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İzmir Institute of Technology

30 June 2016

Assoc. Prof. Dr. Enver TATLICIOĞLU
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ABSTRACT

LEARNING CONTROL OF ROBOT MANIPULATORS WITH
TELEROBOTIC APPLICATIONS

Learning control of teleoperation systems that can be utilized in telerehabilition

applications is investigated in this thesis. Specifically, considering the fact that in rehabil-

itation the patient is required to perform a task over and over again, learning controllers

are considered as the most feasible solution, in which desired trajectories are periodic

with a known period.

Since control of teleoperation systems are directly related with the control of

robots that are included to the system, learning control of joint space and task space

of these robots are simulated in the first part of this study. Joint space learning controller

is designed under the restrictions that the robot dynamic model being uncertain and that

joint velocities are unmeasurable. Then, a task–space learning controller is designed by

considering the fact that the most desired tasks are defined in the end–effector space. Via

Lyapunov based stability analysis methods, asymptotic tracking is ensured for both con-

trollers. Numerical simulation results and experimental studies are utilized to illustrate

the performance of the designed controllers.

In the second part of this thesis, performance of the direct teleoperation and model

mediated teleoperation methods under time delays in the communication cahannel are ex-

amined in a comparative manner. In direct teleoperation, the information between master

and slave systems are exchanged directly, while the model of the environment of the slave

system is learnt and integrated at the master side as proxy dynamics in model mediated

teleoperation. Experimental studies are realized to evaluate the performance of both of

mentioned methods.
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ÖZET

TELEROBOTİK UYGULAMALARDA ROBOT KOLLARININ
ÖĞRENMELİ DENETİMİ

Bu tezde, telerehabilitasyon uygulamalarında kullanılabilinen, teleoperasyon sis-

temlerinin öğrenmeli denetimi incelenmiştir. Özellikle, rehabilitasyonda hastanın göre-

vi tekrar tekrar uygulaması istenildiği gerçeğinden hareket edilerek istenilen yörüngesi

bilinen bir periyodla periyodik olan öğrennmeli denetleyiciler en makul çözüm olarak

düşünülmüşlerdir.

Tezin ilk bölümünde, sisteme dahil edilen robotların denetimi teleoperasyon sis-

temleri ile doğrudan ilgili olduğu için, eklem uzayı ve görev uzayında öğrenmeli denet-

leyicilerin benzetimleri yapılmıştır. Robot dinamik modelinin belirsiz ve eklem hızlarının

ölçülemez olması kısıtları altında, eklem uzayı için öğrenmeli denetleyici tasarlanmıştır.

Daha sonrasında ise, en çok istenilen görevlerin uç nokta uzayında tanımlandığı gerçeğin-

den hareket edilerek görev uzayı için öğrenmeli denetleyici tasarlanmıştır. Her iki denet-

leyici içinde asimptotik takip Lyapunov tabanlı kararlılık analizi yöntemleriyle aracılığıyla

sağlanmıştır. Her iki öğrenmeli denetleyicinin başarımı sayısal benzetimler ve deneyler

aracılığıyla gösterilmiştir.

Tezin ikinci bölümünde, zaman gecikmelerinin olduğu iletişim kanalında doğru-

dan teleoperasyonun ve model aracılı teleoperasyonun başarımları karşılaştırılmıştır. Doğ-

rudan teleoperasyonda ana ve bağımlı sistemler arasında bilgi doğrudan değişirken, model

aracılı teleoperasyonda bağımlı sistemin çevre modeli öğrenilip ana sisteme temsilci di-

namiği olarak iliştirilmiştir. Her iki methodun başarımı deneysel olarak test edilmiştir.
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CHAPTER 1

INTRODUCTION

Nowadays, millions of people suffer from a stroke, which results from an inter-

ruption in circulation to a part of the brain. As a result of a stroke, some of the connecting

nerve cells die, and the patient commonly suffers from hemophilia on one part or side of

the body. Unfortunately, when cells die in this way they cannot regrow, but in assistance

of brain’s spare capacity, relearning is possible.

Relearning skills after a stroke goes through the same process as when someone

learns to walk or play tennis, which requires the patient to practice movements over and

over again, and make use of feedback from previous attempts to improve the next move-

ment of rehabilitation Winstein et al. (2004), Pomeroy et al. (2006). In recent years, new

rehabilitation techniques adopting a task–oriented approach have been developed that en-

courages active training of the affected part of the body. These techniques consider the

rehabilitation to be organized around goal–directed functional tasks Volpe (2004). Clin-

ical results have shown that assisted movement therapy can have a helpful impact on a

large amount of the people affected by stroke Wang (2012).

Since, for rehabilitation, the patient is usually required to perform a task over and

over again, assistance from robotics has increased to make use of their high accuracy Zhu

et al. (2015). As a result, an important field at the intersection of robotics and rehabilita-

tion, namely robot–assisted rehabilitation has arose.

A robot–assisted rehabilitation system supports a measurement mode and can also

be performed in three therapy modes, as passive, assistive and resistive therapy modes

Ertas and Patoglu (2010). In the measurement mode, patient reactions and inputs of the

actuators of the robot and the outputs (i.e., joint positions and velocities) are recorded.

In passive mode, these recordings are repetitively imposed to the patient as pre–recorded

exercises, as a result, in this mode the robot is passive. In assistive mode, the robot

supports the motion of the patient by providing a proper amount of force feedback Wang

et al. (2010). In this mode, the robot injects energy to the patient. In resistive mode, the

robot applies forces/torques at the opposite direction of the movement of the patient.

Since most of the times, rehabilitation needs different specifications, patient–

specific therapies should be designed. For these therapies, either a combination of dif-

ferent modes can be considered or the robot can be operated in the measurement mode Li
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and Song (2006).

After the introduction of robot manipulators into rehabilitation, the obvious next

step is to perform the therapy remotely at the patient’s home or at the caring center. The

increasing number of patients and thus the increasing number of patients per therapists

motivated the therapies to be performed remotely and/or multiple therapies to be per-

formed simultaneously. These resulted in a new research field called telerehabilitation

Volpe (2004).

In recent years, applying telerobotics to rehabilitation, has been a demanding tech-

nology since it can provide an effective training with relying less on therapists and more

on accuracy of robots. Utilizing robots as part of the treatment is beneficial since thera-

pists can record desired movement data in order to improve the quality of the rehabilitative

training via the use of feedback Fasoli et al. (2003). Regardless of the therapy modes, tel-

erehabilitation may help treatment of disabled patients in remote areas. For the last few

years, telerehabilitation has been an active research area to assist, enhance and quantify

rehabilitation. In addition, enabling rehabilitation outside the hospital may lead to re-

duced cost, increased intensity of therapy, and a shift in the emphasis of responsibility

from therapists to patients Chris et al. (2012).

As an added benefit of telerobotics, in different therapy modes, patients can be

motivated with virtual reality force feedback on a visual display. Via utilizing haptics

with telerehabilitation systems, it is also possible to reflect the interaction forces between

the patient and the environment to the therapist by using force–reflective human–machine

interface. These forces can be obtained based on the difference between the positions

of master and slave robots and thus without requiring measurements of contact forces of

patient’s or therapist’s Koochaki et al. (2014).

The main objective of this thesis is to propose controllers that can be utilized as

part of a telerehabilitation system. In view of this objective, control of robot manipulators

when the desired trajectory is periodic and control of teleoperation systems subject to

constant or varying communication line induced delays are now discussed.

According to the space of the desired trajectory is defined at, control of robot

manipulators can be classified as joint space control or task space control. In joint space

control, the objective is to design the controller such that joints track the desired joint

motion as closely as possible. On the other hand, for several applications, the desired task

is specified in the task space which is also called end–effector space, operational space

or Cartesian space. In task space control, the objective is to design the controller such

that end–effector motion tracks a desired end–effector motion. Task space controllers are
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preferable in some applications since they do not require solution of inverse kinematics at

the position level and employ a feedback loop that directly minimizes task space tracking

errors.

For nonlinear systems which includes robot manipulators, controllers are designed

to first guarantee the stability of the closed–loop system and then to ensure tracking of

a desired trajectory. Various control schemes are studied in the literature Lewis et al.

(1993), Dawson et al. (1995), Arimoto (1996), Lewis et al. (2003), Dixon et al. (2003).

Feedback linearization or computed torque method requires the exact knowledge of the

model of the nonlinear system and utilizes that knowledge to cancel the nonlinearities.

Since exact knowledge of the system model is generally unavailable, this method seems

impractical. When the system model has structured/parametric uncertainties successfully,

adaptive control techniques can be utilized Ioannou and Sun (1996), Lavretsky and Wise

(2013). While dealing with structured uncertainties, adaptive methods fail to deal with

unstructured uncertainties such as additive disturbances. To deal with unstructured uncer-

tainties, robust control techniques can be utilized Qu (1998). But these methods require

either discontinuous feedback (i.e., variable structure or sliding mode controllers) or high

gain feedback. A class of robust controllers that does not require neither discontinuous

feedback nor high control gains is the learning controllers Arimoto et al. (1984), Ari-

moto et al. (1988), Messner et al. (1991) and Horowitz (1993). Learning controllers are

classified as robust controllers in the sense that they do not require exact knowledge of

system dynamics. Similar to the adaptive controllers, learning controllers also include an

update law. Different from the adaptive controllers, learning controllers aim to regulate

or overcome uncertanities without the knowledge of parametric uncertainities.

The main assumption for the design of learning controllers is that the desired

trajectory must be periodic with a known period Arimoto et al. (1988), Horowitz (1993),

Dixon et al. (2002). When rehabilitation tasks are considered, the patient is required to

perform the same movement over and over again and thus learning controllers seem like

a perfect fit for the robot–assisted rehabilitation applications Chris et al. (2012).

Now, an overview of some of the past works on learning control will be pro-

vided. According to the literature, learning controllers were first proposed with a simple

iteration rule which generates autonomously a present control input that is better than pre-

vious one Arimoto et al. (1984). Then, some of the initial research on repetitive learning

control of robotic systems was introduced by Hara et al. (1988), Tsai et al. (1988), and

Tomizuka et al. (1989). In these works, asymptotic tracking was achieved by implement-

ing a controller fused with a term generating periodic signals into the closed–loop system.
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Asymptotic convergence of the tracking error in Hara et al. (1988) and Tsai et al. (1988)

can only be guaranteed under restrictive conditions on the plant dynamics such as a lim-

itation on the repetitive control gain. Later to relax the stability conditions and enhance

the robustness of Hara et al. (1988), the repetitive rule was modified in Tomizuka et al.

(1989). Integrating the so–called Q–filter to this rule was the main aim of this modifica-

tion. Messner et al. (1991) and Horowitz (1993) exploited the use of kernel functions in

the update rule, in an attempt to improve the robustness of the previous repetitive learn-

ing algorithms. Sadegh and Horowitz (1990) used a saturated update rule in repetitive

learning controllers also to increase their robustness. Dixon et al. (2002) the design of

their designed a full state feedback learning controller that achieves global asymptotic

joint position tracking for robot manipulators. In this study, the problems associated with

saturated update rule in Sadegh and Horowitz (1990) were solved. The stability of the

closed–loop system was investigated via a novel Lyapunov function.

It should be noted that all of the aforementioned learning controllers required both

position and velocity measurements (i.e., full state feedback). However, velocity sensors

are rarely used in robots. Although, numerical differentiation of position measurements

can be considered as a solution for the lack of velocity measurements, high amplitude

noise caused by numerical differentiation decreases the stability of this method. There-

fore, output feedback learning controllers that do not require link velocity measurements

can be a feasible solution to this problem.

Only a few output feedback learning controllers were designed by researchers. He

and Jagannathan (2004) and Shih and Jagannathan (2007) proposed neural network based

output feedback controllers designed as reinforcement–learning controllers for different

classes of nonlinear discrete–time systems. Global tracking results were achieved by

Marino et al. (2012) where a learning controller for a class of single–input single–output,

minimum phase, nonlinear, time–invariant systems with unknown output–dependent non-

linearities, unknown parameters and known relative degree was considered. Marino et al.

(2012) also solved the output regulation problem in the presence of unknown periodic

reference and disturbance signals of known common period.

Nearly all of the above mentioned learning controllers were designed as joint

space controllers. Since the most important properties of tasks performed by robot ma-

nipulators, namely, periodicity of the task and the need for the task to be performed by

the end–effector, motivates the design of task space controllers. In the literature, there are

only a few iterative learning controllers where the desired trajectory is specified in task

space Sekimoto et al. (2007), Arimoto et al. (2008). These past works considered accu-
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rate knowledge of robot dynamics in their control designs. It is well known by control

scientists that the control problem is extremely complicated when there are parametric

and unstructured uncertainties in robot dynamics.

Since the main application field considered in this thesis is telerehabilitation, now

an overview of teleoperation systems will be provided. A haptic teleoperation system al-

lows a human operator to perform complex manipulations in remote and/or risky/hazardous

environments Hokayem and Spong (2006). These manipulations are performed by con-

trolling the slave device via manipulating a master device according to the feedback sig-

nals (i.e., haptic, visual and/or audio). In teleoperation applications, the human operator

controls a master interface in the master side with visual or haptic feedback through the

haptic device, then the slave device, located in a remote environment, projects the given

input through a communication line. Environmental force information at the slave side

is transmitted as a feedback to the master side to make the human operator feel the slave

environment, which is called telepresence.

The classification of teleoperation systems in terms of the direction of the trans-

mitted signals can be roughly classified into two systems as unilateral and bilateral. In uni-

lateral teleoperation systems, the master robot transmits commands to the slave but does

not receive a feedback information. Transmitted commands between the master and slave

robots may be motion (i.e., position, velocity or acceleration) and/or force commands.

The feedback is usually composed of visual sensory information from the environment

of the slave robot to the operator of the master system. In this approach, the operator is

limited with only visual feedback while performing the desired task. On the other hand,

in bilateral teleoperation, master and slave robots interact with each other. To achieve

bilateral teleoperation, the transmitted signals can either be the positions/velocities and

corresponding forces or both Taner et al. (2015). The operator is provided with additional

information from the slave side such as haptic feedback through the master device. The

flow diagram for bilateral teleoperation is illustrated in Figure 1.1.

In bilateral teleoperation, signals are exchanged between human–master and slave–

environment subsystems, and the control loop is commonly closed over a communication

channel. Data losses or time delays in the communication line may affect the stability

of the closed–loop teleoperation system. In general, all subsystems of the teleoperation

system must be stable in order to maintain the overall safety. The safety becomes more

important especially when a subsystem or communication line failure occurs. It is well

known that incorporation of knowledge about the remote environment in the design of

the controller can improve stability, safety and performance of a teleoperation system
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Figure 1.1. Flow diagram of bilateral teleoperation.

especially in the case of communication failures Mitra and Niemeyer (2008).

One of the bilateral teleoperation control methods is direct teleoperation, in which

the transmitted signals can be positions/velocities or forces or both Taner et al. (2015).

In direct teleoperation, master and slave subsystems have their own controllers and they

directly interact with each other. Position or velocity commands are sent from the master

controller to the slave controller, and force/torque information acquired from the slave

environment is sent back to the master controller as feedback.

Figure 1.2. Flow diagram of model mediated teleoperation method.

Another bilateral teleoperation control method is model mediated teleoperation as
6



demonstrated in Figure 1.2. Model mediated teleoperation method was first proposed and

implemented by Mitra and Niemeyer (2008). The main motivation of model mediated

teleoperation is to increase robustness and enhance the performance of the teleoperation

system under communication failures. This approach involves transmission of the esti-

mate of the model of the environment to the master side Hannaford (1989). This method

reduces the transmission of data by increasing the bandwidth despite the presence of time

delay, within a range of different values, in the transmission line of the teleoperation sys-

tem. To make the master device interact with a locally estimated virtual model of the

remote environment, which is updated less frequently, is the main purpose. In the slave

system, the commands are received when simultaneously making use of sensor data to es-

timate or to update the model of the remote environment. In the model update part, slave

receives the commands with delay. Therefore, the operator manipulates the master system

through the master interface without delay–related instabilities or lag in the telepresence

of the environment Mitra et al. (2007).

In recent studies, model mediation technique was compared to other existing

methods and also was extended in different aspects. In Dede and Tosunoglu (2007),

hybrid position/force and admittance controllers were compared in stability in case of

communication line induced delays and communication losses. Dede and Tosunoglu used

both controllers to resolve the instability issues and excessive force transfer. In order to

compensate for possible instability issues along with excessive forces applied to the en-

vironment as a result of communication failures, Uzunoglu (2012) developed a control

algorithm with utilizing model mediated teleoperation in which parallel position/force

controllers were integrated. According to Uzunoglu (2012), model mediated teleopera-

tion method decreases large data transmission by modeling the remote environment of the

slave system with respect to the estimated surface location of the constraint in the slave

side in order to solve stability problems. Recently, Uzunoglu and Dede (2013) integrated

impedance controller to the model mediation. More recently, model mediated teleopera-

tion method was extended to three degrees of freedom (dof) teleoperation by Uzunoglu

and Dede (2015) where all of the previous results were for one dof.

1.1. Motivations and Contributions

In a telerehabilitation scenario, a part of the body of the patient (i.e., the patient’s

hand, arm or foot) can be fixed by the robot arm (i.e., the slave robot). By moving the

master robot through teleoperation, the therapist can move the slave robot to which the
7



part of the body of the patient is attached to in tracking a predefined trajectory. Provided

the force feedback from the slave robot, the therapist can adjust the motion of the master

robot which is sent to the slave robot. Moreover, a force tracking scenario can also be

performed, and the tracking result can be used to assess the performance of the patient. In

both trajectory tracking and force tracking objectives, to increase the performance of the

patient and to decrease the tracking error, appropriate controllers should be designed.

Figure 1.3. The information flow of the system for proposed controllers.

Given the highly nonlinear nature of the robot dynamics, and the need to achieve

better tracking performance despite uncertainties including periodic disturbances related

to the periodic task, and repetitive nature of the desired motion, in this thesis, learning

type controllers are preferred. The information flow of the proposed controllers is shown

in Figure 1.3, where Quarc is a multi–functional software add–on that integrates with

Matlab Simulink software for implement controllers. Specifically, two repetitive learning

controllers for robot manipulators for both tracking periodic joint space and task space

trajectories (with known period) are designed. The learning control designs are based on

Lyapunov based design and analysis techniques, and global asymptotic stability of the

tracking errors are ensured. Numerical simulation results are presented to demonstrate

the validity of the proposed learning controllers.

In the final part of this thesis, the performances of two teleoperation control meth-

ods are investigated under constant or varying communication induced delays. The first

method is direct bilateral teleoperation where a direct exchange of information is utilized.

Model mediation method is later employed to resolve the stability problems. Experiment

results are then presented to demonstrate the validity of the two teleoperation methods.

The results in this thesis were presented in the following publications:
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• Dogan, K. M., Tatlicioglu, E., Zergeroglu, E., and Cetin, K. Lyapunov–based output

feedback learning control of robot manipulators. In Proc. of American Control

Conference, Chicago, IL, USA, 2015, pp. 5337–5342.

• Dogan, K. M., Tatlicioglu, E., and Zergeroglu, E. Operational/task space learning

control of robot manipulators with dynamical uncertainties. In Proc. of Multi–

Conference on Systems and Control, Sydney, Australia, 2015, pp. 527–532.

• Dogan, K. M., Deniz, M., Dede, M. C., and Tatlıcıoglu, E. Sabit ve Degisken Zaman

Gecikmeleri ile Bas Eden Iki Yönlü Dogrudan Teleoperasyon ve Model Aracılı

Denetim, TOK, Denizli, 2015, 873–878.

• Dogan, K. M., Tatlicioglu, E., Zergeroglu, E., and Cetin, K. Output Feedback

Learning Control of Robot Manipulators. Asian Journal of Control (under review).

• Dogan, K. M., Tatlicioglu, E., Zergeroglu, E., and Cetin, K. Learning Control of

Robot Manipulators in Task Space. Asian Journal of Control (under review).

1.2. Organization

The rest of this thesis is organized as follows. In Chapter 2, output feedback

learning tracking controller is designed for robot manipulators where the desired joint

positions are periodic. A novel observer–controller formulation that ensured semi–global

asymptotic tracking despite the lack of joint velocity measurements are presented. The

convergence of the error signals and the stability of the closed–loop system are illustrated

via Lyapunov based analysis. In Chapter 3, operational/task space tracking controller is

designed for robot manipulators when desired end–effector trajectory being periodic is

considered. Overall stability of the closed–loop system is guaranteed via Lyapunov based

arguments. The controller ensures asymptotic end–effector tracking despite the presence

of uncertainties in the system dynamics. In Chapter 4, direct teleoperation and model

mediated teleoperation methods are applied to the limited workspace with constant and

variable time delay. To compensate for the affects of variable time delays, model mediated

teleoperation method is used and compared with direct teleoperation. Concluding remarks

and possible future works are discussed in Chapter 5.
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CHAPTER 2

LEARNING CONTROL IN JOINT SPACE

This chapter presents the design of an output feedback joint tracking controller

for robot manipulators where the desired joint positions are periodic. Specifically, an

observer–based output feedback learning controller, when desired joint positions are pe-

riodic with a known period, is proposed. A learning–based feedforward term in con-

junction with a novel velocity observer formulation is designed. The proposed learning

controller guarantees semi–global asymptotic tracking despite the existence of parametric

uncertainties associated with the robot dynamics and lack of velocity measurements. The

stability of the controller–observer couple is guaranteed via Lyapunov based arguments.

Numerical simulations performed on a two link robot manipulator are also presented to

demonstrate the viability of the proposed method. The proposed control method was

experimentally tested by using a 3 dof planar robot manipulator.

2.1. System Model and Properties

The dynamic model of an n degree of freedom revolute joint, direct drive robot

manipulator is given in the following form Dawson et al. (1995), Nakanishi et al. (2008)

M (q) q̈ + Vm (q, q̇) q̇ +G (q) + F (q̇) = τ (2.1)

where q (t), q̇ (t), q̈ (t) ∈ Rn denote the joint positions, velocities, and accelerations, re-

spectively,M(q) ∈ Rn×n is the positive–definite and symmetric inertia matrix, Vm (q, q̇) ∈
Rn×n is the centripetal–Coriolis matrix, G(q) ∈ Rn represents the gravitational effects,

F (q̇) ∈ Rn is the constant, diagonal, positive–definite, viscous friction matrix, and τ (t) ∈
Rn is the control input torque. The left–hand side of (2.1) is considered to be first–order

differentiable. The dynamic model given by (2.1) satisfies the following properties that

will later be utilized in the controller design and the accompanying stability analysis.

Property 1 The inertia matrix M (q) satisfies the following inequalities Lewis et al.

(2003)

m1In ≤M (q) ≤ m2In (2.2)
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where m1, m2 ∈ R are known positive bounding constants, In ∈ Rn×n is the standard

identity matrix. Likewise the inverse of M(q) can be bounded as

1

m2

In ≤M−1 (q) ≤ 1

m1

In. (2.3)

Property 2 The inertia and centripetal–Coriolis matrices satisfy the following expres-

sion Lewis et al. (2003)

ξT
(
Ṁ − 2Vm

)
ξ = 0 ∀ξ ∈ Rn. (2.4)

Property 3 The centripetal–Coriolis matrix satisfies the following expression Lewis et al.

(1993)

Vm (q, ν) ξ = Vm (q, ξ) ν ∀ν ∈ Rn. (2.5)

The matrix norms presented below are actually induced infinity norms, however

for the ease of the presentation, standard norm representation will be used in the rest of

the thesis.

Property 4 The dynamic terms in (2.1) can be upper bounded as follows Lewis et al.

(1993), Sadegh and Horowitz (1990)

‖M(ξ)−M(ν)‖ ≤ ζM1 ‖ξ − ν‖ (2.6)∥∥M−1(ξ)−M−1(ν)
∥∥ ≤ ζM2 ‖ξ − ν‖ (2.7)

‖Vm(ξ, η)‖ ≤ ζC1 ‖η‖ (2.8)

‖Vm(ξ, η)− Vm(ν, η)‖ ≤ ζC2 ‖ξ − ν‖ ‖η‖ (2.9)

‖G(ξ)−G(ν)‖ ≤ ζG ‖ξ − ν‖ (2.10)

‖F‖ ≤ ζf (2.11)

‖F (ξ)− F (ν)‖ ≤ ζF ‖ξ − ν‖ (2.12)

∀ξ, ν, η ∈ Rn, where ζM1, ζM2, ζC1, ζC2, ζG, ζf and ζF ∈ R are positive bounding

constants.

Property 5 The left–hand side of in (2.1) can be rewritten as follows

W (q, q̇, q̈) = M (q) q̈ + Vm (q, q̇) q̇ +G (q) + F q̇ (2.13)

where W (q, q̇, q̈) ∈ Rn. The above expression is also written in terms of the desired

trajectory in the following form

Wd (qd, q̇d, q̈d) = M (qd) q̈d + Vm (qd, q̇d) q̇d +G (qd) + F (q̇d) (2.14)

where Wd (qd, q̇d, q̈d) ∈ Rn and qd(t), q̇d(t), q̈d(t) ∈ Rn denote the desired joint position,

velocity and acceleration, respectively.
11



The desired joint trajectory and its first three time derivatives are bounded and

periodic, that is

qd(t) = qd(t− T ), q̇d(t) = q̇d(t− T ), q̈d(t) = q̈d(t− T ),
...
q d(t) =

...
q d(t− T ) (2.15)

where T is the known constant period. As a result of boundedness and periodicity of the

desired joint position and its time derivatives, Wd(t) is bounded and periodic with period

T .

2.2. Observer and Controller Design

To quantify the tracking control objective, the joint position tracking error, de-

noted by e (t) ∈ Rn, is defined as

e , qd − q. (2.16)

When designing an output feedback controller for a robot manipulator, there is a

restriction that only the joint position q(t) is available for the controller design. In this

chapter, an observer based strategy is followed to deal with this. The development of the

estimate of the unmeasurable joint velocity vector is initiated by introducing the velocity

observation error, denoted by ˙̃q (t) ∈ Rn, which is defined as

˙̃q , q̇ − ˙̂q (2.17)

with the position observation error, denoted by q̃ (t) ∈ Rn, defined similarly as

q̃ , q − q̂ (2.18)

where q̂ (t) and ˙̂q (t) ∈ Rn denote observed joint position and observed joint velocity,

respectively.

At this stage, two auxiliary terms, namely a filtered tracking error, denoted by

r (t) ∈ Rn, and a filtered version of observation error, denoted by s (t) ∈ Rn, are defined

in order to ease the presentation of the subsequent analysis

r , ė+ αe (2.19)

s , ˙̃q + αq̃ (2.20)

where α ∈ R is a constant, positive, diagonal control gain.

Based on the subsequent stability analysis, the observed joint velocity is designed

as
˙̂q = p+ k0q̃ − kce (2.21)
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where p (t) ∈ Rn is an auxiliary variable with proper initial value and updated according

to

ṗ = k1Sgn (q̃) + k2q̃ − αkce (2.22)

with k0, kc, k1, k2 ∈ Rn×n being constant, positive–definite, diagonal gain matrices,

Sgn(·) ∈ Rn is the vector signum function defined as follows

Sgn(ς) = [sgn(ς1), sgn(ς2), · · · , sgn(ςn)]T ,∀ς = [ς1, ς2, ..., ςn]T ∈ Rn (2.23)

where sgn(·) ∈ R is the standard vector signum function. The control input torque τ (t)

is designed as

τ = Ŵ + kpe+ kcα (qd − q̂) + kc

(
q̇d − ˙̂q

)
(2.24)

where kp ∈ Rn×n is a constant, positive–definite, diagonal gain matrix with the feedfor-

ward learning term Ŵ (t) ∈ Rn being updated according to

Ŵ (t) = Satβ
(
Ŵ (t− T )

)
+ kLα (qd − q̂) + kL

(
q̇d − ˙̂q

)
(2.25)

where kL ∈ R is a constant, positive control gain, Satβ (·) ∈ Rn is the vector saturation

function with its entries being defined as

satβi (κi) =

{
βisgn (κi) , |κi| > βi

κi , |κi| ≤ βi
(2.26)

∀κi where β = [β1, β2, · · · , βn]T denotes the limits of the vector saturation function.

Though the observer–controller formulation presented above does not require joint veloc-

ity measurement but for the ease of the presentation following expressions will be used

qd − q̂ = e+ q̃ (2.27)

q̇d − ˙̂q + α (qd − q̂) = r + s. (2.28)

So the controller in (2.24) and the learning term in (2.25) are rearranged as follows

τ = Ŵ + kpe+ kc (r + s) (2.29)

Ŵ (t) = Satβ
(
Ŵ (t− T )

)
+ kL (r + s) . (2.30)

The expressions in (2.29) and (2.30) will be used for analysis purposes only.

To this end, taking the time derivative of (2.20), inserting for (2.21), (2.29), (2.30),

canceling out common terms and selecting the observation gain k0 to satisfy

k2 = α (k0 − αIn) (2.31)
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so that the dynamics of the filtered version of the observation error can be obtained in the

following form

ṡ = Nd +Nb − k1Sgn(q̃)− kcr −
1

α
k2s (2.32)

where the auxiliary vectors Nd(q, qd, q̇d, q̈d, t) ∈ Rn and Nb(q, q̇, qd, q̇d, e, r, s, t) ∈ Rn are

defined as

Nd , q̈d +M−1(q)
[
Satβ

(
Ŵ (t− T )

)
−Wd (t)

]
(2.33)

and

Nb ,
[
M−1(q)−M−1(qd)

]
M(qd)q̈d

+M−1(q) [Vm(qd, q̇d)q̇d − Vm(q, q̇)q̇ +G(qd)−G(q) + F ė]

+M−1(q) [kpe+ kc(r + s)] +M−1(q)kL(r + s). (2.34)

The auxiliary terms Nd(t) and Nb(t) can be bounded as follows by applying (2.3), (2.6),

(2.8), (2.9), (2.12), and (2.11)

‖Nd‖ ≤ ζNd
(2.35)

‖Nb‖ ≤ ρ01 ‖e‖+ ρ02 ‖r‖+ ρ03 ‖s‖+ ρ04 ‖r‖2 (2.36)

where ζNd
, ρ01, ρ02, ρ03, ρ04 ∈ R are known positive bounding constants. In Appendix

A.1, the bound of Nb(t) in (2.36) is presented.

Open–loop error dynamics can be obtained as follows by pre–multiplying the time

derivative of r (t) by M (q), and utilizing (2.1), (2.16), (2.24)

Mṙ = −Vmr + χ+Wd − Ŵ − kpe− kc (r + s) . (2.37)

In (2.37), the auxiliary variable χ(t) ∈ Rn is defined as

χ ,M (q̈d + αė) + Vm (q̇d + αe) +G+ F q̇ −Wd. (2.38)

Similar to the bound of (2.36), an upper bound for χ(t) can be obtained to have the

following form

‖χ(t)‖ ≤ ρ1 (‖e‖) ‖e‖+ ρ2 (‖e‖) ‖r‖ (2.39)

where ρ1(‖e‖), ρ2(‖e‖) ∈ R are positive bounding functions that are in the following

form

ρ1 , ζ1 + ζ2 ‖e‖ , ρ2 , ζ3 + ζ4 ‖e‖ (2.40)
14



with ζ1, ζ2, ζ3, ζ4 ∈ R being known, positive, bounding constants.

2.3. Boundedness and Stability Analysis

The closed–loop error systems in (2.32) and (2.37) yields the following theorem

to analyze the stability of observation error and position tracking error.

Theorem 2.3.1 The velocity observer in (2.21) and the control law in (2.24) ensure semi–

global asymptotic stability of the closed–loop system in the sense that

‖e(t)‖ ,
∥∥ ˙̃q(t)

∥∥→ 0 as t→ 0 (2.41)

provided that the observer gain is selected to satisfy (2.31), the controller gain kc is

selected as

kc =
(
knζ

2
1 + knζ

2
2 + ζ3 + 1

)
In (2.42)

and the observer gain k2 is selected as

k2 = α
(
knρ

2
01 + knρ

2
02 + knρ

2
03 + ρ04 + knk

2
L + 1

)
In (2.43)

where kn is a positive damping constant, and ρ0i and ζi i = 1, ..., 4 were defined in (2.36)

and (2.40), respectively.

Proof The proof is composed of four sub–proofs where only a highlight of the first part

is given and the rest is presented in detail.

Firstly, the nonnegative function, denoted by V1(r, e, s) ∈ R, is defined as

V1 ,
1

2
rTMr +

1

2
eTkpe+

1

2
sT s. (2.44)

After taking the time derivative of V1(t) and substituting for (2.19), (2.32) and (2.37),

results in

V̇1 ≤ −γ0V1 + ε0 (2.45)

where γ0 and ε0 are positive constants. From the structures of (2.44) and (2.45), it is easy

to see that V1(t) ∈ L∞ and thus e(t), r(t), s(t) ∈ L∞. Standard signal chasing arguments

are then applied to demonstrate the boundedness of all the signals under the closed–loop

operation, including q̃(t) and ˙̃q(t).

Next, provided that q̃ (t) and ˙̃q (t) are bounded, the following expression for the

upper bound of the integral of the absolute value of the ith entry of ˙̃q (t), i = 1, · · · , n,
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can be obtained as
t∫

t0

∣∣ ˙̃qi (σ)
∣∣ dσ ≤ γ1 + γ2

t∫
t0

|q̃i (σ)| dσ + |q̃i(t)| (2.46)

where γ1, γ2 ∈ R are some positive bounding constants. The proof of (2.46) can be found

in Stepanyan and Kurdila (2009) or in Bidikli et al. (2016).

At this stage, to prove the asymptotic convergence of the error signals, the follow-

ing non–negative function, denoted by V (t) ∈ R, is defined as

V , V1 + P +
1

2kL

∫ t

t−T

∥∥∥Satβ(Wd(σ))− Satβ(Ŵ (σ))
∥∥∥2dσ. (2.47)

where P (t) ∈ R is an auxiliary term defined as

P , ζp −
∫ t

0

sT (σ) [Nd(σ)− k1Sgn(q̃(σ))] dσ (2.48)

where ζp is a positive constant. Provided the entries of the control gain matrix k1 are

chosen to be greater than the upper bound of the entries of the auxiliary term Nd(t) in the

sense that k1i > |Ndi(t)| ∀t, the proof in Bidikli et al. (2016) can be traced to demonstrate

the non–negativeness of P (t).

After taking the time derivative of (2.47), then substituting (2.32), (2.37), (2.38),

and performing some straightforward algebraic manipulations, following expression can

be obtained

V̇ = −rTkcr − αeTkpe−
1

α
sTk2s+ rTχ+ sTNb

+
1

2kL

∥∥∥Satβ(Wd(t))− Satβ(Ŵ (t))
∥∥∥2 − 1

2kL

∥∥∥Wd − Ŵ
∥∥∥2

−kL
2
‖r + s‖2 + kLs

T (r + s). (2.49)

The following relationship can be obtained for second line of (2.49) as Dixon et al. (2002)∥∥∥Satβ(Wd(t))− Satβ(Ŵ (t))
∥∥∥2 − ∥∥∥Wd − Ŵ

∥∥∥2 ≤ 0. (2.50)

A modified version of the proof can also be found in Appendix A.1. After utilizing (2.36),

(2.39), and (2.50) along with (2.49), and then applying the nonlinear damping argument

Kokotovic (1992) to the resulting expression, following inequality can be obtained

V̇ ≤ −
[
min {α, 1} − 3

kn
− 1

kn
‖z‖2

]
‖z‖2. (2.51)

It is now possible to upper bound the right–hand side of (2.51) as

V̇ ≤ −γ4‖z‖2 (2.52)
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where γ4 ∈ R is some positive constant (0 < γ4 ≤ 1). Barbalat’s Lemma in Khalil (2002)

can now be utilized to prove the semi–global asymptotic convergence of the joint velocity

estimation error and the joint position tracking error to the origin.

2.4. Simulation Results

To illustrate the performance of the observer–controller couple, a numerical simu-

lation was performed with the model of a two link, planar robot manipulator. The dynamic

model in (2.1) is considered with the following modeling terms

M =

[
p1 −0.5p2 sin(q1 − q2)

−0.5p2 sin(q1 − q2) p3

]
(2.53)

Vm =

[
0 0.5p2q̇2 cos(q1 − q2)

−0.5p2q̇1 cos(q1 − q2) 0

]
(2.54)

G =

[
p4 cos(q1) + p5 cos(q1 − 0.5π)

p6 sin(q2)

]
(2.55)

where p1 = 2.526× 10−3[kg.m2], p2 = 2.766× 10−3[kg.m2], p3 = 1.652× 10−3[kg.m2],

p4 = 164.158×10−3[Nm.s], p5 = 117.294×10−3[Nm.s] and p6 = 94.05×10−3[Nm.s].

Note that the above dynamic model is not utilized in the control design when performing

the numerical simulations.

The desired joint trajectory was selected as

qd =

[
(0.8 + 0.2 sin(0.5t)) sin(0.5 sin(0.5t))

(0.6 + 0.2 sin(0.5t)) sin(0.5 sin(0.5t))

]
[rad] (2.56)

which is periodic with T = 12.5 sec. The robot manipulator is considered to be at rest

with the initial joint position as q (0) = [0.1, 0.1]T [rad]. The control gains were selected

as kp = 0.1I2, kc = 0.08I2, k0 = 500I2, k1 = 0.1I2, α = 5.2, k2 = α(k0 − αI2) and

kL = 0.1 via trial and error method.

The joint position tracking error e (t) is shown in Figure 2.1. The desired and

the actual joint positions can be seen from Figure 2.3. Control input torque can be seen

from Figure 2.4. From Figures 2.1 and 2.3, it is clear that the tracking objective was suc-

cessfully met. Specifically, from Figures 2.1 and 2.2, it is clearly seen that the proposed

learning controller ensures a significant improvement on the tracking error in every period

(which was 12.5sec).
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Figure 2.1. Joint position tracking error e (t).

2.5. Experimental Studies

In order to demonstrate the performance of the proposed controller, an experimen-

tal study is conducted on a robot manipulator. The 3 degree of freedom robot manipulator

in Figure 2.5 has articulated structure with 3 links and 3 actuators, and works on plane.

Direct drive actuators of E137576 Maxon Motors with the technical features of nominal

voltage of 24 VDC, torque constant of 36.4 × 10−3 Nm/A, speed constant of 263rpm/V,

nominal speed of 5530 rpm, nominal torque of 78.2 × 10−3 Nm were used. The motors

are driven by Maxon Escon 36/2 DC 4-Q Servo-controller with a maximum power of

72 Watts. For absolute angular measurement, AS5045 Magnetic Rotary Encoders were

used with a resolution of 4096 positions per revolution based on contactless magnetic

sensor technology. The proposed control method is implemented on the computer and

run on MATLAB Simulink by using Real Time Windows Target. The control inputs are

transmitted to the motor drivers with analog signals and encoder signals are received as

quadrature counter inputs. The data transmission between the computer and the drivers is

carried out with Humusoft MF624 data acquisition board. The experimental studies run

on MATLAB Simulink with a smapling rate of 0.001sec.

The manipulator was initialized to be at rest at joint position q(0) = [ 0 π
2

π
2

]T [rad].
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Figure 2.2. Position observation error

The desired joint trajectory was selected as

qd =


qd1

qd2

qd3

 =


0.3 sin(t)

π/2 + 0.3 sin(t)

π/2 + 0.3 sin(t)

 [rad]. (2.57)

Control gains were selected as α = 80diag {1.5, 1.3, 1.1}, kp = 80diag {1.5, 1.3, 1.1},
kc = 5diag {1.5, 1.3, 1.1} and kL = 0.1diag {1.5, 1.3, 1.1}. Saturation limits were se-

lected as ±30N and delayed sampling rate is 1kHz.

The joint space tracking error e(t) is shown in Figure 2.6. Control input torque

can be seen in Figure 2.7. The desired and the actual joint space trajectories can be seen

from Figure 2.8. From Figures 2.6 and 2.8 it is clear that the tracking objective was met.

Furthermore, from Figure 2.6, it is observed that the proposed learning controller ensures

a significant improvement on the tracking error in every period of the desired joint space

trajectory.

2.6. Conclusions

In this chapter, an observer based output feedback learning controller was pre-

sented for joint tracking control of robot manipulators. A novel observer–controller for-
19
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Figure 2.3. Desired (dashed) and actual joint trajectories.

mulation that ensured semi–global asymptotic tracking despite the lack of joint velocity

measurements has been presented. The control problem was further complicated by the

lack of accurate knowledge of system dynamics. The convergence of the error signals

and the stability of the closed–loop system were illustrated via Lyapunov type analysis.

Numerical simulations and experimental studies were performed to illustrate the perfor-

mance of the proposed method.
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Figure 2.4. Control input torque τ (t).

Figure 2.5. 3 dof planar robot manipulator.
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CHAPTER 3

LEARNING CONTROL IN TASK SPACE

In this chapter, task space tracking control of robot manipulators when desired

end–effector trajectory being periodic is considered. Specifically, a repetitive learning

controller is designed in order to guarantee asymptotic end–effector tracking of periodic

trajectories (with known period) while learning the overall uncertainties in the system

dynamics. The proposed controller does not make use of the inverse kinematic formu-

lation at the position level and the stability of the closed–loop system is guaranteed via

Lyapunov based arguments. Numerical simulations performed on the model of a two

link planar robot are presented to illustrate the performance and viability of the proposed

method. The proposed control method was experimentally tested by using a 3 dof planar

robot manipulator.

3.1. System Model and Properties

The dynamic model of the n degree of freedom revolute joint robot manipulator

in (2.1) will also be used in this chapter.

Note that, the dynamic model in (2.1) satisfies Properties 1–4 that will later be

utilized in the controller design and the accompanying stability analysis.

The kinematic model of the robot manipulator is given as

x = f (q) (3.1)

where x (t) ∈ Rn is the task space position and f : Rn → Rn denotes the forward

kinematics. The time derivative of (3.1) is obtained as

ẋ = Jq̇ (3.2)

with J (q) ∈ Rn×n being the manipulator Jacobian matrix defined as

J ,
∂f

∂q
. (3.3)

There exist a function h : Rn → Rn that denotes the inverse kinematic function

as Dawson et al. (1995)

q = h (x) . (3.4)
24



The inverse kinematics function h satisfies the following expression

‖h(ξ)− h(ν)‖ ≤ ζh ‖ξ − ν‖ ∀ξ, ν (3.5)

where ζh ∈ R is a positive bounding constant. The time derivative of (3.4) is obtained as

q̇ = J−1 (x) ẋ (3.6)

where J−1 (x) ∈ Rn×n is the inverse of Jacobian matrix J (q) defined as

J−1 (x) ,
∂h (x)

∂x
. (3.7)

Note that, the inverse Jacobian matrix will interchangeably be represented by

J−1 (x) or J−1 (q). The inverse kinematics in (3.4) is introduced for analysis purposes

only. The learning controller formulation proposed in this thesis does not require inverse

kinematic calculations at position level.

It is assumed that all kinematic singularities are always avoided and thus it is

assumed that J−1 (q) exists ∀q Dawson et al. (1995). Alternatively, this assumption can

be stated as the minimum singular value of the Jacobian matrix being greater than a small

positive constant (i.e., min {‖J (q)‖} > µ > 0).

The dynamic terms M (q) and G (q), and the kinematic terms J (q) and J−1 (q)

depend on q (t) via trigonometric functions and they remain bounded for all possible

q (t). The dynamic term Vm (q, q̇) also depends on q (t) via trigonometric functions only

and remains bounded for all possible q (t) provided q̇ (t) is bounded.

Property 6 In view of boundedness of J(q) and J−1(q), it is possible to obtain following

inequalities

ζJ1 < ‖J‖ < ζJ2 (3.8)

from which the following expression can be obtained

1

ζJ2
<
∥∥J−1∥∥ < 1

ζJ1
(3.9)

where ζJ1, ζJ2 ∈ R are positive bounding constants. The inverse Jacobian satisfies the

following inequality ∥∥J−1(x)− J−1(xd)
∥∥ ≤ ζJ3 ‖x− xd‖ (3.10)

where ζJ3 ∈ R is a positive bounding constant. In this section, with an abuse of notation,

only to exactly demonstrate dependence of its arguments, following notation will be used

J̇−1(x, ẋ) =
d

dt

{
J−1(x)

}
. (3.11)
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The time derivative of the inverse Jacobian satisfies the following inequalities∥∥∥J̇−1(ξ, q̇)∥∥∥ ≤ ζJ4 ‖q̇‖ (3.12)∥∥∥J̇−1(ξ, η)− J̇−1(ν, η)
∥∥∥ ≤ ζJ5 ‖ξ − ν‖ ‖η‖ (3.13)∥∥∥J̇−1(ξ, η)− J̇−1(ξ, ν)
∥∥∥ ≤ ζJ6 ‖η − ν‖ (3.14)

∀ξ, ν, η ∈ Rn, where ζJ4, ζJ5, ζJ6 ∈ R are positive bounding constants.

3.2. Learning Control Design

To quantify the tracking control objective, task space position tracking error, de-

noted by e (t) ∈ Rn, is defined as

e , xd − x (3.15)

where xd (t) ∈ Rn is the periodic desired task space trajectory satisfying

xd(t) = xd(t− T ), ẋd(t) = ẋd(t− T ), ẍd(t) = ẍd(t− T ) (3.16)

with T being a known period. The desired task space trajectory and its first two time

derivatives are assumed to be bounded functions of time in the sense that

‖xd (t)‖ ≤ ζxd , ‖ẋd (t)‖ ≤ ζẋd , ‖ẍd (t)‖ ≤ ζẍd (3.17)

where ζxd , ζẋd , ζẍd ∈ R are positive bounding constants.

In view of (3.2), the time derivative of the task space tracking error in (3.15) is

obtained as

ė = ẋd − Jq̇ (3.18)

which can be rewritten as

ė = −αe+ J
[
J−1 (ẋd + αe)− q̇

]
(3.19)

where α ∈ Rn×n is a constant, positive–definite, diagonal control gain matrix. After

defining an auxiliary error vector, denoted by r (t) ∈ Rn, as

r , J−1(ẋd + αe)− q̇ (3.20)

from (3.19), following can be obtained

ė = −αe+ Jr. (3.21)
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After taking the time derivative of (3.20), premultiplying byM (q), and utilizing (2.1) and

(3.20), following expression can be obtained

Mṙ = M
d

dt

[
J−1 (ẋd + αe)

]
+ VmJ

−1 (ẋd + αe)− Vmr +G+ F − τ. (3.22)

To ease the presentation, an auxiliary function, denoted by N (x, ẋ, xd, ẋd, ẍd) ∈ Rn, is

defined as

N , M
d

dt

[
J−1 (ẋd + αe)

]
+ VmJ

−1 (ẋd + αe) +G+ F (3.23)

by using which, the right–hand side of (3.22) is rewritten as

Mṙ = −Vmr +N − τ. (3.24)

Based on (3.23), another auxiliary function, namely the desired form of N , denoted by

Nd (xd, ẋd, ẍd) ∈ Rn, is defined as

Nd , N |x=xd , ẋ=ẋd

= M (h (xd))
d

dt
{J−1 (xd) ẋd}+ Vm

(
h (xd) , J

−1 (xd) ẋd
)
J−1 (xd) ẋd

+G (h (xd)) + F
(
J−1 (xd) ẋd

)
(3.25)

where h and J−1 were defined in (3.4) and (3.7), respectively.

Based on its definition in (3.25), it is clear that Nd is a function of only xd (t),

ẋd (t), ẍd (t). Since the desired task space trajectory and its time derivatives were consid-

ered to be periodic functions of time, then Nd is periodic in the sense that

Nd (t) = Nd (t− T ) . (3.26)

Furthermore, since, the desired task space trajectory and its time derivatives were con-

sidered to be bounded functions of time, then the entries of Nd (t) can be shown to be

bounded in the sense that |Ndi (t)| ≤ βi i = 1, ..., n where βi ∈ R are known positive

bounding constants. Notice that, it is straightforward to obtain

Nd (t) = Satβ (Nd (t)) = Satβ (Nd (t− T )) (3.27)

where the first equality is a result of the boundedness of the entries of Nd (t), while the

second equality is a consequence of the periodicity of Nd (t).

The mismatch between the auxiliary functions N and Nd, denoted by

Ñ (x, ẋ, xd, ẋd, ẍd) ∈ Rn, is defined as

Ñ , N −Nd. (3.28)
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Based on the derivations detailed in Appendix A.2, the auxiliary function Ñ can

be shown to be bounded in the sense that∥∥∥Ñ∥∥∥ ≤ ρ (‖e‖) ‖z‖ (3.29)

where ρ (‖e‖) ∈ R is a positive non–decreasing function of its argument, and z (t) ∈ R2n

is a combined error vector defined as

z ,
[
eT rT

]T
. (3.30)

Based on the definitions in (3.25) and (3.28), from (3.24), following expression

can be obtained

Mṙ = −Vmr +Nd + Ñ − τ. (3.31)

Based on the open–loop error dynamics of r (t) in (3.31) and the subsequent stability

analysis, the control input torque is designed as

τ = Kr + knρ
2(‖e‖)r + JT e+ N̂ (3.32)

where K ∈ Rn×n is a constant, positive–definite, diagonal control gain matrix, kn ∈ R
is a constant, positive control gain, N̂ (t) ∈ Rn is the learning term which is updated

according to

N̂ (t) = Satβ
(
N̂ (t− T )

)
+ kLr (3.33)

where kL ∈ R is a constant, positive control gain, β , [β1...βn]T ∈ Rn. Substituting the

control input torque in (3.32) into the open–loop error system in (3.31) yields

Mṙ = Ñ + χ− Vmr − knρ2r − JT e−Kr (3.34)

where χ (t) ∈ Rn is defined as

χ , Nd − N̂ . (3.35)

Utilizing (3.27) and (3.33) along with (3.35) results in

χ = Satβ (Nd (t− T ))− Satβ
(
N̂ (t− T )

)
− kLr. (3.36)

The stability analysis will be presented in next section.

3.3. Stability Analysis

Theorem 3.3.1 Given the dynamic model of (2.1), the learning controller in (3.32) and

(3.33) ensures boundedness of all the signals under the closed–loop operation and asymp-

totic tracking of a periodic desired task space trajectory in the sense that

‖e (t)‖ → 0 as t→ +∞ (3.37)
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provided that the control gains are chosen to satisfy

min

{
αmin, Kmin +

kL
2

}
− 1

4kn
> 0 (3.38)

where αmin and Kmin denote the minimum eigenvalues of α and K, respectively.

Proof To prove the theorem, a non–negative function, denoted by V (t) ∈ R, can be

defined as

V ,
1

2
eT e+

1

2
rTMr +

1

2kL

∫ t

t−T

∥∥∥Satβ(Nd(σ))− Satβ(N̂(σ))
∥∥∥2 dσ. (3.39)

The time derivative of V (t) is obtained as

V̇ = eT ė+
1

2
rTṀr + rTMṙ +

1

2kL

∥∥∥Satβ(Nd (t))− Satβ(N̂ (t))
∥∥∥2

− 1

2kL

∥∥∥Satβ(Nd (t− T ))− Satβ(N̂ (t− T ))
∥∥∥2 (3.40)

where Leibniz formula in Kreyszig (1988) was utilized. Substituting the error dynamics

in (3.21) and (3.34) into (3.40) yields

V̇ = eT (−αe+ Jr) +
1

2
rTṀr + rT [Ñ + χ− Vmr − knρ2r − JT e−Kr]

+
1

2kL

∥∥∥Satβ(Nd (t))− Satβ(N̂ (t))
∥∥∥2 − 1

2kL

∥∥∥Nd (t)− N̂ (t) + kLr
∥∥∥2(3.41)

where (3.35) and (3.36) were utilized to obtain the last line. Utilizing (2.4), canceling

common terms and rewriting the last line results in

V̇ = −eTαe+ rT Ñ − knρ2rT r + rTχ− rTKr +
1

2kL

∥∥∥Satβ(Nd (t))− Satβ(N̂ (t))
∥∥∥2

− 1

2kL

∥∥∥Nd (t)− N̂ (t)
∥∥∥2 − [Nd (t)− N̂ (t)]T r − kL

2
rT r (3.42)

= −eTαe− rTKr − kL
2
rT r + [rT Ñ − knρ2rT r]

+
1

2kL

∥∥∥Satβ(Nd (t))− Satβ(N̂ (t))
∥∥∥2 − 1

2kL

∥∥∥Nd (t)− N̂ (t)
∥∥∥2 (3.43)

where (3.35) was also used. Following bound can be obtained for the bracketed term in

(3.43)

rT Ñ − knρ2rT r ≤
∣∣∣rT Ñ ∣∣∣− knρ2rT r

≤ ‖r‖
∥∥∥Ñ∥∥∥− knρ2 ‖r‖2

≤ ρ ‖r‖ ‖z‖ − knρ2 ‖r‖2

≤ 1

4kn
‖z‖2 . (3.44)
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As shown in Appendix A.1, following relationship can be obtained∥∥∥Nd (t)− N̂ (t)
∥∥∥2 ≥ ∥∥∥Sat(Nd (t))− Sat(N̂ (t))

∥∥∥2 . (3.45)

In view of (3.44) and (3.45), from (3.43), following inequality can be obtained

V̇ ≤ −eTαe− rTKr − kL
2
rT r +

1

4kn
‖z‖2 (3.46)

≤ −
[
min

{
αmin, Kmin +

kL
2

}
− 1

4kn

]
‖z‖2 (3.47)

and provided that (3.38) is satisfied, following inequality can be written

V̇ ≤ −γ ‖z‖2 (3.48)

where γ ∈ R is a positive constant. With regard to (3.39) and (3.48), V (t) ∈ L∞ is

concluded. From (3.39), it is clear that e (t), r (t) ∈ L∞. Utilizing the boundedness

of e (t), r (t) and J(q) along with (3.21), it is straightforward to show that ė (t) ∈ L∞.

Boundedness of e (t) and ė (t) and the boundedness of xd (t) and ẋd (t) can be used along

with (3.15) and its time derivative to prove that x (t), ẋ (t) ∈ L∞. Utilizing r (t) ∈
L∞ and properties of the saturation function in (3.33), N̂ (t) ∈ L∞ is concluded. The

above boundedness statements can be utilized along with (3.32) to prove that τ (t) ∈ L∞.

With regard to ẋ (t) ∈ L∞ and boundedness of J(q), from (3.2), q̇ (t) ∈ L∞ and thus

Vm(q, q̇) ∈ L∞. From (2.1), q̈ (t) ∈ L∞ is concluded. And utilizing the boundedness of

the above terms with (3.31), ṙ (t) ∈ L∞ is concluded.

Finally, integrating both sides of (3.48) in time from 0 to +∞ results in∫ +∞

0

‖z (t)‖2 dt ≤ 1

γ
(V (0)− V (+∞)) ≤ V (0)

γ
(3.49)

from which it is clear that z (t) ∈ L2. In view of (3.49) and since z (t), ż (t) ∈ L∞,

Barbalat’s Lemma in Khalil (2002) can be utilized to prove that ‖z (t)‖ → 0 as t→ +∞,

thus ‖e (t)‖, ‖r (t)‖ → 0, as stated in (3.37).

3.4. Simulation Results

To illustrate the performance of the learning controller in (3.32) and (3.33), a nu-

merical simulation was performed with the model of a two link planar robot manipulator.
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The dynamic model in (2.1) is considered with the following modeling functions

Dawson et al. (1995)

M =

[
p2 + p3 + 2p1 sin(q2) p2 + p1 sin(q2)

p2 + p1 sin(q2) p2

]
(3.50)

Vm =

[
p1 sin(q2)q̇2 p1 sin(q2)(q̇1 + q̇2)

−p1 sin(q2)q̇1 0

]
(3.51)

G =

[
0.5m1gl1 sin(q1) +m2g (l1 sin(q1) + 0.5l2 sin(q1 + q2))

0.5m2gl2 sin(q1 + q2)

]
(3.52)

F =

[
p4 0

0 p5

]
(3.53)

where p1 = 0.36[kg.m2], p2 = 0.43[kg.m2], p3 = 0.93[kg.m2], p4 = p5 = 1[Nm.s],

m1 = 0.36[kg], m2 = 0.2[kg], g = 9.8[m
s2

] and l1 = l2 = 0.6[m]. The forward kinematics

of the robot manipulator is given as

x =

[
l1 sin(q1) + l2 sin(q1 + q2)

l1 cos(q1) + l2 cos(q1 + q2)

]
(3.54)

and the Jacobian matrix is obtained as

J =

[
l1 cos(q1) + l2 cos(q1 + q2) l2 cos(q1 + q2)

−l1 sin(q1)− l2 sin(q1 + q2) −l2 sin(q1 + q2)

]
. (3.55)

The periodic desired task space trajectory was selected as

xd =

[
0.5 + 0.2 cos

(
2πt
10

)
0.5 + 0.2 sin

(
2πt
10

) ] [m] (3.56)

which is periodic with period T = 10 sec. The robot manipulator was considered to be

at rest with the initial joint position as q (0) = [−0.65, 2.5]T [rad] which corresponds to

x (0) = [0.61, 0.225]T [m].

In the numerical simulations, for simplicity reasons, the termsKr+knρ
2(‖e‖)r in

the control input in (3.32) are considered to be combined and a constant gain is considered

to be multiplying r (t). The tracking control objective was met when the combined gain

of r(t) was set as 20I2, α = I2 and kL = 1. These control gains were chosen via trial

and error method. However, the tuning process was relatively easy since first conservative

gains were chosen (i.e., big gains) and when the simulations worked smaller gains were

tried until acceptable tracking performance was obtained.

The task space tracking error e (t) is shown in Figure 3.1. The desired and the

actual task space trajectories can be seen from Figures 3.2 and 3.3, respectively. Control
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input torque can be seen in Figure 3.4. The learning function N̂ (t) is shown in Figure

3.5. From Figures 3.1, 3.2 and 3.3, it is clear that the tracking objective was met.
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Figure 3.1. Task space position tracking error e (t).

3.5. Experimental Studies

In order to demonstrate the performance of the proposed controller, an experimen-

tal study was conducted on the 3 degree of freedom robot manipulator. In the experiments,

in order to obtain a non–redundant robot manipulator, the first link was mechanically

stopped and only the last two links were utilized

The manipulator was initialized to be at rest at the following joint position q(0) =

[ 0 π/2 ]T rad.

The desired task–space trajectory was selected as follows

xd =

[
0.127 + 0.02 sin(0.1t)(1− exp(−0.1t))

0.147− 0.02 cos(0.1t)(1− exp(−0.1t))

]
. (3.57)

Control gains were selected as α = diag {1.7, 1.0} and K = 50diag {1.7, 1.1},
kL = 50diag {1.7, 1.1}. Saturation limits were selected as ±30N. Since the period of the

desired trajectory is 10π, delayed sampling rate is 1kHz.
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Figure 3.2. Desired (dashed) and actual task space trajectories.

The task space tracking error e(t) is shown in Figure 3.6. Control input torque

can be seen in Figure 3.7. The desired and the actual task space trajectories can be seen

from Figure 3.8. From Figures 3.6 and 3.8 it is clear that the tracking objective was met.

Furthermore, from Figure 3.6, it is observed that the proposed learning controller ensures

a significant improvement on the tracking error in every period of the desired task space

trajectory.

3.6. Conclusions

Two important properties of rehabilitation performed by robot manipulators, name-

ly, periodicity (i.e., repetitive nature) of the task and the need for the task to be performed

by the end–effector, motivated this chapter. The control problem was further complicated

by uncertainties in the dynamics. To address this problem, a repetitive learning controller

was presented for tracking periodic task space trajectories (with known period). The pro-

posed controller does not make use of the inverse kinematic calculations at the position

level. Overall stability of the closed–loop system is guaranteed via Lyapunov based ar-

guments. The controller ensures asymptotic end–effector tracking despite the presence

of uncertainties in the system dynamics. Numerical simulations and experimental studies

illustrated that the end–effector tracking performance is improved at each period of the
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Figure 3.3. Desired and actual task space trajectories.

desired trajectory.
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Figure 3.4. Control torque input τ (t).
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0 50 100 150 200 250 300 350 400 450 500
−10

0

10

20

30
Joint1 control input

T
or

qu
e 

[N
t−

m
]

Time [sec]

0 50 100 150 200 250 300 350 400 450 500
−30

−20

−10

0

10

20
Joint2 control input

T
or

qu
e 

[N
t−

m
]

Time [sec]

Figure 3.7. Control input torque τ(t).

36



0 50 100 150 200 250 300 350 400 450 500
0.1

0.11

0.12

0.13

0.14

0.15

0.16
Position tracking along x axis

X
 [m

]

Time [sec]

 

 actual

desired

0 50 100 150 200 250 300 350 400 450 500
0.12

0.13

0.14

0.15

0.16

0.17
Position tracking along y axis

Y
 [m

]

Time [sec]

 

 

actual

desired

Figure 3.8. Desired xd(t) and actual x(t) task–space trajectories.

37



CHAPTER 4

TWO TELEOPERATION METHODS

In this chapter, direct teleoperation and model mediated teleoperation methods are

applied to limited workspace teleoperation subject to constant and variable time delays in

the communication line. The teleoperation system is composed of Phantom Omni haptic

device (See Figure 4.1) being the master device and the model of the RRP SCARA robot

arm which is preferred as the virtual slave system. Experiments are carried out with direct

teleoperation and model mediated teleoperation methods to compare their performances.

Figure 4.1. Phantom Omni haptic device at Control Laboratory at Izmir Institute of
Technology.
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4.1. Direct Teleoperation

Figure 4.2. Transmission of data between master and slave systems in bilateral direct
teleoperation method.

The flow diagram of data transmission between master and slave systems is pre-

sented in Figure 4.2 for bilateral direct teleoperation technique. For this technique, master

and slave systems have their own controllers and they interact directly with each other.

Position or velocity commands are sent from the master controller to the slave controller,

and force/torque information acquired from the slave environment is sent to the master

controller as feedback. Since the slave is required to follow the position demand from the

master as well as the demand in velocity domain without any offset, mapping between

master and slave systems is carried out in position level. In order to do mentioned map-

ping, the position of the human hand motion is acquired through the master system to be

used at the slave side. Next, on the slave side, the position demand is differentiated with

respect to time and a velocity command is calculated and fed into the slave controller.
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In the experiments, normal is along z–axis is considered as the obstacle in the

slave environment. Since a virtual slave robot is considered, virtual interaction forces are

calculated as proportional to the distance between the end–effector of the virtual slave

robot and the obstacle (i.e., the wall in z–axis). These calculated forces are then transmit-

ted to the master system to be exerted to the human operator through the haptic master

device. The motion and force signals are transmitted directly between the subsystems

with a constant or variable delay during the information exchange. The delays are added

to the closed–loop system artificially to demonstrate the possible negative effects of com-

munication line induced delays.

4.2. Model Mediated Teleoperation Method

Flow diagram of data transmission between master and slave systems for bilat-

eral model mediated teleoperation method is presented in Figure 4.3. Different from the

conventional teleoperation systems, here, the master system is connected with the proxy,

which represents the models of the slave system and the slave environment, on the master

side. On the master side, position of the proxy is sent to the slave side as a position de-

mand. Then, on the slave side, this signal is differentiated to obtain the velocity command

of to the slave system. When the master sends commands to the slave, the proxy receives

them before the slave system.

Utilizing a proxy between master and slave systems has advantages and disadvan-

tages. The proxy helps to dissipate the extra energy which may be required for energetic

passivity, but proxy does not appropriate to use in fast changing environments (i.e., wall

location is changing).

The model of the slave environment is rendered at the slave side from which the

necessary information is transmitted to update the virtual environment model in the proxy

at the master side. When a contact occurs, the position of the slave in the opposite direc-

tion of the force is taken as the constraint surface location. Then, this position information

is transmitted to the master side with a communication delay. When master reaches and

feels the constraint, the proxy also feels the constraint. The master penetrates through the

constraint but the proxy and thus the slave do not. At that moment, the master system

may still apply the environmental forces to the operator.
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Figure 4.3. Transmission of data between master and slave systems in bilateral model
mediated teleoperation method.

4.2.1. Master System

In the master side, proxy follows the master motion within the constraint of mod-

elled slave environment Mitra and Niemeyer (2008). The dynamic behavior of the proxy

is achieved by calculating a dynamic reference velocity νr which is given as

νr = νm +
kpm
kdm

(xm − xp) (4.1)

where xm, νm, xp, kpm and kdm denote master position, master velocity, proxy position,

proportional and derivative control gains, respectively. When the proxy achieves the mas-

ter position in non–contact applications (i.e., xp = xm), the proxy follows the master
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system perfectly and responds to any commands instantaneously, which are sent from the

master system.

In contact applications, the proxy remains on the surface of the virtual object. The

force output of the master system which is the result of interaction with the proxy is also

fedback to the master device. The force is denoted by Fm and is defined as

Fm = kpm (xp − xm) + kdm (νp − νm) (4.2)

where νp is velocity of the proxy. After substituting (4.1) into (4.2) when xp = xm,

following expression can obtained

Fm = kdm (νp − νr) . (4.3)

The surface normal, denoted by n, is defined such that νTp n is positive when mov-

ing towards the surface of the virtual object. The velocity of the proxy in the positive

direction of the surface is restricted as follows

νTp n ≤ βdα (4.4)

where βd is the distance to the surface and α is a positive constant satisfying

α ≤ 1

∆T
(4.5)

where ∆T represents the cycle time.

4.2.2. Model Update

To ensure the response of the system to be stable and protected from excessive

forces, the model of the slave environment in the master system is updated under certain

constraints. Representation of the update of the wall is given in Figure 4.4. When slave

sense the actual wall above the previously modelled virtual wall, the new model is updated

as close to the proxy as possible with the following constraint

xmsurface ≤ xp (4.6)

where xmsurface and xp denote the surface model in z direction in the environment and

the position of the proxy, respectively. The constraint in (4.6) ensures that the virtual floor

never comes to the same level of the proxy level, which helps to avoid unexpected forces.

Thus, the stability of the haptic interface is guaranteed by ensuring a passive response.
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Figure 4.4. The representation of the update of the wall.

The surface data is fed through the system via estimation of the surface location,

which is created in z direction. The surface model in z direction in the environment

xmsurface is equal to the measured surface position, denoted with xssurface, received from

the slave as follows

xmsurface = xssurface. (4.7)

4.2.3. Slave System

The slave is controlled in joint space by torques created with the use of an impedance

controller. The velocity error, denoted by ev, is defined as

ev , νp − νs − νr (4.8)

and a proportional derivative force, denoted by FPD, is considered at the slave system

which is represented as follows

FPD = kpsev + kdsėv (4.9)

where kps and kds denote proportional and derivative gains, respectively. A virtual mass–

damper–spring element is modelled to enable the coherence of the end–effector of the

slave with the environment. The impedance term, denoted by I , is defined as

I ,
F

νr
. (4.10)
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Forces are created in the master side due to the interaction between the proxy and the

virtual model of the slave environment. Furthermore, the forces exerted by the user dur-

ing contact with the virtual model, are transmitted to the slave system by impedance

controller. At the slave side, this transmission ensures tracking of the human created tra-

jectory safely in free–motion. Only PID commands are fulfilled on the slave side, when

no contact occurs between proxy and virtual wall or when impedance controller does not

applied to the slave system. Thus, exerted force on the master is transmitted only when

the contact occurs.

Virtual interaction forces in the environment are constructed by measuring the

distance between the slave and the wall, which acts as a constraint, and by using these

distances as an input to a virtual mass–damper–spring system

Fv = kz∆z (4.11)

where kz denotes the spring constant and ∆z denotes penetration distance of the slave

device in the z–direction into the wall. These calculated forces are then transmitted to

the master system to be exerted to the hand of the human operator, who use haptic master

device.

4.2.4. Slave System Model

Mechanism of the RRP SCARA whose model is used as the virtual slave robot is

shown in Figure 4.5.

The dynamic model of the RRP SCARA is given in the following form

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ + τC (4.12)

where τC (t) ∈ R3 represents torque input created due to contacts.

The inertia matrix M(q) is given as follows

M =


M11 M12 M13

M12 M22 M23

M13 M23 M33

 (4.13)
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Figure 4.5. Mechanism of the slave robot.

where its entries are given as

M11 = Im1 + Im2 +m2a1
2 +m3a1

2 +m3a2
2 + 2m3a1a2 cos(q2) (4.14)

M12 = m3a2
2 +m3a1a2 cos(q2) + I2 (4.15)

M13 = 0 (4.16)

M22 = m3a2
2 + Im2 (4.17)

M23 = 0 (4.18)

M33 = m3 (4.19)

where Im1 and Im2 represent the moments of inertia about first and second links, respec-

tively, m1, m2, m3 represent masses of first, second and third links, respectively, and a1,

a2 represent lengths of first and second links of the slave robot, respectively. It is noted

that, joint centers are taken as the center of mass. The centripetal–Coriolis matrix C (q, q̇)

is given by the following form

C =


C11 C12 C13

C21 C22 C23

C31 C32 C33

 (4.20)

45



where is entries are defined as

C11 = −m3a1a2q̇2 sin(q2) (4.21)

C12 = −m3a1a2(q̇1 + q̇2) sin(q2) (4.22)

C13 = 0 (4.23)

C21 = m3a1a2q̇1 sin(q2) (4.24)

C22 = 0 (4.25)

C23 = 0 (4.26)

C31 = 0 (4.27)

C32 = 0 (4.28)

C33 = 0. (4.29)

(4.30)

The gravity vector G(q) is given by

G =


0

0

m3g

 (4.31)

where g represents the gravitational acceleration. The generalized contact force FC is

calculated as

FC = JT τC (4.32)

where J is the Jacobian matrix given as

J =


J11 J12 J13

J21 J22 J23

J31 J32 J33

 (4.33)
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with its entries being defined as

J11 = −a1 sin(q1)− a2 sin(q1 + q2) (4.34)

J12 = −a2 sin(q1 + q2) (4.35)

J13 = 0 (4.36)

J21 = a1 cos(q1) + a2 cos(q1 + q2) (4.37)

J22 = a2 cos(q1 + q2) (4.38)

J23 = 0 (4.39)

J31 = 0 (4.40)

J32 = 0 (4.41)

J33 = −1. (4.42)

4.3. Control System

Figure 4.6. Flow diagram of the control structure.

The control algorithms in this chapter are implemented in the control structure as

illustrated in Figure 4.6. The control structure of a telerobotic system is generally divided

into two for master and slave systems. The PD control is implemented in free–motion

tracking experiment with time delays. In controller, the joint space commands are cal-

culated with transmitted proxy motion, measured slave motion and impedance correction
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term (when impedance control is applied). The PD controller is applied to the slave sys-

tem with torque values of each joint. A gravity compensation is put into the slave by

N (see Figure 4.6). In order to estimate the constraints, the position feedback and cal-

culated contact forces are obtained from the dynamic model. Then, the relevant data is

transmitted from estimation to the master system as model updates such as environmental

constraints (i.e., wall).

The master system ensures that the system responds and acts consistently with the

virtually created model of the remote environment. The proxy follows the master with

its own designated dynamics as a representation of the slave robot on master side. The

generation of dynamic proxy and the model creation in the master side ensures that no

excessive forces are transmitted to the master during time delays Uzunoglu (2012). The

updates (xssurface) from the estimation of the remote environment are transmitted from the

slave system when, proxy acts within the boundaries and wall (xmsurface) of the current

model. The updates come into effect in the model when both the master and the proxy

reache the updated wall.

4.4. Experiment Results

Experiments were performed to demonstrate performances of both direct teleop-

eration and model mediated teleoperation methods when there are time delays in the com-

munication line. In these experiments, Quarc, which is a real–time control software, was

utilized via Matlab Simulink. External simulation mode, ODE-1 solver with a fixed step

size of 0.002 seconds, and Real–Time Windows Target codes were used.

In the experiments, constant time delay was selected 1 sec while the variable time

delay was between 0.4 and 2 sec. In order to use virtual slave system dynamics the mo-

ments of inertia about first and second links Im1[kg.m
2] and Im2[kg.m

2] were selected

3.97548 × 10−5 and 5 × 10−4, respectively. Masses of first, second and third links, m1,

m2, m3 were selected 3.6[kg], 2.6[kg] and 2[kg], respectively. Lengths of first and second

links of the slave robot a1, a2 were selected 2[m]. The constraint in the slave environment

is positioned at −25 mm in z–axes. When the master contacts the constraint, the master

receive force feedback from the slave side. The force feedback is saturated at 50N dur-

ing the experiments. For both methods, control parameters kps, kds, kpm and kdm were

selected via trial and error method as 10, 40, 0.8 and 0.4, respectively.

Figures 4.7 and 4.8 show position tracking when there is constant time delay in

the communication line, and Figures 4.9 and 4.10 show position tracking for variable time
48



0 5 10 15 20 25 30 35 40 45
−40

−20

0

20

40

time[second]

m
m

Position

 

 
Master
Slave

0 5 10 15 20 25 30 35 40 45

0

10

20

30

40

50

time[second]

N

Force Feedback

Figure 4.7. Direct teleoperation under constant time delay.

delay. As can be seen from Figures 4.7-4.10, since, via the model update, the constraint

(i.e., wall at −25mm in z–axis) is learnt in the first contact, slave continues its motion

freely until the contact time. There is no force feedback until the contact time. When the

slave penetrates into the wall, after the contact time, the virtual force in (4.11) is applied

and estimator save the wall position. In bilateral direct teleoperation, as can be seen

from Figures 4.7 and 4.9, when the master is commanded to penetrate into the wall, slave

also penetrate. On the other hand, in model mediated teleoperation, as can be seen from

Figures 4.8 and 4.10 the master is commanded to penetrate, proxy preserves its position

on the wall, then slave does not penetrate. The master goes under the wall but the slave

does not because of the proxy dynamics. After the master goes above the wall, the slave

follows the master. When the master goes under the wall again, the slave continues on the

wall.

4.5. Conclusions

In this chapter, the Phantom Omni haptic device is used as the master system and

the model of the SCARA manipulator is used as the virtual slave system for experimen-
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Figure 4.8. Model mediated teleoperation method under constant time delay.

tally comparing direct teleoperation and model mediated teleoperation methods under

communication line induced delays. Control algorithms were applied only on the z–axis

where a wall is considered to be placed at the virtual slave environment. Experiments

were performed under both constant and variable time delays for both techniques. In

general, for both constant and variable time delays, both bilateral teleoperation control

methods preserved stability which allowed the operator to safely deliver commands to the

slave and continue the operation in a stable manner.

By using direct teleoperation technique, the position of the slave tracked the po-

sition of the master. However, when the master tries to penetrate into the virtual wall at

the slave environment (i.e., the wall at the z–axis), the slave follows with a delay and it

undergoes high contact forces. And during the first contact the master system produces

a very large force, which is undesirable, and may lead to instability. Additionally, these

forces can damage the mechanical devices.

In model mediated teleoperation method, when master and slave sense the wall

for the first time, the system apply a force which is less than the direct teleoperation

technique. After the wall is sensed, the slave follows the master slowly as a result of

proxy dynamics.
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Figure 4.9. Direct teleoperation under variable time delay.
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Figure 4.10. Model mediated teleoperation method under variable time delay.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORKS

In this thesis, two learning controllers that can be utilized in telerehabilitation

applications and a comparison of two teleoperation control methods were presented.

Firstly, in Chapter 2, an output feedback learning controller for joint space track-

ing was designed. The design of the learning controller was initiated via the design of a

novel velocity observer. Nextly, the output feedback controller was proposed. The sta-

bility of the velocity observer and the controller were investigated via novel Lyapunov

type techniques and asymptotic velocity observation and asymptotic joint tracking were

ensured. Numerical simulation results and experimental studies were then presented to

demonstrate the efficacy of the observer–controller couple. When compared with the past

works in the literature this work does not require neither joint velocity measurements nor

accurate knowledge of robot dynamics.

In Chapter 3, a learning controller for task space tracking was ensured. After con-

sidering the periodic task to be performed in the task space, in this work, a novel learning

controller is designed. The stability of the controller was investigated via Lyapunov based

methods and asymptotic end–effector tracking was guaranteed. Numerical simulation re-

sults and experimental studies were provided that demonstrated the performance of the

proposed controller. When compared with the existing past works in the literature this

work does not require accurate knowledge of robot dynamics and is one of the few learn-

ing controllers designed in task–space.

Both of these learning controllers are feasible solutions to designing controllers

for telerehabilitation systems. Specifically, in telerehabilitation, since the patient is re-

quired to perform a predefined task over and over again, learning type controllers can be

considered in the slave robot.

In Chapter 4, two bilateral teleoperation methods under the influence of commu-

nication failures were compared. First method was direct teleoperation while the other

one was moodel mediated teleoperation. The performances of these two methods under

constant or varying communication line induced delays were investigated via numerical

simulations and experiments. In model mediated teleoperation, via the learning of the

model of the slave environment, excessive forces/torques reflected back to the operator of

the master system were significantly reduced.
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There is much to be considered as future work. Possible future works are ex-

perimentally verifying the proposed learning controllers on a robotic platform. Next, an

experimental telerehabilitation may also be performed.

Another possible line of future work is to re–design the proposed output feedback

learning controllers to be applicable to control of different mechatronic systems such as

active magnetic bearings Costic et al. (2000) or atomic force microscopy Fang et al.

(2002). While the control problem in the above mentioned applications are rejection of

periodic disturbance type effects (rather than following a periodic reference trajectory),

the proposed method can, with some effort, be applied to address those research problems.

Learning controllers designed for these systems requires velocity measurements and ap-

plying the proposed output feedback learning controller to these mechatronic systems is

a major improvement to the existing literature.

The task space learning controller proposed in this thesis requires velocity mea-

surements. In view of this, a possible extension could be designing an output feedback

form of this controller.

Re–designing the task–space learning controller for a kinematically redundant

robot manipulator can be considered as an interesting future work where the redundancy

can be utilized to achieve some secondary control objectives.
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APPENDIX A

PROOFS OF BOUNDS

A.1. Proof of Bound in (2.36)

In this appendix, proof of the upper bound of Nb (t) in (2.36) is given.

We start with rewriting (2.34) by utilizing (2.5) following expression can be ob-

tained

Nb =
(
M−1(q)−M−1(qd)

)
M−1(qd)q̈d +M−1(q) {Vm (qd, q̇d) q̇d − Vm (q, q̇d) q̇d}

+M−1(q) {2Vm (q, ė) q̇d − Vm (q, ė) ė}

+M−1(q) {G(qd)−G(q) + F (q̇d − q̇)}+M−1(q) {kpe+ kcr + kcs} . (A.1)

After utilizing (2.3), (2.6), (2.8), (2.9), (2.12) and (2.11), an upper bound for the right–

hand side of (A.1) can be obtained as follows

‖Nb‖ ≤
{
ζM1m2 ‖q̈d‖+

1

m1

ζc2 ‖q̇d‖
}
‖e‖+

{
1

m1

λmax(kp) +
1

m1

ζG

}
‖e‖

+

{
2

m1

ζC1 ‖q̇d‖+
1

m1

ζF +
1

m1

λmax(kc)

}
‖r‖+

1

m1

ζC1‖r‖2

+
1

m1

λmax(kc) ‖s‖ (A.2)

where the fact that ‖r(t)‖ ≥ ‖ė(t)‖ was utilized. Let

ρ01 , ζM1m2 ‖q̈d‖+
1

m1

ζc2 ‖q̇d‖+
1

m1

λmax(kp) +
1

m1

ζG (A.3)

ρ02 ,
2

m1

ζC1 ‖q̇d‖+
1

m1

ζF +
1

m1

λmax(kc) (A.4)

ρ03 ,
1

m1

ζC1 (A.5)

ρ04 ,
1

m1

λmax(kc) (A.6)

then the bound given in (2.36) is valid.
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A.2. Proof of Bound in (3.29)

Following bounds will later be utilized in obtaining the upper bound in (3.29).

From (3.21), in view of (3.8), following expression can be obtained

‖ė‖ ≤ αmax ‖e‖+ ζJ2 ‖r‖ (A.7)

where αmax ∈ R denotes the maximum eigenvalue of α. Furthermore, in view of (3.17),

following inequality can be written

‖ẋ‖ ≤ ‖ẋd‖+ ‖ė‖

≤ ζẋd + αmax ‖e‖+ ζJ2 ‖r‖ . (A.8)

The auxiliary term Ñ in (3.28) can be rewritten as

Ñ = M(h(x))
d

dt
[J−1(x)(ẋd + αe)]−M(h(xd))

d

dt
[J−1(xd)ẋd]

+Vm(h(x), J−1(x)ẋ)J−1(x)(ẋd + αe)− Vm(h(xd), J
−1(xd)ẋd)J

−1(xd)ẋd

+G(h(x))−G(h(xd)) + F (J−1(x)ẋ)− F (J−1(xd)ẋd) (A.9)

where (3.23) and (3.25) were utilized. In view of (3.11), rewrite (A.9) as

Ñ = M(h(x))J̇−1(x, ẋ)αe+M(h(x))J−1(x)αė

+[M(h(x))J̇−1(x, ẋ)−M(h(xd))J̇
−1(xd, ẋd)]ẋd

+[M(h(x))J−1(x)−M(h(xd))J
−1(xd)]ẍd

+Vm(h(x), J−1(x)ẋ)J−1(x)αe

+[Vm(h(x), J−1(x)ẋ)J−1(x)− Vm(h(xd), J
−1(xd)ẋd)J

−1(xd)]ẋd

+G(h(x))−G(h(xd))

+F (J−1(x)ẋ)− F (J−1(xd)ẋd). (A.10)

The terms on the right–hand side of (A.10) will be investigated separately.

For the first term on the right–hand side of (A.10), following bounding can be

performed∥∥∥M (h(x)) J̇−1 (x, ẋ)αe
∥∥∥ ≤ ‖M (h(x))‖

∥∥∥J̇−1 (x, ẋ)
∥∥∥αmax ‖e‖

≤ m2ζJ4 ‖ẋ‖αmax ‖e‖

≤ m2ζJ4(ζẋd + αmax ‖e‖+ ζJ2 ‖r‖)αmax ‖e‖ (A.11)

where (2.2), (3.12) and (A.8) were utilized.
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For the second term on the right–hand side of (A.10), an upper bound is obtained

as ∥∥M (h(x)) J−1 (x)αė
∥∥ ≤ ‖M (h(x))‖

∥∥J−1 (x)
∥∥αmax ‖ė‖

≤ m2
1

ζJ1
αmax(αmax ‖e‖+ ζJ2 ‖r‖) (A.12)

where (2.2), (3.9) and (A.7) were utilized.

The third term in (A.10) can be rewritten as follows[
M (h(x)) J̇−1 (x, ẋ)−M (h(xd)) J̇

−1 (xd, ẋd)
]
ẋd

= M (h(x))
[
J̇−1 (x, ẋ)− J̇−1 (x, ẋd)

]
ẋd

+M (h(x))
[
J̇−1 (x, ẋd)− J̇−1 (xd, ẋd)

]
ẋd

+ [M (h(x))−M (h(xd))] J̇
−1 (xd, ẋd) ẋd (A.13)

which was obtained after adding and subtracting auxiliary terms. An upper bound can

now be obtained for the right–hand side of (A.13) as∥∥∥[M (h(x)) J̇−1 (x, ẋ)−M (h(xd)) J̇
−1 (xd, ẋd)

]
ẋd

∥∥∥
≤ ‖M (h(x))‖

∥∥∥J̇−1 (x, ẋ)− J̇−1 (x, ẋd)
∥∥∥ ‖ẋd‖

+ ‖M (h(x))‖
∥∥∥J̇−1 (x, ẋd)− J̇−1 (xd, ẋd)

∥∥∥ ‖ẋd‖
+ ‖M(h(x))−M (h(xd))‖

∥∥∥J̇−1 (xd, ẋd)
∥∥∥ ‖ẋd‖

≤ m2ζJ6ζẋd(αmax ‖e‖+ ζJ2 ‖r‖) +m2ζJ5ζ
2
ẋd
‖e‖+ ζM1ζhζJ4ζ

2
ẋd
‖e‖ (A.14)

where (2.2), (2.6), (3.5), (3.12), (3.13), (3.14), (3.17) and (A.7) were utilized.

After adding and subtracting auxiliary terms, the fourth term in (A.10) can be

rewritten as [
M (h(x)) J−1 (x)−M (h(xd)) J

−1 (xd)
]
ẍd

= M (h(x))
[
J−1 (x)− J−1 (xd)

]
ẍd

+ [M (h(x))−M (h(xd))] J
−1 (xd) ẍd. (A.15)

Bounding the terms on the right–hand side of (A.15) separately yields∥∥[M (h(x)) J−1 (x)−M (h(xd)) J
−1 (xd)

]
ẍd
∥∥

≤ ‖M (h(x))‖
∥∥J−1 (x)− J−1 (xd)

∥∥ ‖ẍd‖
+ ‖M (h(x))−M (h(xd))‖

∥∥J−1 (xd)
∥∥ ‖ẍd‖

≤ m2ζJ3 ‖e‖ ζẍd + ζM1ζh ‖e‖
1

ζJ1
ζẍd (A.16)
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where (2.2), (2.6), (3.5), (3.9), (3.10) and (3.17) were utilized.

The fifth term in (A.10) can be upper bounded as follows

Vm(h(x), J−1(x)ẋ)J−1(x)αe ≤ ζC1

∥∥J−1(x)
∥∥ ‖ẋ‖∥∥J−1(x)

∥∥αmax ‖e‖

≤ ζC1

ζ2J1
(‖ė‖ ‖ẋd‖)αmax ‖e‖

≤ ζC1

ζ2J1
(ζẋd + αmax ‖e‖+ ζJ2 ‖r‖)αmax ‖e‖(A.17)

where (2.8), (3.9) and (A.8) were utilized.

After adding and subtracting auxiliary terms, the sixth term in (A.10) can be

rewritten as[
Vm
(
h(x), J−1 (x) ẋ

)
J−1 (x)− Vm

(
h(xd), J

−1 (xd) ẋd
)
J−1 (xd)

]
ẋd

= Vm
(
h(x), J−1 (x) ẋ

) [
J−1 (x)− J−1 (xd)

]
ẋd

+
[
Vm
(
h(x), J−1 (x) ẋ

)
− Vm

(
h(x), J−1 (x) ẋd

)]
J−1 (xd) ẋd

+
[
Vm
(
h(x), J−1 (x) ẋd

)
− Vm

(
h(x), J−1 (xd) ẋd

)]
J−1 (xd) ẋd

+
[
Vm
(
h(x), J−1 (xd) ẋd

)
− Vm

(
h(xd), J

−1 (xd) ẋd
)]
J−1 (xd) ẋd (A.18)

which, after utilizing (2.5), can be rewritten as[
Vm
(
h(x), J−1 (x) ẋ

)
J−1 (x)− Vm

(
h(xd), J

−1 (xd) ẋd
)
J−1 (xd)

]
ẋd

= Vm
(
h(x), J−1 (x) ẋ

) [
J−1 (x)− J−1 (xd)

]
ẋd

+Vm
(
h(x), J−1 (xd) ẋd

)
J−1 (x) (ẋ− ẋd)

+Vm
(
h(x), J−1 (xd) ẋd

) [
J−1 (x)− J−1 (xd)

]
ẋd

+
[
Vm
(
h(x), J−1 (xd) ẋd

)
− Vm

(
h(xd), J

−1 (xd) ẋd
)]
J−1 (xd) ẋd. (A.19)
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Bounding the terms on the right–hand side of (A.19) separately yields∥∥[Vm (h(x), J−1 (x) ẋ
)
J−1 (x)− Vm

(
h(xd), J

−1 (xd) ẋd
)
J−1 (xd)

]
ẋd
∥∥

≤
∥∥Vm (h(x), J−1 (x) ẋ

)∥∥ ∥∥J−1 (x)− J−1 (xd)
∥∥ ‖ẋd‖

+
∥∥Vm (h(x), J−1 (xd) ẋd

)∥∥ ∥∥J−1 (x)
∥∥ ‖ė‖

+
∥∥Vm (h(x), J−1 (xd) ẋd

)∥∥ ∥∥J−1 (x)− J−1 (xd)
∥∥ ‖ẋd‖

+
∥∥Vm (h(x), J−1 (xd) ẋd

)
− Vm

(
h(xd), J

−1 (xd) ẋd
)∥∥ ∥∥J−1 (xd)

∥∥ ‖ẋd‖
≤ ζC1

∥∥J−1 (x) ẋ
∥∥ ζJ3 ‖e‖ ζẋd + ζC1

∥∥J−1 (xd) ẋd
∥∥ 1

ζJ1
‖ė‖

+ζC1

∥∥J−1 (xd) ẋd
∥∥ ζJ3 ‖e‖ ζẋd + ζC2

∥∥J−1 (xd) ẋd
∥∥ ζh ‖e‖ 1

ζJ1
ζẋd

≤ ζC1
1

ζJ1
(ζẋd + αmax ‖e‖+ ζJ2 ‖r‖)ζJ3 ‖e‖ ζẋd

+ζC1ζẋd
1

ζJ1
(αmax ‖e‖+ ζJ2 ‖r‖) + ζC1ζẋdζJ3 ‖e‖ ζẋd

+ζC2ζẋdζh ‖e‖
1

ζJ1
ζẋd (A.20)

where (2.8), (2.9), (3.5), (3.9), (3.10), (3.12), (3.17), (A.7) and (A.8) were utilized.

From the seventh line of (A.10), it is easy to obtain the following bound

‖G (h(x))−G (h(xd))‖ ≤ ζGζH ‖e‖ (A.21)

where (2.10) and (3.5) were utilized along with (3.5).

After adding and subtracting F (J−1 (x) ẋd) to the last line of (A.10), the follow-

ing can be obtained

F
(
J−1 (x) ẋ

)
− F

(
J−1 (xd) ẋd

)
= F

(
J−1 (x) ẋ

)
− F

(
J−1 (x) ẋd

)
+F

(
J−1 (x) ẋd

)
− F

(
J−1 (xd) ẋd

)
.(A.22)

Upper bounding the terms on the right–hand side of (A.22) yields∥∥F (J−1 (x) ẋ
)
− F

(
J−1 (xd) ẋd

)∥∥ ≤ ∥∥F (J−1 (x) ẋ
)
− F

(
J−1 (x) ẋd

)∥∥
+
∥∥F (J−1 (x) ẋd

)
− F

(
J−1 (xd) ẋd

)∥∥
≤ ζF

ζJ1
‖ė‖+ ζJ4ζẋd ‖e‖

≤ ζF
ζJ1

(αmax ‖e‖+ ζJ2 ‖r‖)

+ζJ4ζẋdζJ3 ‖e‖ (A.23)

where (2.12), (3.9), (3.10), (3.17) and (A.7) were utilized.
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After combining (A.11), (A.12), (A.14), (A.16), (A.17), (A.20), (A.21) and (A.23),

following inequality can be written∥∥∥Ñ∥∥∥ ≤ (c1 + c2 ‖e‖) ‖e‖+ (c3 + c4 ‖e‖) ‖r‖ (A.24)

where c1, c2, c3, c4 ∈ R are known positive constants. From (A.24), after defining

ρ (‖e‖) , max {c1, c3}+ max {c2, c4} ‖e‖, it is easy to reach (3.29).

A.3. Proof of (3.45)

While the proof of the inequality in (3.45) can be found in Dixon et al. (2003) and

Costic et al. (2000), it is provided for the sake of completeness. In order to reach

(Ndi (t)− N̂i (t))
2 ≥ (satβi(Ndi (t))− satβi(N̂i (t)))

2 (A.25)

∀N̂i (t) and ∀ |Ndi (t)| ≤ βi for i = 1, ..., n. Three possible cases of N̂i (t) will be

considered separately to prove the inequality given in (A.25).

For the first case, βi ≥
∣∣∣N̂i (t)

∣∣∣ is considered. As a result,

satβi(N̂i (t)) = N̂i (t) (A.26)

and since βi ≥ |Ndi (t)|, then

satβi(Ndi (t)) = Ndi (t) . (A.27)

In view of (A.26) and (A.27), it is clear that (A.25) is satisfied with equality.

In the second case, N̂i (t) > βi will be considered. Since βi ≥ Ndi (t), then it is

easy to obtain

N̂i (t) + βi ≥ 2Ndi (t) . (A.28)

Multiplying both sides of (A.28) with N̂i (t)− βi > 0 results in

N̂2
i (t)− β2

i ≥ 2Ndi (t) (N̂i (t)− βi). (A.29)

After adding N2
di (t) to both sides of the above inequality and then rearranging, following

inequality can be obtain

N2
di (t)− 2Ndi (t) N̂i (t) + N̂2

i (t) ≥ N2
di (t)− 2βiNdi (t) + β2

i (A.30)

which is equivalent to (
Ndi (t)− N̂i (t)

)2
≥ (Ndi (t)− βi)2 . (A.31)
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And after recalling (A.27) and since satβi
(
N̂i (t)

)
= βi, for this case, the right–hand

sides of (A.25) and (A.31) are same and thus (A.25) is satisfied.

In the final case,−βi > N̂i (t) is considered. With using inequalityNdi (t) ≥ −βi,
one can obtain

N̂i (t)− βi ≤ 2Ndi (t) . (A.32)

After multiplying both sides of (A.32) with N̂i (t) + βi < 0 results in

N̂2
i (t)− β2

i ≥ 2Ndi (t) (N̂i (t) + βi) (A.33)

where the direction of the inequality was reversed due to multiplication with a negative

quantity. Similar to the second case, after adding N2
di (t) to both sides of the above in-

equality and then rearranging, following inequality can be written as

N2
di (t)− 2Ndi (t) N̂i (t) + N̂2

i (t) ≥ N2
di (t) + 2Ndi (t) βi + β2

i (A.34)

which is equivalent to (
Ndi (t)− N̂i (t)

)2
≥ (Ndi (t) + βi)

2 . (A.35)

And after recalling (A.27) and since satβi
(
N̂i (t)

)
= −βi, for this case, the right–hand

sides of (A.25) and (A.35) are same and thus (A.25) is satisfied. So, the inequality in

(3.45) is proven.
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