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ABSTRACT: This work describes damage detection in a foam core composite wing
(1320mm� 152.4mm� 13.4mm) following a series of low energy impacts. Thirteen impacts
(6�8 J deposited energy) were applied at adjacent locations approximately 1/4 of the way out
from the wing center. Following every one or two impacts, the wing was tested using static tip
deflection and dynamic vibrational excitation. Static and dynamic strains were measured using
eight fiber Bragg grating sensors. Dynamic acceleration was also monitored using three con-
ventional accelerometers. The estimated bicoherence was used to detect the presence of
damage-induced non-linearity in time-series data recorded from each sensor. Receiver operat-
ing characteristic (ROC) curves were constructed for each sensor based on 15 or more
dynamic measurements made for each damage case. The ROC curves provide a quantitative,
statistical approach to evaluating the damage detection capabilities of the various sensors.

Key Words: fiber bragg grating, structural health monitoring, impact damage, ROC curves,
bicoherence, nonlinearity, sandwich composite, wing, probability of detection, probability of
false alarms.

INTRODUCTION

Q
UANTITATIVE comparisons of capabilities are a
critical step in enabling informed decisions with

respect to optimizing the many choices that face both
researchers and owners in the field of structural health
monitoring. Such comparisons allow the researcher to
make informed choices with respect to what type of sen-
sors, sensor locations, and analysis methods are best
suited for monitoring the health of a particular structure.
For an owner, combining knowledge of the probability of
detection (POD) and the probability of false alarms
(PFA) with costs of failure and repairs enables cost ben-
efit analyses (Frangopol andMesservey, 2008), which can
be used to choose detection thresholds or even determine
whether or not a sensing network is economically viable.
In spite of this importance, a search of the structural
health monitoring (SHM) literature indicates that only
a tiny fraction of the articles use terms indicating quan-
titative evaluation such as POD or receiver-operating
characteristic (ROC) curves. An ISI Web of Science
search using the descriptor ‘structural health monitoring’
returned 2853 results; adding ‘probability of detection’ to
that descriptor returned just 14 results including four
refereed journal articles (Lu and Michaels, 2005; Shook

et al., 2008; Azarbayejani et al., 2008; Nichols et al.,
2008). When the term ‘receiver-operating characteristic’
is added to ‘structural health monitoring’ only two refer-
eed articles are found by the search engine (Milanese
et al., 2008; Nichols et al., 2008).

Both ROC curves and POD analysis rely on multiple
measurements to provide a statistical description of
events and statistical descriptions are necessary when
there is uncertainty in the measurement either from
sensor noise or from structural influences. The main dif-
ference between the two approaches is that a ROC curve
provides both the POD and the PFA as functions of the
detection threshold in a single plot. ROC curves have a
long history in signal processing in the Radar community
(McDonough andWhalen, 1995; Olin andMeeker, 1996)
and are extensively used in the medical community as
well. (For a thorough description of how ROC curves
work and their use and misuse in the medical world see
Hopley and van Schalkwyk, 2007.) They are also used in
the non-destructive evaluation community (Okure and
Peshkin, 1995; Asraf and Gustafsson, 2003; Goebel
et al., 2006) albeit sparingly. Their biggest benefit
comes when combined with information as to the relative
importance of true detections and false alarms. Then a
ROC curve allows one to pick an appropriate decision
threshold that can emphasize detections at the cost of
more false alarms or visa versa (Swets, 1988). In the
absence of information about the importance or costs
associated with the possible outcomes, ROC curves
allow for non-parametric comparisons between very
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different experimental variables such as sensor type,
sensor location, and analysis methodologies. In this arti-
cle, we demonstrate the production of ROC curves for
detecting damage-induced non-linearity, use them to
compare between fiber Bragg grating (FBG) strain sen-
sors and conventional accelerometers, and finally evalu-
ate the performance of the FBGs at different locations on
the wing.
The structure under test was a full size replica of the

composite wing from a small, unmanned aerial vehicle.
The wing was damaged through a series of low energy
(�7J) impacts placed at adjacent locations �1/4 of the
way out from the center of the wing. Both FBG strain
gages and conventional accelerometers monitored the
dynamic response of the wing to vibrational excitation.
Our choice for a damage detection metric was the bico-
herence function, a frequently used tool for detecting the
presence of second-order (quadratic) non-linearities in
time-series data (Hickey et al., 2008). Using non-linearity
for damage detection is a well-known approach (e.g.,
Farrar et al., 2007) that offers the possibility of avoiding
the need for baseline data from the undamaged (linear)
structure, reduced sensitivity to ambient parameters such
as temperature and loading, and it may obviate the need
for broadband stochastic excitation (Nichols et al., 2005),
although we use such excitation in this work.

The results from impacts 1�8 have been described
previously with the conclusion being that while there is
extensive damage to the foam core and limited amounts
of subsurface skin damage, there was no evidence of
damage using vibration-based features, either frequency
response functions (FRFs) or bicoherence (Aktaş et al.,
2009). This article extends that work through additional
impacts and experimental modifications designed to
increase the likelihood of detecting the damage as we
seek to describe detection limits in terms of damage
amount, sensor type, and sensor location for a chosen
data analysis method (bicoherence). The experiment was
stopped after impact 13 because it broke the skin, creat-
ing visible damage. At least 15 sets of dynamic data were
recorded over multiple days at each damage level. The
multiple data sets enabled a statistical evaluation of each
sensor’s ability to detect damage via ROC curves, which
in turn allows evaluations of sensor type and location
with respect to their damage detection performance.

EXPERIMENTAL PROCEDURES

The experiment has been described in detail pre-
viously (Aktaş et al., 2009). Figure 1(a) illustrates the
mounting configuration for dynamic measurements,
which was chosen because it approximates the way a
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Figure 1. (a) A schematic showing the configuration for dynamic vibrational excitation, (b) a schematic of the damaged half of the wing
illustrating the locations of damage (black rectangle), sensors (F2�F9 are FBGs and A1�A3 are accelerometers), and mounting points (white
circles), (c) an illustration showing the location and order of the impacts within the damage area. The lengths are in millimeters.
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health monitoring system might be used on an aircraft.
Figure 1(b) displays a schematic of half of the wing
indicating the locations of sensors and damage. The
other half was left untouched. The eight FBG strain
gages are labeled F2�F9 and the three accelerometers
are labeled A1�A3. Figure 1(c) displays the relative
locations of the impacts within the damaged area. The
wing, which has an airfoil shape with maximum dimen-
sions of 1320mm� 152.4mm� 13.4mm, is a sandwich
composite composed of four layers of carbon fiber
fabric, surrounding an aluminum core that is connected
to the fuselage, and a foam core for the rest of the wing
span. The aluminum core occupies the central 127mm of
the wing and contains three holes in a triangle pattern
for mounting to the fuselage. Differences between this
work and the previous effort (Aktaş et al., 2009) include
bolting the wing to an aluminum plate which in turn was
mounted directly to the shaker platform rather than
including an aluminum post, 51mm long� 12.7mm dia-
meter. This change eliminates several peaks in the PSDs
or FRFs, suggesting that some of the responses in the
earlier work arose from side-to-side motion. It also con-
centrates the dynamic energy in the 38Hz peak. Figure 2
illustrates these changes using the PSDs obtained from F5
after eight impacts in the two mounting configurations.
All of the other FBGs and the accelerometers displayed
similar changes. The 0�600Hz frequency range contains
all of the peaks below 926Hz, which was the Nyquist limit
in the previous work. Note the factor of 5 increase for the
38Hz peak. Also, the 220N electrodynamic shaker with a
±12.7mm stroke used previously was replaced with a
500N shaker with a ±19.0mm stroke to allow for
higher amplitude excitation. While the maximum strain
levels were essentially unchanged, the new shaker and
mounting did provide a 30�40% increase in the RMS
strain levels for F6, which records the largest signals.
The larger shaker enabled the amplitude increases tested
following impact 13, which will be discussed later.

The observed changes in vibrational dynamics and the
increased excitation preclude direct comparisons with
the previous paper (Aktaş et al., 2009). In addition
FBGs 7, 8, and 9 were moved away from the trailing
edge where maximum strains near ±15me were recorded
to regions where the maximum recorded strains reached
±40me. The final modifications, also designed to improve
the likelihood of detecting changes in vibrational
dynamics, were to double the recording time from 30 to
60 s and to increase the data rate from 1953 to 3906Hz.
The recording time increase allows us to improve the
signal/noise in the bicoherence calculation through
increased averaging while retaining the bicoherence fre-
quency resolution (7.63Hz) through doubling the
number of points used in the Fourier transform calcula-
tions that constitute the bicoherence.

Impact damage was created using a swing arm impac-
tor with a 12.7mm diameter hemispherical tup. Incident
and rebound velocities were recorded providing mea-
sures of both incident and deposited energy for each
impact. Deposited energies were kept between 6 and
7.5 J. The impact locations covered a region roughly
25mm� 50mm, located about 150mm from the center
and 30mm behind the leading edge of the wing. The
initial eight impacts were spaced by 10mm in a 2� 4
grid resulting in minimal overlap between impact loca-
tions. For these experiments, the additional impacts
were located between the centers of the initial impacts
(Figure 1(c)), with the goal of creating lines of continu-
ous damage in skin without any surface indications of
the damage. In the previous work (Aktaş et al., 2009),
NDE techniques showed that each impact left a 2�3mm
diameter region of damage in the skin and a �10mm
diameter region of crushed foam in the core. The idea
was to ‘connect the dots.’ The thirteenth impact broke
the skin creating clearly visible damage at which time we
ended the experiment.

As we were unsure as to how or when the damage
might produce detectable changes in the vibrational
dynamics, two types of sensors were used to monitor
the wing. Eight FBGs were mounted to the upper
wing surface surrounding the damage area using a certi-
fied strain gauge adhesive. The spacing and location of
these sensors was selected such that they were unlikely to
be positioned directly above any structural damage, yet
our model and previous experiments indicated that they
were close enough to detect strain rearrangement that
might occur due to local stiffness reductions. In addi-
tion, three conventional accelerometers were attached
using tacky wax. The accelerometers were mounted at
the wing center (A1), to monitor the excitation, near the
wing tip (A2), for maximum accelerations, and near the
damage (A3), looking for local changes and for compar-
ison with one of FBGs. The accelerometer mounted
nearest the damage was 15mm away from F5, close
enough to allow for a direct comparison of performance,
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Figure 2. A PSD comparison for FBG 5 between the previous
mounting configuration and the current mounting configuration.
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and both sensors were about 50mm from the nearest
edge of the damaged region. The accelerometer outputs
were low pass filtered at 1500Hz to limit aliasing.
Because the FBG demodulation system used in these
measurements is non-linear, anti-alias filtering cannot
be implemented without compromising the system’s
dynamic range (Todd et al., 2006). To minimize the
potential for aliasing, we limit our analysis to
�250Hz, which is well below the Nyquist limit of
1953Hz. A stochastic Gaussian vibrational excitation
time series (0�1500Hz) was calculated and used to
drive the shaker. To accommodate the bandwidth of
the Gaussian excitation, all sensors were sampled at
3906.25Hz. Following impact 13, different gain settings
on the shaker amplifier were evaluated. These resulted in
maximum strain amplitudes for F6 of ±55 me, ±90 me,
±125 me, and ±170 me. We will refer to these excitation
levels subsequently as levels 1�4, respectively. Following
all other impacts, excitation level 1 was used.
One aspect of this effort was to relate dynamic dam-

age detection capabilities to alternative damage indica-
tions. Thus, static strain measurements were made by
mounting the wing in an apparatus that allowed us to
apply a series of constant tip deflections (0�38mm) to
both wing tips (Figure 3). Only the FBGs could measure
these static strains with repeated measurements showing
a measurement reproducibility of �50 me due to quasi-
static drift in the FBG demodulation hardware and
±1mm repeatability in the tip deflections.
The experimental procedure was to measure the static

strains during tip deflections prior to and after each
damage event. The initial damage states (1�9 impacts)
were created using single impacts with the final two
damage states using paired impacts so there were no
static or dynamic measurements following impacts 10
or 12. Although impacts 1�8 were described previously,
we repeated both the static and dynamic measurements
on the wing with eight impacts prior to additional
impacts. Thus, the data in this article start with impact
8 and continue through impact 13.
In quantitative performance testing, the best practice

is to make the measurements on individual test pieces

each with ‘identical’ damage. In this case, with each
wing costing $3000, that approach would have been pro-
hibitively expensive. Our alternative was to use the same
wing but spread our measurements over three or more
days. This insures that the damage is identical but
removes manufacturing variability from the test
matrix. To maximize measurement variability, we
turned off all hardware after each day’s measurements.

DATA ANALYSIS

Linear data analysis methods for damage detection
are often complicated by the sensitivity of the structural
response to changing ambient conditions (e.g., Sohn
et al., 1999; Peeters and De Roeck, 2001). Previously,
we have investigated the idea that non-linearity detec-
tion may avoid these complications by eliminating the
need for baseline data from the healthy structure and
minimizing the sensitivity to ambient conditions. One
test, on a bolted joint, indicated that a non-linear
metric called time-delayed transfer entropy could
detect bolt loosening in the presence of 30�C tempera-
ture changes (Nichols et al., 2007). Subsequent investi-
gations, suggested that the estimated bicoherence
function, which is sensitive only to quadratic non-line-
arities, might provide similar or improved sensitivity
with a significantly reduced computational effort.

Bicoherence

The bispectrum and bispectral analyses have been
described by a number of authors (Brockett et al.,
1988; Hinich and Wilson, 1990; Richardson and
Hodgkiss, 1994; Rivola and White, 1998; Hillis et al.,
2006; Petrunin and Gelman, 2008). The bispectrum is
defined as the Fourier transform of the third moment
about the mean. A linear system responding to a
Gaussian input will, by definition, possess a zero bispec-
trum. However, a non-linear system responding to a
Gaussian input will almost assuredly introduce third-
order correlations between frequencies f1, f2, and
f1þ f2. The presence of such non-linearity will be easily

Figure 3. A photograph of the hardware used to impart wing tip deflections for static strain measurements.

300 M. SEAVER ET AL.



detected using the bispectrum. The metric is particularly
useful in detecting the presence of quadratic non-
linearity but will not be sensitive to non-linear correla-
tions lacking a quadratic component. While this limits
its usefulness to specific types of damage, it seemed
appropriate in this case where the damage was expected
to include opening and closing of the skin/core disbond
and possibly localized buckling of the skin. On the
other hand, being limited specifically to quadratic non-
linearities may make it more sensitive than a general
non-linearity detector when only quadratic effects are
present. An intuitive way to think about the bispectrum
is to consider it the frequency distribution of the skew-
ness (Rivola and White, 1998).
Unfortunately, the bispectrumwill also be non-zero for a

linear system subject to non-Gaussian excitation (due to
the presence of skew). To separate the influence of non-
linearity from a non-Gaussian input, the bispectrum needs
to be normalized. This is typically done by dividing through
by an appropriate triple product of the power density func-
tion of the response. Doing so removes all peaks in the
bispectrum that arise due to a linear structure responding
to a non-Gaussian input and results in a constant bicoher-
ence function. Thus, frequency peaks in the bicoherence
function clearly indicate non-linearity. There are two
widely accepted approaches to this normalization. The
signal processing literature normalizes with respect to the
product {Sxx( f1) Sxx( f2) Sxx( f1þ f2)}

0.5 where the Sxx are
single-sided autospectral density functions,
Sxx¼X( fi)X*( fi), and the X’s are the Fourier transforms
of the time series data. The result is a bicoherence function
with the skewness as its magnitude. The engineering liter-
ature often uses the normalization described by Kim and
Powers (1979), {|Sxx( f1)Sxx( f2)|

2 |Sxx( f1þ f2)|
2}0.5, which

produces a bicoherence �1 that can be interpreted as the
fraction of energy in the signal due to quadratic coupling.
In this article, we follow the approach described in
Richardson and Hodgkiss (1994) using the signal proces-
sing normalization. Thus our bicoherence function is cal-
culated as:

bxxxð f1,f2Þ ¼ Bxxxð f1,f2Þ=fSxxð f1ÞSxxð f2ÞSxxð f1 þ f2Þg
0:5,

ð1Þ

where Bxxx( f1, f2)¼ re{X( f1)X( f2)X*( f1þ f2)} is the
unnormalized bispectrum and X* indicates the complex
conjugate.
Convention suggests that a Fourier transform length

that is the square root of the total number of points
in the times series optimizes the trade off between fre-
quency resolution and variance in a bicoherence calcula-
tion. This is supported by a recent study, which shows a
broad maximum in the Fischer criterion versus relative
segment length (Petrunin and Gelman, 2008). In this
work, the total file length was N¼ 210 k (�60 s of
data) and the FFT length was chosen as 512 points

based on N0.5
¼ 460. This FFT length provides a fre-

quency resolution of 7.6Hz.
The bicoherence, as with any power spectral estima-

tion technique, can be classified as either parametric or
non-parametric as well as direct or indirect. In this case,
because we are interested in any quadratic non-linearity
and because we estimate the bicoherence from the data,
the approach is direct and non-parametric. For damage
detection, the direct approach offers major advantages
in being an output only measurement and in allowing
non-linearity evaluation using the variance calculated
from the data. Estimating the variance from the signals
avoids the need for baseline data from the undamaged
structure provided the undamaged structure responds
linearly to the excitation. The variance was calculated
from the off diagonal elements of the bicoherence
(Richardson and Hodgkiss, 1994) over the frequency
interval 0�250Hz using Equation (2).

varfbxxxg ¼ ð1=N0Þ
X

bxxxð f1,f2Þ
�� ��2 ð2Þ

Our non-linearity testing is based on hypothesis test-
ing as described by Hinich and Wilson (1990). In this
approach, the linear hypothesis is rejected when one or
more peak heights exceed some threshold, Ta. In this
case the threshold is calculated as:

T� ¼ ðP�varfbxxxgÞ
0:5, ð3Þ

where the probability of (�2>Pa)¼ a is derived from
tables of the �2 distribution with 2 degrees of freedom.
The square root is taken because we want to compare
peaks in the bicoherence (Equation (1)) with the thresh-
old. It is necessary to multiply Pa by the variance
because our bicoherence data are not �1. When using
this approach the choice of a represents the probability
of false alarms (Hinich and Wilson, 1990). For these
data, we chose a¼ 95, 99, 99.5, 99.9, and 99.99 and
used Pa¼ 2.995, 4.605, 5.300, 6.910, and 9.210, respec-
tively. Note that the values of Pa are half the values
given in tables of the chi-squared distribution. This
reduction takes into account the fact that the variance
contains equal amounts from both real and complex
parts, which results in a 2x overestimation when using
Equation (2) since the bxxx contain only real values.

RESULTS AND DISCUSSION

The results from the first eight impacts have been
described previously (Aktaş et al., 2009). At that stage,
the damage was at best minimally detectable. Based on
the thermographic evidence indicating isolated 2�3mm
diameter regions of internal damage in the skin, the
additional impacts were placed between the previous
impacts. The idea in these measurements was to create
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a continuous line of internal damage in the skin, which
might lead to localized buckling and rearrangement of
the strain field due to an extended reduction in stiffness
in the wing skin. Thus, impacts 9, 10, and 11 were placed
between the four previous impacts nearest the wing
center (e.g., between 7 and 1, 1 and 2, and 2 and 3 in
Figure 1(c)). Similarly, impacts 12�14 were to occur in
parallel locations in the second row. Previous experience
has shown that once significant core crushing has
occurred, breakage of the skin occurs at lower impact
energies. Thus, incident impact energies were reduced by
about 20%. This worked fine for impacts 9�12, how-
ever, impact 13 broke the skin, resulting in an �10mm
diameter dimple about 2mm deep showing broken fibers
in the center.
Figure 4 shows the static strain measurement results

for FBGs 2, 4, 6, and 8 following impacts 8, 9, 11, and
13. In this figure we see significant non-linearity in the
response of FBG 8 for all four damage cases. For FBG 4
there is non-linearity for damage cases 11 and 13. FBG 2
only shows non-linearity for damage case 13. FBG 6
shows slight reductions in strain for damage cases 11
and 13 but only at the largest strains. FBG 5 (not
shown) also shows strain reduction, but only for
damage case 13. FBGs 3, 7, and 9 show no evidence
of strain rearrangement. The FBG 8 results indicate

some non-linearity following impact 8 when strains
exceed about 1500me For impact 9, the non-linearity
appears as the static strain exceeds about 1200 me.
Impacts 10 and 11 continue that trend, with the non-
linearity appearing at strains above 1000me. It is also
clear at this level of damage that the strain field is rear-
ranging to compensate for the damage as FBG 6 shows
a slight reduction in strain at levels above of 1300 me, eg.
deflections greater than 25.4mm). Following impacts
12 and 13 the non-linearity seen by FBG 8 increased
again with apparent changes as early as 400 me. It
became clear during the damage case 13 measurements
that FBG 8 was chirping (displaying multiple peaks) at
the 28mm tip deflections. Thus measurements for this
case were stopped at 28mm of tip deflection. It’s worth
noting that for FBG 8 and damage case 13, the highest
dynamic strain levels were 40 me, 65 me, 105me, and
115 me for excitation levels 1�4, respectively.

The dynamic signals from all sensors were demeaned
and normalized to unit variance prior to subsequent
processing. The normalized signals were used to
calculate the bicoherence, PSDs, and FRFs. To keep
processing time reasonable, bicoherence estimates were
calculated using 512 point FFTs with 50% overlap. This
results in a frequency resolution of 7.6Hz. While we
have not explored the effects of changing the FFT
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Figure 4. The static strain performance of the wing measured by four FBGs following impacts 8, 9, 11, and 13.
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length on detection sensitivity, the use of 512 point FFT
corresponds with the rule of thumb for bicoherence cal-
culations that suggests the optimum FFT length is the
square root of the file length.
Figure 5(a) shows PSDs obtained from accelerometer

3 and FBG 5 for damage case 13 with level 1 excitation.
(Note that these PSDs were calculated using 2048 point
FFTs with 50% overlap, which results in resolution of
1.8Hz, not the 7.6Hz resolution of the bicoherence cal-
culations.) These two sensors were located 15mm apart
and 50mm from the nearest edge of the damage area.
Comparison between the two traces in Figure 5(a) shows
how different the underlying response is when accelera-
tion is compared to strain. While not shown, the repro-
ducibility of the PSDs (or FRFs) was such that
day-to-day differences were at least as large as any
changes due to damage and/or excitation amplitude,
with the peak near 200Hz showing the most variability.
In spite of the fact that the normalized noise (the PSD
values approaching 2 kHz) for the accelerometer is

nearly two orders of magnitude lower than the normal-
ized noise for the FBG, our analysis (described below)
shows better damage detection with the FBGs. Figure
5(b) displays the 0�250Hz region of the PSD from four
measurements of damage case 13 using level 4 excitation
looking at FBG 2. In this plot, peaks appear near 76 and
114Hz, which are 2x and 3x the fundamental frequency
making it a likely that these are harmonics and thus an
indication of non-linearity. Figure 5(b) shows consider-
able inconsistency in the amplitude of both of these fre-
quencies, which would make direct analysis difficult. As
expected, reducing the excitation reduces the amplitudes
of these two frequencies with the second harmonic
(114Hz) only seen occasionally for level 3 excitation
and not at all for levels 2 and 1. The first harmonic
(76Hz) is seen consistently, but the amplitude is smaller
than the smallest amplitude seen in Figure 5(b).

Figure 6 shows bicoherence contour plots from
the sensor data shown in Figure 5(a). The top plot

Figure 6. Bicoherence contour plots for: (a) accelerometer A3, (b)
FBG 5, and (c) the thresholded plot for FBG 5. The damage level is
13, the excitation level is 1, and (a) and (b) use the same intensity
scales. The threshold in (c) is set at the 99.9% confidence level.
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(Figure 6(a)), for accelerometer 3, shows only one small
self-peak at (110, 110) with a maximum bicoherence of
0.055. The fact that this peak does not correspond to
any of the wing’s structural modes suggests that this is a
noise peak. The middle plot (Figure 6(b)), for FBG 5,
shows a strong self-peak at (39, 39) plus two smaller
cross peaks at (39, 160) and (39, 200), all at structural
modes. The FBG 5 self peak has an amplitude of 0.20.
Figure 6(c) (bottom) shows a thresholded bicoherence
plot for FBG 5. In a thresholded plot, the minimum is
set by the threshold as calculated using Equation (3) and
data smaller than the threshold are ignored. The thre-
sholded plot shows only one peak exceeding the 99.9%
variance threshold (0.112) for this measurement. Note
that the variance changes from sensor-to-sensor
and day-to-day. Based on our earlier discussion of
POD and PFA, this is considered an indication of

non-linearity for this sensor, damage, and excitation
level. Meanwhile the fact that no peak in the acceler-
ometer results exceeds the threshold (0.059) indicates
linear behavior for that sensor.

Figure 7 illustrates additional aspects of these mea-
surements. In this figure, the left hand column, (a, c,
and e) shows unthresholded bicoherence results, while
the right-hand column (b, d, and f) shows thresholded
bicoherence plots for the same data. The data illustrate
the differences seen between sensors (rows 1 and 2) and a
worst-case example of differences between measure-
ments for the same sensor (rows 2 and 3). Figure 7(a)
and (b) are from FBG 2 with Figure 7(a) showing peaks
at the 39Hz fundamental, its first and second harmo-
nics, and a small peak near 200Hz. Figure 7(b)
shows that both the 39Hz fundamental and it’s first
harmonic are non-linear above the 99.9% variance

Figure 7. Bicoherence contour plots (left column) and thresholded bicoherence plots (right column) for FBGs 2 (a and b) and 7 (c�f). The
results for FBG 7 illustrate the worst case variability between two consecutive measurements (c and e vs d and f).
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threshold (0.134). In contrast, the results (from the same
measurement) for FBG 7, Figure 7(c) and (d), show only
small peaks in the bicoherence none of which exceed
the 99.9% variance threshold (0.058) indicating no
non-linearity at this location. When the measurement
was repeated, about 3min later, FBG 7 shows
non-linearity in the 39Hz peak, and in it’s first harmonic
(99.9% threshold¼ 0.143). Note that the peak bicoher-
ence amplitude for FBG 7 increased from 5.6� 10�2 to

2.7� 10�1 for these consecutive measurements. This
clearly shows that there are times where the variability
in the non-linearity is large. At this time, it is unclear
whether such variability is in the FBG demodulation
hardware or if it illustrates the variability of the
measurement.

Figures 8�11 display the ROC curves derived for all
11 sensors. In general, there is limited consistency in
terms of expectations that increasing damage or

Figure 8. ROC curves for the accelerometers A1 (a), A2 (b), and A3
(c) as the level of damage increases from 8 to 13 impacts.

Figure 9. ROC curves for the accelerometers A1 (a), A2 (b), and A3
(c) for increasing excitation L1�L4 following 13 impacts.
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excitation always results in greater POD for a given
PFA. In spite of this limitation, several general conclu-
sions can be drawn from these figures. These include the
fact that all sensors show greater than 90% POD at 5%
false alarms. Thus for a 5% PFA, there is no perfor-
mance difference between the accelerometers and the
FBG strain gages. For PFAs below 5%, the FBGs
have consistently higher PODs for a given PFA than
the accelerometers and that the POD difference
increases as the PFA drops. Thus, overall the FBGs
provide more sensitivity to damage than do the acceler-
ometers. Finally, comparing Figures 10 and 11, there is
no clear indication that higher levels of excitation pro-
duce higher PODs.
Figures 8 and 9 contain the ROC curves for the three

accelerometers with Figure 8 comparing results for the
four damage levels and Figure 9 comparing results for
damage case 13 when using different levels of excitation.
In these two plots, it is clear that the excitation acceler-
ometer (A1) shows slightly higher PODs than the wing tip
sensor (A2) and that both of these are noticeably higher
than the accelerometer closest to the damage (A3).

Figures 10 and 11 show the ROC curves for the FBGs
as we increase the damage or the excitation level, respec-
tively. FBGs 2, 3, 6, 8, and 9 show very high PODs for all
false alarm rates at damage level 13. Note that these sen-
sors either lie between the damage and the wing root
(FBG 2, 6, and 9) or along the same span as the
damage (FBGs 3 and 8). These sensors also show
higher PODs for the other damage cases than FBGs 4,
5, and 7. FBG 9 shows distinctly higher PODs than the
other sensors with all values in excess of 90%. Thus, even
though FBG 9 measures strain levels that are 30% smal-
ler than FBG 6, it shows significantly better ROC curve
performance.

A major caveat arises because of the hardware
changes made between impacts 8 and 9. This change
precludes using the data from the previous damage
states for direct comparisons. As analyzed, that data
showed little if any non-linearity due to the damage.
However, the lack of direct comparison means that at
this time, we cannot be certain that strain data from the
undamaged or lightly damaged wing would show no
non-linearity. Thus, a similar set of measurements

Figure 10. ROC curves for the FBGs as the level of damage increases. The figure is laid out to illustrate the locations of the sensors relative to
the damage.
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starting with an undamaged wing are required to make it
clear whether bicoherence can be used as a non-linearity
detector for high sensitivity detection of invisible impact
damage in foam core composite wing structures such as
the one tested here.

CONCLUSIONS

We have investigated the use of bicoherence as a non-
linearity detector for evaluating low energy impact
damage in a foam core composite wing. As a series of
non-overlapping impacts (<7J) produced hidden
damage, eight FBGs and three conventional acceler-
ometers recorded the wing’s response to Gaussian exci-
tation. The recorded time series were analyzed using
bicoherence and assessed as to the presence of non-
linearity by comparing peak heights in the bicoherence
results with a threshold calculated from the bicoherence
variance. This approach avoids the need for baseline
data from the undamaged structure. Variance distribu-
tion function thresholds of 95, 99, 99.5, 99.9, and 99.99

established the probability of false alarms (5, 1, 0.5, 0.1,
and 0.01%, respectively) as described by Hinich and
Wilson (1990). A minimum of 15 measurements spread
over 3 days enabled the calculation of ROC curves for
all 11 sensors, 4 damage levels, and 4 excitation levels at
the highest damage level.

The ROC curve analysis shows that all 11 sensors had
at least 90% POD at 5% PFA. However, at lower PFAs
all FBG strain sensors show consistently higher PODs
than the accelerometers. As FBG 5 and accelerometer 3
were nearly co-located, the improved ROC curves indi-
cate that the FBGs are the preferred approach to
damage detection in this experiment. The FBG nearest
the midchord (F9) and closest to the wing root provided
the highest PODs, with >90% POD for a 0.01% prob-
ability of false alarms. The other seven FBGs showed
similar levels of ROC curve performance. There was
inconsistency in the ROC curves with respect to
damage level, which requires further investigation to
determine if it is inherent at these levels of damage or
related to sensor performance.

Figure 11. ROC curves for the FBGs following 13 impacts as the level of excitation increases. The figure is laid out to illustrate the locations of
the sensors relative to the damage.
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Owing to hardware changes made between impacts 8
and 9, we cannot compare the bicoherence results with
earlier data from this wing. Thus, we are not able to
definitively state that the undamaged wing shows no
non-linearity. Further experiments starting with a pris-
tine wing will attempt to minimize response variability
due to the FBG demodulation hardware and maintain
measurement consistency through a series of impacts.
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