

Modeling Efficient Multi-chained Stream Signature Protocol using Communicating

Sequential Processes

Ahmet Koltuksuz

Yasar University

Department of Computer Engineering

Izmir, Turkey

ahmet.koltuksuz@yasar.edu.tr

Murat Ozkan, Burcu Kulahcioglu

Izmir Institute of Technology

Department of Computer Engineering

Izmir, Turkey

{muratozkan, burcukulahcioglu}@iyte.edu.tr

Abstract—Communicating Sequential Processes (CSP) is a

process algebra, designed for modeling and analyzing the

behavior of concurrent systems. Several security protocols are

modeled with CSP and verified using model-checking or

theorem proving techniques successfully. Unlike other

authentication protocols modeled using CSP, each of the

Efficient Multi-chained Stream Signature (EMSS) protocol

messages are linked to the previous messages, forming hash

chains, which introduces difficulties for modeling and

verification. In this paper; we model the EMSS stream

authentication protocol using CSP and verify its authentication

properties with model checking, by building an infinite state

model of the protocol which is reduced into a finite state model.

Keywords—communicating sequential processes, model

checking, security protocol verification

I. INTRODUCTION & RELATED WORK

Concurrency theory aims to model parallel systems by

means of transition, net, graph or algebraic formalisms. CSP

is an example of algebraic formalisms, which is designed

specifically for the description of communication patterns of

concurrent system components that interact through

message passing. It is introduced by Hoare in 1978 [1] and

further developed to its modern form as process algebra in

1984 [2].

Since Lowe’s analysis [3] of Needham – Schroeder

Authentication protocol with CSP using the model checker

Failures - Divergences Refinement (FDR), many different

security protocols [4] with different security properties

[5][6] have been modeled and verified, including their

authentication and secrecy specifications [7].
In this paper, we model Efficient Multi-chained Stream

Signature (EMSS) [8] stream authentication protocol using
CSP, which has been proved to be a useful formalism for
modeling, specifying and verifying security protocols.

Unlike standard authentication protocols that have been
modeled and verified using CSP [9]; sender in EMSS
protocol broadcasts continuous stream of data along with
hashes of previous messages. The recipient can check for
authenticity of received messages after the reception of a
signed message. Thus the hash chaining mechanism forms an
important part of the protocol.

The study in [10] verifies the EMSS protocol with Team
Automata, using compositional proof rules. Another study is

presented in [8], which expresses the hash chain with a graph
and reduces authentication problem into a reachability
problem on the graph. For other stream authentication
protocols, the verification processes are generally based on
theorem proving techniques. An outstanding counter-
example is [11], in which Timed Efficient Stream Loss-
tolerant Authentication Protocol (TESLA) is verified using
CSP and model checking techniques along with data-
independence techniques based on [12][13].

We use a similar approach with [11], by first building an
infinite state model of EMSS protocol. Then, we justify why
this model is not suitable for verification using model
checking and reduce it to a finite state model, by observing
several properties of hashing. Finally we validate and verify
our model using FDR.

The rest of the paper is structured as follows: In section
2, we briefly introduce the basic concepts of CSP and the
model checker, Failures-Divergences Refinement (FDR). In
section 3, we describe the EMSS protocol along with the
hash chaining mechanism involved. In section 4, we present
our infinite state model of the protocol, including the
network model, symbolic cryptographic operations, the
honest agents and the intruder process. Section 5 describes
modeling of hash chains for the infinite state model. In
section 6, we discuss why it is not feasible to verify this
model and the changes necessary to express the same model
using finite number of states. Section 6 is devoted to
conclusion and future work.

II. COMMUNICATING SEQUENTIAL PROCESSES (CSP)

In CSP, systems are described in terms of processes

which are composed of instantaneous and atomic discrete

events. The relations between processes and operations on

processes are formalized with operational semantics of the

algebra. Using the operational semantics, every CSP process

can be converted to an equivalent labeled transition system

(LTS).
For a thorough reference of CSP, see [1][2][14][15].

A. Notation

The processes 𝑃 and 𝑄 can be defined as:

 𝑃, 𝑄 ∷= 𝑆𝑇𝑂𝑃 | 𝑎 → 𝑃 | 𝑃 □ 𝑄 𝑃 ⊓ 𝑄

𝑎: 𝐴 → 𝑃 𝑎 𝑃 \ 𝐴 𝑃 ||
𝐴

 𝑄 | ||𝐴𝑃
𝑃 | 𝑃 ||| 𝑄 | 𝜇 𝑋 ∙ 𝐹(𝑋)

2010 Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement Companion

978-0-7695-4087-0/10 $26.00 © 2010 IEEE

DOI 10.1109/SSIRI-C.2010.23

54

In addition to these operations, more operations on
processes and their inter-relationships are defined within
algebraic semantics of CSP.

 𝑆𝑇𝑂𝑃: Represents a deadlocked process.

 𝑎 → 𝑃 (Prefixing): The process will communicate
the event 𝑎 and then behave as process 𝑃.

 𝑃 □ 𝑄 (Deterministic Choice): This process can
behave either as 𝑃 or 𝑄, but the environment decides
on which process to run.

 𝑃 ⊓ 𝑄 (Nondeterministic Choice): Similar to
deterministic choice. The main difference is,
environment cannot decide on which process to run
but the selection is performed nondeterministically.

 𝑎: 𝐴 → 𝑃 𝑎 (Prefix Choice): This represents a
deterministic choice between the events of the set 𝐴
which may be finite or infinite. This notation allows
representing input and output from channels. The
input 𝑐? 𝑥 ∶ 𝐴 → 𝑃(𝑥) can accept any input 𝑥 of type
𝐴 along channel 𝑐 , following which it behaves as
𝑃(𝑥). Its first event will be any event of the form c. a
where a ∈ A. The output 𝑐! 𝑣 → 𝑃 is initially able to
perform only the output of v on channel c, then it
behaves as 𝑃.

 𝑃 \ 𝐴 (Hiding): This process is similar to process 𝑃
but the environment will not see the members of the
event set 𝐴 . The hidden events will occur
immediately, as the environment is not able to see
these events and synchronize with them.

 𝑃 ||
𝐴

 𝑄 (Parallel Composition): Let 𝐴 be a set of

events, then the process behaves as 𝑃 and 𝑄 acting
concurrently, with synchronizing on any event in the
synchronization set 𝐴 . Events not in 𝐴 may be
performed by either of the processes independent of
the other.

 ||𝐴𝑃
𝑃 (Indexed Parallel): Defines a process which is

composed of 𝑃 processes with a set of respective
interfaces 𝐴𝑃 .

 𝑃 ||| 𝑄 (Interleaving): Similar with parallel
composition but the two components do not interact
on any events. This is achieved by synchronizing on

nothing, so 𝑃 ||| 𝑄 = 𝑃 ||
∅

 𝑄 .

 𝜇 𝑋 ∙ 𝐹(𝑋) (Recursion): Represents a process which
behaves like 𝐹(𝑋) but with every free occurrence of
𝑋 in 𝑃 (recursively) replaced by 𝜇 𝑋 ∙ 𝐹 𝑋 ; where
the variable 𝑋 here usually appears freely
within 𝐹(𝑋).

B. Denotational Semantics and Traces Model

Denotational semantics of CSP provide models for
capturing and comparing the behavior of processes. Unlike
the operational semantics, which is more directly interested
in the processes within the system, behavioral models are
related with processes at a more abstract level.

Different behaviors of the system are captured with
different models, so they represent the system in different
levels of detail. What they have in common is that each of
the models provides an abstract way of representing a

process as a set of behaviors it can have in one or more
categories.

There are three widely used models in CSP, that
represent the most commonly used behaviors, namely Traces
(𝒯), Stable Failures (ℱ) and Failures / Divergences (𝒩)
models.

In Traces model [14], only the actions which are visible
to the environment are recorded. The sequence of all events
that a process has communicated by some point in its
execution forms the trace of the process. This model is only
involved in finite traces of processes.

The traces model is useful for building the safety
specifications of processes which define the behavior that the
system should perform. Other models can be used to capture
further properties of systems (e.g. liveness) by recording
more detailed behavior of systems.

In this paper, only traces model will be considered, as we
are interested in the safety properties of the protocols.

C. Refinement

Let 𝑃 and 𝑅 be processes such that, 𝑃 ⊓ 𝑅 = 𝑅 , which
indicates 𝑃 ⊓ 𝑅 can be used anywhere instead of 𝑅. In other
words, every behavior of 𝑃 should also be a behavior of 𝑅.
Hence, for such processes, we can say that 𝑃 refines 𝑅 or
𝑅 ⊑ 𝑃 (i.e. 𝑅 is a refinement of 𝑃).

The refinement relation is reflexive, anti-symmetric and
transitive, thus it forms a partial ordering between processes.
In traces model, 𝑆𝑇𝑂𝑃 is the most refined process, because
for any 𝑃, 𝑡𝑟𝑎𝑐𝑒𝑠 𝑃 ⊇ 𝑡𝑟𝑎𝑐𝑒𝑠 𝑆𝑇𝑂𝑃 . The least refined
process is 𝑅𝑈𝑁Σ , for any process 𝑃 with an alphabet of Σ,
𝑡𝑟𝑎𝑐𝑒𝑠(𝑅𝑈𝑁Σ) ⊇ 𝑡𝑟𝑎𝑐𝑒𝑠(𝑃).

Having defined the refinement relation, it is
straightforward to apply it on 𝒯 , ℱ and 𝒩 ; however it is
beyond the scope of this paper.

D. Tool: Failures-Divergences Refinement (FDR)

FDR [16] is a model checker, designed to establish
verification results for systems, which are modeled and
specified as 𝐶𝑆𝑃𝑀(Machine Readable CSP) scripts [17]. In
addition to refinement checking, FDR can also perform
determinism and deadlock checks on processes.

To verify a system for correctness, we construct a
process representing the system (i.e. the implementation
process) and a specification process. FDR checks whether
every behavior of the specification process is also a behavior
of the implementation process, (i.e. refinement check) by
performing an exhaustive search on the generated state space
and it can generate counter-example traces, like other model
checking tools.

FDR translates processes into a corresponding finite LTS
according to operational semantics through compilation. In
compilation, a two-level approach is used for calculating
operational semantics: The low level is fully general but
relatively inefficient, whereas the high level is restricted (e.g.
it cannot handle recursion) but much more efficient in space
and time.

Like other model checking tools, FDR suffers from state
space explosion problem. Compression techniques can be

55

applied on processes and scripts can explicitly specify which
technique to apply on each process.

III. THE EFFICIENT MULTI-CHAINED STREAM SIGNATURE

PROTOCOL

EMSS (Efficient Multi-chained Stream Signature) [8] is a
stream authentication protocol, based on signing a small
number of special packets in a data stream. Each packet is
linked to a signed packet via multiple hash chains. This is
achieved by appending the hash of each packet (including
possible appended hashes of previous packets) to a number
of subsequent packets. Hence the protocol claims to amortize
the cost of signing each packet, and achieve one-way
authentication, even in lossy channels.

In [8] several schemes are defined with probabilities of
successful verification of each packet, however, (1, 2)
scheme will be used as our protocol.

The protocol can formally be described as follows:
1. 𝐴 → 𝐵 ∶ 𝑃0 , 𝑃0 = 𝑑0
2. 𝐴 → 𝐵 ∶ 𝑃1 , 𝑃1 = 𝑑1, (𝑃0)
i. 𝐴 → 𝐵 ∶ 𝑃𝑖 , 𝑃𝑖 = 𝑑𝑖 , 𝑃𝑖−1 , (𝑃𝑖−2)
… … …
n. 𝐴 → 𝐵 ∶ 𝑃𝑛 , 𝑃𝑛 = { 𝑃𝑛−1 , 𝑃𝑛−2 }𝑠𝑘(𝐴)

where, is the hash function and 𝑑 represents the data.

In first message, only 𝑑0 is sent to the receiver. In the

second message, 𝑑1 is sent to the receiver along with the
hash of 𝑑0 . Next message consists of 𝑑2 and hashes of 𝑑1
and 𝑑0 . Thus, data 𝑑0 may be authenticated even if the

message 𝑃1 is lost or unauthenticated. Likewise, the message
Pi contains the hashes of messages Pi−1 and Pi−2 where
2 < 𝑖 < 𝑛. The last message consists of the hashes of Pn−1
and Pn−2 , encrypted with 𝑠𝑘(𝑠) - the private key of the
sender (i.e. the signature message). This hash chanining
mechanism of EMSS is illustrated in Fig. 1.

The signature message is repeated periodically for every
𝑛 messages. Clearly, the receiver must buffer messages until
a signature message arrives, for authenticity verification.

Receiver can only check for the authenticity of the
previous messages; if and only if the signature in the last
message is correct and there is a chain of hashes that reaches
to one of the signed hashes.

The EMSS protocol aims to authenticate sender to
multiple receivers; providing one-way authentication
between agents. Additionally the sender cannot claim that
the authenticated messages are not sent by it, so the protocol
claims to provide nonrepudiation properties. However, the
protocol does not make any secrecy claims; contents of the
messages are readable by everyone.

In this paper, we assume that sender already knows the
identities of receivers which run the protocol. We further
assume that the receivers know the public key of the sender.

IV. MODELLING EMSS PROTOCOL USING CSP

In this section we present a finite state model of EMSS
protocol and the concepts and assumptions used in the
modeling process.

A. Modeling Assumptions

We assume that the agents show no behavior other than
the behavior described in the protocol. Also, agents know
their own secret keys, and the public key of the sender agent
is already known by the receiver. We also assume that the
intruder has the capabilities of the Dolev - Yao intruder
model [18] which can eavesdrop, replay, modify or inject
messages.

Additionally, we assume to have a perfect cryptosystem
in order to focus our analysis on the protocol, which means
that nobody can decrypt the messages unless they know the
secret keys, a ciphertext {𝑚}𝐾 can be generated by principal
possessing 𝑚 and 𝐾 . For hashing, we assume that the
contents of hashed messages cannot be retrieved by any
agent and hashes of different messages are always different.

B. Symbolic Data Types

We represent protocol messages and its contents (e.g.
agent identities, cryptographic items, etc...) in a structured
way. Messages and their compound subcomponents are
constructed from simpler data items by concatenation. This
means that a communication of a compound message is
equivalent to the communication of all of its atomic
subcomponents.

Hence we define a data type 𝑓𝑎𝑐𝑡 to represent atomic
data items such as agent identities, keys, encrypted and
hashed messages and compound data items that are built
using atomic data items:
 𝑓𝑎𝑐𝑡 ∶= 𝑆𝑞. 𝑓𝑎𝑐𝑡 | 𝐺𝑎𝑟𝑏𝑎𝑔𝑒 |
 𝑝𝑘. 𝐴𝑔𝑒𝑛𝑡 𝑠𝑘. 𝐴𝑔𝑒𝑛𝑡

Figure 1. The relation between packets in EMSS protocol

𝑑0

𝑑1 𝑑2

𝑑3 𝑑4

𝑑𝑛−1 𝑑𝑛

sign message

“the hash of A

is appended to

B”

B A

56

 𝑘𝑒𝑦. 𝐴𝑔𝑒𝑛𝑡, 𝐴𝑔𝑒𝑛𝑡 |
 𝑃𝑘. 𝑃𝐾𝑒𝑦, 𝑓𝑎𝑐𝑡 |
 𝐸𝑛𝑐𝑟𝑦𝑝𝑡. 𝑆𝐾𝑒𝑦, 𝑓𝑎𝑐𝑡 |
 𝐻𝑎𝑠. 𝑓𝑎𝑐𝑡

The set 𝐴𝑔𝑒𝑛𝑡 is the set of agent labels. The identity of
an agent is represented by its label 𝐴, where 𝐴 ∈ 𝐴𝑔𝑒𝑛𝑡.

Sequencing construct is defined as 𝑆𝑞. 𝑓𝑎𝑐𝑡0 , 𝑓𝑎𝑐𝑡1,
… , 𝑓𝑎𝑐𝑡𝑛 , which represent a sequence of facts; 𝑓𝑎𝑐𝑡0 to
𝑓𝑎𝑐𝑡𝑛 , where 𝑛 is an arbitrary number. Using sequencing
allows us to create and use compound messages.

Invalid or lost messages are symbolized as 𝐺𝑎𝑟𝑏𝑎𝑔𝑒. It
can be viewed as a placeholder for such messages.

Public and secret keys of agents are represented
respectively as 𝑝𝑘. 𝐴𝑔𝑒𝑛𝑡 and 𝑠𝑘. 𝐴𝑔𝑒𝑛𝑡. Hence, a key pair
for an agent 𝐴 becomes 𝑝𝑘. 𝐴 and 𝑠𝑘. 𝐴; which are the dual
of each other. Similarly, symmetric keys are represented with
𝑘𝑒𝑦. (𝐴𝑔𝑒𝑛𝑡, 𝐴𝑔𝑒𝑛𝑡). A session key between 𝐴 and 𝐵, 𝑘𝐴𝐵 ,
is represented as 𝑘𝑒𝑦. (𝐴, 𝐵). We also define sets 𝑃𝐾𝑒𝑦 and
𝑆𝐾𝑒𝑦, which are the sets of all private and public keys and
all symmetric keys, respectively.

Encrypted messages using public key and symmetric
cryptosystems share the same representation; which is
𝑡𝑎𝑔. (𝑘𝑒𝑦, 𝑓𝑎𝑐𝑡) , where 𝑡𝑎𝑔 represents the encryption
type and 𝑘𝑒𝑦 and 𝑓𝑎𝑐𝑡 symbolizes the key and the clear
text message respectively.

The tag 𝑃𝑘 symbolizes that the public key encryption is
used. Thus, an encrypted protocol message using public keys
has the form 𝑘. (𝑃𝐾𝑒𝑦, 𝑓𝑎𝑐𝑡 . A protocol message 𝐴 𝑝𝑘 𝐴

is represented as 𝑃𝑘. (𝑝𝑘. 𝐴, 𝐴).
Similarly, the tag 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 symbolizes that symmetric

key encryption is used. Such a message has the form
𝐸𝑛𝑐𝑟𝑦𝑝𝑡. (𝑆𝑘𝑒𝑦, 𝑓𝑎𝑐𝑡) . A protocol message 𝐴 𝑘𝐴𝐵 is
represented by 𝐸𝑛𝑐𝑟𝑦𝑝𝑡. (𝑘𝑒𝑦. 𝐴, 𝐵 , 𝐴).

Additionally, the data type 𝑓𝑎𝑐𝑡 is defined recursively to
allow the use of nested encryption, nested hashing and
sequencing inside an encryption.

C. Cryptographic Operations

In the analysis, the main focus of interest is finding the
attacks which are mounted on the behavior of protocol
participants, not on the cryptosystems used in the protocol.
Furthermore, CSP is not a suitable formalism to represent
and verify cryptosystems. Hence, we use symbolic
cryptographic operations; which are abstracted away from
the underlying cryptographic mechanism.

Symbolic operations build data from atomic data items,
by marking these data items with suitable tags. Encryption,
decryption and hashing can be represented symbolically in
this manner.

1) Symbolic Encryption & Decryption
Symbolic encryption with a key and a plaintext involves

tagging these data types as encrypted.
The use of symbolic decryption can be explicit or

implicit. An agent process might synchronize with an
encrypted message communicated through a channel. Since
synchronization will mean that all fields within the tag
should be the same; then that process would implicitly
decrypt the message; without using additional mechanisms.

In intruder process, decryption and encryption operations
are defined as deductions. Intruder is able to encrypt a
message if any key and the message are in its knowledge
base. However, it may not know the contents of the message
until it possesses the right key (i.e. the decryption operation).

2) Symbolic Hashing
Symbolic hashing involves tagging the data to indicate

hashing. This representation adheres to the properties of
hashing operation and our modeling assumptions because of
several reasons:

 Symbolic hashing does not explicitly prevent other
processes from reading the contents of the hashed
messages. However, our processes (including
intruder process) don’t access the contents of the
hashed messages.

 Two hashed messages cannot have two equivalent
values with symbolic hashing. Clearly, 𝐻𝑎𝑠. 𝐴 ≠
𝐻𝑎𝑠. (𝐵) when 𝐴 ≠ 𝐵.

Being simple and elegant for most cases, this standard
representation causes problems in hash chaining, which is
covered next section.

D. Honest Agents

The honest agents are the agents that are known to be
running the process as in protocol specification. In our
model, 𝑆𝑒𝑛𝑑 and 𝑅𝑒𝑐𝑣 processes are honest agents where
the parameter 𝑖𝑑 symbolizes the identity of an agent.

1) Sender Agent
We define the sender process in three sub processes: First

process is responsible for sending 1
st
 and 2

nd
 protocol

messages; which have a different format than 𝑖𝑡 message.

Second process sends 𝑖𝑡 message and the last process sends
the signature message.

 The first part chooses a receiver to communicate with,
receives the data from 𝐷𝑎𝑡𝑎𝑆𝑡𝑟𝑒𝑎𝑚 process and forms and
transmits protocol messages using the 𝑠𝑒𝑛𝑑 channel.

After sending initial protocol messages, the identity of
the receiver agent is passed to the following process along
with the hashes of the previous messages.

Note that, 𝑃0 = 𝑑0 and 𝑃1 = 𝑑1 , 𝑎𝑠 𝑑0 .
𝑆𝑒𝑛𝑑0 𝑖𝑑 = ⊓ 𝑏: 𝐴𝑔𝑒𝑛𝑡 •

 𝑔𝑒𝑡𝐷𝑎𝑡𝑎. 𝑖𝑑? 𝑑0 → 𝑠𝑒𝑛𝑑. 𝑖𝑑. 𝑏. 𝑑0 →

 𝑔𝑒𝑡𝐷𝑎𝑡𝑎. 𝑖𝑑? 𝑑1 →

 𝑠𝑒𝑛𝑑. 𝑖𝑑. 𝑏. 𝑆𝑞. 𝑑1, 𝑎𝑠 𝑑0 →

 𝑆𝑒𝑛𝑑𝑖 𝑖𝑑, 𝑏, 𝑎𝑠(𝑃0), 𝑎𝑠 𝑃1
The second part requests for another data item, hashes

the old data items and sends the 𝑖𝑡 protocol message.

Alternatively; it may choose to send the signature message;

which is resolved nondeterministically:

 𝑆𝑒𝑛𝑑𝑖 𝑖𝑑, 𝑏, 1 , 2 = 𝑆𝑒𝑛𝑑𝑛 𝑖𝑑, 𝑏, 1 , 2 ⊓

 (𝑔𝑒𝑡𝐷𝑎𝑡𝑎. 𝑖𝑑? 𝑑𝑖 →

 𝑠𝑒𝑛𝑑. 𝑖𝑑. 𝑏. 𝑆𝑞. 𝑑𝑖 , 1, 2 →

 𝑆𝑒𝑛𝑑𝑖+1 𝑖𝑑, 𝑏, 2 , 𝑎𝑠 𝑃𝑖

The final part of the sender agent involves sending the

signature message. After sending the signature message; we

might start over with a new run of the protocol:

𝑆𝑒𝑛𝑑𝑛 𝑖𝑑, 𝑏, 1 , 2 =

57

 𝑠𝑒𝑛𝑑. 𝑖𝑑. 𝑏. 𝑃𝑘. (𝑠𝑘. 𝑖𝑑, 𝑆𝑞. 1 , 2) →
 𝑆𝑒𝑛𝑑0(𝑖𝑑)

Note that in a new run; old hash and data values are
assumed to be forgotten by the sender; hence the processed
data and the hash items are not sent as parameters to the new
protocol run.

2) Receiver Agent
Similar to the sender, the receiver is modeled using three

sub processes, each having similar roles with their 𝑆𝑒𝑛𝑑𝑒𝑟
counter parts.

However, unlike the sender process, the receiver should
also check the authenticity of the received protocol messages
after the reception of a signature message. We just buffer
them until a signature message arrives in the set 𝑅𝑒𝑐𝑣𝑑:

𝑅𝑒𝑐𝑣0 𝑖𝑑 = □ 𝑎: 𝐴𝑔𝑒𝑛𝑡, 𝑑𝑟0: 𝐴𝑙𝑙𝐷𝑎𝑡𝑎 •
 𝑟𝑒𝑐𝑣. 𝑎. 𝑖𝑑. 𝑑𝑟0 →
 □ 𝑟0: 𝐴𝑙𝑙𝐻𝑎𝑠𝑒𝑠, 𝑑𝑟1: 𝐴𝑙𝑙𝐷𝑎𝑡𝑎 •
 𝑟𝑒𝑐𝑣. 𝑎. 𝑖𝑑. 𝑆𝑞. 𝑑𝑟1, 𝑟0 →
 𝑅𝑒𝑠𝑝𝑖(𝑖𝑑, 𝑎, { 𝑑𝑟0 , 𝑑𝑟1 , 𝑟0 })
The second process is responsible for collecting any 𝑖𝑡

message sent by the sender. The sender might choose to send
the signature message after 2

nd
 message; so this part should

be prepared to receive a signature message.

𝑅𝑒𝑐𝑣𝑖(𝑖𝑑, 𝑎, 𝑅𝑒𝑐𝑣𝑑) = 𝑅𝑒𝑐𝑣𝑛(𝑖𝑑, 𝑎, 𝑅𝑒𝑐𝑣𝑑) □ (
□ 𝑟1, 𝑟2 ∶ 𝐴𝑙𝑙𝐻𝑎𝑠𝑒𝑠, 𝑑𝑟 ∶ 𝐴𝑙𝑙𝐷𝑎𝑡𝑎 •
𝑟𝑒𝑐𝑣. 𝑎. 𝑖𝑑. 𝑆𝑞. 𝑑𝑟 , 𝑟1 , 𝑟2 →

 𝑅𝑒𝑐𝑣𝑖+1(𝑖𝑑, 𝑎, 𝑅𝑒𝑐𝑣𝑑 ∪ 𝑑𝑟 , 𝑟1 , 𝑟2))
The final process is responsible for the reception of the

signature message.

𝑅𝑒𝑐𝑣𝑛 𝑖𝑑, 𝑎, 𝑅𝑒𝑐𝑣𝑑 = □ 𝑟0 , 𝑟1 ∶ 𝐴𝑙𝑙𝐻𝑎𝑠𝑒𝑠 •
𝑟𝑒𝑐𝑣. 𝑎. 𝑖𝑑. 𝑃𝑘. 𝑠𝑘. 𝑎, 𝑆𝑞. 𝑟0 , 𝑟1 →

𝐶𝑒𝑐𝑘(𝑅𝑒𝑐𝑣𝑑, 𝑟0 , 𝑟1 , 𝑛)
3) Check Process

EMSS protocol does not explicitly specify a method for
checking the authenticity of received messages, allowing us
to make assumptions about the behavior of an agent. This
makes the model of EMSS protocol more interesting than
other protocol models, in which all behavior of agents are
specified in the protocol.

After the arrival of the signature message, we should
check the buffer for (possibly) authentic messages.

We pass the buffer of received packets (i.e. 𝑅𝑒𝑐𝑣𝑑 set),
set of validated messages (i.e. initially the hashes in the
signature message) and the total number of received packets
𝑛 as parameters to checker process.

Basically, 𝐶𝑒𝑐𝑘 process begins from the (𝑛 − 1)𝑡
message and for each message 𝑃𝑖 , it checks that, whether any
of the messages 𝑃𝑖+1 and 𝑃𝑖+2 are in validated set. We
cannot verify a message, if there is not a link to at least one
validated message. We also check if the hash values in the
validated messages are equal to this message’s hash.

If a message meets these conditions, it is considered as an
authentic and sent via 𝑝𝑢𝑡𝐷𝑎𝑡𝑎 channel. Moreover, that
message is added to the verified set 𝑉 and removed from the
message buffer set 𝑅.
𝐶𝑒𝑐𝑘 𝑅, 𝑉, 𝑖 =
 𝑖𝑓 𝑖 < 0 𝑡𝑒𝑛
 𝑅𝑒𝑐𝑣0(𝑖𝑑)

 𝑒𝑙𝑠𝑒

 𝑖𝑓 𝑃𝑖+1 ∈ 𝑉 𝑎𝑛𝑑 𝑎𝑠 𝑃𝑖 = 𝑝1(𝑃𝑖+1)

 𝑜𝑟 𝑃𝑖+2 ∈ 𝑉 𝑎𝑛𝑑 𝑎𝑠 𝑃𝑖 = 𝑝2 𝑃𝑖+2
 𝑡𝑒𝑛
 𝑝𝑢𝑡𝐷𝑎𝑡𝑎. 𝑑𝑎𝑡𝑎 𝑃𝑖 →
 𝐶𝑒𝑐𝑘(𝑅 − 𝑃𝑖 , 𝑉 ∪ 𝑃𝑖 , 𝑖 − 1)
 𝑒𝑙𝑠𝑒
 𝐶𝑒𝑐𝑘(𝑅 − 𝑃𝑖 , 𝑉, 𝑖 − 1)

On the other hand, if a message fails these conditions, it
is considered as non-authentic, and the message is removed
from set 𝑅.

The helper functions 𝑝1(𝑃𝑖) and 𝑝2(𝑃𝑖), which appear
in 𝐶𝑒𝑐𝑘 process, return first or second hash value in 𝑃𝑖 ,
respectively. That is, 𝑝1 𝑃𝑖 = 𝑖−1 and 𝑝2 𝑃𝑖 = 𝑖−2 if
𝑃𝑖 = 𝑆𝑞. 𝑑𝑖 , 𝑖−1, 𝑖−2 . The function 𝑑𝑎𝑡𝑎 𝑃𝑖 returns the
data part of the message 𝑃𝑖 .

Note that, if more than two consecutive messages cannot
be verified, then the second 𝑖𝑓 condition will never be
satisfied by subsequent recursions, which matches with our
expectation.

E. The Intruder

The intruder process obeys the Dolev - Yao model with
perfect cryptography assumption. It can intercept or overhear
messages, add them to its knowledge base and forge fake
messages using its knowledge base.

To generate messages from a set of known messages;
intruder uses a 𝐷𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑠 set. Deductions are composed of
pairs (𝑚, 𝑆); where 𝑆 is a set of facts and 𝑚 is the message
that can be deduced using all of the facts in 𝑆.

Intruder initially knows all public facts and the private
facts about an agent that it can impersonate.

The knowledge base of the intruder is not stored as a set;
rather it is modeled as a network of two state processes, for
performance issues stated in [19]. For each fact, reachable by
intruder, 𝑖𝑔𝑛𝑜𝑟𝑎𝑛𝑡𝑜𝑓(𝑓) represents an unknown fact 𝑓 and
𝑘𝑛𝑜𝑤𝑛(𝑓) represents a known fact 𝑓. These processes can
carry out 𝑖𝑛𝑓𝑒𝑟 actions, which uses deductions to figure out
unknown information from known facts.

𝑆𝑎𝑦𝐾𝑛𝑜𝑤𝑛 process does not make any inferences, but
generates already known messages to be sent to the receiving
agent. The 𝑐𝑎𝑠𝑒() function is a compression function to be
used by FDR, which instructs the model checker to apply
partial-order reduction on the selected process.

Overall intruder process is (without irrelevant details):
𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟 =
 𝑐𝑎𝑠𝑒(||𝑓: 𝐿𝑒𝑎𝑟𝑛𝑎𝑏𝑙𝑒𝐹𝑎𝑐𝑡𝑠 𝑖𝑔𝑛𝑜𝑟𝑎𝑛𝑡𝑜𝑓(𝑓))\{𝑖𝑛𝑓𝑒𝑟}

 ||| 𝑆𝑎𝑦𝐾𝑛𝑜𝑤𝑛
For details about the intruder, see [19], as we use it with

slight changes and it is a general intruder model which is
applicable for most protocol models.

F. The Network

We use a similar network model with [11], which is
depicted in Fig. 2. This model is also appropriate as our
model with simple changes because we also use Dolev-Yao
intruder model. We define 𝑆𝑒𝑛𝑑 = 𝑆𝑒𝑛𝑑0(𝐴𝑙𝑖𝑐𝑒), 𝑅𝑒𝑐𝑣 =
𝑅𝑒𝑐𝑣0(𝐵𝑜𝑏), and 𝐴𝑙𝑖𝑐𝑒, 𝐵𝑜𝑏, 𝑀𝑎𝑙𝑙𝑜𝑟𝑦 ∈ 𝐴𝑔𝑒𝑛𝑡.

58

𝑆𝑒𝑛𝑑 and 𝑅𝑒𝑐𝑣 processes can only communicate with
𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟, thus, the 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟 process models the medium.

𝑆𝑦𝑠𝑡𝑒𝑚 = (𝑆𝑒𝑛𝑑 ||| 𝑅𝑒𝑐𝑣) || 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟
As obvious from protocol definition; 𝑆𝑒𝑛𝑑 process only

sends but does not receive any data and 𝑅𝑒𝑐𝑣 process does
not send any data. However the 𝑟𝑒𝑐𝑣 channel between 𝑆𝑒𝑛𝑑
and 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟 and the 𝑠𝑒𝑛𝑑 channel between 𝑅𝑒𝑐𝑣 and
𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟 are included in the model for the sake of
generality.

Different from other authentication protocols, we have to

send data within the messages in EMSS protocol. We

assume that the data is retrieved using 𝑔𝑒𝑡𝐷𝑎𝑡𝑎 channel

from some other process. The receiver buffers messages

until the signature message arrives and 𝐶𝑒𝑐𝑘 process uses

𝑝𝑢𝑡𝐷𝑎𝑡𝑎 channel to send validated data items on this

channel.

V. MODELING THE HASH CHAIN IN EMSS PROTOCOL

This section discusses the problems that we encountered
during the modeling of EMSS protocol and proposes a
method to overcome these problems. First we explain the
straightforward approach and state the problems. Then, we
present our fixed size hashed message approach for hash
chain modeling.

A. The Straightforward Approach

For protocol models that do not use hash chaining,
tagging data with 𝐻𝑎𝑠. () is enough. However; with the
tagged representation, the size of the hash increases with the
size of the message. The use of hash chains can create
arbitrarily long hash representations; as in the EMSS

protocol. Using this method, 𝑖𝑡 message would be
represented as:
𝑠𝑒𝑛𝑑. 𝐴𝑙𝑖𝑐𝑒. 𝐵𝑜𝑏. 𝑆𝑞. 𝑑𝑖 ,

𝐻𝑎𝑠. 𝑆𝑞. 𝑑𝑖−1 , 𝐻𝑎𝑠. 𝑆𝑞. 𝑑𝑖−2 … ,
𝐻𝑎𝑠. 𝑆𝑞. 𝑑𝑖−2 , 𝐻𝑎𝑠. 𝑆𝑞. 𝑑𝑖−3 … ,

where 𝐴𝑙𝑖𝑐𝑒 and 𝐵𝑜𝑏 represents the identities of 𝑆𝑒𝑛𝑑𝑒𝑟 and
𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟 processes, respectively.

Another issue is the types of 𝑠𝑒𝑛𝑑 and 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 channels.
In CSP; it is possible to define channels with arbitrary type;
however for model-checking purposes; the types of channels
should be defined explicitly. Clearly, definition of channels
that accepts messages with arbitrary number of nested hashes
would be a problem while expressing the protocol for model-
checking tools.

Because of these reasons, we cannot model hash chaining
in the EMSS protocol using a tagged representation.

B. Proposed Approach

In our approach, the size of a hashed message is aimed to
be fixed, whatever the message length is. So, we want to

represent 𝑖𝑡 protocol message with:
𝑠𝑒𝑛𝑑. 𝐴𝑙𝑖𝑐𝑒. 𝐵𝑜𝑏. 𝑆𝑞. 𝑑𝑖 , 𝑖−1, 𝑖−2

where 𝑖−1 and 𝑖−2 represent the hash values of previous
two messages.

Representing the protocol messages in such a manner
requires a relationship between the hash values and the
protocol messages to be hashed. We provide this relationship
by using a mapping set𝐷𝑎𝑡𝑎𝐻𝑎𝑠, which contains all the
possible messages assigned to a unique hash value.
Afterwards, we can use this set to obtain the hash value of a
protocol message.

We define 𝐴𝑙𝑙𝐷𝑎𝑡𝑎 set, which represent all possible data
values in the protocol:

𝐴𝑙𝑙𝐷𝑎𝑡𝑎 = 𝑑𝑖 𝑖 ∈ 0. . 𝑚 }
where 𝑚 represents the upper bound on data values.

Likewise, the 𝐴𝑙𝑙𝐻𝑎𝑠𝑒𝑠 set represents all hashes on the
system, with an upper bound of 𝑛:

𝐴𝑙𝑙𝐻𝑎𝑠𝑒𝑠 = 𝑖 𝑖 ∈ 0. . 𝑛 }
Now, we create a map of hash values to corresponding

contents of hashed messages. The map is a set of tuples
which associate each hash value with a respective data value.
We need to define different tuples for each of the possible
protocol messages:

 𝑖 = 1: (𝑖 , 𝑑𝑥)

 𝑖 = 2: (𝑖 , 𝑑𝑥 , 𝑦)

 𝑖 < 𝑛 : (𝑖 , 𝑑𝑥 , 𝑦 , 𝑧)

where 𝑖 represents unique hash value of protocol messages
 𝑑𝑥 , 𝑑𝑥 , 𝑦 and 𝑑𝑥 , 𝑦 , 𝑧 ; where 𝑖 , 𝑦 , 𝑧 ∈
𝐴𝑙𝑙𝐻𝑎𝑠𝑒𝑠 and 𝑑𝑥 ∈ 𝐴𝑙𝑙𝐷𝑎𝑡𝑎.

For 1
st
 and 2

nd
 messages, this set is defined as:

𝐷𝑎𝑡𝑎𝐻𝑎𝑠1 = 𝑖 , 𝑑𝑖 𝑖 ∈ {0. . 𝑚} }
𝐷𝑎𝑡𝑎𝐻𝑎𝑠2 = { 𝑖 , 𝑑𝑥 , 𝑦 | 0 ≤ 𝑥 < 𝑚,
 0 ≤ 𝑦 < 𝑚, 𝑖 = 𝐷𝑎𝑡𝑎𝐻𝑎𝑠1 𝑥 + 1 + 𝑦 }

and for 𝑖𝑡 message:

𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑖 = 𝑖 , 𝑑𝑥 , 𝑦 , 𝑧
 0 ≤ 𝑥 < 𝑚,
 0 ≤ 𝑦, 𝑧 < 𝑘,
 𝑖 = 𝑘 𝑥 + 1 𝑦 + 1 + 𝑧 }

where 𝑘 = |𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑐 |𝑖−1
𝑐=1

The 𝐷𝑎𝑡𝑎𝐻𝑎𝑠 set with a maximum length of 𝑛 is
composed of union of all sets and represents all possible hash
values of protocol messages:

𝐷𝑎𝑡𝑎𝐻𝑎𝑠 = 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑖
𝑛
𝑖=1

The 𝑎𝑠 𝑑𝑠 function is defined to return the unique
𝑖 value assigned to a particular 𝑑𝑠:

𝑎𝑠 𝑑𝑠 = ′ ′ , 𝑠 ∈ 𝐷𝑎𝑡𝑎𝐻𝑎𝑠, 𝑠 = 𝑑𝑠}
This hashing scheme obeys our modeling assumptions

about hashes; we cannot retrieve the contents of the message
by using only the hash value and all hashes in the system are
distinct.

VI. VERIFICATION OF THE MODEL

In previous sections, we described the EMSS protocol
using CSP and modeled the hash chaining mechanism, by

Figure 2. Overview of the network model showing processes and channels

𝑟𝑒𝑐𝑣 𝑟𝑒𝑐𝑣

𝑠𝑒𝑛𝑑 𝑠𝑒𝑛𝑑

𝑆𝑒𝑛𝑑 𝑅𝑒𝑐𝑣 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟

𝑔𝑒𝑡𝐷𝑎𝑡𝑎

𝑝𝑢𝑡𝐷𝑎𝑡𝑎

59

assigning each possible protocol message a unique hash
value. While this approach can model the protocol, problems
arise when we want to perform verification using model
checking.

The first problem is the infamous state-space explosion
problem. When a model checking tool tries to construct the
state space of the system, a new state is generated for each
distinct item in the 𝐷𝑎𝑡𝑎𝐻𝑎𝑠 set. However, the cardinality
of 𝐷𝑎𝑡𝑎𝐻𝑎𝑠 set can be quite high, even if a small 𝐴𝑙𝑙𝐷𝑎𝑡𝑎
set is used. For example, if we assume that 𝐴𝑙𝑙𝐷𝑎𝑡𝑎 = 2,
there will be around 150 million different ways of
constructing 4

th
 protocol message, as given in Table 1.

TABLE I. THE SIZE OF DATA HASH SET

𝑖 0 1 2 3 4

|𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑖 | 2 4 72 12168 ~150 𝑀

This exponential rise of the 𝐷𝑎𝑡𝑎𝐻𝑎𝑠 set makes model

checking infeasible beyond 3 messages, even if we limit
ourselves with 2 distinct data values.

Another problem is the time complexity of the 𝑎𝑠
function. As the 𝐷𝑎𝑡𝑎𝐻𝑎𝑠 set grows bigger, it would take
more time to select the correct hash value from the set,
assuming we could hold all the required states in memory.

We need to refine the model, by abstracting unnecessary
details away from the proposed model. To begin with, we
analyze and improve our hash chain model and then we carry
our optimizations to the processes in the network.

1) Revising the Data Model
As we discussed in previous sections, the data values are

assumed to be taken from the 𝐴𝑙𝑙𝐷𝑎𝑡𝑎 set. This set contains
𝑚 different data values, which symbolizes all the data values
in the system.

However, we are also not interested in the actual contents
of the data transferred but we’re interested in the source of
the data, for specification purposes. Thus we drop 𝐴𝑙𝑙𝐷𝑎𝑡𝑎
set and represent the data sent by agents as 𝐷𝑎𝑡𝑎. 𝐴𝑔𝑒𝑛𝑡,
which belongs to the data type 𝑓𝑎𝑐𝑡.

Note that, this revision also means that we do not need
another external process inputting data on the 𝑔𝑒𝑡𝐷𝑎𝑡𝑎
channel. Hence, this revision reduces the state space by
removing a parallel composition from the system.

2) Bounding the Size of Hash Sets
In our hashing mechanism, we explicitly calculated the

correct hash value of a given protocol message using the
𝑎𝑠 function, which maps each protocol message to a
single correct hash value. All other hash values would be
incorrect, as there is one correct hash value.

This observation means that, while we are building the
state space of the system, we use one state for representing
the correct hash and all the remaining states for representing
the incorrect hash value. We reduce the state space greatly,
since we represent all incorrect hash values using a single
symbolic value.

Thus, we declare two symbolic facts; 𝐶 , representing a
correct hash value and 𝐼 , representing an incorrect hash
value, with respect to the corresponding previous message.
In this case, message 𝑃𝑖 = 𝑑𝑎𝑡𝑎. 𝐴𝑙𝑖𝑐𝑒, 𝐶 , 𝐼 represents a

message, carrying data from agent 𝐴𝑙𝑖𝑐𝑒 and correct hash
value for 𝑃𝑖−1 and an incorrect hash value for 𝑃𝑖−2. As we
use one symbolic value for all of the incorrect hash values
(and we are not interested in exactly which incorrect value
has arrived) this approach greatly reduces the state space of
the system and makes model checking possible, without
losing any attacks.

Next, we need to redefine 𝐴𝑙𝑙𝐻𝑎𝑠𝑒𝑠 and 𝐷𝑎𝑡𝑎𝐻𝑎𝑠
sets. The new symbolic hash values 𝐶 and 𝐼 will become
members of 𝐴𝑙𝑙𝐻𝑎𝑠𝑒𝑠 such that 𝐴𝑙𝑙𝐻𝑎𝑠𝑒𝑠 = {𝐶 , 𝐼} .
Also, the 𝐷𝑎𝑡𝑎𝐻𝑎𝑠 set no longer needs to contain all
possible mappings of hashes and messages. We redefine
𝐷𝑎𝑡𝑎𝐻𝑎𝑠 such that it contains only the messages whose
hashes are correct:
𝐷𝑎𝑡𝑎𝐻𝑎𝑠 = { 𝑑𝑎𝑡𝑎. 𝐴 , 𝑑𝑎𝑡𝑎. 𝐴, 𝐶 , 𝑑𝑎𝑡𝑎. 𝐴, 𝐶 , 𝐶 }

The receiver needs to calculate the hashes of incoming
messages, so we use a simplified hash function:

𝑎𝑠 𝑑𝑠 = 𝑖𝑓 = ∅ 𝑡𝑒𝑛 𝐼 𝑒𝑙𝑠𝑒 𝐶
where = { | 𝑑𝑠 ∈ 𝐷𝑎𝑡𝑎𝐻𝑎𝑠, 𝑑𝑠 = 𝑠 }.

Having defined a new hashing mechanism, we need to
show that this mechanism is compatible with our hashing
assumptions:

 Model satisfies our first assumption, because we
have no mechanism to deduce the input from hash
values 𝐼 and 𝐶 .

 As we map all incorrect hash values to a single
symbolic value 𝐼, different input messages can have
the same hash value. However, hash 𝐶 and 𝐼 are
only symbolic values denoting the correct or
incorrect hash of a message. We are not interested in
the exact hash value but rather we are interested
whether the value is right or wrong. In this sense, we
can say that the model satisfies this condition

3) Revisions on the Agent Processes
We remove 𝑔𝑒𝑡𝐷𝑎𝑡𝑎 channel from the 𝑆𝑒𝑛𝑑 process and

also, there’s no need to send hash values of previous
messages to processes, we assume that sender always
calculates and sends the correct hash value. Additionally we
define the process 𝐿𝑎𝑠𝑡 to be used for validation and
verification, which defines the behavior of the system after
the protocol run.

𝑆𝑒𝑛𝑑0 𝑖𝑑 = ⊓ 𝑏: 𝐴𝑔𝑒𝑛𝑡 •
 𝑠𝑒𝑛𝑑. 𝑖𝑑. 𝑏. 𝑑𝑎𝑡𝑎. 𝑖𝑑 →

 𝑠𝑒𝑛𝑑. 𝑖𝑑. 𝑏. 𝑆𝑞. 𝑑𝑎𝑡𝑎. 𝑖𝑑, 𝐶 →

 𝑆𝑒𝑛𝑑𝑖 𝑖𝑑, 𝑏
𝑆𝑒𝑛𝑑𝑖 𝑖𝑑, 𝑏 = 𝑆𝑒𝑛𝑑𝑛 𝑖𝑑, 𝑏 ⊓

(𝑠𝑒𝑛𝑑. 𝑖𝑑. 𝑏. 𝑆𝑞. 𝑑𝑎𝑡𝑎. 𝑖𝑑, 𝐶 , 𝐶 →

 𝑆𝑒𝑛𝑑𝑖+1 𝑖𝑑, 𝑏)
𝑆𝑒𝑛𝑑𝑛 𝑖𝑑, 𝑏 =

 𝑠𝑒𝑛𝑑. 𝑖𝑑. 𝑏. 𝑃𝑘. (𝑠𝑘. 𝑖𝑑, 𝑆𝑞. 𝐶 , 𝐶) →
 𝐿𝑎𝑠𝑡

Similarly, the 𝑅𝑒𝑐𝑣 process has slight changes, such as
removing 𝐴𝑙𝑙𝐷𝑎𝑡𝑎, so we do not rewrite 𝑅𝑒𝑐𝑣 process here.

In the 𝐶𝑒𝑐𝑘 process, we do not need to compare the
hash of current message with the hash values in previous
messages. We assume that, if any of previous messages have
been verified, then they contain the right hash value for the
current message. Thus, we only need to check whether any

60

of the previous messages are in checked set. Also, we do not
want to start a new process run after the check is finished, so
we replace 𝑅𝑒𝑐𝑣0with 𝐿𝑎𝑠𝑡 process.
𝐶𝑒𝑐𝑘 𝑅, 𝑉, 𝑖 =
 𝑖𝑓 𝑖 < 0 𝑡𝑒𝑛
 𝐿𝑎𝑠𝑡
 𝑒𝑙𝑠𝑒
 𝑖𝑓 𝑎𝑠 𝑃𝑖 = 𝐶 𝑎𝑛𝑑

 𝑃𝑖+1 ∈ 𝑉 𝑜𝑟 𝑃𝑖+2 ∈ 𝑉
 𝑡𝑒𝑛
 𝑝𝑢𝑡𝐷𝑎𝑡𝑎. 𝑑𝑎𝑡𝑎 𝑃𝑖 →
 𝐶𝑒𝑐𝑘(𝑅 − 𝑃𝑖 , 𝑉 ∪ 𝑃𝑖 , 𝑖 − 1)
 𝑒𝑙𝑠𝑒
 𝐶𝑒𝑐𝑘(𝑅 − 𝑃𝑖 , 𝑉, 𝑖 − 1)

4) Validation of the CSP Model
We want to make sure that we built the right model i.e.

validating the model, by building a test specification. For
validation, we define 𝐿𝑎𝑠𝑡 process such that 𝐿𝑎𝑠𝑡 =
𝑡𝑒𝑠𝑡. 𝑜𝑘 → 𝑆𝑇𝑂𝑃. We assume that the model is correct, if a
state where two agents can synchronize on 𝑡𝑒𝑠𝑡. 𝑜𝑘 is
reachable. That is actually hiding all other events within the
system and checking if any 𝑡𝑒𝑠𝑡. 𝑜𝑘 event occurs in traces:

𝑆𝑇𝑂𝑃 ⊑𝑇 𝑆𝑦𝑠𝑡𝑒𝑚 \ {Σ − {𝑡𝑒𝑠𝑡}}
This property is checked by FDR and it is not satisfied.

FDR returns traces in which the 𝑡𝑒𝑠𝑡. 𝑜𝑘 event occurs,
meaning that such a state is reachable and our model is valid.

5) Verification of CSP Model
EMSS protocol claims to authenticate the sender to

receiver agent, which means that the receiver should only
accept data items that it believes to be sent by the correct
sender. To verify this property, we must check whether a
state exits in which receiver agent accepts a data that has not
been sent by the stated sender:

𝑆𝑇𝑂𝑃 ⊑𝑇 𝑆𝑦𝑠𝑡𝑒𝑚 \ {Σ − {𝑝𝑢𝑡𝐷𝑎𝑡𝑎. 𝐴𝑙𝑖𝑐𝑒}}
This property is checked by FDR and satisfied, indicating

that the EMSS protocol fulfils its authentication claims.

VII. CONCLUSIONS & FUTURE WORK

In this paper, we discussed the challenges that were
encountered during the modeling of the EMSS protocol
using CSP. The main challenge was the modeling of the hash
chain mechanism; which was not possible using the
straightforward approach. We overcame this problem by
using a fixed sized hashed message approach.

Then, we tried to convert the infinite state model of the
protocol into a finite state model, using fixed sized hashed
messages. We used symbolic hash values to represent the
correct and incorrect hashes of messages, which enable us to
validate and verify our model using the model checker FDR,
without losing any attacks.

Although [11] uses data independence techniques to
build the finite state model, we do not think that they are
necessary to apply to our model of the EMSS protocol. This
is mainly because of the protocol uses data items in its
definition and we are not interested in the values of the data
items. Additionally, the 𝑎𝑠 function is available to agents
and the intruder so the recycling of hash and data items is
unnecessary.

From the definition of the EMSS protocol given in [8],
we cannot determine how the protocol behaves using
multiple parallel sessions of protocol runs, so we assumed
that each run is performed involving one sender and one
receiver.

This work may be extended to include the checking of
both authentication and nonrepudiation properties involving
unbounded number of receivers, which is not considered in
this paper.

REFERENCES

[1] C. A. R. Hoare, “Communicating Sequential Processes”, ACM, 1978,
Communications of the ACM, Vol. 21, pp. 666-677.

[2] S. D. Brookes, C. A. R.Hoare, and A.W. Roscoe, “A theory of
Communicating Sequential Processes”, 3, New York, NY, USA :
ACM, 1984, Journal of the ACM, Vol. 31, pp. 560-599.

[3] G. Lowe, “Breaking and fixing the Needham-Schroeder public-key
protocol using FDR”, Software-Concepts and Tools, 17(3), 1996. pp.
93–102.

[4] S. Schneider, and R. Delicata, “Verifying security protocols: An
application of CSP”, In Communicating Sequential Processes, 2005,
pp. 243–263.

[5] L. H. Nguyen and A.W. Roscoe, “Authentication protocols based on
low-bandwith unspoofable channels: a comparative survey”,
Unpublished, 2009.

[6] C. Dilloway and G. Lowe, “On the specification of secure channels”,
Proceedings of the Workshop on Issues in the Theory of Security
(WITS '07), 2007.

[7] S. A. Shaikh, V. J. Bush, and S. A. Schneider, “Specifying
authentication using signal events in CSP”, Computers & Security,
28, 2009, pp. 310–324.

[8] A. Perrig, R. Canetti, J. D. Tygar and D. Song, “Efficient
authentication and signing of multicast streams over lossy channels”,
2000, IEEE Symposium on Security and Privacy, pp. 56-75.

[9] B. Donovan, P. Norris and G. Lowe, “Analyzing a library of security
protocols using Casper and FDR”, In Proceedings of the Workshop
on Formal Methods and Security Protocols, 1999.

[10] F. Martinelli, M. Petrocchi and A. Vaccarelli, “Analysing EMSS with
compositional proof rules for non-Interference”, Workshop on Issues
in the Theory of Security (WITS’03), 2003, pp. 52–53.

[11] P. J.Broadfoot and G. Lowe, “Analysing a stream authentication
protocol using model checking”, In ESORICS ’02: Proceedings of the
7th European Symposium on Research in Computer Security. 2002,
London, UK: Springer-Verlag. pp. 146–161.

[12] R. S. Lazic, “A semantic study of data-independence with
applications to the mechanical verification of concurrent systems”,
1998, Oxford University D. Phil thesis.

[13] A. W. Roscoe and P. J. Broadfoot, “Proving security protocols with
model checkers by data independence techniques”, Journal of
Computer Security, 1999.

[14] A.W. Roscoe, The theory and practice of concurrency. s.l. : Prentice
Hall, 1998.

[15] S.A. Schneider, Concurrent and real-time systems: the CSP approach.
s.l. : John Wiley., 1999.

[16] M. Goldsmith, “FDR2 User’s Manual”, version 2.82. 2005

[17] B. Scattergood, “The semantics and implementation of machine-
readable CSP”, 1997. Ph.D. thesis, University of Oxford, .

[18] D. Dolev and A. C. Yao, “On the security of public key protocols”,
IEEE Trans. on Information Theory, 29(2), 1983, pp. 198-208.

[19] A. W. Roscoe and M. H. Goldsmith, “The perfect spy for model-
checking crypto-protocols”, In Proceedings of DIMACS workshop on
the design and formal verification of crypto-protocols. 1997.

61

