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An analytical study on laminar and fully developed forced convection heat transfer in a parallel-plate
horizontal channel filled with an anisotropic permeability porous medium is performed. The principal axis
of the anisotropic porous medium is oriented from 0 to 90 degrees. A constant heat flux is applied on the
outer wall of the channel. Both clear (Newtonian) fluid and Darcy viscous dissipations are considered in
the energy equation. Directional permeability ratio parameter A* is defined to combine both the effect of the
dimensionless permeability ratio parameter K'=(K;/K2) and orientation angle ¢ into one parameter.
The effects of the parameter A”, the Darcy number Da and the modified Brinkman number Br” on the heat
transfer and fluid flow characteristics in the channels are investigated and presented in graphs. The obtained
results show that the parameters A", Da and Br" have strong effects on the dimensionless normalized
velocity and temperature profiles as well as on the Nusselt number. It is found that for a particular value of
A", called as critical value Ag;, the external heat applied to the surface of the channel is balanced by the
internal heat generation due to viscous dissipation and the bulk mean temperature approaches the wall
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temperature. Hence, the Nusselt number approaches infinity for the critical values Ag.

© 2010 Elsevier Masson SAS. All rights reserved.

1. Introduction

Convective heat transfer in porous media is of fundamental
importance to a number of technological applications, such as oil
recovery, water supply management in hydrogeology, geothermal
exploitation, ground heat storage, building thermal insulation,
nuclear waste disposals, radioactive waste management, ground
water flow modeling and is also of interest in environmental
sciences and geophysics. A wide application of the porous media on
many practical applications can be found in the well known books by
Nield and Bejan [1], Ingham and Pop [2], Vafai [3], Pop and Ingham
[4], Bejan et al. [5] and Vadasz [6], and in the recent papers by Harris
et al. [7], and Kuznetsov and Nield [8]. Studies on heat transfer in
porous media with forced flow in inclined and horizontal channels
filled with a fluid-saturated porous medium can be found in litera-
ture. Most of the performed studies have usually been concerned
with homogeneous isotropic porous structures. However, in
many practical situations the porous materials are anisotropic in
their mechanical and thermal properties [9]. An example of such
a medium is loft insulation which usually has lower permeability
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across the insulating layer than it has in the perpendicular directions.
Another important example is geological systems with anisotropic
sediments and rocks [10]. Within the last few years, however, the
effects of non-homogeneity and anisotropy in porous media have
been investigated. The inclusion of more physical realism in the
matrix properties of the medium is important for the accurate
modeling of the anisotropic media. Anisotropy, which is generally
a consequence of a preferential orientation or asymmetric geometry
of the grain or fibers, is in fact encountered in numerous systems in
industry and nature. It appears that the first studies on convective
flow in anisotropy porous media has been published by Castinel and
Combarnous [11], who found the criterion for the onset of convec-
tion in a horizontal layer with anisotropic permeability, a problem
which is the porous media analogue of the Bénard problem. They
reported the experimental results which agree fairly well with their
theoretical predictions. Epherre [12] extended the stability analysis
by including anisotropy in the thermal diffusivity. The investigations
of Castinel and Combarnous [11], and Epherre [12] were restricted to
two-dimensional anisotropy, i.e. the layer was horizontally isotropic.
However, a few years later Kvernvold and Tyvand [13] performed
a theoretical analysis on linear and nonlinear convection in a hori-
zontal layer where a three-dimensional anisotropy has been
included. The effects of anisotropy and surface boundary conditions
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Nomenclature

A" directional permeability ratio parameter

Br* modified Brinkman number

G specific heat at constant pressure, J/kg K

Da Darcy number

H half height of the channel, m

k thermal conductivity, W/m K

K dimensionless permeability ratio parameter
K1, K,  peremabilities along principal axes, m?

K second-order permeability tensor, m?

M dimensionless viscosity ratio parameter

Nu Nusselt number

p pressure, Pa

Qw constant wall heat flux, W/m?

T temperature, K

T average temperature, K

u velocity component along the x-direction, m/s
U dimensionless velocity component along X-direction
u average velocity, m/s

4] dimensionless average velocity

u dimensionless normalized velocity

\Y superficial flow velocity vector, m

X coordinate along the axis of the channel, m

y coordinate normal to the surfaces of the channel, m
XY dimensionless coordinates

Greek letters

o dimensionless anisotropic factor

0 effective thermal diffusivity, m?/s

Pconv dimensionless convective heat transport
Pgener dimensionless viscous dissipation

[0) orientation angle, degree

v pressure gradient, Pa s/kg

ug dynamic viscosity of the fluid, kg/ms
eff effective dynamic viscosity, kg/m s

v kinematic viscosity, m?/s

0 dimensionless temperature

O dimensionless average wall temperature
P density, kg/m>

on convection in a horizontal porous layer were studied by McKibbin
[14]. Avery good collection of references on the topic on the effects of
anisotropy on convective flow through porous media can be found in
the review paper by Storesletten [9]. Further, Degan et al. [ 15], Zhang
et al. [16], Bera et al. [17], Bera and Khalili [18], and Kumar and Bera
[19] have studied the convective heat transfer in a vertical aniso-
tropic porous layer and in a cavity filled with an anisotropic porous
medium. Bera et al. [17], and Bera and Khalili [18] obtained both
an analytical and numerical investigation of the double-diffusive
natural convection in an anisotropic porous cavity with opposing
buoyancy forces in order to understand the existence of multiple
solutions and the occurrence of oscillatory convection as observed in
the single component system. Degan and Vasseur [20] reported
an analytical study on the aiding fully developed mixed convection
in parallel-plate vertical porous channels with an anisotropic
permeability whose principal axes are oriented in a direction which
is oblique to the gravity vector. On the other hand, it should be also
mentioned the papers by Degan et al. [21], and Vasseur and Degan
[22] who have analyzed the steady natural convection over a vertical
heated plate embedded in an anisotropic porous medium. Within
the framework of the boundary layer approximations, similarity
solutions were obtained for the case where the wall temperature
varies as a power function of distance from the leading edge. Degan
etal.[23] studied the transient natural convection of non-Newtonian
fluids about a vertical surface embedded in an anisotropic porous
medium. Finally, we mention a series of four papers by Rees and
Storesletten [24], and Storesletten and Rees [25] on the effect of
anisotropic permeability on free convective boundary layer flow
over a vertical flat plate embedded in a porous medium. Rees and
Storesletten [26] and Rees et al. [27] presented very interesting
results for the free convection motions induced by point sources or
horizontal line sources of heat in an anisotropic porous medium.
The line source is placed at the intersection of two bounding planes.

The aim of this paper is to study the effect of viscous dissipation
on the steady forced convection heat transfer inside an anisotropic
porous channel with oblique principal axes using the extended
Darcy—Brinkman model. In fact, the paper extends that of Hung
and Tso [28,29] on the temperature variations of forced convection
in porous media for heating and cooling processes with internal
heating effect of viscous dissipation. The analytical results were

supported by numerical results to ensure of their correctness.
To our best of knowledge the present problem has not been studied
before, so that the results are new and original.

2. The considered problem

A two-dimensional parallel-plate channel filled with a porous
medium saturated with an incompressible fluid that is in local
thermodynamic equilibrium with the solid matrix as depicted in
Fig. 1 is considered. The channel has a rectangular cross-section
with height of 2H. It is infinitely long in the z-direction, x-being the
horizontal direction of the flow and y-direction perpendicular to
that latter. Following Degan et al. [15], we assume that the porous
medium is anisotropic in flow permeability, the permeabilities
along the two principal axes of the porous matrix are denoted by
K; and K. The anisotropy of the porous medium is characterized
by the permeability ratio K* = K1/K> and the orientation angle ¢,
defined as the angle between the horizontal x-direction and the
principal axis with the permeabilityK>. It is assumed that the flow
in the channel is fully developed, unidirectional and steady.
The effects of both clear fluid and Darcy viscous dissipations are
involved in the present study. A constant heat flux q,, is applied
onto the impermeable walls of the channel.

q

q
w

Fig. 1. Physical model of the considered channel filled with an anisotropic porous
medium.
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3. Governing equations and the boundary conditions

The governing equations for a laminar flow in an anisotropic
porous medium under assumptions explained in the preceding
section are continuity, Brinkman momentum and energy, and they
can be expressed as

V-V=0 (1)
_K 2
v—;f(*VpJﬁ“effV V> (2)
V- (VT) = amV2T+L(a—u)2+ fefl ;2 3)
G \dy)  pGKq

where V is the superficial flow velocity vector, T is the fluid
temperature, p is the fluid pressure, p is the fluid density, v is the
fluid kinematic viscosity, ¢ is the fluid dynamic viscosity, uefr is the
effective (apparent) dynamic viscosity for Brinkman’s model, o,
effective thermal diffusivity of the fluid-saturated porous medium
and G, is the specific heat at constant pressure. The first and second
terms in the energy equation (Eq. (3)) show the transport of fluid
in the porous medium by convection and diffusion modes, see
Al-Hadhrami et al. [30]. The third term represents the effect of
viscous dissipation in clear fluid flow and this expression is known
for fluid flows when permeability goes to infinity and the fourth
term show viscous dissipation in Darcy limit when permeability
approaches to zero. The symbol K shows a symmetrical second-
order permeability tensor which is defined as

= Ky sin? ¢ + K, cos? ¢

K — (K71 — K3) sin ¢ cos ¢ (4)

(Ky — Kq) sing cos ¢ K sin® ¢ + Ky cos? ¢

As it has been mentioned before, ¢ is the orientation angle and the
coefficients K> andK; represent permeability values along x- and
y-axes when ¢ =0.

4. Solution of governing equation for the present problem
i) Solution of Brinkman momentum equation

Since flow in the considered channel is hydrodynamically fully
developed and unidirectional with u = u(y), which is parallel to the
x-axis, the following assumptions are valid;

ou

v=0 —=0,

ap
i =0 (5)

ay

where v represents velocity in the y-direction which vanishes.
Under the aforementioned conditions, the Brinkman moment
equation (Eq. (2)) can be simplified into the following form

2 *
A _—u+y=0 (6)
1

The constant quantity v = —(1/u¢)dp/0x is the negative of the
applied pressure gradient and the constant A* is the directional
permeability ratio parameter, which is defined as, see Degan et al. [15],

A" =sin® ¢ + K cos? ¢ (7)

where K* = K1/K> is the permeability ratio parameter. It should be
mentioned that Degan and Vasseur [20] have also considered K; as
a reference permeability. Introducing the dimensionless variables
X, Yand U defined as

X=%2, Y=% U=—u (8)

the momentum Brinkman equation (Eq. (6)) can be written in
dimensionless form as

du A
where M = ueg/us denotes the viscosity ratio. A non-slip wall
boundary condition and symmetry condition at the centre of the
channel can be employed to define boundary conditions for Eq. (9) as

U(1) = 0, (%)Hz 0 (10)

The analytical solution of Eq. (9) with the boundary conditions
representing by Eq. (10) can be expressed as

pa|1 cosh [Y\/W}

UlY) = =4 — (11)

ANM cosh [\/W}

In the present study, for the sake of brevity and without loss of
generality, it is assumed that pefr = uf (Nield and Bejan [1]), leading
to M= 1and Eq. (11) becomes

1 cosh (aY)
uen = 1| (12)
where « is the anisotropic shape factor, which is defined as
A*
@ =\/pa (13)

Considering Eq. (12), the average velocities 7 and U can be
expressed with the following expressions;

2
ﬁ:yzH (1_tanha), U:lz<l_tanha) (14)
o g a [0} o3

ii) Solution for heat transfer equation

For a fully developed flow in a channel with a subjected constant
heat flux on its outer boundaries, the heat transfer equation can be
simplified into the following form since v=0

oT  o°T ou\? w5
pCpu& = Iay—2+uf(@) +Eu (15)

where k is the thermal conductivity of the porous medium.
The above equation can be integrated along height of the channel as

H

o f aT|" ou\ 2 7
pcp&/quy:k@O—s—u/(@) dy+%/u2dy (16)
0 0 0

The constant wall heat flux boundary condition can be written
as

oT _ Qw
(@)y:Hi T (17)

where q, is positive for heating process (fluid being heated) and
negative for cooling process (fluid being cooled). Another boundary
condition is the symmetric condition at the centre of the channel,
which is written as
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(@), %

Further, we notice that for thermally fully developed flow, the
temperature gradient along the axial direction x can be expressed
as;

oT  dT

which is independent of the transverse direction y. Here, T is the
average temperature along height of channel. Using Eq. (12) along
with Eqgs. (17) and (18) yields the following equation

_dT 1 _
POl g = 37w+ (B+mw (20)

where the quantities ¢ and 7 are constants given by

5 _ ueH a(a + 2 cosh? a — 3 sinh a cosh a)
K 2(a cosh o — sinh «)?
g &3(sinh a cosh a — a)
~H (a cosh & — sinh «)?

)

(21)
Further, we introduce the following dimensionless temperature
function 6(Y) and normalized dimensionless velocity 1i(Y) as

k(T -Tw) - U

u
Hgw u(y) ==

Thus, by using Egs. (20) and (2

d20 F(a) 1 da)’
_ *- N/ * I * _/\2 e
a2 = {1 +Br Da +Br G(a)}u Br lDau + <dY> ] (23)

0(y) (22)

1]
2), Eq. (15) can be written as

where F(a) and G(«) are given by

K8 a(a + 2@ cosh? a — 3 sinh « cosh a)
Fa) = 15 =
123

24
2(a cosh & — sinh )? (24)

_ Hn _ d3(sinhacosha —a)
He (a cosh a — sinh a)?

G(a) (25)

According to Kays et al. [31], the modified Brinkman number Br*
based on the constant heat flux condition can be defined as

2
* Mg
Br =—— 26
Hao (26)
The two terms of the right hand side of Eq. (23) implies the
effects of the convective heat transport and internal heat genera-
tion due to viscous dissipation. In this study, these terms are shown
by dconv(Y) and gener(Y) where

beonv(Y) = {1 +Br*%+3r*c(a)}ﬁ (27)
* 1 ~2 dﬁ 2
¢gener(Y) = Br Fau + dy (28)

The dimensionless boundary conditions for Eq. (23) are

(1) = 0, (273)\(:0: 0 (29)

The analytical solution of Eq. (23) with the boundary conditions
Eq. (29) is given by

0(Y) = E; cosh (2aY) + E, cosh (aY) + E3Y? + E4 (30)

where Ej, Ez, E3 and E4 are constants given in the Appendix. In this
case, the Nusselt number Nu, based on the channel height is defined
as

wo Haw 1 (31)
k(Tw —T) Ow
where 0, is the dimensionless average wall temperature. The
expression for Nu can be found as

Nu = [« cosh («a) — sinh (@)]/
{a3 [P1 sinh (2a) + Py sinh (3«) + P3 sinh (a) + P4]} (32)

where the expressions for the coefficients Py, P2, P; and P4 are given
in the Appendix and Nu is a function of Da, Br* and A™.

5. Results and discussion

The solution of differential equation depends on the directional
anisotropy parameter A*, Darcy number Da and the modified
Brinkman number Br*. There is no need to discuss the effects of
permeability ratio parameter, K*, and orientation angle parameter,
@, separately since they are represented by directional permeability
ratio A*. In this section, the effects of A*, Da and Br* parameters on
the velocity and temperature profiles as well as the Nusselt number
are explained. As it was mentioned before, the solution of Eq. (23)
under the boundary conditions Eq. (29) were both analytically and
numerically found in very good agreement with each others for the
all results presented in this study.

Although, the considered problem is about the analyzing of heat
and fluid flow in a channel filled with an anisotropic porous material
when a constant heat flux is applied on its wall, but the constant heat
flux boundary condition is converted to the isothermal boundary
conditions given by Eq. (29) and by using dimensionless variables
and transforming of the energy equation (15) into a dimensionless
ordinary differential equation (23). There are two terms on the right
side of Eq. (23), which show the effects of local convective heat
transfer in the flow direction (i.e. ¢cony(Y)) and local viscous dissi-
pation (¢gener(Y)), respectively. The dimensionless temperature
inside the channel §(Y) depends on the difference of ¢con(Y)—
Pgener(Y). If the value of eonv(Y) — dgener(Y) is positive for a channel,
then A(Y) will take negative values. However; the values of 6(Y) will
be positive if the values of ¢eonv(Y) — dgener(Y) for a channel are
negative. For partially positive and negative values of ¢cony(Y)—
Pgener(Y), positive and/or negative values of §(Y) in the channel is
expected. For positive values of modified Brinkman number (i.e.
Br* > 0), negative values of dimensionless temperature indicates that
the temperature of fluid flowing through the channel is smaller than
the wall temperature and vice versa is valid. For Br* < 0, the negative
values of 6(Y) show that wall temperature is less than the temper-
ature of fluid inside the channel and again vice versa is valid.

Variations of the directional permeability ratio A* with the
orientation angle ¢ from 0 to 90 degrees for different values of the
permeability ratio K* from 0.1 to 10 are shown in Fig. 2. Based on
Eq. (7), the value of A" becomes equal to K* for zero orientation angle
¢ =0. When ¢ = 0, the small values of A* (i.e. A" < 1) signifies rela-
tively high permeability in the flow direction since K; > K3, however
high values of A* (i.e. A" > 1) implies relatively lower permeability in
the X-direction since K> < Kj. The directional permeability ratio takes
value of 1 (i.e. A" = 1) for identical values of K> and K. By increasing
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Fig. 2. Variations of the directional permeability ratio A" with the orientation angle ¢
for different values of K™ parameter.

the orientation angle ¢ from 0 to 90 degree, three different trends for
variation of A" with ¢ are observed in Fig. 2. For A* < 1, the increase of
orientation angle increases the value of directional permeability
ratio and it attains to A" = 1 for ¢ = 90 degree. Therefore, the increase
of orientation angle reduces permeability in flow direction for A* < 1.
For the cases with A" > 1, the increase of orientation angle reduces
the value of A" and it falls to A" = 1 for ¢ = 90 degree. For these cases,
the increase of orientation angle increases permeability in the
X-direction. For the cases with A" =1, the value of the directional
permeability ratio does not depend on orientation angle and heat
transport in flow direction is not changed with ¢.

Fig. 3 shows the variation of the dimensionless normalized
velocity profiles #(Y) for three different values of directional
permeability parameter as A" = 0.1, 1 and 10 and for different values
of the Darcy number Da from Da = 0.01 to 10 when Br* = 1. It is seen
that for A*=0.1, the value of u(Y) in the center of the channel
increases with Da since a flow in a porous medium with a high
values of Da approaches to clear fluid flow (Newtonian flow).
That is why an obvious difference between the profiles of #i(Y) of
Da =10 and Da = 0.01 can be seen from Fig. 3(a). Further, as can be
seen from Fig. 3(b) and (c), the profile of #i(Y) is not changed for
Da = 10 if the value of A” is increased from 0.1 to 1 or 10. However,
the shape of u(Y) profiles for the low values of Da (e.g. Da = 0.01) is
changed noticeably and the velocity profiles become flatten in the
most part of cross-section of channel. This is an expected variation
for ti(Y) profiles since when A* < 1 and it increases from 0.1 to 1, the
permeability K5 of the porous medium in the horizontal direction of
the channel decreases. We notice a steep gradient of u(Y) at the
region close to the channel walls for higher values of A* =10 when
Da is low (e.g. Da=0.01).

The dimensionless convective heat transfer (i.e.¢conv(Y)) and
dimensionless viscous dissipation (i.e.,¢gener(Y)) profiles for three
different values of A* when Br* =1 are shown in Fig. 4. As it can be
seen from Fig. 4(a), the convective transport of heat at the
center region of the channel with the Darcy number as Da = 0.01 is
considerably higher than that with larger Darcy number (e.g.
Da = 10)when Br* = 1 and A" = 0.1. Fig. 4(b) shows that by increasing
the value of the parameter A* from 0.1 to A* = 1, the convective heat
transport ¢cony(Y) for Da=10 is not highly changed. However
a considerable change in profile of ¢cony(Y) for Da=0.01 can be
observed. The value of ¢cony(Y) at the center region of channel is
lowered and the profiles ¢cony(Y) become flatten due to increase of
permeability in the traverse direction. Further increase of A* from 1
to 10 increases permeability Kj, and the profiles of ¢cony(Y) take
uniform shapes in the most region of the channel (Fig. 4(c)). Fig. 4(d)

--Da=0.01
~-Da=0.1
~-Da=1
-O-Da=10

a 1.00

0.5 A

+Da=0.01
-Da=0.1
<-Da=1
-O-Da=10

Fig. 3. Normalized velocity profiles @i(Y) in the channel for different values of Da when
Br'=1:a)A"=0.1;b)A"=1; ¢) A"=10.

also shows that the local viscous dissipation profiles ¢gene(Y) in
flows with high values of Darcy number (e.g. Da = 10) is not large
when it is compared to those with low values of Da such as Da = 0.01.
The decrease of Da considerably enhances viscous dissipation,
particularly at the center of the channel for the flow with Br'=1
and A" = 0.1. Therefore a significant difference between profiles of
¢gener(Y) for Da=10 and 0.01 can be observed from Fig. 4(d). By
increasing of directional permeability parameter A" from 0.1 to 1, the
viscous dissipation for channel with Da = 10 is not highly changed.
However a significant change on viscous dissipation in the channel
with Da = 0.01 occurs (Fig. 4(e)). The local viscous dissipation profile
¢gener(Y) near the wall is highly increased due to steep gradient of
velocity i(Y) in that region. The value of dgener(Y) is almost uniform
at the center region of channel since a uniform velocity distribution
ti(Y) exists in this region for Da = 0.01. The distribution of viscous
dissipation of A* = 1 (Fig. 4(e)) shows a transition behavior between
the cases of A*=0.1 and A" = 10. The velocity gradient at the wall
surface is high due to increase of A* value and the magnitude of
velocity in the center of channel is also considerable. That is why the
viscous dissipation in the wall and center regions of the channel is
high. This causes a double hump in distribution of viscous dissipa-
tion in the channel for low values of Darcy (Fig. 4(e)). Again, the
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Fig. 4. Dimensionless convective transport ¢con(Y) and viscous dissipation ¢gener(Y) profiles for different values of Da when Br* =1: (a,d) A"=0.1; (be) A"=1; (c,f) A"=10.

distribution of ¢gene(Y) for Da = 10 is not changed by increasing the
value of A" from 1 to 10 as seen from Fig. 4(f). For Da=0.01,
a considerable enhancement of ¢gene(Y) is observed at the region
close to channel wall. The value of ¢gener(Y) for Da=0.01 at the wall
surface is 1066, which is very large such that it could not be shown in
Fig. 4(f). For A" = 10, the value of ®geper at the center of the channel
becomes smaller compared to the value of @gener for A*= 0.1 due to
the increase of permeability ratio in the traverse direction of the
channel.

Fig. 5 shows the dimensionless temperature profiles 6(Y) for
values of the Darcy number Da from 0.01 to 10 and for the parameter
A"asA" = 0.1,1and 10 when Br* = 1. The positive values of Br* refers to
the heating of channel and therefore it is expected that the sign of 4
(Y) be negative since the wall temperature (i.e. T) is greater than the
temperature of the fluid. For Br* = 1 and A* = 0.1 (Fig. 5(a)), when the
channel is heated, the temperature difference between the fluid and
the impermeable wall is negative for Da = 0.1, 1 and 10. The absolute
value of the dimensionless temperature (i.e. |§(Y)|) for Da=10 is
higher than |6(Y)| in the channels with Da=1 and 0.1 due to higher
values of ¢pcony(Y)and low values of @geper. As it was mentioned before,
heat generation due to viscous dissipation QPgener increases with
decrease of Da number. The increase of internal heat generation for
flow @gener with Da = 0.01 is such that the temperature of the fluid in
channel exceeds the wall temperature when A*=0.1 and Br* =1 as
it can be observed from Fig. 5(a). That is why, the dimensionless

temperature §(Y) for Da=0.01 takes positive values when A" =0.1.
Fig. 4(b) shows the temperature profiles #(Y) in the channel for
Br* =1 when A" = 1. The increase of directional permeability ratio A*
causes the decreases of viscous dissipation in the most region of the
channel and consequently the sign of the dimensionless temperature
which is positive at the center of the channel for A*=0.1 and
Da=0.01 changes its sign and becomes negative for Da=0.01
referring to heating of fluid from walls. Further increase of A" from 1
to 10 changes the form of the temperature profiles A(Y) for low values
of Da but not their signs. The largest temperature difference between
fluid and wall is seen for Da = 0.01 since the viscous dissipation (i.e.
heat generation) in the wall regions considerably increases when A*
rises from 1 to 10.

Before explanation of the variation of the dimensionless
temperature profiles #(Y) for negative values of the modified
Brinkman number Br*, Fig. 6 is presented to understand the varia-
tions of ¢conv(Y) and ¢gener(Y) when Br* < 0. The negative values of
Br” refer to the cooling of the channel from the outer surface and that
is why both the values of ¢cony(Y) and ¢gener(Y) should be negative.
Fig. 6 showing the distribution of ¢conv(Y) and @gener(Y) for from
Da = 0.01 and 10, and for three different values of A* when Br= —1.
For Br* = —1,A" = 0.1 and Da = 10, the viscous dissipation at the walls
is relatively higher compared to values of ¢gener(Y) at the center of
the channel, as can seen from Fig. 6(a). For the flow with Da = 10,
high heat generation at the wall may balance heat extraction from
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Fig. 5. Dimensionless temperature profiles 6(Y) for different values of Da when Br’ = 1:
(a)A"=0.1; (b)A"=1; (c) A" =10.

walls and temperature at the center of wall becomes smaller than
wall temperature. Fig. 6(a) also shows that the viscous dissipation at
the center of the channel is higher than ¢¢ony(Y) at the same region
for Da = 0.01. By increasing the value of A* to 1, the distribution of
¢con(Y) and ¢gener(Y) are not highly changed for Da= 10, while
viscous dissipation in the center of channel becomes smaller when
Da = 0.01 (Fig. 6(b)). Further increase of A* form 1 to 10 causes the
viscous dissipation becomes smaller than ¢cony(Y) at the most region
of the channel except at the wall region in where a considerably
steep gradient of velocity exists (Fig. 6(c)).

a {1 dconv; Da=0.01 16508
- dconv; Da=10 S "'A
-O-® gener; Da=0.01 A
<-®gener; Da=10 ‘]

1Y
' -1
-200 -150 -100 -50 0
®conv , dgener

b

& conv Da=0.01
<-®conv Da=10 Y
-+ ® gener Da=0.01
~<-® gener Da=10

-150 -100 -50 ' 0
®conv, dgener

C

= -1066

at the wall surface

® conv Da

~<-® gener Da

o= -1066
at the wall surface

-200 -150 -100 -50 0
®dconv,dgener

Fig. 6. Dimensionless convective transport ¢cony(Y) and viscous dissipation ¢gener(Y)
profiles for two values of Da when Br' = —1: (a) A"=0.1; (b)) A"=1; (c) A" =10.

The change of dimensionless temperature profile for Br = —1
and for the three different values of directional permeability ratios
A" are shown in Fig. 7. The temperature in the channel depends on
the difference between two negative values of ¢cony(Y) and ¢gen-
er(Y). For negative values of Br*, the value of the dimensionless
temperature (Y) is expected to be negative since gy <0and T,y < T.
However, for Br*=—1 and A" =0.1, and for high values of Darcy
number (e.g. Da = 10), the value of 4(Y) is positive at the center of
the channel due to high viscous dissipation at the region close to
the wall. This causes the temperature at the wall region becomes
higher than the temperature of the fluid at the center region and
dimensionless temperature takes positive values. For Da=0.01,
a larger viscous dissipation at the center of channel causes a heat
transfer from the center towards the walls and 6(Y) takes negative
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Fig. 7. Dimensionless temperature profiles 4(Y) for different values of Da when
Br'=-1:(a)A"=0.1; (b)A"=1; (c) A"=10.

values. By increasing the value of A" from 0.1 to 1, the shape of 4(Y)
for Da =10 is not changed while 6(Y) for Da=0.01 takes positive
values due to decrease of the viscous dissipation at the center and
increase of heat generation at the wall region. The interesting point
of Fig. 6(b) is the slope of the dimensionless temperature §(Y) at the
wall is changed and become positive for Da = 0.01 signifying the
change of direction of heat transfer at the wall. Further increases of
A" to 10 causes the viscous dissipation is considerably increases at
the wall regions while the value of @gepe; is reduced at the center of
channel when Da = 0.01. That is why the temperature difference
between wall and fluid is positive for Da = 0.01 and it is higher than
the value of §(Y) for Da = 10. As a result, for the cases with Br <0
and low value of Da number, large heat generation particularly at

the surface of the channel (Fig. 6(b) and (c)) increases the
temperature of wall such that the wall temperature becomes
greater than fluid flows at the center region of the channel. Thus,
the direction of heat transfer is changed and heat is transferred
from the wall surface to the fluid flows inside the channel. That is
why the sign of slope of temperature profile at the wall is changed.

Fig. 8 shows the variation of the Nusselt number Nu with A"
for B =1 and —1 when Da is changed from 0.01 to 10. As it is seen
from Fig. 8(a), for Da=0.01 and Br* =1, a singularity is seen at
A" = A= 0.517 and the sign of Nu is changed at this value. The value
of A at which the sign of Nu is changed can be called as critical
directional permeability ratio (i.e.Ag). The value of Agr depends on
Da and Br*. The physical significance of A*; is that the direction of
heat transfer is changed. For Da = 0.01 and Br = 1, the slope of the
dimensionless temperature gradient in the traversal direction of the
channel is changed from negative to positive values at Ag = 0.517.
For A* < 0.517, the value of Nu is negative signifying that the fluid
temperature is higher than the wall temperature due to high viscous
dissipation. By increasing of A*, the sign of Nu is changed implying
that the fluid temperature becomes smaller than the wall temper-
ature. By increasing Da from 0.01 to 0.1, the singularity disappears
and Nu decreases with increase of A*. For higher values of Da as
Da=1 and 10, the value of Nu is not highly changed with A"
A similar behavior is seen for Br* = —1, but the values of A* at which
singularity for Nu exists are changed. For Br* = —1, a singularity is
seen at Ag = 0.895 for Da = 0.01. The another singularity in Nu for
Da=0.1 and Br* = —1 is observed at A = 0.41. Further increase in
Da causes elimination of singularity and Nu does not highly change
with A* for Da= 10 when Br* = —1.

The variation of A& with Da illustrated in Fig. 9 for some values
of Br*. For the cases with Br* >0, the range of Da in which the
singularities occur is enlarged by increasing the values of Br". As it is
well known, the internal heat generation in the channel enhances
by increasing the values of Br* and this is why the possibility of
compensation of heat flux applied to the channel by internal heat

as- —--Da=10
....8323,1
—Da=0.01
3
1 e S -
Nu T I -"““"I- -------------
R 2 4 6 8 10
A
-3
-5
b15—; —--Da=10
! —=-Da=1
----Da=0.1
—Da=0.01

Fig. 8. Variations of the Nusselt number Nu with A" for different values of Da: a)
Br'=1;b)Br'=-1.
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Fig. 9. Variation of A” with Da for different values of Br’.

generation rises. For Br* < 0, implying cooling of the channel, the
change of the sign of Nu occurs at wider range of Da. By decreasing
the values of Br*, the range of Da at which singularities in Nu occur
is enlarged. The chance of balancing the heat flux in the channel
with internal heat generation for the case when Br* < 0 is greater
compared to the cases when Br* > 0, particularly for high negative
modified Brinkman number.

It should be mentioned that velocity distribution in a channel
filled with anisotropic flow is very different than the distribution of
velocity in a channel with isotropic porous media. For the flow in
an anisotropic channel when directional permeability ratio (i.e. A*)
is high, a uniform velocity distribution at the most region of the
channel except wall region occurs while a steep velocity gradient
forms at the wall region. The large velocity gradient at the wall
surface generates high rate of viscous dissipation (or great gener-
ation). However, a small rate of heat generation exists in the center
region of channel, as seen from Fig. 6(c). For Br* < 0, not only the
cooling heat flux at the surface of the wall is balanced with rate of
generated heat at the wall region but also the wall temperature may
exceed the temperature of fluid flows in the channel. Hence, the
main reason of change of heat transfer direction is anisotropy state
of porous media which causes very large velocity gradient at the
wall of the channel when value of A* is high.

6. Conclusion

A study is performed to investigate the mechanism of heat and
fluid flow in a channel with internal heat generation due to viscous
dissipation for constant heat flux boundary condition. Heat and
fluid flow are assumed fully developed in the channel. Directional
permeability parameter A" is defined to combine the effects of
permeability ratio parameter K* and orientation angle ¢ and
contribute their effect into one parameter. The parameter A* has
avery important effect on the mechanism of heat and fluid flow in the
channel. The increase of the value of A* enhances permeability K7 in
the traverse direction of the channel and causes the velocity profiles
become flatten in the Y-direction. By increase of the value of A%, high
velocity gradient appear at the region close to the channel wall and
this is why high internal heat generation is observed at regions close
to the walls. The internal heat generation at the walls for high values
of A" (e.g. A" = 10) is such that the sign of Nu is changed when Br* < 0.
The variation of Nu with A* for different values of Da shows that
there are singularities in Nu at which the sign of heat transfer is
changed. Singularities in Nu depends on modified Brinkman and
Darcy numbers as well as on the directional permeability parameter.
For Br* <0, signifying cooling of the channel, singularities are
observed in Nu for a wide range of values of Da.
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Appendix

The dimensionless temperature distribution §(Y) is found to be
given by

f(Y) = E; cosh (2aY) + E, cosh (aY) + E3Y? + E4

where the expressions for Ey, E, E3, E4 and Es5 are

Br* o?Da +1
E] = . 2
8Da (« cosh (@) — sinh (@)
B — 2Br” cosh (a) B Es
>~ Da(a cosh (a) — sinh (@))?  Da(a cosh () — sinh («))
Esa? a2Br* cosh? (a)
E; =

Da(a cosh (a) —sinh (@)  2Da(a cosh (a) — sinh ()2
a?Br*(«?Da — 1)
(a cosh (&) — sinh (oz))2

E4 = —Eq cosh (2a) — E; cosh () — E3

~ Da+ F(a)Br" + G(«)Br'Da

Es "

The expression for the Nusselt number Nu has been found to be
given by

Nu = [a cosh () — sinh (a)]/ [a3(P1 sinh (2a) + P, sinh (3a)
+ Py sinh (@) + P4)]

where Py, P2, P3 and P4 are given by

p-fH B
17 203 403 cosh (a)
_E
Py = — 1
2™ 643 cosh (a)
p. B2 E; CEB(2+a?) E4
37 o3 2a3 cosh (@) oS cosh (&) o3 cosh (a)
2E3 Eg —+ 3E4 Ez
Py =2 -
S S VY 2a2 cosh ()

The values of Ej, E3, E3 and E4 are given above.
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