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1. Introduction

As it is well known, the investigation of nonlinear differential-difference equations (NDDEs) is still of interest since the
original work of Fermi, Pasta and Ulam in the 1950s [1]. NDDEs, playing an important role in the study of nonlinear physical
phenomena, have become the focus of common concern in various branches of applied sciences such as condensed matter
physics, biophysics, and mechanical engineering, etc., and in different physical problems such as molecular crystals, currents
in electrical networks, atomic chains, etc. [2-5]. In high energy physics, one can also encounter NDDEs in numerical simu-
lation of soliton dynamics. Contrary to difference equations which are being fully discretized, NDDEs are semi-discretized
with some (or all) of their space variables discretized while time is usually kept continuous.

In the last four decades or so, searching for exact discrete analytic solutions of NDDEs by using a range of different
analytic methods has been the main purpose of many researchers. To this end, some attractive powerful methods pri-
marily developed for solving nonlinear evolution equations (NEEs) are generalized to a considerable number of NDDEs.
How to extend a method for NEEs to solve NDDEs is an interesting and important issue. For instance, Hirota’s bilinear
method is considered by Hu and Ma [6] to construct special soliton like solutions of the Toeplitz lattice. Liu et al. [7]
have found explicit and exact travelling wave solutions to three NDDEs by using the Jacobi elliptic function expansion
method. Baldwin and his team [8], with the aid of a computer algebra system, developed an algorithm for discrete non-
linear models in terms of a tanh function. Their work can be thought as a breakthrough for solving NDDEs symbolically.
Dai et al. [9] presented an extended Jacobian elliptic function algorithm for NDDEs. The Exp-function method is extended
by Zhu [10,11] to obtain some physically important solutions. Xie et al. [12] investigated the discrete sine-Gordon equa-
tion by applying a method which is based on Riccati equation expansion. By using the so-called ADM-Padé technique,
Yang et al. [13] studied two nonlinear lattice equations. Hu et al. [14], implementing the homotopy perturbation meth-
od, analyzed a nonlinear differential-difference equation arising in nanotechnology. More recently, Zhen [15] devised a
discrete tanh method for NDDEs, and so on.
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Generally, it is hard to extend an analytic method for NDDEs because series obstacles arise in searching for iterative rela-
tions from indices n to n + i. However, there is plenty of substantial work still to be done for the applicability of distinct ana-
lytic methods to NDDEs for it is obvious that no method can solve all types of NDDEs. As far as we could verify, little work is
being done to symbolically compute exact discrete solutions of NDDEs while there has been a considerable amount of work
done on finding exact solutions to NEEs. Hence, it will make sense to do more research on exactly solving NDDEs by improv-
ing known methods.

In 2005, Kudryashov [16,17] proposed the simplest equation method to search for exact solutions of nonlinear differential
equations in the form of solitary and periodic waves. Two basic ideas are taken into consideration for the proposed method.
The first idea is to use the simplest nonlinear ordinary differential equation (having lesser order then the equation studied)
with known general solution to construct new special solutions. For example, as the simplest equation, one can use the Ricc-
ati equation, the equation for the Jacobi elliptic function, the equation for the Weierstrass elliptic function, etc. The second
idea is to account all possible singularities of the solutions of the equation studied. Later, in 2008, Kudryashov and Loguinova
[18] modified the simplest equation method, called the extended simplest equation method, by considering a higher (third)
order linear ordinary differential equation as another simplest equation. Henceforth, by inspiring their pioneer work, our goal
in this study is to further generalize the extended simplest equation method for exactly solving NDDEs.

The rest of this paper is organized as follows. In Section 2, we describe our method, which is originated from the extended
simplest equation method, for finding exact discrete traveling wave solutions of NDDEs, and state the main steps. In Section
3, we illustrate the method in detail by studying the so-called Wadati lattice equation. Finally, some conclusions are given in
Section 4.

2. Methodology

Assume that we have a system of M polynomial NDDEs in the form

A<uﬂ+p1 (X), tee 7un+pk (X)r tee 7u;1+p1 (X), e 7un+pk (X), fee 7“&':1])1 (x)7 R 7“3':1]),( (X)) = 07 (1)

in which the dependent variable u, have M components u;, and so do its shifts; the continuous variable x has N components
x;; the discrete variable n has Q components n;; the k shift vectors p; € Z¢ ; and u®™ (x) denotes the collection of mixed deriv-
ative terms of order r.

Step 1. To search for travelling wave solutions of Eq. (1), we first take into consideration the wave transformation

Q N
un+ps(x) :Un+P5(én)7€yn :Zdlnl"rzc_}xj"rgv (S: 1527"'7k)7 (2)
i-1 =
where the coefficients ci,c5,...,cn,d1,da, . ..,dq and the phase { are all constants. Then, Eq. (1) changes into
A(Unipy (En)s- -+ Unipy(n), o U (G Upp, ), Uy (G Ul (Gn)) = O, (3)
Step 2. We suppose that the solution of Eq. (3) is in the finite series expansion form
m ’ l
4 (é;.))
Un(én) = ai< ) 4
n(&n) l;ﬁ (%) 4)

where m is a positive integer, g;s are constants to be determined later, y/(&,) is the general solution of the simplest equation.
Here, we would like to take the full advantage of linear theory, and thus we let the simplest equation in (¢,) be the second-
order linear ordinary differential equation

‘//”(‘fn) + k‘p(én) = 07 (5)

where k is an arbitrary constant and prime denotes derivative with respect to &,. We also point out that the power of the
extended simplest equation method lies in the fact that it has the flexibility of choosing such equation. The general solution
of the simplest Eq. (5) is well known for us. Thus, we get the following cases:

Vi) A; cosh (\/—_kg’,,> + A, sinh (\/—_kfn)

Y(n) vk (A1 sinh (x/—_kfn) + A, cosh (ijén) Lo o
V) _ ~Aqsin (Vké,) + A cos (Vi ) ko (6b)
¥(&n) A; cOs (\/l?c’,.) + Az sin (\mén)
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where A; and A, are arbitrary constants.
Step 3. By a simple calculation, we can get the identity

§H+Ps =&t Qs @;=Dg di +pody +--- + pSQdQ7 (7)

where p; is the jth component of the shift vector p,. Hence, considering the trigonometric/hyperbolic function identities and
using the functions (6a)-(6¢) as well as (7), we derive the uniform formulas

=0, (6¢)

n, (VRS ()~ ktanh (VR )t
Unﬂk(én) = Z ai k< 0, (83)
S \ V=ky(&,) + tanh (\/—_k(ps)tp/(én)
m Vky' (&) — ktan (Vke, ’,.[
Unip, (&n) = D @ i) an( « )‘P(@ ) , k>0, (8b)
o\ Vi (&) + tan (Vi)' (&)
Unp, (Gn) = O ai(W/ () /(&) + @0 (Gn)), k=0 (8¢)

I=—m

Step 4. Balancing the highest order nonlinear term(s) and the highest order derivative term in U, (&,) as in the continuous
case, we can easily determine the degree m of Eqs. 4 and (8a)-(8c) from Eq. (3). Since Up,,, can be interpreted as
being of degree zero in (y'(&,)/¥(&n)), the leading terms of Uy, p, (p,#0)will not have any effect on the balancing
procedure.

Step 5. Substituting the ansdtze 4 and (8a)-(8c) together with (5) into Eq. (3), equating the coefficients of
(w’(in)/xp(cfn))l(l =0,1,2,...) to zero, we obtain a system of nonlinear algebraic equations from which the undeter-
mined constants a;, d;,c;, and k can be explicitly found. Substituting these results into (4), we can derive varies
kind of exact discrete solutions to Eq. (1). Finally, it is essential to substitute the obtained solutions back into the
original Eq. (1) to assure their correctness.

3. Application

An important model for discrete solitons is the lattice equation
duy,(t
) (o () + 72(0) tar (1) — s (1), )
where u,(t) = u(n, t) is the displacement of the nth particle from the equilibrium position, n € Z,x, 8, and y#0 are arbitrary
parameters. For convenience, we call Eq. (9) as the Wadati lattice equation (WLE) since it was first introduced by Wadati [19]
in 1976. It is obvious that the WLE includes the famous NDDEs; the Hybrid lattice equation [8], the modified Volterra lattice
equation [20], and the discretized mKdV equation [8,21]. Moreover, the WLE can be thought as a discrete version of the non-
linear partial differential equation
Ug + 6oty 4 64U Uy 4 Uy = 0.
Now, for solving the WLE, we first introduce the traveling wave transformation

un:Un(Qyn% Cjn:d1n+C1f+C, (10)
where d;, c; are constants to be determined later, and { is an arbitrary phase constant. Then, Eq. (9) can be converted into
du, (&, ., p
C1 (;f( n) = (0( + U (&) + ﬂﬁ(én)) (Un-1(&n) = Uns1(&))- (11)
n

We expand the solution of Eq. (11) in the frame (4), and balancing the linear term of the highest order with the highest non-
linear term in (11) leads to m = 1. Thus, we consider the ansatz

wi=a -0 (S50 0. ()

for the discrete travelling wave solutions of Eq. (9). Now, the case analysis follows:

Case 1: When k < 0, from (8a), we have

1 (VR (&) F ktanh (VR () '
Unaa (&) = > @i :
V=i (en) & tanh (V=ko, )y’ (&)

=1

(13)
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Substituting (12) and (13) along with (5) into (11), clearing the denominator and setting the coefficients of all powers like
(1//(5,,)/1//(5,,))'(0 < 1< 8) to zero, we derive a system of nonlinear algebraic equations for ag,a;,a_1,d1, ¢1, and k. Solving the
set of algebraic equations (from now on, we omit to display them for the sake of saving space) simultaneously, we get the
following solution sets (denoted in curly brackets) and the corresponding discrete hyperbolic function traveling wave solu-
tions of Eq. (9):

Case 1.1:

{q =W tanh (\/——kd1), ao = *%,al = ¥\/2[72\/—:;:§ tanh (\/f—kd1)7 aq = 0}7 (14)

. _2%¢ B - 4ocyt2a;1h <\/—_kd1> A c?sh (\/—_kcn> + A, sinh (\/—_kcn> 7 (1)
Aq sinh (\/—_kgn) + A, cosh (\/—_kén)

(-4

where &, =din+ ) tanh (x/—kdl)t + ¢ and Aq, A, are arbitrary constants.

2V=ky
Case 1.2:
{cl - W tanh (V=Kd; ). 0 =~ 35, a1 = 0.0, = AL W tanh (V—kd ) } (16)
(0 = 72%¥ \/ B — Aoy t;;lh (ijd1> A c.osh (JTkén) + A, sinh (\/Tkén) 71, (17)
A; sinh (\/——kgn> + A, cosh (\/——kén>

2 Ao
where ¢, =din+ (/;;;f) tanh (x/—kdl)t + ¢ and Aq, A, are arbitrary constants.

Case 1.3:
(B* —4ory) sinh (2\/—kd1) B \/ B* —4aysinh (2\/—kd1> V—=ky/p* — 4oy sinh (2\/—kd1)
= ,do=—5-,01 =% a1 =7F ,
4V "ky 2y 4v—ky 4y

P dogsinh (2R (A cosh (VTR + Ausinh (VRz)
uj5(t) = 7 4y (Al sinh (\/:Egn) + A, cosh (\/—_kén)>

) \/[52——40(“/511111 (zﬂdl) (Al cosh (ﬂén> + A, sinh (\/_kfn>) 7 (19)

4y Avsinh (V=k, ) + 4, cosh (V=)

(/J2 —41*,') sinh (2\/——kd1 )

where &, = dyn + IR ¢ | ¢ and A, 4, are arbitrary constants.
Case 1.4.:
(1~ 42) tanh (2v/kd,) p VP ~4aytanh (2vRd ) VR84 tanh (20 Rd:
a= 4V —ky o= Tyt TF 4Ky =T 4y
(20)
) \/F — 4oy tanh (2vkd:) (A cosh (V=Key) + Az sinh (VRS B
tal) = =gy ¥ 4 (A1 sinh (V=k&, ) + A; cosh <\/—_k§>)
\/F — 4oy tanh (2v=kd: ) (Ar cosh (V=Ke,) +4; sinh (V-ke,)
- 4y (A1 sinh (V=k&, ) + Az cosh (\/—_kc>) ’ =

(B*—42y) tanh (2v/=kd; )

pva t + ¢ and A;, A, are arbitrary constants.

where &, = din+
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Remark 1. It appears that we can recover some previously known solutions from our results. To be more clear, we take our
Case 1.1 for example, and make a comparison analysis with other works as follows:

(i) One of the exponential function solutions to the WLE presented by Dai et al. [22] is

) B +brexp (-G + VIZ%5 tanh(d)(exp (&) — b-1 exp (~&,)) 2
T by exp (—&y) +exp (&) "
where ¢, = dn + @ tanh(d)t + ¢{. We extracted (22) from the formula (11) in there. An equivalent form of (22), using the
identity exp (2x) = (1 + tanh(x))/(1 — tanh(x)), is that

un(t) =

i p* — 4oty tanh(d) ((1 —b.1)+ (1+b_)tanh (g,,)) 23)

2" 2y (T+b)+ (1 -by)tanh(g,))"
Now, if we substitute d; =d,k = —-1,A; =1 —b_; and A, = 1 + b_; into our solution function u;, (t) of (15), then we get the
same result as (23).

(ii) One of the solitary wave solutions to the WLE obtained by Xie and Wang [23] is

B ? — 4oy tanh(d) (B* — 4ay) tanh(d)
un(t)f—2—y+z—ytanh dn+2—ﬂf+éo ) (24)

2 Ao . . .
where &, =dn+ Wt + &. If we take A;0,A? < A3 in our solution function u}, (t) of (15), then we get the formal

discrete solitary wave solution to the WLE as

2
LB f? — 4oy tanh (\/—_kd1> (B - o)) )
ub (t) = ~% % tanh | vV—k( din + e tanh (ﬂdl)t +e+4), (25)

where {y = tanh’l(Al/Az). Now, letting d; =d, k= —1, and { = &, — {, in (25) leads to the same result (24).
(iii) Finally, if we take A,#0,A] < A; in our solution function u,, (t) of (15), then we get the formal discrete solitary wave
solution to the WLE as

! )’2—4 t h \/jd 2 )
[)7 m an ( : 1) tanh <\/__k<d1n+wtanh (\/—_kd1>t+€> +£0>s (26)

U () = —— —

where ¢, = tanh ™’ (A1/A;). Now, letting d; = d, k= —1,and { = & — {; in (26) leads to the same result stated as Case 2 in Wu
and Xia [24].

Consequently, our results are wider in the sense that they contain more arbitrary parameters.

Remark 2. There have been precedents when "solutions” derived by the Exp-function method do not satisfy the original dif-
ferential equation, see Kudryashov and Loguinova [25]. Unintentionally, we observed that the result (11) of Dai et al. [22]
contains a superfluous (constant) solution to the WLE. Hence, the derivation of (12) and (13) from (11) are not correctly per-
formed in there.

Case 2 When k > 0, from (8b), we have

sy — VRS (za)  ktan (VEg, ) (&)
AT VRt £ an (Vi )o@ )

1=-1

(27)

Substituting (12) and (27) along with (5) into (11), clearing the denominator and setting the coefficients of all powers like
(l//(é,,)/w(g“n))’(o < 1 < 8) to zero, we derive a system of nonlinear algebraic equations for ag,a;,a_1,d;, ¢c1, and k. Solving the
set of algebraic equations simultaneously, we get the following solution sets and the corresponding discrete trigonometric
function traveling wave solutions of Eq. (9):

Case 2.1:

{61 :M tan <\/Ed1>,ao = —£7a1 =0,a_; = iL 4o tan (\/ﬂdl) }, (28)

2Vky 2y 2y
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5 B? — 4oy tan <\/Ed1) (—/‘h sin (\/E£n> + Az cos (\&fn)) B

uys(t) = F (29)
> 2y 2y A cos (\/EE,J + A, sin (\/Eén>
where &, = din + (ﬁ 4“') tan (\fch)t + ¢ and Ay, A, are arbitrary constants.
Case 2.2:
(5 — 407) p VF A
¢ =~——"" tan (Vkd o=—o, a=F+—— " tan(vkd;), a1 =0}, 30
{1 2\/_“/ ( 1) ZV]:FZ\/EV ( 1) 1 ) (30)
" 5 f* — 4oy tan <\/Fd1) —A; sin (\/Eén> + A, cos (\/Efn> 1)
Uy o(t) = F
6 2y 2y A, cos (\/Eén) + A, sin (\/Eén)

2 A .
where &, =din+ (ﬁz\/‘;') tan (ﬁch)t + ¢ and Ay, A, are arbitrary constants.

Remark 3. As in the previous case, for instance, by modifying our solution (31) and assigning appropriate arbitrary values to
the parameters, we can obtain the result given in Case 3 of Xie and Wang [23]. Unfortunately, no trigonometric function solu-
tions to the WLE appear in both Dai et al. [22] and Wu and Xia [24].

Case 3: When k = 0, from (8c), we have

1
Unar (&) = > ai(y &) £ O (Ga)))- (32)
=1
Substituting (12) and (32) along with (5) into (11), clearing the denominator and setting the coefficients of all powers like
(1//(5,,)/1//(5,,))'(0 < I < 6) to zero, we derive a system of nonlinear algebraic equations for aog, a;,a_1,ds, and c;. Solving the set
of algebraic equations simultaneously, we get the following solution sets and the corresponding discrete rational function
traveling wave solutions of Eq. (9):

2y ) 2y’ ap =F 2y 1=

2 g 4
{Cl_w S VB A 0}7 (33)

p* — 4uyd A
R ) 4af>
(d n+ d; t+g> + A,

, (34)

where Aq,A, are arbitrary constants.

Remark 4. Our rational function solutions (34) are not derived by the authors [22-24].

4. Conclusion

We solved the Wadati lattice equation by proposing a variant of the extended simplest equation method for NDDEs. In
solving the problem, we considered all the three cases that arises in the analysis, in details. For each case, we studied the
sub-cases exhaustively and thus came up with a complete spectrum of discrete solutions to this equation. To our knowledge,
some of these solutions are found for the first time. The obtained results with more free parameters include most of the solu-
tions in the open literature as special cases. We have assured the correctness of the solutions by putting them back into the
original equation. Our method does not require a large amount of CPU time to solve NDDEs when it is implemented with the
aid of a computer algebra system such as Mathematica.
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