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Kaluza–Klein modes of fermions in a five-dimensional toy model are considered. The
number of Kaluza–Klein modes that survive after integration over extra dimensions
is finite in this space. Moreover, the extra dimensional piece of the kinetic part of the
Lagrangian in this space induces no mass for the higher Kaluza–Klein modes on contrary
to the standard lore.

Keywords: Kaluza–Klein modes; extra dimensions.

The use of extra dimension(s) is a popular tool in high energy physics1–10 because it

gives a more tidy picture of nature, that ranges from geometrization of all forces of

nature in the spirit of general relativity to a better understanding of the cosmolog-

ical constant problem, hierarchy problem, fermion generations, Yukawa couplings

and flavor etc. The world we live in is apparently four-dimensional. Hence extra

dimensions (if exist) must be hidden at present (relatively low) energies. The stan-

dard way to ensure this is to take the extra dimension(s) be compact and tiny (e.g. a

tiny circle). Then, by Fourier theorem, a field in the whole space can be expanded

in a tower of particles that are identical except their masses and their profile in

the extra dimension(s). Such a tower of particle (or field) is called a Kaluza–Klein

(KK) tower of that particle (or field), and it is an infinite series except in some cases

that need complicated boundary conditions to be satisfied.11–14 Depending on the

boundary conditions, the KK tower may contain a zero mode (i.e. a mode that

does not depend on the extra dimension(s)) or not. A zero mode does not acquire a

mass from the extra dimensional piece of the kinetic part of the Lagrangian while

all other modes gain masses of order of 1
L
where L is the size of the extra dimension.

Phenomenological considerations require the masses of the higher KK modes to be

at least in TeV scale, and usually in the order of Planck mass for standard model

particles.15 So KK modes except the zero mode cannot be identified with the usual

particles. Therefore a scheme where the number of KK modes is finite and all gain
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zero masses from the kinetic part of the Lagrangian would be highly desirable. In

this study we present a toy model for fermions where the number of observed KK

modes is finite at current energies, and all modes are massless as long as the kinetic

part of the Lagrangian is considered.

In the vein of a framework proposed for cosmological constant problem,16–19 we

consider the following five-dimensional metric

ds2 = gBC dx
B dxC = cos kz(gB̄C̄ dx

B̄ dxC̄)

= cos k z[gµ̄ν̄(x)dx
µ̄ dxν̄ − dz2] ,

B, C, B̄, C̄ = 0, 1, 2, 3, 4 , µ̄, ν̄ = 0, 1, 2, 3 , (1)

where the symbol x with no indices stands for the four-dimensional coordinates

xµ̄. We take the extra dimension to be compact and its size be L and k = 2π
L
.

Although this metric has singularity at kz = π
2 , this singularity does not survive

after integration over the extra dimension z (i.e. at the scales larger than the size of

the extra dimension). Moreover, the location of the singularity at the sharp value,

kz = π
2 suggests that this singularity may be removed by the metric fluctuations in

quantum gravity.20 So given the toy model nature of this study we will not dwell on

this technical point further for the sake of a relatively simple framework to study.

We take gB̄C̄ = ηB̄C̄ = diag(1,−1,−1,−1,−1) (i.e. gµ̄ν̄ = ηµ̄ν̄) to have a simple

model where one can focus on the essential points of the model. The action for

(free) fermionic fields for this space is

Sf =

∫

(cos kz)
5

2Lf d
4x dz

=

∫

(cos kz)2iχ̄γa
(

∂a +
k

8
tan kz[γ4, γa]

)

χd4x dz +H.C. ,

{γa, γb} = 2ηab , (ηab) = diag(1,−1,−1,−1,−1)

(2)

where H.C. stands for Hermitian conjugate, and the second term is spin connection

term (see Appendix A). The small Latin indices a, b, etc. refer to the tangent

space while the capital Latin indices A, B, etc. refer to the space defined by (1).

The tangent space in this case coincides with gB̄C̄ dx
B̄dxC̄ = ηB̄C̄ dx

B̄ dxC̄ . So the

indices with a bar above also refer to the tangent space in this paper. The action is

required to be invariant under the five-dimensional spacetime reflections, namely,

xa → −xa , a = 0, 1, 2, 3, 4 (3)

where all coordinates are spacetime reflected simultaneously.

χ may be Fourier decomposed in the extra dimension as

χ = χA + χS , (4)

χA(x, z) =
∞
∑

n=−∞

χA
n (x) sin

(

1

2
n kz

)

=
∞
∑

|n|=1

χ̃A
|n|(x) sin

(

1

2
|n|kz

)

, (5)



April 1, 2010 10:21 WSPC/146-MPLA S0217732310032378

Finite Number of Kaluza–Klein Modes, All with Zero Masses 827

χS(x, z) =
∞
∑

n=−∞

χS
n(x) cos

(

1

2
n kz

)

= χ0(x) +
∞
∑

|n|=1

χ̃S
|n|(x) cos

(

1

2
|n|kz

)

, (6)

χ̃A
|n|(x) = χA

n (x) − χA
−n(x) , χ̃S

|n|(x) = χS
n(x) + χS

−n(x)

(where the absolute value signs in |n| is used to emphasize the positiveness of n

in those terms, and half-fractional values in the sum correspond to anti-periodic

boundary conditions). The form of χ
A(S)
n is determined by the requirement of co-

variance under (the spinor representation of) SO(3, 1) and is given by

χ
A(S)
n = χ

A(S)
0n +

∑

Γ4χ
A(S)
4n ,

{ΓB,ΓC} =
2

cos kz
ηBC , B, C = 0, 1, 2, 3, 4 ,

(7)

where ΓB(C)’s are the gamma matrices of (1). However, we let χ
A(S)
n simply be

χ
A(S)
0n for the sake of simplicity and it does not essentially change the result as we

shall mention when we discuss the masses of the KK modes. Let us return to the

main subject after this remark. We take χ
A(S)
n to transform under (3) as

χn(x) → (−1)λnCPT χn(−x) , λn =
1

2
(−1)

n

2 , (8)

where the upper indices A and S are suppressed, and CPT denotes the usual four-

dimensional CPT operator (acting on the spinor part of the field). Only the positions

of fields (i.e. xa’s) are multiplied by −1 while the orientation of the fields in the

spacetime remain essentially the same, i.e. the spinor part of χ remains essentially

the same. In this respect (3) is the analog of CPT transformation rather than PT

transformation in four dimensions. The invariance of (2) under (3) requires iχ̄γa∂aχ

in Lf be invariant under (3). iχ̄γµ∂µχ is invariant under four-dimensional CPT.

These together imply that iχ̄γµ∂µχ (i.e. iχ̄γµχ) is even under the extra dimensional

part of (3). So the possible form of Lf (after requiring it be odd under (3)) is

iχ̄Sγ
a∂aχS and/or iχ̄Aγ

a∂aχA . (9)

In other words, (3) requires Lf to be either of the terms in (9) or their linear

combination.

Further, the invariance of the action under an extra dimensional reflection sim-

ilar to the one given in Refs. 16 and 17

kz → π + kz (10)

is imposed. Under (10) the volume element in (2) transforms as

(cos kz)
5

2 d4x dz →
√
−1(cos kz)

5

2 d4x dz . (11)
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Then invariance of (2) under (10) requires iχ̄γa∂aχ to be even under the

same transformation. We impose χ satisfy anti-periodic boundary conditions,21

i.e. χ(z = 0) = −χ(z = L). This sets n in (5), (6) to be odd. Then, the invariance

of action (including the quantum paths) under (3), (8) and (10) requires the four-

dimensional part of Sf be (see Appendix B)

∞
∑

r,s=0

∫

d4x iχ̄(2|r|+1)γ
µ̄∂µ̄χ(2|s|+1)

× 2

∫

dz(cos kz)2
[

cos
2|r|+ 1

2
kz cos

2|s|+ 1

2
kz

− sin
2|r|+ 1

2
kz sin

2|s|+ 1

2
kz

]

+H.C.

=
∞
∑

r,s=0

∫

d4x iχ̄(2|r|+1)γ
µ̄∂µ̄χ(2|s|+1)

×
∫ L

0

dz(cos 2kz + 1) cos(|r| + |s|+ 1)kz +H.C.

=
1

2

∞
∑

r,s=0

∫

d4x iχ̄(2|r|+1)γ
µ̄∂µ̄χ(2|s|+1)

∫ L

0

dz[cos (|r| + |s| − 1)kz] + H.C. ,

(12)

where 2r + 1 = 4l + 1, 2s + 1 = 4p + 3 (l, p = 0, 1, 2, . . .) or vice versa. Because

of the periodicity of cosine function, the terms in (12) give nonzero contributions

after integration over z only if the arguments of cosines are zero. This is possible

only when

|r|+ |s| − 1 = 0 ⇒ r = 0 , s = 1 or s = 1 , r = 0 . (13)

The result of z integration in (12) is

L

2

∫

d4x[iχ̄1γ
µ̄∂µ̄χ3 + iχ̄3γ

µ̄∂µ̄χ1] + H.C. (14)

The diagonalization of (14) results in

1

2
L

∫

d4x[iψ̄γµ̄∂µ̄ψ − i
¯̃
ψγµ̄∂µ̄ψ̃] + H.C. (15)

ψ =
1√
2
(χ1 + χ3) , ψ̃ =

1√
2
(χ1 − χ3) . (16)

Hence there are one usual fermion and one ghost fermion in the spectrum.

The iχ̄γ4∂4χ part of Lf reduces to sin |n|−|m|
2 kz type of terms as a result of the

action of the derivative operator ∂4 in (2) (see Appendix A.2). This, in turn, results
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in odd number of sine terms (in the action) that leads to zero after integration

over z. The number of modes that survive after integration may be increased by

changing the extra dimension dependent conformal factor and/or the dimension of

the space. For example if the conformal factor in (1) is changed to cos2 kz, then

the condition (13) is changed into r + s − 3 = 0. The kinetic term induces no

mass term in this case as well because the extra dimensional derivatives induce odd

number of sine terms in this case as well. The same second term in (2), that is, the

spin connection term also induces no mass term because it contains odd number of

sine terms as well (see Appendix A.1). A similar conclusion should be expected for

more complicated conformal terms or higher dimensional spaces. In other words, no

mass is induced for Kaluza–Klein modes through the extra dimensional part of the

kinetic term in this model, and similar results are expected for more complicated

situations with similar conformal terms and symmetries. Here we have taken χn’s to

be simply given by the first terms in (7). However, taking the general form does not

change the conclusion because vanishing of the extra dimensional kinetic term after

integration follows directly from the extra dimensional coordinates rather than the

extra dimensional form of the spinor.

We have introduced an extra dimensional model where only two modes of

Kaluza–Klein tower appear at low energies. These modes correspond to a fermion

and a ghost fermion. These fermions are massless provided we do not introduce a

bulk mass term explicitly. The ghost fermion may be identified by a Lee–Wick23

or Pauli–Villars22 type regularization field. These results are quite nonstandard

both in the emergence of a finite number of Kaluza–Klein modes and the modes

higher than zero mode gaining no masses through the extra dimensional piece of

kinetic term at low energies where the extra dimensions become directly unobserv-

able. In fact this is also the basic tool to distinguish this scheme from the usual

Kaluza–Klein prescription. If nature behaves in the way described here, then all

Kaluza–Klein modes of a fermion will be observed at short distances smaller than

the size of the corresponding extra dimension while only a finite number of these

modes will be detected at larger scales after they are produced (even when they are

stable or long living so that they can travel large distances before decay). Moreover,

the coupling of fermions to other particles would vary nonlinearly with distance at

the scales smaller than the size of the extra dimension since the screening effect of

the conformal factor cos kz changes nonlinearly at distances below the size of the

extra dimension. This would be another characteristic of this type of models. In

fact one may easily find different metrics of different form and in different dimen-

sions with finite number of Kaluza–Klein modes (obtained after integration over

extra dimensions) and all with zero masses. The aim of this study is to show the

possibility of obtaining finite number of Kaluza–Klein modes at low energies, and

the possibility of massless Kaluza–Klein modes higher than zero mode. So a rela-

tively simple model where these properties can be observed is studied here rather

than a detailed model that is in agreement with phenomenology. We hope that
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different variations of such models with more realistic spectra may be found in

the future.

Appendix A. Possible Contributions to Masses Due to the Spin

Connection and the Extra Dimensional Part of

the Kinetic Term

A.1. Contribution due to spin connection

The vielbeins, eaB, corresponding to the metric, gBC in (1), and those corresponding

to its inverse gBC are determined from

gBC = ηabe
a
Be

b
C , gBC = ηabeBa e

C
b , (A.1)

where the lower indices a, b stand for the tangent space of the original space (e.g. the

one defined by (1)). The vielbeins corresponding to the metric in (1) are found

to be

eaB =
√
cos kz δaB , eBa =

1√
cos kz

δBa , (A.2)

where δaB, δ
B
a are the Kronecker delta, and (ηAB) = diag(1,−1,−1,−1,−1). In

curved spaces the derivative term ∂B when acting on spinors is replaced by24 DB

DB = ∂B +
i

2
Jbcω

bc
B , (A.3)

where Jbc = − i
4 [γb, γc].

Here γb(c) are the (flat) tangent space Dirac gamma matrices that are related

to the gamma matrices of the original space ΓB by

ΓB = eaBγa , {ΓB,ΓC} = 2gAB =
2

cos kz
ηBC , {γa, γb} = 2ηab ,

B, C = 0, 1, 2, 3, 4 , a, b = 0̄, 1̄, 2̄, 3̄, 4̄ ,

where the bars over the integers are used to emphasize that they belong to the

tangent space, and ωbc
B ’s are the spin connections, that are given by

ωbc
B =

[

ebK

(

∂ecP
∂xB

)

− ΓF
PBe

b
Ke

c
F

]

gKP , (A.4)

where ΓF
PB=

1
2g

FG(gPG,B + gBG,P − gPB,G) denotes Christoffel symbols, and the

commas denote the usual derivative with respect to that coordinate. The nonvan-

ishing ΓF
PB’s in the space defined by Eq. (1) are

Γµ
ν4 = −k

2
δµν tan kz , Γ4

µν =
k

2
ηµν tan kz , Γ4

44 =
k

2
tan kz . (A.5)

So the spin connection that gives a nonzero contribution is found to be

ωbc
µ =

k

2
tan kz[δb4δ

c
µ − δbµδ

c
4] . (A.6)
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The ωbc
4 element of spin connection is found to be zero. Then

Dµ = ∂µ +
i

2
Jbcω

bc
µ = ∂µ +

k

8
tan kz[γ4̄, γµ̄] , D4 = ∂4 , (A.7)

ΓBDB = eµaγ
aDµ + e4aγ

a∂4 =
1√

cos kz
[γµ̄Dµ̄ + γ 4̄∂4̄] , (A.8)

where B, C, F etc. denote the spacetime coordinates while a, b, c etc. and the

indices with a bar above e.g. B̄, 4̄ etc. denote the tangent space. Although there is

a bar over 4 in (A.7), that bar is omitted in (2) to simplify the notation. Thus the

result may be written in a more compact form as in Eq. (2) where ωab
4 gives null

contribution.

After using Eqs. (A.7) and (A.8) one obtains Eq. (2). It is evident from (2)

and Eq. (A.6) that the integration of the spin connection term eµaγ
aωbc

µ Jbc over the

extra dimension z is proportional to
∫ 2π

0

(cos kz)2 tan kz d(kz) = 0 . (A.9)

In other words, the spin connection term does not contribute to the masses of ψ, ψ̃

of Eq. (16) at (relatively low energies) where the extra dimension cannot be seen.

A.2. Contribution due to the extra dimensional part of

the kinetic term

The extra dimensional part of the kinetic term for the action of the field χ is

∫

(cos kz)
5

2 iχ̄γ4∂4χd
4x dz =

∞
∑

r,s=0

∫

d4x iχ̄(2|r|+1)γ
4χ(2|s|+1)

∫

dz(coskz)2

×
{(

cos
2|r|+ 1

2
kz + sin

2|r|+ 1

2
kz

)

∂4

(

cos
2|s|+ 1

2
kz − sin

2|s|+ 1

2
kz

)

+

(

cos
2|r|+ 1

2
kz − sin

2|r|+ 1

2
kz

)

∂4

(

cos
2|s|+ 1

2
kz + sin

2|s|+ 1

2
kz

)}

= −k
∞
∑

r,s=0

(2|s|+ 1)

∫

d4x iχ̄(2|r|+1)γ
4χ(2|s|+1)

∫

dz(cos kz)2

×
[

cos
2|r|+ 1

2
kz sin

2|s|+ 1

2
kz + sin

2|r|+ 1

2
kz cos

2|s|+ 1

2
kz

]

= 0 ,

(A.10)

where H.C. (in Eq. (12)) that stands for the addition of the Hermitian conjugate

of the preceding term is suppressed. So the extra dimensional piece of the kinetic

term in this paper does not contribute to the masses of ψ or ψ̃ at length scales

larger than the size of the extra dimension.
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Appendix B. Derivation of Eq. (12)

It is observed that

as kz → π + kz

(i) if n = 4l+ 1 ⇒
(

cos
n

2
kz + sin

n

2
kz

)

→
(

cos
n

2
kz − sin

n

2
kz

)

(

cos
n

2
kz − sin

n

2
kz

)

→ −
(

cos
n

2
kz + sin

n

2
kz

)

(ii) if n = 4l+ 3 ⇒
(

cos
n

2
kz + sin

n

2
kz

)

→ −
(

cos
n

2
kz − sin

n

2
kz

)

(

cos
n

2
kz − sin

n

2
kz

)

→
(

cos
n

2
kz + sin

n

2
kz

)

l = 0, 1, 2, . . . . (B.1)

The requirement that the action (2) be invariant under (8) requires n = 4l+1 type

of modes couple to m = 4p+ 3 type of modes. In the light of this observation the

combination that is invariant under (10) is
{(

cos
2|r|+ 1

2
kz + sin

2|r|+ 1

2
kz

)(

cos
2|r|+ 1

2
kz − sin

2|r|+ 1

2
kz

)

+

(

cos
2|r|+ 1

2
kz − sin

2|r|+ 1

2
kz

)(

cos
2|s|+ 1

2
kz + sin

2|s|+ 1

2
kz

)}

= 2

[

cos
2|r|+ 1

2
kz cos

2|s|+ 1

2
kz − sin

2|r|+ 1

2
kz sin

2|s|+ 1

2
kz

]

, (B.2)

where

2|r|+ 1 = 4l+ 1 and 2|s|+ 1 = 4p+ 3

or 2|r|+ 1 = 4l+ 3 and 2|s|+ 1 = 4p+ 1

l, p = 0, 1, 2, 3, . . . . (B.3)

So the four-dimensional part of Sf becomes

∞
∑

r,s=0

∫

d4x iχ̄(2|r|+1)γ
µ̄∂µ̄χ(2|s|+1)

∫

dz(cos kz)2

×
{(

cos
2|r|+ 1

2
kz + sin

2|r|+ 1

2
kz

)(

cos
2|r|+ 1

2
kz − sin

2|r|+ 1

2
kz

)

+

(

cos
2|r|+ 1

2
kz − sin

2|r|+ 1

2
kz

)(

cos
2|s|+ 1

2
kz + sin

2|s|+ 1

2
kz

)}

,

(B.4)
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where the H.C. symbol (as in Eq. (A.10)) is suppressed. (B.4) after using (B.2)

results in (12). It is evident from (12) that the resulting Lagrangian has the form

required by (9) as well.
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