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ABSTRACT 

 

EXPLOITING SECOND HARMONIC GENERATION FOR 

MICROELECTRONICS INTERFACE CHARACTERIZATION 

 

 This thesis aims to develop a technique to characterize microelectronic interfaces 

based on Second Harmonic Generation (SHG) method. In the experiment part of this 

study, silicon wafers with thermal and native oxide, silicon-on-insulator (SOI), pure glass 

and glass with TiO2 thin film samples were used to observe Second Harmonic (SH) 

signal. The experiments have been performed in IMEP-LAHC laboratory in Grenoble, 

France. In addition, the measurements were carried out with “Harmonic F1X” which is a 

femtosecond laser developed by the company FemtoMetrix based in California/USA 

(FemtoMetrix). Three contributions to SHG were investigated experimentally: the 

electric dipole approximation due to symmetry breaking at the surface/interface, a dc 

electric field because of the charge separation at the interface, and lastly bulk 

contributions. Then, the phenomenological model of surface SHG (Mizrahi & Sipe, 1988) 

was simulated in MATLAB, and the ratios of the elements of second order nonlinear 

susceptibility (χzzz/χzii and χizi/χzii) for the silicon wafers were identified with 

comparing the model with the experimental results. In addition, it was shown that surface 

and bulk contributions can be separated by using specific polarization states and 

azimuthal orientations. To show this separation, Fourier coefficients, which describes the 

crystal facial orientations of the total SHG, were determined for the silicon wafers. 

Furthermore, it was observed that there are some critical parameters which have an effect 

to SHG: the polarization states of the incident light and second harmonic light, the angle 

of incidence of the incoming light and the oxidation types of silicon. Finally, SOI has 

been used to check whether the effecting factors are same for silicon wafers. The findings 

demonstrate that SHG is a powerful technique to characterize the surface/interface and 

the bulk of the sample in microelectronic industry.  
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ÖZET 

 

İKİNCİ HARMONİK JENERASYON YÖNTEMİ İLE 

MİKROELEKTRONİK ARAYÜZLERİN KARAKTERİZE EDİLMESİ 

 

 Bu tez ikinci harmonik jenerasyon (SHG) metodunu temel alarak mikroelektronik 

arayüzleri karakterize etmek için bir teknik geliştirmeyi amaçlamaktadır. Bu çalışmanın 

deneysel kısımda, ikinci harmonik (SH) sinyali gözlemlemek için termal ve doğal 

oksitlenmiş silikon plakalar, yalıtkan üstü silikon (SOI), katıksız cam ve TiO2 ince film 

kalplı cam kullanıldı. Deneyler Fransa’nın Grenoble şehrinde IMEP-LAHC 

laboratuarında yapıldı. Bununla beraber, ölçümler Amerika’nın California eyaletinde 

bulunan FemtoMetrix adlı bir şirket tarafından geliştirilen bir femtosaniye lazer olan 

‘Harmonic F1X’ ile gerçekleştirildi (FemtoMetrix). SHG’yi oluşturan üç katkı deneysel 

olarak incelendi: yüzey/arayüzey simetri kırılmalarından oluşan elektrik dipol yaklaşımı, 

arayüzeydeki yüklerin birbirlerinden ayrılmasından oluşan dc elektrik alanı ve son olarak 

yığından gelen katkılar. Yüzey SHG’si için fenomenolojik model (Mizrahi & Sipe, 1988)  

MATLAB’da simüle edildi, ve doğrusal olmayan ikinci dereceden suseptibilitenin 

elemanlarının oranları (χzzz/χzii ve χizi/χzii) model ve deneysel sonuçlar karşılaştırılarak 

silikon plakalar için belirlendi. Ayrıca, yüzey ve yığın katkılarının belli polarizasyon 

durumları ve azimuthal oryantasyonları kullanılarak ayrılabileceği gösterildi. Bu ayrımı 

gösterebilmek için, kristalin bütün ikinci harmonik jenerasyonunu oluşturan yüzey 

oryentasyonlarını tanımlayan Fourier katsayıları, silikon plakalar için bulundu. Bununla 

beraber, ikinci harmonik jenerasyonu etkileyen bazı kritik parametreler bulundu: gelen 

ışığın ve ikinci harmonik ışığın polarizasyon durumları, gelen ışığın gelme açısı ve 

silikonun oksitlenme türleri. Son olarak, silikon plakalara etki eden farktörlerin aynı olup 

olmadığını karşılaştırmak için SOI kullanıldı. Bulunan sonuçlar gösteriyor ki 

mikroelektronik endüstrisinde ikinci harmonik jenerasyon malzemenin yüzey/arayüz ve 

yığınını karakterize etmek için etkili bir teknik olduğunu ortaya koymaktadır.  
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CHAPTER 1 

 

INTRODUCTION 

 

Optical Second Harmonic Generation (SHG) was discovered in a 

centrosymmetric quartz crystal by Franken et al. in 1961 (Franken et al., 1961) after the 

invention of the first laser by Maiman in 1960. In their experiment, which was also the 

first experiment of the nonlinear optics, they propagated a ruby laser beam with a 

wavelength of 694.3 nm through a centrosymmetric quartz crystal and observed the SHG 

signal at the wavelength of 347.15 nm from the crystal. Afterwards, second harmonic 

phenomenological theories were developed for different materials including 

semiconductor (Bloembergen et al., 1968) and dielectric solids (Wang and Duminski, 

1968). Afterwards in 1970s, relatively little research was done. However, the end of 

1980s, with the discovery of Ti:sapphire laser, spectroscopic SHG studies saw a renewed 

interest especially in device technology and in microelectronics industry. 

 

1.1.  Second Harmonic Generation as a Characterization Method 

 

There is always a need for better control of semiconductor’s surfaces and bulk in 

microelectronics industry. The nonlinear optical techniques of second harmonic 

generation is a promising way to characterize the quality and the structures of these 

materials thanks to non-destructive and contactless features (Kwon, 2006).  

The theory behind SHG arises from the second or higher order nonlinear 

susceptibility (χ(n)) of the material. As shown in Figure 1.1, the atoms  are arranged in a 

centrosymmetric material, and SHG is forbidden in the bulk because of the inversion 

symmetry. However, this symmetry is broken at the surface region and it gives rise to 

electric dipole contribution to SHG. Therefore, SHG’s strong sensitivity to surfaces and 

interfaces root in the presence of the broken inversion symmetry. This advantage of SHG 

can be used to access the interface between two mediums if the top medium is transparent 

such as SiO2.   

In addition, time-resolved second harmonic generation is used to study the charge 

carrier dynamics in semiconductors’s interface regions. It is known as Electric Field 
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Induced Second Harmonic Generation (EFISH). This approach gives information about 

trapping, de-trapping and carrier injection in thin film layers of semiconductor devices. It 

is very important advantage of using SHG method because it is almost impossible to 

obtain these behaviors using conventional electrical measurements. As an example, it has 

been observed that silicon wafers with thermal and native oxide have different saturation 

periods in this study.  

 

 
Figure 1.1. The inversion symmetry is broken just the surface of the sample 

 

In the bulk of centrosymmetric media such as crystal Si, SHG is forbidden within 

electric dipole approximation. However, only higher-order contribution, which are 

magnetic dipole and electric quadrupole effect, can generate second harmonic (SH) light. 

In addition, the SHG response depends on the crystal structure of the material. If the 

crystal is rotated about its surface normal, the crystal structure of bulk can be identified. 

Also, this optical anisotropic behavior is used to distinguish the isotropic surface 

contribution and anisotropic bulk contribution. In the experimental part of this thesis, 

these contributions have been determined by using truncated Fourier expansion and 

shown the crystal structure of silicon wafers and Silicon on Insulator (SOI). 

Among the many works of nonlinear optics, second harmonic generation plays an 

essential role. As a result, SHG is very effective technique to characterize interfaces and 

can be used to investigate in strain (Govorkov et al., 1990; Shriever et al., 2010), radiation 

induced defects (Marka et al., 2000; Pasternak et al., 2003), metalic contamination (Alles 

et al., 2007), roughness (Dadap et al., 1994), interface electric field (Luppi et al., 2010), 

crystal orientation (Tom et al., 1983) and miscuts (Lüpke et al., 1993). 
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1.2.  Thesis Outline  

 

This thesis presents how second harmonic light can be generated in a nonlinear 

material and how it can be used as a characterization method in microelectronics. There 

are three parts which compose of this study: the theoretical background of SHG, the 

experimental setup and lastly the experimental and simulation results of SHG. 

Chapter 2 presents the theoretical part of SHG. Firstly, it focuses on different 

effects at the origin of second harmonic light generated from the interface, the static 

electric field near the interface and the bulk. These three contributions are described and 

formulized in different parts of chapter 2. In addition, some previous work is showed to 

compare our experimental results later.  

Chapter 3 shows the experimental setup of "Harmonic F1X" which is a 

commercial equipment. This chapter describes the working principle, the properties of 

the laser and the experimental parameters of this machine.   

In the work presented in Chapter 4, we investigate which parameters have an 

influence on the SHG intensity. Our experimental results are performed for Si(100) 

wafers and SOI. We explain our results according to angle of incidence light, the 

polarization angles of laser and detector, the azimuthal angle of sample, and the oxidation 

types of silicon and time dependency of second harmonic light. In the simulation model, 

we identified the ratios of the elements of second order nonlinear susceptibility and 

determined the Fourier coefficients which shows the different contributions come from 

the interface and the bulk of the materials. 

At the end of the thesis, Chapter 5 summarizes all works which we have done in 

this study and discusses about the experimental and simulation results. 
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CHAPTER 2 

 

THEORETICAL BACKGROUND OF SECOND 

HARMONIC GENERATION 

 

The response of the medium in the optical system can be described by the induced 

polarization. In linear optics, the polarization 𝐏(t) is directly proportional to the electric 

filed 𝐄(t) and it can be expressed as  

 

 𝐏(t) = ϵ0χ
(1)𝐄(t) (2.1) 

 

where the constant of χ(1)  is defined as the linear susceptibility tensor and ϵ0 is the 

permittivity of free space. Necessarily, the electric field and the induced polarization have 

the same frequency in linear optics. However, when the incident light is very intense, 

electrons vibrations is unharmonic (Kwon, 2006). Because of this light matter interaction, 

the light which is generated by the induced polarization, either in transmission or in 

reflection, will contain harmonics of the exciting light frequency. At this high intensity, 

the induced electric polarization is driven into the nonlinear regime and can be expanded 

in power series of the electric field 𝐄(t);   

 

  𝐏(t) = ϵ0[χ
(1)𝐄(t) + χ(2)𝐄𝟐(t) + χ(3)𝐄𝟑(t) + ⋯ ] 

                          = 𝐏(𝟏)(t) + 𝐏(𝟐)(t) + 𝐏(𝟑)(t) +⋯         

 

(2.2) 

 

where  χ(n) is the nth order susceptibility and is a tensor of rank n+1. Second- and third-

order nonlinear polarization can be denoted as 𝐏(𝟐)(t) and 𝐏(𝟑)(t). The second harmonic 

light is generated from the incident light. The intensity of second harmonic light is 

proportional to the square of the intensity of the incident light (Park, 2010), 

 

 I(2ω) ∝  |𝐏(𝟐)|
2
= |χ(2)𝐄𝟐(ω)|

2
= |χ(2)|

2
I(ω)2 (2.3) 
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There are three contributions to the SHG signal (Aktsipetrov et al., 1996): the 

surface dipole contribution, the bulk quadrupole contribution and a third one through χ(3) 

in the case of the presence of a static electric field (EFISH). The nonlinear second-order 

total polarization at 2ω frequency can be modeled by (Gielis et al., 2008; Sipe et al., 1987) 

 

 𝐏total
2ω = 𝐏Surface

2ω + 𝐏bulk
2ω + 𝐏efish

2ω  (2.4) 

 

where 𝐏Surface
2ω  is the surface polarization, 𝐏bulk

2ω  is the bulk quadrupole polarization and 

lastly 𝐏efish
2ω  is the dc-electric-field-induced polarization. One of the main important 

feature of SHG is that SHG is equal to zero for centrosymmetric materials and can only 

exists in the case of a non-centrosymmetric ones (Boyd, 2007). The first mentioned effect 

(surface) is due to symmetry breaking at the surface and concerns atoms really at the 

surface on a few atomic layers if not one.  

 

 𝐏𝐒urface
2ω = χ(2)(2ω;  ω,ω): 𝐄(ω) 𝐄(ω) (2.5) 

 

where  χ(2) represents the second order nonlinear susceptibility and 𝐄(ω) is the 

fundamental electric field with ω frequency. Secondly, the bulk contribution 

(quadrupole) comes from the crystalline nature of the material and does not exist for 

amorphous. Even if the crystalline material is centrosymmetric in the context of linear 

dipolar approximation, it can be proved that it is no more the case if we consider 

multipolar field expansion. It can be understood this effect as being due to an 

inhomogeneous field distribution at the scale of the crystal cell (Gielis et al., 2008). The 

bulk contribution can be described in Equation (2.6) and  kω is the wave vector of the 

fundamental electric field in semiconductor (Gielis et al., 2008) and derived from the 

gradient operator.  

 

 𝐏bulk
2ω = χ(2),QP(2ω;  ω,ω): 𝐄(ω) ikω𝐄(ω) (2.6) 

 

where χ(2),QP is the second-order quadrupole susceptibility and originated by electric 

quadrupole and magnetic dipole contributions. Finally, when a static electric field is 

present at the interface such as Si/SiO2, a fourth rank tensor χ(3) generates to SHG signal. 

The field induced contribution is given by 
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  𝐏efish
2ω = χ(3)(2ω;  ω,ω, 0): 𝐄(ω) 𝐄(ω) Edc  (2.7) 

 

where χ(3) is third order nonlinear susceptibility. Additionally,  Edc  is the static electric 

field inside the sample and it is perpendicular to the surface. EFISH term is identically 

equal to the ‘regular’ surface dipole contribution (Gielis et al.,2008). 

 To utilize the potential of SHG as a characterization method, it is necessary to 

understand these three contributions. In the following sections of this chapter, theoretical 

background of surface SHG, EFISH and bulk SHG are discussed, respectively.  

 

2.1.   Surface Second Harmonic Generation  

 

Second harmonic generation is a powerful tool for characterization of surfaces and 

interfaces (Bloembergen et al., 1968; Marka et al., 2000; Park, 2010). This is due to high 

sensitivity of SHG to the surface and interface properties of centrosymmetric media. As 

mentioned before, SHG is forbidden in the bulk of the centrosymmetric media because 

of the inversion symmetry inside. However, at the interface and surface regions, the 

inversion symmetry is broken between dissimilar media. As a consequence, the electric 

dipole terms arises from the interface/surface. In addition, a discontinuity in the normal 

component of the electric field can generate higher order multipole terms. These two 

effects constitute surface dipole polarization (Lüpke, 1999). Therefore, the SHG at 

surface is governed by the second order nonlinear susceptibility tensor χ(2), through the 

relation 

 

 𝐏(𝟐)(2ω) = ϵ0χ
(2) 𝐄(ω)𝐄(ω) (2.8) 

 

This equation proves that the electric field with the frequency ω produces the radiation at 

twice the frequency; i.e. 2ω. In the next of this section, the second order nonlinear 

susceptibility is found for a centrosymmetric media. Then, the phenomenological model 

for surface SHG, which is developed by Sipe (Sipe, 1987) and Sipe and Mizrahi (Mizrahi 

and Sipe, 1988), is shown briefly. 
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2.1.1.  Second Order Nonlinear Susceptibility in Silicon 

 

Silicon is the most commonly used material in microelectronic industry because 

it has the diamond-cubic and also centrosymmetric crystal structure. Therefore, in the 

bulk silicon, the electric field and the polarization vectors should be invariant under the 

inversion symmetry. In other words, if the coordinate system changes from r to -r, 

because of the same manner of the electric field 𝐄 should be −𝐄 and also the second order 

polarization 𝐏 produces −𝐏. As mentioned before, the relationship for second order 

nonlinear polarization is 𝐏2ω = ϵ0χ
(2)𝐄(ω)𝐄(ω). Under the inversion symmetry in the 

material;   

 

 −𝐏2ω = ϵ0χ
(2)(−𝐄(ω))(−𝐄(ω)) 

           = ϵ0χ
(2)𝐄(ω)𝐄(ω) = 𝐏(𝟐) 

 

(2.9) 

 

In this case, 𝐏2ω can be equal −𝐏2ω if χ(2) vanish. So in the material, χbulk
(2) = 0. 

However, the inversion symmetric material can generate SHG from higher order 

nonlinear responses such as magnetic dipole and electric quadrupole responses. In 

addition, at the surface, the inversion symmetry is broken along the direction of the 

surface normal. Thus χsurface
(2)  ≠ 0. This results in the electric dipole contribution. In 

Cartesian coordinates, the tensor relation between the amplitudes of the electric field E 

and the polarization P can be shown by 

 

 Pi
2ω =∑χijk

(2)Ej(ω)Ek(ω)

jk

 
(2.10) 

 

Here the indices ‘ijk’ refer to laboratory coordinates as shown in Figure 2.1 Also  Pi
2ω is 

the induced polarization at the second harmonic frequency, and Ei(ω) is the electric field 

at the fundamental frequency. They can be written: 

 

 

𝐏(𝟐) = (

Px
(2)

Py
(2)

Pz
(2)

)   and   𝐄 = (

Ex
Ey
Ez

) 

 

(2.11) 
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The second order nonlinear susceptibility tensor χijk
(2)

  has 27 components and is 

shown as (Park, 2010): 

 

 χijk
(2)
= (

χxxx χxxy χxxz
χyxx χyxy χyxz
χzxx χzxy χzxz

    

χxyx χxyy χxyz
χyyx χyyy χyyz
χzyx χzyy χzyz

   

χxzx χxzy χxzz
χyzx χyzy χyzz
χzzx χzzy χzzz

) 
(2.12) 

 

The second order susceptibility χijk
(2)

 is symmetrical because SHG is not related to the 

orientation of the electric field which is oscillating at optical frequencies. Therefore, it 

has the same effect in the last two indices, χijk
(2)
= χikj

(2)
 (the other way is that EjEk can 

replace EkEj). Due to these symmetries of the nonlinear susceptibility tensor, it can reduce 

to 18 independent components. The relationship between the polarization and the electric 

field can be written as the following 

 

 

(

Px
(2)

Py
(2)

Pz
(2)

) = (

χxxx χxyy χxzz
χyxx χyyy χyzz
χzxx χzyy χzzz

    

χxyz χxxz χxxy
χyyz χyxz χyxy
χzyz χzxz χzxy

) .

(

 
 
 
 

ExEx
EyEy
EzEz
2. EyEz
2. ExEz
2. ExEy)

 
 
 
 

 

 

 

(2.13) 

 

A significant point is that  χijk
(2)

 depends on the medium. Centrosymmetric materials have 

an inversion center symmetry. The only inversion symmetry is present in the 𝑥̂ − 𝑦̂ plane 

while it is broken along the z direction in Figure 2.1.  

For the (100) face, which has four-fold (𝐶4𝜈) symmetry, the matrix in Equation 

(2.13) has only five nonzero components of the second order nonlinear susceptibility as 

mentioned by Sipe et al. in his early work (Sipe et al., 1987), 

 

 

(

Px
(2)

Py
(2)

Pz
(2)

) = (

0 0 0
0 0 0
χzxx χzyy χzzz

    
0 χxxz 0
χyyz 0 0

0 0 0

) .

(

 
 
 
 

ExEx
EyEy
EzEz
2. EyEz
2. ExEz
2. ExEy)

 
 
 
 

 (2.14) 
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where χzzz, χzxx = χzyy  and χyyz = χxxz are nonzero independent components (Gielis et 

al., 2008; Lüpke et al., 1994). 𝑋̂- and 𝑦̂-axis lie on the surface/interface and z-axis is 

normal to x and y plane as shown in Figure 2.1.  

 

Figure 2.1. Schematic of the Cartesian coordinate system on surface SHG between two 

dissimilar mediums. Due to the inversion symmetry, SHG is forbidden in the 

bulk but can occur only at the surface. 

 

2.1.2.  Phenomenological Model of Time Independent Second Harmonic 

Generation from Surface/Interface 

 

This section aims to describe the phenomenological model of surface second 

harmonic generation briefly. The model was developed by Sipe (Sipe, 1987) and Sipe and 

Mizrahi (Mizrahi & Sipe, 1988), which is originated the earlier work of Heinz (Heinz, 

1982) and Bloembergen and Pershan (Bloembergen N., 1962). According to this 

phenomenological model, a thin dipole sheet (just above) at the interface is assumed a 

second harmonic source. Basically, like in Figure 2.1, the incident plane wave reflects 

with different frequencies from the interface between two different dielectric mediums 

such as air and silicon. The second frequency is generated by the dipole sheet which is 

described in section 2.1.2.3. Then using Green function formalism, Sipe (Sipe, 1987) 

calculated the S and P components of the electromagnetic field which are generated by 

the source. Afterwards, Mizrahi and Sipe (Mizrahi & Sipe, 1988) used Fresnel 

coefficients for four different experimental geometries which are obtained by Heinz 
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(Heinz, 1982). They found same expression of SHG intensity in all cases. In this section, 

we will consider just one geometry in Figure 2.1.  

The outline of this section is in order; firstly, it starts with the Maxwell’s equation 

as in the most of all physical problems. Then, the basic principles of Coordinate system 

are demonstrated to describe the vector fields of the electromagnetic wave. Later, the 

dipole sheet is defined and so the Maxwell’s equation is discussed again to correspond to 

this dipole sheet. In addition, the components of the electric field are found in these 

conditions. Next, Fresnel coefficients are used to find the generated second harmonic 

fields in a specific geometry. Finally, the SHG intensity are calculated for different 

polarization states. 

 

2.1.2.1.  Maxwell’s Equations in Homogenous Medium 

 

Electromagnetic wave propagating can be summarized into the famous Maxwell’s 

equations by four particular equations, which are related to five vectors 𝐄 (the electric 

field), 𝐃 (the electric displacement field), 𝐇 (the magnetic field intensity), 𝐁 (the 

magnetic field), J (the current density) and the scalar field 𝝆 (the volume charge density). 

We are initially interested in the solutions of Maxwell’s equation in the medium which 

there are no free electric charges or currents. It means that J and 𝝆 are equal zero, so the 

macroscopic Maxwell’s equations are given by  

 

 𝛁 ∙ 𝐃 = 0 (2.15a) 

 𝑐𝛁 × 𝐇 − 𝐃̇ = 0 (2.15b) 

 𝛁 ∙ 𝐁 = 0 (2.15c) 

 𝑐𝛁 × 𝐄 + 𝐁̇ = 0 (2.15d) 

 

The displacement and magnetizing field 𝐃, 𝐇 are related to the electric and magnetic 

field. It is called the Constitutive relations. In Gaussian units, they are described by 

  

 𝐃 = 𝐄 + 4π𝐏𝐭 (2.16a) 

 𝐇 = 𝐁 − 4π𝐌𝐭 (2.16b) 
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The vectors 𝐏𝐭 and 𝐌𝐭 represent the total electric and magnetic dipole moments per unit 

volume of a medium respectively. These quantities give information about the electric 

and magnetic field in the medium. 

 

 𝐏𝐭 = χe
(1)
𝐄 + 𝐏 (2.17a) 

 𝐌𝐭 = χb
(1)
𝐁 +𝐌 (2.17b) 

 

Here the susceptibilities χe and χb are known as the linear response of the medium at the 

frequency 𝜔. Also, the 𝐏 is the polarization and 𝐌 is the magnetization of the optical 

medium. The difference between 𝐏𝐭 and 𝐏 or 𝐌𝐭 and 𝐌 is that the total electric and 

magnetic dipole moments are nonlocal functions, whereas the polarization and 

magnetization are local functions (Shen, 2002). The polarization 𝐏 and 𝐌 are the only 

parameters which gives information about how optical medium is affected by light. In 

nonlinear optics, they are complicated nonlinear functions of 𝐄 and 𝐁. However, when 

the 𝐄 and 𝐁 are relatively small, the polarization 𝐏 and the magnetization 𝐌 depends on 

the linear functions of 𝐄 and 𝐁. Initially 𝐏 and 𝐌 are assumed that they are equal to zero 

(Sipe, 1987). Therefore, 𝐃 and 𝐇 take these forms; 

 

 𝐃 = 𝐄+ 4π𝐏𝐭 

             = 𝐄 + 4π(χe
(1)𝐄) 

                       = (1 + 4π χe
(1)
) = 𝜖 𝐄 

(2.18a) 

 𝐇 = 𝐁− 4π𝐌𝐭 

             = 𝐁 − 4π(χb
(1)
𝐁) 

                           = (1 − 4π χb
(1)
) = 𝜇−1𝐁 

(2.18b) 

 

where the linear constant 𝜖 = 1 + 4π χe
(1)

 is the permittivity of the material and the linear 

constant 𝜇−1 = 1 − 4π χb
(1)

 is the permeability of the material. It is studied the stationary 

continuous waves; it means that all the vector fields are constant with respect to time. In 

homogenous media, the solution of Maxwell’s equations is calculated as (see detail in 

Appendix A) 
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 𝛁 ∙ 𝐄(𝐫) = 0 
(2.19a) 

 𝛁 × 𝐁(𝐫) + 𝑖𝜔̃𝜖𝜇𝐄(𝐫) = 0 
(2.19b) 

 𝛁 ∙ 𝐁(𝐫) = 0 
(2.19c) 

 𝛁 × 𝐄(𝐫) − 𝑖𝜔̃𝐁(𝐫) = 0 
(2.19d) 

 

where 𝜔̃ = 𝜔/𝑐. These equations can be used to find the components of electromagnetic 

fields in any homogeneous medium. 

 

2.1.2.2.  Basic Principles 

 

In most SHG experiments for surfaces and interfaces, the incident monochromatic 

beam of frequency 𝜔 on the substrate at an angle 𝜃𝑖 can generate SHG light in reflection 

or transmission. In Figure 2.2, the wave vectors 𝝂𝟎, 𝝂+ and 𝝂− represent the incident, 

reflected and transmitted fundamental lights respectively. They can be expressed as 

upward for 𝜈+ and downward for 𝜈− propagating evanescent wave due to the change in 

the z direction (Sipe, 1987). They are demonstrated by 

 𝝂+ = 𝑢𝑥̂ + 𝑣𝑦̂ + 𝑤𝑧̂= 𝜅𝜅̂ + 𝑤𝑧̂ 

𝝂− = 𝑢𝑥̂ + 𝑣𝑦̂ − 𝑤𝑧̂= 𝜅𝜅̂ − 𝑤𝑧̂ 
(2.20) 

Here, Sipe (Sipe, 1987) uses another vector 𝜿 = 𝑢𝑥̂ + 𝑣𝑦̂ but examines special case 

which is 𝜅̂ = 𝑥̂ .  

For simplicity, p-polarization (E-field is parallel to the plane of incidence, along 

𝑥̂ − 𝑧̂ plane) and s-polarization (E-field is orthogonal to the plane of incidence, along 𝑦̂) 

states are considered for the fundamental and harmonic lights. According to the Figure 

2.2, it can be easily seen that the relationship between the unit vectors; 𝑠̂, 𝑝̂ and 𝜈̂ are in 

these form (Sipe, 1987); 

 

 𝑠̂ × 𝜈̂± = 𝑝̂± ,        𝜈̂± × 𝑝̂± = 𝑠̂,        𝑝̂± × 𝑠̂ = 𝜈̂± (2.21) 

 

where 𝑝̂± = 𝜈
−1(𝜅𝑧̂ ∓ 𝑤𝜅̂). The electromagnetic waves 𝐄 and 𝐁 have s- and p-

polarization components, and propagate in upward and downward directions. 
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Immediately, the upward propagating electric field 𝐄+ and the downward propagating 

electric field 𝐄− can be determined as  

 

 𝐄+(𝐫) = (𝐸𝑠+𝑠̂ + 𝐸𝑝+𝑝̂+)exp (𝑖𝜈+ ∙ 𝐫) (2.22a) 

 𝐄−(𝐫) = (𝐸𝑠−𝑠̂ + 𝐸𝑝−𝑝̂−)exp (𝑖𝜈− ∙ 𝐫) (2.22b) 

 

In addition, the magnetic field expressions for upward and downward propagating wave 

are found by using fourth equation of the macroscopic Maxwell’s equations (in Equation 

(2.19d)). 

 

 

Figure 2.2. Geometry of the incident, reflected and transmitted wave vectors at the surface 

(z = 0) between two different dielectric mediums (ϵ1, ϵ2)  in Cartesian 

coordinate. 

 

They are shown as 

 

 𝐁+(𝐫) = √𝜇𝜖(𝐸𝑝+𝑠̂ − 𝐸𝑠+𝑝̂+)exp (𝑖𝜈+ ∙ 𝐫) (2.23a) 

 𝐁−(𝐫) = √𝜇𝜖(𝐸𝑝−𝑠̂ − 𝐸𝑠−𝑝̂−)exp (𝑖𝜈− ∙ 𝐫) (2.23b) 
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Here √𝜇𝜖 represents the refractive index of the medium, called as 𝑛. The aim for 

describing the electromagnetic field is to find the components of the fields and afterwards 

to evaluate the intensity of SH light. 

 

2.1.2.3.  Inhomogeneous Maxwell’s Equations and Dipole Sheet 

 

The phenomenological model for treating SHG from surfaces and interfaces, 

which was developed by Sipe (Sipe, 1987) and then Sipe and Mizrahi (Mizrahi & Sipe, 

1988), uses a thin dipole sheet sitting at zo = 0
+ as a second harmonic source as shown 

in Figure 2.3. Due to this dipole sheet, the homogenous Maxwell’s equations cannot be 

used because the polarization 𝐏(𝐫) cannot be zero anymore (like in Equation 2.18a). 

Therefore, the homogeneous Maxwell’s equations turn into inhomogeneous form (Sipe, 

1987) by taking 𝐏(𝐫) ≠ 0 (we consider just for non-magnetic material, so still 𝐌(𝐫) =

0) (see the calculation detail to Appendix B): 

 

 𝛁 ∙ 𝐄(𝐫) = −4𝜋𝜖−1𝛁 ∙ 𝐏(𝐫) (2.24a) 

 𝛁 × 𝐁(𝐫) + 𝑖𝜔̃𝜖𝜇𝐄(𝐫) = −4𝜋𝑖𝜔̃𝜇𝐏(𝐫) (2.24b) 

 𝛁 ∙ 𝐁(𝐫) = 0 (2.24c) 

 𝛁 × 𝐄(𝐫) − 𝑖𝜔̃𝐁(𝐫) = 0 (2.24d) 

 

Now, these inhomogeneous Maxwell’s equations can be used to find the components of 

the electromagnetic fields. However, the source 𝐏(𝐫) and the total electric field 𝐄(𝐫) and 

magnetic field 𝐁(𝐫) need to be described under these conditions. First, to model the 

electromagnetic properties at the interface, the polarization sheet, oscillating at frequency 

𝜔,  𝐏(𝐫) can be expressed as 

 

 𝐏(𝐫) = 𝑃 𝛿(𝑧 − 𝑧𝑜)exp (𝑖𝜿 ∙ 𝐑) (2.25) 

 

It has a plane wave behavior with a spatial variation indicated by a wave vector κ (parallel 

to the surface) and 𝐑 = (𝑥, 𝑦) in Figure 2.3. Here, the Dirac delta 𝛿 represents that the 
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dipole sheet can exist just at one point zo = 0
+that is approximately an atomic distance 

above the interface. 

 

Figure 2.3. Illustration of the dipole sheet (at zo = 0
+) on the surface 

 

In addition, this dipole sheet can produce also an additional vector field 𝝃 to the total 

electric field at zo+ = 0
+. It can be demonstrated by 

 

 𝝃 = 𝝃𝒔𝒔̂ + 𝝃𝜿𝜿̂ + 𝝃𝒛𝒛̂ (2.26) 

 

Finally, the total electric and magnetic fields can be described as: 

 

 𝐄(𝐫) = 𝐄+(𝐫) exp(−𝑖𝜔𝑧𝑜) ℎ(𝑧 − 𝑧𝑜) + 𝐄−(𝐫) exp(𝑖𝜔𝑧𝑜) ℎ(𝑧𝑜 − 𝑧) (2.27a) 

               +𝝃𝛿(𝑧 − 𝑧𝑜) exp(𝑖𝜅 ∙ 𝑹)  

 𝐁(𝐫) = 𝐁+(𝐫) exp(−𝑖𝜔𝑧𝑜) ℎ(𝑧 − 𝑧𝑜) + 𝐁−(𝐫) exp(𝑖𝜔𝑧𝑜) ℎ(𝑧𝑜 − 𝑧) (2.27b) 

 

where ℎ(𝑧) is the step function to represent the directions of the propagating wave, and 

generally it can be identified as ℎ(𝑧) = 1 when 𝑧 > 0 and ℎ(𝑧) = 0 when 𝑧 < 0. 

Therefore, ℎ(𝑧 − 𝑧𝑜) is for the upward wave ones and ℎ(𝑧𝑜 − 𝑧) is for the downward 

wave ones. After putting Equations (2.27) into Equation (2.24b) and Equation (2.24d), 

we can find (see Appendix C) 𝜉𝑠 = 𝜉𝜅 = 0 and 𝜉𝑧 = −4𝜋𝜖
−1𝑃𝑧. The components of the 

electric field are found in these forms  

 



16 

 

 
𝐸𝑠± =

2𝜋𝑖𝜔̃2

𝑤
𝑠̂ ∙ 𝑃 

(2.28a) 

 
𝐸𝑝± =

2𝜋𝑖𝜔̃2

𝑤
𝑝̂± ∙ 𝑃 

(2.28b) 

 

These two s and p components of the waves are at frequency 𝜔. These components will 

help us to find to generated second harmonic light and the SHG intensity. 

 

2.1.2.4.  Generated Fields and Second Harmonic Generation Intensity 

 

In this section, the intensity of second harmonic light is specified according to the 

second-order nonlinear susceptibility. So far, the s- and p-polarization electric field 

components in both upward and downward directions have been found at frequency 𝜔. 

Furthermore, the polarization sheet is taken at oscillating 2𝜔 is sitting at z = 0+ 

 

 𝐏𝟐𝛚(𝐫) = 𝑃2𝜔(𝐑) δ(z − 0+)exp (2𝑖𝜿 ∙ 𝐑) (2.29) 

 

The polarization of SHG is originated by second-order nonlinear susceptibility tensor 

which is defined with the respect to the electric field at z = 0− (Mizrahi V., 1988; Lüpke, 

1999). Therefore,  

 

 𝑃2𝜔(𝐑) = χ(2): 𝐄𝜔(𝐑, z = 0−)𝐄𝜔(𝐑, z = 0−) (2.30) 

 

where the electric field 𝐄𝜔 induce the dipole sheet at frequency 𝜔. Because of the 

definition of the second-order nonlinear susceptibility tensor at z = 0−, 𝐄𝜔 should be the 

transmitted fundamental light into the medium 𝜖2. First we define that the fundamental 

light as shown in Figure 2.4 (Mizrahi & Sipe, 1988). It has s- and p0− polarization 

components which indicate the incident downward-propagating wave: 

 

 𝐄𝐢𝐧
𝛚(𝐫) = (𝐸𝑖𝑛

𝑠 𝑠̂ + 𝐸𝑖𝑛
𝑝
𝑝̂0−)exp [𝑖(𝜅𝑥 − 𝑤𝑜𝑧)]  

 
                                = (

𝐸𝑖𝑛
𝑠

|𝐸𝑖𝑛|
𝑠̂ +

𝐸𝑖𝑛
𝑝

|𝐸𝑖𝑛|
𝑝̂0−) |𝐸𝑖𝑛|exp [𝑖(𝜅𝑥 − 𝑤𝑜𝑧)] 

 

                                 = 𝑒̂𝑖𝑛|𝐸𝑖𝑛|exp [𝑖(𝜅𝑥 − 𝑤𝑜𝑧)] (2.31) 
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where |𝐸𝑖𝑛|
2 = |𝐸𝑖𝑛

𝑠 |2 + |𝐸𝑖𝑛
𝑝 |
2
.  However, to define transmitted fundamental light and 

generated second harmonic light, we need to use the Fresnel coefficients. They are 

defined in Table 2.1. 

 

Table 2.1. Definitions of the symbol of the Fresnel coefficients 

𝝎 𝟐𝝎 Definition 

𝑟𝑖𝑗
𝑠,𝑝

 𝑅𝑖𝑗
𝑠,𝑝

 Reflection coefficient from medium i to j 

𝑡𝑖𝑗
𝑠,𝑝

 𝑇𝑖𝑗
𝑠,𝑝

 Transmission coefficient from medium i to j 

 

Therefore, the fundamental transmitted light into the medium 2 can be written as 

 

 𝐄𝐭
𝛚(𝐫) = (𝐸𝑖𝑛

𝑠 𝑡12
𝑠 𝑠̂ + 𝐸𝑖𝑛

𝑝
𝑡12
𝑝
𝑝̂−)exp [𝑖(𝜅𝑥 − 𝑤𝑧)]  

 
                             = (

𝐸𝑖𝑛
𝑠

|𝐸𝑖𝑛|
𝑡12
𝑠 𝑠̂ +

𝐸𝑖𝑛
𝑝

|𝐸𝑖𝑛|
𝑡12
𝑝
𝑝̂−) |𝐸𝑖𝑛| exp [𝑖(𝜅𝑥 − 𝑤𝑧)] 

 

                              = 𝐞𝛚|𝐸𝑖𝑛| exp (𝑖𝜅𝑥) (2.32) 

 

Now, we can put 𝐄𝐭
𝛚(𝐫) into the induced nonlinear polarization 𝑃2𝜔(𝐑) and can be found 

 

 𝑃2𝜔(𝐑) = χ(2): 𝐞𝛚𝐞𝛚|𝐸𝑖𝑛|
2 (2.33) 

 

There are two possibilities to generate second harmonic light as shown in Figure 

2.4. After the incident light induces to the dipole sheet, it creates an upward and 

downward propagating waves at frequency 2𝜔. Therefore, the first one is that the directly 

generated upward wave. The second one is that a part of the downward SHG wave can 

reflect upward at z=0 (Mizrahi & Sipe, 1988). It is illustrated in Figure 2.4. We use 

uppercase symbols for second harmonic light, such as 𝑃̂0∓ indicates the upward or 

downward p-polarized propagating wave at frequency 2𝜔 in the first medium with the 

dielectric constant 𝜖1. However, the symbol of 𝑝̂0− is for the fundamental downward 

propagating wave in the same medium and 𝑝̂− in the second medium 𝜖2.  
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Figure 2.4. Illustration of the fundamental light; the transmitted fundamental and the 

generated second harmonic lights at the interface between two different 

mediums 1 and 2 with dielectric constants 𝜖1 and 𝜖2. The black colored lines 

represent the fundamental lights at 𝜔 wavelenght. The red colored lines are 

for generated second harmonic light at 2𝜔 wavelength. The one with the blue 

arrow is directly generated upward-propagating wave, and the other one with 

the green arrow is generated downward-propagating wave which reflect at 

𝑧 = 0 towards to upward. 

 

Finally, the generated second harmonic light can be written in this form: 

 

               𝐄𝟐𝛚(𝐫) = (𝐸𝑖𝑛
𝑠 𝑆̂ + 𝐸𝑖𝑛

𝑝
𝑃̂0+) 𝑒𝑥𝑝[𝑖(2𝜅𝑥 +𝑊0𝑧)]  

                            +(𝐸𝑖𝑛
𝑠 𝑅12

𝑠 𝑆̂ + 𝐸𝑖𝑛
𝑝
𝑅12
𝑝
𝑃̂0−)𝑒𝑥𝑝 [𝑖(2𝜅𝑥 +𝑊0𝑧)] (2.34) 

 

The first and second term of Equation (2.34) represent generated upward-propagating and 

reflected downward-propagating second harmonic wave by the dipole sheet, respectively. 

For the second term, we use the reflection Fresnel coefficient from medium 1 to 2, as 

called 𝑅12
𝑠,𝑝

. Here, we consider 𝜃𝑖𝑛 = 𝜃𝑜𝑢𝑡. Then, Equation (2.34) takes this form:  

 

       𝐄𝟐𝛚(𝐫) = [𝐸𝑖𝑛
𝑠 (1 + 𝑅12

𝑠 ) 𝑆̂ + 𝐸𝑖𝑛
𝑝 (𝑃̂0+ + 𝑅12

𝑝
𝑃̂0−)] exp[𝑖(2𝜅𝑥 +𝑊0𝑧)]  

 
                  = [

𝐸𝑖𝑛
𝑠

|𝐸𝑖𝑛|
(1 + 𝑅12

𝑠 ) 𝑆̂ +
𝐸𝑖𝑛
𝑝

|𝐸𝑖𝑛|
(𝑃̂0+ + 𝑅12

𝑝
𝑃̂0−)] |𝐸𝑖𝑛|exp [𝑖(2𝜅𝑥 

 

                      +𝑊0𝑧)]  

                   = 𝐞2𝜔|𝐸𝑖𝑛| exp[𝑖(2𝜅𝑥 +𝑊0𝑧)] (2.35)
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where 𝐞2𝜔 = [
𝐸𝑖𝑛
𝑠

|𝐸𝑖𝑛|
(1 + 𝑅12

𝑠 ) 𝑆̂ +
𝐸𝑖𝑛
𝑝

|𝐸𝑖𝑛|
(𝑃̂0+ + 𝑅12

𝑝
𝑃̂0−)]. The intensity of second 

harmonic light is proportional to the square root of the second harmonic light electric 

field; 𝐈(2ω) = |𝐄𝟐𝛚(𝐫)|
𝟐
. So, it is calculated 

 

 |𝐄𝟐𝛚|
2
= |𝐞2𝜔|2|𝐸𝑖𝑛|

2 (2.36) 

 

where |𝐸𝑖𝑛|
2 = |𝐸𝑖𝑛

𝑠 |2 + |𝐸𝑖𝑛
𝑝 |
2
. To denote the s- and p- polarized second harmonic light, 

which are generated by the dipole sheet, we use Capital letters for polarization states such 

as 𝑆̂ and 𝑃̂±. They can be written by  

 

 
𝐸𝑠± =

2𝜋𝑖Ω̃2

𝑊0
𝑆̂ ∙ 𝑃2𝜔(𝐑) 

(2.37a) 

 
𝐸𝑝± =

2𝜋𝑖Ω̃2

𝑊0
𝑃̂± ∙ 𝑃

2𝜔(𝐑) 
(2.37b) 

 

where Ω = 2𝜔 and 𝑃2𝜔(𝐑) = χ(2): 𝐞𝛚𝐞𝛚|𝐸𝑖𝑛|
2. Putting the s- and p-polarization 

components of second harmonic electric field, finally we can get 

 

 
|𝐄𝟐𝛚|

2
=
4𝜋2Ω̃4

𝑊0
2 |𝐞2𝜔 ∙ χ(2): 𝐞𝛚𝐞𝛚|

2
|𝐸𝑖𝑛|

4 
(2.38) 

 

Here Ω̃2/ 𝑊0
2 = sec2𝜃𝑖𝑛. After putting Ω̃2 = 4𝜔2/𝑐 into and multiplying both sides of 

the equation by (𝑐/2𝜔)2, the Equation (2.38) turns into 

 

 𝑐

2𝜋
|𝐄𝟐𝛚|

2

=
32𝜋3𝜔2

𝑐3
sec2𝜃𝑖𝑛  |𝐞

2𝜔 ∙ χ(2): 𝐞𝛚𝐞𝛚|
2
(
𝑐

2𝜋
|𝐸𝑖𝑛|

2)
2

 
(2.39) 

 

Therefore, the intensity of second harmonic light; 

 

 
𝐼2𝜔 =

32𝜋3𝜔2

𝑐3
sec2𝜃𝑖𝑛 |𝐞

2𝜔 ∙ χ(2): 𝐞𝛚𝐞𝛚|
2
(𝐼𝜔)2 

(2.40) 

 

In Equation (2.40), the SHG intensity is proportional to the fundamental light intensity, 

𝐼𝜔. Now, this equation can be used to find the S- and P-polarized SHG intensity. 
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2.1.2.5.  P- and S- Polarized Second Harmonic Generation Intensity 

 

In this section, the intensity of S- and P-polarized SH light are calculated in terms 

of different polarized states of the fundamental light. The incident and reflected light are 

indicated as in Figure 2.5. The pumping light with the angle of incidence  𝜃1(𝜔) is 

reflected from the surface or interface with a reflection angle of 𝜃1(2𝜔). In addition, the 

refraction light in medium has two angle related to their frequency 𝜃2(𝜔) and 𝜃2(2𝜔) 

which are described 

 

 
𝜃2(𝜑) = sin

−1 (
√𝜀1(𝜑)

√𝜀2(𝜑)
sin 𝜃1(𝜑))          𝜑 = 𝜔, 2𝜔 (2.41) 

 

The intensity of SH light depends on the selected polarizer angle of the incident 

(input) light and the second harmonic (output) light. More precisely the polarization angle 

is the angle between the orientation of the electromagnetic electric field and the plane of 

incidence. In Figure 2.5, the symbols of 𝛾𝑖𝑛  and 𝛾𝑜𝑢𝑡  denote input and output polarization 

angles, respectively.   

 

 

Figure 2. 5. Second harmonic generation optical geometry 

 

As a result,  γin = 0 corresponds to a rectilinearly P-polarized (TM) incident laser 

beam while  γin = 90°  corresponds to a S-polarized (TE) incident one. Similarly,   γout =
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0 (resp. 90°) corresponds to a P (TM) (resp. (TE)) -polarized SH light. Experimentally 

both  γin and  γout can be varied continuously. In Equations (2.42), the S- polarized and 

the P- polarized SHG intensities are expressed (Kajikawa, Takezoe, & Fukuda, 1991) as 

functions of the polarization angle of incident light 𝛾𝑖𝑛 . They are described respectively 

 

 Ish
s (γin) = K |E sin γin  cos γin  χizi|

2 (2.42a) 

 
Ish
p
(γin) = K |A cosγin

2  χzzz − Bcosγin
2 χizi + {Ccosγin

2 + Dsinγin
2 }χzii|

2
 

(2.42b) 

 

A, B, C, D and E the coefficients which are determined from Fresnel equations and K 

coefficient is proportional to the intensity of the incident light. They are given in Table 

2.2.   

 

Table 2.2. The coefficients for Equation (2.42a) and Equation (2.42b) from one of the 

article of Kajikawa et al. (Source: Kajikawa et al., 1991) 
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2.2.   Electrical Field Induced Second Harmonic (EFISH) 

 

In addition to surface contribution, there is another source effects to the SHG 

signal, in the case of the presence of a dc electric field close to the Si/ SiO2 interface. It 

is called as EFISH (electric field induced second harmonic) and it was first discovered by 

Bloembergen and co-workers in 1967 (Lee et al., 1967). In their experiment, they 

observed SHG signal when they applied a dc electric field at the normal of silicon and 

silver surfaces. However, this discovery remained practically unnoticed for a number of 

years. Then, in 1981, Shen and co-workers resumed the interest to this effect in their work 

of surface-enhanced SHG (Chen et al., 1981). After a short time, surface-enhanced EFISH 

phenomenon was observed first time at a silver-electrolyte interface (Aktsipetrov et al., 

1983). Nowadays, EFISH is mostly studied for investigation of the interface properties 

of the semiconductor-oxide materials (Damianos et al., 2016; Alles et al., 2007; Ionica et 

al., 2015). Because the interface between the silicon and its oxide is a very important 

studied field due to semiconductor device’s importance in electronic device.   

Some of the previous research has been done by H. M. van Driel et al. They 

observed the temporal behavior on SHG intensity (Bloch et al., 1995). Their results of 

time-dependent SHG intensity for Si(100) native oxide are shown in Figure 2.6. They 

used two different incident radiance of 3 kW cm−2 in Figure 2.6 (a) and 10 kW cm−2 in 

Figure 2.6 (b). They observed that the SHG signal arises in time and then saturates for 

both cases. However, at the lower radiance, the SHG light saturates a longer rise time 

than the other.  Also, they explained that the silicon oxide (SiO2) does not absorb 

wavelength at ω because of the larger band gap of the oxide (approximately 8.8 eV) 

(Bloch et al., 1995).   
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Figure 2.6. Time dependent SHG signal from Si(100) native oxide  for  (a) 3kW cm−2  
and (b) 10 kW cm−2 (Source: Bloch et al., 1995) 

 

As in Ref. (Gielis, Gevers et al., 2008) (Park et al.,2011; Bloch et al., 1996; Jun et 

al., 2004; Damianos et al., 2016) the time dependent electric field induced SHG from 

Si/SiO2 interface is a third order process and it can be described in general by 

 

 I2ω(t) ∝  | χ(2) + χ(3)Edc(t)|
2
. (Iω)2 (2.43) 

 

where χ(2) and χ(3) are nonlinear second and third order tensors. 𝐸𝑑𝑐(t) is a quasi-static 

electric field across at the interface of Si/SiO2 and it arises from the charge separation. 

The dc electric filed also exists near the interface of Si/SiO2 without any applied external 

voltage. The electrons and holes in matter can be excited three and four photon 

absorption. It results in charge separation. The band offset between the silicon valence 

band and oxide conduction band is 4.5 eV (Park, 2010; Wang et al., 1998). The incoming 

light with the wavelength of 800nm corresponds to photon energy of 1.55 eV (E=hc/λ). 

The photons interact only with the silicon (its band gap is 1.1 eV) because their intensity 

is not enough to cross the band gap of the oxide which is 9 eV. Therefore, the electrons 

in the silicon valence band gain enough energy to pass the oxide surface by the three 

photon absorption after the photons interacts with the silicon surface. When the incoming 

light has enough energy for attracting the electrons at the valence band of the silicon, the 

electrons leave a hole state in silicon valence band and they travel to oxide surface. Then, 

the oxygen molecules in oxide surface capture the electrons which come from the silicon 
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surface. A Dc electric field occurs because of the charge separation between the 

remaining holes in the silicon valence band and the electrons captured by the oxygen 

molecules. This form is like capacitor structure. Additionally, the holes in the oxide can 

be also injected to the silicon. It means that the electrons in oxide can transfer to the 

silicon. Then it creates the holes in oxide. This is happened by four photon absorption. It 

induces opposite dc electric field at interface according to the electron injection in oxide. 

The probability of the four photon absorption is lower than the three photon absorption 

(Park, 2010). The schematic form of the electron and hole injection is illustrated in Figure 

2.7 [ (Park, 2010) (Figure 2.7)].   

 

                                  

Figure 2.7. The illustration of the electron and hole injection on silicon system  

(Source: Park, 2010) 

 

There are some dependencies which affects the saturated SHG level such as oxide 

thickness (Bloch, 1995), photon energy (Bloch et al., 1995; Wang et al., 1998), oxidation 

types (Ionica et al., 2015) and applied electric field (Jun et al., 2004).  H. M. van Driel et 

al (Bloch et al., 1996) showed that time dependency behavior isn’t observed if the 

thickness of oxide is thicker than 10 nm in Figure 2.8 (a).  Additionally, W. Wang et al. 

(Wang et al., 1998) used different incidence photon energies. Their results demonstrated 

that increasing photon energy lead to decrease to saturated SHG signal level in Figure 2.8 

(b). B. Jun et al showed that the SHG signal also strongly depends on the applied electric 

field and it can vary due to the charge trapping (Jun et al., 2004; Alles et al., 2007).    
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(a) (b) 

Figure 2.8. The SHG intensity depends on (a) the thickness of the oxide side (Source: 

Bloch et al., 1996) and (b) the photon energy (Source: Wang et al., 1998) 

 

In addition, I. Ionica et al studied the characterization of silicon on insulator (SOI) 

wafers using by Harmonic F1X developed by FemtoMetrix (FemtoMetrix). They 

analyzed the difference buried oxide (BOX) thickness passivated (thermal oxide) and 

non-passivated (native oxide) wafers (Ionica et al., 2015) (The clear picture for SOI 

structure is in Figure 4.13). Their results are shown in Figure 2.9. These figures show us 

that the passivation samples cause a modification of the interface state (Ionica et al., 

2015). 

 

 

(a)                                                                 (b) 

Figure 2.9. The SHG intensity with 12nm silicon film and 145nm BOX (a) and with 12nm 

silicon film and 25nm BOX (b) (Source: Ionica et al., 2015) 
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2.3.   Bulk Contribution 

 

The other source of SHG radiation can occur from multipole contribution. 

Generally, the linear optical susceptibility of crystals has a cubic symmetry because of 

their isotropic character. However, the high rank of susceptibility tensors such as second 

and third order nonlinear susceptibilities give rise to anisotropic harmonic generation. In 

the initial works, the anisotropic effect was not observed. Bloembergen et al. 

(Bloembergen et al., 1968) showed that the SHG light reflected from silicon crystal was 

independent of the crystal orientation. However, Tom et al (Tom et al., 1983) used 532 

nm to send beam on silicon sample and observed that the SHG light strongly depends on 

the rotation angle about the surface normal for Si(111) in Figure 2.10 (a) and Si(100) in 

Figure 2.10 (b) faces. This behavior originates in the structural symmetry of the crystal 

and of the surface of the sample which is rotated about its surface normal (Tom et al., 

1983).   

 

 

(a) (b) 

Figure 2.10. These experiment was done by Tom et al (Tom et al., 1983). They rotated to 

Silicon about its surface normal from 0 to 360. The intensity of P-polarized 

SHG signal varies for (a) Si(111) and (b) Si(100) crystal faces under P- 

polarized incident light. 

 

In Figures 2.10, the SHG intensity varies with the rotation angle of sample about 

its surface normal. Let us note that this rotation angle will be called azimuthal angle in 

the following.  In this case, and the SHG signal is related to anisotropic effect of the 

structural symmetry of the crystal. For example, both of the bulk and surface contributions 

of a (111) crystal face generate an azimuthal dependence. On the contrary, in the case of 

a (100) crystal face, solely the bulk contribution generates an azimuthal dependence of 

the SHG signal (Sipe et al., 1987). 
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At the surface of a medium, the inversion symmetry is broken and the second 

order nonlinear susceptibility 𝜒(2) is not zero. However, away from the surface of a 

centrosymmetric medium,  𝜒(2) vanishes in the bulk of material and so only the higher 

order magnetic dipole and electric quadrupole sources produce a nonlinear response. 

Therefore, the intensity of second harmonic generation can acquire the electric 

quadrupole and magnetic dipole contributions in the bulk of the crystal. We used a 

macroscopic theory for bulk Si crystal established by Sipe et al (Sipe et al.,1987). The 

i’th component of the induced bulk nonlinear polarization can be written 

 

 𝐏𝑖
2ω(𝐫) =  (𝛿 − 𝛽 − 2𝛾)(𝐄. ∇)𝐸𝑖 + 𝛽𝐸𝑖(∇. 𝐄) + 𝛾∇𝑖(𝐄. 𝐄) + 𝜁𝐸𝑖∇𝑖𝐸𝑖 (2.44) 

 

where the coefficients   β, γ, δ and 𝜁 are independent elements of fourth rank tensor which 

is described by χ(2),QP. This second-order quadrupole susceptibility depends on material 

properties and has 81 components. However, only nonzero and independent components 

of tensor for centrosymmetric materials are  χ𝑖𝑖𝑖𝑖
(2),QP

, χ𝑖𝑖𝑗𝑗
(2),QP

, χ𝑖𝑗𝑖𝑗
(2),QP

and χ𝑖𝑗𝑗𝑖
(2),QP

 with 𝑖 ≠ 𝑗. 

They represent the coefficients β, γ, δ and 𝜁 respectively. The first three terms are 

isotropic in nature but the fourth one is anisotropic and it is not a scalar (Sipe et al., 1987). 

Sipe et al (Sipe et al., 1987) developed a phenomenological model to explain the 

relationship of crystal symmetries between the SHG intensity and the azimuthal 

(rotational) angle of the sample. The SHG intensity varies as the azimuthal angle of 

sample about its surface normal, and the SHG signal is related to anisotropic effect of 

structural symmetric of the crystal. The symmetry of the azimuthal dependence is 

different with regard to the crystal orientation of samples. A (100) surface is fourfold 

(4m) symmetry but a (111) face is threefold (3m) symmetry. Therefore, for Si(100)/ SiO2 

the SHG signal is proportional to sin2(4𝜑), corresponding to an eightfold symmetry. 

However, when the both of the bulk contributions and anisotropic effect are present, the 

SHG signal gives fourfold symmetry because of this relation: (sin(4𝜑) + 𝑎)2. The 

relation between the symmetry and S- and P-polarized SHG light intensities can be 

expressed by a truncated Fourier series (Sipe et al., 1987) (Lüpke et al., 1994):  

 

 



28 

 

 

𝐼𝑔,𝑝(𝜑) = |∑𝑎𝑛 cos(𝑛(𝜑 + 𝜑0))

4

𝑛=0

|

2

 

(2.45a)  

 

𝐼𝑔,𝑠(𝜑) = |∑𝑏𝑛 sin(𝑛(𝜑 + 𝜑0))

4

𝑛=1

|

2

 

(2.45b)  

 

where 𝜑 is an azimuthal angle, 𝜑0 is an arbitrary angle for start measurement, 𝐼𝑔,ℎ(𝜑) is 

the intensity of the SHG signal (𝑔 and ℎ represent s and p) and it depends on the azimuthal 

angle, 𝑎𝑛 is a coefficient which leads to the contribution element to second order 

nonlinear susceptibility. It can be easily understood that the 𝑎0 isotropic coefficient is the 

surface contribution for the P-polarized SHG intensity. Therefore, it should be the largest 

coefficient. In addition, 𝑎4 is the anisotropic bulk contribution for a Si(100)/SiO2 so it 

leads to fourfold symmetry. Because of the same reason, 𝑎1, 𝑎2 and 𝑎3 are one-, two- and 

three-fold symmetries. They are zero for ideal Si(100)/SiO2 interface (Cundiff et al., 

1998). They exist if there is a strain on surface, miscut effect or another effects. Thanks 

to this symmetry ability of SHG light, it is a very promising area to research the material 

characterization.  

           

                                     (a)                                                                      (b) 

Figure 2.11. The S-polarized (a) and P-polarized (b) SHG intensity for Si(100) under P-

polarized excitation (Source: Dadap et al., 1995). 

 

As an example, Figures 2.11 show the experimental results which the bulk S-

polarized and P-polarized SHG signal symmetry are observed as a function of azimuthal 

angle for Si(100) native oxide crystal by Dadap et al (Dadap et al., 1995). They used an 

unamplified Ti:sapphire Kerr-lens mode-locked laser which has 800nm of  wavelength 

and 120fs of pulse duration. For S- polarized SHG intensity in Figure 2.11 (a), they 
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observed that there is no SHG signal comes from surface but there are some signal come 

from the bulk with an eightfold symmetry because of the form of  sin(4𝜑) 2. However, 

in the case for P-polarized SHG intensity in Figure 2.11 (b), the bulk and the surface 

electric dipole are present and the intensity varies (𝑎 +   sin(4𝜑)) 2, ‘𝑎’ represents the 

contribution of the surface SHG signal. Therefore, the bulk P-polarized SHG intensity 

changes with a fourfold symmetry. 

Separation between the bulk and surface contribution is an encountered problem 

in the nonlinear optics. Although the bulk of a (100) face is the only one which has an 

anisotropic response, it is not possible to exactly isolate the bulk and surface. However, 

there are some ways (Gielis et al., 2008); firstly, the SHG intensity in some specific 

polarization configuration (S-in P-out, S-in S-out, P-in P-out, P-in S-out) can be measured 

in different azimuthal angle. With this way, the anisotropic bulk contribution to SHG can 

be found thanks to symmetrical properties of the bulk. In addition, due to the SHG’s high 

sensitivity of surface, any surface properties can be changed and so it can be easy to 

distinguish the difference in SHG response. However, for P-polarized SHG intensity, it 

can be hard to determine small relative changes due to the larger surface contribution 

(Lüpke et al., 1994). Therefore, the S-polarized SHG intensity can be used to determine 

them. Lastly, different thin film thickness can be selected to distinguish the interface and 

bulk.  
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CHAPTER 3 

 

EXPERIMENTAL SETUP 

                                                                       

We applied the given theoretical formulas to model the SHG signal generated 

from various interfaces. In particular, we applied these formulas for the Si/SiO2 interface 

which is of great interest for the microelectronic industry. Measurements are carried out 

with a commercial equipment called "Harmonic F1X" which is developed by 

FemtoMetrix, a company based in California. They produced Harmonic F1X for defect 

control and process uniformity of materials since contaminants such as stains and 

particles can change the characteristics of subsequent layers (FemtoMetrix). The machine 

is in development in view of commercialization. The Figure 3.1 given below shows a 

view of the experimental arrangement inside the Harmonic F1X: 

 

 

Figure 3.1. The picture of the inside of Harmonic F1X with a 50 mm silicon diameter 

wafer on the chuck (Details of the machine can be found via (FemtoMetrix)) 

 

Two different laser were used during the experiments. For the first laser, the SHG 

experiments were performed by using a femtosecond laser at 800 nm wavelength which 
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has a power peak 80kW, an average power 320mW, a pulse duration 95fs and spot size 

75𝜇m. After encountering some stability problems with this first laser, we continued to 

do experiment with the new laser. Thanks to FemtoMetrix Company, the new laser is 

more effective and stable (the stability problem was investigated also in Section 4.3). The 

properties of the new laser are shown in Table 3.1. 

 

Table 3.1. The properties of the new laser 

Wavelength 780 nm 

Average power 460 mW 

Power peak 80 kW 

Pulse duration 80 fs 

Repetition rate 5 MHz 

Laser beam diameter 2.7 mm 

Focus Length 150 mm 

Spot Diameter 50 𝛍m 

                                              

Figure 3.2 demonstrates all equipment of Harmonic F1X. Basically, the 

fundamental light comes from the femtosecond laser to the sample. The spot size of the 

laser is approximately 50 𝜇m (Damianos et al, 2016). Then, a Half Wave Plate (HWP) is 

used for changing the polarization state of light. It is placed at the output of the laser 

which is then focused on the sample surface by a Focus Lens. The reflected SHG signals 

are collected by Collimator. Then, filters are used to separate fundamental SHG and the 

original signals. After the filtering system, the SHG signal at 390 nm wavelength is 

detected by Photomultiplier Tubes (PMT) (Nguyen, 2014). 

There are certain experimental parameters for using this equipment (Damianos, 

2016). First of all, Angle of Incidence (AOI) ′θ′ is very important parameter to measure 

the SHG intensity. A motorized mechanical mount is used to move the laser such that we 

can vary the beam angle of incidence from 25° to 65°. In our experiments, we generally 

use an angle of beam with 45°.  Secondly, we measured the SHG intensity according to 

the input and output polarization which can be varied independently. In the P-polarized 

(the polarization angle 0°) and S-polarized (the polarization angle 90°) states, the electric 

field direction of the laser beam is respectively parallel or perpendicular to the surface of 

the sample. Both of the laser and detector polarization can change between 0° and 90°. 
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Another critical parameter is the azimuthal angle of the sample. For amorphous materials 

this is not relevant. However, silicon is crystalline, and the SHG signal may also depend 

on the angle of crystal with respect the laser plane of incidence. We can rotate manually 

the sample around the normal axis. For our measurements we obtained silicon wafers 

with crystal orientations 100. Finally, it is also possible to apply bias between the probe 

and the chuck. In this work, we applied voltage just for SOI samples. 

 

 

Figure 3.2. The equipment of Harmonic F1X (Source: Damianos, et al, 2016) 

 

 

 

 

 

 

 

 

 

 



33 

 

CHAPTER 4 

 

EXPERIMENTAL AND SIMULATION RESULTS 

 

This section is about a comparison between the experimental and simulation 

results of SHG. It shows that there are some dependency factors which have an influence 

and contribution on the SHG signal such as laser polarization angle, detector polarization 

angle, angle of incidence light, EFISH (electric field induced second harmonic), 

azimuthal angle and different oxidation types. To compare with the mathematical model, 

we use different Si wafers with (100) crystal orientation, together with two kinds of oxides 

at the silicon surface: very thin (nm) native oxide and thicker (tens of nm) thermal oxide. 

After, all experiments about Si wafers, silicon-on-insulator (SOI) is used for comparing 

with Si wafers. The results show that SHG is a very promising tool for characterization 

of the surface and the bulk of the sample. 

 

4.1.  SHG Signal Depends on the Polarization Angle of the Laser and 

the Detector 

  

Guided by Equation (2.42a) and Equation (2.42b), the input (laser) and output 

(detector) polarization angles are a critical point of measuring the intensity of the SHG 

light. If the angle between the electric field direction of the laser beam and the incident 

plane is 0°, it is called as P-polarized light and if it is 90°, it means that the S-polarized 

light is perpendicular to the plane of incidence in Figure 4.1. In the experimental results, 

‘-in’ and ‘-out’ terms were used to symbolize the polarization angles of input and output 

signals. Generally, P-in P-out, S-in P-out, P-in S-out and S-in S-out states are commonly 

used to measure the SHG intensity. The experimental results for Si(100) wafers with 

thermal and native oxide can be seen in Figure 4.2 and Figure 4.3. Apparently, the SHG 

intensity of P-in P-out polarizations is maximum comparing to the other polarizations for 

both experimental results.  
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Figure 4.1. The representation of the direction of P and S polarizations 

 

Figure 4.2 shows the impact for the laser and polarization angles on the SHG 

intensity for Si(100) with thermal oxide. The maximum SHG intensities were measured 

in P-out state. In our experiment, we generally used P-in P-out state because it produces 

the strongest SHG signal. Additionally, the SHG intensity is near zero for S-out SHG 

signal. Because in Equation (2.42a) there is no surface contribution which contribute to 

SHG intensity for S-out SHG signal if the laser polarization angle  (γin) is at 0° or 90°. 

In Figure 4.3, we measured the SHG intensity originating from Si(100) native 

oxide for different polarization angles of laser and detector during 100 seconds. It has 

same results with Si(100) thermal oxide: P-in P-out has the maximum SHG intensity and 

the S-out SHG signal has the lowest intensity under P- and S-polarized incident light. 

However, for just Si(100) native oxide, the SHG intensity is slowly increasing in time for 

P-in P-out and S-in P-out configurations. It is because of dc electric field inside Si(100) 

with native oxide at interface. The detail of this increase on the SHG intensity is explained 

in section 4.4.  
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Figure 4.2. The SHG intensities obtained from Si(100) thermal oxide are measured for P-

in P-out, S-in P-out, P-in S-out and S-in S-out polarization configurations. 

 

                 

Figure 4.3. The SHG intensities obtained from Si(100) native oxide are measured for P-

in P-out, S-in P-out, P-in S-out and S-in S-out polarization configurations. 
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4.2.  Analyzing the Elements of Second-Order Nonlinear Susceptibility 

Tensor for Silicon  

 

The SHG intensity is directly related to the second order nonlinear susceptibility 

which was derived in section 2.1.1. For Si(100) crystal faces, there are three independent 

nonzero tensors; χzzz, χzii and χizi (i=x or y). These nonzero tensor elements can be found 

by using Equation (2.42a) and Equation (2.42b). These are P- and S- polarized surface-

SHG intensities and can be shown 

 

 Ish
s (γin) = K |E sin γin  cos γin  χizi|

2 (4.1a) 

 Ish
p
(γin) = K |A cosγin

2  χzzz − Bcosγin
2 χizi + {Ccosγin

2 + Dsinγin
2 }χzii|

2
 (4.1b) 

 

where A, B, C, D, E and K coefficients are calculated like in Table 4.1. To find these 

tensor elements, the least square method was implemented in MATLAB following 

equations. Both, the experimental and simulation results are shown for P-out and S-out 

polarization states as a function of the incident polarization angle of light denoted γin in 

Figure 4.4 and Figure 4.5. The experiment was done by using Si (100) with thermal and 

native oxides. In Table 4.1, dielectric constants for SiO2 are real for two different 

frequencies under consideration because it is transparent at both wavelengths. On the 

contrary Si is absorbing at both 800nm and 400nm wavelengths, and its dielectric constant 

is therefore complex (Palik, 1997). 

 

Table 4.1. Dielectric constants for Si and SiO2 

Wavelength Si𝐎𝟐 Si 

800 nm 1.45332 (3.6801+ 5.22 ∗ 10−3 ∗ 𝑖)2 

400 nm 1.47012 (3.5832+ 2.96 ∗ 10−1 ∗ 𝑖)2 

 

We have arbitrary units for the tensor elements because SHG intensity is not 

absolutely calibrated. As a consequence, we can only deduce the two ratios χzzz/χzii and  

χizi/χzii from the experimental data. Therefore, we determined the ratios from the 

comparison between experiment and the SHG model. As shown on Figure 4.4 and Figure 

4.5, we succeeded in obtaining good agreement between experimental measurements and 
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model. Furthermore agreement is obtained for a given set of the two ratio and we've been 

able to deduce their values for Si(100) with thermal oxide:  χzzz/χzii=-61,10 and 

χizi/χzii=-0,80 in Figure 4.4.  

 

 

Figure 4.4. Experimental and simulation results for Si(100) with thermal oxide 

 

 

Figure 4.5. Experimental and simulation results for Si(100) with native oxide 
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In addition, the SHG signal from Si (100) native oxide was measured as a function 

of laser polarization angle for P-out and S-out states. We observed that oxidation types 

also have a very important influence on the SHG response curve. Therefore, the second 

order nonlinear susceptibility ratios are not the same for the two oxide types. Figure 4.5 

shows that the agreement is still provided we take other values for the two ratios which 

are here: χzzz/χzii= -75,5 and χizi/χzii= -0,90.   

In summary, the results show us the tensor elements can be found using the 

phenomenological model of SHG, as described in section 2.1.2. Another point about these 

tensors, χzzz has the strongest contribution to SHG, also the tensor element of χizi and χzii 

is nearly equal each other and so have same contributions to SHG. 

 

4.3.  SHG Signal Depends on Angle of Incidence 

 

SHG signal strongly depends on the angle of incidence (AOI). This dependence 

comes from the medium refractive indices of 𝑛1, 𝑛2 ( 𝑛1,2 = √𝜀1,2(𝜑) ) in Equation 

(2.41).  Due to reflectivity coefficient for different interfaces, there is a definite angle that 

gives the maximum SHG intensity. Theoretically, this angle is not affected by the 

nonlinear susceptibility ratios, these ratios just change the intensity curve of SHG light. 

The numerical results of the angular dependence of the SHG intensity were simulated 

according to P-in P-out, S-in P-out, P-in S-out and S-in S-out polarization configurations 

at Si/SiO2 interface. They are presented in Figure 4.6.  

Figure 4.6 provides that the SHG intensity appears at P-in P-out and S-in P-out 

polarizations and it has an intensity of nearly zero at P-in S-out and S-in S-out polarization 

states. This observation is in good agreement with phenomenological model of SHG. 

Indeed, because of the sine and cosines multiplication in Equation (2.42a), the SHG 

intensity for S-out is always zero according to the incidence polarization angles of 

γin=0°,90°. While the maximum SHG intensity for P-in P-out polarization is at the angle 

of 61°, S-in P-out polarization intensity is at the angle of 69°. Increasing the ratio of  

χzzz/χzii  leads to an increase in the SHG intensity of P-in P-out. The ratio of  χizi/χzii  

directly affects the S-out SHG intensity.    
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Figure 4.6. The SHG intensity, which was derived by using phenomenological model of 

Sipe and Mizrahi (Mizrahi & Sipe, 1988), was simulated with nonlinear 

susceptibility ratio χzzz/χzii=-61,10 and χizi/χzii=-0,80 at Si/SiO2 interface 

in different angle of incident light 

 

Afterwards, to compare the simulation results with experimental results, we used 

two different oxidation types for Si(100): native and thermal. The results are shown in 

Figures 4.7. In this experiment, we measured P-in P-out SHG intensity while we were 

rotating our samples about its surface normal (azimuthal angle) for the degree of 45°, 90°, 

135° and 180°. For both results, at 0°, 90° and 180° the SHG intensities overlapped, and 

they also overlapped for the degree of 45° and 90° with less SHG intensity in Figures 4.7. 

This is normal and proves that the experimental setup with the new laser is perfectly 

reliable.   

In addition, we could not observe the maximum angle of incidence for Si(100) 

native oxide which gives maximum P-in P-out SHG intensity like Si(100) thermal oxide. 

It is around at 52° for Si(100) thermal oxide in Figure 4.7 (a). Therefore, we decided to 

try the other polarized fundamental and SHG light; such as P-in S-out, S-in S-out and S-

in P-out at the same azimuthal angle 0°. The result for P-in S-out was same with Figure 

4.7 (b). However, the SHG intensity for S-in S-out and S-in P-out had same graph but 

with different shape from the P-in P-out graph. It is shown in Figure 4.8 for S-in P-out 

SHG intensity. The maximum SHG intensity is at 50°for Si(100) native oxide.   
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Figure 4.7. The results for P-in P-out SHG intensity for Si(100) thermal oxide(a) and for 

Si(100) native oxide (b) as a function of the angle of incidence in different 

rotational angle 
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Figure 4.8. The S-in P-out SHG intensity as a function of the angle of incidence for 

Si(100) native oxide 

 

The differences of SHG intensity for different polarization configurations for 

Si(100) native oxide can be caused by the static electric field at interface or it can be 

possible to see the maximum angle of incidence after 65° but the machine allows us to 

measure from 25° to 65°. 

 

4.4.  SHG Signal Depends on EFISH 

 

The SHG signal is generated at Si/SiO2 interface due to the broken inversion 

symmetry and has also contribution from the dc electric field at the interface. At Si/SiO2 

interface, the pulsed laser irradiation produces electron-hole pairs in Si region, some of 

the electrons acquire enough energy to overcome the barrier at the Si/SiO2 interface and 

they are injected into the oxide surface. Because of the separation of electrons, an electric 

field is created at interface. This electric field induced second harmonic (EFISH) is third 

order process and can be described by 

 

 I2ω(t) ∝  | χ(2) + χ(3)Edc(t)|
2
. (Iω)2 (4.2) 
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This equation explains the sensitivity of SHG signal in terms of the interface and oxide 

defects (Ionica et al., 2015).  

When we measured the SHG intensity of Si(100) native and thermal oxide for 

different polarization angles, we observed that the SHG intensity from Si(100) with native 

oxide increases in time as in shown in Figure 4.9. Whereas the same experiment was done 

for also the thermal oxide one but the SHG intensity does not increase or decrease in time. 

We believed that it is caused by different thickness of oxides. Because the thickness of 

thermal oxide is very thick with regard to native oxide. Therefore, we cannot see long 

period of saturation like native oxide. However, for native oxide, Edc(t) can saturates and 

starts compensating the initial electric field after a long time. We can also say that the 

direction of dc electric field is opposite to the initial field because of the direction of 

increment, so it means that the electrons in silicon region injects into the oxide region.   

 

 

Figure 4.9. The graph of P-in P-out SHG intensities vs time for Si(100) native oxide 

 

In Figure 4.9, we repeated the same experiment six times at each five minutes for 
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4.5.  SHG Signal Depends on Oxidation 

 

Silicon can exist with its oxide, and oxidation method is also a critical point for 

SHG intensity. We used two different types of oxidation: native and thermal. SiO2 is a 

native oxide of Si. Thermal oxidation of silicon is that the SiO2 is heated to a temperature 

between 800°C and 1200°C.  The result is that thermal oxide is thicker than native one (a 

few nm).  Figure 4.10 shows a comparison between thermal and native oxide with the 

crystal orientation (100) for Si. Native oxide sample has a higher intensity than the 

thermally oxidized silicon.  

 

 

Figure 4.10. The SHG intensity vs laser polarization angle for Si(100) native and 

thermal oxide 
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give information about the crystal orientation of samples and also to determine the surface 

and bulk contributions to SHG. 

Si (100) wafers were rotated manually from 0° to 180° for native and thermal 

oxide types. The SHG intensity was measured with respect to P-in P-out and P-in S-out 

polarization states. Figure 4.11 (a) and (b) belong to the results of Si (100) with thermal 

oxide for P-in P-out and P-in S-out SHG intensities. Also, Figure 4.12 (a) and (b) are for 

Si (100) with native oxide in same polarization order like thermal one.  The finding was 

similar to the work by Tom et al. as in Figure 2.10 and Dadap et al. Figure 2.11. If we 

examine the results, generally thermal and native oxide have same shape of graph for 

same polarizations. However, we observed different symmetry for different polarized 

SHG signal. If we extend the azimuthal angle’s range from 0° to 360° because it is 

symmetric, it can be observed fourfold symmetry for the P-out SHG intensity and 

eightfold symmetry for the S-out SHG intensity. We have already known that our silicon 

wafers should have fourfold symmetry because of that the crystal orientation of its surface 

is (100). Therefore, this result provides that SHG signal is related to directly crystal 

orientation of sample. 

In addition, the reason for observing different symmetry properties depends on 

contribution of the bulk electric quadrupole and the surface electric dipole. If we 

summarize total intensities of P-out and S-out SHG intensities for (100) crystal 

orientation as a function of azimuthal angle, they would be like following equations as 

mentioned before in Equations (2.45) (𝜑0 = 0): 

 

 

𝐼𝑝,𝑝(𝜑) = |∑𝑎𝑛 cos(𝑛𝜑)

4

𝑛=0

|

2

 

(4.3a)  

 

𝐼𝑝,𝑠(𝜑) = |∑𝑏𝑛 sin(𝑛𝜑)

4

𝑛=1

|

2

 

(4.3b)  
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Figure 4.11. (a) The P-in P-out SHG intensity and (b) the P-in S-out SHG intensity were 

measured as a function of angle of rotation (azimuthal angle) for Si(100) 

with thermal oxide 
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Figure 4.12. (a) The P-in P-out SHG intensity and (b) the P-in S-out SHG intensity were 

measured as a function of angle of rotation (azimuthal angle) for Si(100) 

with native oxide 
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We deduced the 𝑎𝑛 and 𝑏𝑛 Fourier coefficients using Equations (4.3) to fit the 

experimental data. The values of Fourier coefficients for Si(100) with thermal oxide are 

demonstrated in Table 4.2. We find that the 𝑎0 is the largest Fourier coefficient. This is 

theoretically expected (Sipe et al., 1987) because we know that the 𝑎0 coefficient is 

isotropic surface contribution and dominant the other terms for the P-out SHG intensity. 

In addition, the 𝑎4 coefficient, which mainly arises from the bulk quadrupole sources, is 

relatively large.  Therefore, the P-out SHG intensity varies as a function of azimuthal 

angle with fourfold symmetry, as (𝑎0 + 𝑎4cos(4𝜑))
2 in Equation (4.3a). The other 𝑎1, 

𝑎2 and 𝑎3 coefficients are partly small, this can be because of the large surface 

contribution of 𝑎0. When we examine eightfold symmetry for the S-out SHG intensity, it 

means that there is no dominant isotropic surface contribution. Therefore, the 𝑏4 

coefficient is the largest one in all Fourier coefficients  

 

Table 4.2. The Fourier coefficients were fitted to the measured data of P-in P-out and P-

in S-out the SHG intensity for Si(100) with thermal oxide 

n  P-in P-out (𝒂𝒏) P-in S-out (𝒃𝒏) 

0 595.97 - 

1 -2.28 29.53 

2 0.04 -2.58 

3 2.66 8.57 

4 38.14 -67.34 

 

For determining the Fourier coefficients for Si(100) with native oxide, we could 

not fit properly the experimental data using with Equations (4.3) for P-in S-out 

polarization state. Therefore, in order to find a best fit for the experimental data, we used 

more general expression of truncated Fourier expansion which given by Bottomley et al. 

(Bottomley et al., 1993). It is shown as 

 

 

𝐼𝑔,𝑓(𝜑) = |∑[𝑎𝑚cos (𝑛(𝜑 + 𝜑0)) + 𝑏𝑚sin (𝑛(𝜑 + 𝜑0))]

4

𝑚=1

|

2

+ ℎ (4.4) 

 

where 𝑔 and 𝑓 represent s or p polarization states. The surface and bulk contributions are 

calculated in this relationship: 𝑐𝑚 = 𝑎𝑚
2 + 𝑏𝑚

2
, is defined in (Bottomley et al., 1993). 
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The 𝑐𝑚 coefficients are shown in Table 4.3 for Si(100) with native oxide. The coefficient 

ℎ is the largest one in the results of P-in P-out state. It shows that again the surface 

isotropic contribution is dominant the other terms. However, for P-in S-out state, 𝑐4 is the 

largest one as in the result of the thermal oxide one. The other coefficient 𝑐1, 𝑐2 and 𝑐3 

shows the other facial orientation of the bulk. In our case, we do not have any specific 

information about the native oxide sample. The only thing we know that the thickness of 

the native oxide one is higher that the thermal oxide one. Therefore, it can be said that 

when the thickness of oxide becomes smaller, the surface sensitivity of SHG increases. 

 

Table 4.3. The Fourier coefficients were fitted to the measured data of P-in P-out and P-

in S-out the SHG intensity for Si(100) with native oxide 

  P-in P-out  P-in S-out 

𝒉 839370 1829 

𝒄𝟏 79090 2044 

𝒄𝟐 29150 2610 

𝒄𝟑 85260 1079 

𝒄𝟒 12140 2721 

 

As a summary, the SHG signal strongly depends on the azimuthal angle of the 

sample. We showed that this dependency can be used to identify the crystal orientation 

of the sample and determine the surface and bulk contributions to SHG intensity.  

 

4.7.  SHG Results Compare with Silicon On Insulator (SOI) 

 

After getting some information about sample silicon wafers, we continued to do 

experiment with Silicon on Insulator (SOI). Therefore, we can compare SOI’s results with 

our previous result about silicon wafers. Figure 4.13 illustrates the sample structure of 

SOI. It consists of a thin Si(100) film on the top of buried oxide (BOX) which is attached 

onto a Si(100) substrate. The upper Si films has been etched such that we are left with 

squares of SOI of size 3.0 x 3.0 mm2 like islands. Between these squares of SOI, the 

structure is only constituted of an SiO2 layer on top of Si wafer. The distance between 

two SOI islands is 2 mm. Thanks to separate structures of BOX and SOI; we can observe 

both regions.  
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Figure 4.13. The structure of SOI 

 

In our experiment, the oxide type of Si film is non-passivated (native). The 

thickness of film and BOX is 88nm and 145nm, respectively. The SHG signal is obtained 

45° angle of incidence for P-in P-out and P-in S-out. We performed the experiment to see 

the dependency of rotational angle and the applied external electric field for SOI on 

studying the SHG signal. 

To check the hypothesis that we should get same rotational effect on SHG signal 

on rotating SOI. We investigate the experiment for island and BOX region to compare 

the results. We call ISLAND the regions and BOX the regions where the upper silicon 

has been etched, i.e. outside the squares of SOI in Figure 4. 13. We measured P-in P-out 

and P-in S-out SHG signal comes from ISLAND and BOX in Figure 4.14, and we rotated 

the sample about its surface normal from 0° to 90°. The results were surprising because 

even for multinterface structure, the SHG intensity varies depending on the crsytal 

orientation of sample same like silicon wafers in Figure 4.11 and Figure 4.12. For 

example for P-in P-out SHG signal for ISLAND and BOX region of SOI in Figure 4.14, 

the SHG intensity varies with fourfold symmetry if we extend to azimuthal angle from 0° 

to 360°. This is again related to the form of  (𝑎0 + 𝑎4cos(4𝜑) )
2  in Equation (4.3).  
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Figure 4.14. The P-in P-out SHG intensity was measured as a function of azimuthal angle 

for (a) ISLAND region and (b) BOX region 
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Figure 4.15. The P-in S-out SHG intensity was measured as a function of azimuthal angle 

for (a) ISLAND region and (b) BOX region 
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Additionally, we measured SHG signal generated from ISLAND and BOX for P-

in S-out intensity in Figure 4.15 (a) and (b). The SHG intensity varies with eightfold 

symmetry for both cases if we again extend to azimuthal angle from 0° to 360°. In this 

case, there is no isotropic contribution to the SHG intensity which comes from surface or 

interface regions. Therefore, the form of the SHG intensity is  sin(4𝜑) 2 like in Equation 

(4.3).  

In addition, second harmonic optical technique is used to investigate the quality 

of buried surfaces and semiconductor interfaces. Electric field at the interface of Si/ SiO2 

varies with time. This helps us to understand the influence of the quality properties of 

interface.  

 

 

             (a)                                                                         (b)  

Figure 4.16. The P-in P-out SHG intensity were measured in time for BOX (a) and 

ISLAND (b) regions of SOI 

 

The experimental results in Figure 4.16 give us some information to estimate the 

direction of the electric field inside. In Figure 4.16 (a), the SHG signal generates from 

BOX region, and typical BOX surface has residual positive charges. The thickness of 

BOX is thicker than 10 nm. Therefore, the electrons at silicon surfaces cannot reach the 

oxide surface (Bloch et al., 1996). (This relation between the thickness of the oxide 

surface and the SHG intensity was shown in Figure 2.8 (a)) When the light irradiated to 

BOX region, the SHG intensity decrease a little in time. However, after a while, the 

electric field inside and the initial electric field starts compensating and the time 

dependent electric filed become constant. We believed that the decrease at the beginning 

is caused by the opposite direction of the electric field inside (Park et al., 2009).  
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Afterwards, we measured the intensity of generated second harmonic light from 

ISLAND region and we detected larger SHG intensity than the result of BOX region in 

Figure 4.16 (b). This is because of that second harmonic light is generated from more 

than one interface. In addition, the SHG intensity increases slowly like our previous 

experiment for Si(100) native oxide in Figure 4.10. However, the beginning of the shape 

of graph until 1 second, we observed a decrease and increase on the SHG intensity. We 

estimated that this is caused by the total of the electric field inside. We should call like 

the total of the electric field inside because there are more than one dc electric fields inside 

the SOI. One of them is between Si-sub and BOX, another is between BOX and Si film, 

the other is Si film and its native oxide.  So, at the beginning, we can say that the direction 

of the inside electric field is opposite to the initial field. Then they become equal at the 

level of minimum SHG intensity. After that, the time dependency SHG intensity increases 

slowly until it saturates.  

In addition, we applied different voltages to the Si-substrate to see the impact of 

dc electric field. We apply different voltage on the direction of surface, so it effects only 

to dc electric field. We performed this experiment for -30V, -15V, 0V, 15V and 30V in 

Figure 4.17. The results show us that the SHG intensity at -30V is larger than the other 

applied voltage. This can be caused by the direction of electric field inside. 

 

 

Figure 4.17. Different voltages (-30V, -15V, 15V, 30V) were applied on ISLAND region      

of non-passivated (native) SOI sample. 
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CHAPTER 5 

 

CONCLUSION 

 

In summary, we demonstrated that SHG is an effective, non-destructive and 

contactless characterization method in microelectronic industry. In this thesis, different 

materials were used to observe SHG signal and to develop a suitable characterization 

model. 

 

Figure 5.1. The structure of Glass + TiO2 (with 250nm thickness)  

 

Figure 5.2. The SHG intensity vs time for Glass and Glass + TiO2 (with 250 nm 

thickness) 

 

Firstly, we started our research with simple glass substrate. The idea was to test 

the model on the simple glass/air interface which should be able to generate a SHG signal. 

Theoretically, SHG signal must occur at air/glass surface because of the breaking of the 

centrosymmetric at the interface. However, we could not find any further information 
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about this phenomenon in the literature for glass/air interface, it is probably because of 

that the SHG signal from glass is expected to be very small. However, we observed a 

SHG signal from air/glass interface, although it is preliminary experiments which have 

to be confirmed. Afterwards, we tried another dielectric material, namely a TiO2 thin film 

deposited on glass substrate as illustrated in Figure 5.1. The incoming intensity at the 

glass/TiO2 interface was measured at 55° incidence angle (𝜃1(𝜔), in Figure 2.5) for P-in 

P-out polarization orientations. As in shown in Figure 5.2, this structure gave also low 

SHG intensity but slightly higher than the glass/air interface. 

Following that, we continued experimenting with different silicon wafers and 

simulated the SHG model in MATLAB. Then, we used a more complex material which 

is silicon-on-insulator (SOI) to compare the experimental results of silicon wafers. 

Finally, we observed some parameters which affect the SHG intensity and also found 

some crucial results which support the SHG method is an effective characterization 

method for semiconductor materials: 

 The SHG signal strongly depends on the polarization states of the incident light 

and second harmonic light. For this experiment, Si(100) with thermal and native 

oxide were used. The maximum SHG intensities were measured in P-in P-out 

polarization states. In addition, the SHG intensity observed near zero for the S-

out polarized SHG signal (such as P-in S-out and S-in S-out). This was expected 

results according to theoretical assumptions, because the surface isotropic 

contribution is near zero at S-out polarization states. It was verified also in 

rotational-anisotropy SHG experiments. Also, the maximum value for S- and P-

out polarized SHG intensity is observed about 50° for both of them. In addition, 

when comparing results of both silicon wafers obtained SHG intensity, the native 

oxide one has a strongest SHG intensity. This is due to the different thickness of 

the oxide type.   

 Additionally, we used the phenomenological surface SHG model to find the 

element ratios of the second order nonlinear susceptibility (χzzz/χzii and 

χizi/χzii). These ratios are different for each material. We determined different 

ratios for Si(100) with thermal and native oxide. It is shown that the SHG model 

gives a good agreement between the theory and experiment in Figure 4.4 and 

Figure 4.5.  
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 The angle of incidence light is also another critical parameter to determine the 

SHG intensity. Additionally, it is linked to the reflectivity coefficients of 

mediums. We measured the SHG intensity as a function of angle of incidence for 

Si(100) with thermal and native oxide. For the thermal oxide one, we observed 

the maximum SHG intensity at 52°. However, the results for the Si(100) with 

native oxide were different than the Si(100) with native oxide for P-in P-out 

polarization state because we couldn’t observed any maximum incidence angle 

for SHG intensity between the angle of 25° and 65°. This is directly related to the 

polarization states of second harmonic and fundamental light.  For example, in S-

in P-out state, the maximum SHG intensity was found at 50° for Si(100) native 

oxide.   

 Due to the separation of the electrons at silicon interface, the dc electric field arises 

inside the medium. It is a third order process and an additional effect to SHG 

intensity, called EFISH. To observe this effect of dc electric field, Si(100) with 

native and thermal oxide were measured at a given time. We observed that the 

SHG intensity for the thermal oxide does not change during the experiment 

whereas the native one increases. This difference is because of the charge 

separation of electron and holes, and it can give information about charge 

saturation at the interface of semiconductors. In addition, it is also possible to use 

this method to estimate the direction of the electric field due to the charge 

separation.  

 When we rotated the samples, different SHG intensity values were observed at 

each azimuthal angle. This is directly related to the crystal orientation of sample. 

In the experimental results, for silicon with (100) crystal orientation, the S-out 

SHG intensity varies as a function of azimuthal angle with eightfold symmetry. 

However, if the surface contribution is greater than the bulk contribution such as 

for P-polarized SHG intensity, it was observed fourfold symmetry. To show this 

differences between bulk and surface contributions, we found the Fourier 

coefficients which describes the crystal facial orientations of the total SHG. These 

coefficients give information about the surface and bulk contributions. For 

Si(100) with thermal and native oxide, the isotropic surface contribution is 

dominant the other terms in P-in P-out state. However, in the case of P-in S-out, 

the anisotropic bulk contribution is dominant the other terms.  
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 After getting some information about Si wafers, we continued to investigate 

silicon on insulator (SOI). We compared the SHG intensity of ISLAND and BOX 

regions of SOI. ISLAND region has larger SHG intensity than BOX region, it is 

because of the multiple interfaces. We can examine the SHG intensity of ISLAND 

and BOX regions as a function of azimuthal angle. According to the results, the 

shape of graphs is same with Si(100) wafer which we used before. We again 

observed fourfold symmetry for P-polarized SHG intensity and eightfold 

symmetry for S-polarized SHG intensity. In addition, we measured SHG intensity 

with and without bias in time. This results show us the direction of the dc electric 

field inside, which arises from the charge separation at the interface, can be 

estimated by looking the time dependency of SHG intensity. 

Consequently, the SHG model is a powerful tool for characterize the quality of the 

dielectric materials in microelectronic industry. In this study, it showed that this method 

allows us to identify and study on the surface and bulk of sample.  
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APPENDIX A 

 

MACROSCOPIC MAXWELL’S EQUATION 

 

The four vectors, the electric field E, the electric displacement field D, the 

magnetic field intensity H, the magnetic field B, in the macroscopic Maxwell’s equations 

Equation (2.15) convert to the stationary continuous wave form. It exemplifies by Sipe 

(Sipe, 1987) 

 

    𝑓(𝐫, 𝑡) = 𝑓(𝐫)𝑒−𝑖𝜔𝑡 + 𝑐. 𝑐. 

               = 2Re[𝑓(𝒓)𝑒−𝑖𝜔𝑡] 
(A.1) 

 

Therefore, 

 

 𝐃(𝐫)𝑒−𝑖𝜔𝑡 = ϵ 𝐄(𝐫)𝑒−𝑖𝜔𝑡 (A.2a) 

     𝐇(𝐫)𝒆−𝒊𝝎𝒕 = 𝜇−1𝐁(𝐫)𝑒−𝑖𝜔𝑡  (A.2b) 

 

The first Equation (2.15a) and third Equation (2.15c) of the macroscopic Maxwell’s 

equation can be found easily 𝛁 ∙ 𝐄(𝐫) = 0 and 𝛁 ∙ 𝐁(𝐫) = 0 , respectively. The second 

Equation (2.15b) is calculated and found 

 

 
𝑐𝛁 × 𝜇−1𝐁(𝐫)𝑒−𝑖𝜔𝑡 − ϵ 𝐄(𝐫)

𝛛

𝛛𝐭
𝑒−𝑖𝜔𝑡 = 0 

𝛁 × 𝐁(𝐫) − 𝑖
𝜔

𝑐
𝜖𝜇 𝐄(𝐫) = 0 

(A.3) 

 

The last one Equation (2.15d) is derived to 

 
𝑐𝛁 × 𝐄(𝐫)𝑒−𝑖𝜔𝑡 + 𝐁(𝐫)

𝛛

𝛛𝐭
𝑒−𝑖𝜔𝑡 = 0 

𝛁 × 𝐄(𝐫) + 𝑖
𝜔

𝑐
𝐁(𝐫) = 0 

(A.4) 
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APPENDIX B 

 

INHOMOGENEOUS MAXWELL EQUATION 

 

We restore the electric displacement field 𝐃(𝐫) when the polarization 𝐏(𝐫) ≠ 0. 

Therefore, it is calculated as Equation (2.18a) 

 

                               𝐃(𝐫) = 𝐄(𝐫) + 4π𝐏𝐭(𝐫)  

                                        = 𝐄(𝐫) + 4π(χe
(1)𝐄(𝐫) + 𝐏(𝐫))  

                                         = 𝐄(𝐫)(𝟏 + 4πχe
(1)) + 4πχe

(1)𝐏(𝐫)  

                                         = 𝜖𝐄(𝐫) + 4πχe
(1)𝐏(𝐫) (B.1) 

 

The new version of the displacement electric field 𝐃(𝐫) influences on the homogeneous 

Maxwell’s equations just for  𝛁 ∙ 𝐃 = 0 Equation (2.15a) and 𝑐𝛁 × 𝐇 − 𝐃̇ = 0 Equation 

(2.15b). Therefore, the first one can be described in this form: 

 

 𝛁 ∙ (𝜖𝐄(𝐫) + 4πχe
(1)𝐏(𝐫)) = 0  

 𝛁 ∙ 𝜖𝐄(𝐫)

𝜖
= −

4πχe
(1)

𝜖
𝛁 ∙ 𝐏(𝐫) 

 

 𝛁 ∙ 𝐄(𝐫) = −4𝜋𝜖−1𝛁 ∙ 𝐏(𝐫) (B.2) 

 

The other one can be found 

 

 
𝑐𝛁 × 𝜇−1𝐁(𝐫)𝑒−𝑖𝜔𝑡 − (𝜖𝐄(𝐫) + 4πχe

(1)𝐏(𝐫))
𝛛

𝛛𝐭
𝑒−𝑖𝜔𝑡 = 0 

 

 𝑐𝛁 × 𝜇−1𝐁(𝐫)𝑒−𝑖𝜔𝑡

𝑐𝜇−1𝑒−𝑖𝜔𝑡
−
𝑖𝜔(𝜖𝐄(𝐫) + 4πχe

(1)𝐏(𝐫))

𝑐𝜇−1𝑒−𝑖𝜔𝑡
𝑒−𝑖𝜔𝑡 = 0 

 

 𝛁 × 𝐁(𝐫) + 𝑖𝜔̃𝜖𝜇𝐄(𝐫) = −4𝜋𝑖𝜔̃𝜇𝐏(𝐫) (B.3) 
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APPENDIX C 

 

     CALCULATION OF S- AND P- POLARIZED 

ELECTRIC FIELD DEPENDING ON 

PHENOMENOLOGICAL SURFACE SHG MODEL 

 

To determine the s- and p-polarization components of the electric field, the curl 

equations in Equation 2.24, which are the second and fourth Maxwell inhomogeneous 

equations, are just considered. Firstly, we start with the fourth one Equation (2.24d). So, 

we put the total electric field 𝐄(𝐫) and 𝐁(𝐫) into 𝛁 × 𝐄(𝐫) − 𝑖𝜔̃𝐁(𝐫) = 0.  

 

 𝛁 × [𝐄+(𝐫) exp(−𝑖𝜔𝑧𝑜) ℎ(𝑧 − 𝑧𝑜) + 𝐄−(𝐫) exp(𝑖𝜔𝑧𝑜) ℎ(𝑧𝑜 − 𝑧)   

              +𝝃𝛿(𝑧 − 𝑧𝑜) exp(𝑖𝜅 ∙ 𝑹)] −𝑖𝜔̃[𝐁+(𝐫) exp(−𝑖𝜔𝑧𝑜)ℎ(𝑧 − 𝑧𝑜)  

            +𝐁−(𝐫) exp(𝑖𝜔𝑧𝑜) ℎ(𝑧𝑜 − 𝑧)] = 0 (C.1) 

 

To solve this equation, the following statements are used: 

 The vector product rule: 

 ∇ × 𝑓𝐴 = (∇𝑓) × 𝐴 + 𝑓 ∙ (∇ × 𝐴) (C.2) 

 The derivative form of the step function and the Dirac delta: 

 ∇ℎ(𝑧 − 𝑧𝑜) = 𝑧̂𝛿(𝑧 − 𝑧𝑜)  

 ∇𝛿(𝑧 − 𝑧𝑜) = 𝑧̂𝛿
′(𝑧 − 𝑧𝑜) (C.3) 

 The special case for the step function: 

 

 ℎ(𝑧𝑜 − 𝑧) = 1 −  ℎ(𝑧 − 𝑧𝑜) (C.4) 

 

Therefore, Equation (C.1) turn into 
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     𝛁 × ℎ(𝑧 − 𝑧𝑜)[𝐄+(𝐫) exp(−𝑖𝜔𝑧𝑜) − 𝐄−(𝐫) exp(𝑖𝜔𝑧𝑜)] + ∇  

         × 𝐄−(𝐫) exp(𝑖𝜔𝑧𝑜) + ∇ × 𝝃𝛿(𝑧 − 𝑧𝑜) exp(𝑖𝜅 ∙ 𝑹) − 𝑖𝜔̃[𝐁+(𝐫)  

         exp(−𝑖𝜔𝑧𝑜) ℎ(𝑧 − 𝑧𝑜) + 𝐁−(𝐫) exp(𝑖𝜔𝑧𝑜)ℎ(𝑧𝑜 − 𝑧)] = 0 (C.5) 

 

Then, it follows that 

 

     𝛁ℎ(𝑧 − 𝑧𝑜) × [𝐄+(𝐫) exp(−𝑖𝜔𝑧𝑜) − 𝐄−(𝐫) exp(𝑖𝜔𝑧𝑜)]  

      +ℎ(𝑧 − 𝑧𝑜)[∇ × 𝐄+(𝐫) exp(−𝑖𝜔𝑧𝑜) − 𝛁 × 𝐄−(𝐫) exp(𝑖𝜔𝑧𝑜)]  

      +∇ × 𝐄−(𝐫) exp(𝑖𝜔𝑧𝑜) + [(∇𝛿(𝑧 − 𝑧𝑜)) × 𝝃 exp(𝑖𝜅 ∙ 𝐑)]  

       +𝛿(𝑧 − 𝑧𝑜)[∇ × 𝝃 exp(𝑖𝜅 ∙ 𝐑)] − 𝑖𝜔̃[𝐁+(𝐫) exp(−𝑖𝜔𝑧𝑜) ℎ(𝑧 − 𝑧𝑜)  

      +𝐁−(𝐫) exp(𝑖𝜔𝑧𝑜) ℎ(𝑧𝑜 − 𝑧)] = 0 (C.6) 

 

Using 𝛁 × 𝐄(𝐫) = 𝑖𝜔̃𝐁(𝐫), the equation changes to 

 

 𝛿(𝑧 − 𝑧𝑜)𝑧̂ × [𝐄+(𝐫) exp(−𝑖𝜔𝑧𝑜) − 𝐄−(𝐫) exp(𝑖𝜔𝑧𝑜)]  

    +ℎ(𝑧 − 𝑧𝑜)[𝑖𝜔̃𝐁+(𝐫) exp(−𝑖𝜔𝑧𝑜) − 𝑖𝜔̃𝐁−(𝐫) exp(𝑖𝜔𝑧𝑜)]  

    +𝑖𝜔̃𝐁−(𝐫) exp(𝑖𝜔𝑧𝑜) + [𝑧̂ × 𝝃 𝛿
′(𝑧 − 𝑧𝑜)exp(𝑖𝜅 ∙ 𝑹)  

   +𝛿(𝑧 − 𝑧𝑜)(𝑖𝜅 × 𝝃) exp(𝑖𝜅 ∙ 𝐑)] − 𝑖𝜔̃[𝐁+(𝐫) exp(−𝑖𝜔𝑧𝑜) ℎ(𝑧 − 𝑧𝑜)  

   +𝐁−(𝐫) exp(𝑖𝜔𝑧𝑜) ℎ(𝑧𝑜 − 𝑧)] = 0 (C.7) 

 

Lastly, the equation is found at 𝑧𝑜 = 0
+ and 𝐑 = 0 

 

𝛿(𝑧 − 𝑧𝑜)𝑧̂ × [𝐄+(𝐫) − 𝐄−(𝐫)] + 𝑧̂ × 𝝃𝛿
′(𝑧 − 𝑧𝑜) + 𝛿(𝑧 − 𝑧𝑜)(𝑖𝜅 × 𝝃) = 0 (C.8) 

 

We put 𝐄∓(𝐫) = (𝐸𝑠∓𝑠̂ + 𝐸𝑝∓𝑝̂∓) into the equation and also calculated  

 

 𝛿(𝑧 − 𝑧𝑜)𝑧̂ × [(𝐸𝑠+𝑠̂ + 𝐸𝑝+𝑝̂+) − (𝐸𝑠−𝑠̂ + 𝐸𝑝−𝑝̂−)] + 𝑧̂ × 𝝃𝛿
′(𝑧 − 𝑧𝑜)  

            +𝛿(𝑧 − 𝑧𝑜)(𝑖𝜅 × 𝝃) = 0 (C.9) 
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To equal the equation zero, the different orders should be zero, such as there is no 𝛿′ term 

in the equation, so necessarily 𝑧̂ × 𝝃 = 0. Therefore, we can find, 𝜉𝑠 = 𝜉𝜅 = 0 . The 

equation turns into 

 

 𝑧̂ × [(𝐸𝑠+𝑠̂ + 𝐸𝑝+𝑝̂+) − (𝐸𝑠−𝑠̂ + 𝐸𝑝−𝑝̂−)] + (𝑖𝜅𝜅̂ × 𝜉𝑧𝑧̂) = 0 (C.10) 

 

We examine the special case when 𝜅̂ = 𝑥̂ 

 

       [𝐸𝑠+(𝑧̂ × 𝑠̂) + 𝐸𝑝+(𝑧̂ × 𝑝̂+)] − [𝐸𝑠−(𝑧̂ × 𝑠̂) + 𝐸𝑝−(𝑧̂ × 𝑝̂−)]  

                 +𝑖𝜅𝜉𝑧(𝜅̂ × 𝑧̂) = 0 (C.11) 

 

Using the vector product rule in Equation C.2, we separate above equation into the vector 

coordinates 𝑠̂ and 𝜅̂ respectively (because there is no 𝑧̂ component): 

 

 𝐸𝑝+ + 𝐸𝑝− + 𝑖𝜅𝜈𝑤
−1𝜉𝑧 = 0 (C.12) 

 𝐸𝑠+ − 𝐸𝑠− = 0  

 

Next we will use the second equation of inhomogeneous Maxwell’s equations 

Equation (2.24b) 𝛁 × 𝐁(𝐫) + 𝑖𝜔̃𝜖𝜇𝐄(𝐫) = −4𝜋𝑖𝜔̃𝜇𝐏(𝐫) and we put the total electric 

field 𝐄(𝐫) and 𝐁(𝐫) into the equation 

 

 𝛁 × [𝐁+(𝐫) exp(−𝑖𝜔𝑧𝑜) ℎ(𝑧 − 𝑧𝑜) + 𝐁−(𝐫) exp(𝑖𝜔𝑧𝑜) ℎ(𝑧𝑜 − 𝑧)]  

   +𝑖𝜔̃𝜖𝜇[𝐄+(𝐫) exp(−𝑖𝜔𝑧𝑜) ℎ(𝑧 − 𝑧𝑜) + 𝐄−(𝐫) exp(𝑖𝜔𝑧𝑜)ℎ(𝑧𝑜 − 𝑧)  

    +𝝃𝛿(𝑧 − 𝑧𝑜) exp(𝑖𝜅 ∙ 𝑹)] = −4𝜋𝑖𝜔̃𝜇[𝑃𝛿(𝑧 − 𝑧𝑜) exp(𝑖𝜿 ∙ 𝐑)] (C.13) 

 

Using same arguments like before one, the above equation turns into 
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 𝛿(𝑧 − 𝑧𝑜)𝑧̂ × [𝐁+(𝐫) exp(−𝑖𝜔𝑧𝑜) + 𝐁−(𝐫) exp(𝑖𝜔𝑧𝑜)]  

  −𝑖𝜔̃𝜖𝜇[𝐄+(𝐫) exp(−𝑖𝜔𝑧𝑜) ℎ(𝑧 − 𝑧𝑜) + 𝐄−(𝐫) exp(𝑖𝜔𝑧𝑜) ℎ(𝑧𝑜 − 𝑧)]  

  +𝑖𝜔̃𝜖𝜇[𝐄+(𝐫) exp(−𝑖𝜔𝑧𝑜) ℎ(𝑧 − 𝑧𝑜) + 𝐄−(𝐫) exp(𝑖𝜔𝑧𝑜) ℎ(𝑧𝑜 − 𝑧)]  

   +𝑖𝜔̃𝜖𝜇𝝃𝛿(𝑧 − 𝑧𝑜) exp(𝑖𝜅 ∙ 𝑹) = −4𝜋𝑖𝜔̃𝜇[𝑃𝛿(𝑧 − 𝑧𝑜) exp(𝑖𝜿 ∙ 𝐑)] (C.14) 

 

Then, 

 

 𝛿(𝑧 − 𝑧𝑜)𝑧̂ × [𝐁+(𝐫) exp(−𝑖𝜔𝑧𝑜) + 𝐁−(𝐫) exp(𝑖𝜔𝑧𝑜)]  

   +𝑖𝜔̃𝜖𝜇𝝃𝛿(𝑧 − 𝑧𝑜) exp(𝑖𝜅 ∙ 𝑹) = −4𝜋𝑖𝜔̃𝜇[𝑃𝛿(𝑧 − 𝑧𝑜) exp(𝑖𝜿 ∙ 𝐑)] (C.15) 

 

We put  𝐁∓(𝐫) = √𝜇𝜖(𝐸𝑝∓𝑠̂ ± 𝐸𝑠∓𝑝̂∓) into the equation and do the calculation at 𝑧𝑜 =

0+ and 𝐑 = 0, 

 

                  𝑧̂ × [√𝜇𝜖(𝐸𝑝+𝑠̂ − 𝐸𝑠+𝑝̂+) + √𝜇𝜖(𝐸𝑝−𝑠̂ − 𝐸𝑠−𝑝̂−)] + 𝑖𝜔̃𝜖𝜇𝜉𝑧𝑧̂  

                           = −4𝜋𝑖𝜔̃𝜇𝑃 (C.16) 

 

After, 

 

 √𝜇𝜖(𝑧̂ × 𝑠̂)𝐸𝑝+ − √𝜇𝜖(𝑧̂ × 𝑝̂+)𝐸𝑠+ + √𝜇𝜖(𝑧̂ × 𝑠̂)𝐸𝑝− −√𝜇𝜖(𝑧̂  

        × 𝑝̂−)𝐸𝑠− + 𝑖𝜔̃𝜖𝜇𝜉𝑧𝑧̂ = −4𝜋𝑖𝜔̃𝜇(𝑃𝑠𝑠̂ + 𝑃𝜅𝜅̂ + 𝑃𝑧𝑧̂) (C.17) 

 

We separate the equation the vector field 𝑠̂, 𝜅̂ and 𝑧̂ respectively 

 

 𝐸𝑠+ + 𝐸𝑠− = 4𝜋𝑖𝜔̃
2𝜇𝑤−1𝑃𝑠  

 𝐸𝑝+ − 𝐸𝑝− = −4𝜋𝑖𝜔̃𝜇√𝜇𝜖
−1
𝑃𝜅  

 𝜉𝑧 = −4𝜋𝜖
−1𝑃𝑧 (C.18) 
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Finally, we can find the components of the electric field with respect to 𝑠̂± and 𝑝̂± using 

Equation C.12 and Equation C.18 

 

 
𝐸𝑠± =

2𝜋𝑖𝜔̃2

𝑤
𝑠̂ ∙ 𝑃 

 

 
𝐸𝑝± =

2𝜋𝑖𝜔̃2

𝑤
𝑝̂± ∙ 𝑃 

(C.19) 

 


