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In this paper, the continuous time wavelet entropy (CTWE) of auditory evoked potentials (AEP) has

been characterized by evaluating the relative wavelet energies (RWE) in specified EEG frequency bands.

Thus, the rapid variations of CTWE due to the auditory stimulation could be detected in post-stimulus

time interval. This approach removes the probability of missing the information hidden in short time

intervals. The discrete time and continuous time wavelet based wavelet entropy variations were

compared on non-target and target AEP data. It was observed that CTWE can also be an alternative

method to analyze entropy as a function of time.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Since Hans Berger developed a non-invasive technique in 1929
to record Electroencephalography (EEG), the analysis of neural
activities has been a challenging area in neuroscience. Basically,
EEG is said to be a reflection of electrical activity related to neural
structures in the brain which produce oscillations having different
frequency ranges. Due to EEG signals having both a dynamic
structure and non-stationary nature, the mathematical methods
involving the analysis in time–frequency domain are essential to
detect the hidden local information in neural activity. Wavelet
analysis is a suitable means of analyzing these non-stationary
signals, detailed theoretical formulation can be found in [1,2].

While analyzing EEG signals including different states which
contain mental activity, one has to take into account that a
resonance occurs between neuron populations for finite time
duration which indicates the existence of synchronization in
specified frequencies [3]. The transition from disordered state to
ordered state results in a single peak across the whole frequency
band.

The conventional method to obtain the degree of disorder is
defined by evaluating the spectral entropy obtained by the Fourier
power spectrum [4]. Spectral entropy was also used for brain
electrical signals by Inouye in [5,6]. The Fourier based entropy
measures may lead to misleading results when applied to non-
stationary signals. The EEG application is such an example where
the spectral entropy would be insufficient to describe temporal
ll rights reserved.
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information of underlying physiological activity. Since time
evolution of state variations cannot be extracted by spectral
entropy, then the short-time Fourier transform could be partially
a candidate to illustrate to time–frequency representation of the
evoked potentials [4]. But the constant size of time–frequency
windows of short time Fourier transform (STFT) offers a limited
resolution in both time and frequency domains. Therefore,
wavelet based analysis has come into prominence due to flexible
time–frequency atoms which are regarded as proper candidates
to uncover the common mechanism of neural structures. The
limitations associated with the time–frequency resolution may be
overcome by the method given in [7–12] which is based on
discrete time wavelet decomposition introduced as orthogonal
discrete wavelet transform (ODWT) [1,13]. This method decom-
poses an observed signal into definite frequency bands without
losing time evolution held by the wavelet coefficients. The relative
wavelet energy is obtained by finding the ratio of the energy for
each frequency band to the total energy in a given time interval.
The wavelet entropy is then evaluated by using the normalized
relative wavelet energies. Using a discrete wavelet transform
approach, the event related potentials have been of interest to a
number of studies, reporting the use of entropy functions in the
electrophysiological data sets 15–16.

This paper has been organized as follows. In the following
section, the mathematical fundamental of continuous wavelet
transform has been given. In section after, the definition of
relative wavelet energies and the wavelet entropy which is
characterized by Shannon entropy are explained. In this section,
the experimental procedure and simulation results associated
with auditory evoked potentials (AEP) are explained in detail.
Finally, the performance of the continuous wavelet entropy based
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results is provided by illustrating the evolution of the wavelet
entropy where the local minimum time instants of the continuous
wavelet entropy could be detected at post-stimulus time interval.

The common approach in electrophysiological research is to
sample data from a large group and use averages. This leaves
behind a major problem, that is, the single subject data or single
sweeps are overlooked. In order to overcome these problems, a
method with proper resolution has to be incorporated in this
prospect. Accordingly, this paper provides a balanced scope with
the utilization of CWTE. The general conclusions may carry a risk
of overfitting, which can be ruled out with further applications of
this method to different data sets.
2. Methods

2.1. Wavelet transform

The continuous time wavelet transform converts a one
dimensional function s(t) which corresponds to the observed
electrical activity into two dimensional function represented by
scale and dilation parameters. This is shown as below [1]

Wsða; tÞ ¼
Z 1
�1

sðtÞc t�t

a

� �
dt ð1Þ

where c( � ) is the mother wavelet, a vanishing function fast
decaying to zero in both time and frequency domain. The wavelet
transform is computed by using time and scale parameters while
the transformed data are illustrated commonly in terms of time
and frequency. Therefore the conversion from a given scale a to
the corresponding frequency f can be used with the given
formulation by (2)

f ¼
Fc � Fs

a
ð2Þ

where Fs is the sampling frequency and Fc is the center frequency
of the selected mother wavelet. By this conversion, the wavelet
coefficients can now be represented in terms of time–frequency
Ws(t,f). The detailed information about the relation between scale
and frequency can be found in [14]. In order to explore the time
evolution of the total wavelet entropy, these wavelet coefficients
represent the sliding time windows with full overlapping over
time.
2.2. Relative wavelet energy

Relative wavelet energy (RWE) is expressed as the summation
of wavelet coefficients within a selected frequency range over the
time. The RWE was obtained by continuous wavelet transform
coefficients, with an approach differing from the previous analysis
given in [15–17]. Wavelet entropy has been evaluated by using
continuous wavelet transform coefficients as in the previous
works [18,19]. Since EEG signals of length N are sampled at
tn ¼ nTs; n¼ 1;2; . . . ;N with a sampling period Ts ¼ 1=Fs the
formulation related with wavelet energy in the frequency interval
[f1 f2] is given in terms of summation of the sampled values of
wavelet energy coefficients as given below

E½f1f2 �
¼

Xðf2�f1Þ=Df

m ¼ 0

X
n

jWsðtn; f1þm �Df Þj2 ð3Þ

where Df is the step size of the frequency. The total wavelet
energy as a function of time in each time window w can be
expressed as

EtotðtnÞ ¼
X

j

E½fj fjþ 1 �
ðtnÞ ¼

X
j

Xðfjþ 1�fjÞ=Df

m ¼ 0

Xw=Ts

k ¼ 0

Ws tn�
w

2
þkTs; fjþm �Df

� ���� ���2
8<
:

9=
;
ð4Þ

The investigated frequency spectrum is bounded within 1–48 Hz
and divided into subbands as given in (3) which are used to
evaluate probability distribution. The term [fj fj +1] corresponds to
delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–32 Hz)
and gamma (32–48 Hz) bands, respectively, where j=1,y,5
providing that f1A ½f1 f6�. In Eq. (4), the total energy of the signal
is used to normalize each of the individual wavelet energies
EjðtnÞ ¼ E½fj fjþ 1 �

ðtnÞ which correspond to the energy localized in a
specified frequency band. The relative wavelet energy can be
obtained by computing the probability of wavelet energy
observed within a frequency band [fj fj +1] that can be expressed as

pjðtnÞ ¼ EjðtnÞ=EtotðtnÞ: ð5Þ

2.3. Wavelet entropy

Analysis of probability distributions obtained in Section 2.2 is
used to characterize the Shannon entropy [20]. The total wavelet
entropy (WE) is a measure which gives information about the
complexity of the signal. The formulation of Shannon WE is
defined in [15] as

WES ¼�
X

j

pj lnðpjÞ ð6Þ

and the Tsallis wavelet entropy is given in Eq. (7) as

WEq
T ¼

1

q�1

X
j

ðpj�pq
j Þ ð7Þ

The signal having components at all frequency bands exhibits
more disordered behavior and consequently the wavelet entropy
has a higher value. In contrast any frequency band becomes
dominant among other frequencies after stimulation is applied
and the neural activity passes through an ordered state which
causes the entropy to decrease. In other words, the concentration
of frequency spectrum over some narrow frequency bands
indicates the increase of periodicity, therefore lower entropy is
observed for bounded time duration.

2.4. Experimental setup

The sample data were acquired from Dokuz Eylul University
Brain Biophysics lab records. The data were acquired using
Neuroscan 4.3 system and 64 EEG amplifier. The subject was a
22 year old male, a right handed medical student with no known
history of neurological and psychological disorders. The stimuli
were auditory tones of 1500 and 1600 Hz with a random ISI of
3.5–6 s. The 1500 Hz stimuli were given as non-target and
1600 Hz stimuli were the target ones with a random probability
of appearing about 20 percent in the sequence (app. non-target
120; target 30 sweeps). The auditory stimuli were administered
via loudspeakers at an intensity of 80 dBL. The data consisted of
27 sweeps with 2 s duration. The subject was required to mentally
count the target tones and report at the end of the session. The
targets were correctly counted and reported by the subject. The
EEG data sampling was 1000 Hz. The sweeps were epoched using
an analysis program of Scan 4.3 and MATLAB. The artifacts (eye
blink, etc.) were removed visually, offline. For the comparative
analysis the sweep numbers were equated to 27. For the sake of
simplicity, only central (Cz) electrode information is provided in
the analysis and figures. Two time windows were selected for the



ARTICLE IN PRESS

M. Emre Cek et al. / Computers in Biology and Medicine 40 (2010) 90–9692
analysis of pre-stimulus and post-stimulus for both target and
non-target entropy evaluation: 200–400 ms for the pre-stimulus
as the first time window, for the post-stimulus, 50–200 ms as the
second time window and 350–500 ms as the third time window.
The respective peaks of entropy were evaluated by means of a
MATLAB routine, reporting the mean entropy values associated
with these three time intervals for every single sweep, both for
the target and non-target stimuli responses. Normality of data
was verified with the Kolmogorov–Smirnov test. As only two
conditions were (target vs. non-target) planned to be compared,
paired sample T test was applied. The paired t-test was applied as
the statistical test to compare the differences between the
entropy values.
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Fig. 2. The wavelet energy of each frequency band as a function of time of

auditory evoked potentials is shown for non-targets (a) and target (b). The x-axis is

the time axis where the stimulus is applied at time instant ‘‘0’’, the y-axis gives the

amplitude of the wavelet energies.
3. Results

The signals acquired by AEP were analyzed by continuous time
wavelet transform where the mother wavelet was chosen as B-
spline basis function as recommended in [21–23].
Improper selection of center frequency and bandwidth related
with the mother wavelet would cause in a decrease of the
resolution in both time and frequency therefore detailed analysis
for the proper selection of mother wavelet which is given for
auditory evoked potentials in [23]. The time domain evoked
potentials of averaged 27 sweeps for non-target and target are
given with their continuous wavelet transforms in Fig. 1,
respectively. The wavelet time–frequency distribution was
illustrated according to the energy levels in Fig. 1.

The continuous time evolution of the wavelet energies is
illustrated in Fig. 2. It can be easily seen that the energy of each
frequency band significantly increases at post-stimulus time
interval. Since the magnitude of the wavelet energy is relatively
low for the gamma band, it was not illustrated in Fig. 2. The
wavelet energies related to delta and theta band strongly
increases in post-stimulus time interval, contributing mainly to
the decrease of entropy.
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Fig. 1. The averaged auditory evoked potentials, (a) in time domain for non-target, (b) f

shows the amplitude in mV in (a) and (b), the wavelet transforms are shown by (c) for the

after stimulus and y-axis corresponds to frequency in Hz in (c) and (d). The color bar
The paper summarizes the time evolution of Shannon wavelet
entropy and the relative wavelet energies over the auditory
evoked potentials. Wavelet entropy is represented in this paper
by using Shannon entropy so that the variations of local wavelet
energy distributions can be exhibited in the time–frequency
domain.

As shown in Fig. 3, both methods exhibit almost the same
performance for non-targets (Fig. 3a) but it is noticeable that
entropy variation in early post-stimulus range (0.05–0.2 s) may
not be detected if a wider time window was chosen for targets
(Fig. 3b). One can also detect that time evolution of the discrete
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Fig. 3. The representation of time dependent continuous (solid) and discrete

wavelet entropy (dashed) for non-targets (a) and targets (b) are given where the

non-overlapping window size associated with discrete wavelet transform was

chosen as 192 ms. The x-axis gives the time interval having 1 s pre-stimulus and 1 s

post-stimulus. The y-axis gives the normalized entropy value. It can be noticed

that discrete wavelet transform based method misses the abrupt changes

especially in post-stimulus time intervals.
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Fig. 4. The representation of the time dependent wavelet entropy for each sweep

is given for (a) non-target and (b) target responses. The evolution of the wavelet

entropy in post-stimulus time interval differs for non-target and target sweeps.

Fig. 5. The three time intervals are shown where the mean entropy values were

calculated for both target (solid) and non-target (dashed) responses. The first

window is in the pre-stimulus time interval [�0.4 �0.2] in seconds. The other

time windows are chosen within the intervals [0.05 0.2] and [0.35 0.5] in seconds.

One can clearly observe the difference between non-target and target patterns.

Table 1
Comparison of the continuous wavelet energy (CWE) values for the target/non-

target condition for three different time intervals.

Time (s) NT T

Prestimulus (�0.4 �0.2) 0.8370.08 0.8370.08

First window (0.05 0.2) 0.6570.09 0.6970.11

Second windowa (0.35 0.5) 0.8270.07 0.6870.1

CWE between target and non-target data differs significantly in the time range

350–500 ms.

The mean entropy value (Shannon) provided at respected time intervals (rows).

The T denotes the target and NT denotes non-target cases.

a po0.001.
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time wavelet entropy based method misses the lower peak
between 0.35 and 0.5 s time intervals, while continuous wavelet
entropy based method represents the exact location of the lower
peak. In this work it is noticeable that continuous wavelet
transform based time-dependent wavelet entropy may provide
more detailed results including abrupt changes in entropy.

Additionally, we provide a single sweep entropy analysis
demonstrating the temporal evolution. This is a novel presenta-
tion of the ERP data, indicating the sensitivity of the proposed
continuous wavelet entropy (CWE) method given in Fig. 4.
This figure has three axes for better presentation of the
evolution of single sweeps in time. The horizontal axis represents
the time, whereas the vertical axis has the amplitudes. The third
axis provides the formation of sweeps in time. Upon a closer look,
the upper panel which demonstrates the non-target sweeps,
provides a ‘‘trough’’ following the stimulation point (marked with
‘‘0’’) which is very consistent across all sweeps (towards the upper
direction).

On the other hand, the target plots (lower panel) have a second
‘‘trough’’ around 400 ms.

In this report, the target and non-target auditory analysis was
used to perform and assess various entropy measures. The evoked
potentials are responses of the brain where the brain responsive-
ness is time-locked to given stimuli. The auditory information
processing is the key feature behind this physiological condition
and responses around 50–200 ms are expected. However the
‘‘cognitive’’ component of the target responses is expected to take
place at around 300 ms. Accordingly, the brain would go from a
disordered state to an ordered state for the first response.
Following this, for the non-target ones the brain would shift back
to disordered state. However, exceptionally for the targets, shortly
after the initial ordered state formation a new ordered state is
achieved, further decreasing the entropy around 300 ms (Fig. 5).
Consequently, the results indicate this stage ordering
phenomenon effectively using the proposed continuous wavelet
method (po0.001). The baseline entropy was reported according
to �200 to �400 ms pre-stimulus interval also shown in Fig. 5.

The mean values shown in Fig. 5 related to different time
intervals are illustrated in Table 1 depending on continuous time
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Fig. 6. The normalized continuous wavelet Tsallis entropy results with (a) non-target q=2, (b) target q=2, (c) non-target q=1.25, (d) target q=1.25. The x-axis gives the time

which is 1 s duration pre-stimulus and 1 s duration post-stimulus and y-axis gives magnitude of the normalized entropy.
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wavelet entropy. It may be remarked that statistical result
associated with the method applied in this work reflects the
difference between non-target and targets in the second time
window after stimulus. The Tsallis wavelet entropy for non-
targets and targets are represented in Fig. 6 depending on
different q values. When the q value increases, it becomes hard
to observe the weak variations on wavelet entropy.
4. Discussion

The present paper describes the use of continuous wavelet
entropy for analysis of auditory evoked potentials. Two entropy
methods were applied to the same data set as Shannon and Tsallis
entropy. The electrophysiological data were consisted of a pre-
stimulus section where no brain response was expected. The
stimulus was expected to force the system (brain) into an ordered
state after a certain time (non-target stimulation). In the case of
target stimulation a second time window following the primary
response was expected to present an interesting phenomenon
where a temporary disorder would be followed by an ordered
state. This matches to classical P-300 response which denotes to
attentional processes where the responsiveness of the brain
mentally tuned to the target [11]. In this paper, we compare these
two responses and the T-test was effectively performed for this
cognitive task on the EEG data. The temporal resolution allowed
reliable analysis and assessment. In comparison to ‘‘segmented’’
discrete analysis the temporal resolution is of a crucial issue
investigating the cognitive functions with large variations and
dynamic changes. Furthermore, while achieving the Shannon
entropy, the wavelet coefficients were used to obtain relative
wavelet energy for different frequency bands. This latter data set
would be used for the oscillatory analysis of EEG activities.

The transition between ordered and disordered states char-
acterized by the Shannon entropy was also compared by wavelet
Tsallis entropy. The Tsallis entropy evaluated by wavelet
coefficients was analyzed for EEG signals in several works
[24–26]. Though Tsallis entropy is also a viable method when
applied within the scope of continuous concept, it may suffer
from the q index parameter. It is observed that the increment in q

index causes the normalized scale to be restricted in a narrow
range when Shannon and Tsallis entropies are compared in the
same interval.

It may be clearly seen that the q parameter of Tsallis entropy
affects the range of entropy results. The increase of the q

parameters causes the Tsallis entropy range to get narrow and
to decreases entropy resolution. The high variations are domi-
nated while the small local entropy changes are not properly
represented. When the q parameter decreases then the entropy
range and resolution starts to converge to the results found by
Shannon entropy.

In the paper [11], it was stated that single sweep analysis
would reveal additional information more than the averaged
waveforms. The current report, utilized a method that is capable
of analyzing single sweeps as clearly shown in Fig. 4. Here, it may
be observed that even in single sweeps the event related entropy
changes are achievable indicating a strong support for ordered/
disordered microstates.

According to the illustration of the Shannon wavelet entropy
with respect to time, it can be easily observed that the total
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entropy decreases in post-stimulus region. Wavelet energy
associated with theta and delta bands has a meaningful increase,
as expected.

Thus, the normalized Shannon wavelet entropy by the means
of continuous wavelet transform coefficients were applied and
used in this paper. From a broader aspect, the overall entropy
analysis is similar to the work in [15]. However, this current
report focuses on obtaining wavelet entropy by continuous
wavelet transform coefficients instead discrete wavelet based
decomposition. In the literature, although the continuous wavelet
transform was also used for determining wavelet entropy in
[18,19], these studies are related to cardiac data which are very
different to the complex EEG data analysis. Additionally in papers
[15,17] the presented data also show decreased entropy in the
post-stimulus section, confirming our findings of entropy change
indicating an ordered state.

The study has some possible limitations due subject number
and sweep samples. The current analysis would benefit from
further applications to various biological signals and other evoked
or event-related potentials. This would provide a further support
for the method or it could present the areas where the method
and the applications could be improved.
5. Conclusion

The main objective of using continuous wavelet transform is to
detect the transition from the disordered to ordered state with a
minimum loss of information. While analyzing the wavelet
entropies of the given auditory evoked potentials, it was observed
that continuous wavelet entropy could also reveal the transition
to the ordered state from disordered state between 350 and
500 ms after the stimulus for the target EPs, whereas the discrete-
time non-overlapping wavelet entropy method was missing
abrupt changes unless the window size is sufficiently small.
Accordingly, non-continuous methods may fail to show high
temporal variations. Furthermore, the discrete time entropy
methods rely largely on the optimal value for the window size,
which depends on the application type. However, the continuous
time wavelet entropy gives detailed information about the
underlying dynamical structure of the signal without similar
dependence on such parameters, marking to its plasticity as a
stand-alone method.
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