, we realize that in system (4.17), the equations for b(t) and a(t)

are the same with the classical equations (4.2) and (4.3) for x(t) and p(t), respectively.

Then, using first two equations in system (4.17), we obtain that b(t) is solution of the

nonhomogeneous Eq.(4.4), with initial conditions

x(t0) = 0, ẋ(t0) = E(t0), (4.24)
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and we denote this solution by b(t) = xp(t). Similarly, it follows that a(t) = pp(t), where

pp(t) is solution of the nonhomogeneous Eq.(4.5) for momentum, with initial conditions

p(t0) = 0, ṗ(t0) = −D(t0). (4.25)

Then, solution of system (4.17) is found in terms of the two particular solutions xp and pp

as

a(t) = pp(t), (4.26)

b(t) = xp(t),

c(t) =
∫ t [−(pp(s))2

2~µ(s)
− E(s)
~

pp(s) +
µ(s)ω2(s)

2~
x2

p(s) − F(s)
~

]
ds.

Writing pp(t) in terms of xp(t) the solution of this system becomes,

a(t) = µ(t)
(
ẋp(t) − B(t)xp(t) − E(t)

)
, (4.27)

b(t) = xp(t),

c(t) =
−1
2~

∫ t

t0
µ(s)

[
ẋ2

p(s) − 2B(s)xp(s)ẋp(s)

+

(
B2(s) − ω2(s)

)
x2

p(s) − E2(s) +
2
µ(s)

F(s)
]
ds,

showing that solution of the general oscillator is completely determined by solutions x1(t),

x2(t) and xp(t) of the classical oscillator. We note that choosing different ordering of the

exponential operators in the evolution operator (4.10), leads to different formulation of

the system for the six unknown parameters. In any case, the system can be solved by

quadrature, but we can not always easily see its solution in terms of x1, x2 and xp, as in

the present case.
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For later use, we will write xp(t) in terms of solution x1(t) of the homogeneous

IVP (4.18)-(4.19) (For details see Appendix B), which gives

a(t) = − z(t)
~x1(t)

+
µ(t)
~

(ẋ1(t) − B(t)x1(t))
∫ t

t0

[
− z(s)
µ(s)x2

1(s)
+

E(s)
x1(s)

]
ds, (4.28)

b(t) = x1(t)
∫ t

t0

[
− z(s)
µ(s)x2

1(s)
+

E(s)
x1(s)

]
ds, (4.29)

c(t) = −1
~

∫ t

t0

[
z2(s)

2µ(s)x2
1(s)
− E(s)z(s)

x1(s)
+ F(s)

]
ds (4.30)

− µ(t)
2~

(
ẋ1(t)
x1(t)

− B(t)
)

x2
1(t)

[∫ t

t0

(
− z(s)
µ(s)x2

1(s)
+

E(s)
x1(s)

)
ds

]2

,

where

z(t) =
∫ t

t0

[
µ(ξ)E(ξ)

(
ẋ1(ξ) − B(ξ)x1(ξ)

)
+ D(ξ)x1(ξ)

]
ds.

This formulation looks more complicated, but it gives solution of the systems (4.16) and

(4.17) only in terms of the homogeneous solution x1(t) of IVP (4.18)-(4.19) and the time-

dependent parameters of the Hamitonian. This allows us to see more easily the effect of

the parameters B,D, E, F to the particular solutions b(t) = xp(t), a(t) = pp(t) and can be

directly used for exact and numerical calculations.

Now, after finding all unknown functions in (4.10), the exact form of the evolution

operator in terms of x1(t), x2(t) and xp(t), pp(t) becomes

Ûg(t, t0) = exp
(

i
~

∫ t

t0

[
−1

2µ(s)
p2

p(s) − E(s)pp(s) +
µ(s)ω2(s)

2
x2

p(s) − F(s)
]

ds
)

× exp
(
ipp(t)q

)
× exp

(
−xp(t)

∂

∂q

)
× exp

(
i
µ(t)
2~

(
ẋ1(t)
x1(t)

− B(t)
)

q2
)

× exp
(
ln

∣∣∣∣∣ x1(t0)
x1(t)

∣∣∣∣∣ (q ∂

∂q
+

1
2

))
× exp

(
i
2
~x2

1(t0)
(

x2(t)
x1(t)

)
∂2

∂q2

)
, (4.31)

where pp(t) = µ(t)
(
ẋp(t) − B(t)xp(t) − E(t)

)
. Therefore, with this evolution operator we

can solve the quantum oscillator problem (4.7) for given initial data that will be discussed

in the following section.
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4.3. The Wave Functions Ψk(q, t)

To solve the quantum evolution problem (4.7), as initial functions we choose the

normalized eigenstates of the standard Hamiltonian,

φk(q) = Nke−
mω0
2~ q2

Hk

(√
mω0

~
q
)
, (4.32)

where Hk(
√

mω0/~q) are the Hermite polynomials, Nk = (2kk!)−1/2(mω0/π~)1/4 are nor-

malization constants, and eigenvalues are Ek = (~/ω0)(k + 1/2), k = 0, 1, 2, . . . , and ap-

plying the evolution operator (4.31) to these initial states we get wave function solutions

as

Ψk(q, t) = Ûg(t, t0)φk(q).

Since the evolution operator is formed as products of exponential operators, we

need to establish how these operators act on a given function. First of all, for a function

f (q), that is continuous and infinitely differentiable, the operator eλ(d/dq) produces a shift

by λ, i.e.

eλ(d/dq) f (q) =
∞∑

k=0

λk

k!
dk

dqk f (q) =
∞∑

k=0

λk

k!
f (k)(q) = f (q + λ). (4.33)

Accordingly, it is called the shifting operator. In addition, the operator eλq(q/dq) so called

dilatation operator acts on a function f (q) in the following manner;

eλq(d/dq) f (q) = f (eλq). (4.34)

Equation (4.34) follows from the identity (4.33) by making the substitution q = eθ. Then,

eλq(d/dq) f (q) = eλ(d/dq) f (eθ) = f (eθ+λ) = f (eλq).

Finally, to find the action of the operator e−i/2g(t)∂2/∂q2
on the initial states φk(q), we solve
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free Schrödinger equation

[
− i

2
∂2

∂q2

]
φ̃k(q; z) =

[
∂

∂z

]
φ̃k(q; z), z − real, (4.35)

with initial condition φ̃k(q; 0) = φk(q) (see Appendix C), and obtain

φ̃k(q; z) =
Nk(

1 +
(

mω0
~

z
)2
) 1

4

× exp

− i
2


(

mω0
~

)2
z

1 +
(

mω0
~

z
)2

 q2


× exp

(
i
(
k +

1
2

)
arctan

(mω0

~
z
))
× exp

−


mω0
2~

1 +
(

mω0
~

z
)2

 q2


×Hk




√
mω0
~(

1 +
(

mω0
~

z
)2
) 1

2

 q

 . (4.36)

Then, using the equation (4.35), we can write

exp
(
− i

2
g(t)

∂2

∂q2

)
φ̃k(q; z) = exp

(
g(t)

∂

∂z

)
φ̃k(q; z),

so that

exp
(
− i

2
g(t)

∂2

∂q2

)
φk(q) = exp

(
− i

2
g(t)

∂2

∂q2

)
φ̃k(q; 0)

= exp
(
g(t)

∂

∂z

)
φ̃k(q; z)|z=0

= φ̃k(q; z + g(t))|z=0 = φ̃k(q; g(t)). (4.37)
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Hence, as a consequence of (4.33), (4.34) and (4.37), we find

Ûg(t, t0)φk(q) = eic(t)e
i
~a(t)qe−b(t) ∂

∂q e
i
2 f (t)q2

eh(t)
(
q ∂
∂q+

1
2

)
e−

i
2 g(t) ∂2

∂q2 φk(q)

= e
h(t)
2 eic(t)e

i
~a(t)qe−b(t) ∂

∂q e
i
2 f (t)q2

eh(t)
(
q ∂
∂q

)
φ̃k(q; g(t))

= e
h(t)
2 eic(t)e

i
~a(t)qe−b(t) ∂

∂q e
i
2 f (t)q2

φ̃k(eh(t)q; g(t))

= e
h(t)
2 eic(t)e

i
~a(t)qe

i
2 f (t)(q−b(t))2

φ̃k(eh(t)(q − b(t)); g(t)).

And we obtain exact wave function in the form

Ψk(q, t) = Nk

√
RB(t) × exp

(
i
(
k +

1
2

)
arctan

(mω0

~
g(t)

))
(4.38)

× exp
[
i
(

f (t)
2

q2 +

(
− f (t)b(t) +

a(t)
~

)
q +

f (t)
2

b2(t) + c(t)
)]

× exp
(
− i

2

(mω0

~

)2
g(t)R2

B(t)(q − b(t))2
)

× exp
(
−mω0

2~
R2

B(t)(q − b(t))2
)
× Hk

(√
mω0

~
RB(t)(q − b(t))

)
.

Thus, in terms of x1(t), x2(t) and xp(t), pp(t) the wave function can be found as

Ψk(q, t) = Nk

√
RB(t) × exp

[
i
(
k +

1
2

)
arctan

(
−mω0x2

1(t0)
(

x2(t)
x1(t)

))]
(4.39)

× exp
{ i

2~

[(
µ(t)

( ẋ1(t)
x1(t)

− B(t)
)

−(mω0x1(t0))2 x2(t)
x1(t)

R2
B(t)

)
(q − xp(t))2 + 2pp(t)q

]}
× exp

[
i
~

∫ t

t0

(
−1

2µ(s)
p2

p(s) − E(s)pp(s) +
µ(s)ω2(s)

2
x2

p(s) − F(s)
)

ds
]

× exp

−1
2

(√
mω0

~
RB(t)

(
q − xp(t)

))2 × Hk

(√
mω0

~
RB(t)

(
q − xp(t)

))
,

and the probability density is then

ρk(q, t) = N2
k RB(t) exp

− (√
mω0

~
RB(t)(q − xp(t))

)2 (4.40)

×H2
k

(√
mω0

~
RB(t)

(
q − xp(t)

))
,
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where RB(t) is the squeezing (or spreading) coefficient given by

RB(t) =

√
x0

2

x2
1(t) + (mω0x0

2x2(t))2
, (4.41)

and xp(t) is the displacement of the wave packet. We note that RB(t) depends on the mixed

term coefficient B(t), but does not depend on the external term parameters D(t), E(t) and

F(t). On the other hand, the displacement xp(t), clearly depends on all parameters of the

Hamiltonian. Since the wave functions Ψk(q, t) are normalized for all k = 0, 1, 2, . . . ,

probability density is a conserved quantity, that is

1 = ⟨φk(q)|φk(q)⟩ = ⟨Û†gÛgφk(q)|φk(q)⟩ = ⟨Ûgφk(q)|Ûgφk(q)⟩

= ||Ψk(q, t)||2 =
∫ ∞

−∞
|Ψk(q, t)|2dq =

∫ ∞

−∞
ρk(q, t)dq.

By previous assumptions, x1(t) and x2(t) are smooth, and can not be simultaneously zero,

and if xp(t) is also smooth, the preceding property can also be shown more precisely as

follows. By substitution ξ =
√

(mω0)/~RB(t)(q − xp(t)), one has

∫ ∞

−∞
ρk(q, t)dq = lim

M→∞

∫ M

−M
ρk(q, t)dq

= lim
M→∞

1
2kk!
√
π

∫ √mω0
~ RB(t)(M+xp(t))

−
√mω0

~ RB(t)(M+xp(t))
exp(−ξ2)H2

k (ξ)dξ = 1,

for any t and each k, as a consequence of the well-known integral
∫ ∞
−∞ exp(−ξ2)H2

k (ξ)dξ =

2kk!
√
π, showing that the probability density is conserved.

In the limiting case, when all external terms are zero, i.e. B = D = E = F = 0, the

probability density takes the form

ρk(q, t) = N2
k × R0(t) × exp

− (√
mω0

~
R0(t)q

)2 × H2
k

(√
mω0

~
R0(t) (q)

)
, (4.42)

which coincides with the result in (Büyükaşık & Pashaev& Ulaş-Tigrak, 2009).

Finally, we note that, ϱ(t) = 1/(
√

mω0RB(t)) is solution of the Ermakov-Pinney
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differential equation

ϱ̈ +
µ̇

µ
ϱ̇ +

(
ω2(t) −

(
Ḃ + B2 +

µ̇

µ
B
))
ϱ =

1
µ2ϱ3 , (4.43)

with initial conditions ϱ(t0) = 1/
√

mω0, ϱ̇(t0) = B(t0)/
√

mω0, and that can be used to

compare our results by those obtained using the dynamical invariant approach.

4.4. Heisenberg Picture

In this section we mention about the Heisenberg picture representation of the po-

sition and momentum operators, which will be useful for finding the expectation values

in the next section.

An observable operator Â, related with the system

 i~ ∂
∂tΨ(q, t) = Ĥg(t)Ψ(q, t),

Ψ(q, t0) = Ψ0(q), −∞ < q < ∞,

is defined in the Heisenberg picture as

ÂH(t) = Û†g(t, t0)ÂS Ûg(t, t0), (4.44)

where Ûg(t, t0) is the evolution operator for this system. Then,

dÂH

dt
=

∂Û†g
∂t

ÂS Ûg + Û†g
∂AS

∂t
Ûg + Û†g ÂS

∂Ûg

∂t

=
1
i~

(
Û†g ÂS ĤgÛg − Û†g ĤgÂS Ûg

)
+ Û†g

∂AS

∂t
Ûg

=
1
i~

(
Û†g ÂS Ûg︸   ︷︷   ︸

ÂH

Û†g ĤgÛg︸   ︷︷   ︸
ĤH

− Û†g ĤgÛg︸   ︷︷   ︸
ĤH

Û†g ÂS Ûg︸   ︷︷   ︸
ÂH

)
+ Û†g

∂AS

∂t
Ûg

=
1
i~

[ÂH, ĤH] +
∂ÂH

∂t
. (4.45)

The Eq. (4.45) is the Heisenberg equation of motion.
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The position and momentum operators in Heisenberg picture defined by

q̂H(t) = Û†g(t, t0)q̂S Ûg(t, t0), q̂H(t0) = q̂S ,

p̂H(t) = Û†g(t, t0)p̂S Ûg(t, t0), p̂H(t0) = p̂S ,

are obtained explicitly using the general evolution operator in the following way:

First, by the definition given above, q̂H(t) is written as

q̂H(t) = e−g(t)K̂−e−2h(t)K̂0e− f (t)K̂+eb(t)Ê2e−
1
~ a(t)Ê1e−c(t)Ê3 q̂S (4.46)

×ec(t)Ê3e
1
~ a(t)Ê1e−b(t)Ê2e f (t)K̂+e2h(t)K̂0eg(t)K̂− .

Then, by the Proposition (4.1), we obtain the relations

eb(t)Ê2 q̂S e−b(t)Ê2 = q̂S + b(t), e−2h(t)K̂0 q̂S e2h(t)K̂0 = e−h(t)q̂S , e−g(t)K̂− q̂S eg(t)K̂− = q̂S −
g(t)
~

p̂S .

So using these equations and the fact that q̂S commutes Ê1 and Ê3, we rearrange the

equation (4.46) and deduce that

q̂H(t) = e−h(t)
(
q̂H(t0) − g(t)

~
p̂H(t0)

)
+ b(t). (4.47)

By the same way, we write

p̂H(t) = e−g(t)K̂−e−2h(t)K̂0e− f (t)K̂+eb(t)Ê2e−
1
~ a(t)Ê1e−c(t)Ê3 p̂S (4.48)

×ec(t)Ê3e
1
~ a(t)Ê1e−b(t)Ê2e f (t)K̂+e2h(t)K̂0eg(t)K̂− ,

and from the Proposition (4.1), we get the equalities

e−
1
~a(t)Ê1 p̂S e

1
~a(t)Ê1 = p̂S+a(t), e− f (t)K̂+ p̂S e f (t)K̂+ = p̂S+~ f (t)q̂S , e−2h(t)K̂0 p̂S e2h(t)K̂0 = eh(t) p̂S ,
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by which we have

p̂H(t) = ~ f (t)e−h(t)q̂H(t0) +
(
eh(t) − f (t)g(t)e−h(t)

)
p̂H(t0) + a(t). (4.49)

We write q̂H(t) and p̂H(t) in terms of the functions x1(t), x2(t), xp(t) and pp(t) as follows:

q̂H(t) =
1
x0

x1(t)q̂H(t0) + x0x2(t)p̂H(t0) + xp(t), (4.50)

p̂H(t) =
1
x0
µ(t)

(
ẋ1(t) − B(t)x1(t)

)
q̂H(t0) (4.51)

+x0µ(t)
(
ẋ2(t) − B(t)x2(t)

)
p̂H(t0) + pp(t).

Then, it is easy to show that these operators satisfy the Heisenberg equations of motion,

d
dt

q̂H(t) =
p̂H(t)
µ(t)

+ B(t)q̂H(t) + E(t),

d
dt

p̂H(t) = −
(
µ(t)ω2(t)q̂H(t) + B(t)p̂H(t) + D(t)

)
,

and thus q̂H(t) is solution of the classical equation (4.4), and p̂H(t) is solution of (4.5).

4.5. Expectation Values, Fluctuations and Uncertainty Relation at

Ψk(q, t)

The expectations of position and momentum at state Ψk(q, t) can be found using

that

⟨q̂⟩k(t) ≡ ⟨Ψk(q, t)|q̂S |Ψk(q, t)⟩ = ⟨φk(q)|q̂H(t)|φk(q)⟩,

⟨ p̂⟩k(t) ≡ ⟨Ψk(q, t)| p̂S |Ψk(q, t)⟩ = ⟨φk(q)| p̂H(t)|φk(q)⟩,
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where q̂H(t) is given by (4.50) and p̂H(t) is given by (4.51). Indeed, since

q̂H(t0) =

√
~

2mω0
(â + â†), (4.52)

p̂H(t0) = −i

√
mω0~

2
(â − â†), (4.53)

where â, â† are lowering and raising operators of the standard Hamiltonian Ĥ0 = ~ω0(â†â+

1/2), and âφk(q) =
√

kφk−1, â†φk(q) =
√

k + 1φk+1, k = 0, 1, 2, . . . , we obtain

⟨q̂⟩k(t) =
x1(t)
x0
⟨φk(q)|q̂H(t0)|φk(q)⟩ + x0x2(t) ⟨φk(q)| p̂H(t0)|φk(q)⟩ + xp(t)

= xp(t),

⟨ p̂⟩k(t) =
µ(t)
x0

(
ẋ1(t) − B(t)x1(t)

) ⟨φk(q)|q̂H(t0)|φk(q)⟩

+µ(t)x0
(
ẋ2(t) − B(t)x2(t)

) ⟨φk(q)| p̂H(t0)|φk(q)⟩ + pp(t)

= pp(t).

From the proof of the Proposition (3.2), we know that

⟨φk(q)|q̂2
H(t0)|φk(q)⟩ = ~

mω0

(
k +

1
2

)
, ⟨φk(q)| p̂2

H(t0)|φk(q)⟩ = mω0~

(
k +

1
2

)
.

We also compute

⟨φk(q)|q̂H(t0) p̂H(t0) + p̂H(t0)q̂H(t0)|φk(q)⟩ = −i~ ⟨φk(q)|â2 − (â†)2|φk(q)⟩ = 0.
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Then, the expectation values of squares of position and momentum are

⟨q̂2⟩k(t) = ⟨φk(q)|q̂2
H(t)|φk(q)⟩

=

⟨
φk(q)

∣∣∣∣∣ ( x1(t)
x0

)2

q̂2
H(t0) + x1(t)x2(t){q̂H(t0), p̂H(t0)}

+(x0x2(t))2 p̂2
H(t0) + 2xp(t)

(
x1(t)
x0

q̂H(t0) + x0x2(t)
)
+ x2

p(t)
∣∣∣∣∣φk(q)

⟩
=

(
k +

1
2

) (
~

mω0R2
B(t)

)
+ x2

p(t),

⟨ p̂2⟩k(t) = ⟨φk(q)| p̂2
H(t)|φk(q)⟩

=

⟨
φk(q)

∣∣∣∣∣µ2(t)
[ 1

x2
0

(
ẋ1(t) − B(t)x1(t)

)2q̂2
H(t0) + x2

0
(
ẋ2(t) − B(t)x2(t)

)2 p̂2
H(t0)

+
(
ẋ1(t) − B(t)x1(t)

)(
ẋ2(t) − B(t)x2(t)

){q̂H(t0), p̂H(t0)}
]

+2µ(t)pp(t)
[ 1

x0

(
ẋ1(t) − B(t)x1(t)

)
q̂H(t0)

+x0
(
ẋ2(t) − B(t)x2(t)

)
p̂H(t0)

]
+ p2

p(t)
∣∣∣∣∣φk(q)

⟩
=

(
k +

1
2

)
(mω0~R2

B(t)

1 + µ2(t)
(mω0R2

B(t))2

(
ṘB(t)
RB(t)

+ B(t)
)2 + p2

p(t),

and using (∆q̂)k(t) =
√
⟨q̂2⟩k(t) − ⟨q̂⟩k(t), (∆ p̂)k(t) =

√
⟨p̂2⟩k(t) − ⟨ p̂⟩k(t), the fluctuations

for q̂ and p̂ are found as

(∆q̂)k(t) =

√(
k +

1
2

) (
~

mω0R2
B(t)

)
,

(∆p̂)k(t) =

√(
k +

1
2

)
(mω0~R2

B(t))

√
1 +

µ2(t)
(mω0R2

B(t))2

(
ṘB(t)
RB(t)

+ B(t)
)2

.

This gives the uncertainty relation in the form

(∆q̂)k(∆ p̂)k = ~

(
k +

1
2

) √
1 +

µ2(t)
(mω0R2

B(t))2

(
ṘB(t)
RB(t)

+ B(t)
)2

, (4.54)
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from which we have (∆q̂)k(∆p̂)k ≥ ~/2.

4.6. Coherent States of the Generalized Quantum Harmonic

Oscillator

In this section, we study time-evolution of initially Glauber coherent states under

the influence of the evolution operator (4.31) of the generalized parametric oscillator,

that is Φα(q, t) = Ûg(t, t0)ϕα(q, t0). Using that ϕα(q, t0) = ϕα(q) is given by (3.15), and

Ûg(t, t0)φk(q) = Ψk(q, t), one directly gets the generalized coherent states in terms of the

wave functions of the Schrödinger equation

Φα(q, t) = e−
|α|2

2

∑
k

αk

√
k!
Ψk(q, t). (4.55)

Or directly applying the evolution operator Ûg(t, t0) to ϕα(q), time evolved coherent states

can be found. For this, we first solve the following free Schrödinger equation (see Ap-

pendix C)


∂
∂tψα(q, t) = − i

2
∂2

∂q2ψα(q, t)

ψα(q, 0) = ϕα(q) =
(
Ω0
π

)1/4
exp

(
i
~
⟨p⟩α q

)
exp

(
−Ω0

2 (q − ⟨q⟩α)2
)
,

and obtain

ψα(q, t) =
(mω0

π~

)1/4
×

exp(−α2
2 + 2iα1α2)(

1 +
(

mω0
~

t
)2
)1/4 × exp

( i
2

arctan
(mω0

~
t
))

(4.56)

× exp

−
mω0
2~

(
1 + imω0

~
t
)

1 +
(

mω0
~

t
)2

q −
√

2~
mω0

α


2 .

Then, by using the Eqn. (4.56), we write

exp
(
− i

2
g(t)

∂2

∂q2

)
ϕα(q) = ψα(q, g(t)). (4.57)
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So the above result (4.57) gives

Ûg(t, t0)ϕα(q) = eic(t)e
i
~a(t)qe−b(t) ∂

∂q e
i
2 f (t)q2

eh(t)
(
q ∂
∂q+

1
2

)
e−

i
2 g(t) ∂2

∂q2 ϕα(q)

= e
h(t)
2 eic(t)e

i
~ a(t)qe−b(t) ∂

∂q e
i
2 f (t)q2

ψα(eh(t)q, g(t))

= e
h(t)
2 eic(t)e

i
~ a(t)qe

i
2 f (t)(q−b(t))2

ψα(eh(t)(q − b(t)), g(t)).

Thus, time-evolved coherent state is found in the form

Φα(q, t) =
(mω0

π~

)1/4 √
RB(t) × exp(−α2

2 + 2iα1α2) exp
( i
2

arctan
(mω0

~
t
))

(4.58)

× exp
[
i
(

f (t)
2

(q − b(t))2 +
a(t)
~

q + c(t)
)]

× exp

−mω0

2~

(
1 + i

mω0

~
g(t)

)
R2

B(t)

q − b(t) −

√
2~

mω0

x1(t)
x0

α


2 ,

and it can be expressed in terms of the functions x1(t), x2(t), xp(t) and pp(t) as follows

Φα(q, t) =
(mω0

π~

)1/4
RB(t) ×

√
x1(t)
x0
− i(mω0x0)x2(t) (4.59)

× exp
[

i
~

∫ t

t0

(
−1

2µ(s)
p2

p(s) − E(s)pp(s) +
µ(s)ω2(s)

2
x2

p(s) − F(s)
)

ds
]

× exp
[
i(mω0)x2(t)R2

B(t)
(
x1(t) − i(mω0x2

0)x2(t)
)
α2 − α2

1

]
× exp

( i
~

pp(t)q
)

× exp

α√
2mω0

~
R2

B(t)
(

x1(t)
x0
− i(mω0x0)x2(t)

)
(q − xp(t))


× exp

[(
−i
2~
µ(t)

(
B(t) +

ṘB(t)
RB(t)

)
−

(mω0

2~

)
R2

B(t)
)

(q − xp(t))2
]
.
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The corresponding probability density for time evolved coherent states (4.59) is

ρα(q, t) =
√

mω0

π~
R2

B(t) × exp
{
2
[(

(mω0x0)x2(t)RB(t)
)2(α2

1 − α2
2) (4.60)

−2(mω0)x1(t)x2(t)R2
B(t)α1α2 − α2

1

]}
× exp

2 √
2mω0

~
R2

B(t)
(
α1

x1(t)
x0
+ α2(mω0x0)x2(t)

)
(q − xp(t))


× exp

(
−

(mω0

~

)
R2

B(t)(q − xp(t))2
)
.

As another approach, we show that Φα(q, t) can be defined also as eigenstates of

the annihilation operator Â0(t) of a certain dynamical invariant Î0(t) of the generalized

Hamiltonian system. Indeed, let

Â0(t) = Ûg(t, t0)âÛ†g(t, t0)

and

Â†0(t) = Ûg(t, t0)â†Û†g(t, t0),

where â and â† are the annihilation and creation operators for Ĥ0, respectively. We define

the operator Î0(t)

Î0(t) = ~
(
Â†0(t)Â0(t) +

1
2

)
,

and we write it in terms of Ĥ0,

Î0(t) = ~
(
Â†0(t)Â0(t) +

1
2

)
= ~

(
Ûg(t, t0)â†âÛ†g(t, t0) +

1
2

Ûg(t, t0)Û†g(t, t0)
)

= ~

(
Ûg(t, t0)

(
â†â +

1
2

)
Û†g(t, t0)

)
=

1
ω0

Ûg(t, t0)Ĥ0Û†g(t, t0).
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Then, remembering the fact that Ûg(t, t0) satisfies the equation (4.12), we obtain

∂Î0

∂t
=

1
ω0

∂Ûg

∂t
Ĥ0Û†g + ÛgĤ0

∂Û†g
∂t


=

1
ω0

(
1
i~

ĤgÛgĤ0Û†g + ÛgĤ0

(
− 1

i~
Û†g Ĥg

))
=

1
iω0~

(
Ĥg ÛgĤ0Û†g︸   ︷︷   ︸

=ω0 Î0

− ÛgĤ0Û†g︸   ︷︷   ︸
=ω0 Î0

Ĥg

)

=
1
i~

[Ĥg, Î0].

Therefore, the operator Î0(t) satisfies

dÎ0

dt
≡ ∂Î0

∂t
+

1
i~

[Î0, Ĥg] = 0,

which shows that it is an invariant for the system. Knowing the evolution operator and the

relations,

e−
i
2 g(t) ∂2

∂q2 q̂e
i
2 g(t) ∂2

∂q2 = q̂ +
g(t)
~

p̂,

eh(t)q ∂
∂q q̂e−h(t)q ∂

∂q = eh(t)q̂,

eh(t)q ∂
∂q p̂e−h(t)q ∂

∂q = e−h(t) p̂,

e
i
2 f (t)q2

p̂e−
i
2 f (t)q2

= p̂ − ~ f (t)q̂,

e−b(t) ∂
∂q q̂eb(t) ∂

∂q = q̂ − b(t),

e
i
~a(t)q̂ p̂e−

i
~ a(t)q̂ = p̂ − a(t),

obtained by using the Proposition (4.1), the lowering operator Â0(t) is explicitly found as

Â0(t) = Ûg(t, t0)âÛ†g(t, t0)

= ec(t)Ê3e
1
~ a(t)Ê1e−b(t)Ê2e f (t)K̂+e2h(t)K̂0eg(t)K̂−

×
(√

mω0

2~
q̂ +

i
√

2mω0~
p̂
)

Û†g(t, t0)

=

[√mω0

2~

(
x0

x1(t)
− f (t)g(t)

x1(t)
x0

)
− i

√
~

2mω0
f (t)

x1(t)
x0

]
(q̂ − b(t))

+

[√mω0

2~
g(t)x1(t)
~x0

+ i

√
~

2mω0

x1(t)
~x0

]
( p̂ − a(t)).
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By doing the same procedure, the raising operator Â†0(t) is found as

Â†0(t) =
[√mω0

2~

(
x0

x1(t)
− f (t)g(t)

x1(t)
x0

)
+ i

√
~

2mω0
f (t)

x1(t)
x0

]
(q̂ − b(t))

+

[√mω0

2~
g(t)x1(t)
~x0

− i

√
~

2mω0

x1(t)
~x0

]
( p̂ − a(t)).

Using the definition of RB(t) given by the equation (4.41), the lowering and raising oper-

ators found above are written in terms of the functions x1(t), x2(t), xp(t) and pp(t)

Â0(t) =
{ √mω0

2~
RB(t) +

iµ(t)
√

2mω0~R2
B(t)

(B(t)RB(t) + ṘB(t))
 (q̂ − xp(t))

+
i

√
2mω0~RB(t)

( p̂ − pp(t))
}

exp
(
i arctan

(
mω0x2

0
x2(t)
x1(t)

))
,

Â†0(t) =
{ √mω0

2~
RB(t) − iµ(t)

√
2mω0~R2

B(t)
(B(t)RB(t) + ṘB(t))

 (q̂ − xp(t))

− i
√

2mω0~RB(t)
( p̂ − pp(t))

}
exp

(
−i arctan

(
mω0x2

0
x2(t)
x1(t)

))
.

and Î0(t) becomes

Î0(t) =
mω0

2
R2

B(t)(q̂ − xp(t))2

+
1

2mω0R2
B(t)

[
( p̂ − pp(t)) +

µ(t)
RB(t)

[B(t)RB(t) + ṘB(t)](q̂ − xp(t))
]2

.

Then, by construction we have Â0(t)Φα(q, t) = αΦα(q, t), showing that coherent

states Φα(q, t) are the eigenstates of Â0(t). It is known that for a given Hamiltonian the in-

variants depend on the initial wave functions. The invariant Î0(t) found here corresponds

to the initial state φk(q). We note also that, the time-dependent invariant operator con-

structed above is special in the sense that, its eigenstates are Ψk(q, t) corresponding to the

time-independent eigenvalues Ek = (~/ω0)(k+1/2) of the standard Hamiltonian Ĥ0, that’s

Î0(t)Ψk(q, t) = EkΨk(q, t), k = 0, 1, 2, ....
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4.7. Expectations and Uncertainties at Coherent States

Using that ⟨q̂⟩α(t) ≡ ⟨Φα(q, t)|q̂|Φα(q, t)⟩ = ⟨ϕα(q, t0)|q̂H(t)|ϕα(q, t0)⟩, and the equa-

tions (3.16) and (3.17) the expectation value of position at coherent state Φα(q, t) is

⟨q̂⟩α(t) =
⟨
ϕα(q, t0)

∣∣∣∣∣ 1
x0

x1(t)q̂H(t0) + x0x2(t) p̂H(t0) + xp(t)
∣∣∣∣∣ ϕα(q, t0)

⟩
=

√
2~

mω0

(
α1

x0
x1(t) + α2(mω0x0)x2(t)

)
+ xp(t). (4.61)

Similarly, using that ⟨ p̂⟩α(t) = ⟨ϕα(q, t0)| p̂H(t)|ϕα(q, t0)⟩, the expectation value of the mo-

mentum is

⟨ p̂⟩α(t) =
⟨
ϕα(q, t0)

∣∣∣∣∣µ(t)
[ 1

x0

(
ẋ1(t) − B(t)x1(t)

)
q̂H(t0) + x0

(
ẋ2(t) − B(t)x2(t)

)
p̂H(t0)

]
+pp(t)

∣∣∣∣∣ϕα(q, t0)
⟩

=

√
2~

mω0
µ(t)

[
α1

x0

(
ẋ1(t) − B(t)x1(t)

)
+ α2(mω0x0)

(
ẋ2(t) − B(t)x2(t)

)]
(4.62)

+pp(t).

After that, it is not difficult to show that the expectation values at coherent states satisfy

the classical equation of motion.

Furthermore, using the equations (3.18), (3.19) and

⟨ϕα(q, t0)|q̂H(t0) p̂H(t0) + p̂H(t0)q̂H(t0)|ϕα(q, t0)⟩ = 4~α1α2,

we find the expectations of squares:
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⟨q̂2⟩α(t) = ⟨ϕα(q, t0)|q̂2
H(t)|ϕα(q, t0)⟩

=

⟨
ϕα(q, t0)

∣∣∣∣∣ ( x1(t)
x0

)2

q̂2
H(t0) + x1(t)x2(t){q̂H(t0), p̂H(t0)} + (x0x2(t))2 p̂2

H(t0)

+2xp(t)
(

x1(t)
x0

q̂H(t0) + x0x2(t)
)
+ x2

p(t)
∣∣∣∣∣ϕα(q, t0)

⟩
=


√

2~
mω0

(
α1

x1(t)
x0
+ α2(mω0x0)x2(t)

)
+ xp(t)


2

+
~

2mω0R2
B(t)

, (4.63)

⟨p̂2⟩α(t) = ⟨ϕα(q, t0)|p̂2
H(t)|ϕα(q, t0)⟩

=

⟨
ϕα(q, t0)

∣∣∣∣∣µ2(t)
[ 1

x2
0

(
ẋ1(t) − B(t)x1(t)

)2q̂2
H(t0) + x2

0
(
ẋ2(t) − B(t)x2(t)

)2 p̂2
H(t0)

+
(
ẋ1(t) − B(t)x1(t)

)(
ẋ2(t) − B(t)x2(t)

){q̂H(t0), p̂H(t0)}
]

+2µ(t)pp(t)
[ 1

x0

(
ẋ1(t) − B(t)x1(t)

)
q̂H(t0) + x0

(
ẋ2(t) − B(t)x2(t)

)
p̂H(t0)

]
+p2

p(t)
∣∣∣∣∣ϕα(q, t0)

⟩
=

{√
2~

mω0
µ(t)

[
α1

x0

(
ẋ1(t) − B(t)x1(t)

)
+ α2(mω0x0)

(
ẋ2(t) − B(t)x2(t)

)]
+~α(t)

}2

+
~

2mω0

(mω0RB(t))2 +
µ2(t)
R2

B(t)

(
ṘB(t)
RB(t)

+ B(t)
)2 . (4.64)

Thus, the fluctuations for q̂ and p̂ become

(∆q̂)α(t) =
√
⟨q̂2⟩α(t) − ⟨q̂⟩2α(t)

=

√
~

2mω0

1
RB(t)

, (4.65)

(∆p̂)α(t) =
√
⟨p̂2⟩α(t) − ⟨ p̂⟩2α(t)

=

√
mω0~

2
RB(t)

√
1 +

µ2(t)
(mω0R2

B(t))2

(
ṘB(t)
RB(t)

+ B(t)
)2

. (4.66)

We note that the expectation values depend on all parameters of the Hamiltonian, however
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the fluctuations depend only on µ(t), ω2(t) and parameter B(t). In other words, uncertain-

ties does not depend on the external linear terms, which contribute only to displacement of

the wave packet. Finally, the uncertainty relation for the generalized harmonic oscillator

with time dependent parameters is

(∆q̂)α(∆p̂)α =
~

2

√
1 +

µ2(t)
(mω0R2

B(t))2

(
ṘB(t)
RB(t)

+ B(t)
)2

, (4.67)

where clearly (∆q̂)α(∆p̂)α ≥ ~/2. This relation coincides with the uncertainty (4.54) for

the Gaussian ground state k=0.

As a result we can say that, our formulas confirm the well known properties, such

as coherent states of the generalized parametric oscillator are displaced Gaussian wave

packets, they are eigenstates of the annihilation operator of a dynamical invariant, and

follow the classical trajectory. However, they are spreading or squeezing in time, since

(∆q̂)α depends on time, and are no longer minimum uncertainty states.
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CHAPTER 5

HERMITE TYPE GENERALIZED QUANTUM

OSCILLATOR

5.1. Exactly Solvable Models

Since the solution of the generalized time-dependent quadratic oscillator is com-

pletely determined by the corresponding classical equation of motion, it is interesting to

consider cases for which this equation has exact closed form solutions. Here, we introduce

generalized oscillator models related with the classical orthogonal polynomials, which are

eigenfunctions of certain singular Sturm-Liouville problems, and are also solutions of the

classical oscillator

ẍ +
µ̇(t)
µ(t)

ẋ + Ω2(t)x = 0. (5.1)

Precisely, we shall consider problems in which the damping Γ(t) = µ̇(t)/µ(t) and the

modified frequency

Ω2(t) = ω2(t) − (Ḃ + B2 +
µ̇

µ
B)

are coefficients of the classical Hermite, Laquerre and Legendre differential equations.

Clearly, this requires a special relation between the original frequency ω2(t) and the pa-

rameter B(t). To see this relation, we denote by

Λ2(t) = −(Ḃ + B2 +
µ̇

µ
B) (5.2)

the modification of the original frequency ω2(t). Then, substitution B(t) = ẏ/y in (5.2),

gives differential equation for classical oscillator with frequency Λ2(t)

ÿ +
µ̇

µ
ẏ + Λ2(t)y = 0. (5.3)
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This suggests that, it is possible to obtain exact solutions of the classical oscillator (5.1),

when for given parameters µ(t), ω2(t) and B(t), equations (5.1) and (5.3) are related with

the same Sturm-Liouville problem, that is the frequencies Ω2(t) and Λ2(t) are compatible.

According to this, in next sections we introduce generalized Hermite, Laguerre and Jacobi

type oscillators.

5.2. Quantization of Hermite Type Generalized Oscillator

We define the Hermite type generalized quantum oscillator by the Hamiltonian

Ĥg(t) =
et2

2
p̂2 + ne−t2 q̂2 +

(
Ḣr(t)
Hr(t)

)
(q̂p̂ + p̂q̂)

2
+ D(t)q̂ + E(t) p̂ + F(t), (5.4)

with variable mass µ(t) = e−t2 , constant frequency ω2(t) = 2n, n = 0, 1, 2, . . . , mixed term

parameter B(t) = Ḣr/Hr , where

Hr(t) = r!
⌊r/2⌋∑
k=0

(−1)k

k!(r − 2k)!
(2t)r−2k, r = 0, 1, 2, . . .

are the standard Hermite polynomials, and external parameters D(t), E(t), F(t). Then, the

classical equation of motion is a forced Hermite differential equation

ẍ − 2tẋ + 2(n + r)x = −1
µ

D + Ė +
(
µ̇

µ
+

Ḣr

Hr

)
E, −∞ < t < ∞. (5.5)

with time-variable damping Γ(t) = µ̇/µ = −2t, and modified frequency Ω2(t) = ω2(t) +

Λ2(t) = 2(n+r),where r = 0 corresponds to the case B(t) = 0.Note that coefficients of the

homogeneous equation are continuous, despite that B(t) has singularities at the zeros of

Hr(t). Then, essential properties of the particular solution will depend on the total forcing

term in Eq.(5.5). By special choice of E(t) it is possible to remove the singularities in the

total force, so that it also becomes continuous. Then, solution of the quantum oscillator

with Hamiltonian (5.4) can be written in terms of two independent homogeneous solutions
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x1(t) and x2(t) of (5.5), satisfying the initial conditions

x1(t0) = x0 , 0, ẋ1(t0) = x0Ḣr(t0)/Hr(t0), Hr(t0) , 0,

x2(t0) = 0, ẋ2(t0) = 1/µ(t0)x0

respectively, and a particular solution xp(t) of (5.5) satisfying: xp(t0) = 0, ẋp(t0) = E(t0).

When these solutions are smooth, probability densities of the wave functions and the

coherent states (4.59) will be also smooth. However, singularities of B(t) will be reflected

in momentum expectation values (4.62) and fluctuations (4.66), and in the uncertainty

relation (4.67), as we will show in the examples. Before this, we recall that, solution

of the homogeneous Eq.(5.5) with given initial conditions, in general will be a linear

combination of Hermite polynomial and a confluent hypergeometric function of first kind

1F1(a, b; t), which is represented by the series

1F1(a, b; t) =
∞∑

n=0

(a)n

(b)n

tn

n!
, b , 0,−1,−2, . . .

where (a)n and (b)n are Pochhammer symbols that are given by the relation (a)n = Γ(a +

n)/Γ(a). However, there are some cases which can be easily treated:

(i) when n is an odd positive integer and r is an even positive integer, that is n = 2k+ 1

and r = 2s, k, s = 0, 1, 2, 3, . . . , t0 = 0 and x0 = 1/Ḣ2(k+s)+1(0), then x1(t) =

x0(1F1(−(2(k + s) + 1)/2, 1/2; t2)) and second solution is the Hermite polynomial

x2(t) = H2(k+s)+1(t).

(ii) when n and r are both positive even integers, that is n = 2k and r = 2s, k, s =

0, 1, 2, 3, . . . , t0 = 0 and x0 = H2(k+s)(0), first solution is the Hermite polynomial,

x1(t) = H2(k+s)(t), and second linearly independent solution is x2(t) = t/x0(1F1(−(k+

s − 1/2), 3/2; t2)).

On the other hand, the particular solution of Eq.(5.5) will depend on the choice of the

external parameters. We write some special cases which could be of interest:

a) When B(t) = Ḣr/Hr, D(t) = [(d/dt)(e−t2 HrE(t))]/Hr(t), and E(t0) = 0, then the total

force in (5.5) is zero, so that xp(t) = 0, and pp(t) = −µ(t)E(t).

b) When B(t) = 0 and D(t) = −µ(t)ω2(t)
∫ t

t0
E(t′)dt′, then xp(t) =

∫ t

t0
E(t′)dt′ and

pp(t) = 0.
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c) When B(t) = Ḣr/Hr, D(t) , 0, E(t) = 0, then

xp(t) = −x1(t)
∫ t 1

µ(s)x2
1(s)

∫ s

t0
D(ξ)x1(ξ)dξds, xp(t0) = 0.

5.3. Exact Solutions

In this section, we give concrete examples of generalized parametric oscillator of

Hermite type with and without linear external terms.

Example 5.1 a) Let n = 2, r = 2, and B(t) = Ḣ2(t)/H2(t), but D(t) = E(t) = F(t) = 0,

so that there is no linear force. Then, the Hamiltonian is

Ĥg(t) =
et2

2
p̂2 + 2e−t2 q̂2 +

(
Ḣ2(t)
H2(t)

)
(q̂ p̂ + p̂q̂)

2
,

and the corresponding classical equation of motion becomes ẍ − 2tẋ + 8x = 0.

For t0 = 0, two linearly independent homogeneous solutions, satisfying the initial

conditions x1(0) = 12, ẋ1(0) = 0, and x2(0) = 0, ẋ2(0) = 1/12, are

x1(t) = H4(t),

x2(t) =
t

121F1

(
−3
2
,

3
2

; t2
)
=

1
192

[
et2

(
−H3(t)

2
+ 2H1(t)

)
+

√
π

4
H4(t)erfi(t)

]
,

where erfi(t) is the imaginary error function defined by erfi(t) = (2/
√
π)

∫ t

0
es2

ds,

and

RB(t) =

√√
144

H2
4(t) +

(
12mω0t

(
1F1

(
−3
2 ,

3
2 ; t2

)))2 , (5.6)

which is smooth and oscillatory in a finite time-interval near t = 0, and RB(t) → 0

as t → ∞. Then, the probability density ρn,r
k (q, t) = |Ψn,r

k (q, t)|2 for n = 2, r = 2

becomes

ρ2,2
k (q, t) = N2

k RB(t) exp
(
−mω0

~
R2

B(t)q2
)

H2
k

(√
mω0

~
RB(t)q

)
,
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and in Fig. 5.1(i) we plot it for k = 2, where one can see that it is smooth, and since

k = 2, it has two moving zeros. Also, the essentially nontrivial localization of the

particle takes place for |t| ≤ 2, and for |t| ≥ 2 the probability density spreads along

q-coordinate. The probability density in coherent state ρn,r
α (q, t) = |Φn,r

α (q, t)|2 for

n = 2, r = 2 is

ρ2,2
α (q, t) =

√
mω0

π~
RB(t) × exp

{
2
[(

12mω0

(
1F1

(
−3
2
,

3
2

; t2
))

RB(t)
)2

(α2
1 − α2

2)

−2mω0H4(t)
(

1F1

(
−3
2
,

3
2

; t2
))

R2
B(t)α1α2 − α2

1

)}
× exp

√2mω0

~
R2

B(t)
(
α1

H4(t)
6
+ α2(24mω0)

(
1F1

(
−3
2
,

3
2

; t2
)))

q


× exp

(
−

(mω0

~

)
R2

B(t)q2
)
.

In Fig. 5.1(ii) we plot it for α = 1/
√

2 + i(1/
√

2). We observe that it is a Gaussian

type wave packet following the classical trajectory described by the expectation

values

⟨q̂⟩α(t) =

√
2~

mω0

[
α1

H4(t)
12
+ α2(mω0t)

(
1F1

(
−3
2
,

3
2

; t2
))]

, (5.7)

⟨ p̂⟩α(t) =

√
2~

mω0
e−t2

{
α1

12

(
Ḣ4 −

Ḣ2

H2
H4(t)

)
(5.8)

+α2(12mω0)
[(

1 − t
Ḣ2(t)
H2(t)

)(
1F1

(−3
2
,

3
2

; t2
))
− t

(
1F1

(−1
2
,

5
2

; t2
))]}

.

With RB(t) as found in (5.6), fluctuations for q̂ and p̂ and uncertainty relation at

coherent states take the form

(∆q̂)α(t) =

√
~

2mω0

1
RB(t)

, (5.9)

(∆p̂)α(t) =

√
mω0~

2
RB(t)

√
1 +

e−2t2

(mω0R2
B(t))2

(
ṘB(t)
RB(t)

+
Ḣ2(t)
H2(t)

)2

,(5.10)

(∆q̂)α(∆p̂)α(t) =
~

2

√
1 +

e−2t2

(mω0R2
B(t))2

(
ṘB(t)
RB(t)

+
Ḣ2(t)
H2(t)

)2

. (5.11)
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Since coefficients of the classical equation are continuous, the expectations (5.7)

and fluctuations (5.9) of the position are smooth. In a finite time interval near the

origin (∆q̂)α(t) oscillates, and for |t| → ∞ we have increasing (∆q̂)α(t), showing

spreading in position. On the other hand, the singularities of the coefficient B(t) at

zeros of H2(t), are reflected in the expectations (5.8) and fluctuations (5.10) of the

momentum. Then, as shown in Fig. 5.2, the uncertainty (5.11) is oscillatory in a

finite time interval near the origin, but it has singularities at the two zeros of the

Hermite polynomial H2(t). As |t| → ∞, (∆q̂)α(∆p̂)α(t) → ∞, which shows that the

uncertainties do not compensate each other in the limiting case.

(i) (ii)

Figure 5.1. Hermite type generalized oscillator, when D(t) = E(t) = F(t) = 0.
(i) Probability density ρ2,2

2 (q, t) = |Ψ2,2
2 (q, t)|2 , n = r = k = 2.

(ii) Probability density in coherent state ρ2,2
α (q, t) = |Φ2,2

α (q, t)|2 for α =
1/
√

2 + i(1/
√

2), n = r = 2.

b) Now, we consider the oscillator in part (a) under the influence of linear exter-

nal terms. That is, n = 2, r = 2, and we choose D(t) = tH2(t), E(t) = −((1 +

2t2)H2(t)et2)/4, F(t) = 0. Then, the Hamiltonian becomes

Hg(t) =
et2

2
p̂2 + 2e−t2 q̂2 +

(
Ḣ2(t)
H2(t)

)
(q̂p̂ + p̂q̂)

2
+ tH2(t)q̂ − 1

4
(1 + 2t2)H2(t)et2 p̂,
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Figure 5.2. Uncertainty relation for generalized Hermite oscillator, n = r = 2.

and the corresponding classical equation is

ẍ − 2tẋ + 8x = −
(
2tH2(t) +

1
2

(1 + 2t2)Ḣ2(t)
)

et2 . (5.12)

We note that, by above choice of D(t) and E(t), pp(t) is zero and E(t) compensates

the singularities coming from B(t), so that the forcing term in Eq.(5.12) is con-

tinuous. For t0 = 0, two homogeneous solutions x1(t) and x2(t) of (5.12) are as

given in part (a), and the particular solution satisfying xp(0) = 0, ẋp(0) = 1/2, is

xp(t) = −(tH2(t)et2)/4. This gives new probability density

ρ2,2
k (q, t) = N2

k RB(t) exp

− (√
mω0

~
RB(t)

(
q +

1
4

tH2(t)et2
))2

×H2
k

(√
mω0

~
RB(t)

(
q +

1
4

tH2(t)et2
))
,

with RB(t) as found in part (a), but position coordinate displaced by xp(t). The

influence of this displacement can be seen in Fig. 5.3(i). On the other hand, the new
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(i) (ii)

Figure 5.3. Hermite type generalized oscillator, when D(t) = tH2(t), E(t) = −((1 +
2t2)H2(t)et2)/4, F(t) = 0.
(i) Probability density ρ2,2

2 (q, t) = |Ψ2,2
2 (q, t)|2 , n = r = k = 2.

(ii) Probability density in coherent states ρ2,2
α (q, t) = |Φ2,2

α (q, t)|2 for α =
1/
√

2 + i(1/
√

2), n = r = 2.

probability density in coherent state becomes

ρ2,2
α (q, t) =

√
mω0

π~
RB(t) × exp

{
2
[(

12mω0

(
1F1

(
−3
2
,

3
2

; t2
))

RB(t)
)2

(α2
1 − α2

2)

−2mω0H4(t)
(

1F1

(
−3
2
,

3
2

; t2
))

R2
B(t)α1α2 − α2

1

)}
× exp

[√2mω0

~
R2

B(t)
(
α1

H4(t)
6

+α2(24mω0)
(

1F1

(−3
2
,

3
2

; t2
))) (

q +
1
4

tH2(t)et2
) ]

× exp
− (mω0

~

)
R2

B(t)
(
q +

1
4

tH2(t)et2
)2 ,

and its evolution is shown in Fig. 5.3(ii). Clearly, expectation of position (5.7) will

be also displaced by xp(t), and it takes the form

⟨q̂⟩α(t) =

√
2~

mω0

[
α1

H4(t)
12
+ α2(mω0t)

(
1F1

(
−3
2
,

3
2

; t2
))]
− 1

4
tH2(t)et2 ,
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but the expectation of momentum ⟨ p̂⟩α(t) given by Eq.(5.8) does not change, since

in this example pp(t) = 0. From the general results we know that, the fluctuations

and uncertainty relation obtained in part (a) do not change under the influence of

the linear external terms.
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CHAPTER 6

ASSOCIATED LAGUERRE TYPE GENERALIZED

QUANTUM OSCILLATOR

We define a generalized associated Laguerre type oscillator by the Hamiltonian

Ĥg(t) =
et

2tm+1 p̂2 +
ntm

2et q̂2 +

(
L̇m

r (t)
Lm

r (t)

)
(q̂ p̂ + p̂q̂)

2
+ D(t)q̂ + E(t) p̂ + F(t), (6.1)

with variable mass µ(t) = tm+1e−t, m > −1, variable frequency ω2(t) = n/t, n = 0, 1, 2, ...,

and B(t) = L̇m
r (t)/Lm

r (t), r = 0, 1, 2, ..., where Lm
r (t) = ett−m(r!)−1dr (e−ttr+m)

/dtr are the

associated Laguerre polynomials. The corresponding classical oscillator is a forced asso-

ciated Laguerre differential equation

ẍ +
(m + 1 − t)

t
ẋ +

(n + r)
t

x = − et

tm+1 D + Ė +
(
m + 1 − t

t
+

L̇m
r

Lm
r

)
E, 0 < t < ∞, (6.2)

with damping Γ(t) = (m + 1 − t)/t, and modified frequency Ω2(t) = (n + r)/t. Here, we

shall examine and give example for the case when m = 0.

6.1. Quantization of Laguerre Type Generalized Oscillator

For m=0, the Hamiltonian for a Laguerre type generalized oscillator is

Ĥg(t) =
et

2t
p̂2 +

n
2et q̂

2 +

(
L̇r(t)
Lr(t)

)
(q̂p̂ + p̂q̂)

2
+ D(t)q̂ + E(t) p̂ + F(t), (6.3)

where µ(t) = te−t, ω2(t) = n/t, n = 0, 1, 2, ..., t ∈ (0,∞), B(t) = L̇r(t)/Lr(t), and

Lr(t) =
r∑

k=0

(
r
k

)
(−1)k

k!
tk, r = 0, 1, 2, . . .
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are the standard Laguerre polynomials. Then, the corresponding classical oscillator is a

forced Laguerre differential equation

ẍ +
(1 − t)

t
ẋ +

(n + r)
t

x = −et

t
D + Ė +

(
1 − t

t
+

L̇r

Lr

)
E, 0 < t < ∞, (6.4)

with Γ(t) = (1− t)/t, andΩ2(t) = (n+r)/t. Since coefficients of the homogeneous equation

are continuous for t > 0, assuming the total force is also continuous for t > 0, solution of

the quantum oscillator with Hamiltonian (6.3) can be written in terms of two independent

homogeneous solutions x1(t) and x2(t) of (6.4), satisfying the initial conditions

x1(t0) = x0 , 0, ẋ1(t0) = x0
L̇r(t0)
Lr(t0)

, Lr(t0) , 0,

x2(t0) = 0, ẋ2(t0) = 1/µ(t0)x0

respectively, and a particular solution xp(t) of (6.4) satisfying: xp(t0) = 0, ẋp(t0) = E(t0).

6.2. Concrete Examples and Discussions

In this section, we give some examples of Laguerre type generalized oscillator

with exact solutions.

Example 6.1 a) Let n = r = 1, B(t) = L̇1(t)/L1(t) and D(t) = E(t) = F(t) = 0. Then,

the Hamiltonian becomes

Ĥg(t) =
et

2t
p̂2 +

1
2et q̂

2 +

(
L̇1(t)
L1(t)

)
(q̂p̂ + p̂q̂)

2
,

and the classical equation is ẍ+ (1− t)/tẋ+ 2/tx = 0. For t0 = 2, two solutions sat-

isfying the conditions x1(2) = 1, ẋ1(2) = 1, and x2(2) = 0, ẋ(2) = e2/2 respectively,

are

x1(t) =
1
e2

[
et(t − 3) − 2L2(t)(e2 − Ei(2) + Ei(t))

]
, (6.5)

and

x2(t) =
1
2
[
et(t − 3) − L2(t)(e2 − 2Ei(2) + 2Ei(t))

]
, (6.6)
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where Ei(t) is the exponential integral defined by Ei(t) = −
∫ ∞
−t

(e−s/s)ds.With above

x1(t) and x2(t), we have

RB(t) =

√
1

x2
1(t) + (mω0x2(t))2

, (6.7)

which is smooth for t > 0 and RB(t) → 0 as t → ∞. Then, the corresponding

probability density for n = 1, r = 1 is

ρ1,1
k (q, t) = N2

k RB(t) exp
(
−mω0

~
R2

B(t)q2
)

H2
k

(√
mω0

~
RB(t)q

)
,

and in Fig. 6.1(i) we plot it for k = 2. The probability density is a smooth function,

which has two moving zeros, since k = 2. It shows oscillatory behavior in finite

time interval near t = 0, and then spreads along the q-coordinate. The probability

density in coherent state, for n = 1, r = 1 is

ρ1,1
α (q, t) =

(mω0

π~

)1/2
RB(t) × exp

{
2
[(

(mω0)x2(t)RB(t)
)2(α2

1 − α2
2)

−2(mω0)x1(t)x2(t)R2
B(t)α1α2 − α2

1

]}
× exp

2 √
2mω0

~
R2

B(t) (α1x1(t) + α2(mω0)x2(t)) q


× exp

(
−

(mω0

~

)
R2

B(t)q2
)
,

where x1(t), x2(t) are defined by (6.5), (6.6), and in Fig. 6.1(ii) one can explicitly

see that it is a Gaussian type wave packet. Then, the expectation values at coherent

states are

⟨q̂⟩α(t) =

√
2~

mω0

(
α1x1(t) + α2(mω0)x2(t)

)
, (6.8)

⟨p̂⟩α(t) =

√
2~

mω0
te−t

[
α1

(
ẋ1(t) − L̇1(t)

L1(t)
x1(t)

)
(6.9)

+α2(mω0)
(
ẋ2(t) − L̇1(t)

L1(t)
x2(t)

)]
,
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(i) (ii)

Figure 6.1. Laguerre type generalized oscillator, when D(t) = E(t) = F(t) = 0.
(i) Probability density ρ1,1

2 (q, t) = |Ψ1,1
2 (q, t)|2, n = r = 1, and k = 2.

(ii) Probability density ρ1,1
α (q, t) = |Ψ1,1

α (q, t)|2 in coherent states for α =
1/
√

2 + i(1/
√

2), n = r = 1.

which shows that the wave packet of the coherent state follows the trajectory of the

classical particle. With RB(t) calculated from (6.7), the fluctuations and uncertainty

relation become

(∆q̂)α(t) =

√
~

2mω0

1
RB(t)

, (6.10)

(∆p̂)α(t) =

√
mω0~

2
RB(t)

√
1 +

t2e−2t

(mω0R2
B(t))2

(
ṘB(t)
RB(t)

+
L̇1(t)
L1(t)

)2

, (6.11)

(∆q̂)α(∆p̂)α =
~

2

√
1 +

t2e−2t

(mω0R2
B(t))2

(
ṘB(t)
RB(t)

+
L̇1(t)
L1(t)

)2

. (6.12)

Since the solution of the classical oscillator is given in terms of Laguerre polyno-

mials and exponenial functions, (∆q̂)α(t) shows oscillatory behavior in a finite time

interval near t = 0, while for |t| → ∞, (∆q̂)α(t) goes to infinity, which confirms

spreading in position coordinate. However, the singularity in parameter B(t) at the

zero of L1(t) appears both in the expectation (6.9) and fluctuation (6.11) of the mo-

mentum, where it becomes undefined. Consequently, the uncertainty relation also

has singularity at finite time, where L1(t) = 0, and for t → 0 and t → ∞, one has

(∆q̂)α(∆p̂)α → ∞, as one can see in Fig. 6.2.

66



Figure 6.2. Uncertainty relation for generalized Laguerre oscillator, n = r = 1.

b) Now, we consider the system in part (a) under the influence of linear external terms.

That is, let n = 1, r = 1, and D(t) = (t − 2)L2(t), E(t) = (1 − t)L2(t)et, F(t) = 0.

Then, the corresponding Hamiltonian is

Ĥg(t) =
et

2t
p̂2 +

1
2et q̂

2 +

(
L̇1(t)
L1(t)

)
(q̂p̂ + p̂q̂)

2
+ (t − 2)L2(t)q̂ + (1 − t)L2(t)et p̂,

and the classical equation becomes

ẍ +
1 − t

t
ẋ +

2
t

x =
et

t
(L2

1(t) − 1) + 3etL1(t)L̇1(t), 0 < t < ∞. (6.13)

For t0 = 2, solutions x1(t) and x2(t) of Eq.(6.13) are same as in part (a), and

the particular solution satisfying the initial conditions xp(2) = 0, ẋp(2) = e2, is

xp(t) = (2 − t)L1(t)et. Thus, the new probability density is

ρ1,1
k (q, t) = N2

k RB(t) exp
(
−mω0

~
R2

B(t)
(
q + (t − 2)L1(t)et)2

)
(6.14)

×H2
k

(√
mω0

~
RB(t)

(
q + (t − 2)L1(t)et))

with RB(t) as found in part (a), and position coordinate displaced by xp(t), see Fig.
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6.1(i).

(i) (ii)

Figure 6.3. Laguerre type generalized oscillator, when D(t) = (t − 2)L2(t), E(t) =
(1 − t)L2(t)et.
(i) Probability density ρ1,1

2 (q, t) = |Ψ1,1
2 (q, t)|2, n = r = 1, and k = 2.

(ii) Probability density ρ1,1
α (q, t) = |Ψ1,1

α (q, t)|2 in coherent states for α =
1/
√

2 + i(1/
√

2), n = r = 1.

The new probability density in time evolved coherent state is

ρ1,1
α (q, t) =

(mω0

π~

)1/2
RB(t) × exp

{
2
[(

(mω0)x2(t)RB(t)
)2(α2

1 − α2
2)

−2(mω0)x1(t)x2(t)R2
B(t)α1α2 − α2

1

]}
× exp

2 √
2mω0

~
R2

B(t) (α1x1(t) + α2(mω0)x2(t))
(
q + (t − 2)L1(t)et)

× exp
(
−

(mω0

~

)
R2

B(t)
(
q + (t − 2)L1(t)et)2

)
,

which was plotted in Fig. 6.1(ii). Comparing the probability densities, found in part

(a) and part (b) of this example, one can explicitly see the change in the evolution

of the wave packets under the displacement of the position coordinate by xp(t).
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CHAPTER 7

JACOBI TYPE GENERALIZED QUANTUM

OSCILLATOR

We define a generalized Jacobi type oscillator by a Hamiltonian of the form

Ĥg(t) =
p̂2

2(1 − t)a+1(1 + t)a+1 +
[n (n + a + b + 1)] (1 − t)a(1 + t)b

2
q̂2 +

(
Ṗa,b

r (t)

Pa,b
r (t)

)
(q̂p̂ + p̂q̂)

2
+ D(t)q̂ + E(t) p̂ + F(t), (7.1)

with mass µ(t) = (1− t)a+1(1+ t)b+1, a, b > −1, frequency ω2(t) = [n (n + a + b + 1)]/(1−
t2), −1 < t < 1, and B(t) = Ṗa,b

r (t)/Pa,b
r (t), where

Pa,b
n (t) =

(−1)n

2nn!
(1 − t)−a(1 + t)−b dn

dtn

[
(1 − t)a+n(1 + t)b+n

]
,

are the Jacobi polynomials. Then, the corresponding classical oscillator is a forced Jacobi

differential equation

ẍ +
(b − a − (a + b + 2)t)

1 − t2 ẋ +
n(n + a + b + 1) + r(r + a + b + 1)

1 − t2 x

= −1
µ

D + Ė +
(
(b − a − (a + b + 2)t)

(1 − t2)
+

Ṗa,b
r (t)

Pa,b
r (t)

)
E, −1 < t < 1,

where Γ(t) = [(b − a − (a + b + 2)t)]/(1 − t2) is the damping coefficient, and

Ω2(t) =
n(n + a + b + 1)

1 − t2 +
r(r + a + b + 1)

1 − t2

is the modified frequency. Thus, to preserve the structure after the modification, for given

n, r = 0, 1, 2, .... and a, b > −1, we need to find nonnegative integer m, for which the

equation n(n + a + b + 1) + r(r + a + b + 1) = m(m + a + b + 1) holds. We shall treat

explicitly two special cases: for a = b = 0 the Legendre generalized oscillators and for
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a = b = −1/2 the first-kind Chebyshev (FKC) oscillator.

7.1. Legendre Type Generalized Quantum Oscillator with Examples

The Hamiltonian for a Legendre type generalized oscillator is

Ĥg(t) =
1

2(1 − t2)
p̂2 +

n(n + 1)
2

q̂2 +

(
Ṗr(t)
Pr(t)

)
(q̂p̂ + p̂q̂)

2
+ D(t)q̂ + E(t)p̂ + F(t) (7.2)

where µ(t) = (1 − t2), ω2(t) = n(n + 1)/
(
1 − t2

)
, n = 0, 1, 2, ..., t ∈ (−1, 1), B(t) =

Ṗr(t)/Pr(t), and

Pr(t) =
1
2r

⌊r/2⌋∑
k=0

(−1)k (2r − 2k)!
k!(r − k)!(r − 2k)!

tr−2k, r = 0, 1, 2, ...

are the Legendre polynomials. Then, the classical equation is a forced Legendre differen-

tial equation

ẍ − 2t
1 − t2 ẋ +

n(n + 1) + r(r + 1)
1 − t2 x = −1

µ
D + Ė +

(
− 2t

1 − t2 +
Ṗr(t)
Pr(t)

)
E, (7.3)

where −1 < t < 1, with Γ(t) = −2t/(1 − t2) and Ω2(t) = [n(n + 1) + r(r + 1)]/(1 − t2).

Here, if for given n and r (r , 1), m is a positive integer satisfying the equation n(n +

1) + r(r + 1) = m(m + 1), then the homogeneous part of Eq.(7.3) has solution in the form

x(t) = c1Pm(t) + c2Qm(t), t ∈ (−1, 1), where Pm(t) are Legendre polynomials, and Qm(t)

are the Legendre functions of the second kind given by the formula

Qm(t) =
1
2

Pm(t) ln
1 + t
1 − t

−
m∑

k=1

1
k

Pk−1(t)Pm−k(t).

Example 7.1 Let n = 2, r = 2, and B(t) = Ṗ2(t)/P2(t), D(t) = tP2(t), E(t) = −P2(t)/6,
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F(t) = 0. Then the Hamiltonian becomes

Ĥg(t) =
1

2(1 − t2)
p̂2 + 3q̂2 +

(
Ṗ2(t)
P2(t)

)
(q̂p̂ + p̂q̂)

2
+ tP2(t)q̂ − P2(t)

6
p̂,

and the corresponding classical equation is

ẍ +
−2t

1 − t2 ẋ +
12

1 − t2 x =
−1
3

(
2t

1 − t2 P2(t) + Ṗ2(t)
)
. (7.4)

For t0 = 0, two homogeneous solutions x1(t) and x2(t) of Eq.(7.4), satisfying the initial

conditions x1(0) = −2/3, ẋ1(0) = 0, and x2(0) = 0, ẋ2(0) = −3/2, are

x1(t) = −Q3(t) =
5t3 − 3t

4
ln

(
1 − t
1 + t

)
+

5t2

2
− 2

3
, x2(t) = P3(t) =

1
2

(5t3 − 3t),

since for n = 2, r = 2 we have m = 3. Then the particular solution satisfying the initial

conditions xp(0) = 0, ẋp(0) = 1/12, is

xp(t) = − t
6

P2(t) = − t
12

(3t2 − 1),

and we calculate

RB(t) =
2
3

√√
1

Q2
3(t) +

(
4mω0

9 P2
3(t)

)2 , (7.5)

which is bounded and has oscillatory behavior for t ∈ (−1, 1), and RB(t) → 0, when

t → ±1. Then, the probability density in state Ψ2,2
k (q, t) is

ρ2,2
k (q, t) = N2

k RB(t) exp
−mω0

~
R2

B(t)
(
q +

tP2(t)
6

)2 H2
k

(√
mω0

~
RB(t)

(
q +

tP2(t)
6

))
,

which is plotted for k = 2 in the Fig. 7.1(i), and the probability density in coherent state
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is

ρ2,2
α (q, t) =

3
2

√
mω0

π~
RB(t) × exp

{
2
[(2mω0

3
P3(t)RB(t)

)2(
α2

1 − α2
2
)

+2mω0P3(t)Q3(t)R2
B(t)α1α2 − α2

1

]}
× exp

[
3

√
2mω0

~
R2

B(t)
(
α1Q3(t) − α2

(4mω0

9

)
P3(t)

)(
q +

tP2(t)
6

)]
× exp

[
− mω0

~
R2

B(t)
(
q +

tP2(t)
6

)2]
,

which is shown in Fig. 7.1(ii) for α = 1/
√

2+ i(1/
√

2). Then, we compute the expectation

values,

⟨q̂⟩α(t) =

√
2~

mω0

[
α1

3Q3(t)
2
− α2

(
2mω0

3

)
P3(t)

]
− tP2(t)

6
, (7.6)

⟨ p̂⟩α(t) =

√
2~

mω0
(1 − t2)

[3
2
α1

(
Q̇3(t) − Ṗ2(t)

P2(t)
Q3(t)

)
(7.7)

+α2

(
2mω0

3

) (
Ṗ3(t) − Ṗ2(t)

P2(t)
P3(t)

)]
,

and with RB(t) given by (7.5) we get the fluctuation for q̂ and p̂, and uncertainty relation

at coherent states as follows:

(∆q̂)α(t) =

√
~

2mω0

1
RB(t)

, (7.8)

(∆p̂)α(t) =

√
mω0~

2
RB(t)

√
1 +

(1 − t2)2

(mω0R2
B(t))2

(
ṘB(t)
RB(t)

+
Ṗ2(t)
P2(t)

)2

, (7.9)

(∆q̂)α(∆p̂)α =
~

2

√
1 +

(1 − t2)2

(mω0R2
B(t))2

(
ṘB(t)
RB(t)

+
Ṗ2(t)
P2(t)

)2

. (7.10)

Because the coefficients of the forced oscillator (7.4) are continuous, the expec-

tations (7.6) and fluctuations (7.8) of the position are smooth on the interval t ∈ (−1, 1).

But the expectations (7.7) and fluctuations (7.9) of the momentum are not defined at zeros

of P2(t). The uncertainty relation is bounded on (-1,1), except in the neighborhoods of the

zeros of P2(t), where it tends to infinity, see Fig. 7.2.
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(i) (ii)

Figure 7.1. Legendre type generalized oscillator, when D(t) = tP2(t), E(t) =
−P2(t)/6, F(t) = 0.
(i) Probability density ρ2,2

2 (q, t) = |Ψ2,2
2 (q, t)|2.

(ii) Probability density ρ2,2
α (q, t) = |Φ2,2

α (q, t)|2 in coherent states for α =
1/
√

2 + i(1/
√

2).

Figure 7.2. Uncertainty relation for generalized Legendre oscillator, n = r = 2.
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7.2. First-kind Chebyshev Type Generalized Quantum Oscillator

with Examples

The Hamiltonian for a FKC generalized oscillator is

Ĥg(t) =
p̂2

2
√

1 − t2
+

n2

2
√

1 − t2
q̂2 +

(
Ṫr(t)
Tr(t)

)
(q̂p̂ + p̂q̂)

2
+ D(t)q̂ + E(t) p̂ + F(t) (7.11)

where µ(t) =
√

1 − t2, ω2(t) = n2/
(
1 − t2

)
, n = 0, 1, 2, ..., t ∈ (−1, 1), B(t) = Ṫr(t)/Tr(t),

and

Tr(t) =
r
2

⌊r/2⌋∑
k=0

(−1)k (r − k − 1)!
k!(r − 2k)!

(2t)r−2k, r = 0, 1, 2, . . .

are the first-kind Chebyshev polynomials. Then, the classical equation is a forced FKC

differential equation

ẍ − t
1 − t2 ẋ +

(n2 + r2)
1 − t2 x = −1

µ
D + Ė +

(
− t

1 − t2 +
Ṫr(t)
Tr(t)

)
E, −1 < t < 1, (7.12)

with Γ(t) = −t/(1−t2) andΩ2(t) = (n2+r2)/(1−t2).We note that, when n2+r2 = m2,where

m is also a positive integer, that’s when (n, r,m) are Pythagorean triples, the corresponding

homogeneous equation has solution of the form

x(t) = c1Tm(t) + c2

√
1 − t2Um−1(t),

where

Um(t) =
⌊m/2⌋∑
k=0

(−1)k (m − k)!
k!(m − 2k)!

(2t)m−2k, m = 0, 1, 2, . . .

are the Chebyshev polynomials of the second kind.

Example 7.2 Let n = 3, r = 4, B(t) = Ṫ4(t)/T4(t), D(t) = tT4(t), E(t) = T6(t)(2t2 −
1)/(64

√
1 − t2), F(t) = 0. Then, the Hamiltonian becomes

Ĥg(t) =
p̂2

2
√

1 − t2
+

9

2
√

1 − t2
q̂2 +

(
Ṫ4(t)
T4(t)

)
(q̂ p̂ + p̂q̂)

2
+ tT4(t)q̂ +

T4(t)
9

(2t2 − 1)
√

1 − t2
p̂,
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and the corresponding classical equation is

ẍ − t
1 − t2 ẋ +

5
1 − t2 x =

1

9
√

1 − t2

(
5tT4(t) + 2(2t2 − 1)Ṫ4(t)

)
, (7.13)

where by the above choice of E(t), the singularities in B(t) are removed, so that the forcing

in Eq.(7.13) becomes continuous. For t0 = 0, homogeneous solutions x1(t) and x2(t) of the

Eq.(7.13), satisfying the initial conditions x1(0) = 1/5, ẋ1(0) = 0, and x2(0) = 0, ẋ2(0) =

5, respectively are

x1(t) =
1
5

√
1 − t2U4(t) =

1
5

√
1 − t2(16t4 − 12t2 + 1

)
, x2(t) = T5(t) = 16t5 − 20t3 + 5t,

and the particular solution satisfying the initial conditions xp(0) = 0, ẋp(0) = −1/9 is

xp(t) = − t
9

√
1 − t2T4(t) = − t

9

√
1 − t2(8t4 − 8t2 + 1

)
.

Then, we calculate

RB(t) =

√
1

(1 − t2)U2
4(t) + 1

25(mω0T5(t))2
, (7.14)

where RB(t) is bounded and oscillating in t ∈ (−1, 1), but does not approach zero for

t → ±1, as in the case of the Legendre oscillator, since Chebyshev polynomials are defined

at t = ±1. Then, the probability density for n = 3, r = 4 is in the form

ρ3,4
k (q, t) = N2

k RB(t) exp

− √mω0

~
RB(t)

q + t
√

1 − t2

9
T4(t)

2
×H2

k

√mω0

~
RB(t)

q + t
√

1 − t2

9
T4(t)

 ,
and in Fig. 7.3(i) we plot it for k = 2. The probability density in coherent state is
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(i) (ii)

Figure 7.3. FKC type generalized oscillator, when D(t) = tT4(t), E(t) = T6(t)(2t2 −
1)/(64

√
1 − t2), F(t) = 0. (i) Probability density ρ3,4

2 (q, t). (ii) Probability
density ρ3,4

α (q, t) in coherent states for α = 1/
√

2 + i(1/
√

2).

ρ3,4
α (q, t) =

√
mω0

π~
RB(t) × exp

{
2
[((mω0

5

)
T5(t)RB(t)

)2(
α2

1 − α2
2
)

−
(2mω0

5

)√
1 − t2T5(t)U4(t)R2

B(t)α1α2 − α2
1

]}
× exp

[
2

√
2mω0

~
R2

B(t)
(
α1

√
1 − t2U4(t)

+α2

(mω0

5

)
T5(t)

)(
q +

t
√

1 − t2

9
T4(t)

)]
× exp

[
−

(mω0

~

)
R2

B(t)
(
q +

t
√

1 − t2

9
T4(t)

)2]
,

and we plot it for α = 1/
√

2 + i(1/
√

2) in the Fig. 7.3(ii). The expectation values for q̂

and p̂ are found as

⟨q̂⟩α(t) =

√
2~

mω0

[
α1

√
1 − t2U4(t) + α2

(mω0

5

)
T5(t)

]
− t
√

1 − t2

9
T4(t), (7.15)

⟨p̂⟩α(t) =

√
2~

mω0

{
α1

5

[
(1 − t2)U̇4(t) −

(
t + (1 − t2)

Ṫ4(t)
T4(t)

)
U4(t)

]
(7.16)

+α2

(mω0

5

) √
1 − t2

(
Ṫ5(t) − Ṫ4(t)

T4(t)
T5(t)

)}
,
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Figure 7.4. Uncertainty relation for generalized FKC oscillator, n = 3, r = 4.

and with RB(t) given by (7.14) we have

(∆q̂)α(t) =

√
~

2mω0

1
RB(t)

, (7.17)

(∆ p̂)α(t) =

√
mω0~

2
RB(t)

√
1 +

1 − t2

(mω0R2
B(t))2

(
ṘB(t)
RB(t)

+
Ṫ4(t)
T4(t)

)2

, (7.18)

(∆q̂)α(∆ p̂)α =
~

2

√
1 +

1 − t2

(mω0R2
B(t))2

(
ṘB(t)
RB(t)

+
Ṫ4(t)
T4(t)

)2

. (7.19)

We see that the expectations (7.15) and fluctuations (7.17) of the position are smooth, but

at the singularities of B(t) the expectations (7.16) and fluctuations (7.18) of momentum

are not defined. Since B(t) has singularities at the four zeros of the FKC polynomial T4(t),

the uncertainty relation is also singular at these points. On the other hand, when |t| → ±1,

uncertainty approaches minimum, that is (∆q̂)α(∆ p̂)α(t)→ ~/2, see Fig. 7.4.
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CHAPTER 8

CONCLUSION

In the present thesis, we solved quantum system with the generalized quantum

Hamiltonian and time-variable parameters using Wei-Norman Lie algebraic approach.

Since the quantum Hamiltonian of this system could be written in terms of the genera-

tors of su(1,1) and Heisenberg-Weyl Lie algebra, the exact form of its evolution operator

was found by means of two linearly independent homogeneous solutions and a particular

solution of the corresponding forced classical equation of motion. Using the evolution

operator, we obtained wave function solutions of time-dependent Schrödinger equation,

time evolution of Glauber coherent states, corresponding probability densities, expecta-

tion values and uncertainties.

To get better insight to this problem, we also examined exactly solvable models.

We studied quantum parametric oscillator related with the classical orthogonal polynomi-

als of Hermite, Laguerre and Jacobi type, under the influence of external forces. We real-

ized that the mixed term parameter B(t) modifies the original frequency, and by a special

choice of this parameter we were able to preserve the structure of the original oscillator.

However, in Hermite, Laguerre and Jacobi type oscillators, this choice of B(t) develops

finite time singularities at the zeros of the related orthogonal polynomials. Since the coef-

ficients of the classical oscillators are continuous, the expectations and fluctuations of the

position are smooth but the singularities of B(t) are reflected in the expectations and fluc-

tuations of the momentum and the uncertainty relation. Thus, as time approaches these

singularities, uncertainty relation tends to infinity. The probability densities of all models

are smooth and oscillatory in a finite time interval near the initial point. For Hermite and

Laguerre oscillators, which are defined on infinite time intervals, the spreading coefficient

RB(t) of the wave packets tends to zero with increasing time. Therefore, the amplitude of

the wave packets is decreasing and approaching zero when time goes to infinity, and wave

packets are spreading along q-coordinate. For the Legendre oscillator, defined on finite

time interval (−1, 1), we have RB(t) → 0, as t → ±1, so that wave amplitudes approach

zero in the neighborhood of t = ±1, and wave packets are spreading with respect to q .

However, for the first-kind Chebyshev model RB(t) is bounded in t ∈ (−1, 1), but does not

approach zero for t → ±1, as in the case of the Legendre oscillator.

Moreover, we have seen that the linear external terms D(t) and E(t) lead to dis-
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placement in the position coordinate of the wave packets. So expectation values of posi-

tion and momentum were shifted by the particular solutions xp(t) and pp(t) of the classical

equations of motion. We also gave some examples with and without external forces to see

the influence of the linear external terms and made comparison. We observed the differ-

ence in the evolution of the wave packets under the influence of the external forces. Nev-

ertheless, uncertainty relations do not depend on the linear external terms, they depend

only on the mass µ(t), frequency ω2(t) and the mixed parameter B(t) of the oscillator.
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APPENDIX A

COMMUTATION RELATIONS OF THE LIE GROUP

GENERATORS

The generators Ê1, Ê2 and Ê3 of Heisenberg-Weyl algebra and the generators

K̂−, K̂+ and K̂0 of the su(1, 1) algebra generate a Lie algebra. For any function f (q) in

a Hilbert space H, we prove the commutation relations which we used in Chapter 3 as

follows:

[Ê1, Ê2] f =
[
iq,

∂

∂q

]
f = i

(
q
∂ f
∂q
− ∂

∂q
(q f )

)
(A.1)

= −i f = −Ê3 f ,

⇒ [Ê1, Ê2] = −Ê3.

[Ê1, K̂−] f =
[
iq,− i

2
∂2

∂q2

]
f =

1
2

(
q
∂2 f
∂q2 −

∂2

∂q2 (q f )
)

(A.2)

= −∂ f
∂q
= −Ê2 f ,

⇒ [Ê1, K̂−] = −Ê2.

[Ê1, K̂+] f =
[
iq,

i
2

q2
]

f = 0, (A.3)

⇒ [Ê1, K̂+] = 0.
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[Ê1, K̂0] f =
[
iq,

1
2

(
q
∂

∂q
+

1
2

)]
f (A.4)

=
i
2

[
q, q

∂

∂q

]
f =

i
2

(
q2∂ f
∂q
− q

∂

∂q
(q f )

)
= − i

2
q f = −1

2
Ê1 f ,

⇒ [Ê1, K̂0] = −1
2

Ê1.

[Ê2, K̂−] f =
[
∂

∂q
,− i

2
∂2

∂q2

]
f = 0, (A.5)

⇒ [Ê2, K̂−] = 0.

[Ê2, K̂+] f =
[
∂

∂q
,

i
2

q2
]

f =
i
2

(
∂

∂q
(q2 f ) − q2∂ f

∂q

)
(A.6)

= iq f = Ê1 f ,

⇒ [Ê2, K̂+] = Ê1.

[Ê2, K̂0] f =
[
∂

∂q
,

1
2

(
q
∂

∂q
+

1
2

)]
f (A.7)

=
1
2

[
∂

∂q
, q

∂

∂q

]
f =

1
2

(
∂

∂q

(
q
∂ f
∂q

)
− q

∂2 f
∂q2

)
=

1
2
∂ f
∂q
=

1
2

Ê2 f ,

⇒ [Ê2, K̂0] =
1
2

Ê2.
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[K̂−, K̂+] f =
[
− i

2
∂2

∂q2 ,
i
2

q2
]

f =
1
4

(
∂2

∂q2 (q2 f ) − q2∂
2 f
∂q2

)
(A.8)

=

(
1
2
+ q

∂

∂q

)
f = 2K̂0 f ,

⇒ [K̂−, K̂+] = 2K̂0.

[K̂+, K̂0] =
[

i
2

q2,
1
2

(
q
∂

∂q
+

1
2

)]
f (A.9)

=
i
4

[
q2, q

∂

∂q

]
f =

i
4

(
q3∂ f
∂q
− q

∂

∂q
(q2 f )

)
= − i

2
q2 f = −K̂+ f ,

⇒ [K̂+, K̂0] = −K̂+.

[K̂−, K̂0] f =
[
− i

2
∂2

∂q2 ,
1
2

(
q
∂

∂q
+

1
2

)]
f (A.10)

= − i
4

[
∂2

∂q2 , q
∂

∂q

]
f = − i

4

(
∂2

∂q2

(
q
∂

∂q

)
− q

∂3 f
∂q3

)
= − i

2
∂2 f
∂q2 = K̂− f ,

⇒ [K̂−, K̂0] = K̂−.

We note that, since Ê3 = iÎ, it commutes all the other operators.
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APPENDIX B

EVOLUTION OPERATOR WITH DIFFERENT

ORDERING OF THE LIE GROUP GENERATORS

Here, we solve the Schrödinger equation (4.7) with the general Hamiltonian (4.8)

by the evolution operator method as in Chapter 3. But now, we write the evolution opera-

tor as product of exponential operators in a different order from (4.10) such that

Û0g(t, t0) = ec0(t)Ê3e
a0(t)
~ Ê1e f0(t)K̂+e−b0(t)Ê2e2h0(t)K̂0eg0(t)K̂− , (B.1)

where f0(t), g0(t), h0(t), a0(t), b0(t), c0(t) are real valued functions to be determined so that

Û0g(t, t0) is a solution to the operator equation (4.12) and one also has Û0gÛ0
†
g = Î.

Differentiating Û0g(t, t0) with respect to t, we obtain

∂

∂t
Û0g(t, t0) =

(
ċ0Ê3

)
ec0(t)Ê3e

a0(t)
~ Ê1e f0(t)K̂+e−b0(t)Ê2e2h0(t)K̂0eg0(t)K̂− (B.2)

+ec0(t)Ê3

(1
~

ȧ0Ê1

)
e

a0(t)
~ Ê1e f0(t)K̂+e−b0(t)Ê2e2h0(t)K̂0eg0(t)K̂−

+ec0(t)Ê3e
a0(t)
~ Ê1

(
ḟ0K̂+

)
e f0(t)K̂+e−b0(t)Ê2e2h0(t)K̂0eg0(t)K̂−

+ec0(t)Ê3e
a0(t)
~ Ê1e f0(t)K̂+

(
− ḃ0Ê2

)
e−b0(t)Ê2e2h0(t)K̂0eg0(t)K̂−

+ec0(t)Ê3e
a0(t)
~ Ê1e f0(t)K̂+e−b0(t)Ê2

(
2ḣ0K̂0

)
e2h0(t)K̂0eg0(t)K̂−

+ec0(t)Ê3e
a0(t)
~ Ê1e f0(t)K̂+e−b0(t)Ê2e2h0(t)K̂0

(
ġ0K̂−

)
eg0(t)K̂− .

Using the Theorem (4.1) and the commutation relations of the operators Ê1, Ê2, Ê3, and
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K̂−, K̂+, K̂0, we rearrange the Eqn. (B.2) in the form

∂

∂t
Û0g(t, t0) =

[(
ċ0 +

1
~

a0ḃ0 +
1
~

a0b0ḣ0 +
1

2~2 a2
0ġ0e−2h0

)
Ê3 (B.3)

+

(
− ḃ0 − ḣ0b0 −

1
~

a0ġ0e−2h0

)
Ê2

+

(1
~

ȧ0 + f0ḃ0 −
1
~

a0ḣ0 + f0b0ḣ0 +
1
~

a0 f0ġ0e−2h0

)
Ê1

+

(
ḟ0 − 2 f0ḣ0 + f 2ġ0e−2h0

)
K̂+

+2
(
ḣ0 − f0ġ0e−2h0

)
K̂0 +

(
ġ0e−2h0

)]
Û0g(t, t0).

If we substitute (B.3) in the operator equation (4.12), we obtain a non-linear sys-

tem of first-order equations

ḟ0 +
~

µ(t)
f 2
0 + 2B(t) f0 +

µ(t)ω2(t)
~

= 0, f0(t0) = 0, (B.4)

ġ0 +
~

µ(t)
e2h0 = 0, g0(t0) = 0,

ḣ0 +
~

µ(t)
f0 + B(t) = 0, h0(t0) = 0,

ȧ0 +

(
~

µ(t)
f0 + B(t)

)
a0 + ~E(t) f0 + D(t) = 0, a0(t0) = 0, (B.5)

ḃ0 −
(
~

µ(t)
f0 + B(t)

)
b0 −

a0

µ(t)
− E(t) = 0, b0(t0) = 0,

ċ0 +
a2

0

2~µ(t)
+

E(t)
~

a0 +
F(t)
~

= 0, c0(t0) = 0.

Then comparing the systems (B.4) and (4.16), we see that the functions f0(t), g0(t), h0(t)

and f (t), g(t), h(t) satisfy the same differential equations with same initial conditions.
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Thus we get

f0(t) = f (t) =
µ(t)
~

(
ẋ1(t)
x1(t)

− B(t)
)
, (B.6)

g0(t) = g(t) = −~x2
1(t0)

∫ t

t0

1
µ(s)x2

1(s)
ds,

h0(t) = h(t) = − ln |x1(t)| + ln |x1(t0)|,

where x1(t) is the solution of the homogeneous equation of motion (4.18) with initial

conditions (4.19). Furthermore, since (B.4) and (B.5) are dependent systems, substituting

f (t) in the system (B.5), we obtain its solution in terms of x1(t) as

a0(t) = − 1
x1(t)

∫ t

t0

(
µ(s)E(s)

(
ẋ1(s) − B(s)x1(s)

)
+ D(s)x1(s)

)
ds, (B.7)

b0(t) = x1(t)
∫ t

t0

1
µ(s)

(a0(s)
µ(s)

+ E(s)
)
ds,

c0(t) = −
∫ t

t0

( a2
0(s)

2~µ(s)
+

E(s)
~

a0(s) +
F(s)
~

)
ds.

Now, to solve the evolution problem (4.7), we take the initial function as normal-

ized eigenstates of the standard harmonic oscillator

φk(q) =
1
√

2kk!

(mω0

π~

)1/4
e−

mω0
2~ q2

Hk

(√
mω0

~
q
)
, k = 0, 1, 2, · · · ,

and apply the evolution operator (B.1) to these states as follows

Û0g(t, t0)φk(q) = ec0(t)e
i
~ a0(t)qe−

i
2 f (t)q2

e−b0(t) ∂
∂q eh(t)

(
q ∂
∂q+

1
2

)
e−

i
2 g(t) ∂2

∂q2 φk(q)

= e
h(t)
2 eic0(t)e

i
~a0(t)qe

i
2 f (t)q2

e−b0(t) ∂
∂q eh(t)q ∂

∂q φ̃k(q; g(t))

= e
h(t)
2 eic0(t)e

i
~a0(t)qe

i
2 f (t)q2

e−b0(t) ∂
∂q φ̃k(eh(t)q; g(t))

= e
h(t)
2 eic0(t)e

i
~a0(t)qe

i
2 f (t)q2

φ̃k(eh(t)(q − b0(t)); g(t)),

where φ̃k(q; z) is given by (4.36).

Therefore, we find the wave function solutions of the Schrödinger equation in the

88



form

Ψk(q, t) = Nk

√
RB(t) × exp

(
i
(
k +

1
2

)
arctan

(mω0

~
g(t)

))
(B.8)

× exp
(
i
(

f (t)
2

q2 +
a0(t)
~

q + c0(t)
))

× exp
(
− i

2

(mω0

~

)2
g(t)R2

B(t)(q − b0(t))2
)

× exp
(
−mω0

2~
R2

B(t)(q − b0(t))2
)
× Hk

(√
mω0

~
RB(t)(q − b0(t))

)
.

Since the wave function solutions (B.8) and (4.38) found in two ways are equal,

comparing them we find a relation between the auxiliary functions a0(t), b0(t), c0(t) and

a(t), b(t), c(t):

a(t) = a0(t) + ~ f (t)b(t), b(t) = b0(t), c(t) = c0(t) − f (t)
2

b2(t).

Thus, by this way we get a solution of the system (4.17) in terms of x1(t):

a(t) = − z(t)
~x1(t)

+
µ(t)
~

(ẋ1(t) − B(t)x1(t))
∫ t

t0

[
− z(s)
µ(s)x2

1(s)
+

E(s)
x1(s)

]
ds, (B.9)

b(t) = x1(t)
∫ t

t0

[
− z(s)
µ(s)x2

1(s)
+

E(s)
x1(s)

]
ds, (B.10)

c(t) = −1
~

∫ t

t0

[
z2(s)

2µ(s)x2
1(s)
− E(s)z(s)

x1(s)
+ F(s)

]
ds (B.11)

− µ(t)
2~

(
ẋ1(t)
x1(t)

− B(t)
)

x2
1(t)

[∫ t

t0

(
− z(s)
µ(s)x2

1(s)
+

E(s)
x1(s)

)
ds

]2

,

where

z(t) =
∫ t

t0

[
µ(ξ)E(ξ)

(
ẋ1(ξ) − B(ξ)x1(ξ)

)
+ D(ξ)x1(ξ)

]
ds.
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APPENDIX C

FREE SCHRODINGER EQUATION

In sections 3.4 and 4.3 there are two free Schrödinger equations. In this part, we

solve these problems using Fourier transform.

C.1. The Fourier Transform

In this section, we introduce the Fourier transform and discuss its basic properties.

Definition C.1 Let f : R → R. The Fourier transform of f ∈ L1(R), denoted by f̂ , is

given by the integral

f̂ (ξ) =
1
√

2π

∫ ∞

−∞
e−iξx f (x)dx.

Instead of f̂ the notation ”F { f (x)}” is also used.

Theorem C.1 (Inversion of the Fourier Transform) Let f : R → R. Suppose that f ∈
L1(R) and in any finite interval, f , f ′ are piecewise continuous. Then if f is continuous

at x ∈ R, we have

f (x) =
1
√

2π

∫ ∞

−∞
eiξx f̂ (ξ)dξ.

Theorem C.2 (Linearity) Let f , g ∈ L1(R) and α, β ∈ C. Then

F {α f (x) + βg(x)} = αF { f (x)} + βF {g(x)}.

Theorem C.3 Let f ∈ L1(R). Then

(a) F {eiαx f (x)} = f̂ (ξ − α) (translation),

(b) F { f (x − x0)} = f̂ (ξ)e−ix0ξ, x0 ∈ R (shifting),

(c) F { f (αx)} = 1
|α| f̂

(
ξ

α

)
, α ∈ R (scaling),

(d) F { f̄ (x)} = F { f (−x)} (conjugate).
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Theorem C.4 If f is a continuous function, n-times piecewise differentiable, f , f ′, . . . , f (n)

are in L1(R), and

lim
|x|→∞

f (k)(x) = 0 for k = 0, 1, 2, . . . , n − 1,

then

F { f (n)(x)} = (iξ)nF { f (x)}.

Proposition C.1 The Fourier transform of the Gaussian function g(x), defined as

g(x) = e
−x2

2

is again a Gaussian.

Proof Taking the Fourier transform of g(x), we get

ĝ(ξ) =
1
√

2π

∫ ∞

−∞
e−ixξe

−x2
2 dx

=
1
√

2π
e
−ξ2

2

∫ ∞

−∞
e
−(x+iξ)2

2 dx.

Let u = x + iξ, then dx = du. So

ĝ(ξ) =
1
√

2π
e
−ξ2

2

∫ ∞

−∞
e
−u2

2 du = e
−ξ2

2 ,

where we used the well-known integral

∫ ∞

−∞
e
−u2

2 du =
√

2π.

This shows ĝ(ξ) is also a Gaussian function. �

Proposition C.2 If f (x) = e−x2/2Hn(x), where Hn(x) represents the n-th Hermite polyno-

mial, then

F { f (x)} = (−i)n exp
(
−ξ

2

2

)
Hn(ξ) (C.1)
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for all n = 0, 1, 2, . . . .

Proof From the definition of Hermite polynomials, we know that

exp(+2xt − t2) =
∞∑

n=0

Hn(x)
tn

n!
. (C.2)

Multiplying both sides of the Equation (C.2) by e−x2/2, gives

exp
(
− x2

2
+ 2xt − t2

)
=

∞∑
n=0

exp
(
− x2

2

)
Hn(x)

tn

n!
. (C.3)

The Fourier transform of the LHS of the Equation (C.3) is then

F
{

exp(− x2

2
+ 2xt − t2)

}
=

1
√

2π

∫ ∞

−∞
exp(−ixξ) exp

(
− x2

2
+ 2xt − t2

)
dx

=
1
√

2π
exp

(
1
2

(2t − iξ)2 − t2
)

×
∫ ∞

−∞
exp

[
−1

2
(x − (2t − iξ))2

]
dx︸                                    ︷︷                                    ︸

I

.

If we change the variable x − (2t − iξ) = u, it follows that dx = du. Then the integral I

becomes

I =
∫ ∞

−∞
exp

(
−u2

2

)
du =

√
2π.

Therefore,

F
{

exp
(
− x2

2
+ 2xt − t2

)}
= exp

(
t2 − 2itξ − ξ

2

2

)
. (C.4)

Taking the Fourier transform of the RHS of the Equation (C.3),

F
 ∞∑

n=0

exp
(
− x2

2

)
Hn(x)

tn

n!

 = ∞∑
n=0

F
{

exp
(
− x2

2

)
Hn(x)

}
tn

n!
, (C.5)
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and equating the Equations (C.4) and (C.5) gives

∞∑
n=0

F
{

exp
(
− x2

2

)
Hn(x)

}
tn

n!
= exp

(
t2 − 2itξ − ξ

2

2

)
=

∞∑
n=0

exp
(
−ξ

2

2

)
Hn(ξ)

(−it)n

n!
.

Using the above results, the proposition is proven.

�

C.2. Solution of the Free Schrödinger Equation

The first problem is given as

 −
i
2
∂2

∂q2ϕk(q; z) = ∂
∂zϕk(q; z), z ∈ R,

ϕk(q; 0) = φk(q) = Nk exp
(
−Ω0

2 q2
)

Hk(
√
Ω0q),

(C.6)

where Nk = (2kk!)−1/2(mω0/π~)1/4 and Ω0 = (mω0)/~. To solve the initial value problem,

we take Fourier transform of (C.6) and obtain


∂
∂z ϕ̂k(ξ; z) = i

2ξ
2ϕ̂k(ξ; z)

ϕ̂k(ξ; 0) = NkF
{
exp

(
−Ω0

2 q2
)

Hk(
√
Ω0q)

}
.

(C.7)

By using the Proposition (C.2) and the third property of the Theorem (C.3), we

can calculate

F
{

exp
(
−Ω0

2
q2

)
Hk(

√
Ω0q)

}
=

(−i)k

√
Ω0

exp
(
− ξ2

2Ω0

)
Hk

(
ξ
√
Ω0

)
.
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Then solving the IVP (C.7), we get ϕ̂k(ξ; z) as in the form

ϕ̂k(ξ; z) = exp
( i
2
ξ2z

)
ϕ̂k(ξ; 0)

= Nk
(−i)k

√
Ω0

exp
(
− ξ2

2Ω0
(1 − iΩ0z)

)
Hk

(
ξ
√
Ω0

)
. (C.8)

If we take the inverse Fourier transform of (C.8), then

ϕk(q; z) = F −1{ϕ̂k(ξ; z)}

= Nk
(−i)k

√
2π
√
Ω0

∫ ∞

−∞
exp(iqξ) exp

(
− ξ2

2Ω0
(1 − iΩ0z)

)
Hk

(
ξ
√
Ω0

)
dξ

=
Nk√

1 − iΩ0z

 1 + iΩ0z√
1 + (Ω0z)2

k

× exp
(
−

(
1 + iΩ0z

1 + (Ω0z)2

)
Ω0

2
q2

)

×Hk


√

Ω0

1 + (Ω0z)2 q

 .
Finally, using the relation

ω

|ω| = exp
(
i arctan

(v
u

))
,

for any complex number ω = u + iv, we obtain explicitly the function ϕk(q; z):

ϕk(q; z) =
Nk

(1 + (Ω0z)2)1/4 × exp
(
i
(
k +

1
2

)
arctan(Ω0z)

)
(C.9)

× exp
(
−

(
1 + iΩ0z

1 + (Ω0z)2

)
Ω0

2
q2

)
× Hk


√

Ω0

1 + (Ω0z)2 q

 .
The second initial value problem is


∂
∂tψα(q, t) = − i

2
∂2

∂q2ψα(q, t)

ψα(q, 0) = ϕα(q) =
(
Ω0
π

)1/4
exp

(
i
~
⟨p⟩α q

)
exp

(
−Ω0

2 (q − ⟨q⟩α)2
)
,

(C.10)

where ⟨p⟩α =
√

2mω0~α2, ⟨q⟩α =
√

2~/(mω0)α1, and α = α1 + iα2. Taking the Fourier
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transform of both sides of the equations in (C.10) gives


∂
∂t ψ̂α(ξ, t) = i

2ξ
2ψ̂α(ξ, t)

ψ̂α(ξ, 0) = F {ϕα(q)}.
(C.11)

Now, completing the square in the function ϕα(q), we find its Fourier transform by using

the Proposition (C.1) and the properties (b) and (c) of the Theorem (C.3) as

F {ϕα(q)} =
(
Ω0

π

)1/4

exp
(
2iα1α2 − α2

2
)F exp

−Ω0

2

q − √
2
Ω0
α

2


=
exp

(
2iα1α2 − α2

2
)

(Ω0π)1/4 exp
− ξ2

2Ω0
− i

√
2
Ω0
αξ

 .
Solving the IVP (C.11), we obtain

ψ̂α(ξ, t) = exp
( i
2
ξ2t

)
ψ̂α(ξ, 0)

=
exp

(
2iα1α2 − α2

2
)

(Ω0π)1/4 exp
ξ2

(
i
2

t − 1
2Ω0

)
− i

√
2
Ω0
αξ

 . (C.12)

Then we take inverse Fourier transform of (C.12) and the exact form of ψα(q, t) follows

ψα(q, t) =
exp

(
2iα1α2 − α2

2
)

(Ω0π)1/4 F −1

exp
ξ2

(
i
2

t − 1
2Ω0

)
− i

√
2
Ω0
αξ


=

exp
(
2iα1α2 − α2

2
)

(Ω0π)1/4

√
Ω0

1 − iΩ0t
exp

− Ω0

2(1 − iΩ0t)

(
q − 2
Ω0
α

)2 .
Hence,

ψα(q, t) =
(
Ω0

π

)1/4

×
exp

(
2iα1α2 − α2

2
)

(Ω0π)1/4 × exp
( i
2

arctan(Ω0t)
)

(C.13)

× exp

−Ω0

2

(
1 + iΩ0t

1 + (Ω0t)2

) q − √
2
Ω0
α

2 .
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