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A numerical study on natural convection heat transfer of cold water near 4 �C in a thick bottom walled
cavity filled with a porous medium has been performed. It is assumed that the cavity is isothermally
heated from the outside of the thick bottom wall and cooled from ceiling. The finite-difference method
has been used to solve the governing partial differential equations of heat and fluid flow. Effects of ther-
mal conductivity ratio, Rayleigh number and bottom wall thickness on heat transfer from the bottom to
the ceiling have been studied. The heatline visualization technique has been used to demonstrate the
path of heat transport through the enclosure. Moreover, streamlines and isotherms have been used to
present fluid flow and temperature distributions. The obtained results show that multiple circulation
cells are formed in the cavity and the local Nusselt numbers at the bottom wall and solid–fluid interface
are highly affected by formed cells. The increase of Rayleigh number and thermal conductivity ratio
increases heat transfer through the cavity. However, the increase of thickness of the bottom wall reduces
the mean Nusselt number. Almost one-dimensional conduction heat transfer is observed in the solid bot-
tom wall of the cavity.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Analysis of thermal energy transport through porous media has
many important applications in engineering, such as the energy
efficient building design, geothermal reservoirs, nuclear industry,
etc. Most of these applications can be found in the published books
[1,2]. An interesting result in these applications is that there is a
non-linear relationship between the density of water and the tem-
perature around 3.98 �C. At this point the density of water has a
maximum value and the Boussinesq approximation is not valid
[3]. In this respect, Blake et al. [4] performed a numerical study
on natural convection in a two-dimensional horizontal porous
layer heated from below and saturated with cold water at the max-
imum density of water at 3.98 �C inside the layer, while the tem-
perature of the top surface is maintained at 0 �C and the
temperature of the bottom surface is changed from 4 �C to 8 �C,
respectively. It is found that the number of cells is affected when
the values of the Rayleigh number are changed. Saeid and Pop
[5] performed a numerical analysis to investigate the effects of
maximum density on natural convection in a partially heated cav-
ity. It is worth mentioning that relatively many studies can be
ll rights reserved.
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found in the literature on natural convection in cavities filled with
a Newtonian fluid or a porous medium saturated with water near
4 �C, see Sivasankaran and Ho [6], Osorio et al. [7], Inaba and Fuk-
uda [8], Lin and Nansteel [9], Ho and Tu [10].

In many thermal systems, both conduction in the solid (such as
a wall, fin, etc.) and convection in the fluid region occur simulta-
neously and these are called as conjugate heat transfer problems.
The influence of heat conduction in a wall, on natural convection
in a cavity filled with a porous medium has gained the attention
of several researchers in recent years. Saeid [11] performed a
numerical study to investigate the effect of heat conduction of a
vertical wall on free convection in a porous cavity. It has been
found that either increasing the Rayleigh number and the thermal
conductivity ratios or decreasing the thickness of the bounded wall
can increase the average Nusselt number. The natural convection
in a square cavity with the two horizontal walls of finite thickness
and filled with a porous medium has been investigated numeri-
cally by Baytas et al. [12]. It has been shown that the value of
the mean Nusselt number decreases with the increase of thermal
conductivity ratio. Al-Amiri et al. [13] considered the steady-state
conjugate natural convection in a fluid-saturated porous cavity.
The configuration consists of two insulated horizontal walls and
two vertical walls one of which has a finite thickness. The vertical
walls are maintained at constant but different temperatures.
Finally, we mention the paper by Chang and Lin [14], who studied
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Nomenclature

AR aspect ratio parameter, AR = H/L
g magnitude of the gravitational acceleration (m s�2)
H height of the cavity (m)
h
0

thickness of the bottom wall (m)
h heat transfer coefficient, dimensionless thickness of the

bottom wall, h = h
0
/H

k thermal conductivity (W/m �C)
K permeability of the porous medium (m2)
L length of the cavity (m)
Nux local Nusselt number, Nux = (�oh/oY)Y=0

Nu mean Nusselt number as in Eqs. (21) and (22)
Ra Rayleigh number, Ra = (gbK(Th � Tc)L)/tam

T temperature, �C
u, v dimensional velocities in x- and y-directions (m s�1)
U, V dimensionless velocities in X- and Y-directions
x, y dimensional coordinates (m)
X, Y dimensionless coordinates

Greek letters
am effective thermal diffusivity (m2 s�1)

b thermal expansion coefficient (K�1)
c constant in Eq. (4)
j conjugate parameter, j = ks/kf

/ dimensionless heat function
U any variable
h dimensionless temperature, h = (T � Tm)/(Th � Tc)
q density (kg m�3)
t kinematic viscosity (m2 s�1)
W dimensionless stream function, W = w/am

Subscripts
c cold
f fluid
h hot
s solid
m maximum

Fig. 1. Physical model.
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the effect of the conduction of a wall on natural convection in a
cavity filled with a non-Darcian porous medium.

The heatline visualization technique is a useful tool for conju-
gate heat transfer problems to show the path of heat transfer from
solid to fluid or vice verse. The technique was first proposed by
Kimura and Bejan [15] to visualize heat transport for a convective
heat transfer. A detailed review on the application of heatline visu-
alization method has been presented by Costa [16]. Hakyemez
et al. [17] used heatline visualization technique to show the path
of heat transfer in a cavity. In their geometry, the ceiling wall be-
haves as a thermal barrier.

Based on the existing literature, it seems that no study has been
performed on the conduction-natural convection heat transfer in a
cavity filled with a porous medium and saturated with cold water.
The aim of the present study is, therefore, to examine the conduc-
tion and natural convection heat transfer in a cavity with a thick
bottom wall for the case when the cavity is heating by the bottom
wall and is cooled by the ceiling. The obtained results are discussed
for some values of the thicknesses parameter of the bottom wall,
Rayleigh numbers and thermal conductivity ratios parameter.
2. Governing equations and model

A two-dimensional horizontal rectangular cavity of height H
and length L with the vertical walls adiabatic and a thick bottom
wall of thickness h0 is considered as shown in Fig. 1. It is assumed
that the cavity is filled with a porous layer saturated with water at
a maximum. In addition, it is assumed that the cavity is heated
from the bottom wall and cooled from the ceiling. The governing
equations of continuity, Darcy and energy can be written as
follows:

ou
ox
þ ov

oy
¼ 0; ð1Þ

ou
oy
� ov

ox
¼ �2gKcðT � TmÞ

m
oT
ox
; ð2Þ

u
oT
ox
þ v oT

oy
¼ am

o2T
ox2 þ

o2T
oy2

 !
; ð3Þ

where u and v are the velocity components along the x- and y-axes,
K is the permeability of the porous medium, am is the effective ther-
mal diffusivity of the porous medium and t represents the kine-
matic viscosity. The following assumptions are used to write Eqs.
(1)–(3):

– the viscous drag and inertia terms are neglected;
– the flow is two-dimensional and steady;
– the fluid is incompressible;
– radiation mode of heat transfer is neglected compared to other

modes of heat transfer;
– the dependence of density q on temperature of the porous med-

ium saturated with cold water is given by Goren [18] as

q� qm

qm
¼ �cðT � TmÞ2; ð4Þ

where qm and Tm are the maximum density and the maximum tem-
perature in the liquid phase, respectively. The symbol c is the con-
stant coefficient and its value is taken as c = 8.0 � 10�6 �C�2. Moore
and Weiss [19] stated that Eq. (4) is accurate to within ±4% in the
range 0 �C 6 T 6 8 �C and the value of maximum temperature is ta-
ken as Tm ffi 4 �C. Further, the following dimensionless variables can
be introduced to obtain the dimensionless form of the governing
equations (Eqs. (1)–(3)):

X ¼ x
L
; Y ¼ Y

L
; U ¼ uL

am
; V ¼ vL

am
; h ¼ T � Tm

Th � Tc
; ð5Þ

and the dimensionless stream function W, which is defined in the
usual way as
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U ¼ oW
oY

; V ¼ � oW
oX

ð6Þ

Substituting (5) into Eqs. (1)–(3) and using Eq. (6), leads to the fol-
lowing set of equations [20–21]:

o2W

oX2 þ
o2W

oY2 ¼ �2Ra
oh
oX

h; ð7Þ

oW
oY

oh
oX
� oW

oX
oh
oY
¼ o2h

oX2 þ
o2h

oY2 ; ð8Þ

where Ra is the Rayleigh number for a porous medium which is de-
fined as:

Ra ¼ gKcðTh � TcÞ2L
mam

: ð9Þ

In addition, the following heat conduction equation is valid for the
heat transfer in the solid wall:

o2hs

oX2 þ
o2hs

oY2 ¼ 0; ð10Þ

where hs denotes the dimensionless temperature in the solid wall.

2.1. Definition of heat function

Heat function for a two-dimensional convection problem can be
defined as [22]

� oh
ox
¼ qcpvðT � TmÞ � kf

oT
oy
; ð11Þ

oh
oy
¼ qcpuðT � TmÞ � kf

oT
ox
; ð12Þ

where h is the dimensional heat function, kf is the thermal conduc-
tivity of the fluid-saturated porous medium and cp is the specific
heat at constant pressure. By employing the dimensionless param-
eters defined by Eq. (5), the dimensionless form of Eqs. (11) and (12)
become:

� o/
oX
¼ Vh� oh

oY
; ð13Þ

o/
oY
¼ Uh� oh

oX
; ð14Þ

where / is the dimensionless heat function and it is defined as:

/ ¼ h
kðTh � TcÞ

: ð15Þ

Assuming that h is a continuous function to its second order deriv-
atives, Eqs. (13) and (14) lead to the following differential equation
for the heat function:

o2/

oX2 þ
o2/

oY2 ¼
oðUhÞ
oY

� oðVhÞ
oX

: ð16Þ

The convection terms which are written on the right-hand side of
Eq. (16) act as a source term. For the solid region, the value of source
term is zero due to fact that the velocity is absent here. We notice
that the solution of the heat function equation (16) yields the distri-
bution of the dimensionless heat function in the cavity. The drawing
of isolines of the heat function generates the heatlines.

2.2. Boundary conditions

For all solid walls, the boundary conditions for the stream func-
tion W are given as W = 0, however, the boundary conditions for
the energy equation are not identical at all walls. As indicated by
Saeid and Pop [5] that definition of dimensional boundary condi-
tions are taken as Tc = 0 �C and Th = 8 �C for cold and hot walls,
respectively. Thus, non-dimensional boundary conditions as

On the bottom wall ðhotÞ : h ¼ 0:5; ð17Þ

On the side walls ðadiabaticÞ :
oh
on
¼ 0; ð18Þ

On the top wall ðcoldÞ : h ¼ �0:5: ð19Þ

The boundary condition for the solid–fluid interface of the bottom
wall is defined as:

ohf

oY
¼ j

ohs

oY
; ð20Þ

where j = ks/kf is the conjugate parameter. The physical quantities
of interest are the local Nusselt number Nux and the average Nusselt
number, Nu. For the fluid region the local and average Nusselt num-
bers are defined as:

Nuxf ¼ �
oh
oY

� �
Y¼h

; Nuf ¼
Z 1

0
Nuxf dX: ð21Þ

While for the solid region local and average Nusselt numbers can be
defined as:

Nuxs ¼ �
ohs

oY

� �
Y¼0

; Nus ¼
Z 1

0
Nuxs dX: ð22Þ

For the present problem, the vertical sides of the wall are insulated;
therefore the relation between mean Nusselt numbers for solid and
fluid regions can be expressed as:

Nuf ¼ jNus: ð23Þ

The boundary conditions for the dimensionless heatfunction equa-
tion (Eq. (16)) are obtained from the integration of differential def-
inition of U along the considered boundary conditions:

for X ¼ 0 adiabatic wall : /ð0;YÞ ¼ /ð0;0Þ; ð24Þ
for X ¼ 1 adiabatic wall : /ð1;YÞ ¼ /ð1;0Þ; ð25Þ

for Y ¼ 0 hot wall : /ðX;0Þ ¼ /ð0;0Þ þ j
Z X

0
Nuxs dX; ð26Þ

for Y ¼ H=L cold wall : /ðX;H=LÞ ¼ /ð0;H=LÞ þ
Z X

0
Nuxf dX: ð27Þ

For the solid–fluid interface the boundary condition for the heat
function / can be obtained from the following relation:

for Y ¼ h and 0 < X 6 1
o/
oX
¼ oh

oY
: ð28Þ

The value of heat function at the origin point is assumed as /
(0, 0) = 0.

3. Numerical method

Finite difference method with central difference technique is
used to solve the governing equations (7) and (8) subject to the
boundary conditions (17)–(20). For boundaries, backward and for-
ward difference schemes were applied. The solution of linear alge-
braic equations was performed using iterative method (Successive
Under Relaxation, SUR) and applying 0.1 as under-relaxation coef-
ficient for all dependent variables. The iteration process is termi-
nated when the following condition is satisfied:

X
i;j

jUm
i;j �Um�1

i;j j
,X

i;j

jUm
i;jj 6 10�5; ð29Þ

where m denotes the iteration step and U stands for either h or W.
Uniform grid distribution is used for whole cavity. Published exper-
imental data are not available from the literature for the studied



Fig. 2. Comparison of isotherms and streamlines with the literature at Ra = 2500: (a) isotherms for present (on the left) and Blake et al. [4] (on the right), (b) streamlines for
present (on the left) and Blake et al. [4] (on the right).
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enclosure configuration and boundary conditions. Thus, the valida-
tion of the obtained results against suitable experimental data could
not be performed. However, a test was made to compare the results
obtained by the present code with the results of earlier study of
Blake et al. [4]. The obtained results are compared and shown in
Fig. 2 by isotherms (on the top row) and streamlines (on the bottom
row) for Ra = 2500 and AR = 0.5. It is clearly seen that the obtained
results are in good agreement with the reported ones.

4. Results and discussion

The study presents results of heat and fluid flow of natural con-
vection in a rectangular porous enclosure filled with cold water.
Fig. 3. Streamlines (left), isotherms (middle) and heatlines (right) for different Rayleig
The effects of the Rayleigh number, thickness of the bottom wall
and thermal conductivity ratio on heat transfer in the enclosure
are investigated for AR = 0.5. Results are present by streamlines,
isotherms, heatline distributions and the changes of local and
mean Nusselt numbers. Fig. 3 shows streamlines (left), isotherms
(middle) and heatlines (right) for different values of the Rayleigh
number as Ra = 1000, 2000 and 3000 when j = 1.0 and h = 0.1.
Multiple circulation cells are formed for all cases. The positive sign
of W denotes anti-clockwise circulation, and the clockwise circula-
tion is represented by the negative sign of W. The shape of stream-
lines, isotherms and heatlines are symmetry respect to the middle
line of cavity (X = L/2). In the three cavities, two regions are seen as
bottom region with circulation cells and top region with almost
h numbers for j = 0.1 and h = 0.1: (a) Ra = 1000, (b) Ra = 2000, and (c) Ra = 3000.



Fig. 4. Streamlines (left), isotherms (middle) and heatlines (right) for different height of thick wall Ra = 2000 and j = 1.0: (a) h = 0, (b) h = 0.05, and (c) h = 0.2.
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stagnant fluid. In the bottom region, the effect of convection heat
transfer is significant and the effect of fluid flow can be seen from
the isotherm patterns since they are not parallel to the floor and
the flow cells distort the line shape of isotherms. However, on
the top region of the cavity, the fluid is in the stagnant state and
conduction heat transfer is dominant. That is why the isotherms
are parallel to the ceiling and heatlines are almost perpendicular
to the isotherms. The increase of Rayleigh number increases the
strength of convection and isotherms are more distorted. The path
of heat transfer from the bottom to the ceiling wall in solid and
fluid regions can be clearly seen from the heatline patterns. In
the solid wall, heatlines are parallel to the each others and parallel
Fig. 5. Streamlines (left), isotherms (middle) and heatlines (right) for differen
to the vertical walls signifying one-dimensional conduction heat
transfer. In the heatline patterns of three cavities in Fig. 3, cells
in which heat is only rotated is seen. These regions can be called
as passive region since they do not play an important role on heat
transfer from bottom to the top wall. The area of passive regions is
expanded by increasing of convection strength.

Fig. 4 is displayed to investigate the floor thickness on the
mechanism of heat and fluid flow. This figure shows streamlines
(left), isotherms (middle) and heatlines (right) for different thick
wall as h = 0, 0.05 and 0.2 when Ra = 2000 and j = 1.0. As seen from
Fig. 3, the solution is very sensitive to the parameter of thickness of
bottom wall (h) and this parameter plays an important role on heat
t thermal conductivity ratio Ra = 2000 and h = 0.1: (a) k = 0.5, (b) j = 10.
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transfer from the bottom to the top of cavity. The increase of the
bottom wall thickness reduces heat transfer though the cavity
and consequently decreases number of the flow cells. Similar to
Fig. 3, two regions as bottom region with circulation cells and
top region with stagnant fluid are seen in the cavities of Fig. 4.
The increase of wall thickness reduces the strength of flow and in-
creases the effect of conduction heat transfer. That is why the area
occupied with stagnant fluid is expanded by increasing thickness
of the bottom wall. For h = 0.2, the isotherms almost in the half re-
gion of the cavity are parallel to the top wall and heatlines are al-
most perpendicular to the isotherms signifying dominant
conduction heat transfer in half of cavity. Again, almost one-
dimensional heat transfer occurs in the solid bottom wall even in
the solid wall of cavity with h = 0.2. The passive regions in which
heat is only rotates are seen in all cavities of Fig. 4. However, the
areas occupy by the passive regions decreases with increase of wall
thickness.
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Fig. 6. Variation of local Nusselt number along the bottom wall and solid fluid interfa
conductivity ratio when Ra = 2000 and h = 0.1. (c) Effects of height of solid wall when R
Fig. 5 illustrates contours to see the effects of thermal conduc-
tivity on distribution of heat and fluid flow inside the cavity. As
seen from the figure, thermal conductivity ratio affects the number
of circulation cells due to high conductivity of the solid wall. Thus,
maximum density line moves to the ceiling with increasing of ther-
mal conductivity. However, flow strength increases due to thermal
conductivity of the bottom wall. As seen from the heatlines, the
area of passive regions is expanded with increasing of j.

Fig. 6 shows the variation of local Nusselt number for solid and
fluid at of Y = 0 and Y = h, respectively, for different values of Rayleigh
number, thermal conductivity ratio and wall thicknesses. Fig. 6(a)
shows Nuxs and Nuxf for the cavity with j = 1.0 and h = 0.1 and for
three values of Rayleigh number as 1000, 2000 and 3000. As is seen,
the local solid Nusselt number is almost identical with the fluid local
Nusselt number since j = 1.0 and almost one-dimensional heat
transfer exists. The local Nusselt number for solid and fluid regions
are not uniform and their values are changed by location. The loca-
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a = 2000 and j = 1.0.
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tions for the minimum and maximum local Nusselt numbers for
Ra = 1000 are different than locations of those seen for Ra = 2000
and 3000. The increase of the Rayleigh number increases Nusselt
number and consequently heat transfer through the cavity in-
creases. The variations of solid and fluid local Nusselt numbers for
cavity with Ra = 2000 and h = 0.1 for different conductivity ratio
are given in Fig. 6(b). The locations for the minimum and maximum
solid and fluid local Nusselt numbers are identical signifying almost
one-dimensional heat transfer in the bottom wall. Due to different
values of conductivity ratio, the values of Nuxs and Nuxf are very dif-
ferent for j = 0.5 and 10 compared to j = 1.0. As is seen, the increase
of thermal conductivity ratio increases fluid Nusselt number means
that heat transfer through the cavity increases. The increase of ther-
mal conductivity ratio reduces solid local Nusselt number and ap-
proaches to a constant value as 0.1 due to increase of one-
dimensional heat transfer. Fig. 6(c) shows the variation of solid
and fluid Nusselt number for different values of wall thickness. The
increase of bottom wall thickness reduces solid and fluid Nusselt
numbers. Again, the variations of the solid and fluid Nusselt numbers
are similar to each other since j = 1.0.

The variations of fluid mean Nusselt number with Rayleigh
number for different thickness of bottom wall are shown in
Fig. 7. For Rayleigh number around 500, conduction heat transfer
is the dominant mode of heat transfer in the cavity for different
values of bottom wall thickness. That is why the gradient of the
dimensionless temperature along the vertical direction of the cav-
ity is identical for the different wall thickness. The increase of the
Rayleigh number enhances convection effect and hence mean Nus-
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Fig. 7. Variation of mean Nusselt number for different Rayleigh number at different
height of thick wall when j = 1.0.
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Fig. 8. Variation of mean Nusselt number for different Rayleigh number at different
thermal conductivity ratio when h = 0.1.
selt numbers for different wall thickness become different. As is
seen in Fig. 7, the increase of the bottom wall thickness reduces
fluid mean Nusselt number. By adding dimensionless wall thick-
ness as h = 0.2 and j = 1.0 to the bottom of a cavity with
Ra = 5000, the mean Nusselt number of the cavity is reduced.

Fig. 8 shows the change of the fluid mean Nusselt number with
Rayleigh for different values of thermal conductivity ratio. Similar
to Fig. 6, for low values of Rayleigh number, the values of Nuf are
almost same due to dominant conduction mode of heat transfer.
The increase of the conductivity ratio increases the value of Nuf

and consequently heat transfer through the cavity increases. For
an enclosure with bottom wall thickness as h = 0.1 and Ra = 5000,
the increase of thermal conductivity ratio from 0.5 to 10 increases
3.33 times the fluid Nusselt number.

5. Conclusions

A numerical study was conducted on conduction-natural con-
vection heat transfer and fluid flow for cold water in an enclosure
with finite bottom wall and filled with porous medium. The study
was performed for different values of Rayleigh number, thermal
conductivity ratio and thickness of bottom wall. Heatline visualiza-
tion technique was used to present the path of heat flow from the
bottom to the top wall. The obtained results show that the bottom
wall plays a heat barrier role on the heat transfer through the cav-
ity. The increase of conductivity ratio (j = ks/kf) enhances heat
transfer rate, however, the increase of the bottom wall thickness
reduces natural convection from the bottom to the top wall. Simi-
lar to the other natural convection heat transfer problems, the in-
crease of the Rayleigh number enhances the strength of the heat
and flow and consequently Nusselt number increases. Generally
two regions are observed in the cavity. In the bottom region of
the cavity circulation cells form while fluid is in stagnant state in
the top region. Heatline visualization technique was successfully
applied to the problem to demonstrate the path of heat transfer
in both solid and fluid regions.
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