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Keywords: In this study, we demonstrate the validity and reliability of the so-called (G'/G)-expansion
(Q’/G)-expansion rpethod ) method via symbolic computation. For illustrative examples, we choose the sixth-order
51?‘th‘°fdef Boussmequequatlon Boussinesq equation and the ninth-order Korteweg-de-Vries equation. As a result, the
Ninth-order KdV equation power of the employed method is confirmed.
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1. Introduction

During the past four decades or so, some efficient and powerful methods have been developed by a diverse group of sci-
entists to find exact analytic solutions of physically important nonlinear evolution equations. For example, Hirota’s bilinear
method [1], inverse scattering method [2], the tanh method [3], Backlund transformation [4], symmetry method [5], the
sine-cosine function method [6], the exp function method [7,8] and so on. All the methods mentioned above have some lim-
itations in their applications and majority of the well known methods involve tedious computation if it is performed by
hand.

The existence of a special class of explicit solutions called traveling waves is one of the most fundamental questions
regarding nonlinear evolution equations. With the development of computer algebra systems (CAS) like Mathematica, Matlab
or Maple, allowing us to perform the complicated and tedious algebraic calculations on computer, many direct and effective
methods are also presented by the researchers.

Recently, Wang et al. [9] introduced an expansion technique called the (G'/G)-expansion method and they demonstrated
that it is powerful technique for seeking analytic solutions of nonlinear partial differential equations. Bekir [10,11] applied
this method to obtain traveling wave solutions of various equations. A generalization of the method has been given by Zhang
et al. [12]. Also, Zhang et al. [13] made the further extension of the method for the evolution equations with variable coef-
ficients. More recently, some useful studies by the authors [14-17] also appeared in the literature.

The (G'/G)-expansion method is based on the explicit linearization of nonlinear differential equations for traveling waves
with a certain substitution which leads to a second-order differential equation with constant coefficients. The computations
are performed with a computer algebra system to deduce few solutions of the nonlinear equations in an explicit form.

The success of the (G'|G)-expansion method for the equations studied in [9-11,14-16] is explained by the fact that the
order of the reduced ODEs is equal to or less than 3 for which it is mostly possible to find out a solution of the resulted alge-
braic equations that determine unknown parameters. Otherwise, it is generally unable to guarantee the existence of a solu-
tion of the algebraic equations resulted. This important observation has been pointed out in [7]. Thus, in order the (G'/G)-
expansion method to be universal it will be more important to seek solutions of higher-order nonlinear equations which
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can be reduced to ODEs of the order greater than 3. If (G'/G)-expansion method is shown to be applicable to these equations
as well, then the usefulness of the method will be appealed furthermore.

2. Description of the (G'/G)-expansion method

Suppose we have a nonlinear partial differential equation for u(x, t) in the form
P(u, uy, Ur, Uy, Ust, Use, - - .) = 0, (1)

where P is a polynomial in its arguments.

Step 1. By taking u(x,t) = U(¢), ¢ = x — ct, we look for traveling wave solutions of Eq. (1), and transform it to the ordinary
differential equation

QU,U,U",..)=0, 2)
where prime denotes the derivative with respect to ¢&.

Step 2. Integrating Eq. (2), if possible, term by term one or more times yields constant(s) of integration. The integration
constant(s) can be set to zero for simplicity.

Step 3. Suppose the solution U(¢) of Eq. (2) can be expressed as a finite series in the form

N / i
G(©)
Uué)=> a|= 3
©=a(g5). ®

where q; are real constants with ay # 0 to be determined, N is a positive integer to be determined, and the function
G(¢) is the general solution of the auxiliary linear ordinary differential equation

G'(&) + G (&) + uG(¢) = 0, (4)

where 4, u are real constants to be determined.
Step 4. By balancing the highest order nonlinear term(s) with the linear term(s) of highest order in Eq. (2), determine N.
Step 5. Get an algebraic equation involving powers of (G'/G) by substituting (3) together with (4) into Eq. (2). Next, equat-
ing the coefficients of each power of (G'/G) to zero, obtain a system of algebraic equations for a;, 4, 1 and c. Then, to
determine these constants, solve the system with the aid of a computer algebra system. Since the solutions of Eq.
(4) have been well known for us depending on the sign of the discriminant A = 42 — 4y, the exact solutions of the
given Eq. (1) can be obtained.

3. Applications

In this section, we work on two important nonlinear evolution equations using the (G'/G)-expansion method to illustrate
its power.

3.1. Solutions of the sB equation

Let us consider the following special sixth-order Boussinesq (sB) equation in the form
Ut — Ugy — (15Ullgy + 30Uy, + 15(u2,()2 + 45U U5, + 90uu,2( +uex) =0, (5)

where u,, denotes the partial derivative aku/ax".

The famous Boussinesq equation is a nonlinear frequency dispersion equation which arises in hydrodynamics and some
physical applications. Moreover, the Boussinesq type equations not only play an important role in soliton theory, but also
represent very good prospect in many applied fields such as the coastal engineering where they are often used in computer
models to simulate the water waves in shallow seas.

In a recent study, by generalizing the bilinear form of the Boussinesq equation, Wazwaz [18,19] has formally derived the
new nonlinear dispersive Eq. (5), showed that it is not completely integrable and admits solitary wave solutions. By means of
the tanh-coth method, he successfully studied multi-soliton solutions to Eq. (5).

Now, to seek for the traveling wave solutions of Eq. (5), we make the transformation u(x, t) = U(¢), ¢ = x — ct, where c is
the wave speed. Then, we get

(-1U" - (15UU<4> +30U'U" 4 15(U")* + 45U%U" + 90U(U')? + U“”) =0, (6)

where primes and U® denote the derivatives with respect to & This reduced ODE is of the sixth-order. Now, we make the
ansatz (3) for the solution of Eq. (6). Balancing the terms U® and UU" yields the leading order N = 2. Thus, we can write the
solution of Eq. (6) in the form
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U=a+a (%>+az<%)2. (7)

Eq. (6) suggests that we calculate the derivatives U, U”,...,U® from (4) and (7). Since the formulas are enormously long, we
demonstrate some of them as follows:

U'(¢) = -2a, (%)3 — (a1 +2a37) (%)2 — (@124 2ax 1) (%) —alh, (8)

U'(¢) = 645 ()" + (2a1 +10a,4) () + (8aapt + 31/ + 40,%) ()’

, 9)
+(6aApt + 2a 1+ a1 27) ($) + 2ax 142 + a2,
G/ 8 G/ 7
U® (&) = 5040a, (E) + (720a; + 194407a,) (E) 4. (13)

Substituting (7)-(9) and (13) into (6), setting the coefficients of (G’(é)/G(é))i(i =0,1,...,8) to zero, we obtain a system of
nonlinear algebraic equations. Solving the resulting system, we have the following sets of solutions:
First solution set:

= -2i =2 c=%\1+0"+22204 762 + 15770 + 120pd0 + 45a3. (14)
Second solution set:
Qo = %(7;? —8u), aj=-4), a=-4, c= ;\/1 + 482 u+16.2. (15)

Substituting the solution set (14) into (7); we obtain the hyperbolic function traveling wave solutions

A - 2
2 72— Ap [ €y cosh Y24 (x — ct) + Cy sinh YA (x — cr)
U1‘2(X, t) :7+a0 — p) \/2_ \/2_ s (16)
Cy sinh Y22 (x — ct) + C, cosh Y2 (x — ct)
where 4% > 4y, c is as in (14), C; and C, are arbitrary constants, the trigonometric function traveling wave solutions
- - 2
2 P —4p [ —C sin—”’z‘""z(x—ct)JrCz cos—““z‘"”'z(x—ct)
u3v4(x,t):7+a0+ ) \/_2 \/_2 s (17)
Cy cos Y2 (x — ct) + Gy sin Y2 (x — ct)
where 22 < 4u, ¢ is as in (14), C; and C; are arbitrary constants, and the rational function solutions
2C;
US‘G(Xﬂt) :2iu+a07 2 20 (18)
(G +Cax+ (\/1 + 18042 + 180pa0 + 45a3 ) ) )
where C; and C, are arbitrary constants.
In particular, if we take C, # 0, Cf < C% above, then the solutions (16) give the solitary wave solutions
2 2 _ P-4
wsx ) =5 a0 - Heann? (Vg ] = tann (), (19)
2 2 2 C,
where 4% > 4y, c is as in (14), and the solutions (17) give the periodic solutions
2 24 4p— 22 . . L (C
Ug10(x, 1) = 5+l +=— H cot? ( 5 (x—ct)+& |, & =tan™! <C_;> (20)
where 4* < 4y, and c is as in (14).
Also, substituting the solution set (15) into (7); we obtain the hyperbolic function traveling wave solutions
) A 2
22-8u ., C1 cosh Y24 (x — ct) + C, sinh Y24 (x — cf)
2 (x,€) = 5= — (22 — 4p) e V=T : 1)
Cy sinh X525 (x — ct) + C; cosh ¥5—F (x — ct)
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2 . . . . . .
where /2 > au,c=F\/1+ (12 — 4,u) , C1 and G, are arbitrary constants, the trigonometric function traveling wave solutions

s B 2
22-8u o, —Cy sin Y2 (x — ct) + Cy cos VAE (x )
1113,‘14()(7 f) = 3 + ()y - 4#) \/__7 \/_‘2 s (22)
Cr cos YA (x — ct) + G sin Y2 (x — cf)
where 22 < au, c=F4/1+ ().2 — 4,u)2, C, and C, are arbitrary constants, and the rational function solutions
4C2
1.1]5'1(5,()(7 f) = — 2 (23)

(C1 + Cy(x £ 1))

where C; and C, are arbitrary constants.
In particular, if we take C, # 0, C? < C; above, then the solutions (21) give the solitary wave solutions

2
Up71s(X, t) = -8y (/2 - 4p)tanh’ (LM (x + ( 14 (2 - 4,4)2) t> + 50) : (24)

3 2

where 2% > 4u, & = tanh '(C; /C3), and the solutions (22) give the periodic solutions

Utg20(X, t) = 2)2%8/1 + (22 — 4pcot? (4##3 (x + (\/ T+ (42— 4H)Z>t> + éo) ) (25)

where 2* < 4u and &, = tan~'(C;/C,).
Meanwhile, we would like to mention that the rational solutions derived here do not appear in [18]. Furthermore, it is
possible to recover some of the soliton solutions obtained in [18] by taking &, = 0 in Egs. (19) and (24) and manipulation.

3.2. Solutions of the nKdV equation

Now, let us consider the following ninth-order Korteweg-de-Vries (nKdV) equation in the form

Uy + 45U,y + 45Ull7x + 210Uyt + 210U, Usy + 1575ux(u2,()2 + 3150utty sy + 1260utt,tay + 630U Usy
+ 9450u% uyttyy + 31503 U5, + 4725u% U, + Uoy
=0, (26)
where u,, denotes the partial derivative 8u/ax*. In a recent study, Wazwaz [18,19] has formally derived the new nonlinear
dispersive Eq. (26) by generalizing the bilinear form of the KdV equation and showed that it is not completely integrable
admitting soliton solutions. He successfully studied solitary wave solutions to Eq. (26) by means of the tanh-coth method.

Now, to seek for the traveling wave solutions of Eq. (26), we make the transformation u(x, t) = U(¢), ¢ = x — ct, where c is
the wave speed. Then, we get

—cU' +45U0'U® + 45007 + 210U0"U™ + 210U"U® + 1575U'(U")? + 3150U'U"U" + 1260UU'U™ + 630U2U®
+9450U%U'U" + 3150U°U" + 472500 + U®
=0, (27)

where primes and U¥ denote the derivatives with respect to & This reduced ODE is of the ninth-order. Now, we make the
ansatz (3) for the solution of Eq. (29). Balancing the terms U and U'U® yields the leading order N = 2. Thus, we can write
the solution of Eq. (27) in the form

fed G 2
U=ay+a; <E> + ay (E) . (28)

Eq. (27) suggests that we calculate the derivatives U’, U”,...,U® from Egs. (4) and (28). Since the formulas are too long, for
the sake of saving space, we demonstrate some of them here as follows:

U'(¢) = -2a, (%)3 — (a1 + 2a24) (%)2 — (1A + 2ax 1) (%) -, (29)

U"(&) = 6a,(9)" + a1 + 100,2)(S)° + (8t + 31/ + 4ay 1) (S)°

, (30)
+(6a220 + 201 1+ a172) () + 2a 1% + ar A,

!

11 /N 10
U<9>(¢):—3,628,800a2<%> +(—362880a1—19,595,520&az)<%> T (37)
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Substituting (28)-(30) and (37) into (27), setting the coefficients of (G’(é)/G(q“))'(i =0,1,...,11) to zero, we obtain a system
of nonlinear algebraic equations. We omit to display them here. Now, solving the resulting system, we have the following
sets of solutions:

First solution set:

a; = 72}., a; = 72,
€ =73 +742° 11415362 1% + 910422 1> + 9616 % + 455a, + 1980 uag

+19800/% 1i2a + 3744013 a + 6302%a3 + 13860/% a2 + 47880u2a? (38)
+3150/%a3 + 25200ua} + 47254,
Second solution set:
)2
ap=-2/%, ay=-8), ay=-8, u-= ‘Z, c=0. (39)
Third solution set:
_3,2 )2
G="", a=-6i, @=-6 p=4. c=0 40)
Substituting the solution set (38) into (28); we obtain the hyperbolic function traveling wave solution
- . 2
72 2 —4u (G coshi“zz"“‘ (x—ct)+C, sinhiv‘zz"”‘ (x —ct)
Ul(x7t):7+ao— D) NG NG ) (41)
Cy sinh Y2 (x — ct) + C, cosh Y/ (x — ct)
where 4? > 4, c is as in (38), C; and C, are arbitrary constants, the trigonometric function traveling wave solution
- . 2
2 22— Ay [ —Cysin A2 (x — et + Cy cos Y2 (x — r)
Uz (X, t) :j+ao+ D) N Jan 7 ) (42)
Cy cos VA2 (x — ct) + Gy sin Y22 (x — ct)
where 22 < 4y, cis as in (38), C; and C, are arbitrary constants, and the rational function solution
22 2
2C
s(%,0) = 5+ o — : 7 (43)
(Ci + Ca(x — (2% 44225 }8qy + 14175 ;% a2 + 9450/%a3 + 4725a)t))

where C; and C; are arbitrary constants.
In particular, if we take C, # 0,C? < C% above, then the solution (41) gives the solitary wave solution

22 2 /)2_4
Ug(X,t) = Z 4 ap — A tanh® ('u (x —ct) + éo) . & =tanh (&) (44)

2 2 2 (@&

where 4 > 4y, ¢ is as in (38), and the solution (42) gives the periodic solution as

2

2

)2 2 _ 4 — )
us(x,t):’“—+a0+'1 24'ucot2< ,u2
2

(x—ct) + §0> , & =tan’! <%> (45)

where 7? < 4p and c is as in (38). Furthermore, it is possible to recover the soliton solutions obtained in [18] by taking & = 0
in (44) and manipulation.
Also, substituting the solution sets Eqs. (39) and (40) into (28); we obtain the rational function solutions

—8(?
Ug(x,t) = ——2—., 46
5(%.0) (Cy + Cox)? (46)
—6(2
Uz (x,t) = ——2—., 47
%0 (€ +Cox)?’ (“7)

where C; and C; are arbitrary constants. We note that Eqs. (46) and (47) do not appear in [18].

4. Conclusion

We successfully obtained exact and explicit analytic solutions (including new ones) with arbitrary parameters to the sB
equation and the nKdV equation via the (G'/G)-expansion method. The extracted solutions in this work are wider if compared
to the earlier works of others. In general, it is too difficult to solve these higher-order equations by traditional methods.
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The procedure is simple, direct and constructive with the help of a computer algebra system. We foresee that our results can
be found potentially useful for applications in mathematical physics and applied mathematics including numerical
simulation.
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