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Abstract: In this study, plum slices were dried in three different driers (tray, fluid bed, and heat
pump (HP) driers). Drying experiments were carried out at an air temperature range of 45—55°C
with an air velocity of 1.5 m/s. The performance of the driers along with their main components
was evaluated and compared by using the exergy analysis method. The most important com-
ponent for improving the system efficiency was determined to be the fan-heater combination
for both the tray and fluid bed driers, and the motor-compressor assembly for the HP drier. The
exergy loss and flow diagram (the so-called Grassmann diagram) of the driers was also presented
to give quantitative information regarding the proportion of the exergy input dissipated in the
various system components. Effects of the drying air temperature on the performance of the dry-
ing process were discussed. The highest exergetic efficiency values were obtained to range from
72.72 to 75.66 per cent for the HP drier, followed by the tray and fluid bed driers varying between
37.94 and 39.46 per cent, and between 22.83 and 24.07 per cent, respectively.

Keywords: drying, exergy analysis, fluid bed drier, heat pump drier, performance evaluation,

tray drier

1 INTRODUCTION

Drying is one of the oldest unit operations, and
widespread in various industries recently. In food
industry, foods are dried starting from their natural
form (vegetables, fruits, grains, spices, milk) or after
handling (e.g. instant coffee, soup mixes, whey). The
production of a processed food may involve more than
one drying process at different stages and in some
cases pre-treatment of food is necessary before dry-
ing. The main purpose of food drying is to preserve
and extend the shelf life of the product. In addition
to this, drying in food industry is used to obtain the
desired physical form (e.g. powder, flakes, granules);
to obtain the desired colour, flavour, or texture; to
reduce the volume or weight for transportation; and
to produce new products that would not otherwise
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be feasible [1, 2]. The methods of drying are diversi-
fied with the purpose of the process. There are more
than 200 types of dryers [1]. For every dryer, the pro-
cess conditions, such as drying chamber temperature,
pressure, air velocity (if the carrier gas is air), rela-
tive humidity, and the product retention time, have
to be determined according to feed, product, purpose,
and method. On the other hand, drying is an energy-
intensive process, while its energy consumption value
varies between 10 and 15 per cent of the total energy
consumption in all industries in developed countries
(1, 3]. Therefore, optimization of the drying processes
and systems is important with regard to the energetic
efficiencies.

During the past few decades, thermodynamic anal-
yses, particularly exergy analyses, have appeared to be
an essential tool for system design, analyses, and opti-
mization of thermal systems [4]. Exergy analysis is a
very useful tool that can be successfully used in the
design and the simulation of energy systems, and pro-
vides necessary information to choose the appropriate
component design and operation procedure. This
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information is much more effective in determining
the plant and operation costs, the energy conserva-
tion, the fuel versatility, and the pollution. By using
exergy analysis method, magnitudes and locations
of exergy destructions (irreversibilities) in the whole
system can be identified, while potential for energy
efficiency improvements can be introduced [5]. The
mathematical models for exergy analysis of drying of
biological products have been developed [4, 6-8]. The
energy analysis method has been widely used for eval-
uating the performance of food systems (especially
food dryers), while studies on exergy analysis were
relatively few in number [9-20].

In this study, three different drying systems were
used for drying plums slices, while the performance
assessment for each component of these systems and
the whole systems was done using the exergy analysis
method. The effect of drying temperature on the effi-
ciencies of the systems and components was studied
in terms of exergetic efficiency, improvement poten-
tial rate, and exergetic factor. Suggestions towards
improving the efficiencies of the drying systems were
made. This work also aims at revealing the insights
that will aid investigators, designers, and operators of
such systems.

2 MATERIALS AND METHODS

2.1 Plums

Freshly harvested plums (Prunus domestica Insititia)
were purchased from a local market in Izmir, Turkey.
The purchased plums were cleaned and dipped into 1
per cent NaOH solution for 15s [21, 22]. Plums were
then washed with water and after removing excess
water from the surface of plums with a filter paper,
they were sliced uniformly (average thickness: 4.0 +
0.5 mm), while the purchased plums were processed
within 24 h.

The moisture content of the plums was determined
by using the vacuum oven method [23]. Experi-
ments were triplicated. The moisture content of the
fresh and dried plums was determined to be 84.49
per cent +1.10 and 15.70 per cent +2.56 (wet basis),
respectively.

2.2 Experimental set-up

Plums were dried in three different drying systems,
namely (a) a tray drier, (b) a fluid bed drier, and (c) a
heat pump (HP) drier.

Alaboratory-type tray drier (Armfield UOP8, Hamp-
shire, UK) was used [24] and its drying air velocity
was regulated by an axial flow fan and fan speed con-
trol unit. The air was heated with an electric 3000-W
heater placed inside the duct, and air temperature
was controlled by a heater power control unit. Drying

compartment dimensions were 0.3 x 0.3 x 0.4 m. The
drier included four sample trays.

A laboratory-type fluid bed drier (Sherwood Scien-
tific, Cambridge, UK) was used [25]. In this drier, air
was drawn through a mesh filter in the base of the
cabinet and blown by a centrifugal fan over a 2kW
finned electrical heater and through a stainless-steel
filter gauze before being delivered to the distributor
gauze at the base of the drier body. This distributed
the air uniformly to the bed and also supported it. The
air blower was controlled by a thyristor circuit to give
a smooth vibration over a wide range of motor speeds,
giving fine control of the drying temperature. The tub
unit was locked into the position on the cabinet top by
a simple bayonet fitting. A filter bag was employed to
retain any stray particles of the sample being fluidized
while allowing the passage of exit gases.

Apilot-scale HP conveyor dryer, which was designed
and constructed in the Department of Mechanical
Engineering, Faculty of Engineering, Ege University,
Izmir, Turkey, was used in this study [19]. The drying
system consisted of two main parts: (a) heat pump
(HP) and (b) drying chamber. The air was heated by
an HP system that included a scroll compressor, two
condensers (internal and external ones), an expansion
valve, an evaporator, and a heat recovery unit (HRU).
The air temperature was controlled by a control unit.
R407C was used as refrigerant in the HP system. The
drying air velocity was regulated by a fan and its speed
control unit, and the drying air was recycled. Dry-
ing compartment dimensions were 3.0 x 1.0 x 1.0m.
Plums were moved by a conveyor band system driven
by a motor.

2.3 Drying procedure and measurements

Before starting drying processes, the system was run
for at least 1h to obtain steady-state conditions.
Plum slices were spread onto as a thin layer. Drying
experiments were carried out at a drying air tem-
perature range of 45, 50, and 55°C with a drying air
velocity of 1.5 m/s. Drying procedure was developed
until the final moisture content of plums. Humidi-
ties, temperatures, and velocities were measured in the
drying chamber with robust humidity probes (Testo,
0636.2140, Freiburg, Germany), vane/temperature
probes (Testo, 0635.9540, Freiburg, Germany), pro-
fessional telescopic handle for plug-in vane probes
(Testo, 0430.0941, Freiburg, Germany), respectively.
Measurements of drying air temperature, velocity, and
relative humidity were recorded at every 5min. An
infrared thermometer (Testo 552-T2, Freiburg, Ger-
many) and a surface thermometer (METEX ME-32,
Seoul, South Korea) were used to measure the sur-
face temperatures of the product and drying cham-
ber walls, respectively. A digital balance (Scaltec SBA
61, Goettingen, Germany) was used to measure the
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weight loss of sample during drying experiments. The
ambient temperature and the relative humidity were
also measured and recorded. Pressures and tempera-
tures of the refrigerant were measured with pressure
probes (Testo, low/high-pressure probes, 0638.01941)
and surface temperature probes (Testo, temperature
probes, 0628.0019), respectively. All measured values
were observed and recorded with a multi-function
instrument (Testo 350-XL/454, Control unit, Freiburg,
Germany) and loggers.

2.4 Experimental uncertainty

Uncertainty analysis is needed to prove the accuracy
of the experiments. Errors and uncertainties in the
experiments can arise from the instrument selection,
condition, calibration, environment, observation and
reading, and test planning [26]. In the present study,
temperatures, air velocities, relative humidities, mass
losses, and pressures were measured with appropriate
instruments explained above, and total uncertainties
for all these parameters were calculated individually.
The accuracy of temperature-measuring equipments
was £0.2 °C, while reading errors for temperature mea-
surements were assumed as £0.1 °C. The accuracy of
the digital balance used in determination of the mois-
ture quantity of the sample was £0.0005 g and reading
errors were assumed as +£0.0001 g. The accuracy of
the velocity probes used in the air velocity measure-
ments was £0.2m/s and the error coming from the
flow disorder was assumed as +0.05 m/s. The accuracy
of the relative humidity probes was +2 per cent RH
and reading errors were assumed as +0.1 RH. Further-
more, the pressure and temperature of the refrigerant
were measured with the pressure and surface mea-
surement probes and their accuracies were +1.0 per
cent and +1.0°C, respectively. According to all these
uncertainties and errors, a detailed uncertainty anal-
ysis was performed using the method described by
Holman [27] for the experimental measurements of
the parameters and the total uncertainties of the
predicted values

aF \* [(0F \° aF \*
Ur=||7ZWm) o) +--+ Un
8Z1 3Z2 azn

3 ANALYSIS

1/2

1

First, the effects of drying parameters on the dry-
ing rate of plums were showed. Although biological
materials, such as agricultural products, have high
moisture content, generally no constant rate period
is seen in drying processes [28]. In this drying period,
the dominant diffusion mechanism is liquid and/or
vapour diffusion due to the moisture concentration

difference and internal conditions such as moisture
content, temperature, and structure of the product
are important [2, 29]. Fick’s second law of diffusion
explains this mechanism and the variations of the
moisture content of plums during drying were shown
as follows

(Mt - Me)

MR= ———
(M_Me)

)
3.1 Exergetic analysis of the drying systems

For a general steady-state, steady-flow process, the
three balance equations, namely mass, energy, and
exergy balance equations, were employed to find the
heat input, the rate of exergy destruction, energy and
exergy efficiencies [30].

In general, the mass balance equation can be
expressed in the rate form as

Z min = Z mout 3)
The general energy balance can be expressed below

as the total energy input equal to the total energy
output

Z Ein = Z Eout (4a)
with all energy terms as follows
Q + Z minhin = W + Z mouthout (4b)

The general exergy balance was expressed in the rate
form as

Y B = Y B + Y Exg 5
Exergy destruction associated with the irreversibil-
ities (entropy generation) within the system bound-
aries and exergy losses associated with the transfer of

the exergy (through material and energy streams) to
the surroundings are given by [31]

EXneat — EXwork + EXmassin — EXmassou = Exa  (6a)
Z(l — %) Qp— W+ Z Tin €Xin
=) ItoueXou = Exq (6b)
where
Ex = m.ex (7

The specific exergy (ex, flow exergy) of the compo-
nents, such as the refrigerant, water, and air, was
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calculated by [4]
exXyw = (h— ho) — Ty (s — So) (8a)
exy = (Cpa + 0. Cpy)(Ta — To) — To [(Cpa + 0. Cpy)
x In (£> — (Ry + waRy) In (&ﬂ
To Py

14+16078
T, [(Ra + waR) In ( * “’")

named the exergetic factor [34]

E
fi=—— x 100

total

(12)

Mass and energy balances as well as exergy destruc-
tions and exergetic efficiencies obtained from exergy
balances for each of the drying system components
illustrated in Figs 1-3 were derived as follows.

1416 078w, Fan and heater combination (I)
Wa
+16 0780)aRa In (w_0>j| (Bb) W Vfan—heater Ifan—heater \/§ for TD
fan—heater,elec — 1000 COoS ¢ ( or )
The energy-based (or first law) performances of the (13a)
HP unit and the whole HP dryer system were evaluated ) Vianheater Jran_
using the following relations Wian_heater,elec = ——— ealteorogm ¢ (for FBD) (13b)
(hz,rs — h3,r) vaan—heater - I/Vfan—heater,elecTlfan—heater,elec77fan—heater,mech
COPup theoretical = (haws —T0y) (9a) (13¢)
2,rs — IMlr . .
- Exz — EX1 a
Q _heater = —a——— 13d
COPHP,act = cond (9b) "fan—heater Wfan,heater ( )
comp
Exergy efficiency is defined as the ratio of total exergy Drying cabinet (ID
out to total exergy in, where ‘out’ refers to ‘net output’ I3
or ‘product’ or ‘desired value’, and ‘in’ refers to ‘given’ Ndcab = “X6a (14)
or ‘used’ or ‘fuel’ EXs,
Bx Compressor (IIT)
=z o % 100 (10)
Xin . Vcomp Icomp \/§
. . Wcomp,elec =———F——  —C0sg (15a)
Van Gool [32] has proposed that maximum improve- 1000
ment in the exergy efficiency for a process or system Weomp = Weomp,elecTlcomp,elecTcomp,mech (15b)
was obviously achieved when the difference between . .
the total exer d total i in- EXoract = BXox
gy output and total exergy input was min Neomp = ———e——— (15¢)
imized. Consequently, he suggested that it was useful Weomp
to employ the concept of an exergetic ‘improvement
potential’ in the rate form when analysing differ- Condenser (IV)
ent processes or sectors of the economy and this , .
improvement potential in the rate form was given Neond = _Exl)a — E’_C?a (16)
by [33] Exz,r,act - Ex3,r
IP=(1-7) (jgxin — Exom) (11) Expansion valve (V)
Thermodynamic analysis of a system component _ Exy,
. . Nexp = = 17
may also be performed using the following parameter, Ex3,
Fan & Heater Combination
I ) B
| Heater 1|
1a | |
| | ! 2‘,a Drying Cabinet 34
oy e - = () "
|
| |
_____________ ]
Fig.1 Schematic of the tray drier with coded points used in equations
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Fig.2 Schematic ofthe fluid bed drier with coded points
used in equations
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Fig.3 Schematic of the heat pump drier with coded
points used in equations

Evaporator (VI)

Ex5,a — EXG_a
Nevap = = =%

. (18)
Exl,r - Ex4,r

Heat recovery unit (VII)

Ex7,a + EXG,a

: . (19)
E.X'4'a —+ EX5,a

Nrecovery =

Drying ducts (VIII)

Ex
Ndduer) = 7 (20a)
Exl_a
Ex
Ndduetz = = (20b)
Ex:;ya
Ex2 a+ EX4 a
; = — (20C)
Mdduct,total Ex1,a n EX3,a

3.2 Assumptions made

The following assumptions were made during the
analyses.

1. All processes were in steady state and steady flow
with negligible potential and kinetic energy effects
and no chemical or nuclear reactions.

2. The heat transfer to the system and the work
transfer from the system were positive.

3. The heat transfer and refrigerant pressure drops
in the tubing connecting the components were
neglected since their lengths are short.

4. The fan mechanical 7gnmen and the fan motor
electrical 7. efficiencies were 40 and 70 per
cent, respectively. These values were based on the
fan characteristic data and the proposed efficiency
values for a small propeller fan [35].

5. The heaters electrical npeatereec €fficiencies were
assumed as 99 per cent.

6. The compressor mechanical 7¢omp,mech and the com-
pressor motor electrical ncomp,clec €fficiencies were
72 and 75 per cent, respectively [36].

. Air was an ideal gas with a constant specific heat.

8. The reference-dead state conditions were deter-
mined as T, = 10°C, Py = 101.325kPa, and ¢, =
60 per cent for air, and Tp = 10°C, Py = 101.325 kPa
for refrigerant.

9. Cp, = 1.005kJ/kg°C, Cp, =1.872k]J/kg°C, R, =
0.287KkJ/kgK, and R, = 0.4615k]J/kg K were assum-
ed as constant in all calculations [37]. The thermo-
dynamic properties of air and R-407C were found
using the Engineering Equation Solver software
package [38].

~

4 RESULTS AND DISCUSSION

The detailed uncertainty analysis was performed for
the experimental measurements of parameters and
total uncertainties of predicted values. Results of
uncertainty analysis are listed in Table 1. The effect
of drying air temperature on the variation of mois-
ture content of plums with drying time is illustrated in
Fig. 4. It is clear from this figure that the drying rate
increased as the drying air temperature increased. The
thermodynamic analyses of drying systems were car-
ried out by using data from the experiments conducted
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Table 1 Uncertainties of the experimental measure-
ments and total uncertainties for predicted

values

Parameter Unit Comment

Experimental measurements

Uncertainty in the temperature °C +0.224
measurement

Uncertainty in the weight measurement g +0.00 051

Uncertainty in the air velocity m/s +0.21
measurement

Uncertainty in the measurement of % +0.41
relative humidity of air

Uncertainty in the pressure kPa +1.0%
measurement

Uncertainty in the surface temperature °C +1.0
measurement

Predicted values

For the tray drier )

Total uncertainty for Exin kW 40.99%*2

Total uncertainty for Exoyt kw +1.03%P

Total uncertainty for % +1.51%¢

For fluid bed drier

Total uncertainty for Exin kW +0.97%4

Total uncertainty for Exoyt kw +1.01%°

Total uncertainty for % +1.52%f

For the heat pump drier
Total uncertainty for Exj,
Total uncertainty for EXout kW
Total uncertainty for » %

kKW £1.05%8
+1.13%"
+1.75%'

4Nominal value = 0.538
bNominal value = 0.511
®Nominal value = 94.94
dNominal value = 0.123
¢ Nominal value = 0.113
fNominal value = 92.06
gNominal value = 2.414
"Nominal value = 2.127
"Nominal value = 88.09

at different drying air temperatures (45, 50, and 55 °C).
Exergy analyses were performed to evaluate the per-
formance of the driers (Tables 2—4).

The most important system component of the tray
drier was the fan-heater combination (Table 2), and
it should be improved to increase the efficiency of
the drier. It not only had low exergetic efficiency 7
and high improvement potential (IP) rate values, but
also its exergetic factor f was 80 per cent. This proved
that the fan-heater combination significantly affected
the system efficiency. On the other hand, the 5 values
for the fan-heater combination and the whole system
increased as the drying air temperature increased. It
could be concluded that the best way to improve the
system efficiency was to recycle the heated air since
approximately one-fourth of the exergy inflow was
thrown away as waste exergy (Fig. 5).

The results of exergy analysis for the fluid bed drier
are summarized in Table 3. The importance of the
components of the fluid bed drier was similar to the
tray drier. But the fan-heater combination of the fluid
bed drier affected the whole system efficiency more
than that of the tray drier (f ~ 87 per cent). Since the
efficiency of the fan-heater combination of the fluid
bed drier was lower than that of the tray drier, the
exergetic efficiency of the whole system was lower.
Furthermore, n values for all components and the
whole system increased and IP rate values decreased
with the rise in the drying temperature. A total of 12.5
per cent of the exergy inflow was thrown away as waste
exergy (Fig. 6). Therefore, recycling the heated air to
the system inlet would improve the system efficiency,
but its importance was not so much as compared to
the tray drier.

The energy-based (or first law) performance mea-
sure of the HP unit was calculated. Theoretical COP
values of the HP unit were found to be in the range
of 3.92-4.35 and they decreased with the increase in
drying temperature. Although actual COP values were
obtained to vary between 2.56 and 2.81 for the HP

L 3 o _HPD; 45°C

0.9 %, -~ FBD; 45 °C

—a—HPD; 50 °C
—--o—-FBD; 50 °C

—a—HPD; 55 °C
—-o—-FBD; 55 °C

150 200 250

Time (min)

Fig.4 The variations of fractional moisture ratio of plums with drying time
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Table 2 Energetic, exergetic, and thermodynamic analysis data provided for the tray drier

Improvement
Exergetic product Exergetic fuel Exergy potential rate,
rate, P (kW) rate, F (kW) efficiency, n (%) 1P (kW) Exergetic factor, f; (%)
Item no. Component 45°C 50°C 55°C 45°C 50°C 55°C 45°C 50°C 55°C 45°C 50°C 55°C 45°C 50°C 55°C
II Drying cabinet 0.425 0.510 0.617 0.445 0.538 0.656 95.498 94.629 93.975 0.001 0.001 0.001 19.405 19.941 20.342
Fan and heater 0.445 0.538 0.656 1.848 2.162 2.569 24.077 24.909 25.537 1.065 1.219 1.424 80.595 80.059 79.658
I-1I Overall system 0.870 1.048 1.273 2.293 2.700 3.225 37.937 38.812 39.459 0.878 1.003 1.172 100 100 100
Table 3 Energetic, exergetic, and thermodynamic analysis data provided for the fluid bed drier
Improvement
Exergetic product Exergetic fuel potential rate,
rate, P (kW) rate, F (kW) Exergy efficiency, n (%) IP (kW) Exergetic factor, f; (%)
Item
no. Component 45°C 50°C 55°C 45°C 50°C 55°C 45°C 50°C 55°C 45°C 50°C 55°C 45°C 50°C 55°C
1I Drying cabinet 0.090 0.111 0.130 0.097 0.123 0.147 92.522 90.406 88.272 0.0001 0.0002 0.0002 12.501 12.331 12.127
I Fan and heater 0.097 0.123 0.147 0.678 0.872 1.068 14.287 14.065 13.800 0.498 0.644 0.794 87.499 87.669 87.873
I-II  Overall system 0.186 0.233 0.277 0.775 0.994 1.215 24.068 23.479 22.831 0.442 0.574 0.712 100 100 100
Table 4 Energetic, exergetic, and thermodynamic analysis data provided for the heat pump drier
Improvement
Exergetic product Exergetic fuel Exergy potential rate,
rate, P (kW) rate, F (kW) efficiency, n (%) IP (kW) Exergetic factor, f; (%)
Item
no. Component 45°C 50°C 55°C 45°C 50°C 55°C 45°C 50°C 55°C 45°C 50°C 55°C 45°C 50°C 55°C
I Compressor 3.412 3.892 4.936 6.513 6.863 7.688 52.380 56.713 64.203 1.477 1.286 0.985 31.728 29.781 27.026
v Condenser 1.502 1.774 2321 1.734 2.064 2.751 86.623 85.927 84.350 0.031 0.041 0.067 8.445 8.958 9.672
\Y Expansionvalve 3.356 3.774 4.583 4.577 5.181 6.384 73.336 72.847 71.789 0.325 0.382 0.508 22.294 22.481 22.444
VI Evaporator 0.458 0.421 0.384 0.528 0.608 0.846 86.745 69.307 45.323 0.131 0.316 0.672 2.570 2.636  2.975
VII Heat recovery 0.492 0.572 0.729 1.193 1.343 1.634 41.229 42.623 44.637 0.412 0.442 0.501 5.813 5.828 5.744
VIII Drying ducts 3.869 4.464 5.822 3.923 4.572 5.986 98.601 97.632 97.259 0.001 0.003 0.004 19.113 19.839 21.043
II Drying cabinet  1.840 2.124 2.748 2.060 2.414 3.156 89.294 87.978 87.045 0.024 0.035 0.053 10.037 10.476 11.096
II-VIII Overall system 14.927 17.021 21.522 20.528 23.045 28.446 72.718 73.861 75.659 1.528 1.574 1.685 100 100 100

unit, they were increased as the drying temperature
increased on the contrary to theoretical COP values.

Table 4 illustrates exergetic analysis data provided
for the HP drier. The highest IP rate and f values occur-
red in the motor-compressor assembly. The other
important system components were the HRU, expan-
sion valve, and evaporator according to the IP rate
values. Furthermore, the sum of f values of the com-
pressor, expansion valve, and drying ducts totaled
more than 70 per cent, so these components handled
the high amount of exergy in the system.

n, IP rate, and f values of the compressor were
obtained to vary between 52.38 and 64.20 per cent,
0.99 and 1.48 kW, and 27.03 and 31.73 per cent, respec-
tively. n values increased as the drying temperature
increased on the contrary to IP rate and f values.
The total magnitude of the losses was over 54 per
cent of the actual power input, while the mechanical-
electrical losses accounted for 46 per cent of that.
The mechanical-electrical losses are due to imper-
fect electrical, mechanical, and isentropic efficiencies,
and emphasize the need for paying close attention
to the selection of this equipment, since components

of inferior performance can considerably reduce the
overall system performance. Since compressor power
depends strongly on the inlet and outlet pressures,
any heat exchanger improvements that reduce the
temperature difference will reduce compressor power
by bringing the condensing and evaporating tem-
peratures closer together. It is obvious that from
a design standpoint, the compressor irreversibility
can be reduced independently. Recently, scroll-type
compressors that were used in this study were rec-
ommended due to their high efficiency [30, 36]. An
alternative approach to this problem is using the pri-
mary energy sources instead of electricity. In this
way, the losses arisen from energy conversion pro-
cesses of electricity production can be recovered,
so gas-engine-driven HP systems gain importance
(39-41].

Other important components of the system were
heat exchangers (condenser, evaporator, and HRU).
Although f values of the evaporator and HRU were
8.2 times and 3.9 times lower than the expansion
valve, their IP rate values were approximately similar
to the expansion valve. It was concluded that it was
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0.538 kW

0.510 kW

2.162 kW /

1.624 kW

0.872 kW /
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Fig.6 Exergy loss and flow diagram (Grassmann diagram) for the fluid bed drier at 50 °C

important to reduce irreversibilities in the evapora-
tor and HRU for improving the system performance.
On the other hand, the condenser was separated from
other heat exchangers in the system. Although f val-
ues of the condenser were higher, IP rate values were
the lowest in the HP unit. The reason is that the
highest n values were obtained from the condenser
in the HP unit. Another important note according
to the results of the exergy analysis of the HP drier
was that the rise in drying temperature caused huge
decrease in the efficiency of the evaporator. It could be

the result of increasing irreversibility as the tempera-
ture difference increased. Irreversibilities in the heat
exchangers could occur due to the temperature differ-
ences between the two heat exchanger fluids, pressure
losses, flow imbalances, and heat transfer with the
environment.

The expansion valve had the highest n values after
the condenser in the HP unit. The irreversibility was
in the capillary tube due to the pressure drop of the
refrigerant passing through it. The only way to elimi-
nate throttling loss would be to replace the capillary

Proc. IMechE Vol. 224 Part A: J. Power and Energy
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tube (the expansion device) with an isentropic turbine
(an isentropic expander) and to recover some shaft
work from the pressure drop [30].

High exergetic efficiency values and low relative irre-
versibility values were obtained from drying ducts and
drying cabinet in this study. Although » values of the
drying cabinet of the tray drier and fluid bed drier were
slightly higher those of the HP drier, the drying capac-
ity and dimension of the systems were different. The
inefficiencies of the drying cabinet were owing to the
heat losses from the drier walls and high efficiency
values could be the reason of an excellent insulation
or a low heat transfer surface area. The heat transfer
surface areas of the drying cabinet of the tray drier,
fluid bed drier, and HP drier used in this study were
0.48, 0.165, and 12 m?, respectively. The HP drier was
a pilot-scaled system, so its energy load was higher, as
could be seen from its fuel rate. It may be concluded

that the HP drier used in this study had an excellent
insulation and was airproof (Table 4).

Figure 7 illustrates the Grassmann diagram for the
HP drier. This diagram gives the quantitative infor-
mation related to the share of the exergy input to
the HP drier. While the n values were found to vary
between 72.72 and 75.66 per cent, the rise in the drying
temperature increased the drier’s efficiency.

A comparison of the exergetic performance of the
driers used in this study with the varying drying tem-
peratures is shown in Fig. 8. Although the HP drier had
a high energy load and had been more affected from
heat losses, it was obvious that the most efficient drier
was the HP drier.

HP systems are heat-generating devices that trans-
fer heat from a low-temperature medium to high-
temperature one and are used in either hot water
or space heating applications. HPs have been used

6.863
kW

A
3.3563

T

2414 A27
kW kW

VIII-2 | S5~ 0.077
=

Fig.7 Exergy loss and flow diagram (Grassmann diagram) for the heat pump drier at 50 °C
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Fig.8 Comparison of the exergetic efficiencies of the driers with varying drying temperatures
(TD: tray drier, FBD: fluid bed drier, HPD: heat pump drier)

mainly for space heating and water heating/cooling
purposes, but many studies have been progressed in
its industrial applications especially in dehumidifi-
cation and in drying agricultural products which are
energy-intensive processes [42-44]. The present study
gained similar results with the literature [45-47] and
showed that HP systems were efficient systems and
could be used or integrated to the energy-intensive
processes.

5 CONCLUSIONS

In this study, the exergetic performance of three dif-
ferent food driers was assessed. Grassmann diagrams
of these driers were given, while the components of
the driers were analysed separately and effects of
the process condition (drying temperature) on the
performance of the driers were discussed.

The following main conclusions may be drawn from
the main results of the present study.

1. The fan-heater combination significantly affected
the efficiencies of the whole system in the tray and
fluid bed driers.

2. The most important system component of the HP
drier was the motor-compressor assembly because
of its highest improvement potential rate and exer-
getic factor values.

3. The HP drier had the highest exergetic efficiency
values in the range of 72.72-75.66 per cent, followed
by the tray drier between 37.94 and 39.46 per cent,
and the fluid bed drier between 22.83 and 24.07
per cent.

4. While exergetic efficiencies of the tray and HP driers
increased with the rise in the drying temperature on
the contrary to the efficiencies of the fluid bed drier.

5. The COPyp theoretical Values were found to be in the
range of 3.92-4.35 and the COPyp acria Values were
obtained to be 2.56-2.81 for the HP unit.

6. The most efficient drier in this study was deter-
mined to be the HP drier.
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APPENDIX elec electrical

evap evaporator
Notation exp expansion valve
HP heat pump

C specific heat (kJ/kg°C) in inflow

ex specific exergy (kJ/kg) mech mechanical

E energy rate (kW) out outflow

Ex exergy rate (kW) Overdot quantity per unit time

f exergetic factor (%) r refrigerant

F function of the independent variables s isentropic

F exergy rate of the fuel (kW) v vapour

h specific enthalpy (kJ/kg) w water

I current (A) 0 dead (reference) state

1P improvement potential rate (kW)

m mass (kg) Abbreviations

M local moisture content (kg water/kg dry

solid) cop coefficient of performance
M. equilibrium moisture content (kg water/kg FBD fluid bed drier

dry solid) HP heat pump
M; initial moisture content (kg water/kg dry HPD heat pump drier

solid) HRU heat recovery unit

M, mean moisture content at time ¢ (kg Ip improvement potential

water/kg dry solid) TD tray drier
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