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Head of the Department of Dean of the Graduate School of
Physics Engineering and Sciences



ACKNOWLEDGMENTS

I would like to express my deepest gratitude and endless respect to my supervisor
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ABSTRACT

AFFINE DYNAMICS WITH TORSION

In this study, we give a thorough analysis of a general affine gravity with torsion.

After a brief exposition of the affine gravities considered by Eddington and Schrödinger,

we construct and analyze different affine gravities based on determinants of the Ricci

tensor, the torsion tensor, the Riemann tensor and their combinations. In each case we

reduce equations of motion to their simplest forms and give a detailed analysis of their

solutions. Our analyses lead to the construction of the affine connection in terms of the

curvature and torsion tensors. Our solutions of the dynamical equations show that the

curvature tensors at different points are correlated via non-local, exponential rescaling

factors determined by the torsion tensor.
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ÖZET

TORSİYON İÇEREN AFİN DİNAMİĞİ

Bu çalışmada, torsiyon içeren genel bir afin kütle çekim kuramının kapsamlı bir

incelemesini yaptık. Schrödinger ve Eddington tarafından incelenen afin kütle çekim ku-

ramlarının kısa bir analizi yapıldıktan sonra, Ricci tensörü, Riemann tensörü, torsiyon

tensörü ve bu tensörlerin birleşiminden oluşan determinantlar üzerine kurulu farklı afin

çekim kuramlarını kurduk ve inceledik. Her bir durum için hareket denklemlerini en basit

formlarına indirgedik ve bu denklemlerin çözümlerinin detaylı bir incelemesini ele aldık.

Analizlerimiz afin bağlantısının torsiyon ve eğrilik tensörlerini içeren bir yapıda olmasını

gerektirdi. Dinamik denklemlerimizin çözümleri, farklı noktalardaki eğrilik tensörlerinin,

torsiyon tensörü tarafından belirlenen, lokal olmayan, eksponansiyel ölçeklendirme faktörleri

ile ilişkilendirildiğini gösterdi.
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CHAPTER 1

INTRODUCTION

The formulation of the general theory of relativity was given by Einstein in 1915

thanks to the equivalence principle with his subtle realization of how energy-momentum

curves the geometry of spacetime and how light and massive objects move through that

spacetime. This formulation is, in fact, one of the three mathematical concepts to con-

struct the relativistic theory of gravity such that the general theory of relativity as the first

of them is based on the relativistic gravitational action known as the Einstein-Hilbert ac-

tion. The metric tensor is the fundamental dynamical variable postulated a priori on the

manifold and the affine connection is taken to be Levi-Civita connection of the metric

tensor. With the addition of appropriate extrinsic curvature of the metric Einstein field

equations can be derived. The theory is purely metrical [1, 2].

As the second formulation of the relativistic theory of gravity, both the metric

tensor and the affine connection are considered as independent dynamical variables on the

manifold [6, 7, 14, 18]. In this respect, the field equations are formed by the stationarity

of the action with respect to these quantities. The formulation can be reduced to the

general theory of relativity by taking into account the curvature of the symmetric affine

connection in the Einstin-Hilbert action such that via the field equations the symmetric

affine connection used in this formulation turns out to be the Levi-Civita connection of

the metric tensor used in general theory of relativity [18].

The last formulation of the relativistic theory of gravity first realized by Weyl is

that the affine connection itself is considered as the dynamical object with no a priori

postulation of the metric on the manifold [3–5]. The field equations are drived by keeping

the action stationary with respect to that connection. The importance of the formulation

was shown after Eddington constructed a Lagrangian density where the square root of the

determinant of the symmetric Ricci tensor of the symmetric affine connection is given

[3]. By Eddington’s approach to the affine gravity with his action, it is obtained that the

field equations are nothing but the Einstein field equations itself in only vacuum without

its matter part. The equations of motions also, as expected, lead to the correspondence of

the symmetric affine connection to the Levi-Civita connection of the metric tensor used

in general theory of relativity. Although the Eddington gravity is not a complete theory

due to its missing energy-momentum tensor, it gives the dynamical origin to the general
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theory of relativity, that is to say, there is no need to postulate the metric a priori on the

manifold in the affine gravity. It is induced dynamically.

All three formulations of the relativistic theory of gravity are dynamically equiv-

alent as long as we keep the affine connection and the metric tensor symmetric in the

metric-affine gravity, and the Ricci tensor and the affine connection symmetric in the

purely affine gravity. However, via these formulations we can approach to the gravity

in different ways by keeping the antisymmetric part of the affine connection, called the

torsion, and of the Ricci tensor, called the second Ricci tensor [9, 15–17], to overcome

some fundamental problems emerging from the general relativity such as dark matter, the

avoidance of singularities, and the affine gravity is particularly important to discuss about

the dynamical origin of the general relativity with its matter part as an extension to the

Eddington gravity [8, 10, 11].

In the present thesis based on the paper by the author [12], we give a detailed

study of the torsion effects on the purely affine gravity, where we propose torsional ac-

tion models based on the Ricci and Riemann curvatures as well as the torsion tensor. In

our study, metric structure is not obtained dynamically, then we exclude the metric tensor

from our affine formulation. In this respect, we keep the affine connection fundamental

gravitational field itself.

In the two torsional actions involving Ricci curvature, we obtain the gravitational field

equations for the general, symmetric, and antisymmetric Ricci tensors so that we are able

to construct a nonsymmetric connection field in the case of the symmetric Ricci tensor

and the nonsymmetric contracted connection in the case of an antisymmetric one. The

torsionful connection structures together with the torsionful gravitational field equations

lead to the non-local, exponential rescaling of the Ricci curvatures considered as general,

symmetric, and antisymmetric, and some of the rescalings are determined by the torsion

tensor explicitly. Moreover, achieving the affine connection for symmetric Ricci tensor

brings about the examination of geodesic equation. In the action involving the Ricci ten-

sor in which the torsion determinant appears explicitly, we introduce a scalar function

including a torsion determinant such that it modifies the results of our action model based

on the purely Ricci determinant, except that in both action models for the rescaling of

symmetric Ricci tensor we obtain the same form.

In the other two torsional actions involving the Riemann curvature, we also show the grav-

itational field equations and for the Riemann curvature in both actions we also define the

non-local, exponential rescaling determined by the torsion tensor. In the action including

the Riemann tensor in which torsion determinant is again seen explicitly, we introduce
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another scalar function involving the torsion determinant such that it also appears as the

modification to the results obtained from the action constructed by the purely Riemann

determinant.

The thesis is organized as follows: In Chapter 2, we review the three formulations

of the relativistic theory of gravitation known as the purely metric gravity, the metric-

affine gravity, and the purely affine gravity. In Chapter 3, we examine the affine dynamics

with torsion. In section 3.1 without the notion of metric, we review the Schrödinger’s

generalization of Eddington gravity. In section 3.2, we propose the action model, where

the torsion determinant appears as an extention to the Ricci curvature. In Section 3.3,

inspired by the model given in section 3.1, we analyze the torsional action based on the

Riemann determinant, and in section 3.4 we examine the last action in which Riemann

curvature is modified by the torsion determinant. In Chapter 4, we summarize our results.
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CHAPTER 2

THEORIES OF GRAVITATION

2.1. The Purely Metric Gravity

The general theory of relativity is the purely metrical theory of gravity based on

the Einstein-Hilbert relativistic gravitational action [1, 2]

IEH =

∫
d4x
√
|g|
[ 1

2κ

(
R(g)− 2Λ

)
+ LM

]
, (2.1)

where g ≡ Det[gµν ] is the determinant of the metric tensor, R(g) = (g−1)µνRµν(g) is

the curvature scalar of that metric, Λ is the cosmological constant, LM is the Lagrangian

density describing any matter fields, and κ = 8πGN/c
4 is a constant with the gravitational

Newtonian constantGN and the speed of light c in vacuum. Here, the Ricci tensorRµν(g)

is defined as to be contraction of the Riemann tensor <ρµσν(g) with its indices ρ and σ as

follows:

Rµν(g) = <ρµρν(g) (2.2)

with the definition of the Riemann curvature expressed as

<ρµσν(g) = ∂σ{ρµν}g − ∂ν{ρµσ}g + {ρλσ}g{
λ
µν}g − {

ρ
λν}g{

λ
µσ}g, (2.3)

where the Levi-Civita connection {ρµν}g of metric gµν is given by

{ρµν}g =
1

2

(
g−1
)ρσ

[∂µgσν + ∂νgσµ − ∂σgµν ] . (2.4)

The relevancy of the connection structure (2.4) to the functions of gµν and their linearly

first derivatives is due to the two essential requirements of this theory of gravity. One

of them is that the affine connection Γρµν = Γρ(µν) + Γρ[µν] paralelly transports the metric

field into itself, that is, the metric has covariantly invariant derivative with respect to that
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connection [4]:
Γ∇ρgµν = 0 (2.5)

such that after the cyclic permutation of the indices ρ, µ and ν, Eq.(2.5) leads to the

relation

Γρµν = {ρµν} −
1

2
gραgµβΓβ[να] −

1

2
gραgνβΓβ[µα] + Γρ[µν]. (2.6)

The other requirenment is that the affine connection is taken symmetric (torsion-free) in

its lower indices, i.e, Γρ[µν] = 0, and hence, we obtain from the relation (2.6) that the

general affine connection is reduced to the solely metric dependent connection [4]:

Γρµν = {ρµν}g. (2.7)

As clearly clarified from Eqs.(2.3) and (2.4), and the explained above with the

result (2.7) that the curvature tensor is defined in terms of only metrical gravitational field,

the metric tensor is considered as the fundamental dynamical variable in the Einstein-

Hilbert action (2.1). Then against the dynamic of the metric tensor, the action behaves

stationary only if

Rµν −
1

2
Rgµν + Λgµν = κ

(
− 2

δLM
δgµν

+ gµνLM
)
, (2.8)

where the right-hand side is defined as to be proportional to the energy-momentum tensor

denoted as

Tµν ≡ −2
δLM
δgµν

+ gµνLM . (2.9)

The solution (2.8) is known as the Einstein field equations so that it relates the geometric

structure of the spacetime via the geometrical object Riemann curvature tensor given on

the manifold in terms of the metric field (the left-hand side of Eq.(2.8)) to the energy-

momentum tensor via the lagrangian density of the matter fields given in the theory (the

right-hand side of Eq.(2.8)).

2.2. The Metric-Affine Gravity

As we mentioned in the previous section, there is such a uniqe connection (2.4)

that makes the metric only dynamical object due to its metric-compatible and torsion-
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free properties. However, in the metric-affine theory of gravity, these two conditions

are not necessarily given; that is to say, the affine connection may be metric-compatible,
Γ∇ρgµν = 0, but not torsion-free, Γρ[µν] 6= 0, or the affine connection may not be metric-

compatible, Γ∇ρgµν = Qρµν . With these two cases, it is not possible to reduce any metric-

dependent connection. In this respect, both metric and affine connection are considered

as independently dynamical variables in this theory of gravity. The general Lagrangian

density of such a gravity, which lead to one of the two possible cases explained above,

can be expressed as

Lmet−aff = f (g,<ρµσν(g),Γ,<ρµσν(Γ)) + Lm [g,Γ,Φ,Ψ, ...] , (2.10)

where the metric g and the affine connection Γ are taken into account independently, and

the stationarity of the action in question is examined against the dynamics of these two

different quantities.

As we indicated above, the metric-affine theory of gravity can always be reduced

to the purely metrical theory of gravity if the equations of motions allow the connection

to be metric-compatible by considering vanishing antisymmetric part of that connection.

There is such a particular case that is formulated by Palatini [18] such that he replaced the

metric-dependent Ricci tensor with the torsionless affine-dependent one in the Einstein-

Hilbert action, i.e. R(g,Γ) = (g−1)µνRµν(Γ), and took into account the metric and the

affine connection as to be independent variables for the stationarity of the action. The

field equations then led that the symmetric affine connection Γρµν used in the formalism

turns out to be the Levi-Civita connection {ρµν}g itself used in the general relativity, which

implies the equivalency of the metric-affine theory of gravity and the general relativity.

2.3. The Purely Affine Gravity

Proceeding from Einstein’s metric formulation, Eddington considered in 1919 [3,

4] a reformulation of the theory in terms of only a connection, not a metric. His suggestion

was altering the metrical gravitational field through the affine connection, which was first

realized by Weyl [5]. Within this context, he proposed a kind of gravitational action

constructed by the square root of the determinant of the symmetric Ricci tensor:

IEdd =

∫
d4x
√
|R| (2.11)
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with R being the determinant of Rµν corresponding to the symmetric part of the Ricci

tensor.

Without the notion of metric, introducing the affine connection Γ as the gravitational field

and choosing its symmetric one, the variation of the Ricci tensor with respect to that

connection is given as follows:

δRµν = ∇ρ

(
δΓρµν

)
−∇ν

(
δΓρµρ

)
, (2.12)

where ∇ is defined as the covariant derivative operator with respect to the affine connec-

tion Γ. Then, by keeping the proposed action (2.11) stationary, the variation (2.12) leads

to the equation of motion:

∇ρ

[√
|R|
(
R−1

)µν]
= 0. (2.13)

A solution to the last equation is provided by defining an invertible tensor field gµν such

that √
|R|
(
R−1

)µν
= Λ

√
|g|
(
g−1
)µν

, (2.14)

where g is the determinant of gµν and Λ is a constant. Then Eq.(2.14) ends up in the same

form as the Einstein field equations with a purely cosmological constant Λ:

Rµν = Λgµν , (2.15)

which shows the significance of the Eddington approach to the gravity by giving a dynam-

ical origin to the general relativity. Moreover, having the equation of motion (2.13) and

its solution (2.14) directly result in the compatibility condition ∇ρgµν = 0 for our metric

solution in Eq.(2.15), which is the crucial result that the symmetric affine connection Γρµν

used in Eddington Gravity turns out to be the Levi-Civita Connection {ρµν}g itself used in

general relativity:

{ρµν}g =
1

2

(
g−1
)ρσ

[∂µgσν + ∂νgσµ − ∂σgµν ] . (2.16)

Having obtained the Einstein field equations only in vacuum (2.15) without its matter

part, which is described by the energy-mometum tensor Tµν , is the essential problem of

this theory, thus Eddington gravity is not a complete theory.
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To include matter into Eddington’s affine gravity, “Eddington-inspired Born-Infeld

gravity” was proposed with its metric-affine formulation in which both metric and con-

nection fields are taken into account independently [6]. An alternative formulation of

purely affine gravity in the presence of matter fields was also formulated in [7]. Recently,

another attempt for incorporating the matter into the field equations in Eddington’s affine

picture was provided by “Riemann-improved Eddington theory” [8]. In this study, the

Eddington action (2.11) was extended by Riemann curvature so that it led to a dynamical

derivation for the complete Einstein field equations. Another recent work was proposed

by constructing torsional metric which after using on a given Lagrangian density with

curvature led to the matter coupling to the affine gravity [9]. It was also shown that

matter can be incorporated when Eddington Gravity is formulated in a spacetime that is

immersed in a larger eight dimentional space [10, 11]. As well as making use of an affine

framework to include matter into the gravity as clarified above, it should also be noticed

that the affine framework is particularly useful for addressing the cosmological constant

problem properly [8, 10].

Eddington Gravity is based on the symmetric (torsionless) affine connection field

and on the symmetric Ricci tensor of that connection. In addition to Eddington’s ap-

proach, a more generalized formulation was given by Schrödinger such that he used a

nonsymmetric (torsionful) connection field and introduced a nonsymmetric metric ten-

sor [3]. Unlike Eddington Gravity, this metric structure was not obtained dynamically;

it was considered as just a prescription. However, using the nonsymmetric metric struc-

ture, which was suggested earlier by Einstein and Straus [13], resulted in the unification

of the electromagnetism and gravitation, in which electromagnetic field is represented by

the antisymmetric part of the metric tensor itself [14]. Some detailed examinations of the

nonsymmetric purely affine gravity can also be found in [9, 15–17].
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CHAPTER 3

AFFINE DYNAMICS WITH TORSION

3.1. Schrödinger’s generalization of Eddington gravity

We start to examination by considering an elegant action in which our Lagrangian

density is constructed by only the Ricci tensor including affine connection such that

IR =

∫
d4x
√
|R|, (3.1)

whereR ≡ Det [Rµν ] andR ≡ R (Γ).

To see the dynamics of this type gravitational action (3.1), let us apply the variational

principle with respect to the nonsymmetric connection in question as the fundamental

gravitational field itself. To this end, the variation of the action is given by

δIR =

∫
d4xδ

√
|R| = 1

2

∫
d4x
√
|R|
(
R−1

)νµ
δRµν . (3.2)

As we are interested in the variation according to the connection, we take into account the

Palatini formula [4, 18],

δRµν = ∇ρ

(
δΓρµν

)
−∇ν

(
δΓρµρ

)
− 2SσρνδΓρµσ. (3.3)

In this study, as we consider the antisymmetric part of the connection, i.e., Sρµν = Γρ[µν],

as well as the symmetric part of it the last torsional term in the variation (3.3) comes out

as the starting point of the torsional contribution to the Eddington gravity, and here we

should also notice the tensorial form of the variation of the connection δΓρµν [4].

Then our action becomes

δIR =
1

2

∫
d4x
√
|R|
(
R−1

)νµ [∇ρ

(
δΓρµν

)
−∇ν

(
δΓρµρ

)
− 2SσρνδΓρµσ

]
. (3.4)
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We improve Eq.(3.4) by the integration by parts for the terms involving covariant deriva-

tives so that we can take advantage of the identity [4, 19]

∫
d4x∇µ

(
JVµ

)
= 2

∫
d4xSµJVµ, (3.5)

where J is any scalar density and it corresponds to
√
|R| in our formalism.

The identity given above is verifed by applying the Gaussian theorem to the relation given

by combining the covariant derivative of a scalar density J [4],

∇ρJ = ∂ρJ − ΓσσρJ , (3.6)

with the same derivative of a contravariant vector Vµ in which process we consider a van-

ishing hypersurface integral.

Thus, by taking advantage of Eq.(3.5), the variation under an arbitrary connection be-

comes

δIR =

∫
d4x{−1

2
∇ρ

[√
|R|
(
R−1

)νµ]
+

1

2
∇σ

[√
|R|
(
R−1

)σµ]
δνρ

+
√
|R|
(
R−1

)νµ Sρ −√|R| (R−1
)σµ Sσδνρ

−
√
|R|
(
R−1

)σµ Sνρσ}δΓρµν , (3.7)

for which the principle of least action, δIR = 0, results in the most general field equations:

∇ρ

[√
|R| (R−1)

νµ
]
−∇σ

[√
|R| (R−1)

σµ
]
δνρ − 2

√
|R| (R−1)

νµ Sρ

+2
√
|R| (R−1)

σµ Sσδνρ + 2
√
|R| (R−1)

σµ Sνρσ = 0. (3.8)

One may go further than Eq.(3.8) by carrying out the contraction with respect to the

indices ρ and ν such that it results in

∇σ

[√
|R|
(
R−1

)σµ]
=

4

3

√
|R|
(
R−1

)σµ Sσ, (3.9)

10



which, after plugging it into the most general field equations, leads to

∇ρ

[√
|R|
(
R−1

)νµ]− 2
√
|R|
(
R−1

)νµ Sρ +
2

3

√
|R|
(
R−1

)σµ Sσδνρ
+ 2
√
|R|
(
R−1

)σµ Sνρσ = 0. (3.10)

Here, one more thing to obtain the desired tensorial field equations is to get rid of the

scalar density
√
|R|. With this aim, multiplying the last equation byRµν and implement-

ing to the first term partial differentiation with the fact that

∇ρ

√
|R| = −1

2

√
|R|Rµν∇ρ

[(
R−1

)νµ] (3.11)

we obtain

∇ρ

√
|R| = 8

3

√
|R|Sρ. (3.12)

After checking, one may realize that Eq.(3.11) is naturally compatible with Eq.(3.6) in

which we regard the Jacobi formula that differential of a determinant [20], say Det [A],

(such as Det [Rαβ] in our notation) is equivalent to the trace of the adjoint of matrix A
multiplied by its differential dA, that is,

d (Det [A]) = Det [A]Tr
[
A−1dA

]
. (3.13)

Then after using Eq.(3.12) in Eq.(3.10), we obtain the field equations with the inverse

Ricci tensor such that

∇ρ

[(
R−1

)νµ]
+

2

3
Sρ
(
R−1

)νµ
+

2

3
Sσδνρ

(
R−1

)σµ
+ 2Sνρσ

(
R−1

)σµ
= 0. (3.14)

After multiplying withRµκ andRξν , the last equation can also be expressed as

∇ρ [Rµν ]−
2

3
SρRµν −

2

3
SνRµρ − 2SσρνRµσ = 0. (3.15)

We are now in a position to show significant effects of the tensorial field equations
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(3.15) on our Ricci tensor, where the situation is now clearly different from the Eddington

gravity due to the torsion, i.e. antisymmetric part of the connection, contributions. Let us

first see the case by multiplying Eq.(3.15) by the inverse Ricci tensor (R−1)
νµ as follows:

(
R−1

)νµ∇ρ [Rµν ] =
16

3
Sρ, (3.16)

which can also be seen from Eqs.(3.11) and (3.12). Then we have

(
R−1

)νµ
∂ρ [Rµν ] =

16

3
Sρ + 2Γββρ. (3.17)

Via Eq.(3.13), the last equation leads to

Det
[
Rµν

(
xσ
)]

= exp

{∫ xσ

xσ0

(
16

3
Sρ + 2Γββρ

)
dxρ

}
Det

[
Rµν

(
xσ0
)]
. (3.18)

Let us now consider the general coordinate transformations xσ0 → xσ(xσ0 ) under which

the Ricci tensor transforms as

Rµν

(
xσ
)

=
∂xα0
∂xµ

∂xβ0
∂xν
Rαβ

(
xσ0
)
. (3.19)

Then taking the determinant of Eq.(3.19) leads to

Det
[
Rµν

(
xσ
)]

=

(
Det

[
∂xµ0
∂xν

])2

Det
[
Rµν

(
xσ0
)]
. (3.20)

One may here see that the equality of the right-hand sides of Eqs.(3.20) and (3.18) results

in the determinant being given by

Det [Jµν ] = exp

{∫ xσ

xσ0

(
8

3
Sρ + Γββρ

)
dxρ

}
, (3.21)

where we have introduced the Jacobian matrix Jµν =
∂xµ0
∂xν

responsible for the transforma-
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tion of the coordinates from xν to xµ0 .

In affine spacetime, a simple relation for the determinant in (3.21) of the Jacobian can be

given by

Jµν = δµν exp

{∫ xσ

xσ0

(
2

3
Sρ +

1

4
Γββρ

)
dxρ

}
, (3.22)

which has a significant implication on our Ricci tensor; pluging it into Eq.(3.19) leads to

the non-local, exponential rescaling of the Ricci curvature:

Rµν

(
xσ
)

= exp

{∫ xσ

xσ0

(
4

3
Sρ +

1

2
Γββρ

)
dxρ

}
Rµν

(
xσ0
)
. (3.23)

The exponential factor

K (xσ, xσ0 ) = exp

{∫ xσ

xσ0

(
4

3
Sρ +

1

2
Γββρ

)
dxρ

}
(3.24)

is here totally responsible for this non-local rescaling such that the torsion vector shifted

by the contracted connection provides the Ricci tensor with a conformal mapping from

a point xσ0 to another one xσ over spacetime structure including the nonsymmetric affine

field [21].

Having studied the Ricci tensor with nonsymmetric connection, the field equations

(3.15) can now be written in both cases, with symmetric and antisymmetric parts, as [4]

∇ρR(µν) −
2

3
SρR(µν) −

1

3
SµRνρ −

1

3
SνRµρ − SσρµRνσ − SσρνRµσ = 0 (3.25)

∇ρR[µν] −
2

3
SρR[µν] +

1

3
SµRνρ −

1

3
SνRµρ + SσρµRνσ − SσρνRµσ = 0. (3.26)

Here, we have used the indices µ and ν as expected from our nonvanishing Ricci deter-

minant in the action (3.1), and it should be noticed thatRµν = R(µν) +R[µν].

One may now examine the Eq.(3.25) in the special case where the Ricci tensor is

taken to be symmetric, i.e. Rµν = R(µν). In this case, we get

∇ρRµν =
2

3
SρRµν +

1

3
SµRνρ +

1

3
SνRµρ + SσρµRνσ + SσρνRµσ. (3.27)
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Owing to the appearance of the symmetric Ricci tensor, the last equation is the best ex-

pression so that only it can provide us with a solution for the nonsymmetric connection.

Therefore, after the cyclic permutation, Eq.(3.27) gives

∇µRνρ +∇νRρµ −∇ρRµν =
2

3
SµRνρ +

2

3
SνRµρ + 2SσµρRνσ + 2SσνρRµσ. (3.28)

In addition, using covariant derivatives in Eq.(3.28), we also have

∇µRνρ +∇νRρµ −∇ρRµν = ∂µRνρ + ∂νRρµ − ∂ρRµν

− 2ΓσµνRρσ + 2SσµνRρσ

+ 2SσµρRσν + 2SσνρRµσ, (3.29)

where we have used the definition of the affine connection, i.e. Γρµν = Γρ(µν) + Γρ[µν] with

Γρ[µν] = Sρµν . Equating the last two equations and multiplying the sides by (R−1)
αρ, we

end up with the nonsymmetric connection in the case of the symmetric Ricci tensor:

Γρµν = {ρµν}Rs(Γ) −
1

3

(
δρµSν + δρνSµ

)
+ Sρµν , (3.30)

where the smybol

{ρµν}Rs(Γ) =
1

2

(
R−1

)ρσ
[∂µRσν + ∂νRσµ − ∂σRµν ] (3.31)

is for the notion of a connection known as Christoffel-brackets [22] in terms of the sym-

metric Ricci tensor. Thus, the parallel displacement of our vectors from one tangent space

to another one over torsionful geodesics is due to the functions ofRµν and their linear first

derivatives in addition to the torsion tensor.

It is now also possible to search a conformal factor for the symmetric Ricci tensor by

multiplying Eq.(3.27) by (R−1)
νµ

(
R−1

)νµ∇ρ [Rµν ] =
16

3
Sρ, (3.32)
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which, by considering the general coordinate transformations, leads to

Rµν (xσ) = exp

{∫ xσ

xσ0

(
4

3
Sρ +

1

2
Γββρ

)
dxρ

}
Rµν (xσ0 ) . (3.33)

As clearly seen from Eqs.(3.32) and (3.33), and as expected, they have the same form

as Eqs.(3.16) and (3.18), except that our Ricci tensor is here symmetric, i.e. R[µν] = 0;

hence we can take advantage of the connection (3.30) by using it in Eq.(3.33). Then the

contraction of the connection with respect to ρ and µ leads to

Γββρ = {ββρ}Rs(Γ) −
8

3
Sρ, (3.34)

which after plugging into Eq.(3.33) results in the final expression for the rescaling of the

symmetric Ricci tensor:

Rµν (xσ) = exp

{∫ xσ

xσ0

1

2
{ββρ}Rs(Γ)dx

ρ

}
Rµν (xσ0 ) , (3.35)

whereRµν is therefore rescaled by the non-local, exponential factor given by

Ks (xσ, xσ0 ) = exp

{∫ xσ

xσ0

1

2
{ββρ}Rs(Γ)dx

ρ

}
. (3.36)

It can also be seen that Eq.(3.35) can be directly obtained from the contracted Christoffel-

brackets.

Thus, it is essential to emphasize that although we keep the nonsymmetricity of the con-

nection, the torsion effects do not appear explicitly in the conformal mapping of the sym-

metric Ricci tensor. In other words, the contracted connection (3.34) eliminates the ex-

plicit contribution of torsion to the rescaling, and it leaves only the Christoffel-brackets,

which have been written in terms of Rµν(Γ), as responsible for the conformal transforma-

tion.

Additional to the examinations given above, one can decompose the symmetric

Ricci tensor under the change of the connection from the Christoffel one such that the
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separation of the connection can be written as

Γρµν = {ρµν}Rs(Γ) + Eρµν , (3.37)

where Eρµν is a tensor due to the difference between the two connections. Then Eq.(3.37)

leads to the decomposition of the Ricci tensor,

Rµν (Γ) = Rµν

(
{ρµν}Rs(Γ)

)
+∇ρEρ(µν) −∇(νEρµ)ρ + EρσρEσ(µν) − Eρσ(νEσµ)ρ, (3.38)

where we should be aware of two different Ricci tensors together with two different

connection structures such that the first term on the right-hand side is the Ricci tensor

Rµν

(
{ρµν}R(Γ)

)
constructed from the connection known as Christoffel-brackets {ρµν}R(Γ),

which is with respect to the other Ricci tensorRµν (Γ) constructed from the affine connec-

tion Γρµν . The covariant derivatives are here taken with respect to the Christoffel-brackets.

Actually, since Rµν (Γ) is repeated in Rµν

(
{ρµν}R(Γ)

)
Eq.(3.38) is not a finite expres-

sion, however; it may be good to write the decomposition to see the difference from the

torsional action as will be examined after this section. Then by considering the affine

connection (3.30), plugging

Eρµν = −1

3

(
δρµSν + δρνSµ

)
+ Sρµν (3.39)

into Eq.(3.38) we end up with the decomposition determined by the torsional terms:

Rµν (Γ) = Rµν

(
{ρµν}R(Γ)

)
− 1

3
SµSν − SρµσSσνρ. (3.40)

As a final study for the symmetric Ricci tensor , let us consider the geodesic

equation in curved spacetime such that it is produced by the condition defined by the

parallel displacement of the tangent vector dxµ

dλ
over a path xµ(λ) [23] :

dxσ

dλ
∇σ

dxµ

dλ
= 0. (3.41)
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With the condition given above the geodesic equation is then formed into

d2xρ

ds2
+ Γρµν

dxµ

ds

dxν

ds
= 0, (3.42)

by which it is also obvious that in flat spacetime owing to a vanishing affine connection

the geodesics become straight lines.

Since dxµ and dxν are symmetric, the contribution to the equation of motion (3.42) comes

from just the symmetric part of the affine connection, which is known from the Eq.(3.30)

to be

Γρ(µν) = {ρµν}R(Γ) −
1

3

(
δρµSν + δρνSµ

)
. (3.43)

Putting Eq.(3.43) into (3.42), we get

ẍρ + {ρµν}R(Γ)ẋ
µẋν − 2

3
Sµẋµẋρ = 0, (3.44)

where ẍµ ≡ d2xµ

ds2
and ẋµ ≡ dxµ

ds
. After writing the explicit form of the Christoffel-brackets

and using the smmetry of ẋµ and ẋν , Eq.(3.44) becomes

ẍρ +
(
R−1

)ρσ dRσµ

ds
ẋµ − 1

2

(
R−1

)ρσ
(∂σRµν) ẋ

µẋν − 2

3
Sµẋµẋρ = 0. (3.45)

Multiplying the last equation byRρβẋ
β gives

Rρβẋ
β d
ds
ẋρ + 1

2

dRρβ
ds

ẋβẋρ − 2
3
RρβSµẋµẋβẋρ

= d
ds

(
Rρβẋ

βẋρ
)
− 4

3
RρβSµẋµẋβẋρ = 0. (3.46)

Finally, dividing byRρβẋ
βẋρ, Eq.(3.46) leads to

d ln
(
Rρβẋ

βẋρ
)

=
4

3
Sµdxµ, (3.47)
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which after integrating results in the relation

Rµν (xσ) dxµdxν = exp

{
4

3

∫ xσ

xσ0

Sρdxρ
}
Rµν (xσ0 ) dxµ0dx

ν
0. (3.48)

The importance of the last expression comes from the metrical interpretation of the Ricci

tensor proposed by Eddington [3]; with his interpretation, we can identify the line element

ds̃2 = Rµν (xσ) dxµdxν which is conformally transported in spacetime because of the

torsion effect:

ds̃2 (xσ) = exp

{
4

3

∫ xσ

xσ0

Sρdxρ
}
ds̃2 (xσ0 ) . (3.49)

After writing the field equations as symmetric and antisymmetric parts, we first

considered the case of the symmetric Ricci tensor such that it was the only condition to

get and make use of the affine connection (3.30) which led to some results of the affine

space of the symetric Ricci tensor. Next, we will see the case where the Ricci tensor is

taken antisymmetric, i.e. Rµν = R[µν]. In this case, from Eq.(3.26) we have

∇ρRµν =
2

3
SρRµν −

1

3
SµRνρ +

1

3
SνRµρ − SσρµRνσ + SσρνRµσ. (3.50)

Here, by implementing the cyclic permutation, we are allowed to acquire only a contracted

connection:

Γββρ =
1

2
{ββρ}Ra(Γ) −

8

3
Sρ. (3.51)

We have here denoted another kind of contracted bracket symbol with respect to the anti-

symmetric Ricci tensor given by

{ββρ}Ra(Γ) =
1

2

(
R−1

)βσ [
∂[βRσ]ρ + ∂ρRσβ − ∂[σRβ]ρ

]
, (3.52)

which has the same form as the contracted Christoffel-brackets with respect to the sym-

metric Ricci tensor written as

{ββρ}Rs(Γ) =
1

2

(
R−1

)βσ [
∂(βRσ)ρ + ∂ρRσβ − ∂(σRβ)ρ

]
. (3.53)

If we look at the rescaling of the antisymmetric Ricci tensor Rµν , we can see from
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Eq.(3.50), after applying (R−1)
νµ product (or directly from Eq.(3.23)), that

Rµν (xσ) = exp

{∫ xσ

xσ0

(
4

3
Sρ +

1

2
Γββρ

)
dxρ

}
Rµν (xσ0 ) , (3.54)

and plugging (3.51) into the last equation, we again see that the contracted connection

eliminates the explicit torsion effects in Eq.(3.54), and then we end up with the non-

local, exponential rescaling of antisymmetric Ricci tensor, where only the contracted

Christoffel-brackets are found, as follows:

Rµν (xσ) = exp

{∫ xσ

xσ0

1

4
{ββρ}Ra(Γ)dx

ρ

}
Rµν (xσ0 ) , (3.55)

where the non-local conformal factor is then written as

Ka (xσ, xσ0 ) = exp

{∫ xσ

xσ0

1

4
{ββρ}R(Γ)dx

ρ

}
. (3.56)

In addition to all considerations given above, if we apply the same cyclic per-

mutation procedure directly ( without any restrictions on the general Ricci tensor ) to

Eqs.(3.25) and (3.26), we can see the relations between the symmetric and antisymmetric

parts of the connection [4]; Eq.(3.25) leads to the symmetric part of the connection as a

linear fuction of the antisymmetric or torsional part of the connection:

Γσ(µν)R(ρσ) = SσµρR[σν] + SσνρR[σµ] −
1

3
SµRρν −

1

3
SνRρµ

+
1

2

[
∂µR(νρ) + ∂νR(µρ) − ∂ρR(µν)

]
, (3.57)

and Eq.(3.26) gives the torsion tensor as a linear function of its vector and of the symmet-

ric part of the connection:

SσµνR(ρσ) = Γσ(µρ)R[νσ] + Γσ(νρ)R[σµ] +
1

3
SµRνρ −

1

3
SνRµρ −

2

3
SρR[µν]

+
1

2

[
∂µR[ρν] + ∂νR[µρ] − ∂ρR[νµ]

]
. (3.58)
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Eqs.(3.57) and (3.58) result in the linear combination of the affine connection as a linear

function of the torsion vector and of the derivatives of the Ricci tensor:

ΓσµνR(ρσ) + ΓσρµR[σν] + ΓσνρR[µσ] =
2

3
SµR[νρ] −

2

3
SνR(µρ) −

2

3
SρR[µν]

+
1

2
[∂µRρν + ∂νRµρ − ∂ρRνµ] . (3.59)

As expected, the last equation is also provided directly by the general field equations

(3.15) after applying the cyclic permutation.

3.2. Torsional extension to Ricci determinant

In order to see the torsion effects on the affine dynamics more explicitly, we extend

our argument with a torsional action,

IRS =

∫
d4x{a

√
|R|+ b|S|}, (3.60)

where S ≡ Det [Sρµν ] and the constants a and b are dimensionless. In the action (3.60),

the determinant of the torsion tensor is defined as

Det[Sρµν ] =
( 1

4!
εα0α1α2α3εβ0β1β2β3

× Sρ0α0µ0Sµ0ρ0β0Sρ1α1µ1Sµ1ρ1β1Sρ2α2µ2Sµ2ρ2β2Sρ3α3µ3Sµ3ρ3β3
) 1

2
,

(3.61)

which is due to the fact that the construction of an even rank tensor as the direct product of

an original odd-rank tensor is the recipe to define the determinant of the odd-rank tensor

[24–26].

Variating the action leads to

δIRS =
a
2

∫
d4x
√
|R|
(
R−1

)νµ
δRµν + b

∫
d4x|S|

(
S−1

)νµ
ρδSρµν . (3.62)
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Since we are concerned with the variation with respect to the nonsymmetric gravitational

field, we obtain from the second term in Eq.(3.62)

b
∫
d4x|S|

(
S−1

)νµ
ρδSρµν =

b
2

∫
d4x|S|

(
S−1

)νµ
ρ

[
δΓρµν − δΓρνµ

]
=

b
2

∫
d4x|S|

[(
S−1

)νµ
ρ −

(
S−1

)µν
ρ

]
δΓρµν

= b
∫
d4x|S|

(
S−1

)νµ
ρδΓ

ρ
µν . (3.63)

Then adding Eq.(3.63) to the variation (3.7), and keeping our action stationary the most

general field equations become

∇ρ

[√
|R| (R−1)

νµ
]
−∇σ

[√
|R| (R−1)

σµ
]
δνρ − 2

√
|R| (R−1)

νµ Sρ

+2
√
|R| (R−1)

σµ Sσδνρ + 2
√
|R| (R−1)

σµ Sνρσ − 2b
a |S| (S

−1)
νµ

ρ = 0. (3.64)

Applying the contraction with respect to indices ρ and ν gives the inverse torsion vector

(S−1)
µ as the contribution to Eq.(3.9):

∇σ

[√
|R|
(
R−1

)σµ]
=

4

3

√
|R|
(
R−1

)σµ Sσ − 2b
3a
|S|
(
S−1

)µ
. (3.65)

Then after multiplying Eq.(3.64) by Rµν and plugging Eq.(3.65) into (3.64) by taking

advantage of Eq.(3.11), we obtain

∇ρ

√
|R| = 8

3

√
|R|Sρ −

b

a
|S|
(

1

3

(
S−1

)µ
δνρ −

(
S−1

)νµ
ρ

)
Rµν , (3.66)

which, by using in Eq.(3.64) together with Eq.(3.65), gives

∇ρ

[(
R−1

)νµ]
+

2

3
Sρ
(
R−1

)νµ
+

2

3
Sσδ

ν
ρ

(
R−1

)σµ
+ 2Sνρσ

(
R−1

)σµ
− F

{
Rαβ

[1

3

(
S−1

)α
δβρ −

(
S−1

)βα
ρ

] (
R−1

)νµ − 2

3

(
S−1

)µ
δνρ + 2

(
S−1

)νµ
ρ

}
= 0,

(3.67)
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where F ≡ f (R,S) = b|S|
a
√
|R|

is a scalar function since the torsion and Ricci parts in the

action (3.60) are the scalar density of the identical weights +1, which means that the ratio

of both parts results in a scalar of weight 0 .

Lowering the indices of the inverse Ricci tensor in Eq.(3.67) is equivalent to the sufficient

final equations for the gravitational field:

∇ρ [Rµν ]−
2

3

[
Sρ −

3F
2
Rασ

(
1

3

(
S−1

)α
δσρ −

(
S−1

)σα
ρ

)]
Rµν

− 2

3

[
Sν + FRαν

(
S−1

)α]Rµρ − 2
[
Sσρν −FRαν

(
S−1

)σα
ρ

]
Rµσ = 0. (3.68)

If we compare Eq.(3.68) with (3.15) we can see the contributions of the torsion determi-

nant to the case of the purely Ricci determinant such that the contributions come from

inverse torsion tensor and vector, which are coupled to the Ricci tensor and scalar func-

tion.

Let us now see the effects of the torsional gravitational equations (3.68) on our

Ricci tensor such that after (R−1)
νµ product of Eq.(3.68) (or directly from Eqs.(3.66) and

(3.11)), we get

(
R−1

)νµ∇ρ [Rµν ] =
16

3
Sρ − 2F

(
1

3

(
S−1

)µ
δνρ −

(
S−1

)νµ
ρ

)
Rµν , (3.69)

which leads to

(
R−1

)νµ
∂ρ [Rµν ] =

16

3
Sρ + 2Γββρ − 2F

(
1

3

(
S−1

)µ
δνρ −

(
S−1

)νµ
ρ

)
Rµν . (3.70)

Thus, using the Jacobi formula (3.13), we have

Det [Rµν (xσ)] = exp

{∫ xσ

xσ0

[
16

3
Sρ + 2Γββρ

− 2F

(
1

3

(
S−1

)α
δβρ −

(
S−1

)βα
ρ

)
Rαβ

]
dxρ

}
Det [Rµν (xσ0 )] ,

(3.71)

which, via the general transformation of the coordinates, results in the rescaling of Ricci
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tensor as

Rµν (xσ) = exp

{∫ xσ

xσ0

[
4

3
Sρ +

1

2
Γββρ

− F
2

(
1

3

(
S−1

)α
δβρ −

(
S−1

)βα
ρ

)
Rαβ

]
dxρ

}
Rµν (xσ0 ) . (3.72)

It is finally obvious that the non-local rescaling factor is directly given by the exponential

term:

K (xσ, xσ0 ) = exp

{∫ xσ

xσ0

[
4

3
Sρ +

1

2
Γββρ −

F
2

(
1

3

(
S−1

)α
δβρ −

(
S−1

)βα
ρ

)
Rαβ

]
dxρ

}
.

(3.73)

As clearly understood from the conformal factor (3.73), because of the appearing of Ricci

tensor in it, Eq.(3.72) is not an exact solution, that is to say, due to the torsional deter-

minant, the Ricci tensor is also responsible for the conformal transformation of itself.

However, after applying some procedures to our field equations (3.68), we will have a

simplified solution form, which will be the same as the first action model (3.1).

As we did in the previous section, we can now write the field equations (3.68) as

symmetric and antisymmetric parts with respect to indices µ and ν:

∇ρR(µν) −
2

3

[
Sρ −

3F
2
Rασ

(
1

3

(
S−1

)α
δσρ −

(
S−1

)σα
ρ

)]
R(µν)

− 1

3

[
Sν + FRαν

(
S−1

)α]Rµρ −
1

3

[
Sµ + FRαµ

(
S−1

)α]Rνρ

−
[
Sσρν −FRαν

(
S−1

)σα
ρ

]
Rµσ −

[
Sσρµ −FRαµ

(
S−1

)σα
ρ

]
Rνσ = 0 (3.74)

and

∇ρR[µν] −
2

3

[
Sρ −

3F
2
Rασ

(
1

3

(
S−1

)α
δσρ −

(
S−1

)σα
ρ

)]
R[µν]

− 1

3

[
Sν + FRαν

(
S−1

)α]Rµρ +
1

3

[
Sµ + FRαµ

(
S−1

)α]Rνρ

−
[
Sσρν −FRαν

(
S−1

)σα
ρ

]
Rµσ +

[
Sσρµ −FRαµ

(
S−1

)σα
ρ

]
Rνσ = 0. (3.75)

Eliminating the antisymmetric part of the Ricci tensor, i.e. Rµν = R(µν), Eq.(3.74)

23



becomes

∇ρRµν =
2

3

[
Sρ −

F
2
Rαρ

(
S−1

)α]Rµν

+
1

3

[
Sν + FRαν

(
S−1

)α]Rµρ +
1

3

[
Sµ + FRαµ

(
S−1

)α]Rνρ

+ SσρνRµσ + SσρµRνσ. (3.76)

From now on, we are ready to obtain a nonsymmetric connection structure by taking

advantage of Eq.(3.76) such that

∇µRνρ +∇νRρµ −∇ρRµν = FRαρ

(
S−1

)αRµν

+
2

3

[
Sµ −

F
2
Rαµ

(
S−1

)α]Rνρ

+
2

3

[
Sν −

F
2
Rαν

(
S−1

)α]Rµρ

+ 2SσµρRνσ + 2SσνρRµσ. (3.77)

Thus, Eq.(3.77) with Eq.(3.29) results in the affine connection given by

Γρµν = {ρµν}Rs(Γ) −
F
2

(
S−1

)ρRµν

− 1

3

[
δρµ

(
Sν −

F
2
Rαν

(
S−1

)α)
+ δρν

(
Sµ −

F
2
Rαµ

(
S−1

)α)]
+ Sρµν , (3.78)

by which it is clear that due to the additional torsion determinat, the shift from the con-

nection Eq.(3.30) is given by

−F
2

[(
S−1

)ρRµν −
1

3

(
δρµRαν

(
S−1

)α
+ δρνRαµ

(
S−1

)α)]
. (3.79)

Furthermore, multiplying Eq.(3.76) by (R−1)
νµ or taking the symmetric Ricci tensor from
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Eq.(3.72) directly, we obtain

Rµν (xσ) = exp

{∫ xσ

xσ0

[
4

3
Sρ +

1

2
Γββρ −

F
6

(
S−1

)αRαρ

]
dxρ

}
Rµν (xσ0 ) , (3.80)

for which we are able to use the connection found in Eq.(3.78) such that

Γββρ = {ββρ}Rs(Γ) −
8

3
Sρ +

F
3

(
S−1

)αRαρ. (3.81)

By substituting into Eq.(3.80), the contracted connection (3.81) eliminates all explicit

torsion contributions in the exponential conformal factor. Thus, we end up with the same

mapping form of the symmetric Ricci tensor with our first action model:

Rµν (xσ) = exp

{∫ xσ

xσ0

1

2
{ββρ}Rs(Γ)dx

ρ

}
Rµν (xσ0 ) , (3.82)

which then has the same non-local rescaling factor form:

Ks (xσ, xσ0 ) = exp

{∫ xσ

xσ0

1

2
{ββρ}Rs(Γ)dx

ρ

}
. (3.83)

However, with decomposition we can see that the structure of the symmetric Ricci tensor

Rµν(Γ) is now different from the first action model and it is given by

Rµν (Γ) = Rµν

(
{ρµν}Rs(Γ)

)
− 1

3
SµSν − SρµσSσνρ

− 1

2
∇ρ

[
F
(
S−1

)ρRµν

]
+
F
9

[
Sµ
(
S−1

)σRσν + Sν
(
S−1

)σRσµ

]
+
F2

18

[
3
(
S−1

)σ (S−1
)ρRµνRρσ − 5

(
S−1

)σ (S−1
)ρRρµRσν

]
, (3.84)

which then implies that although for the action models (3.1) and (3.60) the forms of

the rescalings are the same in the case of the symmetric Ricci tensor, they indeed have
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different values, that is, the Christoffel-brackets {ββρ}Rs(Γ) are different in each form due

to the differences of the symmetric Ricci tensors.

Next, we examine the geodesic equation such that substituting the symmetric part

of affine connection (3.78) into the geodesic equation (3.42) with the same procedure

given in the previous section, we get

ẍρ +
(
R−1

)ρσ dRσµ

ds
ẋµ − 1

2

(
R−1

)ρσ
(∂σRµν) ẋ

µẋν

− F
2

(
S−1

)ρRµν ẋ
µẋν − 2

3

(
Sµ −

F
2
Rαµ

(
S−1

)α)
ẋµẋρ = 0. (3.85)

Multiplying byRρβẋ
β , Eq.(3.85) becomes

d

ds

(
Rρβẋ

βẋρ
)
− 4

3
RρβSµẋµẋβẋρ −

F
3
RρβRαµ

(
S−1

)α
ẋµẋβẋρ = 0, (3.86)

which dividing byRρβẋ
βẋρ leads to

Rµν (xσ) dxµdxν = exp

{∫ xσ

xσ0

[
4

3
Sρ+

F
3
Rαρ

(
S−1

)α ]
dxρ

}
Rµν (xσ0 ) dxµ0dx

ν
0. (3.87)

If we consider the metrical interpretation of the Ricci tensor, the non-local rescaling of

the line element is then written as

ds̃2 = exp

{∫ xσ

xσ0

[
4

3
Sρ +

F
3
Rαρ

(
S−1

)α]
dxρ

}
ds̃2

0. (3.88)

Therefore, the torsion vector found in the rescaling factor of the line element in the previ-

ous section is here modified by the torsional determinant.

As the final step, let us search the case of the antisymmetric Ricci tensor, i.e.
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Rµν = R[µν], for which Eq.(3.75) takes the form

∇ρRµν =
2

3

[
Sρ −

3F
2
Rασ

(
1

3

(
S−1

)α
δσρ −

(
S−1

)σα
ρ

)]
Rµν

+
1

3

[
Sν + FRαν

(
S−1

)α]Rµρ −
1

3

[
Sµ + FRαµ

(
S−1

)α]Rνρ

− 2FRαν

(
S−1

)σα
ρRµσ + SσρνRµσ − SσρµRνσ. (3.89)

Applying the cyclic permutation, Eq.(3.89) gives the contracted connection:

Γββρ =
1

2
{ββρ}Ra(Γ) −

8

3
Sρ + F

(
5

6

(
S−1

)α
δβρ −

(
S−1

)βα
ρ

)
Rαβ, (3.90)

After taking the (R−1)
νµ product of Eq.(3.89), we get

Rµν (xσ) = exp

{∫ xσ

xσ0

[
4

3
Sρ +

1

2
Γββρ

− F
2

(
1

3

(
S−1

)α
δβρ −

(
S−1

)βα
ρ

)
Rαβ

]
dxρ

}
Rµν (xσ0 ) , (3.91)

which is, as expected, compatible with Eq.(3.72).

Thus, substituting Eq.(3.90) into (3.91) results in the final expression for the non-local

conformal transformation of the antisymmetric Ricci tensor:

Rµν (xσ) = exp

{∫ xσ

xσ0

[
1

4
{ββρ}Ra(Γ) +

F
4

(
S−1

)βRβρ

]
dxρ

}
Rµν (xσ0 ) , (3.92)

where non-local, exponential conformal factor is then written as

Ka (xσ, xσ0 ) = exp

{∫ xσ

xσ0

[
1

4
{ββρ}Ra(Γ) +

F
4

(
S−1

)βRβρ

]
dxρ

}
. (3.93)

In contrast to the case of the symmetric Ricci tensor, the form of the rescaling of the

antisymmetric Ricci tensor is now not the same as Eq.(3.55) given for the first action
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model (3.1), and we can see from Eq.(3.92) that owing to the torsional determinant, the

antisymmetric Ricci tensor is also responsible for the conformal mapping of itself from

one point to another one.

3.3. Riemannian action based on the affine connection

Up to now we fully examined the Ricci tensor by imposing to it a torsional mean-

ing, and as the Ricci tensor is a subset of Riemann curvatures itself, it is essential to

analyse the torsionful Riemannian action as given below:

I< =

∫
d4x
√
|<|, (3.94)

where < ≡ Det [<ρµσν ] and < ≡ < (Γ), with the definition that

Det[<ρµσν ] =
1

(4!)2
ερ0ρ1ρ2ρ3ε

µ0µ1µ2µ3εσ0σ1σ2σ3εν0ν1ν2ν3

×<ρ0µ0σ0ν0<ρ1µ1σ1ν1<ρ2µ2σ2ν2<ρ3µ3σ3ν3 , (3.95)

Under variation, we write the action as follows:

δI< =
1

2

∫
d4x
√
|<|
(
<−1

)νσµ
ρδ<ρµσν (3.96)

In order to examine the dynamics of the action (3.94), we should consider the affine

connection field such that using the Palatini formula [4, 18], our variation becomes

δI< =
1

2

∫
d4x
√
|<|
(
<−1

)νσµ
ρ

[
∇σ

(
δΓρµν

)
−∇ν

(
δΓρµσ

)
− 2SλσνδΓρµλ

]
. (3.97)
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After applying integration by parts, by using the identity (3.5) we obtain

δI< =

∫
d4x

(
− 1

2
∇σ

[√
|<|
(
<−1

)νσµ
ρ

]
+

1

2
∇σ

[√
|<|
(
<−1

)σνµ
ρ

]
+
√
|<|
(
<−1

)νσµ
ρSσ −

√
|<|
(
<−1

)σνµ
ρSσ

−
√
|<|
(
<−1

)λσµ
ρSνσλ

)
δΓρµν . (3.98)

With the principle δI< = 0, and the fact that Riemann tensor <ρµσν is antisymmetric in

its last two indices σ and ν, Eq.(3.98) leads to the most general field equations:

∇σ

[√
|<|
(
<−1

)νσµ
ρ

]
− 2
√
|<|
(
<−1

)νσµ
ρSσ +

√
|<|
(
<−1

)λσµ
ρSνσλ = 0 (3.99)

We can improve Eq.(3.99) by applying the differentiation by parts for the first term and

multiplying it by<ρµαν in which processes the Riemann matrix multiplications with its in-

verse obey the relations (<−1)
ναµ

ρ<ρµσν = δασ and (<−1)
αβµ

ρ<ρµσν = 1
3

(
δβσδ

α
ν − δβν δασ

)
,

which is expected owing to the antisymmetric property of the Riemann tensor in its last

two indices. Then by the calculations mentioned above we conclude with the relation

∇α

[√
|<|
]

=
4

3

√
|<|Sα −

√
|<|<ρµαν∇σ

[(
<−1

)νσµ
ρ

]
, (3.100)

and using this last expression in the first term of Eq.(3.99), we obtain the field equations

without scalar density:

(
<−1

)νσµ
ρ<ξκσβ∇α

[(
<−1

)βακ
ξ

]
−∇σ

[(
<−1

)νσµ
ρ

]
+

2

3

(
<−1

)νσµ
ρSσ −

(
<−1

)λσµ
ρSνσλ = 0. (3.101)

Due to the Riemann product by its inverse with the common σ index in the first term,

Eq.(3.101) is not the end for us, that is to say, we can express Kronecker delta definitions
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for that term. To do this, it is enough to consider the inverse Riemann expression [24–26]

(
<−1

)νσµ
ρ =

1

(3!)2

1

Det[<ρµσν ]
ερρ1ρ2ρ3ε

νν1ν2ν3εσσ1σ2σ3εµµ1µ2µ3

×<ρ1µ1σ1ν1<ρ2µ2σ2ν2<ρ3µ3σ3ν3 (3.102)

with the definition of the determinant of the Riemann tensor (3.95). Then multiplying

each side of Eq.(3.102) by <ξκσβ , and considering all possible contractions by taking into

account the determinant (3.95), we obtain the relation

(
<−1

)νσµ
ρ<ξκσβ = aδξρδ

µ
κδ

ν
β+bδνρδ

µ
κδ

ξ
β+bδµρ δ

ξ
κδ
ν
β+cδνρδ

ξ
κδ
µ
β+dδµρ δ

ν
κδ

ξ
β+eδξρδ

ν
κδ

µ
β , (3.103)

where a =
(

Ψ+Φ−2Θ+12
360

)
, b =

(
−2Ψ−2Φ+Θ+24

360

)
, c =

(
7Ψ+Φ−2Θ−12

360

)
, d =

(
Ψ+7Φ−2Θ−12

360

)
,

and e =
(
−2Ψ−2Φ+7Θ

360

)
with Ψ ≡ (R−1)

[αβ]Qβα, Φ ≡ (Q−1)
αβR[βα], and Θ ≡

(<−1)
α[σβ]

γ<γ [ασ]β such that Qµν is the rank-two antisymmetric tensor corresponding to

the contraction of the Riemann tensor with respect to its first and second indices, <ρρµν ,

and one may realize that, as we are not interested in a purely symmetric connection, we

cannot relate the antisymmetric part of Ricci tensor to Qµν , i.e. Qµν 6= 2R[µν], for our

torsionful gravity.

One may check Eq.(3.103) by noticing that the first three possible contractions on the

right-hand side should, respectively, give (<−1)
βσα

γ<γασβ , (R−1)
αβRβα, and (Q−1)

αβQβα,

and these multiplications are naturally equal to 4 which can also be seen directly from

(3.102) and (3.95); however, for the last three possibilities the situation is now different,

so that the last three possible contractions should, respectively, lead to Ψ, Φ, and Θ, which

means that our results for now are not scalars like 4 but locally scalar functions. Expecting

all these results of the contractions, one can also obtain the expressions for a, b, c, d, and e.

After the explanations given above, we are now ready to substitute Eq.(3.103) into Eq.(3.101),
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and hence, our field equations get the more useful form:

(a− 1)∇σ

[ (
<−1

)νσµ
ρ

]
+ e∇σ

[ (
<−1

)µσν
ρ

]
− δνρ

{
b∇σ

[ (
R−1

)σµ ]
+ c∇σ

[ (
Q−1

)σµ ]}
− δµρ

{
d∇σ

[ (
R−1

)σν ]
+ b∇σ

[ (
Q−1

)σν ]}
+

2

3

(
<−1

)νσµ
ρSσ −

(
<−1

)λσµ
ρSνσλ = 0. (3.104)

After applying the contractions with respect to indices ρ, ν first and ρ, µ second to the last

equation, we, respectively, obtain

ã∇σ

[ (
R−1

)σµ ]
+ b̃∇σ

[ (
Q−1

)σµ ]− 2

3

(
R−1

)σµ Sσ − (<−1
)λσµ

ρSρσλ = 0 (3.105)

c̃∇σ

[ (
R−1

)σµ ]
+ d̃∇σ

[ (
Q−1

)σµ ]− 2

3

(
Q−1

)σµ Sσ − (Q−1
)λσ Sµσλ = 0 (3.106)

with ã =
(

Ψ+44
60

)
, b̃ =

(
−Ψ+1

15

)
, c̃ =

(
−Φ+1

15

)
, and d̃ =

(
Φ+44

60

)
.

Eqs.(3.105) and (3.106) can be solved to obtain two field equations as follows:

∇σ

[ (
R−1

)σµ ]− 2

3
˜̃d
(
R−1

)σµ Sσ − ˜̃d
(
<−1

)λσµ
ρSρσλ

+
2

3
˜̃b
(
Q−1

)σµ Sσ + ˜̃b
(
Q−1

)λσ Sµσλ = 0 (3.107)

and

∇σ

[ (
Q−1

)σµ ]− 2

3
˜̃a
(
Q−1

)σµ Sσ − ˜̃a
(
Q−1

)λσ Sµσλ
+

2

3
˜̃c
(
R−1

)σµ Sσ + ˜̃c
(
<−1

)λσµ
ρSρσλ = 0 (3.108)

in which we have the equations ˜̃a ≡ ã
ãd̃−b̃c̃ ,

˜̃b ≡ b̃
ãd̃−b̃c̃ ,

˜̃c ≡ c̃
ãd̃−b̃c̃ and ˜̃d ≡ d̃

ãd̃−b̃c̃ . Thus,

by putting the last two equations into Eq.(3.104) we get the final expression for the field
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equations as given below:

(a− 1)∇σ

[ (
<−1

)νσµ
ρ

]
+ e∇σ

[ (
<−1

)µσν
ρ

]
− δνρ

(2

3
a
(
R−1

)σµ Sσ +
2

3
b
(
Q−1

)σµ Sσ
+ b
(
Q−1

)λσ Sµσλ + a
(
<−1

)λσµ
ρSρσλ

)
− δµρ

(2

3
c
(
R−1

)σν Sσ +
2

3
d
(
Q−1

)σν Sσ
+ d

(
Q−1

)λσ Sνσλ + c
(
<−1

)λσν
ρSρσλ

)
+

2

3

(
<−1

)νσµ
ρSσ −

(
<−1

)λσµ
ρSνσλ = 0,

(3.109)

where a ≡ bd̃−cc̃
ãd̃−b̃c̃ , b ≡

cã−bb̃
ãd̃−b̃c̃ , c ≡

dd̃−bc̃
ãd̃−b̃c̃ and d ≡ bã−db̃

ãd̃−b̃c̃ .

Here, we can continue considering our most general field equations such that from Eq.(3.99)

we are able to state that

∇σ

[(
<−1

)νσµ
ρ

]
= −
∇σ

[√
|<|
]

[√
|<|
] (
<−1

)νσµ
ρ + 2

(
<−1

)νσµ
ρSσ −

(
<−1

)λσµ
ρSνσλ

(3.110)

and by changing the order of the indices ν and µ we also have

∇σ

[(
<−1

)µσν
ρ

]
= −
∇σ

[√
|<|
]

[√
|<|
] (
<−1

)µσν
ρ + 2

(
<−1

)µσν
ρSσ −

(
<−1

)λσν
ρSµσλ.

(3.111)

Thus, by plugging Eqs.(3.110) and (3.111) into Eq.(3.109) and then by multiplying the re-

sult by<ρµαν , where we use the fact that (<−1)
µσν

ρ<ρµαν = Θ
4
δσα and (<−1)

λσν
ρ<ρµαν =

Θ
12

(
δλµδ

σ
α − δλαδσµ

)
with the same notion given in Eq.(3.103), we obtain the equation

∇α

[√
|<|
]

[√
|<|
] = 2ASα − 2

(
aRµα

(
<−1

)λσµ
ρ + 2bRρα

(
Q−1

)λσ
+ 2cQµα

(
<−1

)λσµ
ρ + dQρα

(
Q−1

)λσ )Sρσλ (3.112)

with a ≡ 2 bd̃−cc̃
(ãd̃−b̃c̃)(4−4a−eΘ)

, b ≡ cã−bb̃
(ãd̃−b̃c̃)(4−4a−eΘ)

, c ≡ dd̃−bc̃
(ãd̃−b̃c̃)(4−4a−eΘ)

, d ≡ 2 bã−db̃
(ãd̃−b̃c̃)(4−4a−eΘ)

,

and A = 2
3

(
1− 2(bd̃−cc̃+bã−db̃)+ 1

2
(cã−bb̃+dd̃−bc̃)

(ãd̃−b̃c̃)(4−4a−eΘ)

)
.

Furthermore, by using Eq.(3.6) and applying the Jacobi formula (3.13), Eq.(3.112) leads
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to the determinant relation for the Riemann curvatures at different points:

Det[<ρµσν(xσ)] = exp

{∫ xσ

xσ0

[
4ASα − 4

(
aRµα

(
<−1

)λσµ
ρ + 2bRρα

(
Q−1

)λσ
+ 2cQµα

(
<−1

)λσµ
ρ + dQρα

(
Q−1

)λσ )Sρσλ + 2Γββα

]
dxα

}
Det[<ρµσν(xσ0 )]. (3.113)

We are now in a position to consider that under the general coordinate transformations

xσ0 → xσ(xσ0 ) the Riemann curvature transforms as

<ρµσν(xσ) =
∂x0α

∂xρ

∂xβ0
∂xµ

∂xκ0
∂xσ

∂xγ0
∂xν
<αβκγ(xσ0 ), (3.114)

which, after taking the determinant of each side and comparing with Eq.(3.113), gives the

simple relation for the transformation of coordinates as given below:

Jµν = δµν exp

{∫ xσ

xσ0

[A
4
Sα −

1

4

(
aRµα

(
<−1

)λσµ
ρ + 2bRρα

(
Q−1

)λσ
+ 2cQµα

(
<−1

)λσµ
ρ + dQρα

(
Q−1

)λσ )Sρσλ +
1

8
Γββα

]
dxα

}
. (3.115)

As the final step, using Eq.(3.115) in Eq.(3.114) results in the final expression for the

Riemannian curvature as the non-local, exponential rescaling of it:

Rρ
µσν (xσ) = exp

{∫ xσ

xσ0

[
ASα −

(
aRµα

(
<−1

)λσµ
ρ + 2bRρα

(
Q−1

)λσ
+ 2cQµα

(
<−1

)λσµ
ρ + dQρα

(
Q−1

)λσ )Sρσλ +
1

2
Γββα

]
dxα

}
Rρ

µσν (xσ0 ) . (3.116)

Thus, we can conclude that all fundamental tensors given in the gravity Rµν , Qµν , Sµ,

Rρ
µσν , and Sρµν , where the first two of them are the subsets of the Riemann curvature

and the third one is of the torsion tensor, are now responsible for the non-local conformal

transformations of the Riemann curvature such that in the expononetial rescaling factor

they are coupled to each other with the inverses of some of them, and they are also found
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as a coupling to construct locally scalar functions included in A, a, b, c, and d. One may

also take care that the mapping of Riemann tensor differs from the Ricci one (3.23) with

the appearance of the torsion tensor in the conformal factor of (3.116).

3.4. Riemannian action with torsion determinant

In this last section, since the Riemann and torsion are the most fundamental two

tensors in gravity we will give some results of an action involving a torsion determinant

as a contribution to the curvature as follows:

I<S =

∫
d4x{a′

√
|<|+ b|S|}, (3.117)

where a′ and b are dimensionless constants. Applying the variation gives

δI<S =
a′
2

∫
d4x
√
|<|
(
<−1

)νσµ
ρδ<ρµσν + b

∫
d4x|S|

(
S−1

)νµ
ρδSρµν , (3.118)

by which we are then able to write the most general field equations as the modification of

the torsional determinant to Eq.(3.99):

∇σ

[√
|<|
(
<−1

)νσµ
ρ

]
− 2
√
|<|
(
<−1

)νσµ
ρSσ

+
√
|<|
(
<−1

)λσµ
ρSνσλ −

b

a′
|S|
(
S−1

)νµ
ρ = 0. (3.119)

Here, following the same processes given in the previous section we obtain

∇α

[√
|<|
]

=
4

3

√
|<|Sα +

b

a′
|S|<ρµαν

(
S−1

)νµ
ρ −

√
|<|<ρµαν∇σ

[(
<−1

)νσµ
ρ

]
.

(3.120)
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Then by substituting Eq.(3.120) into Eq.(3.119), the field equations take the form

(
<−1

)νσµ
ρ<ξκσβ∇α

[(
<−1

)βακ
ξ

]
−∇σ

[(
<−1

)νσµ
ρ

]
+

2

3

(
<−1

)νσµ
ρSσ

−
(
<−1

)λσµ
ρSνσλ −F ′

((
<−1

)νσµ
ρ<ξκσβ

(
S−1

)βκ
ξ −

(
S−1

)νµ
ρ

)
= 0, (3.121)

with F ′ ≡ f′ (<,S) = b|S|
a′
√
|<|

being a scalar function. Equation (3.103) is now necessary

to improve our last equation such that after using (3.103) in Eq.(3.121), we end up with

the modified equation of (3.104) due to the torsional determinant:

(a− 1)∇σ

[ (
<−1

)νσµ
ρ

]
+ e∇σ

[ (
<−1

)µσν
ρ

]
− δνρ

{
b∇σ

[ (
R−1

)σµ ]
+ c∇σ

[ (
Q−1

)σµ ]}
− δµρ

{
d∇σ

[ (
R−1

)σν ]
+ b∇σ

[ (
Q−1

)σν ]}
+

2

3

(
<−1

)νσµ
ρSσ −

(
<−1

)λσµ
ρSνσλ

−F ′
[
B
(
S−1

)νµ
ρ + Cδνρ

(
S−1

)µ
+Dδµρ

(
S−1

)ν ]
= 0, (3.122)

where B =
(

Ψ+Φ−3Θ−116
120

)
, C =

(
−3Ψ−Φ+Θ+12

120

)
and D =

(
Ψ+3Φ−Θ−12

120

)
. Then after

applying two contractions with respect to the indices ρ, ν first and ρ, µ second for the

last equation, we obtain two expressions in which Eqs.(3.105) and (3.106) is modified by,

respectively, −C̃F ′ (S−1)
µ and −D̃F ′ (S−1)

µ with C̃ =
(
−Ψ−8

12

)
and D̃ =

(
Φ+8
12

)
such

that from these modified equations we are able to find

∇σ

[ (
R−1

)σµ ]− 2

3
˜̃d
(
R−1

)σµ Sσ − ˜̃d
(
<−1

)λσµ
ρSρσλ

+
2

3
˜̃b
(
Q−1

)σµ Sσ + ˜̃b
(
Q−1

)λσ Sµσλ + ˜̃DF ′
(
S−1

)µ
= 0 (3.123)

and

∇σ

[ (
Q−1

)σµ ]− 2

3
˜̃a
(
Q−1

)σµ Sσ − ˜̃a
(
Q−1

)λσ Sµσλ
+

2

3
˜̃c
(
R−1

)σµ Sσ + ˜̃c
(
<−1

)λσµ
ρSρσλ + ˜̃CF ′

(
S−1

)µ
= 0, (3.124)
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where ˜̃C ≡ C̃c̃−D̃ã
ãd̃−b̃c̃ and ˜̃D ≡ D̃b̃−C̃d̃

ãd̃−b̃c̃ . Thus, by plugging Eqs.(3.123) and (3.124) into

Eq.(3.122) we obtain the final form of the gravitational field equations:

(a− 1)∇σ

[ (
<−1

)νσµ
ρ

]
+ e∇σ

[ (
<−1

)µσν
ρ

]
− δνρ

(2

3
a
(
R−1

)σµ Sσ +
2

3
b
(
Q−1

)σµ Sσ
+ b
(
Q−1

)λσ Sµσλ + a
(
<−1

)λσµ
ρSρσλ

)
− δµρ

(2

3
c
(
R−1

)σν Sσ +
2

3
d
(
Q−1

)σν Sσ
+ d

(
Q−1

)λσ Sνσλ + c
(
<−1

)λσν
ρSρσλ

)
+

2

3

(
<−1

)νσµ
ρSσ −

(
<−1

)λσµ
ρSνσλ

−F ′
[
B
(
S−1

)νµ
ρ + Cδνρ

(
S−1

)µ
+Dδµρ

(
S−1

)ν ]
= 0, (3.125)

where we introduced C ≡ C − c
(
C̃c̃−D̃ã
ãd̃−b̃c̃

)
− b
(
D̃b̃−C̃d̃
ãd̃−b̃c̃

)
and D ≡ D − d

(
D̃b̃−C̃d̃
ãd̃−b̃c̃

)
−

b
(
C̃c̃−D̃ã
ãd̃−b̃c̃

)
. Finally, using Eqs.(3.110) and (3.111) in Eq.(3.125) and then applying <ρµαν

product we obtain

∇α

[√
|<|
]

[√
|<|
] = 2ASα − 2

(
aRµα

(
<−1

)λσµ
ρ + 2bRρα

(
Q−1

)λσ
+ 2cQµα

(
<−1

)λσµ
ρ + dQρα

(
Q−1

)λσ )Sρσλ
− 2F ′

[
B<ρµαν

(
S−1

)νµ
ρ − CRµα

(
S−1

)µ −DQνα (S−1
)ν ] (3.126)

with B ≡ 2B
4−4a−eΘ , C ≡ 2C

4−4a−eΘ , and D ≡ 2D
4−4a−eΘ . Thus, the last equation leads to the

non-local conformal mapping of Riemann curvature as given below:

Rρ
µσν (xσ) = exp

{∫ xσ

xσ0

[
ASα + F ′

(
CRρα +DQρα

)(
S−1

)ρ
−

(
aRµα

(
<−1

)λσµ
ρ + 2bRρα

(
Q−1

)λσ
+ 2cQµα

(
<−1

)λσµ
ρ + dQρα

(
Q−1

)λσ)Sρσλ
−F ′

(
B<ρµαν

(
S−1

)νµ
ρ

)
+

1

2
Γββα

]
dxα

}
Rρ

µσν (xσ0 ) (3.127)

The torsion determinant included in the scalar function F ′ now affects the mapping of the

Riemann curvature by giving the inverse torsion tensor and the inverse torsion vector to

the conformal factor.
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CHAPTER 4

CONCLUSIONS

The main purpose of this study was to examine torsion effects on the non-metrical

affine gravity by considering curvature– and torsion–based actions. For each action model,

we obtained the torsionful gravitational field equations, and from these equations we

found that the Ricci and Riemann curvatures must obey a non-local, exponential rescal-

ing affected by the torsion tensor. In the actions including the Ricci curvature, we also

examined the symmetric and antisymmetric Ricci tensors, where the dynamical equations

allowed us to construct connection structures such that we are able to obtain the affine

connection in the case of a symmetric Ricci tensor and the contracted affine connection

in the case of an antisymmetric Ricci tensor. For the action (3.1), we found that the con-

tracted connections obtained in the case of symmetric and antisymmetric Ricci tensors

killed the explicit torsion contribution to the rescaling of each kind of Ricci curvature.

Moreover, the actions (3.1) and (3.60) resulted in the same form of the rescaling of the

symmetric Ricci tensor. In the actions including a torsion determinant in addition to the

curvature contribution, we introduced the scalar functions which modified the results of

the actions including a purely curvature determinant.

We want to emphasize that our action models are novel and general enough to reveal

salient features of affine gravity. We expect that our work will be important in construct-

ing more realistic models if not for including matter. The models we constructed can be

taken further by considering ways of incorporating matter into the affine framework. One

of the essential ways for matter coupling to the affine gravity was proposed by making

use of the analogy between the affine formalism and canonical mechanics [7]. In this

theory, incorporating matter to the affine gravity can be then provided by applying the

covariant Legendre transformations to the affine Lagrangian densities including matter

fields. Although these Lagrangian densities do not depends on any metric, the fields can

be equipped with a metric tensor due to the canonical structure of this affine formulation,

where the metric and the connection of that metric play the roles of the momentum and the

generalized coordinate. Another way was based on the construction of the metric tensor

only from the affine connection through the symmetric, contracted square of the torsion

tensor [9]. Proposing a Lagrangian density composed from this torsional metric tensor

together with the curvature it can be shown that if the matter fields couple to the torsion
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square through the metric tensor one may then obtain the Einstein field equations with its

matter part as well as the cosmological constant. However, how to incorporate matter into

the affine theory of gravity in our models is not trivial and has not been developed yet.

But, following the same techniques used in [7, 9], that is, by extending our models with

the Lagrangian densities involving matter fields or proposing a torsion dependent metric,

we leave this construction to near future detailed work, and in this case, one may clearly

see shifts of these models from the general relativity when applied to the Solar System

so that possible explanations of some phenomena such as dark matter or avoidance of

singularities will be explored.

In addition, there has been a recent claim in Ref. [27] that the naturalness problem in

the standard model may be dealt with by the Eddington formulation of gravity. This idea

also adresses the relevancy of the affine formulation of gravity to the standard model to

clarify some fundamental problems in it. In this respect, our purely affine actions with

their results may also be useful for and applied to the standard model in the future within

the claim in [27].

In summary, it is crucial and necessary to properly study and develope the affine theory

of gravity due to its more fundamental nature and generality than general relativity. Al-

though it is not trivial and has not been studied yet, via the improvement of the purely

affine theory we expect the important applications and contributions of our results to the

standard model of particle physics, cosmology, astroparticle physics, black holes, neutron

stars, supernovas and other physical areas, where the gravitational field is very strong, to

clarify some fundamental problems emerging from them.
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