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Department of Electrical and Electronics Engineering
Dokuz Eylül University

Assist. Prof. Dr. Kıvılcım Yüksel ALDOĞAN
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ABSTRACT

OPTICAL CHARACTERIZATION OF DIELECTRIC FILMS ON
CURVED SURFACES USING DIFFRACTION METHOD

In this thesis, we aim to characterize optical properties of thin dielectric films

coated on curved surfaces. Indeed, optical thin films attract a great deal of attention espe-

cially the ones coated on silica based optical waveguides used as sensor system. There-

fore, the step index optical fiber is used in the thesis as a substrate due to the fact that the

sensor technology tends towards to fiber optic based platforms. In the thesis, a step index

optical fiber is coated with polyvinyl alcohol (PVA), then its thickness is mathematically

estimated exploiting Fresnel scalar diffraction method. Phase front of the laser light wave

comes across with a phase object (fiber optic), transmits through of it and diffracts. Whole

process is modeled by using numerical analysis methods and compared to experimental

results to obtain desired parameters in MATLAB. The conventional least-squares method

is used for comparison purpose.

Although the emphasis is on optical thin film characterization, we demonstrate the

application area of diffraction from fiber optic as sensor. It is used to detect adulteration of

olive oil that is big concern for the food industry. The refractive index of various mixture

of olive oil and sunflower oil is measured with intend to detect adulteration. This feature

makes it a good candidate for fiber optic based refractive index sensor and it may bring

practicability and precision to the sensing process.

This dissertation gives detailed information about diffraction from fiber optic both

theoretically and experimentally. The experiments were realized by using 632.8 nm con-

tinuous wave laser. Both of the experimental results demonstrate that phase diffraction

method is a powerful technique to characterize optical thin films and to sense refractive

index of the surrounding medium.
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ÖZET

DİFRAKSİYON YÖNTEMİ KULLANILARAK EĞİMLİ
YÜZEYLERDEKİ YALITKAN FİLMLERİN OPTİK

KARAKTERİZASYONU

Bu tezde eğimli yüzeylerde optik yalıtkan film kaplamanın karakterizasyonunu

amaçlanmıştır. Bu amaçla alt tabakası silikon bazlı optik dalga kılavuzu olan fiber op-

tik kullanılıp, etrafı polivinilalkol film ile kaplanmıştır. Bu durum tamamiyle fiber optik

bazlı sensörlerin geliştirilmesine olanak sağlamaktadır. Kaplanan filmin optik karakteri-

zasyonun yapılması için, Fresnel’in difraksiyon teorisinden faydalanılmıştır. Gönderilen

dalga yüzleri faz objesiyle karşılaşıp, faz objesi üzerinden geçtikten sonra difraksiyona

uğrar. Bütün bu sürecin matematiksel modellenmesi MATLAB programında yapılmıştır.

Bu modellemede elde edilen eşitlikler, bazı integral bazlı numerik çözüm tekniklerinden

yararlanılarak sonuca ulaştırılmıştır. Yapılan matematiksel modelleme deneyler sonu-

cunda elde edilen difraksiyon deseniyle karşılaştırılıp bulunması istenilen değişkenin tah-

min edilmesi hususunda geleneksel en küçük kareler yöntemi kullanılmıştır.

Vurgulamanın asıl olarak kaplanmış fiber optik üzerindeki ince yalıtkan filmlerin

karakterizasyonunda olmasının yanısıra, faz difraksiyon yönteminin bir sensör uygula-

ması olarak yüksek hassasiyetle kırıcılık indisi belirlenmesi, ve buna bağlı olarak zeytinya-

ğındaki tağşiş seviyesi saptanmıştır. Bu bulgular ile difraksiyon yönteminin kırıcılık in-

disi belirlenmesindeki yüksek hassasiyetli rolü fiber optik bazlı sensör tasarımını mümkün

kılabilir.

Yapılan deneylerde 632.8 nm dalga boyunda sürekli dalga çıktısı olan lazer kul-

lanıldı. Sonuç olarak faz difraksiyon yöntemi optik ince filmlerin karakterizasyon ve

fiber optik çevresindeki sıvıların kırıcılık indisinin ölçümü amacıyla kullanılabilecek olan

güçlü bir method olarak değerlendirilmelidir.
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CHAPTER 1

INTRODUCTION

Optical thin films have very long history date back to 17th century. The discovery

of Newton′s Ring may be considered as the earliest scientific observation of optical thin

films. It can be explained by interference method in a single film with varying thickness.

However, at the time, the nature of light was not sufficiently well understood to explain

the observations. Once the wave theory of light was accepted after Fresnel’s works on

diffraction patterns, optical technology started to develop, great progress is still being

made. Among large number of optical based technologies, indeed, optical waveguiding is

drawn great deal of interests. In 1966 Charles K. Kao published the now famous ground-

breaking paper (Kao and Hockham, 1966). Before the Kao’s publishment, glass fibers

were believed to be improper type of material for guiding light waves due to the high

loss from scattering. Kao realized that purification of glass eliminates high signal loss.

This pioneering work made fiber optic waveguides important and widely studied subject

in both communication and sensor areas.

Fiber optic based sensors bring extra features when they are coated with materials.

Fully coated, partially coated, and even multilayer coated fiber optic sensors are widely

used. As a coating material, besides dielectric, conductive metal oxides, and metals are

utilized. Among these materials, we provide basis for estimation of dielectric films and

transparent metal oxides films thicknesses at the wavelength of interest (visible range)

by using classical scalar diffraction method. Although it has resolution limit as it is well

known, we do not pay it attention since primary target is not resolving 20-30 nm dif-

ferences. Indeed, utilizing some near field techniques (evanescent fields) one can obtain

higher resolution beyond the limits (See Figure 1.1). For diffraction, the classical diffrac-

tion integrals can be modified to determine disturbances at reactive near field (Miller,

1991). This modification integral usage might provide higher resolution. Modified inte-

grals are not used in the thesis since evanescent waves as in Fig 1.1 are not taken into

account.
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Figure 1.1. Reactive near, Fresnel near and far field demonstration

1.1. Optical Films Coated Fiber Optics

Optical coating films might be described as thin, smooth and parallel to the sur-

face, with thickness varies from few nm to about 20 µm. We also require to thin films

to be transparent at the wavelength of interest. These days optical thin films are used

everywhere, the range extends from glass anti-reflection coatings to fiber optic based sen-

sors since they are used to improve surface properties. Hence, the characterization of

the thin film becomes crucial for any kind of optical components. Here we concentrate

basically on optical thin film characterization coated on fiber optic, because we have not

come across any kind of powerful technique for that purpose and thin film coated optical

fiber sensors have been improved day by day. PVA is used as coating dielectric film due

to its low absorption in the visible wavelength, small reflectance, fairly constant refrac-

tive index. On the other hand, the work we have done does not introduce restriction for

the type of dielectric material. In the experimental point of view, we assume that send-

ing a light through fiber optic which is coated gives reliable results with a screen behind

it. Diffraction based methods are appropriate mathematical tool for characterizing thin

films on fiber optics, since it turns out to be a method eventually tracing the transmitted

wavefront.

2



1.2. Optical Diffraction

Geometrical optic simply describes light as straight line. According to this treat-

ment, when the light encounters with an opaque body or a slit with a screen behind, the

light should illuminate every point on screen except the restrictions that are formed by

the body or slit. However, this treatment does not correspond with physical observations.

This phenomenon, which violates the law of geometrical optics, is called diffraction or

interference in the basic sense. Diffraction effects were proven by asserting light exhibits

wavelike behavior. In a similar way electrons exhibit wavelike behavior since electrons

diffract as Feynman’s experiment pointed out (Feynman et al., 1965).

By definition, diffraction takes place, any region of wavefront is changed sharply

in amplitude or phase when light encounters with a slit or a body either transparent or

opaque (Hecht, 2002). Although the diffraction phenomena was described more than a

century ago, it plays an important role today in many branches of physics and engineering.

For instance, classic scalar diffraction from phase object is such a rich subject and its high

sensitivity can be taken advantage of estimation coating materials thickness (See Figure

1.2). Moreover, its dependency on surrounding medium properties makes it really good

candidate for optical sensor.

Figure 1.2. Diffraction pattern of transmitted plane wavefronts through coated phase
object
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1.3. Fiber Optic Sensors

Optical fiber based sensors offer several important inherent advantages over elec-

tronic sensors, including low cost, lightweight, immunity to electromagnetic fields, high

sensitivity, and high bandwidth. There is no doubt that usage of fiber optic based sen-

sors has increased due to these attractive advantages. Additionally, it brings wealth of

application, ranging from medical industry, aerospace industry, through to oil and gas

industries. Indeed, fiber optic sensors are the subject of an intense researches and de-

velopment efforts. Among a large amount of physical and chemical parameters which

optical fiber sensors could measure refractive index, temperature, pressure and strain are

the most widely studied. Here, we focus on the diffraction based fiber optic sensor to

detect adulteration in terms of the refractive index variation of olive oil since adulteration

is a big concern for food industry.

1.4. Overview of the Thesis

This thesis is mainly concerned with the phase diffraction (PD) effects and its

capability of sensing surrounding medium properties. Primary motivation of the thesis is

exploiting Fresnel diffraction method to characterize optical thin films on curved surfaces

such as fiber optic. Furthermore, it possible to detect adulteration in the sense of varying

refractive index by using same method.

The thesis is organized as follows

Chapter 2 contains a comprehensive discussion of the theory of diffraction by

an aperture in a planar opaque screen for the scalar case. The discussion provides a

theoretical background for the analysis in the subsequent chapters. It includes a review

of Kirchhoff’s diffraction theory, its deficiency in terms of the potential theory, and the

alternative approaches to this theory.

Chapter 3 examines, in details, mathematical models for the diffraction from both

fiber optic and the thin film coated one, numerical calculation of the integral equations.

In Chapter 4, the phase diffraction based sensor is introduced to sense the refrac-

tive index of surrounding medium. The sensor is used to detect adulteration of olive oil

which is a big concern for food industry for the trial purposes.

In Chapter 5, dip coating procedure is discussed, and the phase diffraction effect is

presented to characterize the optical thin films coated on fiber optic. The presented works
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and results on this chapter are our main concern.

Finally in the last main Chapter 6, the route of the future works are plotted. Re-

active near field resolution, Surface Plasmon Resonance (SPR) based fiber optic sensors

and the role of coatings on SPR are discussed.
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CHAPTER 2

MATHEMATICAL PRELIMINARIES

In this chapter, we review the derivation of the famous and important scalar diffrac-

tion formula which we will use many times in the rest of this dissertation. The theoretical

discussion about some diffraction related phenomenons are made. The purpose of this

chapter is to reach some conclusions theoretically that might answer the questions about

scalar theory of diffraction.

2.1. Mathematical Theory of Diffraction

Theoretical treatment of the diffraction phenomena can be separated into two parts

basically : the vectorial (Stratton and Chu, 1939) and the scalar (Theimer et al., 1952). In

the field of optics one can generally use scalar approach, but, the more precise treatment

is obtained by applying the vectorial approach. In order to transition to the scalar theory,

by means of neglecting the vector nature of the light two conditions must be satisfied: (1)

Diffraction field must not be calculated at a subwavelength distance from aperture. (2)

Diffracting aperture must be large compared with the wavelength of the light (Goodman,

1996). In the scalar approach, polarization of the wave is not taken into account.

The scalar diffraction approach is based on classic Kirchhoff’s theory. There

are also two other approximations which are widely used; Rayleigh-Sommerfeld the-

ory of first kind which provides the solution to Dirichlet’s boundary value problem and

Rayleigh-Sommerfeld theory of second kind which provides the solution to Neumann

boundary value problem when theory of differential equations analogy is used. Even

though the boundary conditions (BC) were defined by the three theories are different, all

three often give essentially nearly identical results. They are in very well agreement with

experimental observations especially Kirchhoff’s theory. Moreover, Kirchhoff’s diffrac-

tion theory is easy to implement and sufficient to calculate light disturbance at a given

point.
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2.1.1. Kirchhoff’s Diffraction Theory

Treatment of the scalar diffraction theory starts with Huygens’ construction. Huy-

gens’ intuitive idea asserts that each element of a wavefront may be regarded as the center

of a secondary point sources. These point sources produce spherical wavelets whose enve-

lope determine the position of the wavefront at later time (Huygens, 1912). What Fresnel

added to the Huygens construction is that postulation of secondary wavelets with the same

frequency mutually interfere. This combination is called Huygens-Fresnel Principle. The

principle simply describes light propagation. It is expected that light disturbance can be

found at an arbitrary point in space provided that phase differences of wavelets are taken

into account. Fresnel worked through a spherical monochromatic wavefront which is

produced by real point source P0 and its surface points are regarded as Huygens’ virtual

point sources (See Figure 2.1). The contribution to the light disturbance dU(P ) due to the

element dS at Q neglecting time factor exp(−jwt) is (Born and Wolf, 1999)

dU(P ) = K(χ) A
exp(jkr0)

r0

exp(jks)

s
dS. (2.1)

Total disturbance at an arbitrary point P may be found by integrating on the whole surface

S

U(P ) = A
exp(jkr0)

r0

∫∫
S

exp(jks)

s
K(χ) dS, (2.2)

where A, r0, and χ represent the amplitude, the radius of the instantaneous position

of spherical monochromatic wavefront, and the angle of diffraction, respectively. The

inclination factor K(χ) is introduced to describe the variation of amplitude direction,

since contribution of secondary wavelets is not uniform in all direction. This integral is

evaluated by dividing spherical wavefront into the number of zones whose radii increase

gradually by λ/2. To a good approximation, inclination factors are nearly equal for the

consecutive zones and nearly equal to zero for the larger index zones. Thus, total light

disturbance at an arbitrary point P is simply half of the disturbance due to first zone

U(P ) = j λ K1
A exp(jk(r0 + b))

r0 + b
=

1

2
U1(P ). (2.3)

Kirchhoff examined Huygens-Fresnel principle more rigorously since the inclina-

tion factor remained undetermined in the Fresnel’s theory. He obtained certain integral

theorem for the cases diffraction occurs.

Kirchhoff diffraction formulation basically includes the conversion of the Helmholtz

wave equation which is a partial differential equation into certain integral theorem with
7



Figure 2.1. Fresnel’s zones

the aid of Green’s function and Kirchhoff’s BC. The mathematical construction of the in-

tegral begins with the definition of Green’s theorem which helps to find light disturbance

U at the observation point in space, might be found in many advanced calculus books.

Let U and G be any two complex-valued position function, and let V be a volume

surrounded by closed surface S. If U , G, and their first and second partial derivatives are

single-valued and continuous within and on S, then we have∫∫∫
V

(U∇2G−G∇2U) dV =

∫∫
S

(
U
∂G

∂n
−G∂U

∂n

)
dS, (2.4)

where ∂/∂n signifies a partial derivative in the outward normal direction at each point on

S.

The Equation (2.4) is called Green’s theorem. Green’s theorem is a consequence

of Gauss’ theorem. One can easily obtain Green’s theorem by choosing two arbitrary

scalar functions, using some basic identities and Gauss’s theorem. It is the prime foun-

dation of scalar diffraction theory. In order to apply Green’s theorem to diffraction one

should consider restrictions. These restrictions are appropriate choice of auxiliary Green’s

function G and closed surface S as boundary. It is clear that U satisfies Helmholtz wave

equation. Kirchhoff thought if auxiliary function G also satisfies Helmholtz wave equa-

tion, it might be a clever choice since in that case left hand side of Equation (2.4) becomes

zero. It reduces the equation much simpler form;

(∇2 + k2)

(
U

G

)
= 0. (2.5)

Therefore, it is easily seen that Equation (2.4) reduces to∫∫
S

(
U
∂G

∂n
−G∂U

∂n

)
dS = 0. (2.6)
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Auxiliary function G was chosen exp(jks)/s, where s denotes the distance from

P to the arbitrary point (x, y, z). It may be made it easy to think auxiliary function G

as a ”probe” which is used to investigate optical disturbance at point P . This auxiliary

function at point P forms a virtual point source. It has singularity for s = 0 and there

cannot be sources inside S since it is assumed that both U and G satisfy source-free

Helmholtz wave equation in volume V , hence P must be excluded from the domain of

integration. Therefore, it is convenient to surround P with a small sphere of radius ε and

extend the integration throughout the volume between S and the surface Sε of this sphere

(See Figure 2.2). Finally one form of Kirchhoff’s integral theorem is given by (See full

derivation for Appendix A.1) (Ghatak, 2010)

U(P ) =
1

4π

∫∫
S

[
∂U

∂n

(exp(jks)
s

)
− U ∂

∂n

(exp(jks)
s

)]
dS. (2.7)

This is also known as Kirchhoff-Helmholtz integral formula.

Figure 2.2. The domain of integration

Equation (2.7) states that as long as the point P is inside volume V , the light dis-

turbance at the point P can be obtained only taking both U and ∂U/∂n at the boundaries

of V , simply on S. This resultant makes us considered about boundary values for both U

and ∂U/∂n on S.

Let’s assume that the diffraction through an aperture in a planar screen is formu-

lated by applying Kirchhoff’s integral theorem. The closed surface for diffraction problem

is made up of the aperture plane and a large partial sphere centered at the point of observa-

tion P , as shown in Figure 2.3. Accordingly the integral Equation (2.7) for the boundaries

A, B, and C can be written as

U(P ) =
1

4π

[ ∫∫
A

+

∫∫
B

+

∫∫
C

]{
∂U

∂n

(exp(jks)
s

)
− U ∂

∂n

(exp(jks)
s

)}
dS. (2.8)
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Kirchhoff set the boundary values. Across the surface A, the incident field and

the diffracted field are the same, on the portion of B the field distribution and its normal

derivative are zero (See Figure 2.3). These are called Kirchhoff’s BC. However, this BC

on B does not meet the theory of harmonic functions which are solutions of Laplace’s

equation (∆U = 0) in an arbitrary domain V . Since, if a harmonic function and its

normal derivative is zero at any boundary on the surface, the function on the whole surface

is vanished. As a matter of fact, the same situation is valid for the wave functions that

satisfy source-free Helmholtz wave equation. This is not surprising, since when k → 0 it

becomes Laplace’s equation and it also suggests that Green’s functions for two equations

differ only exponential term exp(jks) and both have the same s−1 singularity.

Figure 2.3. The integeration surfaces

The contradiction was solved by Sommerfeld. He chose two different auxiliary

functions which also satisfy source-free Helmholtz wave equation due to the same rea-

son. He introduced another virtual point source at P̃ which is a mirror image of P on

the left side of the screen, alongside Kirchhoff’s choice of auxiliary function that forms

virtual point source at P . He assumed for the first auxiliary functions, sources at P̃ and at

P are oscillating with the phase difference 180 ◦ while for the second auxiliary function

these sources have no phase difference between them. Their wavelengths are equal. First

assumption yields auxiliary function zero on the surfaces both A and B. It seems reason-

able to make the real field U zero on the surface B (Dirichlet BC). The second assumption

makes normal derivative of the auxiliary function to be zero on the surfaces both A and

B. In that case, normal derivative of the real field (∂U/∂n) assumed to be zero (Neumann

BC). Both of the auxiliary functions prevent contribution from surface B and they comply

with the property of the potential theory. In spite of the fact that the auxiliary functions
10



and the BC’s are strictly different for three theorems, the resultant equations are nearly

identical. Therefore, we follow Kirchhoff’s theory as it has pointed out earlier section.

There is only contribution from portion C remains undetermined. If the radius R

is chosen to be large, the integral over C will vanish. However, it is assumed that U is

a monochromatic light wave (∆ν/ν = 0) which implies it is found all times and in all

space by definition. One can avoid this argument by considering physically impossible to

produce monochromatic light or more precisely introducing Sommerfeld radiation condi-

tion (See Appendix A.2). It is important theoretical result since only the outgoing waves

are appropriate solution. Hence, the Equation (2.8) becomes

U(P ) =
1

4π

[ ∫∫
A

∂U

∂n

(exp(jks)
s

)
− U ∂

∂n

(exp(jks)
s

)]
dS, (2.9)

where U = Ui = A exp(jkr)
r

, since it is assumed that on the surface A the field distribution

U is the same as it would be when there is no obstruction. In addition to that, it is

convenient to neglect 1/r and 1/s terms compared to k value, it is expressed

U(P ) =
jA

2λ

∫∫
A

exp(jk(r + s))

rs

[
cos(n, r)− cos(n, s)

]
dS, (2.10)

where the angles are defined as in Figure 2.4. This is known as the Fresnel-Kirchhoff

diffraction formula. Equation (2.7) is the one form of the formula, when it is multiplied

by−1 or choosing partial derivative ∂/∂n in the inward normal direction at each point on

S the other form is obtained. Since the intensity of the scalar wave function is I = |U |2,

these two forms have same the intensity value which is the primary interest.

Figure 2.4. Illustration of angles to derive Fresnel-Kirchhoff diffraction formula
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New boundaries might be chosen to obtain an integral theorem for the propagation

of wavefront. The result also gives the explicit formula for the inclination factor that

is remained undefined in Huygens-Fresnel principle. Let us assume that portion W of

an incident wavefront filled the aperture (See Figure 2.5). On W , r̂0 and n̂ are reverse

directed, so cos(n, r0) = −1. Also, the angle of diffraction is set χ = (r0, s) due to the

assumption that we make, Equation (2.10) is written as

U(P ) = − j

2λ

A exp(jkr0)

r0

∫∫
W

exp(jks)

s
(1 + cosχ) dS. (2.11)

Contribution from the element dW of the wavefront

− j

2λ

A exp(jkr0)

r0

exp(jks)

s
(1 + cosχ) dS, (2.12)

which can be compared with the Equation (2.1). It gives the explicit formula for inclina-

tion factor

K(χ) = − j

2λ
(1 + cosχ). (2.13)

Figure 2.5. Illustrating new boundaries

Consequently, Huygens-Fresnel equation with the recovered inclination factor as

in Equation (2.11), might be taken into account once the field distribution of spherical

wavefront at an arbitrary point is wanted to be determined. Basically, it is regarded as

wavefront tracing. Moreover, some approximations can be made to make Equation (2.11)

suitable for different kind of problems such as diffraction from the phase objects.
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CHAPTER 3

MATHEMATICAL MODEL FOR PHASE DIFFRACTION

In this chapter, the consequences of Kirchhoff’s scalar diffraction theory is imple-

mented when it is applied to the phase objects, specially fiber optic and coated fiber optic.

This chapter is to construct theoretical basis for the thesis.

3.1. Diffraction From Phase Objects

Diffraction effects of various kind of apertures on wavefronts can be found easily

with the help of diffraction formula as it has pointed out in former section. These kind

of problems can be found in details in many optical textbooks unlike diffraction effects

from phase object. The diffraction by a smooth transparent phase object of any shape was

investigated geometrically by Yung Ming Chen (Chen, 1964).

Fresnel diffraction effect from phase object, in particular, from fixed and vari-

able phase steps are very rich subject and yields several application since phase of the

wave is more sensitive to the variation in refractive index, thickness or both than is the

amplitude. This feature what we exploit makes it powerful candidate for optical sensors.

These effects were studied by several authors (Raman and Ramakrishna Rao (1926), Faust

(1950), Sussman (1962)) and more comprehensive studies have been done very recently

by Tavassoly et al. (2012).

Diffraction effects become noticeable when wavefront bears sharp change in phase

as it has mentioned in the beginning of section. Sharp change in the phase can be eas-

ily implemented by sending light beam through a phase step or transmitting light beam

through a phase object with an abrupt change in refractive index or thickness (Tavassoly

et al., 2005). It is called phase diffraction.
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3.1.1. Theoretical Approach

Theory of diffraction from phase object is based on Huygens-Fresnel principle or

strictly speaking Fresnel-Kirchhoff diffraction integral, since the diffraction from phase

object is nothing but tracing of the wavefronts. We trace wavefronts after it transmitted

through optical fiber.

3.1.1.1. Diffraction from Fiber Optic

Diffraction from cylindrical transparent object and its intensity distribution at an

arbitrary point are the main part of the thesis. Diffraction effects of a plane wave from a

cylindrical rod such as step index optical fiber whose radii are a and b, respectively, are

examined (Sabatyan and Tavassoly, 2007). Hence, the usage of Fresnel-Kirchhoff integral

is appropriate to find disturbance on the transmission screen (See Figure 3.1).

Figure 3.1. (a) Plane wave transmission from optical fiber, (b) Diffraction geometry
for optical fiber

Small angle approximation which makes cosχ zero due to plane wave, is ap-

plied and inclination factor evolves another form for the cylindrical wavefronts. Fresnel-

Kirchhoff diffraction integral equation for the cylindrical diffracted wave is written as

(Amiri and M.Tavassoly, 2006)

U(P ) =

√
− j
λ
A

∫
exp(jkr0)

exp(jkr)√
r

dx′. (3.1)
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From the theoretical point of view, it is an indeed aperture problem that we inves-

tigated earlier sections. In our case there is no portion B and Sommerfeld radiation condi-

tion is indeed preserved. The only contribution is from surface A that lies in between−∞
to +∞ because we send a plane wave, that means we are in Fresnel region not in reactive

region. Hence, it can not be applied any kind of far field approximation but paraboloidal

wave approximation (Saleh and Teich, 2007). The very well known solution of Helmholtz

equation in spherical coordinates yields the spherical wave u(r) = exp(jkr)/r, where r

is represented in cartesian coordinates as r =
√
x2 + y2 + z2. Using the approximation

based on Taylor series expansion:

r = z
√

1 + θ2

= z

(
1 +

θ2

2
− θ4

8
+ ...

)
≈ z

(
1 +

θ2

2

)
= z +

x2 + y2

2z
,

(3.2)

where θ = x+y
z

. The Equation (3.2) is substituted for the solution of Helmholtz equation

in spherical coordinates, moreover substituting a less accurate expression r ≈ z into the

magnitude, u(r) becomes

u(r) =
1

z
exp(jkz) exp

[
jk

(
x2 + y2

2z

)]
, (3.3)

which is so-called Fresnel approximation of the spherical wave. It plays important role in

diffraction. Equation (3.3) is substituted into Equation (3.1), the diffraction integral for

the cylindrical diffracted wave can be expressed as (Sabatyan and Tavassoly, 2007)

U(P ) = K

∫
exp(jkr0)exp

[
jk

(
(x− x′)2

2z

)]
dx′, (3.4)

where K =
√
− j
λ
A exp(jkz)√

z
. Equation (3.4) is essential equation for cylindrical diffracted

wave problems. It might be modified in the sense of layer boundaries.

In order to obtain the amplitude of the diffracted wave on the screen at an arbi-

trary point for the two layer geometry (simple fiber optic), it is convenient to define new

parameters with respect to the Figure 3.2(a), where

|GC| = x′ , |GD| = a , |GE| = b ,

|CD| =
√
a2 − x′2 , |CE| =

√
b2 − x′2 , |EB| = b−

√
b2 − x′2.

(3.5)

Similarly for the Figure 3.2(b), where

|GF | = x′ , |GR| = b ,

|FR| =
√
b2 − x′2 , |RQ| = b−

√
b2 − x′2.

(3.6)
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Since integration is done with respect to x′, they are in common both of the Equation (3.5)

and Equation (3.6).

Figure 3.2. Optical fiber geometry

Particular region of wavefront proceeds different optical paths. Therefore, optical

phases between planes Σ and x′, can be defined as follows (Sabatyan and Tavassoly, 2009)

φsu = 2kcns, |x′| > b (3.7)

φ1 = 2k[(b−
√
b2 − x′2)ns + (

√
b2 − x′2)ncl], a < |x′| < b (3.8)

φ2 = 2k[(b−
√
b2 − x′2)ns + (

√
b2 − x′2 −

√
a2 − x′2)ncl + (

√
a2 − x′2)nco],

|x′| < a (3.9)

where ns, ncl, nco, and k are the refractive indices of the surrounding medium, the

cladding, the core, and the wave number, respectively. Denoting

φcl = 2k(ncl − ns)
√
b2 − x′2, (3.10)

φco = 2k(nco − ncl)
√
a2 − x′2. (3.11)

The diffraction integral for x′ < −b becomes,

U1(P ) = K

−b∫
−∞

exp(−jφsu)exp
[
j

2π

λ

(
(x− x′)2

2z

)]
dx′. (3.12)

Similarly for the intervals −b < x′ < −a, −a < x′ < a, a < x′ < b, and x′ > b, the

diffraction integrals take the form of, respectively;

U2(P ) = K

−a∫
−b

exp(−j[φsu + φcl])exp

[
j

2π

λ

(
(x− x′)2

2z

)]
dx′, (3.13)
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U3(P ) = K

a∫
−a

exp(−j[φsu + φcl + φco])exp

[
j

2π

λ

(
(x− x′)2

2z

)]
dx′, (3.14)

U4(P ) = K

b∫
a

exp(−j[φsu + φcl])exp

[
j

2π

λ

(
(x− x′)2

2z

)]
dx′, (3.15)

U5(P ) = K

∞∫
b

exp(−jφsu)exp
[
j

2π

λ

(
(x− x′)2

2z

)]
dx′. (3.16)

The total field at point P are given by

U(P ) = U1(P ) + U2(P ) + U3(P ) + U4(P ) + U5(P ), (3.17)

and it becomes in expanded form

U(P ) = A

√
−j
2

exp(jkz) exp(−j2kbns)
{

1 + C(α)− C(β) + j
[
1 + S(α)− S(β)

]
+

√
2

λz

(∫ −a
−b

exp(−j2k
√
b2 − x′2(ncl − ns))exp

[
jk

(x− x′)2

2z

]
dx′

+

∫ a

−a
exp(−j2k(

√
b2 − x′2{ncl − ns}+

√
a2 − x′2{nco − ncl}))exp

[
jk

(x− x′)2

2z

]
dx′

+

∫ b

a

exp(−j2k
√
b2 − x′2(ncl − ns))exp

[
jk

(x− x′)2

2z

]
dx′
)}

, (3.18)

where C and S are Fresnel cosine and sine functions that are explained in section 3.1.4.

Their dependency on α and β indicate
√

2
λz

(x−b) and
√

2
λz

(x+b) respectively. To obtain

normalized results, the Equation (3.19) is divided by field when there is no fiber

Unf (P ) = A exp(jkz) exp(−j2kbns). (3.19)

Intensity is the main concern here and it is formed for the two layer geometry with a

surrounded medium

I =
U(P )U∗(P )

Unf (P )U∗nf (P )
. (3.20)

where * represents the complex conjugate.
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3.1.1.2. Diffraction From Three Layer Phase Object

Three layer geometry simply refers fiber optic with coated dielectric radius c and

refractive index np (See Figure 3.3). We follow the same procedure as we have done in

previous chapter to obtain the mathematical model for the coated fiber optic. The whole

procedure is to find optical disturbance at an arbitrary point on the screen after wavefront

is transmitted through coated optical fiber.

Figure 3.3. (a) Plane wave transmission from coated optical fiber, (b) Diffraction ge-
ometry for coated optical fiber

Optical path lengths are defined by following the same procedure in the last sec-

tion, simply trying to obtain wavefront after it transmits three layer geometry

φsu = 2kcns, |x′| > c (3.21)

φ1 = 2k[(c−
√
c2 − x′2)ns + (

√
c2 − x′2)np], b < |x′| < c (3.22)

φ2 = 2k[(c−
√
c2 − x′2)ns + (

√
c2 − x′2 −

√
b2 − x′2)np + (

√
b2 − x′2)ncl],

b < |x′| < a (3.23)

φ3 = 2k[(c−
√
c2 − x′2)ns + (

√
c2 − x′2 −

√
b2 − x′2)np

+ (
√
b2 − x′2 −

√
a2 − x′2)ncl + (

√
a2 − x′2)nco], |x′| < a. (3.24)

Denoting

φp = 2k(np − ns)
√
c2 − x′2 (3.25)

φcl = 2k(ncl − np)
√
b2 − x′2, (3.26)

φco = 2k(nco − ncl)
√
a2 − x′2 (3.27)
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The diffraction integral for x′ < −c becomes,

U1(P ) = K

−c∫
−∞

exp(−jφsu)exp
[
j

2π

λ

(
(x− x′)2

2z

)]
dx′. (3.28)

Similarly for the intervals −c < x′ < −b, −b < x′ < −a, −a < x′ < a, a < x′ < b,

b < x′ < c, and x′ > c, the diffraction integrals become, respectively;

U2(P ) = K

−b∫
−c

exp(−j[φsu + φp])exp

[
j

2π

λ

(
(x− x′)2

2z

)]
dx′, (3.29)

U3(P ) = K

−a∫
−b

exp(−j[φsu + φp + φcl])exp

[
j

2π

λ

(
(x− x′)2

2z

)]
dx′, (3.30)

U4(P ) = K

a∫
−a

exp(−j[φsu + φp + φcl + φco])exp

[
j

2π

λ

(
(x− x′)2

2z

)]
dx′, (3.31)

U5(P ) = K

b∫
a

exp(−j[φsu + φp + φcl])exp

[
j

2π

λ

(
(x− x′)2

2z

)]
dx′, (3.32)

U6(P ) = K

c∫
b

exp(−j[φsu + φp])exp

[
j

2π

λ

(
(x− x′)2

2z

)]
dx′, (3.33)

U7(P ) = K

∞∫
c

exp(−jφsu)exp
[
j

2π

λ

(
(x− x′)2

2z

)]
dx′. (3.34)

The total field at point P are given by

U(P ) = U1(P ) + U2(P ) + U3(P ) + U4(P ) + U5(P ) + U6(P ) + U7(P ), (3.35)
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the total field at point P can be obtained by considering Equation (3.4) in the

expanded form;

U(P ) = A

√
−j
2

exp(jkz) exp(−j2kbns)
{

1 + C(γ)− C(ξ) + j
[
1 + S(γ)− S(ξ)

]
+

√
2

λz

(∫ −b
−c

exp(−j2k
√
c2 − x′2(np − ns))exp

[
jk

(x− x′)2

2z

]
dx′

+

∫ −a
−b

exp(−j2k(
√
c2 − x′2(np − ns) +

√
b2 − x′2(ncl − np)))exp

[
jk

(x− x′)2

2z

]
dx′

+

∫ a

−a
exp(−j2k(

√
c2 − x′2(np − ns) +

√
b2 − x′2(ncl − np) +

√
a2 − x′2(nco − ncl))

× exp
[
jk

(x− x′)2

2z

]
dx′ +

∫ b

a

exp(−j2k(
√
c2 − x′2(np − ns) +

√
b2 − x′2(ncl − np)))

×exp
[
jk

(x− x′)2

2z

]
dx′+

∫ c

b

exp(−j2k
√
c2 − x′2(np−ns))exp

[
jk

(x− x′)2

2z

]
dx′
)}

.

(3.36)

Fresnel cosine and sine functions’ dependency on γ and ξ indicate
√

2
λz

(x − c) and√
2
λz

(x + c), respectively. To obtain the normalized results, Equation (3.36) is divided

by amplitude of the incident field when there is no coated fiber Equation (3.19). Intensity

becomes for three layer geometry with a surrounded medium

I =
U(P )U∗(P )

Unf (P )U∗nf (P )
. (3.37)

3.1.2. Numerical Calculations of Equations

In this section, we show how to solve equation arrays (3.12)-(3.16) and (3.28)-

(3.34). Numerical integration method and Fresnel integrals that may be solved under

favour of Cornu’s spiral are presented.

3.1.2.1. Quadrature Method

Since not all integrals can be solved analytically, the numerical integration meth-

ods have been developed. Numerical integration methods are generally based on finding

polynomial P (x) that interpolates the function f(x). Instead of integrating the function,
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polynomial might be used as an approximation to the function.

b∫
a

f(x)dx ≈
b∫

a

P (x)dx =

b∫
a

( n∑
i=1

f(xi)Li(x)

)
dx =

n∑
i=1

wif(xi), (3.38)

where

wi =

b∫
a

Li(x)dx. (3.39)

The values wi and xi are called weights and nodes respectively. The polynomials

Li(x) are the Lagrange interpolating polynomials

Li(x) =
n∏

k=1,k 6=i

x− xk
xi − xk

. (3.40)

This is called Newton-Cotes quadrature formula. It gives basic mathematical insight for

well known trapezoidal rule, Simpson’s rules, and Boole’s rule. This quadrature formula

based on equally spaced abscissas.

Degree of exactness of the quadrature rule which is the important characteristic of

every quadrature formula is m if this quadrature rule yields exact results for all the poly-

nomial of degree d ≤ m. Degree of exactness of the Newton-Cotes quadrature formula is

m+ 1.

Gauss quadrature is another type of quadrature rule. It is closely related to Newton-

Cotes quadrature formula in the sense of utilizing Lagrange interpolating polynomials.

The key idea stands behind Gauss quadrature is a clever choice of abscissas in order to

maximize the degree of exactness. Orthogonal polynomials and their zeros on the line

play important role to maximize degree of exactness. Gaussian quadrature rule is exact

for the polynomials of degree d ≤ 2m− 1 , if m nodes are chosen the zeros of the poly-

nomials. The zeros of the corresponding orthogonal polynomial and weights of Gauss

quadrature can be computed by using Golub-Welsch algorithm (Golub and Welsch, 1969).

The starting point of constructing the algorithm is three-term recurrence relation property

of orthogonal polynomials. Writing these relations in a matrix form yields eigenvalue

equation. Eigenvalues of the matrix is the nodes of the corresponding Gauss quadrature,

in other words zeros of the corresponding polynomial.

Gauss-Kronrod quadrature is a different kind of Gauss quadrature. There are extra

m Kronrod nodes which indicate corresponding zeros of Stieltjes polynomial (Laurie,

1997). The difference between Gauss and Kronrod quadrature approximations yields

error of the integration.
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When Equation arrays (3.13)-(3.15) and (3.29) - (3.33) are considered, it is needed

to evaluate numerically. Since integrand might be considered conventional oscillatory

function in small interval a to b, it is convenient to use adaptive Gauss-Kronrod Quadra-

ture. Otherwise, highly oscillation integration methods should be used. In MATLAB,

there is a function quadgk which uses G7 −K15 points adaptive quadrature to evaluate

integrals.

3.1.2.2. Fresnel Integrals

Equations (3.12), (3.16), (3.28), and (3.34) whose boundaries extend infinity re-

mains undetermined. There are some techniques to evaluate these kind of integrals, but

we choose graphical device to evaluate. Only the Equation (3.12) is taken into account

for simplicity, the others can be evaluated following the same steps. It can be written as

U1(Q) = K ′
−b∫
−∞

exp

[
j

2π

λ

(
(x− x′)2

2z

)]
dx′, (3.41)

where K ′ = Kexp(−jφsu). Let us define a new parameter

τ =

√
2

λz
(x− x′), (3.42)

and dx′ becomes

dx′ = −
√
λz

2
dτ. (3.43)

Considering both the former equation and famous Euler’s formula, Equation (3.41) takes

the form of

U1(Q) = K ′′
[ ζ∫
+∞

cos

(
π

2
τ 2
)
dτ + j

ζ∫
+∞

sin

(
π

2
τ 2
)
dτ

]
, (3.44)

where K ′′ = −K ′
√

λz
2

and ζ =
√

2
λz

(x + b). First integration of the Equation (3.44) is

called Fresnel cosine integral, whereas second integration is called Fresnel sine integral.

These integrals play a significant role solving diffraction problems, in particular near field

regions. Cornu’s Spiral is used in order to evaluate the Fresnel integrals (See Figure 3.4).

It is a graphical device whose horizontal axes C(τ) and vertical axes S(τ) represent

C(τ) =

τ∫
0

cos

(
π

2
τ 2
)
dτ, (3.45)

S(τ) =

τ∫
0

sin

(
π

2
τ 2
)
dτ. (3.46)
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Figure 3.4. Cornu’s Spiral

Similar treatment is applied to the Equation (3.16) and overall effects of the infin-

ity bounded integrals which arise due to the plane wave, are calculated easily. In MAT-

LAB, there are functions fresnelc and fresnels to evaluate Fresnel cosine and sine inte-

grals, respectively.

23



CHAPTER 4

REFRACTIVE INDEX SENSING

In this chapter, it is shown how to sense surrounding medium’s refractive index

by using phase diffraction method to make sure the method is valid. We exploited this

method for detecting of adulteration in virgin olive oil.

4.1. Refractive Index Origins

In the simplest approach of an atom, electrons are considered to be bounded elas-

tically to the nucleus. The variation of electron’s position is governed by the equation

of motion for an oscillator. This classical approach was proposed by Lorentz in the later

nineteenth century. More precise treatment requires quantum mechanical approach.

Refractive index originally arises when electric field is applied to the medium. Ap-

plied electric field gives rise to dipole moment atomically or polarization volumetrically.

Polarization and electric field compound electric displacement vector together. Electric

displacement vector is proportional to relative permittivity which is a square of refractive

index. It might have imaginary part for the lossy or gainful mediums, it is not taken into

account in this thesis.

Refractive index is one of the most crucial parameter of the material. Precise

determination of refractive index gives more insight about the optical properties of mate-

rial. There are some techniques to identify refractive index of the liquids. Interferometric

methods (Angelis et al. (2000), Musso et al. (2000)), diffraction grating based methods

(Durán-Ramı̀rez et al. (2014), Lu et al. (2007)), long period fiber grating (LPG) based

methods (James and Tatam (2003), Huang et al. (2013), Tsuda and Urabe (2009) ), and

phase diffraction method which is used in this thesis (Sabatyan and Tavassoly, 2009) are

some of them. Additionally, Abbe refractometers are standard tool for measuring refrac-

tive index of the liquids.
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4.2. Surrounding Liquid Medium Refractive Index Sensing

We used phase diffraction method to obtain refractive index of the surrounding

medium. Interesting feature of the method is the sensitivity of index of refraction of the

liquid that surrounds cladding of the fiber. Phase diffraction from fiber optic with a sur-

rounding medium is explained in the former section comprehensively. The surrounding

medium’s refractive index (ns) can be obtained precisely, provided that fiber’s properties

and the distance between fiber and detector are very well known as in the Equation (3.18).

4.2.1. Olive Oil Adulteration Detection

Adulteration of oils is currently big concern in the food industry due to high price

of virgin olive oil. Nowadays there are some methods to detect adulteration in olive

oils such as long period fiber grating based (Libish et al., 2013), Abbe refractometer

based (Ariponnammal, 2012), and infrared (IR) spectroscopy with chemometric (Sun

et al. (2015), Gurdeniz and Ozen (2009)). As it is indicated both (Libish et al., 2013)

and (Ariponnammal, 2012) refractive index variation of the olive oil is ended up with

detection of adulteration.

We used phase diffraction method to detect adulteration of olive oils in terms

refractive index. Because, the method is quite sensitive external medium refractive index

changes and it is easy to implement.

4.2.2. Experimental Procedure

A schematic of the experimental setup is sketched in Figure 4.1. Experimental

procedure begins with conversion output of the He-Ne laser of wavelength 632.8 nm

light beam to plane wave. Classical beam expander is used for this purpose. It con-

verts Gaussian beam to plane wave. The acquired plane wave sent is through the sample

perpendicular to its axis. Piece of step index fiber is immersed into the rectangle silica

cell. This cell is filled with a sample whose refractive index value is to be determined

and placed perpendicular to the plane wave. The intensity distributions are recorded by a

charge coupled device (CCD) camera of pixel size 17 µm (H) × 11 µm (V) before and

after immersing fiber. Dividing latter intensity distribution by the former one gives the

normalized intensity distribution.
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Fiber optics specifications are needed exactly. Fiber cladding and core radii are

b = 62.5 µm, and a = 2.2 µm , respectively and refractive indices of the cladding and

core are ncl = 1.4537, and nco = 1.4591 respectively, according to data sheet of 780-

HP Nufern Single Mode Fiber (Nufern, 2013). The distance in between fiber and CCD

camera is varies between 3.5 cm and 4.2 cm.

Olive oil is selected for the present study to detect adulteration and it mixed with

sunflower oil in different percentages. In order to detect adulteration, normalized intensity

distribution on the Fresnel diffraction patterns are fitted the mathematical model by using

least-squares method.

Figure 4.1. Top view of experimental setup for determining refractive index of the
surrounding medium

4.2.3. Results

Three different olive oil mixed with sunflower oil in different percentages, pure

olive oil, pure sunflower oil and pure water are selected to show the dependency on sur-

rounding medium. These percentages are 10%, 30%, and 40% oil solutions. All solutions

were prepared carefully. In order to analyze samples and compare results to the our pro-

posed method, oil mixtures and pure ones were measured by RE50 digital refractometer

(Mettler Toledo, 2003). Refractometer results were not in agreement with diffraction re-

sults (See Figure 4.8).

The refractive index of the pure water matches with the expected value as it is

shown in Figure 4.2. Uncertainty is about ± 8 × 10−5 for the pure water (Kedenburg

et al., 2012).
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Figure 4.2. Surrounding refractive index determination (distance ≈ 4.1 cm) : (a) The
dots are normalized experimental intensity distribution, the curve is the
theoretical intensity fitted ns = 1.33198 (b) Diffraction pattern recorded by
CCD of a laser beam diffracted by optical fiber surrounded by pure water
whose refractive index is 1.33198

Figure 4.3. Surrounding refractive index determination (distance ≈ 4.1 cm) : (a) The
dots are normalized experimental intensity distribution, the curve is the
theoretical intensity fitted ns = 1.46786 (b) Diffraction pattern recorded by
CCD of a laser beam diffracted by optical fiber surrounded by pure olive
oil whose refractive index is 1.46786
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Figure 4.4. Surrounding refractive index determination (distance ≈ 4.2 cm) : (a) The
dots are normalized experimental intensity distribution, the curve is the
theoretical intensity fitted ns = 1.46837 (b) Diffraction pattern recorded by
CCD of a laser beam diffracted by optical fiber surrounded by 90% olive
oil 10% sunflower oil mixture whose refractive index is 1.46837

Figure 4.5. Surrounding refractive index determination (distance ≈ 3.6 cm) : (a) The
dots are normalized experimental intensity distribution, the curve is the
theoretical intensity fitted ns = 1.47075 (b) Diffraction pattern recorded by
CCD of a laser beam diffracted by optical fiber surrounded by 70% olive
oil 30% sunflower oil mixture whose refractive index is 1.47075
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Figure 4.6. Surrounding refractive index determination (distance ≈ 4 cm) : (a) The
dots are normalized experimental intensity distribution, the curve is the
theoretical intensity fitted ns = 1.47119 (b) Diffraction pattern recorded by
CCD of a laser beam diffracted by optical fiber surrounded by 60% olive
oil 40% sunflower oil mixture whose refractive index is 1.47119

Figure 4.7. Surrounding refractive index determination (distance ≈ 4 cm) : (a) The
dots are normalized experimental intensity distribution, the curve is the
theoretical intensity fitted ns = 1.47383 (b) Diffraction pattern recorded
by CCD of a laser beam diffracted by optical fiber surrounded by pure
sunflower oil whose refractive index is 1.47383
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Figure 4.8. Comparison between the refractometer results, diffraction results, and
wavelength dependency adjusted for the refractometer results

In Figure 4.8, 0% and 100% indicate pure olive oil and pure sunflower oil, re-

spectively. The differences might be arisen due to wavelength dependency of refractive

indices. Refractometer uses light whose wavelength 589 nm while we use that of 632.8

nm. As it is indicated in Yunus et al. (2009) refractive index of the olive oil differences for

the 589 nm wavelength and 632.8 wavelength is approximately 2 × 10−3. Hence these

disparities can be attributed to the wavelength dependency of the refractive index (See

Table 4.1).

Samples Refractive Index (Diffrac-
tion)

Refractive Index (Re-
fractometer)

Uncertainty

Pure Olive Oil 1.46786 1.46946 1.6 ×10−3

10% solution 1.46847 1.47008 1.61×10−3

30% solution 1.47066 1.47089 2.3 ×10−4

40% solution 1.47119 1.47164 4.5 ×10−4

Pure Sunflower Oil 1.47383 1.47456 7.3 ×10−4

Table 4.1. Comparison of refractive index values between diffraction based measure-
ments and refractometer based measurements
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CHAPTER 5

OPTICAL DIELECTRIC FILMS ON CURVED SURFACES

In this chapter, it is shown how to determine thickness of the optical dielectric

films, in particular, polyvinyl alcohol on curved surfaces such as optical fibers. Phase

diffraction method is used for this objective and it yields good results.

Fiber optic coatings prevent fiber optic from mechanical and chemical damages

conventionally (Wojcik et al., 2006). On the other hand, coated films are to support

to modulate light signals when specific measurand is exposed. This idea allows to de-

velop sensitivity enhanced fiber optic sensors in conjunction with thin films (Renoirt et al.

(2013), Yang and Dai (2012)). For that reason, fiber optic coating has become attractive

field for the fiber optic sensors. Most of these sensors are based on Fiber Bragg Grating

(FBG). FBG type sensors can be used either as a direct sensing element or transducer.

For example, polyvinyl alcohol (PVA) coated Fiber Bragg Grating which in the presence

of high humidity the coated material’s refractive index changes which can be measured

(Dong et al. (2011), Yang et al. (2015), Venugopalan et al. (2008)). This is an example

of transducing process. Consequently, temperature sensitivity (Park et al., 2011), humid-

ity sensitivity (Wong et al., 2012), and acoustic sensitivity (Cusano et al., 2007) can be

enhanced by coating fiber optic with novel polymers whose properties alter when the

measurand has changed.

For optical films, we also require the material to be transparent at the wavelength

of interest. The polyvinyl alcohol (PVA) is chosen since it is transparent at the wavelength

of interest and it is widely known and used for film coating. In order to understand better

the sensing process, one must know physical properties of the film such as thickness as it is

pointed out in (Caucheteur et al., 2008), (Paladino et al., 2007), and (Mathew et al., 2013).

One must select an optimum coating thickness to achieve the highest sensitivity. However,

it is not easy to determine thickness exactly in the nano-micro scale. Nowadays there

are some ways to determine thickness of the curvilinear surfaces such as conventional

scanning electron microscopy (SEM), ellipsometry method (Lee and Chao, 2005), and

using fiber optic probe (Buffone et al., 2013). We demonstrate that phase diffraction

method might be used to determine thickness of the coated thin films on curved surfaces

with high sensitivity, especially for the case of optical fiber.
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5.1. Covered Polymer Thickness Sensing

Phase diffraction method is investigated theoretically in Chapter 3. In that case,

coated optical fiber should be considered as three layer geometry.

The Equation (3.36) is fundamental equation for these kind of problems. By using

it thickness of the coated thin film might be determined, provided that other parameters

are well known.

5.1.1. Experimental Procedure

Experimental procedure was divided into two parts : Preparation of PVA/water

solution and coating of fiber optic with that. The former one is a simple procedure that

includes dissolving PVA in a water. PVA granules (dry) is mixed with water to form 15%

PVA solution. This PVA/water mixing is stirred approximately 70 ◦C with the help of

magnetic stirrer for 10 hours to make sure it is dissolved completely. Thus the PVA/water

solution is prepared to coat fiber optic as thin films.

There are number of techniques to coat fiber optic. Two of them are widely used:

Electrostatic Self-Assembly (ESA) and Langmuir - Blodgett Technique (LBT) (James

and Tatam, 2006). The main reason for the utilisation of ESA and LBT is their ability

of controlling thickness at a molecular level. However, usage of either two is redundant,

challenging and time-consuming. Hence we decided to use dip coating (DC) technique

which is relatively easier. There is a trade-off in between simplicity of technique and

reaching desired thickness. Dip coating technique is simply staged as dipping substrate

in a solution, withdrawing the substrate with a constant speed, and waiting for solvent to

evaporate (See Figure 5.1).

The thickness can be calculated by taking Landau-Levich equation into account

theoretically (Haar, 1965). According to the Landau-Levich equation, physical parame-

ters such as liquid viscosity, liquid surface tension, density, gravity, and withdrawal speed

must be well known to calculate the thickness. Instead of obtaining information about the

exact values of physical parameters which is a challenging process, using optical methods,

one can determine the thickness of the sample which is withdrawn with constant speed.

Before the coating, surface of the fiber optic is cleaned using Isopropyl Alcohol

and dried. Fiber optic is immersed into 15% PVA solution and drawn from the solution

with the certain speed. This process should be repeated when thicker coating are required.
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Figure 5.1. Dip coating process : (a) Immersing fiber optic into PVA solution (b) With-
drawing fiber optic with a constant speed (c) Waiting for solvent to evapo-
rate

In order to achieve consistency for the withdrawn speed, we used simple electrical motor

which has 18 revolutions per minute. Subsequently coated fiber optic is placed to an oven

to make sure it is completely dried at 90 ◦C for 2 hours. The dried PVA film is expected

to have 1.53 refractive index as stated in both Gastón et al. (2004) and Alwis et al. (2013).

A schematic of the experimental setup is sketched in Figure 5.2. Experimental

procedure begins with conversion of the output of the 632.8 nm He-Ne laser light beam to

plane wave. Classical beam expander is used for this purpose. Obtained plane wave is sent

through the PVA coated optical fiber perpendicular to its axis. The diffraction patterns are

recorded by CCD camera whose distance from coated fiber optic is approximately 4.1

cm. Consequently, normalized intensity distributions on the Fresnel diffraction patterns

are fitted the mathematical model by using least-squares method to extract value of the

desired parameter.

Figure 5.2. Top view of experimental setup for determining radius of the coated optical
fiber
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5.1.2. Results

In order to analyze the three samples and compare results to the our proposed

technique, we took some Scanning Electron Microscope (SEM) images in Back-Scattered

Electron Detector (BSED) mode to make sure it is coated. BSED simply responses dark

or brighter in the sense of atomic number of area being analyzed. Thus, it is relatively

easier to detect thickness. In order to analyze fiber optics by using SEM, fiber optics are

broken, this is a destructive measurement method. These broken fiber optics can not be

used again. However, here we offer non-destructive measurement method.

Figure 5.3. PVA coated optical fiber 1 : (a) The dots are normalized experimental
intensity distribution , the curve is the theoretical intensity fitted c = 62940
nm (b) Diffraction pattern recorded by CCD of a laser beam diffracted by
440 nm PVA coated optical fiber

Figure 5.4. PVA coated optical fiber 1 SEM image in BSED mode reveals an overlay
thickness of about 508nm
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From Figures 5.3(a), 5.3(a) and 5.7(a), one can deduce the theoretical data and

experimental data fits and 5.3(b), 5.3(b) and 5.7(b) demonstrate that CCD camera image

that was taken from 4.1 cm distance from fiber optic approximately. The Figure 5.4 is

the BSED image, brighter area indicates cladding of the fiber whereas dark area indicates

PVA film. Additionally Figure 5.6(a) and Figure 5.8(a) are BSED images as well to show

PVA films are coated smoothly.

Figure 5.5. PVA coated optical fiber 2 : (a) The dots are normalized experimental in-
tensity distribution, the curve is the theoretical intensity fitted c = 63429 nm
(b) Diffraction pattern recorded by CCD camera of a laser beam diffracted
by 929 nm PVA film coated optical fiber

Figure 5.6. PVA coated optical fiber 2 SEM image in BSED mode (a) External view of
970 nm PVA film coated fiber optic (b) Thickness of the overlay is about
970 nm
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Figure 5.7. PVA coated optical fiber 3 : (a) The dots are normalized experimental in-
tensity distribution, the curve is the theoretical intensity fitted c = 64130 nm
(b) Diffraction pattern recorded by CCD camera of a laser beam diffracted
by 1630 nm PVA film coated optical fiber

Figure 5.8. PVA coated optical fiber 3 SEM image in BSED mode (a) External view of
1670 nm PVA film coated fiber optic (b) Thickness of the overlay is about
1670 nm

Number DC Process Re-
peating Time(s)

Thickness (nm)
PD

Thickness (nm)
SEM

Error (nm) Radius
error (%)

Fiber #1 1 440 508 68 13.3
Fiber #2 2 929 970 41 4.2
Fiber #3 3 1630 1670 40 2.3

Table 5.1. Summary of Coated Optical Fibers Thicknesses and Errors
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CHAPTER 6

CONCLUSIONS AND FUTURE WORKS

In this thesis, diffraction effects from coated fiber optic is exploited to characterize

coated thin dielectric film as it is aimed. Mathematical theory of diffraction is examined

very carefully (Chapter 2). This examination is used to obtain mathematical model for

our cases (Chapter 3). Although main research focuses on optical characterization of thin

film coated fiber optic by using diffraction, we also show that diffraction from fiber optic

can be used to determine surrounding refractive index, and take advantage of this sensitive

technique to detect adulteration of olive oil. It is demonstrated that pure water’s refractive

index coincides, yet adulteration detection process does not match with the refractometer

data due to temperature, wavelength dependency, and elapsed time between two measure-

ments (Chapter 4). And finally, thin film thickness determination is done by comparing

SEM results and experimental outputs. This process ends up with approximately 13.3%,

4.2%, and 2.3% radius errors for 508 nm, 970 nm, and 1670 nm respectively. In addi-

tion to that, it is a non-destructive measurement method which puts it one step forward

(Chapter 5). On the other hand, optical characterization of adsorbent material (dielectric)

coated on fiber optic can be considered as fiber optic sensor itself since optical proper-

ties of the material can be changed due to the surrounding medium effects (See Figure

6.1). For instance, thickness of the poly(methyl methacrylate) film is highly dependent

on the ethanol level of the surrounding medium (Latino et al., 2012). The small changes

of the ethanol in the gas-phase can be detected real time by using offered non-destructive

method.

Figure 6.1. Typical optical fiber sensor coated with adsorbent material
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There are still a lot to be done to further improvements in the sense of optical fiber

sensor technology especially SPR based ones. Additionally, reactive near field techniques

for diffraction integrals should be examined if diffraction limits are needed to be exceeded.

SPR based sensors as the name suggests exploit the ability of excitation surface

plasmons that are the charge density oscillation of the free electrons in material, and

propagating along the interface between materials whose dielectric constants signs are

opposite, such as metal and dielectric. Their theoretical analysis is based on Maxwell’s

equations for evanescent fields. Transverse magnetic polarized incident waves excite the

surface plasmons whereas transverse electric polarized waves are attenuated due to ohmic

loss in the metal layer (Sharma et al., 2007). The formed electromagnetic field due to

excitations decay exponentially into both media under a specific resonance condition.

These all conditions related to excitation of surface plasmons introduce new concepts :

SPR based fiber optics sensors. To enhance sensitivity cladding removed optical fibers

or D-shaped cylindrical core optical fibers are used. Traditionally, fiber optics are coated

with metals to excite surface plasmons. However, indium oxide which is a transpar-

ent conducting oxide was reported to better coating material than noble metals (Au and

Ag)(Rani, 2014). Indium oxide has number of advantages such as, high transparency in

the visible region, good electrical conductivity, and high IR reflectivity. Therefore, their

characterizations especially thickness is crucial since its sensitivity highly related to thick-

ness of the indium oxide (Rani et al., 2013). Phase diffraction methods might be used to

determine its thickness.

Over the last few years, there is a growing interest for light scattering and diffrac-

tion from subwavelength structures where contribution from evanescent fields can not

be ignored (Makris and Psaltis, 2011). Conventional scalar diffraction integrals fail to

describe the process. As it is emphasized earlier section, our working region does not

include reactive near field both experimentally and theoretically. We could not realize ex-

perimentally since it is challenging to reach that kind of thicknesses. From the theoretical

point of view, it can be said that traditional scalar diffraction integrals must be modi-

fied by regarding oscillating dipoles instead of point sources to enable work on reactive

(evanescent) near fields (Makris and Psaltis, 2011). Modified diffraction integrals can be

examined whether these modified integrals yield more resolution since obtaining higher

resolution beyond the limits that attract great deal of attention. In order to overcome

this problem, there are lots of developments both reactive near and far fields nowadays.

Reactive (evanescent) near field techniques exploit the fact that evanescent field carries

information that can provide basis to exceed the limits. As modification diffraction inte-
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grals takes evanescent fields into account, it might be considered as a candidate that can

surpass the diffraction limits.
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Maciel, F. G. Peña-Lecona, R. Selvas-Aguilar, and G. Anzueto-Sánchez (2014).

Measurement of the refractive index by using a rectangular cell with a fs-laser en-

graved diffraction grating inner wall. Optics Express 22(24), 29899–29906.

Faust, R. C. (1950). Fresnel diffraction at a transparent lamina. Proceedings of the

Physical Society. Section B 64(2), 105–114.

Feynman, R. P., R. B. Leighton, and M. Sands (1965). The Feynman Lectures on

Physics, Volume 3rd. Addison-Wesley.
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APPENDIX A

DERIVATIONS OF THE THEOREM AND THE

CONDITION

A.1. Kirchhoff Integral Theorem

Here some important steps in the derivation of the integral theorem of Kirchhoff.

This is relevant to discussion on page 9 (See Figure 2.2).

0 =

(∫∫
S

+
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(A.2)

where dω represents elements of solid angle. So as we take ε→ 0 all the terms but second

term goes to zero. The integration results 4πU(P ) and it gives the Kirchhoff’s integral

theorem.

U(P ) =
1

4π
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S

[
∂U
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(exp(jks)
s
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− U ∂
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(exp(jks)
s
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dS. (A.3)
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A.2. Sommerfeld Radiation Condition

We discussed that there is no contribution from boundary C at infinity to the field

intuitively, but the discussion was put on the mathematical basis by Sommerfeld.
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1
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(A.4)

Last integral on the RHS of the Equation (A.4) will vanish when we take the limitR→∞
due to the finiteness condition such that |RU | remains bounded (Schot, 1992).

UC(P ) =
1

4π

∫∫
ω

[∂U
∂n
− jkU

]
R dω, (A.5)

where dω again represents elements of solid angle. The integral will vanish to ensure

there is no contribution from portion C if

lim
R→∞

R
[∂U
∂n
− jkU

]
= 0. (A.6)

The Equation (A.6) is called Sommerfeld radiation condition. It guarantees that only

outgoing waves satisfy.
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