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In the present paper, an influence of the anisotropic antisymmetric exchange interaction,
the Dzialoshinskii–Moriya (DM) interaction, on entanglement of two qubits in various
magnetic spin models, including the pure DM model and the most general XY Z model,
are studied. We find that the time evolution generated by DM interaction can implement
the SWAP gate and discuss realistic quasi-one-dimensional magnets where it can be
realized. It is shown that inclusion of the DM interaction to any Heisenberg model
creates, when it does not exist, or strengthens, when it exists, the entanglement. We
give physical explanation of these results by studying the ground state of the systems
at T = 0. Nonanalytic dependence of the concurrence on the DM interaction and its
relation with quantum phase transition is indicated. Our results show that spin models
with the DM coupling have some potential applications in quantum computations and
the DM interaction could be an efficient control parameter of entanglement.
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1. Introduction

The entanglement property has been discussed in the early years of quantum me-

chanics as a specific quantum mechanical nonlocal correlation1–3 and recently, it

has become a key point of the quantum information theory.4 For entangled subsys-

tems the whole state vector cannot be separated into a product of the subsystem

states. This is why these subsystems are no longer independent, even if they are

far separated spatially. A measurement on one subsystem not only gives informa-

tion about the other subsystem, but also provides the possibility of manipulating

it. Therefore entanglement becomes the main tool in quantum computations and

information processing, quantum cryptography, teleportation, etc.5 Due to the in-

trinsic pairwise character of the entanglement, entangled qubit pairs play a crucial

role in such computations. It is clear that single qubit gates are unable to gener-

ate entanglement in an N qubit system, and to prepare an entangled state, one
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needs an inter qubit interaction, which is a two qubit gate. The simplest two qubit

interaction is described by the Ising one between spin 1/2 particles in the form

of Jσz
1σ

z
2 . More general interaction between two qubits is given by the Heisenberg

magnetic spin interaction models. These models have been extensively studied for

several decades, experimentally in condensed matter systems6 and theoretically as

exactly solvable many body problems (Bethe, Baxter, and others).7,8 Now they

become promising to realize quantum computation and information processing, by

generating entangled qubits and constructing quantum gates9,10 in a more general

context than the magnetic chains.

Recently, in this way, interaction between two nuclear spins having the Heisen-

berg form was considered.11 The nuclear spins from one side are well isolated from

the environment and their decoherence time is sufficiently long. From another side

nuclei with spin 1/2 are natural representatives of qubits in quantum informa-

tion processing, which can realize quantum computational algorithms by using

NMR.12–14

Very recently entanglement of two qubits15 and its dependence on external mag-

netic fields, anisotropy, and temperature have been considered in several Heisenberg

models: the Ising model16–18; the XX and XY models9,19–24; the XXX model25;

the XXZ model26; and the XY Z model.27–29 Particularly dependence of entangle-

ment on the type of spin ordering was shown, so that in the isotropic Heisenberg

spin chain (the XXX model) spin states are unentangled in the ferromagnetic case

J < 0, while for the antiferromagnetic case J > 0 entanglement occurs for suffi-

ciently small temperature T < Tc = 2J/k ln 3. A significant point in the study of

such models is how to increase entanglement in the situation when it already exists

or to create entanglement in the situation when it does not exist. Certainly this can

be expected from a generalization of bilinear spin–spin interaction of the Heisen-

berg form. Around 50 years ago, explaining weak ferromagnetism of antiferromag-

netic crystals (α-Fe2O3, MnCO3, and CrF3), has been a controversial problem for

a decade, Dzialoshinskii,30 from phenomenological arguments, and Moriya31 from

microscopic grounds, have introduced anisotropic antisymmetric exchange interac-

tion, the Dzialoshinskii–Moriya (DM) interaction, expressed by

D · [S1 × S2] . (1)

This interaction arising from extension of the Anderson superexchange interaction

theory by including the spin orbit coupling effect,31 is important not only for the

weak ferromagnetism but also for the spin arrangement in antiferromagnets of low

symmetry. In contrast to the Heisenberg interaction which tends to render neighbor

spins parallel, the DM interaction has the effect of turning them perpendicular

to one another. As we will see in the present paper, it turns out that such spin

arrangements are likely to increase entanglement. In most materials with weak

ferromagnetism and the DM coupling, parameter D is small compared to J . The

values reported in the literature range from (D/J) ≈ 0.02 to 0.07 (see Ref. 40 and

references therein). However, in some compounds, the DM interaction can attain a
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sizeable value in comparison with the usual symmetric superexchange J . Depending

on the compound, its value varies between (D/J) ≈ 0.05 and 0.2. Moreover, recently

the DM interaction was found to be present in a number of quasi-one-dimensional

magnets.41 It was found that even the compound RbCoCl3·2H2O is described as a

pure DM chain.39 The low-temperature magnetic behavior of this compound gives

strong evidence that the material consists of weakly interacting linear chains with

predominant DM interaction. In addition, study of the DM interaction influence on

dynamics of the one-dimensional quantum antiferromagnet shows the big difference

in the behavior, depending on whether the coupling D is smaller or larger than the

exchange interaction J .41 All these results imply that a study of spin models with

DM interaction could have realistic applications. Then for applications in quantum

computations, it poses the problem to find the entanglement dependence on this

interaction.

In the present paper, we study the influence of the DM interaction on entan-

glement of two qubits in all particular magnetic spin models, including the most

general XY Z model. We find that in all cases, inclusion of the DM interaction

creates, when it does not exist, or strengthens, when it exists, entanglement. For

example, we show that in the case of isotropic Heisenberg XXX model discussed

above, inclusion of this term increases entanglement for antiferromagnetic case and

for sufficiently strong coupling D > (kT sinh−1 e|J|/kT − J2)1/2 it creates entangle-

ment even in ferromagnetic case. We give detailed physical explanations of these

results by studying ground state of the system at T = 0. In this state, we find

nonanalytic dependence of concurrence on the DM interaction and establish its re-

lation with the quantum phase transition. In addition, we show that time evolution

generated by DM interaction can be implemented as the SWAP gate. These results

indicate that spin models with DM coupling have some potential applications in

quantum computations, and DM interaction could be an efficient control parameter

of entanglement.

The paper is organized as follows. In Sec. 2, we formulate the general XY Z

model with DM coupling and find the density matrix and eigenvalues for the con-

currence. Then we consider the time evolution and its relation with the SWAP gate.

Since the concurrence calculation depends on several parameters, in the following

sections, we consider all possible particular cases from the unified point of view.

We think that such presentation is pedagogical and could be affordable by exper-

imentalists. In Sec. 3, the main properties and entanglement of pure DM model

and the relation of this model with SWAP gate are considered. The Ising model

with DM interaction is studied in Sec. 4. In particular, realization of the model

for description of two nuclear spins with DM coupling and implications for the

quantum phase transitions in the presence of magnetic field are given. In Sec. 5,

we consider the XY model and its particular reductions to the XX case, and to

the Ising model. We show that inclusion of the transverse magnetic field leads to

the different behavior of concurrence C12 for the undercritical and the overcritical

couplings. For T = 0, the nonanalytic behavior for C12(D) is found. The XXX
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Heisenberg model is the subject of Sec. 6. Section 7 is devoted to the XXZ model,

where the influence of DM coupling and magnetic field on the concurrence and the

quantum phase transitions are studied. In Sec. 8, we study XY Z model in both

antiferromagnetic and ferromagnetic cases, with inclusion of the DM coupling. The

nonanalytic behavior at T = 0 is found. In Sec. 9, several implications for future

studies are discussed.

2. XY Z Heisenberg Model

We start our consideration with the most generalXY Z model, by inclusion of homo-

geneous B and nonhomogeneous b magnetic fields, and choosing the DM interaction

(1) in the form (D/2) = (D/2) · z. Then for two qubits we have Hamiltonian

H =
1

2
[Jxσ

x
1σ

x
2 + Jyσ

y
1σ

y
2 + Jzσ

z
1σ

z
2 +B+σ

z
1 +B−σ

z
2 +D(σx

1σ
y
2 − σy

1σ
x
2 )] , (2)

where B+ ≡ B + b, B− ≡ B − b, and σx
i , σ

y
i , σ

z
i , i = 1, 2 denote Pauli matrices

related with the first and the second qubits.

2.1. Eigenvalues and eigenstates

To study the thermal entanglement in this system, we firstly need to obtain all

eigenvalues and eigenstates of the Hamiltonian (2): H |Ψi〉 = Ei|Ψi〉, i = 1, 2, 3, 4.

Simple calculations show that the energy levels are:

E1,2 =
Jz
2

∓ µ , E3,4 = −Jz
2

∓ ν , (3)

where µ ≡
√

B2 + J2
−, ν ≡

√

b2 + J2
+ +D2, and J± ≡ (Jx ± Jy)/2, and the corre-

sponding wave functions are

|Ψ1,2〉 =
1

√

2µ(µ±B)











J−

0

0

−(B ± µ)











, |Ψ3,4〉 =
1

√

2ν(ν ∓ b)











0

(b∓ ν)

J+ − iD

0











. (4)

For B = 0, b = 0, and D = 0, these wave functions reduce to the maximally

entangled Bell states

|Ψ2,1〉 → |B0,3〉 =
1√
2
(|00〉 ± |11〉) , (5)

|Ψ4,3〉 → |B1,2〉 =
1√
2
(|01〉 ± |10〉 . (6)
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2.2. Time evolution of states and SWAP gate

Here we like to show the direct relationship between our spin model and quantum

gates. For this reason we consider the evolution operator

U(t) = exp

[

− i

~
Ht

]

, (7)

determined by two qubit Hamiltonian (2) of XY Z model with DM coupling, B = 0

and b = 0. Then evolution of the standard basis is given by

|00〉 → e
−iJzt

2~

[

cos
tJ−
~

|00〉 − i sin
tJ−
~

|11〉
]

, (8)

|11〉 → e
−iJzt

2~

[

cos
tJ−
~

|11〉 − i sin
tJ−
~

|00〉
]

, (9)

|01〉 → e
iJzt

2~

[

cos
tν

~
|01〉 − i

J+ − iD

ν
sin

tν

~
|10〉

]

, (10)

|10〉 → e
iJzt

2~

[

cos
tν

~
|10〉 − i

J+ + iD

ν
sin

tν

~
|01〉

]

, (11)

where ν =
√

J2
+ +D2. In particular cases, discussed in the next section, this evo-

lution can implement the SWAP gate at time t = ~π/2ν.

2.3. Density matrix and concurrence

State of the system at thermal equilibrium is determined by the density matrix

ρ(T ) =
e−H/kT

Tr[e−H/kT ]
=

e−H/kT

Z
, (12)

where Z = Tr[e−H/kT ] is the partition function, k is the Boltzmann constant and

T is the temperature. Then by exponentiation of Hamiltonian (2) we find

e−H/kT =













A11 0 0 A14

0 A22 A23 0

0 A32 A33 0

A41 0 0 A44













, (13)

where

A11 = e
−Jz

2kT

[

cosh
µ

kT
− B

µ
sinh

µ

kT

]

,

A44 = e−
Jz

2kT

[

cosh
µ

kT
+

B

µ
sinh

µ

kT

]

, (14)

A14 = −e−
Jz

2kT

J−
µ

sinh
µ

kT
,
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A41 = −e−
Jz

2kT

J−
µ

sinh
µ

kT
,

A22 = e
Jz

2kT

[

cosh
ν

kT
− b

ν
sinh

ν

kT

]

,

A33 = e
Jz

2kT

[

cosh
ν

kT
+

b

ν
sinh

ν

kT

]

,

A23 = −e
Jz

2kT

J+ + iD

ν
sinh

ν

kT

A32 = −e
Jz

2kT

J+ − iD

ν
sinh

ν

kT
, (15)

and

Z = Tr[e−H/kT ] = 2
[

e
−Jz

2kT cosh
µ

kT
+ e

Jz

2kT cosh
ν

kT

]

.

As ρ(T ) represents a thermal state, the entanglement in this state is called the

thermal entanglement. The degree of entanglement could be characterized by the

concurrence C12, which is defined as15,32

C12 = max{λ1 − λ2 − λ3 − λ4, 0} , (16)

where λ1 ≥ λ2 ≥ λ3 ≥ λ4 > 0 are the ordered square roots of eigenvalues of the

operator

ρ12 = ρ(σy ⊗ σy)ρ∗(σy ⊗ σy) . (17)

The concurrence is a bounded function 0 ≤ C12 ≤ 1, so that when C12 = 0, the

states are unentangled, while for C12 = 1, the states are maximally entangled.

For the general Hamiltonian (2) we find:

λ1,2 =
e

−Jz

2kT

Z

∣

∣

∣

∣

∣

∣

√

1 +
J2
−
µ2

sinh2
µ

kT
∓ J−

µ
sinh

µ

kT

∣

∣

∣

∣

∣

∣

,

λ3,4 =
e

Jz

2kT

Z

∣

∣

∣

∣

∣

∣

√

1 +
J2
+ +D2

ν2
sinh2

ν

kT
∓

√

J2
+ +D2

ν
sinh

ν

kT

∣

∣

∣

∣

∣

∣

. (18)

Then, to calculate the concurrence, we need to order these eigenvalues. Since they

depend on several parameters, before studying the most general case, it is useful

to treat all particular cases separately to clarify the influence of the DM coupling

on the entanglement. Starting from pure DM model, we study various Heisenberg

models, including the general XY Z case.

Before this, we just like to stress here the general observation on the concurrence

(16). If the biggest eigenvalue say λ1 is degenerate, then its positive contribution

would be compensated by another degenerate one, so that C12 = 0 and states are

always unentangled. We will encounter this situation in several cases and it has
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a simple physical explanation. The degenerate biggest eigenvalues of the density

matrix correspond to the minimal values of the energy, so that the ground state of

the system becomes degenerate and no entanglement occurs.

3. Pure DM Model

3.1. Main characteristics of DM model

As we discussed in Sec. 1, some realistic quasi-one-dimensional compounds with

predominance of DM interaction can be described as a pure DM model.39 Here we

consider the main characteristic properties of the DM coupling between two qubits

and its influence on the entanglement. If in Hamiltonian (2) we put Jx = Jy = Jz =

0 and B = b = 0 then the model is determined completely by the DM term (1). In

this case, the first two eigenstates become degenerate E1 = E2 = 0 and E3,4 = ±D.

For definiteness we chooseD > 0, then for T = 0 the ground state of the system with

energy E4 = −D is an entangled state |10〉−i|01〉. When temperature increases, this

state becomes mixed with the higher states and entanglement decreases. But for

sufficiently large value of D, the ground state can be alienated so that entanglement

increases. This shows that for a given D there exists kTc = D/ ln(1+
√
2) so that for

the under critical case T < Tc the states become entangled and the concurrence is

C12 = ((sinh(D/kT )−1)/(cosh(D/kT )+1)) (see Fig. 1). For T = 0, the concurrence

C12 = 1 and the ground state is maximally entangled.

3.2. DM model and SWAP gate

The time evolution in pure DM model from one side is related with the SWAP gate,

from another side can create maximally entangled states. In this case according to

(8)–(11) for time evolution, we have

U

(

π~

2D

)

|00〉 = |00〉 , U

(

π~

2D

)

|11〉 = |11〉 (19)

0.5 1 1.5 2
kT

0.2

0.4

0.6

0.8

1

C12

Fig. 1. Concurrence versus temperature for D = 1 and Tc = 1.136.
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U

(

π~

2D

)

|01〉 = −|10〉 , U

(

π~

2D

)

|10〉 = −|01〉 . (20)

Therefore, we can see that the operator U(π~/2D) acts as the SWAP gate. Moreover

at time t = π~/4D, the states |01〉 and |10〉 become maximally entangled Bell states.

U

(

π~

4D

)

|01〉 = 1√
2
(|01〉 − |10〉) , (21)

U

(

π~

4D

)

|10〉 = 1√
2
(|10〉+ |01〉) . (22)

4. Ising Model

For Jx = Jy = 0, Jz 6= 0 and B = b = 0, D = 0 the Hamiltonian (2) describes

the Ising model. It was observed before that for pure Ising model in both anti-

ferromagnetic, Jz > 0, and ferromagnetic cases, Jz < 0, the concurrence is zero

and the states are always unentangled.16–18 The physical insight of such behavior

is easy to understand. When J− = J+ = 0, the density matrix ρ (12) is diagonal

in the standard basis, which implies the absence of quantum correlations. Despite

having four maximally entangled states as the eigenvectors, the states |Ψ1,2〉 and

|Ψ3,4〉 are degenerated, so that the Ising thermal state has no entanglement. The

situation does not change if one includes homogeneous B or nonhomogeneous b

magnetic fields, because the density matrix ρ is still diagonal, and no entanglement

occurs.

4.1. Ising model with DM coupling (B = 0, b = 0, D 6= 0)

In contrast to magnetic fields, which do not create entanglement, inclusion of the

DM coupling contributes to the nondiagonal elements of ρ and creates entangle-

ment.

4.1.1. Antiferromagnetic case (Jz > 0)

In this case, addition of the DM coupling to the Ising model splits the degenerate

ground state with E3 = E4 = −Jz/2 so that it becomes a singlet with E3 =

−(|Jz |/2)−D, for D > 0 or E4 = −(|Jz|/2) +D, for D < 0. At T = 0, this leads

to the maximally entangled state with C12 = 1. When temperature increases, the

maximally entangled ground state becomes mixed with the higher eigenstates and

the entanglement decreases. However, for a given temperature, by increasing the

coupling D > Dc, where Dc = kT sinh−1 e−Jz/kT , we can decrease this mixture

and increase entanglement, so that the concurrence is

C12 =
sinh

|D|
kT

− e−Jz/kT

cosh
|D|
kT

+ e−Jz/kT

. (23)
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4.1.2. Ferromagnetic case (Jz < 0)

In this case, the ground state for small D at T = 0 is also a doublet and no

entanglement occurs. However, with growing D, the eigenstate E3 = (|Jz |/2)−D

is lowering so that at critical value Dc = |Jz|, the ground state becomes triplet.

When D > Dc, the ground state E3 is maximally entangled singlet. With growing

temperature, a mixture of this state with the higher states decreases entanglement.

For given temperature T , there exist the critical value Dc = |Jz | + (kT/2) ln(1 +

e−2|Jz|/kT ) so that for D > Dc the concurrence is

C12 =
sinh

|D|
kT

− e|Jz|/kT

cosh
|D|
kT

+ e|Jz|/kT
. (24)

Comparison of (23) and (24) shows that in the antiferromagnetic case, the states

can be entangled more easily than in the ferromagnetic one.

4.2. Ising model for two nuclear spins with DM coupling

As an application of the above calculations, here we discuss the entanglement of

two nuclear spins. Recently, two nuclear spins were considered in a model with

weak Heisenberg type interaction in a constant longitudinal magnetic field along z

direction11

H = Hz +Hxy , (25)

Hz = −1

2
(ω1σ

z
1 + ω2σ

z
2 + Jσz

1σ
z
2) , (26)

Hxy = −1

2
(Jσx

1σ
x
2 + Jσy

1σ
y
2 ) , (27)

where the isotropic form for the spin coupling J is assumed, and ω1,2 ≡ (B∓ b) are

the Larmor frequencies of two nuclear spins, ~ = 1. In the experiments, two differ-

ent nuclear spins are selected, ω1 6= ω2 (we assume ω1 > ω2), and the longitudinal

constant magnetic field is in the order of 1 THz, so that ω1 and ω2 are much larger

than J and η = J/(ω1 − ω2) � 1. Hxy is nondiagonal in σz representation and

due to quantum fluctuations of order η2, it can be ignored. Thus, the Ising part

Hz of the Hamiltonian is a well precise approximation.11 However, as we have seen

above, for the Ising model with external magnetic fields no entanglement occurs,

this is why two nuclear spins in this model are unentangled for any ω1 and ω2.

From another viewpoint, as follows from our consideration in Sec. 4.1, the addition

of an interaction between qubits in the form of the DM coupling could make them

entangled. Now by adding the DM interaction to two nuclear spin Hamiltonian

(26) we get the Ising model with homogeneous magnetic field B, nonhomogeneous

magnetic field b, and the DM interaction D. In the antiferromagnetic and the fer-

romagnetic cases, when Jz = ±|Jz|, respectively, for sufficiently strong D > Dc,
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where (Dc/
√

D2
c + b2) sinh(

√

D2
c + b2/kT ) = e∓

|Jz|
kT , the states become entangled

and the concurrence is

C12 =

D

ν
sinh

ν

kT
− e∓

|Jz|
kT

cosh
ν

kT
+ cosh

B

kT
e∓

|Jz |
kT

, (28)

where B = (ω1+ω2)/2, b = (ω1−ω2)/2, and ν =
√

((ω2 − ω1)2/4) +D2. It is worth

to note that the homogeneous magnetic field B does not change the critical value

for the entanglement, but could change the level of the entanglement. Moreover,

increasing magnetic field decreases value of the entanglement. It turns out that for

the system at T = 0, the concurrence becomes nonanalytic when D = Dc

C12 =































D

ν
, ν > B ∓ |Jz| ;

D

2ν
, ν = B ∓ |Jz| ;

0 , ν < B ∓ |Jz| ,

(29)

which implies quantum phase transitions at the critical value Dc = (B∓|Jz|)2−b2.

4.3. Ising model with DM coupling and SWAP gate

If Jx = Jy = 0 but Jz and D are nonvanishing and related by Jz = 8nD, (n =

±1,±2, . . .), then again like in Sec. 3.2 the evolution operator U(π~/2D) acts as

the SWAP gate. Our consideration shows that the Ising model, which was derived

in several physical situations for interaction of qubits, with addition of the DM

coupling, from one side leads to entanglement of states, from another side it can

model the SWAP gate as in (19) and (20). This result shows that the Ising model

with DM coupling has some potential applications in quantum computations.

5. XY Heisenberg Model

In the pure XY Heisenberg model Jz = 0, Jx 6= Jy and B = 0, b = 0, D = 0

in (2), for the antiferromagnetic case Jx > 0, Jy > 0 the ordered eigenvalues are

λ3 > λ1 > λ2 > λ4 and for sinh(J+/kT ) > cosh(J−/kT ) the entanglement occurs

with C12 = (sinh(J+/kT ) − cosh(J−/kT ))/(cosh(J−/kT ) + cosh(J+/kT )). In the

ferromagnetic case Jx < 0, Jy < 0, the entanglement occurs when sinh(|J−|/kT ) >
cosh(J+/kT ) with the concurrence20,21,23,24

C12 =
sinh

|J+|
kT

− cosh
J−
kT

cosh
|J−|
kT

+ cosh
J+
kT

. (30)
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For the particular case of pure XX model, when Jx = Jy ≡ J , in both antiferro-

magnetic and ferromagnetic cases, the states become entangled at sufficiently small

temperature

T < Tc =
|J |

k sinh−1 1
. (31)

As was shown in Refs. 9, 10, 19 and 27, inclusion of the magnetic field does not

change this critical temperature.

5.1. XY Heisenberg model with DM coupling (B = 0, b = 0,

D 6= 0)

By addition of the DM coupling, eigenvalues become λ1,2 = (e±J−/kT )/Z, λ3,4 =

(e±
√

J2
+
+D2/kT )/Z where Z = 2[cosh(|J−|/kT ) + cosh(

√

J2
+ +D2)/kT ].

In the antiferromagnetic case for any temperature T we can adjust sufficiently

strong DM coupling D so that for sinh(
√

J2
+ +D2/kT ) > cosh(J−/kT ) the entan-

glement occurs with concurrence

C12 =
sinh

√

J2
+ +D2

kT
− cosh

J−
kT

cosh

√

J2
+ +D2

kT
+ cosh

J−
kT

. (32)

The ferromagnetic case gives the same result as the antiferromagnetic one. The

comparison with pure XY model shows that the level of entanglement increases

with growing coupling D.

In the particular case Jx = Jy ≡ J , the ordered eigenvalues are λ4 =

(eν/kT /Z) > λ3 = (e−ν/kT /Z) > λ1,2 = 1/Z, where ν =
√
J2 +D2 and

Z = 2(1 + cosh(ν/kT )). Then the entanglement occurs when sinh(ν/kT ) > 1 and

the concurrence is C12 = (sinh(ν/kT )− 1)/(cosh(ν/kT )+ 1). Comparison with the

pure XX model (31) shows that the critical temperature,

Tc =

√
J2 +D2

k sinh−1 1
, (33)

in this case increases with growingD. ForD = 0 |Ψ3〉 in (4) is the ground state with

eigenvalue E3 = −|J+|, which is the maximally entangled Bell state, so that the

concurrence C12 = 1. As T increases the concurrence decreases due to the mixing

of other states with this maximally entangled one.a

aIn Ref. 26 entanglement in XX model with DM coupling was derived but not in the general
XXZ case as it is claimed in the paper.
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5.2. Ising model in transverse magnetic field

As a particular case of the general XY model now we consider the transverse Ising

model, when Jy = 0, with external magnetic field B in z-direction,21 and with

addition of DM interaction:

H =
1

2
[Jx(σ

x
1σ

x
2 ) +B(σz

1 + σz
2) +D(σx

1σ
y
2 − σy

1σ
x
2 )] . (34)

The corresponding eigenvalues and the partition function Z can be written as fol-

lows

λ1,2 =
1

Z

∣

∣

∣

∣

∣

∣

√

1 +
J2

B2 + J2
sinh2

√
B2 + J2

kT
∓ J√

B2 + J2
sinh

√
B2 + J2

kT

∣

∣

∣

∣

∣

∣

, (35)

λ3,4 =
1

Z
e∓

√
J2+D2

kT , (36)

Z = 2

[

cosh

√
B2 + J2

kT
+ cosh

√
D2 + J2

kT

]

. (37)

To find the maximal eigenvalue we compare the difference of λ4 and λ2 as a function

of B,D, and T , λ4 − λ2 ≡ f(B,D, T ):

f = e

√
J2+D2

kT −

√

1 +
J2

B2 + J2
sinh2

√
B2 + J2

kT
− J√

B2 + J2
sinh

√
B2 + J2

kT
.

(38)

When f(B,D, T ) = 0 we find the critical D = Dc(B, T ) as

Dc(B, T )

=

√

√

√

√

√−J2+T 2



ln





√

1+
J2

B2+J2
sinh2

√
B2+J2

kT
+

J√
B2+J2

sinh

√
B2+J2

kT









2

.

(39)

In Fig. 2, we plot Dc as a function of T for different values of magnetic field

B = 0.05, 0.5, 0.7, 1 (J = 1, k = 1). The 3D plot of Dc as a function of B and T

for the same values of parameters is given in Fig. 3.

For critical D = Dc, the eigenvalues are degenerate λ2 = λ4 and as a result the

concurrence C12(B,Dc, T ) = 0. However the value of concurrence is different for

the under-critical and the over-critical cases. In under-critical case when D < Dc

the maximal eigenvalue is λ2 and for the concurrence we have

C12 = max



















J√
B2 + J2

sinh

√
B2 + J2

kT
− cosh

√
D2 + J2

kT

cosh

√
B2 + J2

kT
+ cosh

√
D2 + J2

kT

, 0



















, (40)
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Fig. 2. Dc versus T for B = 0.05, 0.5, 0.7, 1.

5

10

15

20

T

5

10

15

B

0

5

10

15

Dc

5

10

15T

Fig. 3. 3D plot Dc versus B and T .

while in the over-critical case, when D > Dc, the maximum eigenvalue is λ4 and

the concurrence is

C12 = max























sinh

√
D2 + J2

kT
−

√

1 +
J2

B2 + J2
sinh2

√
B2 + J2

kT

cosh

√
B2 + J2

kT
+ cosh

√
D2 + J2

kT

, 0























. (41)

In pure Ising model when B = 0 and D = 0 as we can see from (38) we have

f(0, 0, T ) = 0 and no entanglement occurs. But as reported in Ref. 21, an addition of

the transverse magnetic field to the Ising model could create entanglement. Now we

can generalize these results by analyzing in addition the influence of DM interaction

on entanglement in the Ising model with the magnetic field. When B = 0, the

addition of solely DM term creates entanglement at sufficiently strong D, and this

value ofD becomes bigger for higher temperatures. If we have both terms B 6= 0 and
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Fig. 4. Concurrence of Ising model in transverse magnetic field versus D, when B = 1 and
T = 0.01, 0.5, 1.

D 6= 0, then with increasing D, the behavior of entanglement becomes nontrivial.

In Figs. 4(a)–4(c), we show the behavior of entanglement as a function of D for

different temperatures. When T = 0, entanglement is a nonanalytic function of D,

given by the step function

C12(D) =























J√
J2 +B2

, D < Dc ;

0 , D = Dc ;

1 , D > Dc ,

(42)

where Dc = B [see Fig. 4(a)]. This nonanalytic behavior signals on the quantum

phase transition33 appearing at D = Dc = 1. In Fig. 4(b) at temperature T = 0.5

the entanglement as a function of D decreases down to zero and at Dc ≈ 0.75

reaches its nondifferentiable minima. After this, it increases monotonically with

growing D. For higher temperature T = 1 as shown in Fig. 4(c), the entanglement

is zero until D becomes sufficiently strong at D = Dc, where entanglement appears

and monotonically grows with growing D.

6. XXX Heisenberg Model

In pure XXX model Jx = Jy = Jz ≡ J and B = b = D = 0 in (2), entanglement

behavior for the ferromagnetic and the antiferromagnetic cases is different. In the

spectrum of the model we have three degenerate eigenstates with eigenvalue J/2

and one eigenstate with eigenvalue −3J/2. It was observed before25 that for the

ferromagnetic case (J < 0) the concurrence is zero and the states are always unen-

tangled. It happens because when J < 0, the ground state of the system is an equal

mixture of the triplet states with energy, E1 = E2 = E4 = −(|J |/2). The density

matrix ρ is diagonal and inclusion of magnetic field does not change the result. In-

creasing temperature T just increases the singlet mixture with the triplet, which can

only decrease entanglement.25,34 The situation is different for the antiferromagnetic

case when J > 0. In this case, the ground state is the maximally entangled singlet

state with E3 = −(3J/2), so that the concurrence C12 = 1 at T = 0. It decreases

with T due to mixing of the triplet higher states with the singlet ground state. For

a given coupling constant J entanglement occurs at temperature T < (2J/k ln 3).26
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6.1. XXX Heisenberg model with DM coupling (B = 0, b = 0,

D 6= 0)

Now by adding DM coupling for the antiferromagnetic and the ferromagnetic cases,

for J = ±|J |, respectively, for a given temperature T the entanglement occurs when

D > Dc =
√

(kT sinh−1 e∓|J|/kT )2 − J2 with the concurrence

C12 =
sinh

√
J2 +D2

kT
− e∓|J|/kT

e∓|J|/kT + cosh

√
J2 +D2

kT

. (43)

As we can see, inclusion of the DM coupling, in the XXX model, increases

entanglement in the antiferromagnetic case and creates entanglement even in the

ferromagnetic case. This can be explained if we consider the eigenvalues of our

Hamiltonian varying with D.

For the antiferromagnetic case, the ground state of the system remains singlet

with energy E3 = −(|J |/2)−
√
J2 +D2, while from degenerate excited triplet state

one of the energy levels E4 = −(|J |/2)+
√
J2 +D2 is splitting up. With increasing

coupling D the gap between ground state and the first excited doublet state is

increasing, this is why the system becomes more entangled.

In the ferromagnetic case, from unentangled triplet ground state one of the

states splits with the energy E3 = (|J |/2)−
√
J2 +D2. Then at temperature zero

this state becomes maximally entangled ground state. This way the DM interaction

creates entanglement in the ferromagnetic case. With increasing D the gap between

singlet ground state and the first doublet state increases, this is why entanglement

in the ferromagnetic case increases.

7. XXZ Heisenberg Model

When Jx = Jy = J 6= Jz the Hamiltonian (2) becomes

H =
1

2
[J(σx

1σ
x
2 + σy

1σ
y
2 +∆σz

1σ
z
2) +B+σ

z
1 +B−σ

z
2 +D(σx

1σ
y
2 − σy

1σ
x
2 )] , (44)

where ∆ ≡ (Jz/J).

• In a pure XXZ ferromagnetic model, when Jz < 0 and −|Jz| < J < |Jz | or
|∆| > 1, we have the degenerate maximal eigenvalues λ1 = λ2 and no entangle-

ment occurs. This happens since the ground state of the system is doublet with

eigenvalues E1 = E2 = −(|Jz|/2).
• In particular case |∆| = 1 or |J | = |Jz | we have reduction to the XXX model,

where the energy level E3 merges to the ground state, and the last one becomes

triplet state, as we discussed above in Sec. 6.
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• For J > 0 and ∆ > −1 the maximal eigenvalue is λ3 and the states are entangled

when sinh(J/kT ) > e−Jz/kT with the concurrence

C12 =
sinh

J

kT
− e−Jz/kT

cosh
J

kT
+ e−Jz/kT

. (45)

• For J < 0 and ∆ < 1 the maximal eigenvalue is λ4 and the states are entangled

for sinh(|J |/kT ) > e−Jz/kT with the concurrence

C12 =
sinh

|J |
kT

− e−Jz/kT

cosh
|J |
kT

+ e−Jz/kT

. (46)

7.1. XXZ Heisenberg model with DM coupling (B = 0, b = 0,

D 6= 0)

With addition of the DM coupling we have the eigenvalues

λ1,2 =
1

2

[

1 + eJz/kT cosh

√
J2 +D2

kT

] , λ3,4 =
e∓

√
J2+D2/kT

2

[

e−Jz/kT + cosh

√
J2 +D2

kT

] .

(47)

Then for Jz < 0 and |Jz| > |J |, there exists critical value Dc =
√

J2
z − J2 so that

for D > Dc and sinh(
√
J2 +D2/kT ) > e−Jz/kT the states are entangled with the

concurrence

C12 =
sinh

√
J2 +D2

kT
− e|Jz|/kT

cosh

√
J2 +D2

kT
+ e|Jz|/kT

. (48)

This happens because for Jz < 0, |Jz | > |J | and D = 0, the ground state is doublet

with E1 = E2 = −(|Jz|/2), and by increasing D so that D > Dc, the higher

energy level E3 lowers to the singlet ground state which is maximally entangled.

Comparison of (48) with (46) shows that with growing D entanglement increases.

It is worth to note that the concurrence (48) for both signs of J is the same.

Moreover, as easy to see in (48) parameters J and D appear symmetrically. It

means that the concurrence could be increased by growing J with fixed D either

by growing D with fixed J . This reflects the known result35 on equivalence of the

Heisenberg XXZ model with DM coupling to pure XXZ model with modified

anisotropy parameter and a certain type of boundary conditions. In fact comparing

entanglement in our formulas for pure antiferromagnetic case (46) with the one

including the DM interaction (48), we can see that the concurrences are connected

by the replacement J → J
√

1 + (D2/J2), which corresponds to the substitution for

the anisotropy parameter in the pure XXZ model as ∆ → (∆/
√

1 + (∆2D2)/J2
z ).
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7.2. XXZ Heisenberg model with DM coupling and magnetic field

If we take into account the DM interaction D and magnetic field B simultaneously,

the above results for critical value of the DM coupling are still valid, but the level

of entanglement decreases according to

C12 =
sinh

√
J2 +D2

kT
− e−Jz/kT

cosh

√
J2 +D2

kT
+ e−Jz/kT cosh

B

kT

. (49)

For T = 0 and Jz > 0 we have nonanalytic behavior

C12 =



















1 ,
√
D2 + J2 > B − Jz ;

1

2
,

√
D2 + J2 = B − Jz ;

0 ,
√
D2 + J2 < B − Jz ,

(50)

which signals appearance of quantum phase transitions. The concurrence versus

temperature for different values of coupling D is shown in Fig. 5, where J = 1, Jz =

0.5 and magnetic field B = 2. As we can see in general the entanglement decreases

with growing temperature. However, we like to emphasize that for D < Dc in

Fig. 5(a), when D = 0.1, the entanglement is increasing with growing temperature.

This phenomena can be explained by the fact that for such values of the parameters

at T = 0 the ground state is the separable state with energy E1 = (Jz/2) − B =

−1.75, and the concurrence is zero (see the last case in Eq. (50)). When temperature

increases the entangled state with energy E3 = (−Jz/2) ∓
√
J2 +D2 = −1.255

becomes involved into the mixture and entanglement is increasing.

When D = Dc the entanglement decreases smoothly from C12 = 0.5 (Fig. 5(b),

Dc = 1.118). By increasing D (D = 1.19), first it gives sharp decrease from C12 = 1

[Fig. 5(c)] and then it vanishes slowly. When D becomes bigger (D = 3) entangle-

ment decreases slowly from C12 = 1 [Fig. 5(d)].

We compare the concurrence versus magnetic field for different temperatures,

when D = 0 (Fig. 6) and when D = 2 (Fig. 7). In both cases at T = 0 the

entanglement vanishes abruptly as B crosses critical value Bc =
√
B2 + J2 + Jz .

This special point T = 0, B = Bc at which entanglement becomes nonanalytic

function of B, is the point of quantum phase transition. Comparison of Figs. 6 and

7 shows that the critical value of B at which entanglement disappears suddenly is

1 2 3 4
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Fig. 5. Concurrence in XXZ model versus temperature for B = 2 and (a) D = 0.1, (b) D =
1.118, (c) D = 1.19, and (d) D = 3.
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Fig. 6. Concurrence versus magnetic field B for D = 0 and T = 0.1, 0.5, 1.
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Fig. 7. Concurrence versus magnetic field B for D = 2 and T = 0.1, 0.5, 1.

growing with increasing coupling D: in Fig. 6, Bc = 2 and in Fig. 7, Bc = 3.3. It

shows again that increasing DM coupling improves entanglement.

8. XY Z Heisenberg Model

In the present paper, we are not going to analyze all possibilities for the XY Z

model. Instead we restrict ourselves with a particular range of parameters to study

the influence of DM coupling in detail.

8.1. Antiferromagnetic case

8.1.1. Pure antiferromagnetic model

We start from the pure XY Z model, where for determinacy we chose Jz > Jy >

Jx > 0 implying J+ > |J−| > 0, J− = −|J−| < 0. Eigenstates of the Hamiltonian

(2) are E1,2 = (|Jz|/2) ± |J−| and E3,4 = −(|Jz|/2) ∓ |J+|. For zero temperature

the ground state is maximally entangled Bell state |01〉 − |10〉 with the energy

E3 = −(|Jz|/2) − |J+|. When temperature increases, the state mixes with higher

states decreasing entanglement. To find concurrence we have the biggest eigenvalue

λ4 = (1/Z) exp(|Jz |+ 2|J+|)/2kT and

C12 = max











sinh
J+
kT

− cosh
J−
kT

e−Jz/kT

cosh
J+
kT

+ cosh
J−
kT

e−Jz/kT
, 0











. (51)

Then entanglement occurs when sinh(J+/kT ) > cosh(J−/kT )e−Jz/kT . It shows

that entanglement depends essentially on the anisotropy, and grows with J+ and

decreases with J−.28
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8.1.2. XY Z model with DM coupling

Inclusion of the DM coupling, remains the energy levels E1 and E2 the same as

above, while E3,4 = −(|Jz|/2)∓
√

J2
+ +D2. In this case, the ground state continues

to be entangled state but with the energy E3. With growing temperature, mixing

of this state with the higher states decreases the entanglement. If we consider the

difference between two lower states E4 − E3 =
√

J2
+ +D2, then by increasing the

coupling D, it can be made arbitrarily large, so that the entanglement will increase.

For D � |J+| the state would be maximally entangled.

At T = 0 the concurrence

C12 =



























1 ,
√

D2 + J2
+ > J− − Jz ;

0 ,
√

D2 + J2
+ = J− − Jz ;

1 ,
√

D2 + J2
+ < J− − Jz ,

(52)

is nonanalytic function in D, and it signals about the quantum phase transition at

D = Dc where
√

D2
c + J2

+ = J− − Jz. When the temperature increases, entangle-

ment occurs for

sinh

√

J2
+ +D2

kT
> e−Jz/kT cosh

J−
kT

, (53)

and the concurrence

C12 =
sinh

ν

kT
− e−Jz/kT cosh

J−
kT

cosh
ν

kT
+ e−Jz/kT cosh

J−
kT

, (54)

increases with growing anisotropy J+ and the coupling D.

8.2. Ferromagnetic case (Jz < Jy < Jx < 0)

8.2.1. Pure XY Z model

Let Jz < Jy < Jx < 0 then J+ = −|J+|, J− = |J−| > 0 and Jz = −|Jz|. For pure
XY Z model, eigenstates of the Hamiltonian are E1,2 = −(|Jz |/2)∓|J−| and E3,4 =

(|Jz|/2) ± |J+|. For zero temperature, the ground state is maximally entangled

Bell state |00〉 − |11〉 with the energy E1 = −(|Jz|/2) − |J−|. With increasing

temperature, this state mixes with other states and entanglement decreases so that

the concurrence is

C12 =
sinh

|J−|
kT

− cosh
|J+|
kT

e−|Jz|/kT

cosh
|J−|
kT

+ cosh
|J+|
kT

e−|Jz|/kT
. (55)
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When temperature reaches the critical value T = Tc, given by a solution of the

following transcendental equation

sinh
|J−|
kTc

= cosh
|J+|
kTc

e−|Jz|/kT , (56)

the concurrence vanishes and state becomes unentangled.

8.2.2. XYZ model with DM coupling

With inclusion of the DM coupling, the first couple of energy levels is the same

E1,2 = ((−|Jz|)/2) ∓ |J−| while the second couple becomes E3,4 = ((|Jz |)/2) ∓
√

J2
+ +D2. For D < Dc where Dc satisfies the equation

√

D2
c + J2

+ = |Jz|+ |J−|,
the ground state of the system is the maximally entangled Bell state |00〉 − |11〉. If
we increase D, the difference between energy levels E1 and E3 decreases, so that

at D = Dc the ground state becomes degenerate and entanglement vanishes. When

D > Dc the ground state E3 becomes entangled again.

Due to the mixture of states by increasing temperature the entanglement de-

creases, so that, in the under critical region D < Dc the concurrence is

C12 = max























sinh
|J−|
kT

− cosh

√

J2
+ +D2

kT
e−|Jz|/kT

cosh
|J−|
kT

+ cosh

√

J2
+ +D2

kT
e−|Jz|/kT

, 0























, (57)

while in the over critical region D > Dc it is

C12 = max























sinh

√

J2
+ +D2

kT
− e|Jz|/kT cosh

|J−|
kT

cosh

√

J2
+ +D2

kT
+ e|Jz|/kT cosh

|J−|
kT

, 0























. (58)

For D = Dc, due to λ1 = λ3, the entanglement vanishes for any temperature.

The entanglement dependence on T and D is shown in Figs. 8 and 9. For T =

0, the figures show nonanalyticity at D = Dc which signals a quantum phase

transition. The entanglement behavior in the under and the over critical regions

is qualitatively different. For the under critical case with fixed temperature the

entanglement decreases with growing D, and the level of entanglement quickly

decreases with temperature. From another side, for fixed temperature in the over

critical region the entanglement increases, and the level of entanglement decreases

with temperature quite slowly. In addition, if at T = 0 we have only one critical

point D = Dc in which entanglement is zero, for T > 0 entanglement vanishes at

some interval which includesDc and this interval extends with growing temperature.

This is a result of ground state mixture with higher states. However, by increasing

D we can always lower the level of our ground state to decrease this mixture and

increase entanglement.
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Fig. 8. Concurrence in ferromagnetic XY Z model versus coupling D at temperature T = 0.1,
0.5, 1.
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Fig. 9. 3D plot of concurrence in ferromagnetic XY Z model versus coupling D and temperature
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9. Conclusion

In conclusion, we like to stress several implications for future studies. As was shown

by Alcaraz et al.35 the XXZ quantum Heisenberg chain with the DM interaction is

equivalent to the pure XXZ Hamiltonian with modified boundary conditions and

the anisotropy parameter, so that with these boundary conditions the model is still

solvable by the Bethe Ansatz. Taking into account our results, it shows possibility

to control entanglement in XXZ model by varying boundary conditions.

Recently, it was found that the DM interaction can excite the entanglement

and teleportation fidelity by using two independent Heisenberg XXX chains.36

Moreover, studying the effect of a phase shift on amount transferable two-spin

entanglement,37 it was shown that maximum attainable entanglement is enhanced

by the DM interaction. Very recently, geometric computations for a spin chain model

with the DM interaction has been discussed in Ref. 42. Finally it was found that

the DM interaction is present in a number of quasi-one-dimensional magnets and is
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dominating for the compound RbCoCl3 ·2H2O. These indicate that DM interaction

could be significant in designing the spin-based realistic quantum computers.38

The above mentioned results suggest to study the most general XY Z Heisenberg

model with DM interaction as a quantum channel for quantum teleportation. These

questions are now under investigation.

Finally, it is an interesting but analytically hard problem to study thermal en-

tanglement in the multi-qubit spin models. Several partial results in this direction

have been obtained recently by evaluating the pairwise entanglement of the two-site

density matrix after tracing out all other spins in the chain: pairwise entanglement

of three-qubit Heisenberg chain,29,43 pairwise entanglement of N spin Heisenberg

chain. Typical questions are to what extent nearest neighbors can be entangled

with each other, or, how large the nearest-neighbor concurrence can be.44 In the

Heisenberg model case, comparison of the nearest pairwise entanglement and the

nonnearest one versus T and B has been investigated numerically.25 For the Ising

model in the multi-qubit case,16 numerical results indicate that the behavior for

even N rings is quite similar to that of the two-qubit case. From another side, for

nonneighboring qubits they observed that the even N case has lower entanglement

on average than the odd N case. As the number N of qubits in the chain is in-

creasing, the difference between even and odd N chains should disappear. Using

the Jordan–Wigner transformation, the problem of N qubits can be formulated

in terms of one-dimensional spinless fermions. In the simplest case of XY model

with transverse field the pairwise entanglement has been studied in Ref. 23. Some

preliminary results suggest interesting directions to study: entanglement between a

pair of particles is determined for the case where the pair is extracted from a sym-

metric state of N two-level systems,45 the antiferromagnetic ring with even number

of spins maximizes entanglement within a limited set of states, but not absolutely.44
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