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In this paper, Kawahara type equations are selected to illustrate the effectiveness and sim-
plicity of the G0=G-expansion method. With the aid of a symbolic computation system,
three types of more general traveling wave solutions (including hyperbolic functions, trig-
onometric functions and rational functions) with free parameters are constructed. Solu-
tions concerning solitary and periodic waves are also given by setting the two arbitrary
parameters, involved in the traveling waves, as special values.
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1. Introduction

Searching exact and explicit solutions of nonlinear partial differential equations is of vital importance in applied math-
ematical sciences and it becomes one of the most exciting and extremely active areas of the research. Because, it is
well-known that all nonlinear partial equations can be separated essentially on two parts: the integrable partial differential
equations and non-integrable ones. The first type, i.e. the integrable equations has infinite number of the exact solutions. The
most well-known equations among them are Korteweg–de Vries equation, Sine–Gordon equation, Kawahara type equations,
nonlinear Schrödinger equation, Boussinesq equations and the list can be expanded with other basic integrable equations
but it is not our purpose to give all list. Nonlinear partial differential equations with some exact solutions or without exact
solutions are assumed to be in the class of non-integrable partial differential equations and they may need special treatment
to obtain their solutions due to the form of the nonlinear differential equation and the pole of its solution. Burger–Huxley
equation, Fisher equation, Fitzhugh–Nagumo equation, Ginzburg–Landau equation can be mentioned as well-known non-
integrable partial differential equations among them all.

In the last few decades great progress was made in the development of methods for obtaining exact solutions of nonlinear
equations but the progress achieved is not adequate. Because, from our point of view, there is no single best method to ob-
tain exact solutions of nonlinear differential equations of both type and each method have its merits and deficiencies
depending on the researchers experience and the sympathy to the method utilized. Moreover, it can be said that all these
methods are problem dependant, namely some methods work well with certain problems but others not. Therefore, it is
rather significant to apply some well-known methods in the literature to nonlinear partial differential equations which
are not solved with that method to search possibly new exact solutions or to verify the existing solutions with different
approach.

Recently, there have been many effective and convenient methods for solving nonlinear equations in the literature.
The essential part of these methods are based on the proposal that the special functions that one takes to expand
the exact solution are the general solution of simpler ordinary differential equation with less order than the original
. All rights reserved.
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differential equation with eminent solution (differential equations with constant coefficients, Riccati equation, the equa-
tions in support of elliptic function, etc.). The variant of these methods are auxiliary equation methods [1–4], generalized
Riccati expansion method [5], F-expansion method [6], mapping method [7], elliptic function method [8], exp-function
method [9–12] and so on.

Very recently, Wang and Zhang [13] pioneered a new direct method, the so-called G0=G-expansion method, to search for
traveling wave solutions of nonlinear evolution equations (NLEEs). In their remarkable study [13], Wang and Zhang success-
fully obtained more traveling wave solutions of four NLEEs. Later, to improve the work made in [13], some important studies
on the generalizations and the extensions of the G0=G-expansion method have been presented by the authors [14–31] in the
open literature.

The G0=G-expansion method is based on the explicit linearization of nonlinear differential equations for traveling waves
with a certain substitution which leads to a second-order differential equation with constant coefficients. The computations
are performed with a computer algebra system (CAS) such as Mathematica to deduce the solutions of the nonlinear equations
in an explicit form. The solution process of the method is direct, effective and convenient due to solving the auxiliary equa-
tion of second-order differential equation with constant coefficients.

The present paper is motivated by the desire to use the G0=G-expansion method to seek more general form exact and ex-
plicit solutions of Kawahara type equations which may be important to explain some physical phenomena.

2. The G0=G-expansion method

We assume that the given nonlinear partial differential equation for uðx; tÞ to be in the form
Pðu;ux;ut ;uxx;uxt ;utt ; . . .Þ ¼ 0; ð1Þ
where P is a polynomial in its arguments, which includes nonlinear terms and the highest order derivatives. Then using the
transformation uðx; tÞ ¼ uðnÞ; n ¼ kxþwt we reduce Eq. (1) to the ordinary differential equation
Qðu; un; unn; . . .Þ ¼ 0; ð2Þ
and we look for its solution uðnÞ in the polynomial form
uðnÞ ¼
XN

i¼0

ai
G0

G

� �i

; ð3Þ
where G ¼ GðnÞ and ai are constants to be determined, N is a positive integer which is determined by the homogeneous bal-
ancing method and GðnÞ is the solution of the auxiliary linear second order ordinary differential equation
G00 þ kG0 þ lG ¼ 0; ð4Þ
where G0 ¼ dG
dn ; G00 ¼ d2G

dn2 ; k and l are constants to be determined later. Substituting (3) into Eq. (2) with the aid of a CAS, we
determine k; l and ai. Depending on the sign of the discriminant D ¼ k2 � 4l, the solutions of Eq. (4) can be readily found. As
a result, exact and explicit traveling wave solutions to the given nonlinear partial differential Eq. (1) can be derived imme-
diately, see [13] for more details.

3. The Kawahara equation

Let us consider the so-called Kawahara equation
ut þ auux þ buxxx � cuxxxxx ¼ 0; ð5Þ
where a; b, and c are nonzero arbitrary constants. Eq. (5), proposed first by Kawahara [32] in 1972, occurs in the theory of
shallow water waves and plays an important role in the modeling of many physical phenomena such as plasma waves, mag-
neto-acoustic waves, see [33–35] and the references therein. The existence and uniqueness of solutions are obtained by Shu-
angping and Shuangbin [36]. Now, substituting uðx; tÞ ¼ uðnÞ; n ¼ kxþwt in Eq. (5) and integrating the resulting ordinary
differential equation once, one obtains
wuþ ak
2

u2 þ bk3u00 � ck5uð4Þ þ d ¼ 0; ð6Þ
where prime denotes the derivative with respect to n and d is an integration constant. Now, we make an ansatz (3) together
with (4) for the solution of Eq. (6) and thus balancing the highest derivative term uð4Þ with the nonlinear term u2 in Eq. (6)
yields the leading order N ¼ 4. Therefore, we can write the solution of Eq. (6) in the form
u ¼ a0 þ a1
G0

G

� �
þ a2

G0

G

� �2

þ a3
G0

G

� �3

þ a4
G0

G

� �4

: ð7Þ
By (4) and (7) we derive the formulas for u2; u00, and uð4Þ as follows:
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u2 ¼ a2
0 þ 2a0a1

G0

G

� �
þ � � � þ 2a3a4

G0

G

� �7

þ a2
4

G0

G

� �8

; ð8Þ

u00 ¼ kla1 þ 2l2a2 þ ðk2a1 þ 2la1 þ 6kla2 þ 6l2a3Þ
G0

G

� �
þ � � � þ ð12a3 þ 36ka4Þ

G0

G

� �5

þ 20a4
G0

G

� �6

; ð9Þ

uð4Þ ¼ k3la1 þ 8kl2a1 þ 14k2l2a2 þ 16l3a2 þ 36kl3a3 þ 24l4a4

þ ðk4a1 þ 22k2la1 þ 16l2a1 þ 30k3la2 þ 120kl2a2 þ 150k2l2a3 þ 120l3a3 þ 240kl3a4Þ
G0

G

� �

þ � � � þ ð360a3 þ 2640ka4Þ
G0

G

� �7

þ 840a4
G0

G

� �8

; ð10Þ
Substituting (7)–(10) into (6), and setting the coefficients of ðG0=GÞi; ði ¼ 0;1; . . . ;8Þ to zero, we obtain the system of non-
linear algebraic equations for a0; a1; a2; a3; a4; k, and l:
0 : dþwa0 þ
1
2

kaa2
0 þ k3bkla1 � k5ck3la1 � 8k5ckl2a1 þ 2k3bl2a2 � 14k5ck2l2a2 � 16k5cl3a2

� 36k5ckl3a3 � 24k5cl4a4 ¼ 0;

1 : wa1 þ k3bk2a1 � k5ck4a1 þ 2k3bla1 � 22k5ck2la1 � 16k5cl2a1 þ kaa0a1 þ 6k3bkla2 � 30k5ck3la2

� 120k5ckl2a2 þ 6k3bl2a3 � 150k5ck2l2a3 � 120k5cl3a3 � 240k5ckl3a4 ¼ 0;

2 : 3k3bka1 � 15k5ck3a1 � 60k5ckla1 þ
1
2

kaa2
1 þwa2 þ 4k3bk2a2 � 16k5ck4a2 þ 8k3bla2 � 232k5ck2la2136k5cl2a2

þ kaa0a2 þ 15k3bkla3 � 195k5ck3la3 � 660k5ckl2a3 þ 12k3bl2a4 � 660k5ck2l2a4 � 480k5cl3a4 ¼ 0;

3 : 2k3ba1 � 50k5ck2a1 � 40k5cla1 þ 10k3bka2 � 130k5ck3a2 � 440k5ckla2 þ kaa1a2 þwa3 þ 9k3bk2a3

� 81k5ck4a3 þ 18k3bla3 � 1062k5ck2la3 � 576k5cl2a3 þ kaa0a3 þ 28k3bkla4 � 700k5ck3la4 � 2240k5ckl2a4

4 : �60k5cka1 þ 6k3ba2 � 330k5ck2a2 � 240k5cla2 þ
1
2

kaa2
2 þ 21k3bka3 � 525k5ck3a3 � 1680k5ckla3 þ kaa1a3

þwa4 þ 16k3bk2a4 � 256k5ck4a4 þ 32k3bla4 � 3232k5ck2la4 � 1696k5cl2a4 þ kaa0a4 ¼ 0;

5 : �24k5ca1 � 336k5cka2 þ 12k3ba3 � 1164k5ck2a3 � 816k5cla3 þ kaa2a3 þ 36k3bka4 � 1476k5ck3a4

� 4608k5ckla4 þ kaa1a4 ¼ 0;

6 : �120k5ca2 � 1080k5cka3 þ
1
2

kaa2
3 þ 20k3ba4 � 3020k5ck2a4 � 2080k5cla4 þ kaa2a4 ¼ 0;

7 : �360k5ca3 � 2640k5cka4 þ kaa3a4 ¼ 0;

8 : �840k5ca4 þ
1
2

kaa2
4 ¼ 0:
Solving the above system, we get the solution set
d ¼ w2

2ka�
648kb4

28561ac2 ; l ¼ � b

52k2c
þ k2

4 ; a0 ¼ 69kb2�169wc�2730k3bck2þ17745k5c2k4

169kac ;

a1 ¼ 840ð�k2bkþ13k4ck3Þ
13a ; a2 ¼ 840ð�k2bþ39k4ck2Þ

13a ; a3 ¼ 3360k4ck
a ; a4 ¼ 1680k4c

a :

8<
:

9=
; ð11Þ
Now, substituting the solution set (11)into (7) and taking the solutions of Eq. (4) into account; we obtain a more general
form hyperbolic function traveling wave solution to Eq. (5) as
u1ðx; tÞ ¼
105b2

169ac

C1 cosh 1
2

ffiffiffiffiffiffiffiffiffi
b

13k2c

q
ðkxþwtÞ

� �
þ C2 sinh 1

2

ffiffiffiffiffiffiffiffiffi
b

13k2c

q
ðkxþwtÞ

� �

C1 sinh 1
2

ffiffiffiffiffiffiffiffiffi
b

13k2c

q
ðkxþwtÞ

� �
þ C2 cosh 1

2

ffiffiffiffiffiffiffiffiffi
b

13k2c

q
ðkxþwtÞ

� �
0
BB@

1
CCA

4

� 210b2

169ac

C1 cosh 1
2

ffiffiffiffiffiffiffiffiffi
b

13k2c

q
ðkxþwtÞ

� �
þ C2 sinh 1

2

ffiffiffiffiffiffiffiffiffi
b

13k2c

q
ðkxþwtÞ

� �

C1 sinh 1
2

ffiffiffiffiffiffiffiffiffi
b

13k2c

q
ðkxþwtÞ

� �
þ C2 cosh 1

2

ffiffiffiffiffiffiffiffiffi
b

13k2c

q
ðkxþwtÞ

� �
0
BB@

1
CCA

2

� w
ka
þ 69b2

169ac
; ð12Þ
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where cb > 0; C1 and C2 are arbitrary constants; a more general form trigonometric function traveling wave solution to Eq.
(5) as
u2ðx; tÞ ¼
105b2

169ac

�C1 sin 1
2

ffiffiffiffiffiffiffiffiffi
�b

13k2c

q
ðkxþwtÞ

� �
þ C2 cos 1

2

ffiffiffiffiffiffiffiffiffi
�b

13k2c

q
ðkxþwtÞ

� �

C1 cos 1
2

ffiffiffiffiffiffiffiffiffi
�b

13k2c

q
ðkxþwtÞ

� �
þ C2 sin 1

2

ffiffiffiffiffiffiffiffiffi
�b

13k2c

q
ðkxþwtÞ

� �
0
BB@

1
CCA

4

þ 210b2

169ac

�C1 sin 1
2

ffiffiffiffiffiffiffiffiffi
�b

13k2c

q
ðkxþwtÞ

� �
þ C2 cos 1

2

ffiffiffiffiffiffiffiffiffi
�b

13k2c

q
ðkxþwtÞ

� �

C1 cos 1
2

ffiffiffiffiffiffiffiffiffi
�b

13k2c

q
ðkxþwtÞ

� �
þ C2 sin 1

2

ffiffiffiffiffiffiffiffiffi
�b

13k2c

q
ðkxþwtÞ

� �
0
BB@

1
CCA

2

� w
ka
þ 69b2

169ac
; ð13Þ
where cb < 0; C1 and C2 are arbitrary constants.
In particular, if we take C2 – 0; C2

1 < C2
2, in (12) and (13), then we derive a formal solitary wave solution to Eq. (5) as
u3ðx; tÞ ¼
105b2

169ac
tanh4 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b

13k2c

s
ðkxþwtÞ þ n0

 !
� 210b2

169ac
tanh2 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b

13k2c

s
ðkxþwtÞ þ n0

 !
� w

ka
þ 69b2

169ac
; ð14Þ
where cb > 0 and n0 ¼ tanh�1ðC1=C2Þ; a periodic wave solution to Eq. (5) as
u4ðx; tÞ ¼
105b2

169ac
cot4 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�b

13k2c

s
ðkxþwtÞ þ n0

 !
þ 210b2

169ac
cot2 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�b

13k2c

s
ðkxþwtÞ þ n0

 !
� w

ka
þ 69b2

169ac
; ð15Þ
where cb < 0 and n0 ¼ tan�1ðC1=C2Þ.
Now, we compare our results with others: (1) Yusufoğlu and Bekir’s results [37]: first we take a ¼ b ¼ c ¼ 1 in (5). Then if

we take n0 ¼ 0; k ¼ a; w ¼ �ab in the new form of (14), our result will be the same as the first expression of (4.6) in [37].

Moreover, by taking C1 – 0; C2
1 > C2

2, and n0 ¼ tanh�1ðC2=C1Þ in our more general result (12) and following the same ap-
proach leads to the second expression of (4.6) in [37]. (2) Wazwaz’s results [38]: first we take c! �c in (5). Then if we take

n0 ¼ 0; k ¼ 1; w ¼ � 36b2

169c in the new form of (14), our result will be the same as (33) in [38]. Moreover, by a simple manip-

ulation, we can get (34) in [38] from our more general result (12). We observed that (35) and (36) in [38] can be derived from
our results (13) and (15). Similarly, it can be assured that (37)-(40) in [38] can be obtained from our more general solutions
(12) and (13).

4. The modified Kawahara equation

Next, we consider the modified Kawahara equation
ut þ au2ux þ buxxx � cuxxxxx ¼ 0; ð16Þ
where a; b, and c are nonzero arbitrary constants. This equation is also called the singularly perturbed KdV equation. Letting
uðx; tÞ ¼ uðnÞ; n ¼ kxþwt in (16) and integrating the resulting ordinary differential equation once, we get
wuþ ak
3

u3 þ bk3u00 � ck5uð4Þ þ d ¼ 0; ð17Þ
where prime denotes the derivative with respect to n and d is an integration constant. Balancing the terms uð4Þ and u3 in the
Eq. (17) yields the leading order N ¼ 2: Therefore, we can seek the solution of (17) in the form
u ¼ a0 þ a1
G0

G

� �
þ a2

G0

G

� �2

; ð18Þ
for which we can easily calculate the derivatives u00 and uð4Þ from (9) and (10) by setting a3 ¼ 0 and a4 ¼ 0. Substituting (18)
into (17) under the consideration of Eq. (4), and setting the coefficients of ðG0=GÞi; ði ¼ 0;1; . . . ;6Þ to zero, we obtain the sys-
tem of nonlinear algebraic equations for a0; a1; a2; k, and l:
0 : dþwa0 þ
1
3

kaa3
0 þ k3bkla1 � k5ck3la1 � 8k5ckl2a1 þ 2k3bl2a2 � 14k5ck2l2a2 � 16k5cl3a2 ¼ 0;

1 : wa1 þ k3bk2a1 � k5ck4a1 þ 2k3bla1 � 22k5ck2la1 � 16k5cl2a1 þ kaa2
0a1 þ 6k3bkla2 � 30k5ck3la2

� 120k5ckl2a2 ¼ 0;
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2 : 3k3bka1 � 15k5ck3a1 � 60k5ckla1 þ kaa0a2
1 þwa2 þ 4k3bk2a2 � 16k5ck4a2 þ 8k3bla2 � 232k5ck2la2

� 136k5cl2a2 þ kaa2
0a2 ¼ 0;

3 : 2k3ba1 � 50k5ck2a1 � 40k5cla1 þ
1
3

kaa3
1 þ 10k3bka2 � 130k5ck3a2 � 440k5ckla2 þ 2kaa0a1a2 ¼ 0;

4 : �60k5cka1 þ 6k3ba2 � 330k5ck2a2 � 240k5cla2 þ kaa2
1a2 þ kaa0a2

2 ¼ 0;

5 : �24k5ca1 � 336k5cka2 þ kaa1a2
2 ¼ 0;

6 : �120k5ca2 þ
1
3

kaa3
2 ¼ 0:
Solving the above system, we get the solution sets:
d ¼ kð�b3�15k4bc2ðk2�4lÞ2�50k6c3ðk2�4lÞ3Þ
15
ffiffiffiffi
10
p ffiffi

a
p

c3=2 ;w ¼ � kðb2þ15k4c2ðk2�4lÞ2Þ
10c ;

a0 ¼ �b�5k2cðk2þ8lÞffiffiffiffi
10
p ffiffi

a
p ffiffi

c
p ; a1 ¼ � 6

ffiffiffiffi
10
p

k2 ffifficp kffiffi
a
p ; a2 ¼ � 6

ffiffiffiffi
10
p

k2 ffifficpffiffi
a
p :

8><
>:

9>=
>; ð19Þ
Now, substituting the solution sets (19) into (18) and taking the solutions of Eq. (4) into account; we obtain more general
form hyperbolic function traveling wave solutions to Eq. (16) as
u1;2ðx; tÞ ¼ �
ffiffiffiffiffiffiffiffiffi
10c

p
k2ðk2 � 4lÞffiffiffi

a
p 1� 3

2

C1 cosh
ffiffiffiffiffiffiffiffiffiffi
k2�4l
p

2 n

� �
þ C2 sinh

ffiffiffiffiffiffiffiffiffiffi
k2�4l
p

2 n

� �

C1 sinh
ffiffiffiffiffiffiffiffiffiffi
k2�4l
p

2 n

� �
þ C2 cosh

ffiffiffiffiffiffiffiffiffiffi
k2�4l
p

2 n

� �
0
BB@

1
CCA

20
BBB@

1
CCCA� bffiffiffiffiffiffiffiffiffiffiffi

10ac
p ; ð20Þ
where k2 � 4l > 0; C1 and C2 are arbitrary constants, and n ¼ kx� kðb2þ15k4c2ðk2�4lÞ2Þ
10c t; more general form trigonometric func-

tion traveling wave solutions to Eq. (16) as
u3;4ðx; tÞ ¼ �
ffiffiffiffiffiffiffiffiffi
10c

p
k2ðk2 � 4lÞffiffiffi

a
p 1þ 3

2

�C1 sin
ffiffiffiffiffiffiffiffiffiffi
4l�k2
p

2 n

� �
þ C2 cos

ffiffiffiffiffiffiffiffiffiffi
4l�k2
p

2 n

� �

C1 cos
ffiffiffiffiffiffiffiffiffiffi
4l�k2
p

2 n

� �
þ C2 sin

ffiffiffiffiffiffiffiffiffiffi
4l�k2
p

2 n

� �
0
BB@

1
CCA

20
BBB@

1
CCCA� bffiffiffiffiffiffiffiffiffiffiffi

10ac
p ; ð21Þ
where k2 � 4l < 0; C1 and C2 are arbitrary constants, and n ¼ kx� kðb2þ15k4c2ðk2�4lÞ2Þ
10c t; more general form rational function

traveling wave solutions to Eq. (16) as
u5;6ðx; tÞ ¼ �
bffiffiffiffiffiffiffiffiffiffiffi

10ak
p � 6

ffiffiffiffiffiffiffiffiffi
10c

p
k2C2

1ffiffiffi
a
p

C1k x� b2

10c t
� �

þ C2

� �2 ; ð22Þ
where C1 and C2 are arbitrary constants. Meanwhile, (22) yields new rational function solutions for Eq. (16) which have not
been reported anywhere else to the best of our knowledge.

In particular, if we take C2 – 0;C2
1 < C2

2, then (20) leads formal solitary wave solutions to Eq. (16) as
u7;8ðx; tÞ ¼ �
ffiffiffiffiffiffiffiffiffi
10c

p
k2ðk2 � 4lÞffiffiffi

a
p 1� 3

2
tanh2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � 4l

q
2

nþ n0

0
@

1
A

0
@

1
A� bffiffiffiffiffiffiffiffiffiffiffi

10ac
p ; ð23Þ
where k2 � 4l > 0; n ¼ kx� kðb2þ15k4c2ðk2�4lÞ2Þ
10c t; n0 ¼ tanh�1ðC1=C2Þ, and (15) gives periodic wave solutions to Eq. (16) as
u9;10ðx; tÞ ¼ �
ffiffiffiffiffiffiffiffiffi
10c

p
k2ðk2 � 4lÞffiffiffi

a
p 1þ 3

2
cot2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l� k2

q
2

nþ n0

0
@

1
A

0
@

1
A� bffiffiffiffiffiffiffiffiffiffiffi

10ac
p ; ð24Þ
where k2 � 4l < 0; n ¼ kx� kðb2þ15k4c2ðk2�4lÞ2Þ
10c t, and n0 ¼ tan�1ðC1=C2Þ.

As in the previous case, if we compare our results with Yusufoğlu and Bekir’s results [37] and Wazwaz’s results [38], then
we see that the results (5.5) and (5.8) in [37] are special cases of our results (20), (21), (23), (24) and so are the results (29)-
(32) in [39]. Besides, the rational function solutions (22) are new and not obtained by the methods in [37,38].

5. Conclusion

In the present work, the G0=G-expansion method has been successfully applied to the Kawahara type equations. Solutions
in terms of solitary and periodic waves are found in more general forms. For certain choices of the parameters, it is observed
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that the previously known solutions can be recovered. New rational function solutions are also presented. The solutions have
different physical structures and depend on the real parameters. All solutions obtained in this study have been checked with
Mathematica by putting them back into the original equations. We predict that, being more effective and simple, wider clas-
ses of exact and explicit solutions to other nonlinear evolution equations arising in applied mathematics can be easily de-
rived by using the G0=G-expansion method.
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