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Abstract

The minimum-cost network design problem is considered in the case where an opti-
mum network remains connected, after deleting any ≤ k edges which form a match-
ing in the optimum network. For the case k = 1, we develop heuristic algorithms
to compute a lower and an upper bounds for optimal value of objective function.
These algorithms are used in the branch and bound methods to find a solution to
the considered problem. We also present computational results.
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1 Introduction

Let G = (V,E) be an undirected graph and H = (V (H), E(H)) be any graph
for which the set E(H) of edges forms a matching with cardinality |E(H)| ≤ k
(k ≥ 1). Let N (N ⊆ V ) be the set of vertices and a cost ce ≥ 0 be associated
with each edge e of the set E. Sometimes, the vertices in N are called terminal
nodes. For any E(F ) ⊆ E a subgraph F of G with the set of edges E(F ) and
the set of vertices V (F ) is denoted by F = (V (F ), E(F )), where V (F ) contains
all the end vertices of edges in E(F ). The cost c(E(F )) of a subgraph F is
the sum of the costs of the edges in the set E(F ).

Here we consider a minimum cost ≤ k edge connected subgraph problem
which consists of finding E(G∗) ⊆ E (a subgraph G∗ = (V (G∗), E(G∗)) of
G) such that c(E(G∗)) is minimum under the conditions that N ⊆ V (G∗)
and after deleting the edges of a subgraph Γ from G∗, the obtained subgraph
(V (G∗), E(G∗) \ E(Γ)) of G contains at least one path between every pair of
terminal nodes of N for every subgraph Γ of G that is isomorphic to the graph
H , where the set E(H) of edges forms a matching with cardinality |E(H)| ≤ k.

We abbreviate this problem by ECSP (≤ k). The edge connected network
design problems that are considered in [1,2,3,4,5,6,7,8] can be formulated by
the same way as ECSP (≤ k). For example, when H is the null graph, i.e.
E(H) = ∅, the ECSP (≤ k) is the Steiner tree problem (STP) on the graph
G and if H is a graph with |E(H)| = k− 1 and N = V , then the ECSP (≤ k)
is equivalent to the minimum cost k-edge connected network design problem.
It is easy to see that any feasible solution of the latter problem is a feasible
solution of ECSP (≤ k), but the converse is not true.

2 Network flow model of the ECSP (≤ k)

Let H be the set of all subgraphs of the graph G that are isomorphic to H ,
i.e. H is the set of all matchings in G with cardinality not greater than k.
Let a node s from N be fixed as a source, and let the other nodes from N be
considered as sinks. Then the ECSP (≤ k) can be formulated as follows: to
find

min
∑
e∈E

cexe (1)
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subject to

∑
j∈δG−Γ(i)

xr
ij −

∑
j∈δG−Γ(i)

xr
ji =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 for i = s,

0 for i �= s, r, i ∈ V, r ∈ N0,Γ ∈ H,

−1 for i = r,

(2)

0 ≤ xr
ij ≤ xe, r ∈ N0, (ij) = e ∈ E, (3)

xe = 0 ∨ 1, e ∈ E. (4)

where N0 = N \{s}, δG−Γ(i) is the set of edges incident with a common vertex
i in the graph obtained from G by removing all the edges of E(Γ). We can
reduce the number of constraints in (2) as follows:

LetH(i, j) be the set of all subgraphs that are isomorphic toH and contain
the edge (i, j) in E(G), and let H̄(i, j) = H \ H(i, j). The dual problem of
(1)-(3) can be transformed in the following form: to find

max
∑
r∈N0

(ur
r − ur

s) (5)

subject to

ur
j − ur

i ≤ wr
ij +

∑
Γ∈H(i,j)

(ur
j(Γ)− ur

i (Γ)), r ∈ N0, (i, j) ∈ E, (6)

∑
r∈N0

wr
ij ≤ cij , (ij) ∈ E, (7)

wr
ij ≥ 0, r ∈ N0, (ij) ∈ E. (8)

Proposition 2.1 There exists an optimal solution to the problem (5)-(8) such
that a value of ur

j(Γ)− ur
i (Γ) �= 0 only for one subgraph Γ ∈ H(i, j).

Proof. Suppose that there are two subgraphs Γ1, Γ2 ∈ H(i, j) such that
ur
j(Γt)− ur

i (Γt) �= 0 for t = 1, 2. Then we can define

ur
j(Γ1)− ur

i (Γ1) := ur
j(Γ1)− ur

i (Γ1) + ur
j(Γ2)− ur

i (Γ2),

ur
j(Γ2)− ur

i (Γ2) := 0.
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It is easy to see that after these definitions the optimal value of (5) did not
change and the constraints in (6) hold. By repeating this process for all pairs
of Γ ∈ H(i, j) we complete the proof of the proposition. �

By Proposition 2.1, the constraints (6) can be written in the following form:

ur
j − ur

i ≤ wr
ij + ur

j(Γ(i, j))− ur
i (Γ(i, j)), r ∈ N0, (i, j) ∈ E,

where Γ(i, j) is a subgraph that contains an edge (i, j) and is isomorphic to
H . Since E(H) is a matching with cardinality |E(H)|, then for any edge
(i, j), we can find a maximum cardinality matching in the graph G − κ(i, j)
by any matching algorithm, where κ(i, j) is the set of edges incident with
vertices i, j. Then we obtain a linear programming problem which has |E||N |
variables. One can use this problem to find a lower bound for the ECSP (≤ k).
In the next section, we consider the case k = 1.

3 ECSP (≤ k) when k = 1

The case k = 1 means that the graph H has two vertices and one edge. Hence
the graph G∗ has to be connected when any edge e of E(G∗) is deleted from
G∗. When N = {s, r} (|N | = 2), the ECSP (≤ k) can be solved in time
O(|V |3), by calculating the minimum-cost flow in the network G with the
source s and the sink r, while all the edges in G have unit capacities, and
the value of a flow is equal to 2. If N = V and G is a complete graph and
the costs of its edges satisfy the triangle inequality, linear relaxations of the
Traveling Salesman Problem (TSP) and the ECSP (≤ k) are equivalent.

3.1 An algorithm to find a lower bound

The dual problem can be formulated as the following linear programming
problem: to find

max 2
∑
r∈N0

(ur
r − ur

s)−
∑

(ij)∈E
zij (9)

subject to

ur
j − ur

i ≤wr
ij, (ij) ∈ E, r ∈ N0, (10)

∑
r∈N0

wr
ij ≤ cij + zij , (ij) ∈ E, (11)

wr
ij ≥ 0, zij ≥ 0, (ij) ∈ E, r ∈ N0. (12)
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It is clear that the value of the objective function (9) is a lower bound F (lower)
for the ECSP (≤ k).

Proposition 3.1 There is an optimum solution uv
r, wr

ij, v ∈ V , r ∈ N0,(i, j) ∈
E, to problem (9)-(12) such that the equality

wr
ij = max{0, uj

r − ui
r}, r ∈ N0, (i, j) ∈ E. (13)

holds.

By this proposition, after computing the value of uv
r0 for all v ∈ V for any

fixed r0 ∈ N0, we use (13) to define the values of wr0
ij , for all (i, j) ∈ E. In

order to find the optimum value of uv
r0, we solve the following problem

max 2(ur0
r0
− ur0

s )−
∑

(ij)∈E
zij

subject to

ur0
j − ur0

i ≤ cij + zij , (ij) ∈ E,

zij ≥ 0, (ij) ∈ E.

This is the dual of the well known problem of minimum-cost two edge-disjoint
paths between nodes s and r0. Suppose that uv

r0 ; v ∈ V and z0ij ; (ij) ∈ E are
an optimal solution. In the next iteration, we fix a new sink r1 �= r0 in N0

and set

uv = uv
r0 , if uv > uv

r0

cij := max{0, cij − uj
r0 + ui

r0} for (i, j) ∈ E. (14)

We again find two edge-disjoint paths with minimum total cost in the network
G, in which a source is the node s, a sink is the node r1, and ce is the cost of
the edge e for e ∈ E. Therefore, we find two edge-disjoint paths |N | − 1 times
and at every iteration t, we have uv

rt ; v ∈ V and ztij ; (ij) ∈ E and define the
value of wrt

ij by (13). From (14), it follows that the constraints (11) hold for
the values of wrt

ij . Finally, we define the value of zij by

zij =

|N0|∑
t=1

ztij .

Since constraints (11) hold for wr
ij , we conclude that the values of ur

v, zij ,
wr

ij are found by the above algorithm are the feasible solution to problem (9)-
(12), and the value of (9) corresponding to this solution is a lower bound for
the ECSP (≤ k). This algorithm computes the lower bound in O(|V |3|N0|)
time.
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3.2 Heuristic algorithm when k = 1

Now we present heuristic algorithm for constructing an initial feasible network
and local improvement heuristics for reducing the cost of the network, while
preserving it feasibility. These heuristics are used in a local search approach
to obtain low-cost network designs. Our algorithm is based on the approach
suitable for constructing a two-edge connected network Ḡ. Then we delete
some edges from the network Ḡ in such a way that Ḡ remains to be a feasible
network. After that, we reduce (if it is possible) the cost of the network Ḡ
using a locally improving heuristic algorithm.

Let E0 ⊆ E be a set of edges (i, j) for which the constraints in (11) hold
as an equality in the defining F (lower) and let G(E0) be the subgraph of G
which is defined by the set E0. It is easy to show that the graph G(E0) is
at least two-edge connected. Now we describe the algorithm to construct a
two-edge connected network Ḡ = (V̄ , Ē) such that the underlying graph Ḡ is
the subgraph of G(E0).

At the beginning of the operation of the algorithm, we set V̄ = ∅ and
Ē = ∅. Then we find the shortest paths between every pair of terminal nodes
in the network G(E0). Let L be a list all these shortest paths. In this list, we
choose the minimum path P1. Let this path connects nodes v1 and v2. We
delete this path from the list L and include all its edges and all vertices to the
sets Ē and V̄ , respectively. In the list, we again choose the minimum path P2.
Let it connect the nodes v3 and v4. If the degrees of the nodes v3 and v4 (with
respect to the current graph Ḡ = (V̄ , Ē)) are greater or equal to 2, we delete
this path from the list L and its vertices and edges of are not included into
V̄ and Ē. Otherwise, we include its edges and vertices Ē and V̄ , respectively.
We repeat this procedure while list L is not empty. Let Ḡ be the graph which
is constructed in such a way. It is clear that df ≥ 2 for all vertices f in V̄ \N .

In order to verify whether the graph is two-edge connected, we find two
disjoint shortest path between every pair of distinct nodes in N as follows: let
w, v ∈ N and P (v, w) is the first shortest path in the graph Ḡ = (V̄ , Ē). We
set weights of edges of P (v, w) to a big number M . Again find the shortest
path between nodes w, v ∈ N . If the length of this path is not less than M ,
then we find common edges on these paths. Let (i, j) is the common edge.
Then we find a shortest path that connects nodes i and j in the graph induced
by set (E0\Ē) and its vertices and edges are included into V̄ and Ē. We repeat
this procedure at most O(|N |2) times to find Ḡ which are feasible solution to
ECSP (≤ k) when k = 1.
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3.3 Computational results

In Table 1, the costs of edges are randomly chosen in the interval [0, 100]. In
Table 1, n is the number of vertices, m is the number of edges, node is the
number of terminal nodes, F0(lower) is the value of a lower bound computed at
zero iteration, F0(upper) is the value of the upper bound computed at iteration
zero, Fr is the record value of the objective function that is defined by the
branch and bound algorithm, nFr is the number of changes for the record value
of the objective function of ECSP (≤ k) when k = 1. We choose a new branch
to continue the process of branching if (Fc(upper)− Fc(lower))/Fc(lower) ≤
0.05, where Fc(upper)(Fc(lower)) current upper (lower) bound at a iteration.

Table 1
Computational Results

#instance n m node F (lower) F (upper) Fr nFr time

1 8 12 4 20 20 20 0 0.001 sec.

2 17 29 5 40 44 44 0 0.002 sec.

3 38 65 8 552 553 553 0 0.002 sec.

4 10 45 10 140 190 170 5 0.011 sec.

5 15 105 10 113 118 116 1 0.092 sec.

6 15 105 15 122 296 182 4 0.148 sec

7 20 190 10 54 112 104 5 6.478 sec.

8 30 435 10 60 100 95 3 18.419 sec.

9 40 780 10 32 63 50 3 4.298 sec.

10 50 1225 10 30 55 52 2 1.249 sec.

11 50 1225 20 65 115 113 1 1.749 sec.

12 50 1225 30 87 131 131 0 1.397 sec.

13 50 1225 40 91 181 180 1 1.525 sec.

14 50 1225 50 97 211 211 0 1.804 sec.

Computational analysis is performed on a workstation with 2.4 Ghz Intel
processor and 2 GB of ram.
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4 Conclusion

There are many problems on graphs that can be formulated as (1)-(4) by
defining different types of graphs H . If H is a graph such that one can find a
subgraph of G that is isomorphic to H by a polynomial-time algorithm then
by proposition 1, the dual LP problem has O(|E||N |) constraints. Hence, H
can be used to compute a lower bound in the latter problem. In order to find
an optimal solution for considered problems, one can use the same framework
of branch and bound algorithm that we are used for the case k = 1. In the
future, we are going to implement this approach to the ECSP (≤ k) for the
case k > 1.
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