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Department of Mechanical Engineering, İzmir Institute of Technology
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ABSTRACT

MODELLING AND CONTROL OF A 3-RRS PARALLEL MANIPULATOR

The focus of this thesis study is to model and control a parallel robot manipu-

lator located in Rasim Alizade Mechatronics Laboratory (Izmir Institute of Technology

Mechanical Engineering Department). The purpose of this robot is to manipulate heavy

payloads. It is considered as the base part of a hybrid manipulator.

This thesis study deals with a 3-RRS parallel manipulator with 3 identical limbs.

Each limb comprises two parallel revolute joint axes. The manipulator has a base and

a moving platform which are in the shape of equilateral triangles. The mobile platform

of this manipulator has 3-degrees-of-freedom: it can rotate around x- and y-axes and

translate along the z-axis.

To obtain the mathematical model of the parallel manipulator, firstly the mobil-

ity analysis is performed. Then, a constraint analysis is performed to obtain the depen-

dent pose parameters of the moving platform in terms of the independent parameters.

Following that kinematic, singularity, workspace and inverse dynamic analyses are per-

formed. To validate the mathematical model of the PM, several simulations are run in

MATLAB/Simulink R© environment. Once the mathematical model is validated, the con-

trol studies are carried out.

The motion of the 3-RRS PM is controlled by activating stepper motors with two

different controllers (a CNC controller and a PCI card). To obtain a desired motion of

the moving platform, firstly the desired task space coordinates of the moving platform

are transformed into joint space coordinates using inverse kinematics. With the CNC

controller a trapezoidal velocity, with the PCI card a trapezoidal jerk profile is generated.

To test the control over the PM, 3 magnetic encoders are attached to the shafts of input

links at each limb. Furthermore, a 3-axis gyroscope is attached to the center of the moving

platform to track its rotational trajectory.
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ÖZET

3-RRS PARALEL MANİPÜLATÖRÜN MODELLENMESİ VE DENETİMİ

Bu tez çalışmasının amacı Rasim Alizade Mekatronik Laboratuvarı’nda (İzmir

Yüksek Teknoloji Enstitüsü - Makine Mühendisliği Bölümü) mekanik yapısı hazır bulu-

nan parallel manipülatörün modellenmesi ve denetimidir. Üzerinde çalışılan manipülatör

ağır yüklerin taşınması için tasarlanmış olan bir hibrit manipülatörün taban kısmıdır.

Tezin konusu 3 adet aynı kinematik yapıya sahip bacaktan oluşmuş, 3-RRS kine-

matik zincir yapısına sahip bir paralel manipülatördür. Her bacakta bulunan döner mafsal-

ların eksenleri birbirine paraleldir. Eşkenar üçgen şekindeki taban ve hareketli platform-

lar bacakları birleştir. Hareketli platform 3 serbestlik derecine sahiptir: x ve y eksenleri

etrafında dönebilir ve z ekseni boyunca öteleme hareketi yapabilir.

Manipülatörü modellemek için öncelikle mobilite analizi yapılmıştır. Ardından,

kısıt denklemleri kullanılarak bağımlı uç eleman parametreleri bağımsız parametler cinsin-

den ifade edilmiştir. Daha sonra, kinematik, tekillik ve çalışma uzay analizleri yapılmıştır.

Geliştirilmiş formülasyonları doğrulamak için MATLAB/Simulink R© ortamında hazırlanmış

simülasyonlar koşturulmuştur. Formülasyonların doğrulanmasını müteakiben denetim

çalışmalarna başlanmştır.

Manipülatörün hareketi stepper motorların aktive edilmesiyle denetlenmiştir. Bunun

için iki farklı denetleyici (bir CNC kontrolcü ve PCI kart) kullanılmıştır. İstenen hareketi

elde edebilmek için, ters kinematik formülasyonlar kullanılarak, gereken motor hareketi

hesaplanmştır. CNC kontrolcü ile trapezoidal hız, PCI kart ile trapezoidal sarsım profil-

leri oluşturulmuştur. Uygulanan denetimin testi için 3 adet manyetik döner sensör aktif

mafsallara,1 adet jiroskop hareketli platforma bağlanmştr.
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CHAPTER 1

INTRODUCTION

According to Robotics Institute of America, a robot is a reprogrammable mul-

tifunctional manipulator that can move materials, parts, tools, or specialized devices

through variable programmed motions for the performance of a variety of tasks. Mechan-

ical manipulators, numerical controlled machines, walking machines, and humanoids are

in the scope of this definition. However, a mechanical manipulator is usually recognized

as a robot which resembles the human arm in the industry (Taghirad, 2013).

Manipulators can be divided into three different types with respect to their kine-

matic structures as presented in Figure 1.1. The first type, serial manipulators (SM) are

composed of open loop kinematic chain structures. On the other hand, parallel manipula-

tors (PM) have closed loop kinematic chain structures and all links comprise at least two

joints. The third type, hybrid manipulators (HM) consist of both open loop and closed

loop chains (Tsai, 1999).

Figure 1.1. Schematic Representation of a)Serial, b)Parallel, c)Hybrid Manipulators
(Source: Harib et al. 2012)

For designers to decide on whether to use SM or PM depends on different char-

acteristics. These characteristics can be listed as workspace, singularity, payload capa-

bility, accuracy and speed. In general, PMs have much smaller workspace to footprint

ratio than their serial counterparts (Lee and Shah, 1988; Siciliano, 1999; Li et al., 2007;

Elkady et al., 2008; Zhang, 2009; Vallés et al., 2012). One other drawback of PMs is their
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singularities. PMs may have singularities within the workspace while SMs have at the

boundaries (Elkady et al., 2008). On the other hand, payload capacity of PMs is greater

than SMs since there are several limbs sharing the weight of the payload. Moreover, PMs

can handle more accurate positioning than their equivalent serial counterpart. PMs have

better stiffness characteristics than SMs. Also PMs generally can achieve relatively higher

velocity and accelerations in contrast to their serial counterparts, especially in pick and

place applications (Lee and Shah, 1988; Siciliano, 1999; Dasgupta and Mruthyunjaya,

2000; Tsai et al., 2003; Briot and Bonev, 2007; Li et al., 2007; Li and Xu, 2007; Elkady

et al., 2008; Zhang, 2009; Bi and Jin, 2011; Vallés et al., 2012; Patel et al., 2012; Zhang

and Ting, 2013; Chen et al., 2014).

The known studies on parallel manipulators go back to 17th century. It is known

that Sir Christopher Wren mentioned parallel structured mechanisms in his studies. After

him, Cauchy, Lebesgue and Bricard have worked on parallel mechanisms (Merlet, 2001).

The first known and practical design came out in 1931, by Gwinnett (1931). The

patent is about a rotatable platform to be used in entertainment industry. The aim is to

simulate the physical effects for the audience. As can be seen in Figure 1.2, multiple arms

are attached to the platform and actuation systems are at the base joints.

Figure 1.2. Amusement Device
(Source: Gwinnett, 1931)
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In 1942, a position control device for spray guns is invented by Pollard (1942)

(see Figure 1.3). The device has some advantages in energy usage and has a relatively

large workspace. The mechanism has 5 degrees-of-freedom (dof) and each limb consists

of one active revolute (R) joint and passive universal (U) and spherical (S) joints.

Figure 1.3. Positioning Device
(Source: Pollard, 1942)

Another useful PM design is done by Gough for testing airplane tires in 1947

(Zhang, 2009). It was the first octahedral hexapod design and a revolution in the robotics

industry. The robot has 6-dof with 6 legs composed of a U joint at the base, an active

prismatic (P) joint and an S joint at the moving platform. This robot is used until 2000

(see Figure 1.4).

Figure 1.4. Tire Testing Machine
(Source: Zhang, 2009)
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In 1962, an engineer from Franklin Institute Research Laboratories, proposed the

same octahedral hexapod as presented in Figure 1.5, to use as motion simulator (Zhang,

2009). Klaus Cappel, the inventor, had the patent of his 6-dof robot in 1967.

Figure 1.5. Klaus Cappel’s Simulator Design
(Source: Cappel, 1967)

In 1965, a famous paper was published by Stewart (1965). The paper proposes

a 6-dof flight simulation robot that can be used for training pilots. The proposed robot

has 6-dof and is also based on the octahedral hexapod (Zhang, 2009). In figure 1.6 the

schematic representation of Stewart’s simulator is given.

Figure 1.6. Stewart’s Flight Simulator
(Source: Stewart, 1965)
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PMs with less than 6-dof are deficient manipulators and have attracted a lot of

attention in the past few decades since they are simpler in architecture, cheaper in design

and production and easier to control (Fan et al., 2009). The most successful designs of

PMs that are used in the industry are deficient (Chen et al., 2014). These manipulators

are used for pick and place (Clavel, 1988; Pierrot et al., 2001), machining (Bi and Jin,

2011; Siciliano, 1999; Wahl, 2002), pointing (Gosselin et al., 1996; Dunlop and Jones,

1999), motion simulating (Pouliot et al., 1998) and telescope applications (Carretero et al.,

1998)). Some of them are presented in Figure 1.7.

Figure 1.7. Deficient PM Designs
(Sources: a)Zhao, 2013, b)Chen et al., 2014, c)Patel et al., 2012)

A 3-RRS PM is investigated in this thesis study. Each limb has the same kinematic

structure (RRS) and these limbs are attached to the base and moving platform symmetri-

cally. The moving platform has 1-dof translating motion along the vertical axis (z) and

2-dof rotational motion about the horizontal axes (x and y). This type of motion char-

acteristics is called 1T2R motion in the literature (Fan et al., 2009; Li and Hervé, 2010).

1T2R PMs are generally used in machining devices and positioning of telescopes, simu-

lating motions and coordinate measuring machines etc. (Fan et al., 2009; Li and Hervé,

2010).
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1.1. The Aim of the Thesis and Objectives

The aim of this thesis study is to obtain a mathematical model of the 3-RRS PM

and then perform a position control over the physical model of the PM located in Rasim

Alizade Mechatronics Laboratory in İzmir Institute of Technology. The physical model

of the 3-RRS PM presented in Figure 1.8 is produced by Dr. Fatih Cemal Can, during his

PhD studies in Izmir Institute of Technology. Structural details of the model are presented

in (Can, 2008).

Figure 1.8. Physical Model of the 3-RRS PM
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1.2. Organization of the Thesis

Chapter 2 consists of the literature review performed for this thesis study. Firstly

the available methodologies for kinematic analysis of 1T2R type PMs are presented.

Then, techniques that are used to perform workspace, singularity and dynamic analyses

are given.

In Chapter 3, modelling studies, which consist of position, velocity and acceler-

ation level of kinematics, workspace, singularity and inverse dynamic analyses, are pre-

sented in the given order. The simulations for confirmation of the mathematical model

given in Chapter 3 are presented in Chapter 4. Conducted control studies are given in

Chapter 5. The discussion on the results and the conclusion are presented in Chapter 6.
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CHAPTER 2

LITERATURE REVIEW

In the literature, there are several kinematic structures available to obtain a 1T2R

type of motion from a PM. These manipulators can be listed as 3-RPS, 3-PRS, 3-RRS

and some other kinematic structures. The literature review study presented in this chapter

consists of modelling and control of 1T2R type of PMs available in the literature. This

chapter includes available methods for kinematic, workspace, singularity and dynamic

analyses to obtain the mathematical model of the 3-RRS PM.

2.1. Kinematic Analysis

For the position level kinematic analysis, there are two distinct types of analyses.

The first type, inverse kinematics, is defined as to obtain actuated joint coordinates for

a given pose of the end-effector (Merlet, 2001). There are many studies on the inverse

kinematics of 1T2R PMs available in the literature.

Since this study is dealing with deficient manipulators, the first step of the inverse

kinematics is to obtain the dependent pose parameters of the moving platform in terms

of independent pose parameters by making use of constraint equations. For the 1T2R

PMs there are 2 different types of constraints: the first type is due to the planar motion of

each limb and the second type is due to the rotation matrix. Investigated studies on 1T2R

PMs use the condition that all the limbs are constrained to move on planes as presented

in (Tsai, 1999; Zhang et al., 2006; Li and Xu, 2007; Verdes et al., 2009; Vallés et al.,

2012; Rao and Rao, 2013; Chen et al., 2013). After obtaining these constraint equations,

the relationship in between the elements of the rotation matrix is obtained. It is observed

that in some applications it is preferred to use the orthogonality conditions of the rotation

matrix for transformation between the moving platform and base coordinate systems, as

in (Tsai, 1999; Verdes et al., 2009) or making use of rotation sequences as in (Zhang

et al., 2006; Li and Xu, 2007; Vallés et al., 2012; Chen et al., 2013; Rao and Rao, 2013).

After obtaining all of the pose parameters of the moving platform, active joint variables

are solved from the loop closure equations in terms of the defined pose parameters for the

moving platform.
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The forward position level kinematic analysis problem of PMs is more complex

than the inverse kinematics task as it is stated in (Patel et al., 2012). The common method-

ology to obtain the pose of the moving platform is as follows: the coordinates of the S

joints are formulated in terms of active and passive joint variables and then the fixed dis-

tance in between the S joints is used as constraint to formulate the constraint equations.

The obtained equations are non-linear in terms of active and passive joint variables. Mak-

ing use of tangent of the half angle substitution, some mathematical manipulations are

applied to the non-linear constraint equations and at the end a 16th degree polynomial is

determined in terms of one of the passive joint variables. Tsai (1999); Tsai et al. (2003); Li

and Xu (2007); Gallardo et al. (2008); Rao and Rao (2013) make use of Sylvester dialytic

elimination method to obtain the final 16th degree polynomial in terms of one of the pas-

sive joint variables. Tsai et al. (2003) also propose an optimization technique. Srivatsan

and Bandyopadhyay (2013) on the other hand, make use of mathematical manipulation

techniques to obtain the resulting polynomial. Vallés et al. (2012) follow a numerical pro-

cedure: once the 3 non-linear equations are obtained in terms of passive joint variables,

Newton-Raphson numerical method is applied to obtain the values of the passive joints

variables.

For the velocity and acceleration analysis of 1T2R PMs, it is observed that some

prefers to differentiate the loop-closure equations to obtain the required velocities as given

in (Li and Xu, 2007; Chen et al., 2013) while some prefers to make use of screw algebra

as in (Gallardo et al., 2008).

Besides with several kinematic chain structures which have 1T2R motion charac-

teristics, there are also several studies on the kinematics of 3-RRS PMs. Li et al. (2001)

present the methodology to solve the position level inverse kinematics problem. Then

by taking the time derivatives of position equations, the velocities and accelerations are

obtained. Itul and Pisla (2009) also present a study on the forward and inverse position,

velocity and acceleration level kinematics.

2.2. Singularity Analysis

A study on the singularity analysis of closed loop mechanisms is performed by

Gosselin and Angeles (1990). In the study, the velocity loop equation for a general closed

loop mechanism is defined as:

Aẋ+ Bθ̇ = 0 (2.1)
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where ẋ is task space velocity column matrix, θ̇ is the active joint velocity column matrix

and A and B are square matrices, elements of which are in terms position variables. A

general closed-loop mechanism with such a velocity loop equation can have 3 types of

singularities. The first type occurs when det (B) = 0, which means that the configuration

of the mechanism is at the inner or outer boundaries of its workspace. This type of singu-

larities are related to the inverse kinematics problem of the investigated mechanism. The

second type of singularity occurs when det (A) = 0 and this singularity refers to the sit-

uations where the end-effector is movable even though all of the active joints are locked.

This type of singularities are due to the forward kinematics problem of the mechanism.

The third type of singularities are observed when det (A) = det (B) = 0. In this type of

singularities, either the mechanism can have some finite motions when the actuators are

locked or actuators can have some finite motion with no motion output.

It is very important to perform a singularity analysis for PMs in order to be able to

avoid the singularities when planning the motion for the moving platform and selecting

the link dimensions on the design stage (Li and Xu, 2007; Zhang et al., 2012). Zlatanov

et al. (2002); Li and Xu (2007); Rezaei et al. (2013); Chen et al. (2013) perform singularity

analyses on 1T2R PMs with different kinematic structures. Rezaei et al. (2013) also

investigate all types of singularities for a 3-PSP PM. Itul and Pisla (2009) categorize the

singularities of a 3-RRS as given above and states that the singularities can be obtained

during the design phase of the mechanism.

2.3. Workspace Analysis

Merlet (2001) states that there are several possible methodologies to calculate the

workspace boundaries of PMs. One of them is the geometrical approach. In this method,

firstly the constraints on the legs are defined. Then, subjected to these constraints, a ge-

ometrical volume that describes all the possible locations of the generalized coordinates

is obtained. At the end, the intersection of all these volumes for each leg is identified

as the workspace of the PM. Another method defined by Merlet (2001) is called the dis-

cretization method. In this method, the workspace of the PM is covered by grids of nodes.

Then every node is tested if it obeys the constraints derived from the geometry of the PM

or not. At the end, the workspace boundary is constituted with the nodes whose at least

one close neighbor does not satisfy the constraint equations. Merlet (2001) also mentions

several numerical approaches that are used to obtain the workspace boundaries of PMs in

the literature.
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On the reachable workspace analysis of 1T2R PMs, Li et al. (2007) perform the

analysis as follows: Firstly the constraint equations which include the motion limits of

the joints and geometrical constraints of the PMs are determined. Then at every elevation

level of the moving platform, the possible rotations around horizontal axes are checked

whether they satisfy the constraints or not. The rotation values that satisfy the constraint

conditions form the workspace of the PM. Rezaei et al. (2013) investigate a novel 3-dof

PM which has two operation modes: the first mode is 1T2R and the second mode is fully

translational. For the workspace of the PM in the 1T2R mode, the same methodology

given above is used. For checking whether a node satisfies the constraint equations or not,

it is stated that inverse kinematics solution of the PM can be used. Other than the inverse

kinematic solution, it is also possible to use the forward kinematics solution. However it is

pointed out that if the forward kinematics is going to be used for the workspace analysis,

it is unnecessary to make a constraint check since the forward kinematics automatically

obeys the constraint conditions of the PM. Itul and Pisla (2009) also propose that it is

possible to use inverse and forward kinematics solutions as given by Rezaei et al. (2013)

in order to obtain the workspace of a 3-RRS PM. There are also several studies that

investigate the dexterous workspace of 1T2R PMs. Srivatsan and Bandyopadhyay (2014)

define another workspace, safe working zone, from which the link interference conditions,

physical limits of the joints as well as the singular configurations are excluded from the

reachable workspace.

2.4. Dynamic Analysis

The dynamic analysis of spatial PMs have been a difficult task due to their spa-

tial kinematic structure with a large number of passive variables. Three main methods

are applied to perform the dynamic analysis of PMs: Newton-Euler classical procedure,

application of Lagrange’s equations and multipliers, and finally virtual work principle

(Staicu, 2012).

The literature on the dynamic analysis problem of 1T2R PMs include each of the

approaches listed above. The dynamic analysis of a 3-PRS PM is presented by Li and

Xu (2005) by using Lagrange’s equations and multipliers. The authors propose to use

active and passive joint variables at each limb as generalized coordinates and they obtain

a solution for the inverse dynamics problem.

Tsai and Yuan (2010) present the dynamic analysis of a 3-PRS PM, where dy-

namic equations for the moving platform is formulated using the task space coordinates
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whereas the dynamic equations for the limbs are formulated in joint space coordinates. It

is claimed that this decomposition simplifies the solution to complex velocity equations

defined in different coordinate systems. In order to avoid dealing with complex algebra in

the calculation of the reaction forces occurring at the S joints, it is suggested to use a spe-

cial decomposition method. Basically, the reaction forces are decomposed as constraint

and driving forces. Then the constraint forces are eliminated from the equation of motion

of the PM.

For a 3-RPS PM, the dynamic analysis is performed by using Lagrange’s equa-

tions by Pendar et al. (2004). The authors use all of the task and joint space variables

as generalized coordinates and obtain 9 Lagrange multipliers. Then, a methodology to

eliminate the Lagrange multipliers is presented and finally the equation of motion of the

PM is obtained.

Another study proposes to use the virtual work principle to obtain the inverse

and forward dynamics equations for a 3-RPS PM (Sokolov and Xirouchakis, 2007). The

authors also provide the methodology to obtain the reaction forces on the joints.

Staicu (2012) presents the inverse dynamic analysis of 3-RPS PM in two configu-

rations: at the first configuration the R joints are actuated and at the second configuration

P joints are actuated. The author presented the analysis by two different methods: virtual

work principle and Lagrange’s equations. In the analysis by Lagrange’s equations, author

makes use of 12 generalized coordinates: 3 active and 3 passive joint variables at joint

space and 6 pose parameters at the task space. After eliminating 9 Lagrange multipliers,

equations for the inverse dynamics problem is obtained as it is done by the principle of

virtual work method.

For the dynamic analysis of 3-RRS PMs, a study using Newton-Euler approach is

given by Li et al. (2001). The dynamic force and moment equilibrium equations are pre-

sented and the required actuation torques for the desired task are obtained. Itul and Pisla

(2009) make use of both Newton-Euler approach and principle of virtual power method.

The equation of motion is obtained by Newton-Euler approach with the assumption of no

friction at joints. After that, joint frictions are modelled and the required input torques are

computed to overcome the frictions. Finally, the obtained torques are summed up and an

equation for the required torque for each motor is obtained.

The dynamic analysis of the Tricept Robot is performed for exact and approximate

models by Caccavale et al. (2003). The structure of this robot consists of 3 outer limbs

having UPS kinematic chain structures and an inner limb allowing 3-dof (1T2R) motion

(kinematic structure of the inner limb is not explicitly given).The solution of the exact
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model is based on virtual work principle while the solution of the approximate model is

based on Lagrangian formulation using some simplifying assumptions. A simulation for

both of the methods is run and a comparison is given. It is claimed in the study that the

impact of the simplification assumptions on the dynamic model decreases as the motion

of the moving platform gets slower.

13



CHAPTER 3

MODELLING OF THE 3-RRS PARALLEL

MANIPULATOR

This chapter consists of the direct and inverse kinematic analysis (position level

kinematics are published in (Tetik et al., 2016)), workspace analysis and singularity anal-

ysis (workspace and singularity analyses studies will be published in the proceedings of

6th European Conference on Mechanism Science, 2016) and finally dynamic analysis of

the 3-RRS manipulator. In order to carry out these analyses, first the geometry of the

PM is examined. Then the mobility analysis of the manipulator is performed. Then, the

formulations for position, velocity and acceleration level inverse and forward kinematics

are presented. Following that, workspace and singularity analyses for the 3-RRS PM is

presented. Finally formulation for the inverse dynamic analysis is given.

3.1. Manipulator Geometry

3-RRS PM consists of a fixed base, a moving platform and 3 identical limbs con-

necting the base and the platform. The limbs lie on separate planes. Each limb plane is

normal to the parallel R joint axes and passes through the S joint centers associated with

the limb. Each limb is composed of three joints:

• an active R joint connected to the base represented by points O0i on the limb plane,

• a passive R joint between upper and lower limbs represented by points Oij on the

limb plane,

• a S joint between upper limb and platform represented by points for i = 1, 2, 3 and

j = i+ 3.

In Figure 3.1, a fixed coordinate frame O0−xyz is attached on the base, where the origin

O0 is the chosen as the center of the circle which is tangent to the three fixed revolute

joints. The radius of the base circle is b. The circle coincides with O0i for i = 1, 2, 3. The

vectors from O0 to O0i are ~bi and the x-axis is chosen to be along ~b1. The angle between
~b1and ~b2 is α12 = 120◦. The angle between ~b1 and ~b3 is α13 = 240◦. A coordinate frame
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Figure 3.1. Kinematic Diagram of the 3-RRS PM

O7 − uvw is attached on the moving platform, where the origin O7 is the center of the

circle which passes through the three S joint centers O7j for j = 4, 5, 6. The radius of

the platform circle is p. The vectors from O7 to O7j are ~pj . The u-axis is chosen to be

along ~p4 . The angle between ~p4 and ~p5 is α45 = 120◦. The angle between ~p4 and ~p6 is

α46 = 240◦.

The position vector that defines the location of the moving platform with respect

to the fixed coordinate frame is ~rP =
−−−→
O0O7. ~ri =

−−−−→
O0iOij are the lower limb vectors and

~rj =
−−−−→
OijO7j are the upper limb vectors. The axes of the active R joints are along ~Ji unit

vectors and passive R joints are along ~Jj unit vectors. ~J1 and ~J4 are along the y-axes of

the fixed coordinate frame.

3.2. Mobility Analysis

The mobility of a PM can be calculated by using Grübler’s formula:

F = λ(m− n− 1) +
n∑
i=1

fi (3.1)
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where

• λ : dof of the motion space,

• m: total number of rigid bodies,

• n: total number of joints,

• fi: dof of joint i.

The 3-RRS PM works in a λ = 6 space. m = 8, n = 9 and
n∑
i=1

fi = 15 Then the dof

of the manipulator is F = 6(8 − 9 − 1) + 15 = 3. The motion type of the 3-dof of the

platform will be apparent when the kinematic analysis is performed.

3.3. Constraint Analysis

Let the position vector of the origin of moving coordinate frame represented in the

fixed frame be:

r̄P =
[
O7,x O7,y O7,z

]T
(3.2)

and rotation matrix defining the orientation of the moving coordinate frame O7 − uvw

with respect to the fixed frame O0 − xyz be:

R =


ux vx wx

uy vy wy

uz vz wz

 (3.3)

which is composed of 3 unit vectors −→u , −→v and −→w (components are the column vectors

of R), which are mutually perpendicular to each other.

Since the manipulator has 3-dof, 3 parameters among the 12 parameters of the

components of r̄P and elements of R are independent. The remaining dependent 9 pa-

rameters should be determined by making use of the constraint equations. By manipulator

constraints, 3 dependent parameters will be solved for. The rest of the dependent param-

eters can be found by making use of the equations due to the orthogonality of the rotation

matrix or due to an Euler rotation sequence. In this thesis study, x− y − z Euler rotation

sequence is used to form the rotation matrix. Other Euler rotation sequences can be used

as well. Due to the motion characteristics of the moving platform, the independent pose

parameters are chosen as O7,z the z coordinate of the moving platform center, and ψx and

ψy rotation about horizontal x and y axes.

16



3.3.1. Manipulator Constraints

Since O74 is constrained on xz plane:

−−−→
O0O74 = ~rP + ~p1 ⇒


O74,x

O74,y

O74,z

 =


O74,x

0

O74,z

 =


O7,x

O7,y

O7,z

+ R


p

0

0

 =


O7,x + pux

O7,y + puy

O7,z + puz

 (3.4)

Since O75 is constrained on the y = tan (120◦)x plane:

−−−→
O0O75 = ~rP + ~p2 ⇒


O75,x

O75,y

O75,z

 =


O75,x

−
√

3O75,x

O75,z

 =


O7,x

O7,y

O7,z

+ R · Z (α45) ·


p

0

0

 =


O7,x − pux

2
+
√

3pvx
2

O7,y − puy
2

+
√

3pvy
2

O7,z − puz
2

+
√

3pvz
2


(3.5)

where Z (·) represents the rotation matrix around the z-axis. Since O76 is constrained on

the y = tan (240◦)x plane:

−−−→
O0O76 = ~rP + ~p3 ⇒


O76,x

O76,y

O76,z

 =


O76,x√
3O76,x

O76,z

 =


O7,x

O7,y

O7,z

+ R · Z (α46) ·


p

0

0

 =


O7,x − pux

2
−
√

3pvx
2

O7,y − puy
2
−
√

3pvy
2

O7,z − puz
2
−
√

3pvz
2


(3.6)

From equations 3.4, 3.5 and 3.6:

O7,y = −uyp (3.7)

O7,y =
puy
2
−
√

3pvy
2
−
√

3

(
O7,x −

pux
2

+

√
3pvx
2

)
(3.8)

O7,y =
puy
2

+

√
3pvy
2

+
√

3

(
O7,x −

pux
2
−
√

3pvx
2

)
(3.9)

Adding up Equations 3.8 and 3.9 and subtracting from 2 times of Equation 3.7:puy
2
−
√

3pvy
2
−
√

3
(
O7,x − pux

2
+
√

3pvx
2

)
+

puy
2

+
√

3pvy
2

+
√

3
(
O7,x − pux

2
−
√

3pvx
2

)  = −2uyp→ vx = uy (3.10)
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Equating Equations. 3.8 and 3.9:

O7
x =

p (ux − vy)
2

(3.11)

Equations 3.7 and 3.11 constitute the constraint equations for the position of the moving

platform and Equation 3.10 is the constraint equation for the orientation of the moving

platform due to the geometry of the manipulator. The rotation matrix elements in Equa-

tions 3.7 and 3.11 are found using ψx and ψy as explained in the following subsection.

3.3.2. Rotation Matrix Constraints

R is defined by using x− y − z−Euler rotation sequence:

R =


ux vx wx

uy vy wy

uz vz wz

 =


cψycψz

cψzsψxsψy + cψxsψz
sψxsψz − cψxcψzsψy

−cψysψz
cψxcψz − sψxsψysψz
sψxcψz + cψxsψysψz

sψy
−sψxcψy
cψxcψy


(3.12)

where s and c stand for sin and cos respectively. Since ψx and ψy are selected as indepen-

dent orientation parameters, the only unknown parameter of the rotation matrix is ψz. By

making use of Equations 3.10 and 3.12:

ψz = tan−1

(
− sψx sψy
cψx + cψy

)
(3.13)

for cx + cy 6= 0. All the unknown parameters in the rotation matrix can be represented in

terms of ψx, ψy and ψzby using Equations 3.12 and 3.13.

3.4. Inverse Kinematics

Inverse kinematics problem is to find the input angles θi for given independent

pose parameters of moving platform: x̄i =
[
O7,z ψx ψy

]T
. For each limb (see Figure

3.1:

~rP + ~pj = ~bi + ~ri + ~rj (3.14)
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First, the positions of O7j points in terms of given pose parameters are determined by

using the left-hand side of Equation 3.14. Then using the right-hand side of the Equation

3.14 and resolving into x, y and z components:

x : l2cφicα1i = O7j,x − cα1i (b+ l1cθi) (3.15)

y : l2cφisα1i = O7j,y − sα1i (b+ l1cθi) (3.16)

z : l2sφi = −O7j,z − l1sθi (3.17)

Multiplying Equation 3.17 with cα1i and adding up the square of Equation 3.17 with the

square of Equation 3.15:

+

{l2cα1icφi = O7j,x − cα1i (b+ l1cθ)}2

{l2cα1isφi = cα1i (−O7j,z − l1sθi)}2

Aicθi +Bisθi + Ci = 0

(3.18)

where

Ai = 2l1cα1i (bcα1i −O7j,x)

Bi = 2l1O7j,zc2α1i

Ci = O7j,x
2 − 2bO7j,xcα1i + c2α1i

(
b2 + l1

2 − l22 +O7j,z
2
)

for Ci−Ai 6= 0, i = 1, 2, 3 and j = i+ 3. Applying tangent of the half angle substitution

to Equation 3.18 and solving for θi:

θi = 2tan−1

(
−Bi ±

√
Ai

2 +Bi
2 − Ci2

Ci − Ai

)
(3.19)

Once the input angles θi are found, corresponding passive joint angles can be solved

uniquely by using Equations 3.15 and 3.17:

cφi =
O7j,x−cα1i(b+l1cθi)

l2cα1i
sφi = −O7j,z+l1sθi

l2

φi = atan2 (cφi, sφi)
(3.20)

As a case study, a set of independent pose parameters are chosen as x̄i =[
O7,z ψx ψy

]T
=
[
900 −10◦ 15◦

]T
for b = 500 mm, p = 250 mm, l1 = 750 mm

and l2 = 850 mm . The formulation presented above is implemented into Mathematica R©

software and inverse kinematics solution is sought. Firstly the task space parameters are

found as t̄ =
[
O7,x O7,y O7,z ψx ψy ψz

]T
=
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Figure 3.2. Inverse Kinematics Results

[
0.002 mm 0.005 mm 900 mm −10◦ 15◦ 1.32◦

]T
. Then active joint angles are ob-

tained as θ1 = (−44.84◦, − 169.87◦), θ2 = (−45.51◦, − 164.95◦) and

θ3 = (−49.46◦, − 160.94◦) . The corresponding values of the passive joint angles are

φ1 = (−158.87◦, − 55.84◦), φ2 = (−154.86◦, − 55.59◦) and

φ3 = (−152.02◦, − 58.37◦). All possible configurations of the limbs for given set of

independent pose parameters are presented in Figure 3.2. For each limb, one solution is

where the limb faces outwards (Config. 1 in Figure 3.2) and the other solution is where

the limb faces inwards (Config. 2). For different configurations of the limbs, there are

total 8 inverse kinematics solutions. This number of solutions is generic for any pose of

the platform in its workspace.

As it can be seen from Figure 3.2, when 2nd configurations for the input angles are

used, there is a risk of link interference. Therefore, for the safety of the operations, 1st

configurations of the inverse kinematics are used as the solution for inverse kinematics.
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3.5. Forward Kinematics

Forward kinematics problem is to find the task space parameters ψx, ψy and O7,z

for given input angles θi. To achieve this, the coordinates of O74, O75 and O76 will be

calculated in terms of joint variables by using the right-hand side of Equation refeqn3.14:

−−−→
O0O74 = ~b1 + ~r1 + ~r4 =


b+ l1cθ1 + l2cφ1

0

−l1sθ1 − l2sφ1

 (3.21)

−−−→
O0O75 = ~b2 + ~r2 + ~r5 =


−1

2
(b+ l1cθ2 + l2cφ2)

√
3

2
(b+ l1cθ2 + l2cφ2)

−l1sθ2 − l2sφ2

 (3.22)

−−−→
O0O76 = ~b3 + ~r3 + ~r6 =


−1

2
(b+ l1cθ3 + l2cφ3)

−
√

3
2

(b+ l1cθ3 + l2cφ3)

−l1sθ3 − l2sφ3

 (3.23)

Since the moving platform has an equilateral triangle shape with a side length of |O74O75| =
|O75O76| = |O76O74| = p

√
3:{

3
4
(b+ l1cθ2 + l2cφ2)2 + (l1sθ1 + l2sφ1 − l1sθ2 − l2sφ2)2

+1
4
(3b+ 2l1cθ1 + 2l2cφ1 + l1cθ2 + l2cφ2)2

}
= 3p2 (3.24)

{
1
4
(l1cθ2 + l2cφ2 − l1cθ3 − l2cφ3)2 + (l1sθ2 + l2sφ2 − l1sθ3 − l2sφ3)2

+3
4
(2b+ l1 (cθ2 + cθ3) + l2 (cφ2 + cφ3))2

}
= 3p2 (3.25)

{
3
4
(b+ l1cθ3 + l2cφ3)2 + (l1sθ1 + l2sφ1 − l1sθ3 − l2sφ3)2

+1
4
(3b+ 2l1cθ1 + 2l2cφ1 + l1cθ3 + l2cφ3)2

}
= 3p2 (3.26)

By making use of Equations 3.24, 3.25 and 3.26, 3 equations can be written in terms of

passive joint variables φi:

h10 + h11cφ1 + h12cφ2 + h13cφ1cφ2 + h14sφ1 + h15sφ2 + h16sφ1sφ2 = 0 (3.27)

h20 + h21cφ2 + h22cφ3 + h23cφ2cφ3 + h24sφ2 + h25sφ3 + h26sφ2sφ3 = 0 (3.28)

h30 + h31cφ3 + h32cφ1 + h33cφ3cφ1 + h34sφ3 + h35sφ1 + h36sφ3sφ1 = 0 (3.29)
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where

hi0 = 3b2 + 2l1
2 + 2l2

2 − 3p2 + l1cθi (3b+ l1cθi+1) + 3bl1cθi+1 − 2l1
2sθisθi+1

hi1 = l2 (3b+ 2l1cθi + l1cθi+1)

hi2 = l2 (3b+ l1cθi + 2l1cθi+1)

hi3 = l2
2

hi4 = 2l1l2 (sθi − sθi+1)

hi5 = −2l1l2 (sθi − sθi+1)

hi6 = −2l2
2

for i = 1, 2, 3 and i + 1 = 1 for i = 3. Applying tangent of the half angle substitutions

t1 = tan (φ1/2 ), t3 = tan (φ3/2 ) to Equations 3.27 and 3.28 and rearranging in terms

of φ2:

f10 + f11sφ2 + f12cφ2 = 0 (3.30)

f20 + f21sφ2 + f22cφ2 = 0 (3.31)

where

f10 = h10 + h11 + 2h14t1 + (h10 − h11) t1
2 f20 = h20 + h22 + 2h25t3 + (h20 − h22) t3

2

f11 = h15 + 2h16t1 + h15t1
2 f21 = h24 + 2h26t3 + h24t3

2

f12 = h12 + h13 + (h12 − h13) t1
2 f22 = h21 + h23 + (h21 − h23) t3

2

Using Equations 3.30 and 3.31, cφ2 and sφ2 can be solved:

sφ2 =
f12f20 − f10f22

f11f22 − f12f21

, cφ2 =
f10f21 − f11f20

f11f22 − f12f21

(3.32)

Since c2φ2 + s2φ2 = 1, from Equation 3.32:

(f12f20 − f10f22)2 + (f10f21 − f11f20)2 − (f11f22 − f12f21)2 = 0 (3.33)

Equation 3.33 involves t1 and t3 only. Rearranging Equation 3.33, a 4th degree polynomial

in terms of t1 can be obtained:

a0 + a1t1 + a2t1
2 + a3t1

3 + a4t1
4 = 0 (3.34)

Coefficients ai in Equation 3.34 are 4th degree polynomials in terms of t3. Also applying

tangent of half angle substitution t1 = tan (φ1/2 ), t3 = tan (φ3/2 ) and rearranging

Equation 3.29:

b0 + b1t1 + b2t1
2 = 0 (3.35)
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The coefficients bi in Equation 3.35 are 2nd degree polynomials in terms of t3. Solving for

t1
2 from Equation 3.35:

t1
2 = −b0 + b1t1

b2

(3.36)

for b2 6= 0. Substituting Equation 3.36 into Equation 3.34, and solving for t1:

t1 =
a4b0b

2
1 − b0 (a4b0 + a3b1) b2 + a2b0b

2
2 − a0b

3
2

(−a4b3
1 + b1 (2a4b0 + a3b1) b2 − (a3b0 + a2b1) b2

2 + a1b3
2)

(3.37)

t1 given in Equation 3.37 is only a function of t3. When Equation 3.37 is substituted into

Equation 3.35:

b3
2H

[a4b3
1 − b1 (2a4b0 + a3b1) b2 + (a3b0 + a2b1) b2

2 − a1b3
2]

2 = 0 (3.38)

Since b2 6= 0, H = 0 in Equation 3.38:

H =



a4 {a4b
4
0 + b1 [−a3b

3
0 + b1 (a2b

2
0 − a1b0b1 + a0b

2
1)]}+

b2

[
(a2

3 − 2a2a4) b3
0 + (−a2a3 + 3a1a4) b2

0b1

+ (a1a3 − 4a0a4) b0b
2
1 − a0a3b

3
1

]
+

b2
2 [(a2

2 − 2a1a3 + 2a0a4) b2
0 + (−a1a2 + 3a0a3) b0b1 + a0a2b

2
1] +

b3
2 [(a2

1 − 2a0a2) b0 − a0a1b1] + a2
0b

4
2


= 0 (3.39)

Equation 3.39 is a 16th degree polynomial in terms of t3. Once a numerical solution for

t3 is obtained, then t1 can be found uniquely by Equation 3.37. Corresponding φ1 and

φ3 values can be evaluated as φi = 2tan−1(ti). Finally corresponding φ2 can be found

from Equation 3.32 as φ2 = atan2(cφ2, sφ2). For b2 = 0, t1 can be uniquely solved

from Equation 3.35. Then the value can be substituted in Equation 3.34 and a 4th order

polynomial in terms of t3 is obtained. Equation 3.34 can be solved for t3 analytically.

The corresponding passive joint variables can be found by following the same procedure

explained above. When all the passive joint variables are solved for, the position and

orientation of the moving platform for given active joint variables can be obtained from

Equation 3.14.

The procedure for the forward kinematic analysis given above is implemented in

Mathematica R© and the results of examples are obtained. To be able to compare the results

of both inverse and forward kinematics, one set of the solutions of inverse kinematics

(θ1 = −65.21◦ , θ2 = −68.71◦, θ3 = −60.72◦) is used as input for the forward kinematic

analysis. As stated before, there exists maximum 16 solutions of the polynomial given

in Equation 3.39. In the numerical example, it is observed that 8 of the solutions are

imaginary, hence there are 8 real solutions obtained. The obtained numerical values of
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Figure 3.3. Forward Kinematics Results for 8 Real Solutions
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Figure 3.4. Forward Kinematics Results for 16 Real Solutions
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t3, corresponding passive joint angles φi, independent pose parameters and kinematic

schemes of the PM are provided in Figure 3.3 Notice that 4th set of the solution matches

with the independent task space parameters used for the inverse kinematics.

After performing some trials with different input values of θi, it is observed that

mathematically 16 real solutions for the pose of the end effector is possible in some con-

figurations. For example when another set of the results from inverse kinematics example,

θ1 = −135.7◦ , θ2 = −132.75◦, θ3 = −144.47◦ is used and there are 16 real solutions for

Equation 3.39. Each possible pose of the moving platform obtained is presented in Figure

3.4. Notice that the 5th solution matches with the independent task space parameters used

in the inverse kinematics example. It should be noted that, even though it is possible to

have all these 16 real solutions mathematically, some of those solutions are physically

impossible due to link interferences and joint limitations.

3.6. Velocity and Acceleration Analysis

The velocity loop equation can be written by differentiating Equation 3.18 respect

to time:

Ȧi c θi + Ḃi s θi + Ċi + (Bi c θi − Ai s θi) θ̇i = Di
˙̄O7j + Eiθ̇i = 0 (3.40)

where

Di =
[
−2 cα1i (b+ l1 c θi) + 2O7j,x 0 2 cα1i

2 (O7j,z + l1 s θi)
]

Ei = 2l1 cα1i (cα1i c θiO7j,z + (−b cα1i +O7j,x) s θi)

Equation 3.40 is a function of ith active joint (θ̇i, i = 1, 2, 3) and corresponding spherical

joint velocitiy ( ˙̄O7j =
[
O7j,x O7j,y O7j,z

]T
, j = i + 3 ). Equation 3.40 can be written

in general form to include all of the active revolute ( ˙̄θ =
[
θ̇1 θ̇2 θ̇3

]T
) and passive

spherical ( ˙̄S =
[

˙̄O74
˙̄O75

˙̄O76

]T
) joint velocities:

D1 01x3 01x3

01x3 D2 01x3

01x3 01x3 D3

 ˙̄S +


E1 0 0

0 E2 0

0 0 E3

 ˙̄θ = JS
˙̄S + Jθ

˙̄θ = 0 (3.41)

The spherical joint velocities can be expressed in terms of task space velocities ( ˙̄t =[
Ȯ7,x Ȯ7,y Ȯ7,z ψ̇x ψ̇y ψ̇z

]T
) by taking the time derivative of Equations 3.4, 3.5

and 3.6:

˙̄O7j = Jt,O7j
˙̄t⇒ ˙̄S = Jt,S ˙̄t (3.42)
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where Jt,S =


Jt,O74

Jt,O75

Jt,O76

 and

Jt,O7j
=



1 0 0 0

(
−p sψy

c (α4j + ψz)

)
−p cψy s (α4j + ψz)

0 1 0 p


(

cψx sψy

c (α4j + ψz)

)
− sψx s (α4j + ψz)


(
p sψx cψy

c (α4j + ψz)

)
p


ψx c (α4j + ψz)

−

(
sψx sψy

s (α4j + ψz)

)
0 0 1 p


(

sψx sψy

c (α4j + ψz)

)
+ cψx s (α4j + ψz)


(
−p cψx cψy

c (α4j + ψz)

)
p


sψx c (α4j + ψz)

+

(
cψx sψy

s (α4j + ψz)

)


Task space velocities can be expressed in terms of independent task space velocities ( ˙̄xi =[
Ȯ7,z ψ̇x ψ̇y

]T
) by taking the time derivative of Equations 3.7, 3.11 and 3.13:

Ȯ7,x = JO7,x
˙̄xi

Ȯ7,y = JO7,y
˙̄xi

ψ̇z = Jψz
˙̄xi

→ ˙̄t = Jxi,t ˙̄xi (3.43)

where

Jxi,t =
[
JO7,x JO7,y I3×3 Jz

]T

JO7,x =
[
0 −p cψy sψy(cψx+cψy sψx sψy)

2(1+cψx cψy)2
−p cψy sψx(cψx+cψy+sψx sψy)

2(1+cψx cψy)2

]

JO7y =


0 −p cψy sψy(cψx+cψy)

(1+cψx cψy)2

p sψx

s2ψxs
4ψy − c4ψy − c2ψx c 2ψy−

1
4

cψx (5 cψy + 3 c 3ψy)


(1+cψx cψy)3


Jψz =

[
0 − sψy

1+cψx cψy

− sψx

1+cψx cψy

]
When Equations 3.42 and 3.43 are substituted into Equation 3.41:

JSJt,SJxi,t ˙̄xi + Jθ
˙̄θ = Jxi ˙̄xi + Jθ

˙̄θ = 0 (3.44)

Both Jacobian matrices Jxi and Jθ are 3 x 3 square matrices. In order to obtain the

active joint velocities in terms of independent task space velocities, Equation 3.44 can be

rearranged as:

˙̄θ = −J−1
θ JSJt,SJxi,t ˙̄xi = Jxi,θ ˙̄xi (3.45)
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Then ith passive joint velocity (φ̇i) can be found in terms of the associated active joint and

spherical joint velocity by taking the time derivative of Equation 3.17:

φ̇i = JSi,φi
˙̄O7j + Jθi,φi θ̇i (3.46)

where:

JSi,φi =
[
0 0 −1

l2cφi

]
and

Jθi,φi = − l1 c θi
cφil2

Equation 3.46 can be written in general form in order it to contain all of the passive joint

( ˙̄φ =
[
φ̇1 φ̇2 φ̇3

]T
) and S joint velocities:

˙̄φ =


JS1,φ1 03x1 03x1

03x1 JS2,φ2 03x1

03x1 03x1 JS3,φ3

 ˙̄S +


Jθ1,φ1 0 0

0 Jθ2,φ2 0

0 0 Jθ3,φ3

 ˙̄θ = JS,φ
˙̄S + Jθ,φ

˙̄θ (3.47)

Substituting Equaitons 3.42, 3.43 and 3.45 in Equation 3.47, the passive joint space ve-

locities and independent task space velocities can be interrelated as:

˙̄φ = (JS,φJxi,S + Jθ,φJxi,θ) ˙̄xi = Jxi,φ ˙̄xi (3.48)

where Jxi,S = Jt,SJxi,t. To formulate the joint space accelerations ( ¨̄θ =
[
θ̈1 θ̈2 θ̈3

]T
,

¨̄φ =
[
φ̈1 φ̈2 φ̈3

]T
) in terms of independent pose parameter accelerations (¨̄xi =[

Ö7,z ψ̈x ψ̈y

]T
), time derivative of Equations 3.45 and 3.48 are used:

¨̄θ = J̇xi,θ ˙̄xi + Jxi,θ ¨̄xi (3.49)

¨̄φ = J̇xi,φ ˙̄x+ Jxi,φ ¨̄x (3.50)

The time derivatives of each Jacobian matrix used in Equations 3.49 and 3.50 are provided

in Appendix A.

3.7. Singularity Analysis

As stated in Section 2.2, there are 3 types of singularities for PMs. In order to

investigate the singular configurations of the 3-RRS PM, the Jacobian matrices given in

Equation 3.44 are used. The 1st type singularities singularities, also known as inverse
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kinematics singularities, occur when Det [Jθ] = 0. Jθ is a function of the inputs θ1, θ2

and θ3. So, Det [Jθ] = 0 defines an equation in θ1, θ2 and θ3. This is a surface in the

joint space, called as the singularity surface. Formulating the singularity surface equation

from Det [Jθ] = 0 is computationally challenging. Instead, notice that inverse kinematic

singularities occur when either of the limbs are in extended or folded configurations,

where the two links of the limbs become collinear. So to speak, the singularity conditions

can be analysed separately for each limb. Since the limbs of the PM are identical and

the base and the platform are symmetrical, the conditions for each limb is equivalent to

each other. Without loss of generality, limb 1 can be analysed. Limb 1 is in extended or

folded configuration the A2
1 + B2

1 − C2
1 term in Equation 3.18 is equal to zero. The 1st

type singularities are obtained:

A2
1 +B2

1 − C2
1 =

−



−4b2 + 4l1
2 − 8l1l2 + 4l2

2−
4O7,z

2 − 4b2cx
2 − b2cx

4

+8l1
2cxcy − 16l1l2cxcy+

8l2
2cxcy − 8O7,z

2cxcy+

6b2cx
2cy

2 + 4l1
2cx

2cy
2−

8l1l2cx
2cy

2 + 4l2
2cx

2cy
2−

4O7,z
2cx

2cy
2 − 9b2cy

4+

8bO7,zsy + 16bO7,zcxcysy+

8bO7,zcx
2cy

2sy−
4b2sy

2 − 8b2cxcysy
2−

4b2cx
2cy

2sy
2 − 4b2sx

2sy
2−

b2sx
4sy

4 − 2b2cx
2sx

2sy
2+

6b2cy
2sx

2sy
2 + 12b2cy

2





−4b2 + 4l1
2 + 8l1l2 + 4l2

2−
4O7,z

2 − 4b2cx
2 − b2cx

4+

8l1
2cxcy + 16l1l2cxcy+

8l2
2cxcy − 8O7,z

2cxcy+

12b2cy
2 − b2sx

4sy
4+

6b2cx
2cy

2 + 4l1
2cx

2cy
2+

8l1l2cx
2cy

2 + 4l2
2cx

2cy
2−

4O7,z
2cx

2cy
2 − 9b2cy

4+

8bO7,zsy + 16bO7,zcxcysy+

8bO7,zcx
2cy

2sy−
4b2sy

2 − 8b2cxcysy
2−

4b2cx
2cy

2sy
2 − 4b2sx

2sy
2−

2b2cx
2sx

2sy
2 + 6b2cy

2sx
2sy

2





= 0
(3.51)

where subscripts x and y refers to ψx and ψy. When the condition given in Equation

3.51 is satisfied, the upper and lower links at any of the limbs are collinear. As stated in

Section 2.2, 1st type type singularities represent the configurations where the mechanism

is at the inner or outer boundaries of its workspace. Therefore, it is more convenient to

represent the singularity surface in the task space, rather than the the joint space. Figure

3.5 represents the singularity surface of the 1st limb and Figure 3.6 represents several

inverse kinematic singular configurations of the PM. The singularity surface is obtained

in spherical coordinates. The heave of the moving platform, O7,z, is considered as the
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radius of a sphere and rotations of the moving platform, ψx and ψy, are considered as

azimuth and polar angles of the sphere.

Figure 3.5. The 1st Type Singularity Surface of the 1st Limb

The 2nd type singularities, also known as forward kinematic singularities occur

when:

Det [Jxi ] = 0 (3.52)

The 2nd type singularities refer to the configurations of the PM when any of the

upper links lie on the plane of the moving platform. Unlike the 1st type of singularities,

the 2nd type of singularities cannot be evaluated per limb. As a result, the singularity

condition given in Equation 3.52 is a very long and highly non-linear equation in terms of

the independent task space parameters. For this reason a singularity surface for this type is

not plotted. Figure 3.7 represents several configurations that has this type of singularities.

The 3rd type of the singularities are obtained when:
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Det [Jxi ] = Det [Jθ] = 0 (3.53)

This type of singularities occur when either the platform possess finite motions

although the inputs are locked, or the platform is stationary although the inputs are varied.

The 3rd type of singularities are not observed for the 3-RRS PM investigated in this thesis

study because Det [Jθ] and Det [Jxi ] are not simultaneously equal to zero.

Figure 3.6. 1st Type Singular Configurations of the 3-RRS PM

Figure 3.7. 2nd Type Singular Configurations of the 3-RRS PM
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3.8. Workspace Analysis

The workspace of the 3-RRS PM investigated in this study is evaluated by using

position level kinematic constraint equations. To evaluate the reachable workspace, the

position level kinematic equations are implemented into MATLAB R© and a computation

for the reachable workspace of the 3-RRS PM is created. The algorithm makes a research

in the ranges of 0.33 m ≤ O7,z ≤ 1.475 m, −π/2 ≤ ψx ≤ π/2 and−π/2 ≤ ψy ≤ π/2

with the step sizes of ∆O7,z = 10 mm and ∆ψx = ∆ψy = 2◦. Using these independent

task space parameters, it evaluates the active and passive joint variables. If the given task

space parameters are achievable by the manipulator, the given parameters are saved as the

reachable workspace of the PM. To represent the workspace of the manipulator, spherical

coordinate system is preferred. The heave of the moving platform, O7,z, is considered as

the radius of a sphere and rotations of the moving platform, ψx and ψy, are considered as

azimuth and polar angles of the sphere and required conversion is performed.

Figure 3.8. Link Interference Condition for Spherical Joints

After obtaining the reachable workspace of the PM, singularity and link interfer-

ence conditions are introduced to the workspace computation. The resulting workspace

is defined as the Safe Working Zone of the PM by Srivatsan and Bandyopadhyay (2014)

and a study to obtain the safe working zone of the 3-RRS PM investigated in this thesis

study is presented in the 6th European Conference on Mechanism Science (EUCOMES

2016). As joint limits, 3-RRS PM has two types of joint limitations. First one is at active
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joints whose value must be in the range of −π/2 ≤ θi ≤ 0. The other joint limitation

is with the spherical joints. The angle in between an upper limb and the corresponding
−−−→
O7O7j vector cannot exceed 30◦ due to the joint construction as presented in Figure 3.8.

The safe working zone of the PM is also represented using spherical coordinates.

To visualise the workspace of the PM better, sections of the workspaces at certain

heave values are presented in Figure 3.10. Figure 3.10 (a)-(b) represents the reachable

workspace and safe working zone atO7,z = 0.75 m and Figure 3.10 (b)-(c) atO7,z = 1 m.

Figure 3.9. a) Reachable Workspace and b)Safe Working Zone

Figure 3.10. Reachable Workspace and Safe Working Zone for: a-b)O7,z = 750 mm,
c-d)O7,z = 1000 mm
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3.9. Dynamic Analysis

Dynamic analysis consists of obtaining the required input torques in order to track

a desired trajectory (inverse dynamics) or obtaining the trajectory of the moving platform

with given input torques (forward dynamics). In this thesis study, only inverse dynamics

of the 3-RRS PM is formulated. In order to formulate the inverse dynamics of the 3-RRS

PM, firstly velocities and accelerations of mass centers are determined. Then the forces

on the system are defined. At the end, the analytical dynamic models of the system which

is obtained by using virtual work method and Lagranges’s approach are presented.

3.9.1. Mass Center Positions, Velocities and Accelerations

Figure 3.11. Mass Centers

Starting from the lower link at ith limb, the distance of the mass center Gi from

point O1i is shown with d1 and its mass is m1. The distance of the mass center Gj of the

upper link at ith limb from point Oij is denoted by d2 and mass is shown with m2. Due to

symmetric construction of the limbs, Gi and Gj are assumed to lie on O0iOij and OijO7j ,

respectively. Since the cross section of the moving platform is an equilateral triangle, the
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center of mass lies on the w-axis. The distance of the mass center of the platform from

point O7 along w-axis is shown with dp and its mass is called mp as presented in Figure

3.11. The position, velocity and acceleration of Gi can be formulated as:

p̄Gi
= O0Gi =


cα1i (b+ d1 c θi)

sα1i (b+ d1 c θi)

−d1 s θi

 (3.54)

v̄Gi
= ˙̄pGi

= Jθi,Gi
θ̇i (3.55)

where

Jθi,Gi
= −


d1 cα1i s θi

d1 sα1i s θi

d1 c θi



āGi
= ¨̄pGi

= J̇θi,Gi
θ̇i + Jθi,Gi

θ̈i (3.56)

where

J̇θi,Gi
=


−d1 cα1i c θi

−d1 sα1i c θi

d1 s θi

 θ̇i
The position, velocity and acceleration of Gj are formulated as:

p̄Gj
= O0Gj =


cα1i (b+ l1 c θi + d2 cφi)

sα1i (b+ l1 c θi + d2 cφi)

−l1 s θi − d2 sφi

 (3.57)

v̄Gj
= ˙̄pGj

= Jθi,Gj
θ̇i + Jφi,Gj

φ̇i (3.58)

where

Jθi,Gj
= −


l1 cα1i s θi

l1 sα1i s θi

l1 c θi


and

Jφi,Gj
= −


d2 cα1i sφi

d2 sα1i sφi

d2 cφi


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āGj
= ¨̄pGj

= J̇θi,Gj
θ̇i + Jθi,Gj

θ̈i + J̇φi,Gj
φ̇i + Jφi,Gj

φ̈i (3.59)

where

J̇θi,Gj
=


−l1 cα1i c θi

−l1 sα1i c θi

l1 s θi

 θ̇i
and

J̇φi,Gj
=


l1 cα1i s θi

l1 sα1i s θi

l1 c θi

 φ̇i
The mass center of the platform:

p̄GP
= O0GP = ~rP +


dp sψy

−dp sψx cψy

dp cψx cψy

 (3.60)

v̄GP
= ˙̄pGP

= ˙̄rP + Jψ,GP
ψ̇ (3.61)

where

Jψ,GP
=


0 dp cψy 0

−dp cψx cψy dp sψx sψy 0

−dp cψy sψx −dp cψx sψy 0



āGP
= ¨̄pGP

= ¨̄rP + J̇ψ,GP
ψ̇ + Jψ,GP

ψ̈ (3.62)

where

J̇ψ,GP
= dp


0 − sψyψ̇y 0(

sψx cψyψ̇x + cψx sψyψ̇y

) (
cψx sψyψ̇x + sψx cψyψ̇y

)
0(

sψx sψyψ̇y − cψx cψyψ̇x

) (
sψx sψyψ̇x − cψx cψyψ̇y

)
0



3.9.2. Inertial, Gravitational and External Forces and Moments

The internal forces (composed of gravitational and inertial forces) acting on the

lower limbs, upper limbs and the moving platform can be formulated as:

F̄ int
i = m1 (ḡ + āGi

) (3.63)
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F̄ int
j = m2

(
ḡ + āGj

)
(3.64)

F̄ int
P = mP (ḡ + āGP

) (3.65)

where ḡ =
[
0 0 −9.81

]T
. The inertial moments occurring on the links and platform

can be expressed as:

M̄ in
1 = I1,yy

[
θ̈1 θ̈2 θ̈3

]T
(3.66)

M̄ in
2 = I2,yy

[
φ̈1 φ̈2 φ̈3

]T
(3.67)

M̄ in
P = IP ᾱP (3.68)

where I1,yyand I2,yy are the yy− component of the moments of inertia of the lower and

upper limbs about their centers of masses, IP is the moment of inertia matrix of the mobile

platform and ᾱP is the angular acceleration array of the moving platform with respect to

the fixed frame. ᾱP is calculated as:

ω̃P = ṘRT =


0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

⇒ ω̄P =


ωx

ωy

ωz

 = Jt,ω ˙̄t

⇒ ᾱP = J̇t,ω ˙̄t+ Jt,ω ¨̄t

(3.69)

where

Jt,ω =


0 0 0 1 0 sψy

0 0 0 0 cψx − sψx cψy

0 0 0 0 sψx cψx cψy


and

J̇t,ω =


0 0 0 0 0 cψyψ̇y

0 0 0 0 − sψxψ̇x sψx sψyψ̇y − cψx cψyψ̇x

0 0 0 0 cψxψ̇x − sψx cψyψ̇x − cψx sψyψ̇y


The equivalent external force acting on the center of the mobile platform are for-

mulated as:
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F̄ ext
P =

[
F ext
x F ext

y F ext
z

]T
(3.70)

The input torques applied on the active revolute joints are formulated as:

τ̄a =
[
τ1 τ2 τ3

]T
(3.71)

3.9.3. Virtual Work Method

For the dynamic analysis of the 3-RRS PM, virtual work method can be applied

as follows: 
˙̄θ
T
τ̄a + v̄TP F̄

ext
P + v̄TGP

F̄ int
P + ω̄TPM̄

in
P +

3∑
i=1

v̄TGi
F̄ int
i +

3∑
i=1

v̄TGj
F̄ int
j + ˙̄θ

T
M̄ in

G1
+ ˙̄φ

T
M̄ in

G2

 = 0 (3.72)

When the virtual displacements are written in terms of ˙̄xi:

˙̄xTi


JTxi,θτ̄

a + JTxi,P F̄
ext
P + JTxi,GP

F̄ int
P + JTxi,ωM̄

in
P +

3∑
i=1

JTxi,PGi
F̄ int
i +

3∑
i=1

JTxi,PGj
F̄ int
j + JTxi,θM̄

in
G1

+ JTxi,φM̄
in
G2

 = 0 (3.73)

For known external forces and torques acting on the moving platform, the required

input torques can be determined as:

τ̄a = −
(
JTxi,θ

)−1


JTxi,P F̄

ext
P + JTxi,GP

F̄ int
P + JTxi,ωM̄

in
P +

3∑
i=1

JTxi,PGi
F̄ int
i +

3∑
i=1

JTxi,PGj
F̄ int
j + JTxi,θM̄

in
G1

+ JTxi,φM̄
in
G2

 (3.74)

3.9.4. Lagrange’s Approach

nth Lagrange’s equation for the dynamics of the 3-RRS PM is written as:

9∑
k=1

λk
∂Γk
∂qn

= Ln −Q∗n (3.75)
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where λks are Lagrange’s multipliers, Γks are constraint equations, qn is nth generalized

coordinate, L is the Lagrangian function, Ln = d
dt

(
∂L
∂q̇n

)
− ∂L

∂qn
and Q∗n is the correspond-

ing generalized force.

In the inverse dynamic analysis, generalized coordinates (q̄) include all of the joint

and task space parameters:

q̄ =
[
θ̄T φ̄T ŌT

7 ψ̄T
]T

(3.76)

In order to formulate the Lagrangian function, the kinetic and potential energies

of the moving platform and links should be formulated. The kinetic energies of the ith

lower and upper limbs and the moving platform can be formulated as:

KEi = 1
2

(
I1,yy +m1d1

2
)
θ̇2
i

KEj = 1
2

[
m2l1

2θ̇2
i +

(
I2,yy +m2d2

2
)
φ̇2
i + 2m2l1d2 c (θi − φi) φ̇iθ̇i

]
KEP = 1

2

[
mpV

2
GP

+ ω̄TP IP ω̄P
] (3.77)

The potential energy expressions of ith the lower and upper limbs and the moving

platform can be formulated as:

PEi = −gd1 s θi

PEj = −g (l1 s θi + d2 sφi)

PEP = g (O7,z + dp cψx cψy)

(3.78)

Then the Lagrangian function L =
∑
KE −

∑
PE can be formulated as:

L =



−gmP (dP cψx cψy +O7,z) + d1gm1 s θ1 + d1gm1 s θ2 + d1gm1 s θ3

−gm2 (−l1 s θ1 − d2 sφ1)− gm2 (−l1 s θ2 − d2 sφ2)

−gm2 (−l1 s θ3 − d2 sφ3) + 0.5mP Ȯ
2
7,x + 0.5mP Ȯ

2
7,y + 0.5mP Ȯ

2
7,z

+0.5
(
IG1 + d1

2m1 + l1
2m2

) (
θ̇2

1 + θ̇2
2 + θ̇2

3

)
+d2l1m2 c (θ1 − φ1) θ̇1φ̇1 + d2l1m2 c (θ2 − φ2) θ̇2φ̇2

+d2l1m2 c (θ3 − φ3) θ̇3φ̇3 + 0.5
(
IG2 + d2

2m2

) (
φ̇2

1 + φ̇2
2 + φ̇2

3

)
+dPmP cψy

(
− cψxȮ7,y − sψxȮ7,z

)
ψ̇x

+
(
0.5IP,x + 0.25dP

2mP + 0.25dP
2mP c 2ψy

)
ψ̇2
x

+
(
0.25IP,y + 0.25IP,z + 0.5dP

2mP + (0.25IP,y − 0.25IP,z) c 2ψx
)
ψ̇2
y

+dPmP

(
cψyȮ7,x + sψy

(
sψxȮ7,y − sψxȮ7,z

))
ψ̇y

+
(
IP,x sψyψ̇x + (−IP,y + IP,z) cψx sψx cψyψ̇y

)
ψ̇z

+0.5 (IP,xs
2ψy + c2ψy (IP,zc

2ψx + IP,ys
2ψx)) ψ̇

2
z



(3.79)
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Then Ln term in Equation 3.75 is formulated for n = 1, 2, ..., 12 as:

L1 =

{
g (−d1m1 − l2m2) cθ1 + d2l2m2s (θ1 − φ1) φ̇2

1

+
(
I1,yy + d1

2m1 + l2
2m2

) ..
θ 1 + d2l2m2c (θ1 − φ1)

..

φ 1

}
(3.80)

L2 =

{
g (−d1m1 − l2m2) c θ2 + d2l2m2 s (θ2 − φ2) φ̇2

2

+
(
I1,yy + d1

2m1 + l2
2m2

) ..
θ 2 + d2l2m2 c (θ2 − φ2)

..

φ 2

}
(3.81)

L3 =

{
g (−d1m1 − l2m2) c θ3 + d2l2m2 s (θ3 − φ3) φ̇2

3

+
(
I1,yy + d1

2m1 + l2
2m2

) ..
θ 3 + d2l2m2 c (θ3 − φ3)

..

φ 3

}
(3.82)

L4 = −d2gm2 cφ1 + I2,yy

..

φ 1 + d2m2

(
−l2 s (θ1 − φ1) θ̇2

1+

l2 c (θ1 − φ1)
..

θ 1 + d2

..

φ 1

)
(3.83)

L5 = −d2gm2 cφ2 + I2,yy

..

φ 2 + d2m2

(
−l2 s (θ2 − φ2) θ̇2

2+

l2 c (θ2 − φ2)
..

θ 2 + d2

..

φ 2

)
(3.84)

L6 = −d2gm2 cφ3 + I2,yy

..

φ 3 + d2m2

(
−l2 s (θ3 − φ3) θ̇2

3+

l2 c (θ3 − φ3)
..

θ 3 + d2

..

φ 3

)
(3.85)

L7 = mP

(
−dP sψyψ̇

2
y +

..

O 7,x + dP cψy
..

ψ y

)
(3.86)

L8 = mP

(
..

O 7,y + dP

(
sψx cψyψ̇

2
x + 2 cψx sψyψ̇xψ̇y+

sψx cψyψ̇
2
y − cψx cψy

..

ψ x + sψx sψy
..

ψ y

))
(3.87)

L9 = mP

(
g +

..

O 7,z + dP

(
− cψx cψyψ̇

2
x + 2 sψx sψyψ̇xψ̇y−

cψx cψyψ̇
2
y − sψx cψy

..

ψ x − cψx sψy
..

ψ y

))
(3.88)

L10 =


−dPgmP sψx cψy − dP 2mP s 2ψyψ̇xψ̇y + 0.5 (IP,y − IP,z) s 2ψxψ̇

2
y−

dPmP cψx cψy
..

O 7,y + (IP,x + (IP,y − IP,z) c 2ψx) cψyψ̇yψ̇z−
IP,y cψxsψxc

2ψyψ̇
2
z + 0.5IP,zs2ψxc

2ψyψ̇
2
z − dPmP sψx cψy

..

O 7,z+

IP,x
..

ψ x + 0.5dP
2mP

..

ψ x + 0.5dP
2mP c 2ψy

..

ψ x + IP,x sψy
..

ψ z


(3.89)
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L11 =



−dPgmP cψx sψy + 0.5dP
2mP s 2ψyψ̇

2
x

+0.5 (IP,zc
2ψx s 2ψy + (−IP,x + IP,ys

2ψx) s2ψy) ψ̇
2
z

+ψ̇x

(
−IP,x cψyψ̇z + (−IP,y + IP,z)

(
s 2ψxψ̇y + c 2ψx cψyψ̇z

))
+dPmP cψy

..

O 7,x + dPmP sψx sψy
..

O 7,y

−dPmP cψx sψy
..

O 7,z + 0.5 (IP,y + IP,z)
..

ψ y

+dP
2mP

..

ψ y + 0.5 c 2ψx (IP,y − IP,z)
..

ψ y

−0.5 s 2ψx cψy (IP,y − IP,z)
..

ψ z


(3.90)

L12 =



0.5 (IP,y − IP,z) s 2ψx sψyψ̇
2
y+

(−IP,zc2ψx + (IP,x − IP,ys2ψx)) s 2ψyψ̇yψ̇z

+ (IP,x + (−IP,y + IP,z) c 2ψx) cψyψ̇xψ̇y

+ (IP,y − IP,z) s 2ψxc
2ψyψ̇xψ̇z

+

(
0.5 (−IP,y + IP,z) s 2ψx cψy

..

ψ y

+ (IP,zc
2ψx + IP,ys

2ψx) c2ψy
..

ψ z

)
+IP,x sψy

( ..
ψ x + sψy

..

ψ z

)


(3.91)

The generalized forces are defined as input torques (τa1 , τa2 and τa3 ) for n = 1, 2, 3

and external force components acting on point O7,z (F ext
x , F ext

y and F ext
z ) for n = 7, 8, 9.

With the formulation of Ln, all terms at the right-hand side of Equation 3.75 are formu-

lated. For the left-hand side of the equation, constraint equations Γk correspond to the

scalar components of the Equations 3.4 , 3.5 and 3.6. With the formulations presented

above, first the numerical values of the Lagrange multipliers are found as:

λ1

λ2

λ3

λ4

λ5

λ6

λ7

λ8

λ9



=


∂Γ1/∂φ1

∂Γ2/∂φ1 · · · ∂Γ9/∂φ1
∂Γ1/∂φ2

∂Γ2/∂φ2 · · · ∂Γ9/∂φ2
...

...
...

...
∂Γ1/∂ψz

∂Γ2/∂ψz · · · ∂Γ9/∂ψz


−1

9x9



L4

L5

L6

L7 − F ext
x

L8 − F ext
y

L9 − F ext
z

L10

L11

L12



(3.92)
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Once the Lagrange multipliers are obtained using Equation 3.92, the input torques

can be found as:


L1

L2

L3

+


∂Γ1/∂θ1

∂Γ2/∂θ1 · · · ∂Γ9/∂θ1
∂Γ1/∂θ2

∂Γ2/∂θ2 · · · ∂Γ9/∂θ2
∂Γ1/∂θ3

∂Γ2/∂θ3 · · · ∂Γ9/∂θ3





λ1

λ2

λ3

λ4

λ5

λ6

λ7

λ8

λ9



=


τa1

τa2

τa3

 (3.93)
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CHAPTER 4

DYNAMIC SIMULATIONS

In order to confirm the mathematical model developed in Chapter 3, several sim-

ulations are run using MATLAB/Simulink R© software. In this chapter, firstly the mechan-

ical structure of the PM is explained, and then the performed simulations are presented.

4.1. Mechanical Structure of the PM

The mathematical models formed in the Chapter 3 are used to model the 3-RRS

manipulator in IzTech Rasim Alizade Mechatronics Laboratory. Starting with the me-

chanical components from bottom to top, the base part of the manipulator is fixed on a

concrete block as presented in Figure 4.1. The radius of the base circle is b = 544 mm.

Figure 4.1. Manipulator’s Base and Its Components

3 reducers fixed on the base are attached to the lower limbs. The axes of input

shafts of the reducers meet at the base center of the circle and have 120◦ between each
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other. The output shaft of the reducers are tangent to the base circle. Reducers have

1/149 reduction ratio and their brand and model is Yılmaz Redüktör oil filled EN080-

00+NT101.

Figure 4.2. a) Lower Limb, b) Upper Limb and c) Spherical Joint

Lower limbs are attached to the reducer from their local coordinate frames as

presented in Figure 4.2. Each lower limb is symmetrical with respect to its local xz-

plane. The effective lengths of the lower limbs are l1 = 700 mm and upper limbs are

l2 = 775 mm. Center of mass of each link lies on local z-axis and their distances

from local coordinate frames are found as d1 = 200 mm and d2 = 420 mm using

Solidworks R© CAD models of the parts. The mass of the lower limb including all the

fasteners and flanges is measured as m1 = 28.55 kg and the inertia tensor is found as

I1 = [2.18, 0, 0; 0, 2.02, 0; 0, 0, 0.21] kg.m2. The mass of the upper limb is measured as

m2 = 25.32 kg and inertia tensor is I2 = [2.08, 0, 0; 0, 2.09, 0; 0, 0, 0.05] kg.m2 including

the spherical joint parts attached (See Figure 4.2c).

Figure 4.3 presents the 3D view of the moving platform. The radius of the plat-

form circle is p = 544 mm. By using the CAD model of the part, the distance of the

center of mass from the plane passing through points O74, O75 and O76 is found as

dP = 150 mm along the w-axis. The mass of the moving platform including all fas-

teners and bearings is measured as 35.87 kg and the inertia tensor is found as IP =

[0.27, 0, 0; 0, 0.27, 0; 0, 0, 0.54] kg.m2.

Other than masses of the links, an external force applied on point O7,z and a pay-

load attached to the moving platform with a distance of dP = 250 mm along w-axis are
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Figure 4.3. Moving Platform

considered. For illustration the force vector is taken as F ext =
[
100 200 150

]T
N and

the mass of the payload is taken as mL = 50 kg. The inertia tensor of the payload is taken

as IL = [1, 0, 0; 0, 0.7, 0; 0, 0, 1.3] kg.m2. The effects of the external force and payload are

added to the inverse dynamic formulation given in Chapter 3.

4.2. Inverse Dynamic Model

A dynamic motion simulation is prepared to simulate the behavior of the joints and

moving platform in MATLAB/Simulink R© environment. In this simulation, the equations

for inverse kinematics and dynamics derived in Chapter 3 are used to simulate the motion

of the PM in task and joint spaces. The step size used in the simulation is 0.0001 s and

solver type is assigned as ODE4 (Runge-Kutta order 4 integrator).

To start the simulation, a path for the moving platform is generated. In order to

avoid infinite jerks, the non-stationary motion parts of the moving platform is modelled as

trapezoidal jerk motion by using Repeating Sequence blocks. The displacement values of

the independent task space parameters are presented in Figure 4.4. The z- displacement is

from 332 mm, where all of active joints (θi) are equal to zero, to 1000 mm and the amount

of rotations (ψx and ψy) are ±15◦.

For the given trajectory of the moving platform, the displacement, velocity and

acceleration of each active and passive R joints are obtained by implementing inverse
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Figure 4.4. Trajectory of the Task Space

kinematic analysis formulation given in the Chapter 3 into MATLAB Function blocks

and the displacement, velocity and acceleration variations for the active and passive joint

variables are obtained as in Figures 4.5-4.10.
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Figure 4.5. Active R Joint Displacements

Figure 4.6. Active R Joint Velocity
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Figure 4.7. Active R Joint Acceleration

Figure 4.8. Passive R Joint Displacement
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Figure 4.9. Passive R Joint Velocity

Figure 4.10. Passive R Joint Acceleration
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After obtaining all of the task and joint space parameters, the required input

torques are found by implementing the formulations given in Chapter 3 into a MATLAB

Function block. Inverse dynamic analysis is performed for both virtual work and La-

grange’s dynamics methods for verification purposes. The variations of the input torques

required to track the desired trajectory are presented in Figure 4.11.

As expected, the input torques obtained for both methods are the same. To ob-

tain the required motor displacements, velocities and accelerations, input link values are

divided by the reduction ratio of 1/149 . The torque requirements from the motors are

obtained by multiplying input torque values with the reduction ratio again.

Figure 4.11. Required Input Torques

4.3. SimMechanics Model

Besides the analytical model, a virtual model of the 3-RRS PM is created in

MATLAB/Simulink R© environment using SimMechanics R© blocks. As the first step, the

structural parameters like link lengths, masses, initial conditions of bodies and joints etc.

are defined as ”InitFcn” under the ”Callbacks” tab of ”Model Explorer” window. Then,

the manipulator is modelled by using SimMechanics R© blocks. A sample block that rep-
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Figure 4.12. Body Block of the Bottom Link at Limb 1

resents the body block of a lower limb is presented in Figure 4.12. With the ”Body” and

”Joint” blocks, a virtual model of the 3-RRS PM is obtained. The parameters of the body

and joint blocks are taken from previously defined ”InitFcn” and assigned to the blocks

presented in Figure 4.12.

Limbs are connected by the base and the platform blocks. The overall block di-

agram of the 3-RRS PM is presented in Figure 4.13. The virtual model of the PM is

presented in Figure 4.14.
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Figure 4.13. SimMechanics Blocks for 3-RRS PM
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Figure 4.14. Virtual Model of the 3-RRS PM

To test the accuracy of the inverse kinematic formulations and obtained input

torque values, a simulation is run using motion inputs with the displacement, velocity and

acceleration values of active joints. In this simulation, the values of task and joint space

parameters are checked. It is seen that the difference between calculated values of each

parameter and their obtained values from the sensor blocks on the SimMechanics R© model

are ignorable. Furthermore, torque sensors are attached to active input joints to measure

the computed torque values that the simulation calculates for each actuator. Then the cal-

culated analytical values of the torques are compared with the torques obtained from the

torque sensors. As presented in Figure 4.15, the errors in between the torque values are

ignorable.
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Figure 4.15. Input Torque Errors
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CHAPTER 5

CONTROL OF THE PM

This chapter includes the performed control studies of the 3-RRS PM. Firstly the

control hardware is presented. Then, performed studies are explained. Finally, the results

of the control studies are presented.

5.1. Control Setup

The details of the mechanical components of the 3-RRS PM are given in Chapter

4. In this chapter, firstly the electronics used for the control of the manipulator are pre-

sented. Then, the control strategy is explained. Finally, the results are presented. The

components of the control system is presented in Figures 5.1 and 5.2.

Figure 5.1. Control Setup

Figure 5.2. Control Setup Components
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The controller that is used to send the required step, direction and enable signals

with a frequency of 100 KHz to the stepper drivers is a GOYA 100 R© CNC controller. The

controller has an operator interface including a keyboard and an LCD graphics display.

This controller can control 3 separate stepper motors for point to point positioning and

linear/circular interpolation. Controller can also communicate with a PC over RS-232

serial port using ASCII communication protocol.

User interface of the controller provided by the supplier is BACH Elite R© software.

Using the software it is possible to write a program using GCodes and implement it to the

controller. Once the program is implemented into the controller, it can be run using the

controller’s interface without having PC connection. Other than that, it is also possible

to use the motors in jogging mode and online control modes. Besides creating or run-

ning programs, it is possible to make changes on the configuration of the motors such as

velocity profiles or motion limits etc.

To convert the step, direction and enable signals into currents, Pacific Scientific R©

MA6410 stepper drivers are used. Driver’s supply voltage is between 24 and 75 VDC

and it can supply current ranging from 0.625 to 5 A with a frequency of 20 kHz. Stepper

motors are from PowerPac series of Pacific Scientific R© motors with step angle of 1.8◦.

The model of the motors is N42 HRFM-LNK-NS-01 . The angular velocity and power of

the motor is given as 1500 rpm and 425 W, respectively. The holding torque of the motor

is 22.2 N.m and the rated current as 4.9 A in its data sheet.

To control the stepper motors with GOYA 100 R© CNC controller and MA640 step-

per drivers, there are some important adjustments that must to be done. First of all, to use

the motors in microstepping mode, the DIP switch on the drivers are set suitable for

microstepping mode as given in the user manual. It should be noted here that in the mi-

crostepping mode, 50000 pulses from the driver creates a complete rotation on the motor

shaft.

To set the configuration parameters of GOYA 100 R© CNC controller, its user in-

terface, BACH Elite R© software is used. Firstly, it should be mentioned that the CNC

controller is designed for Cartesian tables and control of the motors are done by giving

the desired position of the Cartesian table. To adjust the controller to 3-RRS PM, 1 mm

displacement of each axis of Cartesian table is set as 1◦ of shaft rotation at the motors.

Then, the motion limits of the motors are defined as −13410◦ ≤ θMi ≤ 0◦, which is

equal to a motion range of −90◦ ≤ θi ≤ 0◦ at the input links. For the velocity of the

motors, controller creates a trapezoidal velocity profile for the motors. In order to avoid

any accidents during the tests, the maximum velocity of the motors are set as 50 rpm.
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5.2. Cabling of the Control Setup

The steppers have 8 wire configuration which allows the user to have bipolar se-

ries, bipolar parallel and unipolar wiring configuration. In order to obtain better torque

characteristics at lower speeds, series wire configuration is selected. The connection dia-

gram of the motors provided in the data sheet is presented Figure 5.3

Figure 5.3. Wiring Configurations of the Stepper Motors
(Source: PacificScientific, 2000)

The wires of the motors and power supply are mounted to the driver’s J2 and J3

ports respectively as presented in Figure 5.4. To obtain better angular resolution, motors

are run at micro step mode. At this mode 1 step signal results in 0.0072◦ rotation at the

shaft and a complete rotation of the shaft requires 50000 pulses. The step configuration is

set using DIP switches on MA6410 stepper drivers.

The connection diagram in between the controller and stepper drivers is presented

in Figure 5.5. Enable, direction and pulse signal inputs to the drivers are supplied by using

9 pole D connectors. Each pin on this connector is numbered from 1 to 9. The first 3 pins

of the drivers require constant 5 VDC signals and they are connected together. This signal

is supplied by the 4th pin of the controller. 6th pin of the driver is connected to 3rd pin of
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Figure 5.4. Motor Driver’s Connection Diagram
(Source: PacificScientific, 1998)

Figure 5.5. a) Driver Connection Port of Controller, b) Signal Inputs of Driver
(Source: S&H, 2000)
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the controller and pulse signals are received over this cable. 7th pin of the driver, which

is the direction input signal, is connected to 8th pin of the controller. And finally 8th pin

of the driver is connected to 7th pin of the controller so that enable signal connection is

done. The connection in between controller and PC is done by using standard cross-over

type serial cable.

5.3. Control Algorithm

Although no closed-loop feedback control is utilized, in order to test the accuracy

of the control, several motion sensors are attached to the vital points (3 magnetic encoders

attached on active R joints and a 3 axis gyroscope attached on the moving platform) on

the PM and signals received from the sensors are compared with the desired values. The

result plots showing the error in between actual and desired values of the motion are

presented at the end of this Chapter.

Since the controller is a 3-axis CNC controller, a point-to-point type of motion

control is applied. For this type of control, both inverse and forward kinematic mod-

els of the 3-RRS PM is used. To apply point-to-point control algorithm, firstly mo-

tion planning is done. Desired points for the moving platform are given as input to a

MATLAB/Simulink R© file. This input data is processed and converted into motor trajecto-

ries considering the motion characteristics of the stepper motors. Then, using the forward

kinematics model of the 3-RRS PM, the trajectory-time curve of the moving platform is

obtained. Following that, a check is performed for the singularity and joint limit condi-

tions using the trajectory curves of the input links and moving platform. If the desired

trajectory of the PM is achievable, then the control algorithm proceeds to the next step.

When it is confirmed that the desired motion is achievable by the manipulator,

position input commands to the controller should be given. For that, the position given in

task space are converted into joint space coordinates by using the inverse kinematic model

in MATLAB/Simulink R© environment. Then the joint space coordinates are converted into

GCodes and implemented as CNC program into the CNC controller by using its interface,

BACH Elite R©.

When the program is run, the controller converts the GCodes into step signals

and transmits to the motor drivers. Stepper drivers receive the step signals and convert

them into currents and transmits to the stepper motors. At that instant, desired rotary

motion from the shafts of the motors is obtained. The time belts transmit the motion to

the reducers and then active R joints. Finally the desired motion of the end effector is
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obtained. Figure 5.5 represents the control algorithm scheme of the 3-RRS PM.

5.4. Control Test

To test the control system an example set of desired independent task space pa-

rameters for the moving platform are selected and then the corresponding active link and

motor positions are found. The values of these positions are presented in Table 5.1.

Table 5.1. Desired Task Space Positions and Corresponding Input Values
Task Space Positions Active Joint Positions Motor Positions

# O7,z

(mm)
ψx

(deg)
ψy

(deg)
θ1

(deg)
θ2

(deg)
θ3

(deg)
θ1,m

(deg)
θ2,m

(deg)
θ3,m

(deg)
1 0.332 0 0 0 0 0 0 0 0
2 1000 0 0 -39.44 -39.44 -39.44 -5876.54 -5876.54 -5876.54
3 1000 -10 0 -39.2 -35.25 -44.84 -5841.33 -5252.78 -6681.29
4 1000 10 0 -39.2 -44.84 -35.25 -5841.33 -6681.92 -5252.78
5 1000 0 0 -39.44 -39.44 -39.44 -5876.84 -5876.84 -5876.84
6 1000 0 10 -34.81 -42.26 -42.26 -5187.25 -6297.58 -6297.58
7 1000 0 -10 -45.85 -36.7 -36.7 -6832.06 -5468.17 -5468.17
8 1000 0 0 -39.44 -39.44 -39.44 -5876.54 -5876.54 -5876.54
9 0.332 0 0 0 0 0 0 0 0

The motor positions are converted into GCodes using MATLAB/Simulink R© eas-

ily. Each positon set of the motors given in Table 5.1 refers to a single line on the CNC

program and motors reach to the positon given in a line at the same time. The maximum

velocity for each motor at each line of the code is determined considering the motor which

travels the maximum distance.

After obtaining the required positions of the motors, the trajectories are generated

considering the motion characteristics of the motors and controllers. As stated before,

CNC controller generates a trapezoidal velocity curve for each motor. Using the motor

positions given in Table 5.1, the velocity profile of each motor is generated. Then, using

an Integral block in Simulink R©, motor trajectories are generated and converted to the tra-

jectories of the active joints. The corresponding active joint trajectories for the positions

given in Table 5.1 are presented in the Figure 5.7.

The obtained active joint trajectories are given as motion input to the SimMechanics R©

model of the 3-RRS PM and the corresponding path of the moving platform is generated.

The desired trajectory of the moving platform is presented in Figure 5.8.

Once the trajectory of the moving platform is obtained, a check for the singular

configurations and joint limits is performed. The check algorithm is implemented into
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Figure 5.6. Point-to-point Control Algorithm
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Figure 5.7. Desired Active Joint Trajectories

Figure 5.8. Desired Moving Platform Trajectory
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the Simulink R© model. If the motion is safe, the obtained GCodes are given as inputs to

the CNC controller and a CNC program is created. This is done using the user interface

(BACH Elite R©) of the CNC controller.

When the CNC program is created and run, the PM starts following its trajectory.

To test the accuracy of the motion, 3 magnetic rotary encoders (AS5048B 14 Bit) are

attached to the shafts of active links . Furthermore a 3 axis gyroscope (MPU 6050) is

attached to the center of the moving platform . With the gyroscope, the angular displace-

ment of the moving platform is measured. To check the motion accuracy of the PM, same

motion is performed for 20 times and the means of the sensor data is used. The displace-

ment plots for the active joints and errors are provided in Figure 5.9. The desired and

obtained orientation of the moving platform are compared in Figure 5.10.

Since GOYA 100 R© is not an ideal controller for robot manipulators, another con-

trol study is done with a Humusoft R© MF624 - PCI multifunction I/O card. It is used for

applying velocity control over stepper motors. In contrast to the CNC controller, it is pos-

sible to design the motion profile of the motors with trapezoidal jerk using the Humusoft R©

controller. By that, the accelerations and decelerations of the motors are smoothened.
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Figure 5.9. Displacement and Errors of Active Joints

Figure 5.10. Orientation Errors of the Moving Platform
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Using a Simulink R© model, firstly the trajectories of the motors are generated using

an algorithm similar to the one used with GOYA 100 CNC controller. While generating

the trajectories of the motors, it is preferred to have trapezoidal jerks instead of trapezoidal

velocities. The maximum velocity for each motor is set as 50 rpm again due to safety

issues. With respect to the velocity profiles of each motor, using a ”Frequency Output”

block, ”Pulse Width Modulation” (PWM) signals are generated in Simulink R© Real Time

Desktop Environment. Generated PWM signals are transmitted to the stepper drivers

through the ”Timer/Counter Output” of the MF624 - PCI multifunction I/O card. Figure

5.11 represnts the Simulink model generated to obtain frequency output over Simulink R©

Desktop Real Time by Humusoft MF624 PCI card.

Figure 5.11. Simulink R© Model for Humusoft R© MF624 PCI Card
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In order to compare both controllers, the same desired points for the pose of the

moving platform are selected. With these parameters, the trajectory of each motor is

generated with a trapezoidal jerk profile. Figure 5.12 represents the desired and obtained

motion for each input link and their errors.

Figure 5.12. Displacement and Errors of Active Joints with Humusoft R© MF624 PCI
Card
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CHAPTER 6

DISCUSSIONS AND CONCLUSION

In this thesis study, formulations in order to obtain a mathematical model of a 3-

RRS PM is presented. For inverse kinematic analysis, firstly the constraint equations for

moving platform are formulated. Then using the loop equations, from which passive joint

variables are eliminated, the active joint parameters are obtained in terms of independent

task space parameters. Forward kinematics equations are formulated by eliminating the

task space parameters from the loop equations. After applying some mathematical ma-

nipulations, a 16th degree univariate polynomial is obtained in terms of one of the passive

joint variables. Then, all of the passive joint variables are evaluated and task space pa-

rameters are obtained in terms of active and passive joint variables. For the velocity and

acceleration level kinematics, derivatives of the loop equations are used and all of the joint

and task space velocities and accelerations are obtained.

The singularities of the 3-RRS PM are determined using the Jacobian matrices

of the loop equations. 1st and 2nd type of singularities are observed for the PM. The 3rd

type singularities are not detected for the 3-RRS PM investigated in this thesis study.

For the workspace of the PM, two types of workspaces are defined. Using the search

algorithm, the reachable workspace of the manipulator is obtained. Then, by defining the

limitations on active R and S joints and singularity conditions, safe working zone of the

PM is obtained.

Inverse dynamic analysis for the PM is performed using both virtual work method

and Lagrange’s approach. The obtained input torques for both methods for a hypothetical

trajectory of the moving platform match with each other. Furthermore, a SimMechanics R©

model is prepared to test the kinematic and dynamic formulations. Results of the simula-

tions confirmed that the derived formulations are correct.

An open-loop control algorithm is used for the control of the physical model of the

manipulator. Using an industrial CNC controller and a PCI Card, point-to-point control is

applied over the manipulator. With the CNC controller, trapezoidal velocity profiles are

generated to control the stepper motors where trapezoidal jerk profiles are used with the

PCI card. The error plots for both controllers are given in Figures 5.9, 5.10 and 5.11. As

can be seen from these plots, the error on the trajectory of the active links and moving

platform can not be ignored. While performing the control tests, it is observed that there
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is backlash at the reducers and clearance at the joints, especially S joints. This situation

of the mechanical structure of the PM is the reason of the errors.

As further studies, the mechanical structure of the PM should be improved so that

the trajectory tracking errors will be reduced. After that, a more comprehensive dynamic

model, which includes joint frictions and actuator dynamics, can be created. Following

that, using the PCI card, a closed-loop control algorithm can be used to apply a control

over the PM. When the tracking errors are minimised, then the serial arm to be attached

on the moving platform can be designed, produced.
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APPENDIX A

TIME DERIVATIVES OF JACOBIAN MATRICES

The time derivatives of the Jacobian matrices used in the acceleration analysis

Chapter 3 are presented below:

J̇xi,t=
[
J̇O7x J̇O7y J̇O7z J̇ψx J̇ψy J̇ψz

]T
J̇O7,x = [0, (p cψx(2 cψ2

x cψy + cψ3
x cψ2

y + cψ3
y + 3 cψx cψ4

y + cψ2
x c(3ψy) +

cψy(−1+cψx cψy) sψ2
x sψ2

y)ψ̇x)/(2(cψx+cψy)
3((1+cψx cψy)

2/(cψx+cψy)
2)3/2)−

(3p sψx(2 cψ2
x cψy + cψ3

x cψ2
y + cψ3

y + 3 cψx cψ4
y + cψ2

x c(3ψy)+

cψy(−1 + cψx cψy) sψ2
x sψ2

y)((− sψx)ψ̇x− sψyψ̇y))/(2(cψx + cψy)
4((1 + cψx cψy)

2/

(cψx + cψy)
2)3/2)− (3p sψx(2 cψ2

x cψy + cψ3
x cψ2

y + cψ3
y + 3 cψx cψ4

y + cψ2
x c(3ψy) +

cψy(−1+cψx cψy) sψ2
x sψ2

y)(−((2(1+cψx cψy)
2((− sψx)ψ̇x−sψyψ̇y))/(cψx+cψy)

3)

+(2(1+cψx cψy)((− cψy) sψxψ̇x−cψx sψyψ̇y))/(cψx+cψy)
2))/(4(cψx+cψy)

3((1+

cψx cψy)
2/(cψx + cψy)

2)5/2) + (p sψx(−4 cψx cψy sψxψ̇x − 3 cψ2
x cψ2

y sψxψ̇x−
3 cψ4

y sψxψ̇x − 2 cψx c(3ψy) sψxψ̇x + 2 cψx cψy(−1 + cψx cψy) sψx sψ2
yψ̇x−

2 cψ2
x sψyψ̇y − 2 cψ3

x cψy sψyψ̇y − 3 cψ2
y sψyψ̇y − 12 cψx cψ3

y sψyψ̇y+

2 cψ2
y(−1 + cψx cψy) sψ2

x sψyψ̇y − (−1 + cψx cψy) sψ2
x sψ3

yψ̇y − 3 cψ2
x s(3ψy)ψ̇y +

cψy sψ2
x sψ2

y((− cψy) sψxψ̇x− cψx sψyψ̇y)))/(2(cψx + cψy)
3((1 + cψx cψy)

2/(cψx +

cψy)
2)3/2),−((3p(24 c(3ψx) cψ2

y sψy + (−61 + 4 c(2ψx) + c(4ψx)) s(2ψy)−
2 cψx(31 sψy + 15 s(3ψy)) + 2 cψ2

x(−3 + c(2ψx)) s(4ψy))((− sψx)ψ̇x − sψyψ̇y))/

(64(cψx + cψy)
4((1 + cψx cψy)

2/(cψx + cψy)
2)3/2)) + (p(−72 cψ2

y s(3ψx) sψyψ̇x+

2 sψx(31 sψy + 15 s(3ψy))ψ̇x − 4 cψx(−3 + c(2ψx)) sψx s(4ψy)ψ̇x−
4 cψ2

x s(2ψx) s(4ψy)ψ̇x+s(2ψy)(−8 s(2ψx)ψ̇x−4 s(4ψx)ψ̇x)+24 c(3ψx) cψ3
yψ̇y+2(−61+

4 c(2ψx) + c(4ψx)) c(2ψy)ψ̇y + 8 cψ2
x(−3 + c(2ψx)) c(4ψy)ψ̇y − 48 c(3ψx) cψy sψ2

yψ̇y −
2 cψx(31 cψyψ̇y+45 c(3ψy)ψ̇y)))/(64(cψx+cψy)

3((1+cψx cψy)
2/(cψx+cψy)

2)3/2)−
(3p(24 c(3ψx) cψ2

y sψy+(−61+4 c(2ψx)+c(4ψx)) s(2ψy)−2 cψx(31 sψy+15 s(3ψy))+

2 cψ2
x(−3+c(2ψx)) s(4ψy))(−((2(1+cψx cψy)

2((− sψx)ψ̇x−sψyψ̇y))/(cψx+cψy)
3)+

(2(1+cψx cψy)((− cψy) sψxψ̇x−cψx sψyψ̇y))/(cψx+cψy)
2))/(128(cψx+cψy)

3((1+

cψx cψy)
2/(cψx + cψy)

2)5/2)]
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J̇O7,y = [0,−((p cψ2
yψ̇y)/((1+cψx cψy)sqrt((1+cψx cψy)

2/(cψx+cψy)
2)))+

(p sψ2
yψ̇y)/((1 + cψx cψy)sqrt((1 + cψx cψy)

2/(cψx + cψy)
2))+

(p cψy sψy((− cψy) sψxψ̇x−cψx sψyψ̇y))/((1+cψx cψy)
2sqrt((1+cψx cψy)

2/(cψx+

cψy)
2)) + (p cψy sψy(−((2(1 + cψx cψy)

2((− sψx)ψ̇x − sψyψ̇y))/(cψx + cψy)
3) +

(2(1+cψx cψy)((− cψy) sψxψ̇x−cψx sψyψ̇y))/(cψx+cψy)
2))/(2(1+cψx cψy)((1+

cψx cψy)
2/(cψx + cψy)

2)3/2), (p cψx(− cψ4
y − cψ2

x c(2ψy)−
(1/4) cψx(5 cψy + 3 c(3ψy)) + sψ2

x sψ4
y)ψ̇x)/((cψx + cψy)

3((1 + cψx cψy)
2/(cψx +

cψy)
2)3/2)− (3p sψx(− cψ4

y − cψ2
x c(2ψy)−

(1/4) cψx(5 cψy + 3 c(3ψy)) + sψ2
x sψ4

y)((− sψx)ψ̇x − sψyψ̇y))/((cψx + cψy)
4((1 +

cψx cψy)
2/(cψx + cψy)

2)3/2) − (3p sψx(− cψ4
y − cψ2

x c(2ψy) − (1/4) cψx(5 cψy +

3 c(3ψy)) + sψ2
x sψ4

y)(−((2(1 + cψx cψy)
2((− sψx)ψ̇x − sψyψ̇y))/(cψx + cψy)

3) +

(2(1 + cψx cψy)((− cψy) sψxψ̇x− cψx sψyψ̇y))/(cψx + cψy)
2))/(2(cψx + cψy)

3((1 +

cψx cψy)
2/(cψx + cψy)

2)5/2) + (p sψx(2 cψx c(2ψy) sψxψ̇x+

(1/4)(5 cψy +3 c(3ψy)) sψxψ̇x+2 cψx sψx sψ4
yψ̇x+4 cψ3

y sψyψ̇y +4 cψy sψ2
x sψ3

yψ̇y +

2 cψ2
x s(2ψy)ψ̇y−(1/4) cψx(−5 sψyψ̇y−9 s(3ψy)ψ̇y)))/((cψx+cψy)

3((1+cψx cψy)
2/

(cψx + cψy)
2)3/2)]

J̇O7,z = [0, 0, 0]

J̇ψx = [0, 0, 0]

J̇ψy = [0, 0, 0]

J̇ψz = [0,−((cψyψ̇y)/(1+cψx cψy))+(sψy((− cψy) sψxψ̇x−cψx sψyψ̇y))/(1+

cψx cψy)
2,−((cψxψ̇x)/(1 + cψx cψy)) + (sψx((− cψy) sψxψ̇x − cψx sψyψ̇y))/(1 +

cψx cψy)
2]

J̇xiS = J̇tSJxit + JtSJ̇xit

J̇tS = [0, 0, 0, 0, (−p) cψy c(α44 + ψz)ψ̇y + p sψy s(α44 + ψz)ψ̇z, p(sψy s(α44 +

ψz)ψ̇y− cψy c(α44 +ψz)ψ̇z); 0, 0, 0, (−p)((c(α44 +ψz) sψx sψy + cψx s(α44 +ψz))ψ̇x−
cψx cψy c(α44+ψz)ψ̇y+(c(α44+ψz) sψx+cψx sψy s(α44+ψz))ψ̇z), p(cψx cψy c(α44+

ψz)ψ̇x − sψx(c(α44 + ψz) sψyψ̇y + cψy s(α44 + ψz)ψ̇z)),

(−p)((c(α44 + ψz) sψx + cψx sψy s(α44 + ψz))ψ̇x + cψy sψx s(α44 + ψz)ψ̇y + (c(α44 +

ψz) sψx sψy+cψx s(α44+ψz))ψ̇z); 0, 0, 0, p((cψx c(α44+ψz) sψy−sψx s(α44+ψz))ψ̇x+
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cψy c(α44 + ψz) sψxψ̇y + (cψx c(α44 + ψz)− sψx sψy s(α44 + ψz))ψ̇z),

p c(α44 +ψz)(cψy sψxψ̇x+cψx sψyψ̇y)+p cψx cψy s(α44 +ψz)ψ̇z, p((cψx c(α44 +ψz)−
sψx sψy s(α44 +ψz))ψ̇x+ cψx cψy s(α44 +ψz)ψ̇y + (cψx c(α44 +ψz) sψy− sψx s(α44 +

ψz))ψ̇z); 0, 0, 0, 0, (−p) cψy c(α45 +ψz)ψ̇y+p sψy s(α45 +ψz)ψ̇z, p(sψy s(α45 +ψz)ψ̇y−
cψy c(α45 + ψz)ψ̇z); 0, 0, 0,

(−p)((c(α45 + ψz) sψx sψy + cψx s(α45 + ψz))ψ̇x − cψx cψy c(α45 + ψz)ψ̇y + (c(α45 +

ψz) sψx+cψx sψy s(α45+ψz))ψ̇z), p(cψx cψy c(α45+ψz)ψ̇x−sψx(c(α45+ψz) sψyψ̇y+

cψy s(α45+ψz)ψ̇z)), (−p)((c(α45+ψz) sψx+cψx sψy s(α45+ψz))ψ̇x+cψy sψx s(α45+

ψz)ψ̇y + (c(α45 +ψz) sψx sψy + cψx s(α45 +ψz))ψ̇z); 0, 0, 0, p((cψx c(α45 +ψz) sψy −
sψx s(α45 + ψz))ψ̇x + cψy c(α45 + ψz) sψxψ̇y + (cψx c(α45 + ψz) − sψx sψy s(α45 +

ψz))ψ̇z), p c(α45 + ψz)(cψy sψxψ̇x + cψx sψyψ̇y) + p cψx cψy s(α45 + ψz)ψ̇z,

p((cψx c(α45 +ψz)− sψx sψy s(α45 +ψz))ψ̇x + cψx cψy s(α45 +ψz)ψ̇y + (cψx c(α45 +

ψz) sψy − sψx s(α45 + ψz))ψ̇z); 0, 0, 0, 0,

(−p) cψy c(α46 + ψz)ψ̇y + p sψy s(α46 + ψz)ψ̇z, p(sψy s(α46 + ψz)ψ̇y − cψy c(α46 +

ψz)ψ̇z); 0, 0, 0, (−p)((c(α46 + ψz) sψx sψy + cψx s(α46 + ψz))ψ̇x − cψx cψy c(α46 +

ψz)ψ̇y + (c(α46 + ψz) sψx + cψx sψy s(α46 + ψz))ψ̇z),

p(cψx cψy c(α46+ψz)ψ̇x−sψx(c(α46+ψz) sψyψ̇y+cψy s(α46+ψz)ψ̇z)), (−p)((c(α46+

ψz) sψx + cψx sψy s(α46 + ψz))ψ̇x + cψy sψx s(α46 + ψz)ψ̇y + (c(α46 + ψz) sψx sψy +

cψx s(α46 +ψz))ψ̇z); 0, 0, 0, p((cψx c(α46 +ψz) sψy−sψx s(α46 +ψz))ψ̇x+cψy c(α46 +

ψz) sψxψ̇y + (cψx c(α46 + ψz)− sψx sψy s(α46 + ψz))ψ̇z), p c(α46 + ψz)(cψy sψxψ̇x +

cψx sψyψ̇y)+p cψx cψy s(α46 +ψz)ψ̇z, p((cψx c(α46 +ψz)− sψx sψy s(α46 +ψz))ψ̇x+

cψx cψy s(α46 + ψz)ψ̇y + (cψx c(α46 + ψz) sψy − sψx s(α46 + ψz))ψ̇z)]

J̇xiθ = J̇SθJxiS + JSθJ̇xiS

J̇Sθ = [(c θ1((−(O74,z + l1 s θ1))Ȯ74,x + ((− cα11)(b + l1 c θ1) + O74,x)Ȯ74,z) +

(b cα11 −O74,x) secα11((− c θ1)O74,x + cα11(l1 + b c θ1 +O74,z s θ1))θ̇1)/

(l1(cα11 c θ1O74,z + ((−b) cα11 +O74,x) s θ1)2), 0, (cα11(s θ1((O74,z + l1 s θ1)Ȯ74,x+

(cα11(b+l1 c θ1)−O74,x)Ȯ74,z)−O74,z((− c θ1)O74,x+cα11(l1 +b c θ1 +O74,z s θ1))θ̇1))/

(l1(cα11 c θ1O74,z + ((−b) cα11 +O74,x) s θ1)2), 0, 0, 0, 0, 0, 0; 0, 0, 0,

(c θ2((−(O75,z + l1 s θ2))Ȯ75,x + ((− cα12)(b+ l1 c θ2) +O75,x)Ȯ75,z)+

(b cα12 −O75,x) secα12((− c θ2)O75,x + cα12(l1 + b c θ2 +O75,z s θ2))θ̇2)/

(l1(cα12 c θ2O75,z + ((−b) cα12 +O75,x) s θ2)2), 0, (cα12(s θ2((O75,z + l1 s θ2)Ȯ75,x+

(cα12(b+l1 c θ2)−O75,x)Ȯ75,z)−O75,z((− c θ2)O75,x+cα12(l1 +b c θ2 +O75,z s θ2))θ̇2))/

(l1(cα12 c θ2O75,z + ((−b) cα12 +O75,x) s θ2)2), 0, 0, 0; 0, 0, 0, 0, 0, 0,
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(c θ3((−(O76,z + l1 s θ3))Ȯ76,x + ((− cα13)(b+ l1 c θ3) +O76,x)Ȯ76,z)+

(b cα13−O76,x) secα13((− c θ3)O76,x+cα13(l1+b c θ3+O76,z s θ3))θ̇3)/(l1(cα13 c θ3O76,z+

((−b) cα13 + O76,x) s θ3)2), 0, (cα13(s θ3((O76,z + l1 s θ3)Ȯ76,x + (cα13(b + l1 c θ3) −
O76,x)Ȯ76,z)−O76,z((− c θ3)O76,x+cα13(l1+b c θ3+O76,z s θ3))θ̇3))/(l1(cα13 c θ3O76,z+

((−b) cα13 +O76,x) s θ3)2)]

J̇xiφ = J̇SφJxiS + J̇θφJxiθ + JSφJ̇xiS + JθφJ̇xiθ

J̇θφ = [(l1 secφ1(s θ1θ̇1 − c θ1 tanφ1φ̇1))/l2, 0, 0;

0, (l1 secφ2(s θ2θ̇2 − c θ2 tanφ2φ̇2))/l2, 0; 0, 0, (l1 secφ3(s θ3θ̇3 − c θ3 tanφ3φ̇3))/l2]

J̇Sφ = [0, 0,−((secφ1 tanφ1φ̇1)/l2), 0, 0, 0, 0, 0, 0;

0, 0, 0, 0, 0,−((secφ2 tanφ2φ̇2)/l2), 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0,−((secφ3 tanφ3φ̇3)/l2)]
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