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Sphingolipids are sphingosine-based lipid molecules that have important functions in cellular signal transduction and in a

variety of cellular processes including proliferation, differentiation, programmed cell death (apoptosis) and responses to

stressful conditions. Ceramides, dihydroceramide, sphingosine and sphingosine-1-phosphate are examples of those bioactive

sphingolipids. They have a major impact on determination of the cell fate by contributing to the cell survival or cell death

through apoptosis. Despite the number of carbon atoms in the fatty acid chain changes the physiological role; ceramides

generally exert suppressive roles on the cell proliferation. There have been several enzymes identified in this pathway that

are responsible for the conversion of ceramide into other sphingolipid derivatives. Those derivatives also have differential

roles on those cellular processes. Sphingosine-1-phosphate is an example of such sphingolipid derivatives which has

antiapoptotic effects. As they have significant impacts particularly on the cell death and survival, bioactive sphingolipids have

a great potential to be targets in cancer therapy. Increasing number of studies indicates that sphingolipid derivatives are

important in the progression of hematological malignancies, and they are also involved in the resistance to current

chemotherapeutic options. This review compiles the current knowledge in this area for enlightening the therapeutic potentials

of bioactive sphingolipids in various leukemias.

Sphingolipids are one type of lipids that are formed by the
combination of a fatty acid and amino alcohol sphingosine
with a changeable side chain. Different groups linked to the
sphingosine backbone determine the type of the sphingolipid.
Ceramide is the fundamental unit for the synthesis of other
sphingolipids. They are important constituents of the eukary-
otic plasma membranes with the exception of few bacterial
species. Since their identification in 1876, sphingolipids have

been considered to have mainly structural roles in the cells.
However, arising evidence showed that sphingolipids are ver-
satile macromolecules having important roles in a variety of
processes including signal transduction, differentiation, prolif-
eration and programed cell death.1,2 Most widely studied bio-
active sphingolipids include ceramide, ceramide-1-phosphate
(C1P), dihydroceramide (dhCer), sphingosine and sphingo-
sine-1-phosphate (S1P).2 Glucosyl ceramide (GluCer) is an
another intermediate of sphingolipid metabolism, which was
implicated in the drug resistance and cellular trafficking.3 As
sphingolipids are involved in the regulation of essential path-
ways ensuring the homeostasis, deregulated or defective
sphingolipid metabolism might be reflected as pathologic
conditions. Indeed, there are numerous studies indicating the
importance of sphingolipids in health and disease.4

This review will present general information about bioac-
tive sphingolipids with an emphasis on the involvement of
bioactive sphingolipids in hematological malignancies such as
acute and chronic leukemias, and it will provide some future
perspectives for their usage as the leukemia therapeutics.

Types of Bioactive Sphingolipids
Ceramide

Ceramides are the central molecules of the sphingolipid me-
tabolism, and they are involved in the regulation of numer-
ous cellular processes including proliferation, differentiation,
senescence, apoptosis and responses to stressful conditions.
Structure of ceramides contains a sphingosine base and a
fatty acid chain with varying number of carbons. Ceramide
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levels are regulated in the cells by several mechanisms.2 Gen-
eration of ceramides and their conversion to other sphingoli-
pid derivatives are essential for this regulation. One of the
mechanisms responsible for the generation of ceramides
involves the activation of sphingomyelinase (SMase) enzyme,
which catalyzes the hydrolysis of membrane phospholipid
sphingomyelin (SM) to ceramide.5,6 TNF-a, FAS ligand and
oxidative stress are known to stimulate SMases for the pro-
duction of ceramides7–9; therefore, this pathway is thought to
be particularly important for the elevation of ceramide levels
in the stress conditions. Ceramides can also be generated de
novo from serine and palmitoyl CoA in endoplasmic reticu-
lum.10,11 These two compounds initially condense to form
ketosphinganine in a reaction catalyzed by serine palmitoyl-
transferase. This intermediate is then reduced into dihydros-
phingosine which would be subsequently converted to dihy-
droceramide (dhCer) by dihydroceramide synthase. Ceramide
synthesis from dhCer is catalyzed by dihydroceramide desa-
turase in the last step of de novo ceramide production.12 In
addition to those pathways, recycling of complex sphingoli-
pids can result in the production of ceramides by a process
called the salvage pathway. A variety of enzymes including
cerebrosidases, SMases, ceramidases and ceramide synthases
are involved in the salvage pathway as a result of which
sphingolipids are broken down into sphingosine that would
be reutilized for the ceramide production.13

Current evidence indicates the involvement of ceramides
in apoptosis, growth arrest, proliferation, survival and
aging.14 Ceramides interact with protein kinases and phos-
phatases for exerting regulative functions in the cellular proc-
esses stated previously. Protein phosphatase-1 (PP1) and pro-
tein phosphatase-2A (PP-2A) are activated by long-chain
ceramides,15 and hence, they are known as ceramide-acti-
vated protein phosphatases (CAPPs). Activated CAPPs are
responsible for carrying the signal further to downstream tar-
gets including retinoblastoma protein, cyclin-dependent ki-
nases (CDKs) and Bcl-2 family members.14,16 Dephosphoryl-
ation of retinoblastoma (Rb) protein upon elevation of the
cellular ceramide level is linked to the growth inhibition in
lymphoblastic leukemia cell line.17 Moreover, in another
study, ceramide was shown to suppress cellular growth by
negatively regulating cdk2 through the activation of phospha-
tases.18 Intrinsic apoptotic pathway is induced by the cer-
amides through the regulation of cytochrome c release and
the loss of mitochondrial membrane potential.19 In addition
to these downstream targets, ceramides are known to be
interacting with Akt, protein kinase C (PKC), phospholipase
D and cathepsin D.20,21 Ceramides were also linked to the
reduction of telomerase activity through the repression of
telomerase reverse transcriptase promoter in lung carcinoma
cell line.22 Findings of some studies indicated that ceramides
with different lengths of fatty acid chains have different roles
in the cellular physiology. In the majority of head and neck
squamous cell carcinomas, low levels of C18-ceramide were
detected, whereas C16-ceramide was significantly upregu-

lated.23,24 Further studies confirmed that C18-ceramide has
apoptotic effects, whereas C16-ceramide contributes to pro-
survival.25 In another study, C2-ceramide was found to be
unable to induce cell death in K562 chronic myeloid leuke-
mia (CML) cells, whereas C6-ceramide contributed apoptotic
induction.26 Investigations in neuroepithelioma cells have
shown that C6-ceramide is involved in the apoptotic induc-
tion, whereas long-chain ceramides that were accumulated
upon the treatment with C6-ceramide are ineffective in this
manner.27

Dihydroceramide, ceramide-1-phosphate and glucosyl

ceramide

DhCer is an intermediate in the de novo ceramide generation
pathway. It is synthesized from dihydrosphingosine (sphinga-
nine) in a reaction catalyzed by dhCer synthase,28 and it is
converted to ceramide by dhCer desaturase.12 Initially, dhCer
was thought not to be important in apoptosis and cell cycle
arrest.29,30 However, increasing number of studies provided
evidence attributing new roles to dhCer in the cells. Induc-
tion of autophagy upon treatment with exogenous dhCer
analogs is the first clue of dhCer as a bioactive sphingolipid.
This effect of dhCer was demonstrated on both prostate and
gastric cancer cells.4,31 Besides its role in autophagy, dhCer is
also thought to be important in growth suppression and
hypophosphorylation of Rb protein.32,33 Levels of dhCer were
elevated after photodynamic therapy in mice squamous cell
carcinoma,34 and this event might indicate the importance of
de novo ceramide generation pathway in the photodynamic
therapy. Exogenously applied dhCer can be hydrolyzed by
the enzymes ACER2/haCER235 and ACER336 to the dihy-
drosphingosine, which might then be responsible for the cel-
lular effects thought be caused by the dhCer itself. This
anticipation is supported by a recent study showing that
dhCer and dihydrosphingosine levels are elevated in various
tumor cells upon application of fenretinide, where dihydros-
phingosine is likely to be the inducer of the cytotoxicity.37

C1P is produced by the phosphorylation of ceramide by
the ceramide kinase (CerK), and the reverse reaction is cata-
lyzed by C1P phosphatase.38 Current evidence indicates that
C1P has prosurvival functions including induction of DNA
replication and suppression of acid SMase that is responsible
for the synthesis of ceramide, and therefore, it blocks apopto-
sis.39,40 In addition to the cell cycle regulation, C1P is
involved in the mammalian inflammatory responses and in
the process of neutrophil phagocytosis.41,42

GluCer is produced from ceramides by the catalysis of
glucosylceramide synthase, and it is a precursor for the syn-
thesis of complex glycosphingolipids.43 As shown by the
experiments carried on various cells, GluCer has proliferative
functions, and it is thought to be important in the chemo-
therapeutic drug resistance.44,45 GluCer levels were found to
be increased in the resistant cancer cells.46 Inhibition of the
GluCer synthesis resulted in sensitization to drugs and cell
cycle arrest providing supportive evidence to the roles of
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GluCer in the development of chemotherapeutic resistance
and in the cellular proliferation.47–49 As ceramide exerts
antagonistic roles to C1P and GluCer, maintenance of the
homeostasis depends on the balance of those lipid species
(Fig. 1). Deregulation of these pathways might possibly con-
tribute to the progression of diseases such as cancer.

Sphingosine and sphingosine-1-phosphate

Ceramide is converted to sphingosine by the ceramidases,
which are classified as acid, neutral and alkaline ceramidases
according to their optimal pH and cellular locations for enzy-
matic reaction50–52 (for more information, see the related
reviews2,53). The reverse reaction in which ceramide is synthe-
sized from sphingosine is catalyzed by ceramide synthase.
However, under certain circumstances, some ceramidases
were also shown to catalyze the reverse reaction to produce
ceramides by using sphingosine and a fatty acid as sub-
strates.54,55 Sphingosine has a strong potential to induce apo-
ptosis in leukemia cells and in a variety of other cell types.
Degradation of the genomic DNA as a hallmark of apoptosis
was documented in high proportions of the leukemic cells of
different origins after exposure to sphingosine.56–59 Similar
observations were made for the effects of sphingosine on the
cell death in multidrug-resistant cancer cell lines, suggesting

that multidrug resistance mechanisms are ineffective for pro-
tection against the sphingosine-induced cell death.60,61 Sphin-
gosine is also effective for apoptotic induction in various can-
cer cells including epidermoid carcinomas, colonic
carcinomas, melanomas and soft tissue sarcomas as shown by
numerous other studies.56,62,63 Sphingosine might be exerting
its functions by interacting with several cellular components.
PKC is a known target of sphingosine,64 and because it can be
considered as a survival protein, sphingosine-mediated inhibi-
tion of PKC is reflected as the apoptotic induction.65 More-
over, sphingosine interacts with other antiapoptotic factors
such as ERK and Akt/Protein kinase B.58 Sphingosine-driven
apoptotic induction is not only mediated by suppressing the
antiapoptotic proteins. Sphingosine was also known to be re-
sponsible for cytochrome c release from mitochondria and
activation of downstream caspases.66–68 Beta subunits of integ-
rin molecules are among the targets of sphingosine, and their
maturation is inhibited by the sphingosine generated specifi-
cally by alkaline ceramidase 2.69 In another study, this inhibi-
tion was shown to be followed by fragmentation of the Golgi
complex and anoikis, which is a form of apoptosis occurring
because of the insufficient adhesion.70 This study is one of the
emerging studies attributing roles to sphingosine in the cellu-
lar processes in which ceramides were thought to be

Figure 1. Bioactive sphingolipids and their effects on the cell growth and suppression. The balance of the levels of those sphingolipids is

essential for the determination of cell fate either as death or survival. dhCer was placed to the middle because of the lack of definitive

information showing its roles in cell growth and apoptosis.
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responsible. Similarly, sphingosine and its phosphorylated de-
rivative S1P, both of which are synthesized from ceramides,
were shown to be responsible for the regulation of cell death
and survival of HeLa cells in another study.35 In accordance
with those findings, neurons and oligodendrocytes were docu-
mented to have an active sphingolipid metabolism by which
exogenous C2- and C6-ceramides are immediately converted
into sphingosine and S1P, which in turn determines the cellu-
lar fate.71 Apoptosis of the Jurkat cells is induced by sphingo-
sine converted from the ceramide by the acid ceramidase by a
process involving cytochrome c release and activation of the
executioner caspases.66

Sphingosine is phosphorylated by sphingosine kinase to
produce S1P,72,73 and S1P phosphatase simply cleaves the
phosphate group of S1P liberating sphingosine in the reverse
reaction.74 S1P also acts antagonistically to the ceramide and
enhances cell survival. Angiogenesis, migration, adhesion and
inflammation are other cellular processes in which S1P has a
role.41,75 S1P has importance in the translocation of T and B
cells from lymphoid organs to the bloodstream.76 Level of
S1P is elevated upon activation of sphingosine kinases by the
growth factors and cytokines including VEGF and PDGF.
S1P was also found to be important in the inflammatory
responses by activating COX2 in the presence of TNF-a.77

Unexpectedly, S1P induces growth arrest in keratinocytes,
but this observation is not mechanistically related to cytotox-
icity or apoptosis; in fact, S1P acts protective for the pro-
gramed cell death in these cells.78 S1P acts as a ligand to the
cell surface receptors of lysophospholipid receptor family,
which has five members identified up to date. Some of those
receptors demonstrate expressional tissue specificity and pro-
vide different tissue-specific responses to S1P.

Types and Characteristics of Blood Cancers
Uncontrolled malignant growth of blood cells is known as
leukemia. Blood cancers can be examined under two main
classes as acute and chronic forms. Acute leukemia pro-
gresses when the regulation of hematopoiesis is lost at the
very initial steps. In this case, malignant cells rapidly accu-
mulate in the bone marrow and bloodstream and prevent the
production and functioning of healthy cells. Acute leukemias
comprise the form of blood cancer commonly seen in the
children. In chronic leukemia, malignant cells are relatively
differentiated, yet they are only partially functional. Their
progression is slow and may require years to progress and
become a life-threatening condition. In addition to these clas-
sifications, leukemias are subdivided into further types
according to the affected cell lineage. Cancers of the cells
having lymphoid origin that would normally differentiate
into white blood cells are called as lymphoblastic/lymphocytic
leukemias. Myeloid originated cells differentiate into erythro-
cytes, platelets and other white blood cells under normal
physiological conditions; cancers of such cells are known as
myeloid/myelogenous leukemia. The following sentences will
briefly summarize the current knowledge about various leu-

kemias, but the ones seeking for detailed information about
the pathogenesis and progression pathways of those cancers
are advised to consult the related review articles.

CML is the first leukemia whose progression is directly
linked to a chromosomal aberration. The main driving force
of the CML is the translocation between 9th and 22nd chro-
mosomes resulting in the synthesis of BCR/ABL fusion pro-
tein showing constitutive tyrosine kinase activity.79 Constitu-
tive tyrosine kinase activity induces cell proliferation and
prevention of apoptosis and results in the accumulation of
malignant cells in the bone marrow and bloodstream. After
its pathobiology is delineated, targeted chemotherapies were
developed80 for CML and survival times of the patients are
greatly prolonged. Chronic lymphoblastic leukemia (CLL) is
the most common form of the leukemia, and it is manifested
by the accumulation of CD5-positive B cells in the circula-
tion. Studies attempting to shed light on the molecular biol-
ogy of CLL have revealed deregulation of Tcl1-Akt pathway,
TNF-NFjB pathways and antiapoptotic pathways mediated
by Bcl-2 in malignant cells.81 CLL cells are found to be quies-
cent in the G0 stage of the cell cycle; therefore, their accumu-
lation is linked to the defective apoptotic mechanism.82 Acute
myeloid leukemia (AML) is one type of myeloid lineage-ori-
ginated leukemia. Chemotherapy and radiation was shown to
create predisposition for the progression of this leukemia.83,84

In addition to those, some myelodysplastic disorders are
known to turn into AML.85 Acute lymphoblastic leukemia
(ALL) is manifested by excess numbers of undifferentiated
white blood cell progenitors in the bloodstream. Exact causes
of ALL are not known, but some genetic aberrations were
observed in the immature leukemic cells. Those aberrations
include chromosomal translocations residing the genes
encoding for transcription factors responsible for the hemato-
poiesis.86 Besides those major structural changes, some single
nucleotide polymorphisms were shown to be related to
ALL.87

Bioactive Sphingolipids in Hematological
Malignancies
Despite the advancements of the therapeutic options and the
prolonged survival times in recent years, thanks to them;
hematological malignancies are still far away from being
eradicated because of the recurrence after the treatment in
most cases. Because sphingolipids have important functions
in cell cycle regulation and differentiation, considerable effort
is being made to reveal the roles of bioactive sphingolipids in
the progression or prevention of the blood cancers. Ceramide
as the central component of the sphingolipid metabolism is
one of the most widely studied sphingolipid species for that
purpose. It is involved in a variety of cellular processes such
as differentiation and programmed cell death, which are
altered in the malignant transformation. Induction of cer-
amide synthesis and accumulation were documented in the
leukemic cells undergoing apoptosis upon treatment with sev-
eral chemotherapeutic agents. In a study with acute
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promyelocytic leukemia (APL) and adult T-cell leukemia/
lymphoma (ATL) cells, it was shown that cytotoxic levels of
ceramides accumulate upon treatment with arsenic trioxide,
suggesting that ceramides might be the mediator of the ar-
senic trioxide-dependent cell death.88 Chemotherapeutic
agent etaposide was shown to induce de novo ceramide gen-
eration pathway as a result of which cellular ceramide levels
are increased and apoptosis is triggered in ALL cell line.89

One study with sodium nitroprusside, which is an NO-donat-
ing apoptotic inducer, showed that ceramide generation takes
place in NO-induced apoptosis of promyelocytic leukemia
cells. This study also provided a link between the enzymes of
apoptotic pathway and the enzymes responsible for the pro-
duction of ceramides from SM, which might be interesting
for future research to reveal the roles of sphingolipid species
in NO signaling.90 Cannabinoids are compounds having
proapoptotic properties for the tumor cells. These com-
pounds induce intrinsic apoptotic pathway, which was shown
to be stimulated by the increased levels of ceramides in the
Jurkat cell line.91 Retinoids are also known with their apopto-
tic properties especially through p53-dependent cytotoxicity
and increased level of ceramides in solid tumor samples. One
study showed that retinoids induce apoptosis through increas-
ing the cellular ceramide levels in ALL cells, whereas no cyto-
toxicity is observed in the nonmalignant cells.92 Some other
chemotherapeutic agents including fludarabine and histone
deacetylase inhibitors were also found to induce leukemic cell
death through a mechanism involving enhanced ceramide
generation.93–95 Cytotoxicity of resveratrol, a novel potent an-
tineoplastic agent, also involves the accumulation of ceramides
as documented by various studies.96,97 By several other studies,
direct incorporation of ceramides or ceramide analogs to the
cell media was shown to suppress growth of various cancer
cell lines.26,98–102 In addition to their roles in chemotherapeu-
tic cell death, ceramides were also shown to be associated with
the photodynamic therapy-induced and gamma radiation-
induced apoptosis in different leukemia cell lines.103,104 As
supportive to those observations, suppression of sphingomy-
elin synthase converting ceramide into SM was shown to
potentiate the effects of photodynamic therapy.105 However,
according to the cell type used in the experiment, observations
for roles of ceramides may differ. For instance, unlike the pro-
cess in the Jurkat cells,104 ceramides were found to be nones-
sential for the radiation-induced apoptosis in MOLT-4 cells.106

Some experiments with ALL and AML cells have revealed that
ceramides are also functional in cell cycle arrest besides induc-
ing apoptosis.107,108 Ceramides were also shown to be impor-
tant second messengers in FAS-induced apoptosis.109,110

In addition to its roles in suppression of cell growth, cer-
amide metabolism was also implicated to be altered in the
differentiation and chemotherapeutic resistance. In differen-
tiation of AML blasts to macrophage-like and granulocyte-
like cells, CerK that produces C1P from ceramide was shown
to be differentially regulated, suggesting that CerK may have
important functions in differentiation of leukemic cells.111

Involvement of ceramides in differentiation was also
addressed by several other studies some of which provide
promising data for the usage of ceramides as a therapeutic
option for the enhanced responses to the conventional chem-
otherapy.112–114 Defective ceramide signaling and the loss of
the balance between apoptotic and proliferative sphingolipids
contribute to the chemotherapeutic resistance in the leukemic
cells. Decrease of the ceramide level by its conversion into
antiapoptotic GluCer and S1P was shown to be important for
conferring chemotherapeutic resistance to leukemic cells in
various studies.115,116 P-glycoprotein (P-gp), an ATP-binding
cassette transporter found in the cell membrane, increases
cell survival through modulating sphingomyelin–ceramide
pathway in addition to its known role in effusing the drug
from the cell.117 By further studies, evidence was provided
linking P-gp and GluCer synthesis for chemotherapeutic re-
sistance.118,119 Moreover, defective ceramide metabolism was
also shown to contribute to the resistance to radiation-
induced cell death, suggesting an important role of ceramides
in the apoptosis induced by radiation.120,121

There are few studies about dhCer as a bioactive sphingoli-
pid in hematological malignancies compared to the ceramide.
In one study, dhCer was shown to be unable to induce apo-
ptosis in leukemic cells unlike the ceramides, which might
indicate the importance of the double bond in the structure
for growth suppressive actions.122 Supporting to the findings
of this study, incorporation of the synthetic dhCer to the B-
CLL and ALL cells did not result in the increased amount of
apoptosis in other studies.101,123 Suppression of the enzyme
sphingomyelin synthase, which is responsible for the conver-
sion of ceramide into SM, caused the accumulation of dhCer
and ceramide and eventually sensitized Jurkat T lymphoma/
leukemia cells to photodynamic therapy, but dhCer might
possibly be an intermediate compound for the subsequent
synthesis of ceramides; therefore, apoptotic induction cannot
be attributable to the dhCer directly in this scenario.105 How-
ever, in another study, cytotoxicity caused by the anticancer
agent 4-HPR was shown to be related with the increased
amounts of dhCer in HL-60 cells.37

Sphingosine and S1P are other important bioactive sphin-
golipids in leukemic cells having proapoptotic and antiapop-
totic properties, respectively. In various leukemic cell lines, it
was shown that sphingosine and its methylated derivative
induce apoptosis independent of the involvement of ceramide
synthase.56 In another study, sphingosine was shown to
induce c-jun expression and apoptosis by a distinct mecha-
nism than ceramide analogs.124 S1P produced by the phos-
phorylation of sphingosine exerts antiapoptotic functions and
thus possibly involved in chemotherapeutic resistance. In
fact, apoptosis induced by the application of various chemo-
therapeutic drugs including imatinib and daunorubicin was
suppressed by the S1P as shown in the various leukemia cell
lines.125,126 Because of its tumor-promoting properties, inhi-
bition of S1P synthesis was shown to be potent for obtaining
more effective therapeutic responses to conventional drugs in
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various leukemia types and for overcoming multiple drug re-
sistance.126–131 Studies aiming to shed light on the impor-
tance of S1P have revealed that sphingosine kinase is acti-
vated by BCR/ABL, Il6 and vitamin D in the CML, multiple
myeloma and AML cells, respectively.132–134 Antagonistic
function of S1P to apoptosis was found to be mediated by in-
hibition of the cytochrome c and Smac/DIABLO release from
mitochondria in acute leukemia cells.135 Possible chemotactic
roles were also attributed to S1P for attracting the nearby
phagocytic cells such as macrophages and primary monocytes
for the engulfment of the apoptotic cell.136

Conclusion and Perspectives
Sphingolipids are important constituents of the cells with
emerging roles in the regulation of numerous cellular proc-
esses. Loss of regulation of the sphingolipid metabolism is
involved in the progression of malignancy and drug resist-
ance. As different sphingolipids exert differential functions
on the cell growth, one promising approach for eradication
of the hematological malignancies is increasing the proapop-
totic sphingolipids such as ceramides while suppressing the
synthesis of the antiapoptotic ones such as glucosyl ceramide
and sphingosine-1-phospate. A variety of studies have shown
that this approach is feasible for obtaining better responses to
the chemotherapy.35,40,43 Usage of bioactive sphingolipids as

a therapeutic option as independently or in combination with
other drugs gained importance especially for the hematologi-
cal malignancies in recent years, because leukemic cells are
not eradicated completely in the patients despite highly spe-
cific drugs, causing relapse of the disease with the resistance
to chemotherapy. In this manner, manipulation of sphingoli-
pid metabolism might be a good opportunity to tackle the
drug resistance commonly seen in many forms of hematolog-
ical malignancies. However, because apoptotic sphingolipids
such as ceramides may cause cytotoxicity in healthy cells too,
future endeavor might be concentrated on delivering those
species specifically to the malignant cells. For this reason,
studies conducted in the cell lines should be carried further,
and more in vivo experiments are needed to be done to
reveal the actual potentials of bioactive sphingolipids as can-
cer therapeutics in leukemias. In the light of the extensive lit-
erature being accumulated in this area, responses to leukemia
therapies would possibly be advanced in the near future by
the involvement of bioactive sphingolipids.
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