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Effects of a ceiling-mounted barrier on natural convection heat transfer in a square cavity with differentially heated wall are
numerically investigated. A limit case, in which the partition has small thickness and low thermal conductivity, is studied.
The study is performed for nine different locations of barrier on the ceiling, two different lengths of barrier as 15 and 50%
of the side wall, and Rayleigh numbers from 103 to 106. The vorticity and streamfunction approach is used to obtain velocity
distribution, and the energy equation is solved to determine temperature field in the cavity. The variations of the local Nusselt
number on the hot and cold walls and the change of mean Nusselt number with the location of barrier in the cavities with
different Rayleigh numbers are presented. The obtained results show that a wall-mounted barrier can be used to reduce heat
transfer rate through the cavity; however, its effectiveness depends on length and location of barrier and Rayleigh number.

INTRODUCTION

The phenomenon of heat transfer by natural convection in
enclosures has significant interest due to the wide variety of ap-
plications such as cooling of electronic devices, thermal energy
storage, solar collectors, nuclear reactors, and heating and cool-
ing of buildings. Natural convection occurs in any fluid region in
that a body force and temperature gradient exist. A comprehen-
sive review on the applications of natural convection has been
reported by Ostrach [1], Catton [2], Jaluria [3], and Vahl Davis
and Jones [4].

Most of the previous works have addressed natural con-
vection in differentially or partially heated rectangular or non-
rectangular-shaped enclosures without any partition. However,
a partition (or partitions) can be used as a control parameter
to reduce or enhance heat transfer and flow strength inside an
enclosure [5–7]. The enclosures can be divided by a partition
hanging from the top wall or extending from the bottom floor
[8–11] or both [12–14] or from side walls [15–20]. The ther-
mal state of the partition plays an important role on the heat
and fluid flow in a cavity. Thermally, a partition behaves be-
tween two limiting cases. The partition may be made of highly
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conductive materials, and thus the partition temperature will be
at the temperature of the mounted wall [9–10, 12–18], or the
thermal conductivity of partition may be very low, and thus no
temperature gradient exists between the partition surfaces and
adjacent fluid [7, 8]. The present study is focused on the effects
of the latter partition, meaning that the thermal conductivity of
partition is very low compared to the fluid thermal conductiv-
ity. This is a limiting case for which heat cannot flow through
the fin. Moreover, the thickness of the fin is not considered as
an independent parameter and its thickness is assumed small
compared to the width of the cavity.

A literature survey shows that there are limited studies on
the effects of fins, partitions, or barriers on heat and fluid flow
in a cavity. Varol et al. [8, 9] used partitions to control heat
transfer and fluid flow inside a right-angle triangular enclosure.
They found that the location of partitions changes the number of
circulation cells and temperature distribution. Oztop and Bilgen
[10] and Dagtekin and Oztop [11] investigated the effects of
heated or cooled partitions mounted onto bottom wall of square
enclosures. Other examples of their studies can be found in refer-
ences [13] and [14]. In the context of location of partitions onto
two walls, studies were performed and reported in references
[15] and [16]. In the studied cases, a jet-like flow is formed be-
tween partitions due to the narrow region, and strength of flow
is decreased. A numerical analysis was performed on natural
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convection in a square cavity with a thin baffle on the hot wall
by Tasnim and Collins [16]. They found that a fin has a blocking
effect on the fluid depending on the Rayleigh number, length
of the baffle, and its position, and a number of recirculating
regions can be formed above and under the baffle. Heat transfer
in a differentially heated square cavity due to a thin fin on the
hot wall was studied by Shi and Khodadadi [17]. They indicated
that the heat transfer capacity on the anchoring wall is always
degraded by introducing a fin; however, heat transfer on the cold
wall without a fin can be promoted for high Rayleigh numbers
and with the fins placed closer to the insulated walls. Bilgen
[18, 19] made a numerical analysis to investigate the transition
phenomenon of laminar to turbulent flow in the partially di-
vided enclosures. He found that the flow regime is laminar for
Rayleigh number up to 108. Nag et al. [20] analyzed an enclo-
sure that has a perfectly conducting partition and they found
that the heat transfer at the cold wall increased irrespective of
the position or length of the conducting partition. In the study of
Frederick [21], the partition was located on the cold side wall of
the enclosure. Moukalled and Acharya [22] performed a numer-
ical investigation on natural convection heat transfer in partially
divided trapezoidal cavities. The effects of Rayleigh number,
baffle height, and baffle location on heat transfer in summer-
like and winter-like conditions in their work were studied. The
effect of baffles on heat and fluid flow in trapezoidal cavities
under different baffle locations and cavity thermal conditions
can also be found in their other studies [23, 24].

Visualization of both heat and fluid flow helps researchers
to see the effects of partition or barrier in a cavity. Although
the flow visualization can be done using streamlines, the imag-
ination of heat transfer path in a convective flow is not easy.
Heatline technique was first proposed by Kimura and Bejan [25]
to visualize convective heat transfer, and the method has been
extended to different applications by Morega and Bejan [26],
Dash [27], Dalal and Das [28], and Costa [29]. A detailed review
study on the applications of heatlines was performed by Costa
[30]. Recently, heatline methods (or Bejan’s heatline) were ap-
plied on different problems of natural convections in porous or
fluid filled enclosures [31–37]. Mobedi [31] and Hakyemez et
al. [36] performed studies on conjugate natural convection heat
transfer in cavities, and they indicated that the heatline visualiza-
tion is a powerful method to show the heat interaction between
solid and fluid at an interface. Transient natural convection in a
cylindrical enclosure heated nonuniformly at the top wall was
studied numerically by Aggarwal et al. [37]. They used heatline
techniques, and the obtained results showed that the unicellular
motion degenerates into a multicellular motion, resulting in the
stratification of the temperature field in the axial direction.

In this literature survey, no study was found on analyzing
of heat transfer reduction by a single and insulated partition
mounted on the top wall of a rectangular enclosure and on
employing heatline technique to visualize heat flow in a cavity
with the presence of a barrier. The aim of the present study is
to investigate the effects of a ceiling-mounted barrier on heat
and fluid in a differentially heated air-filled cavity. The heatline

Figure 1 Schematic view of the cavity analyzed in the present study.

visualization technique is employed to demonstrate the path
of heat transfer. There is no doubt that the considered barrier
reduces the heat transfer rate between the hot and cold walls;
however, the rate of decrease depends on the location and length
of the barrier and Rayleigh number. The variations of local and
average Nusselt numbers on the hot and cold walls with location
and length of barrier for different values of Rayleigh numbers
are also discussed.

THE CONSIDERED PROBLEM

The schematic view of the cavity and barrier with the em-
ployed coordinate is shown in Figure 1. The cavity has a square
cross section with side length of L. The left wall is at a high
temperature (Th), whereas the right wall is maintained at a low
temperature (Tc). The upper and lower walls are adiabatic. Heat
is transferred from the left to right wall by natural convection.
Radiation mode of heat transfer is neglected. The thermal con-
ductivity of barrier is very low compared to the fluid thermal
conductivity, and the thickness of barrier is small compared to
the width of cavity. The thickness and length of the vertical bar-
rier are wb and �b, and the dimensionless length and thickness
of the barrier are defined as Lb = �b/L and Wb = wb/L .
The dimensionless location of the barrier on the ceiling wall is
identified by Xb, which refers to the distance of the base of
barrier from left top corner of cavity as seen in Figure 1. In the
same way, the dimensionless location of barrier is Xb = xb/L .
Hence, the value of Xb varies between 0 and 1. Heat and fluid
flow is steady and the problem is solved for air with Pr = 0.71.

GOVERNING EQUATIONS AND BOUNDARY
CONDITIONS

The steady behavior of flow and temperature distribution is
investigated in this study. The steady solution of the governing
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equations can be obtained from the solution of either the steady
or transient form of the governing equations. The latter approach
is generally known as the time marching approach. In fact, there
is no difference between the steady results of the two approaches
when the solution of the governing equations is unique. The
governing equations for the problem are continuity, momentum,
and energy equations. The gravity acts in the negative vertical
direction. The pressure term in the momentum equation can be
eliminated using a vorticity–streamfunction approach. The use
of dimensionless vorticity and streamfunction parameters yields
the dimensionless form of the governing equations as follows:

∂�

∂τ
+ ∂U�

∂X
+∂V �

∂Y
= Pr

(
∂2 �

∂ X2
+ ∂2 �

∂ Y2

)
+ RaPr

∂θ

∂X
(1)

∂2�

∂X2
+ ∂2�

∂Y2
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∂θ

∂τ
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+∂V θ

∂Y
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∂ X2
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where U, V, θ, τ, X and Y are dimensionless parameters:
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L
, Y = y

L
, U = uL

α
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α
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(T h − Tc)
, τ = αt

L2
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The dimensionless vorticity, streamfunction, and Rayleigh

number are defined as:

� = ∂V

∂X
− ∂U

∂Y
(5)

U = ∂�

∂Y
, V = −∂�

∂X
(6)

Ra = gβ(Th − Tc)L3

να
(7)

The boundary conditions for the domain that is shown in
Figure 1 can be written as follows:

X = 0, X = 1; � = ∂V

∂X
,� = 0,θ(0, Y,τ) = 1,θ(1, Y,τ) = 0

(8)

Y = 0,Y = 1; � = −∂U

∂Y
,
∂θ

∂Y
= � = 0 (9)

The boundary conditions for the surface of barrier with di-
mensionless thickness as Wb are:

X = Xb − Wb/2, X = Xb + Wb/2 when1 − Lb < Y < 1;

∂θ

∂X
= U = V = 0,� = ∂V

∂X
(10)

The finite-difference form of boundary condition for vorticity
at the tip of the barrier was written according to the method ex-
plained by Poulikakos and Kimura in reference [38]. The value
of vorticity at a solid wall can be calculated from the values of

streamfunction at the solid wall and adjacent nodes, or it can
directly be calculated from the gradient of velocity in normal
direction. The latter method provides acceptable results when
sufficient number of nodes is used. The comparison between
the results of present code and reported studies on natural con-
vection in a square cavity shows this fact. As it was mentioned
before, the steady results are our interest, and the obtained re-
sults should not depend on initial condition. For simplicity, the
following initial conditions for dimensionless temperature, vor-
ticity, and streamfunction are used:

U = V = � = � = θ = 0 (11)

The dimensionless form of the governing equations and
boundary conditions reduce number of dimensionless param-
eters to four, which are Ra, Pr, Lb, and Xb. The present study is
performed for air with Pr = 0.71; therefore, the effects of three
dimensionless parameters, which are Rayleigh number, dimen-
sionless length of barrier, and dimensionless location of barrier,
are taken into account.

The following equation is solved to obtain dimensionless
heatfunction [26–28]:

∂2 H

∂ X2
+ ∂2 H

∂ Y2
= ∂Uθ

∂Y
−∂V θ

∂X
(12)

The dimensionless heatfunction in differential form is de-
fined as:

−∂H

∂X
= V θ − ∂θ

∂Y
,

∂H

∂Y
= Uθ − ∂θ

∂ X
(13)

The boundary conditions for Eq. (12) are obtained from the
integration of Eq. (13) along the considered boundary. For ex-
ample, the dimensionless heatfunction values at X = 0 and X =
1 boundaries are determined as [28]:

For X = 0 and 0 < Y ≤ 1:

H (0, Y ) = H (0, 0) −
Y∫

0

∂θ

∂ X
dY (14)

For X = 1 and 0 < Y ≤ 1:

H (1, Y ) = H (1, 0) −
Y∫

0

∂θ

∂ X
dY (15)

For the lower and upper horizontal walls and the surface of
the barrier, which are adiabatic,

H = const. (16)

At the origin, the value of heatfunction is considered as zero,
H (0,0) = 0.

SOLUTION PROCEDURE

The governing equations (Eqs. (1)–(3)) are solved by starting
from an initial state. The vorticity equation is solved for a time
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step to compute the vorticity field in the computational domain.
Then the streamfunction equation is solved and the velocity
values are obtained from the streamfunction field. At the same
time step and by using the new values of velocity, the energy
equation is solved and the temperature field is computed. The
procedure is continued until the steady state is reached. The
energy and vorticity equations are solved line by line by em-
ploying an alternating direction implicit (ADI) method, whereas
the streamfunction equation is solved point by point. The finite-
difference forms of diffusion and convection terms are written
based on three points central difference, which has second-order
accuracy. For iterations concerning solution of the streamfunc-
tion equation (Eq. (2)) at each time step and the solution of
dimensionless heatfunction equation (Eq. (12)), the following
convergence criterion is used:∑ ∣∣ϕm+1 − ϕm

∣∣∑ |ϕm | ≤ 10−8 (17)

where ϕ represents the value of streamfunction and heatfunc-
tion for all the nodes inside computational domain, and m shows
a step of iteration. The convergence criterion for the outer it-
eration, which yields the steady state solution for velocity and
temperature fields, is defined as:∑∣∣θn+1 − θn

∣∣
�τ

∑
θn

≤ 10−4 (18)

where n shows a time step for outer iteration and �τ is the
interval time. The local Nusselt number on the cold and hot
walls and the average Nusselt number values are calculated by
the following equations:

Nu = − ∂θ

∂X

∣∣∣∣
wall

(19)

N̄u =
Y=1∫

Y=0

NudY (20)

In order to investigate the effectiveness of a heat barrier on
reduction of heat transfer rate through the cavity, a dimension-
less parameter as Nusselt number ratio (NNR) can be introduced
[17].

N N R = N̄uwithbarrier

N̄uwithoutbarrier
(21)

The values of NNR greater than 1 show the enhancement of
heat transfer in the cavity, whereas NNR values less than 1 indi-
cate reduction of heat transfer through the cavity. Nonuniform
mesh grid sizes were used, and the grid sizes were selected fine
near the walls and the barrier. The studies performed on the vari-
ation of Nusselt number with number of nodes and comparison
between the obtained numerical results with reported studies
in literature show that 210 × 210 for the number of nodes is
sufficient to obtain acceptable numerical results. The smallest
dimensionless grid spacing was in the fluid region adjacent to
the barrier, as 0.001.

Validation

To check the written computer code and to validate the em-
ployed method, Table 1 is presented. The results of Shi and
Khodadadi [17], Bilgen [18], and Vahl Davis and Jones [4]
for a differentially heated air-filled square cavity are obtained
and compared with the results of the present study for different
Rayleigh numbers of 103, 104, 105, and 106. Moreover, another
validation study was performed by comparison of the maxi-
mum absolute value of streamfunction for different Rayleigh
numbers. The comparison of the streamfunction results is pre-
sented in Table 2. Good agreement between the obtained results
from the written code and the results reported in literature can be
seen from Tables 1 and 2. In order to check the drawn heatlines,
the heatline patterns for a square cavity with differential wall
temperatures when Ra = 105 are plotted and compared with
heatline patterns reported in the study of Basak and Roy [34].
As seen from Figure 2, there is an excellent agreement between
the drawn heatline patterns and the reported one. It should be
mentioned that for the all obtained results, the values of Nusselt
number for the hot and cold walls were very close to each other,
signifying the satisfaction of energy conservation.

RESULTS AND DISCUSSION

The effects of the barrier on the temperature and velocity
fields are shown via isotherms, streamlines, and heatlines for
different governing parameters. Figure 3 is presented to show
the effects of location of a short-length barrier ( Lb = 0.15)
on the temperature and velocity fields for Ra = 103 and for
three barrier locations as Xb = 0.125, 0.50, and 0.875. The
isotherms and streamlines are presented on the left and middle,

Table 1 The benchmark solution based on mean Nusselt number

Rayleigh number Present study Shi and Khodadadi [17] Bilgen [18]
de Vahl Davis and Jones

[4]

103 1.11 — — 1.12
104 2.24 2.25 2.25 2.24
105 4.51 4.53 4.52 4.52
106 8.80 8.89 8.80 8.80

heat transfer engineering vol. 32 no. 5 2011
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Figure 2 Comparison of heatline patterns in a square cavity with Ra = 105:
(a) heatline patterns reported by Basak and Roy [34], and (b) heatline patterns
of the present study.

while the heatlines are on the right of Figure 3. The conduction
heat transfer is dominant in the cavity because of low Rayleigh
number. The isotherms are almost parallel to each other and
to the vertical isothermal walls. Single circulation cell occurs
in the clockwise direction as shown from the streamlines. In
this case, the barrier has little effect on the heat and fluid flow
patterns. The direction of heat flow at the top region of the cavity
is changed due to the presence of a heat barrier. A region in the
center of the cavity exists in where heat only rotates without
playing a role on the transfer of heat from the hot to the cold
wall.

Figure 4 shows the effects of a long barrier ( Lb = 0.50) on the
isotherms (on the left), streamlines (in the middle), and heatlines
(on the right) for the barrier location as Xb = 0.125, 0.50, and
0.875 when Ra = 103. Again, the isotherms are almost parallel
to each other due to the dominant conduction heat transfer;
however, the increase of barrier length considerably influences
the streamline patterns. For the cavities with barrier at Xb =
0.125 an almost stagnant region appears between the barrier and
left wall. A similar stagnant region is also observed between the
barrier and the right wall for Xb = 0.875 barrier location. For
barrier location at Xb = 0.5, the hot air in the left region of
the cavity flows toward the ceiling, but it cannot continue its
horizontal motion due to the presence of the barrier. It flows
down and after passing from the edge region of the barrier,
it again moves up and continues its motion to the cold wall. A
bean-shaped main cell was formed due to presence of the barrier.
Figure 4 also shows that the long barrier affects the heatline
patterns. Similar to the fluid flow, for the barrier location at Xb

= 0.50, heat flows in horizontal direction, then moves down,

Figure 3 The isotherms (on the left), streamlines (in the middle), and heatlines
(on the right) in a cavity with Lb = 0.15 and Ra = 103: (a) Xb = 0.125, (b) Xb

= 0.5, and (c) Xb = 0.875.

and after passing the edge of barrier it flows toward the cold
wall. A passive heat transfer area in where heat only rotates is
seen in the cavity with Xb = 0.875.

Figure 5 shows the isotherms (on the left), streamlines (in the
middle), and heatlines (on the right) for the cavity with barrier
as Lb = 0.50 and three locations of barrier ( Xb = 0.125, 0.50,
0.875) when Ra = 106. The increase of the Rayleigh number
enhances the strength of convection heat transfer, and as a result,
the isotherms become parallel to the horizontal walls. The long
barrier distorts the patterns of fluid flow. The distortion can
be clearly seen from the streamline patterns in the cavity with
barrier location of Xb = 0.50. The barrier changes the direction
of the fluid flow in the upper region of the cavity and increases
the path flow length. For the same cavity, the barrier also affects
the heatline patterns and increases the length of heat flow path.

Table 2 The comparison of the maximum absolute values of streamfunction

Rayleigh
number

Present study
|ψmax|

Catton [2]
|ψmax|

Jaluria [3]
|ψmax|

103 1.17 — —
104 5.07 5.08 —
105 9.60 9.60 9.61
106 16.77 17.04 16.75

heat transfer engineering vol. 32 no. 5 2011
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Figure 4 Isotherms (on the left), streamlines (in the middle), and heatlines (on
the right) in a cavity with Lb = 0.5 and Ra = 103: (a) Xb = 0.125, (b) Xb = 0.5,
and (c) Xb = 0.875.

The value of heatfunction at the large region in the center of
cavity is negative, signifying the rotation of heat in that region.

Figure 6 shows the heatline patterns in cavities with Lb =
0.50 and the barrier location of Xb = 0.50 for Rayleigh numbers
of 103, 104, 105, and 106. For the cavity with Ra = 103, the
heatlines are almost parallel to each other, resembling adiabatic
distributions in a solid region. The increase of Rayleigh number
to Ra = 104 enhances convection transport and the hot air flows
upward, but it cannot flow horizontally due to the barrier. After
passing from the edge of heat barrier, it again flows upward. The
increase of convection effect can be clearly seen by increasing
the Rayleigh number to 105 and 106. The heatlines in the region
close to the hot and cold walls become closer to each other,
signifying increase of convection in the Y direction. For Ra =
104, 105, and 106, cells in where heat rotates form in the center
of cavity. These regions, colored by gray in Figure 6, are passive
regions and do not play a role on the heat transfer from the hot
to the cold wall. The increase of Rayleigh number increases the
passive region area and heatline clusters on the vertical walls of
the cavity.

The variation of local Nusselt number on the hot and cold
walls for different locations of the barrier for a cavity with Ra =
106 and Lb = 0.50 are shown in Figure 7. As seen from Figure
7a, for the barrier located at Xb = 0, the local Nusselt number at

Figure 5 The isotherms (on the left), streamlines (in the middle), and heatlines
(on the right) in a cavity with Lb = 0.5 and Ra = 106: (a) Xb = 0.125, (b) Xb

= 0.5, and (c) Xb = 0.875.

the left wall increases in the +Y direction, attains a maximum,
and then starts to decrease. At Y = 0.50, which is the end of the
heated wall, a jump in the local Nusselt number is seen because
the upward flow along the wall is cooled by the cold fluid in the
upper space. Thus, the temperature at the end of the heated wall
falls and temperature gradient becomes steep at that location.
The values of the local Nusselt number on the left wall for Xb

= 0 after Y = 0.50 location are zero due to the presence of the
barrier on the hot wall. The variation of local Nusselt number
on the hot wall is changed by changing the location of the
barrier from Xb = 0 to Xb = 0.125. The local Nusselt number
increases in the +Y direction, attains a maximum, and then starts
to decrease. For Y > 0.60, the local Nusselt number is almost
zero due to stagnant hot region between the hot wall and barrier.
The change of barrier from Xb = 0.125 to Xb = 0.50 results
in the easier movement of the fluid in the +Y direction in the
right region of the cavity. As a result, the local Nusselt number
increases in the +Y direction and then it monotically decreases
in the +Y direction. The same variation is also observed for the
local Nusselt number of the hot wall in the cavity with the barrier
location as Xb = 0.875 and 1.00. It should be mentioned that
the variations of local Nusselt number for Xb = 0.875 and 1.00
barrier locations are almost identical. As expected, when the
barrier is close to the hot wall, the variation of the local Nusselt

heat transfer engineering vol. 32 no. 5 2011



G. G. ILIS ET AL. 435

Figure 6 Heatline patterns in a cavity with Lb = 0.5 and Xb = 0.5: (a) Ra =
103, (b) Ra = 104, (c) Ra = 105, and (d) Ra = 106.

number at the hot wall is highly influenced by the presence of
the barrier. The effect of the barrier on the variation of the local
Nusselt number at the hot wall becomes smaller by changing
the location of barrier toward the cold wall.

The variation of local Nusselt number of the cold wall for
different barrier location is shown in Figure 7b. The variation
of local Nusselt number at the cold wall for barrier location as
Xb = 0, 0.125, and 0.50 are almost similar to each other. The
variations of local Nusselt number on the cold wall are almost
the same for Xb = 0 and 0.125 barrier locations in Figure 7b.
However, it is changed when the barrier is placed at Xb = 0.875.
When the barrier is close to the right wall (e.g., Xb = 0.875),
the value of local Nusselt number at the upper part of the right
wall is small due to the stagnant region between the barrier and
the cold wall. For the barrier location at Xb = 1.0, the local
Nusselt number is zero in the region 0.5 < Y < 1.0 and a jump of
local Nusselt number is seen at Y = 0.50, and then it decreases
in the –Y direction. The jump of local Nusselt number at Y =
0.50 is due to the high temperature gradient between the hot air
flowing down and the edge of the cooled wall.

The variations of the average Nusselt number in the cavity
with Lb = 0.15 for different Rayleigh numbers are shown in
Figure 8a. As is seen, for the short barrier, the average Nusselt
number is not greatly changed with the barrier location. The
small changes of average Nusselt number are seen for Ra =
106. For the cavity with Ra = 106 and Lb = 0.15, the highest
Nusselt number is seen for Xb = 0.50 as Nu = 8.756, and
the lowest value of Nusselt number is observed for the barrier

Figure 7 The variation of local Nusselt number at the vertical walls of a cavity
with Ra = 106 for different barrier locations: (a) hot wall, and (b) cold wall.

location at Xb = 1.00 as Nu = 8.240. For the barrier location of
Xb = 1.00 and Lb = 0.15, the barrier reduces the heat transfer
rate through the cavity by 6.4% if it is compared to the heat
transfer through the cavity without barrier. The value of NNR
for this position of the barrier is 0.936.

The changes of the average Nusselt number with barrier
location for different Rayleigh numbers when Lb = 0.50 is
shown in Figure 8b. The increase of the barrier length increases
its effect on the heat transfer through the cavity. For the cavity
with Ra = 103, the heat transfer through the cavity is slightly
changed with the barrier location. The minimum Nusselt number
is observed at Xb = 0.50 as Nu = 0.705. Heat transfer rate is
considerably changed with the barrier location for Ra = 106.
For the cavity with Ra = 106, the minimum Nusselt number is
seen for Xb = 1.00 barrier location, as Nu = 5.44.

The variation of the Nusselt Number Ratio with barrier loca-
tion for a cavity with Lb = 0.50 and different values of Rayleigh
numbers is presented in Figure 9. As is seen, the values of NNR
for different locations and Rayleigh numbers are less than 1,
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Figure 8 The variation of average Nusselt number with barrier location for
different Rayleigh numbers: (a) short-length barrier Lb = 0.15, and (b) long-
length barrier Lb = 0.50.

signifying the reduction of heat transfer rate through the cavity
if a barrier is mounted on the top wall of the cavity. For Ra = 103,
the minimum value of NNR is observed for Xb = 0.50 barrier
location as 0.64. The increase of Rayleigh number increases the
effectiveness of the barrier and the minimum value of NNR is
found to be 0.477 for Xb = 0.625 and Ra = 104. The increase
of Rayleigh number from 104 to 105 reduces the effectiveness of
the barrier, since the fluid flow becomes stronger. The minimum
value of NNR is seen at Xb = 0.875, which is 0.569 when Ra
= 105. Further increase of Rayleigh number increases the value
of NNR, and the minimum NNR value is observed for Xb =
1.0 barrier location as 0.619 when Ra = 106. The location of the
heat barrier on the cold wall directly reduces the active part of
the cold wall by 50%. As seen from Figure 9, the best location
of the barrier for maximum reduction of heat transfer through a
cavity depends on the Rayleigh number. The best location of bar-
rier for maximum reduction of heat transfer is shifted from the
middle of cavity to the cold wall with the increase of Rayleigh
number.

Figure 9 The variation of Nusselt number ratio with barrier location for dif-
ferent values of Rayleigh number when Lb = 0.50.

CONCLUSIONS

The effect of a barrier mounted on the ceiling of a square
cavity on heat transfer through the cavity is numerically studied.
The present study investigates a limit case in which thermal
conductivity of barrier is very low and the barrier has small
thickness compared to the width of cavity. The ceiling-mounted
barrier reduces heat transfer rate through a cavity; however,
its effect highly depends on length and location of the barrier
and on the Rayleigh number. The increase of barrier length
increases its influence on heat and fluid flow in the cavity. For
the cavity with Ra = 106, the heat transfer rate through the
cavity is considerably changed with the barrier location and the
minimum N̄u is observed for barrier location at the X = 1.0.
A long barrier ( Lb = 0.50) at the Xb = 1.00 location reduces
heat transfer rate by 38%.

The Nusselt number ratio is defined to show the effectiveness
of the barrier. The highest barrier effect is found for the cavity
with Lb = 0.50, Xb = 0.625, and Ra = 104. For the high
values of Rayleigh number (i.e., Ra = 106), fluid flow becomes
stronger and the effect of the barrier on the heat transfer rate
through the cavity becomes smaller. For the cavity with low
Rayleigh number (i.e., Ra = 103), maximum reduction of heat
transfer is achieved when the barrier is located in the middle of
the ceiling. By increase of the Rayleigh number, the location
of barrier should be shifted to the cold wall in order to have
maximum reduction of heat transfer.

A heatline visualization technique is employed to show heat
flow from the hot to cold wall. For low Rayleigh number (i.e.,
Ra = 103), heatline patterns do not cluster in a region, and
a cell (i.e., passive region) in which heat only rotates is ob-
served. The increase of Rayleigh number enhances the strength
of the fluid flow, and the heatlines are clustered in the re-
gions close to the vertical walls. The increase of the Rayleigh
number also increases the area of the passive region in the
cavity.
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NOMENCLATURE

g acceleration due to gravity, m/s2

H dimensional heatfunction
L height and length of cavity, m
Lb dimensionless barrier length
�b barrier length, m
NNR Nusselt number ratio
Nu local Nusselt number
N̄u average Nusselt number

Ra Rayleigh number
Pr Prandtl number
T temperature, K
t time, s
u,v velocities, m/s
U,V dimensionless velocities
w thickness, m
W dimensionless thickness
x,y dimensional coordinates, m
X,Y dimensionless coordinates
Xb dimensionless location of barrier on the ceiling

Greek Symbols

α thermal diffusivity, m2/s
ν kinematic viscosity, m2/s
β thermal expansion coefficient, K−1

θ dimensionless temperature
� dimensionless streamfunction
� dimensionless vorticity
τ dimensionless time

Subscripts

h hot wall
c cold wall
b barrier
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