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a b s t r a c t

We present a novel formulation for pattern recognition in biomedical data. We adopt a binary

recognition scenario where a control dataset contains samples of one class only, while a mixed dataset

contains an unlabeled collection of samples from both classes. The mixed dataset samples that belong

to the second class are identified by estimating posterior probabilities of samples for being in the

control or the mixed datasets. Experiments on synthetic data established a better detection

performance against possible alternatives. The fitness of the method in biomedical data analysis was

further demonstrated on real multi-color flow cytometry and multi-channel electroencephalography

data.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Pattern classification methods constitute the backbone of
biomedical data analysis on high dimensional quantitative
data provided by the state-of-the-art medical imaging and
high-throughput biology technologies. The general strategy relies
on expert-curated ground truth datasets providing the categorical
associations of all available data samples. Ground truth datasets
are then used as the basis for statistical learning, specifically to
construct a classification rule using one of a host of methods such
as the support vector machines [1,2], nearest neighbor classifiers
[3,4], neural networks [5], discriminant functions [6] and so on.

A host of problems exist in obtaining manually labeled ground
truth datasets on biomedical data for supervised learning. The
most pertinent problem is the cost associated with the task:
Manual processing of biomedical data is often very laborious and
requires long hours of dedicated expert effort. Additional
deterrent factors are the systematic bias incorporated into the
learning system in emulating the decision criteria of a fixed expert
group, the deficiency of manual processing of multivariate data,
and the uncertain characterization of the learning problem by the
often modest-sized ground truth data.

These considerations necessitate a novel formulation for
statistical learning on biomedical data requiring no more than
elemental and easily obtainable expert interaction. In the
ll rights reserved.
literature, quasi-supervised learning refers to learning strategies
that deal with prominently unlabeled data, where some labels are
available and only through indirect user interaction [7,8].
Processing of unlabeled data in classification tasks is studied by
semi-supervised learning, where the principal aim is to obtain
better characterization of the posterior class distributions by
taking unlabeled data into account [9].

In this paper, we address a target identification problem where
labeled samples are available from one class only, in a control
dataset. A second, unlabeled dataset is also provided and contains
a mixture of samples from both control and target classes.
Identification is carried out using a computational algorithm that
contrasts the unlabeled mixed dataset samples to the control
dataset, and selecting those that are dissimilar from the control
samples beyond a statistical significance level as target samples.
Note that the lack of class labels other than the control dataset
place this problem beyond the premises covered by semi-
supervised learning and more towards unsupervised learning.
Note also that as such, this strategy accommodates the biomedical
data analysis task well: Often, a dataset of control samples is very
easy to obtain while representative abnormalities require manual
identification. In computational analysis of histology slides, for
instance, a pathologist can easily identify tissue cross-sections
that are free from cancerous abnormalities. Such abnormalities,
on the other hand, occur amid tissue that is benign in appearance,
and have to be either painstakingly labeled by an expert
pathologist from whole slides in a computerized system or
imaged selectively from within tumor boundaries.

The next section is devoted to the derivation of an algorithm
that contrasts two datasets by computing estimates of the
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posterior probabilities of samples belonging to one or the other.
Section 3 presents a quantitative performance evaluation of the
algorithm in comparison to alternative strategies from graph
theory and support vector machine classification on synthetic
data. Performance evaluation experiments are followed by the
application of the proposed quasi-supervised learning method
to the analysis of real multicolor flow cytometry data for
comparing cell distributions, and to the identification of brain
activity patterns associated with different visual stimuli in real
multi-channel electroencephalography data.
Fig. 1. Illustration of the asymptotic property of the nearest neighbor classifier

explored by the quasi-supervised learning strategy. Around a point x represented

by %, pðxjxAC1Þ ¼ 2pðxjxAC0Þ, leading to nearly twice as many C1 points (49) as C0

points (26), represented by + and � , respectively. As a result, the C1 partition in

the neighborhood of x leads the C0 partition in area 0.6721 to 0.3279, making x

twice as likely to be assigned to C1 as to C0.
2. Methodology

In this section, we construct a numerical algorithm that
realizes a quasi-supervised learning strategy using the asymptotic
properties of a nearest neighbor classification rule. These
properties lead to the derivation of nonparametric estimates for
the posterior probabilities and subsequently of several measures
for class overlap on the basis of each sample.

2.1. Likelihood ratio estimation via the nearest neighbor rule

Given a reference set R¼{xi,yi} of points xiAX and their
respective class labels yiAf0,1g for i¼ 1,2, . . . ,‘, a nearest
neighbor classifier is defined by

FRðxÞ ¼ yi0 with i0 ¼ arg min
i ¼ 1,2,...,‘

dðx,xiÞ ð1Þ

for xAX , where dð�,�Þ denotes the distance metric on X [3]. The
nearest neighbor classifier in Eq. (1) has been a benchmark
classification method in the pattern recognition literature thanks
to its simplicity and to several asymptotic properties linking its
error rate to that of the optimal Bayes rate. Indeed, it can be
shown that the asymptotic error rate of the nearest neighbor
classifier is bounded from above by twice the Bayes rate [10].
Here, we will consider the ratio of the classification decisions for a
point x during the course of successive classifications each time
using a different reference set, as the number of classifications
grows large. Below, we argue that the fraction of times a given
point x is assigned to a given class provides an estimate of the
posterior probability associated with that class, and derive an
algorithm to compute it analytically without carrying out all
possible nearest neighbor classifications.

2.1.1. Exhaustive nearest neighbor classification using random

reference sets

Let {Rj}, j¼1,2,y,M, be a collection of independent and
identically distributed reference sets, consisting of n points from
each of the two classes. Define f0(x) and f1(x) by

f0ðxÞ ¼

PM
j ¼ 1 1ðFRj

ðxÞ ¼ 0Þ

M
ð2Þ

and

f1ðxÞ ¼

PM
j ¼ 1 1ðFRj

ðxÞ ¼ 1Þ

M
ð3Þ

where 1(statement) is 1 if statement holds and 0 otherwise. The
critical observation is that for sufficiently large M,

f0ðxÞC
pðxjxAC0Þ

pðxjxAC0ÞþpðxjxAC1Þ
ð4Þ

and

f1ðxÞC
pðxjxAC1Þ

pðxjxAC0ÞþpðxjxAC1Þ
ð5Þ
providing

f0ðxÞ

f1ðxÞ
C

pðxjxAC0Þ

pðxjxAC1Þ
ð6Þ

where pðxjxAC0Þ and pðxjxAC1Þ represent the class conditional
probability densities for the classes C0 and C1, respectively [4,10].
The basis of this observation is as follows: Let N ðxÞ �X be a small
spherical neighborhood of x of size VðN ðxÞÞ, and R be a random
reference set containing n points from each of C0 and C1. Then,
N ðxÞ will contain approximately n � VðN ðxÞÞ � pðxjxAC0Þ points of R

from C0 and n � VðN ðxÞÞ � pðxjxAC1Þ points from C1. In addition,
since these points are the closest in R to x, nearest neighbor
classification of x with respect to R reduces to one that uses these
n � VðN ðxÞÞðpðxjxAC0ÞþpðxjxAC1ÞÞ points as the reference set.
Furthermore, since pðxjxAC0Þ and pðxjxAC1Þ are both approxi-
mately constant over N ðxÞ, these points can also be assumed to be
uniformly distributed in N ðxÞ, partitioning N ðxÞ into distinct C0

and C1 regions with volumes

VðN ðxÞÞ � pðxjxAC0Þ

pðxjxAC0ÞþpðxjxAC1Þ

and

VðN ðxÞÞ � pðxjxAC1Þ

pðxjxAC0ÞþpðxjxAC1Þ

respectively. Finally, as the probability of x being in one or the
other region is proportional to their volumes, Eqs. (4) and (5)
follow. This idea is illustrated in Fig. 1. Note also that since the
inclusion of an equal number of samples from each class in the
reference set leads to equal prior probabilities for C0 and
C1, in effect, f0(x) and f1(x) in Eqs. (4) and (5) compute estimates
of the posterior distributions of the classes C0 and C1 at the
point x. Under these circumstances, their ratio coincides with the
likelihood ratio of the class conditional probabilities as well.

This observation suggests that given a point xAX , the
likelihood ratio as well as the posterior probabilities of the two
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classes at x can be estimated based on a dataset {xi,yi} by carrying
out multiple nearest neighbor classifications on x using randomly
chosen reference sets from {xi} with equal representation from
both classes, and keeping track of the number of times x is
assigned to C0 and to C1. Such an approach has previously been
used to identify cancer-related abnormalities in a set of
Hematoxylin and Eosin stained breast cancer histology slides by
carrying out repeated nearest neighbor classifications followed by
regression on the estimated log-likelihood ratio to reduce the
estimation noise [11]. The issue of determining how many such
random nearest neighbor classifications would be required for a
given recognition problem, however, was not addressed, nor was
the computational expense related to carrying out a large number
nearest neighbor classifications. These issues are addressed here
as follows.

The reliability of the above estimate of the log-likelihood ratio
at a point x clearly depends on M, the number of successive
random nearest neighbor classifications. With n points from each
class in the reference set, the total number of distinct reference
sets of size 2n is given by

‘0

n

� �
‘1

n

� �

where ‘0 and ‘1 denote the number of points in the set {xi}
belonging to the respective classes. This number is maximized for

n¼
‘0‘1þ‘0þ‘1þ1

‘0þ‘1þ2

� �

Even for modest reference set sizes, say of 100 samples each, the
number of distinct nearest neighbor classifications that can be
carried out reaches levels over 1050, well beyond the abilities of
the present day computing equipment.

2.1.2. Analytical computation of the posterior probabilities

While carrying out an exhaustive evaluation of all possible
random nearest neighbor classifications is not feasible, it is still
possible to compute the average number of times a given point
would be assigned to either class at the end of such an evaluation.
Consider the distances di¼d(x,xi) between a given point x and
each xi for i¼ 1,2, . . . ,‘. Let d(i) denote the ordered sequence of all
{di} with dð1Þrdð2Þr � � �rdð‘Þ, and {x(i)} and {y(i)} be such that
d(i)¼d(x,x(i)) and y(i) is the class label of x(i). After an
exhaustive nearest neighbor analysis, f0(x) represents the
probability Pr{y¼0} of assigning x to the class C0 based on a
reference set R with n points from both classes selected randomly
from the {xi},

f0ðxÞ ¼ Prfy¼ 0g ð7Þ

This probability can be decomposed conditionally on whether or
not the point x(1) is in R, providing

f0ðxÞ ¼ Prfxð1ÞARg1ðyð1Þ ¼ 0ÞþPrfxð1Þ=2RgPrfy¼ 0jxð1Þ=2Rg ð8Þ

since Prfy¼ 0jxð1ÞARg is 1 if y(1)¼0, and 0 otherwise. For
notational simplicity, define Ek as the joint event xð1Þ,xð2Þ, . . . ,
xðkÞ=2R. Carrying the same decomposition strategy further to
Prfy¼ 0jE1g provides

Prfy¼ 0jE1g ¼ Prfxð2ÞARjE1g1ðyð2Þ ¼ 0ÞþPrfxð2Þ=2RjE1gPrfy¼ 0jE2g

In general, therefore, for Prfy¼ 0jEk�1g,

Prfy¼ 0jEk�1g ¼ PrfxðkÞARjEk�1g1ðyðkÞ ¼ 0ÞþPrfxðkÞ=2RjEk�1gPrfy¼ 0jEkg

ð9Þ

Putting the whole sequence of conditional probability
decompositions into the original equation for f0(x), we obtain

f0ðxÞ ¼ Prfxð1ÞARg1ðyð1Þ ¼ 0ÞþPrfxð1Þ=2RgðPrfxð2ÞARjE1g1ðyð2Þ ¼ 0Þ

þ � � � þPrfxð‘�1Þ=2RgðPrfxð‘ÞARjE‘�1g1ðyð‘Þ ¼ 0Þ
þPrfxð‘Þ=2RjE‘�1gPrfy¼ 0jE‘gÞ . . .Þ ð10Þ

Note that PrfE‘g ¼ 0 since the reference set R must have at least 2n

data points. In fact, the decomposition need not be carried out
beyond some k% given by

k% ¼max k
X‘

k0 ¼ k

1ðyðk0 Þ ¼ 0ÞZn and
X‘

k0 ¼ k

1ðyðk0 Þ ¼ 1ÞZn

�����
( )

ð11Þ

since Prfxðk%ÞARjEk%�1g ¼ 1 and Prfxðk%Þ=2RjEk%�1g ¼ 0. The algebraic
development above can be repeated for f1(x) in an identical
manner.

This derivation suggests the following algorithm to compute
fL(x) for LAf0,1g for a given x based on the dataset {xi,yi},
i¼ 1,2, . . . ,‘ and a fixed n:
�
 Compute di¼d(x,xi).

�
 Sort {di} so that d ð1Þ rdð2Þr � � �rdð‘Þ, and determine the

corresponding sequences {x(i)} and {y(i)}.

�
 Identify k% in Eq. (11), and set Prfy¼ LjEk%�1g ¼ 1ðyðk%Þ ¼ LÞ
�
 For k¼ k%�1,k%�2, . . . ,1, compute Prfy¼ LjEkg ¼ Prfxðkþ1ÞA
RjEkg1ðyðkþ1Þ ¼ LÞþPrfxðkþ1Þ=2RjEkgPrfy¼ LjEkþ1g.

�
 Set fLðxÞ ¼ Prfxð1ÞARg1ðyð1Þ ¼ LÞþPrfxð1Þ=2RgPrfy¼ LjE1g.
The computation of PrfxðkÞARjEk�1g can be carried out by

PrfxðkÞARjEk�1g ¼ 1�PrfxðkÞ=2RjEk�1g ¼ 1�

‘kþ1
0

n

 !
‘kþ1

1

n

 !

‘k
0

n

 !
‘k

1

n

 !

where ‘k
0 and ‘k

1 indicate, respectively, the numbers of C0 and C1

points in the set fxðkÞ,xðkþ1Þ, . . . ,xð‘Þg, with

‘k
0 ¼

X‘
i ¼ k

1ðyðiÞ ¼ 0Þ

and

‘k
1 ¼

X‘
i ¼ k

1ðyðiÞ ¼ 1Þ

Since for y(k)¼0 we have ‘kþ1
0 ¼ ‘k

0�1 and ‘kþ1
1 ¼ ‘k

1, and similarly
for y(k)¼1, ‘kþ1

0 ¼ ‘k
0 and ‘kþ1

1 ¼ ‘k
1�1, we obtain

PrfxðkÞARjEk�1g ¼

n

‘k
0

if yðkÞ ¼ 0

n

‘k
1

if yðkÞ ¼ 1

8>>><
>>>:

ð12Þ

Note also that f0(xi) and f1(xi) can be computed simply by letting
x¼xi and using the remaining data points in the algorithm above.

The computational complexity in computing f0(xi) and f1(xi)
can be derived by considering the complexities associated with
each successive step. The computational complexity of calculating
the distances d(xi,xj) is Oð‘2Þ. Sorting ‘�1 distances results in
Oð‘2logð‘ÞÞ complexity for each xi, though it can be circumvented
by sorting all d(xi,xj) once and for all at the beginning albeit with
the same complexity. Carrying out the computation of Pr{yi¼0} or
Pr{yi¼1} is Oð‘ð‘�2nÞÞ since it requires no more than ‘�2n

successive decompositions of the probability. The overall com-
plexity associated with computing f0(xi) and f1(xi) for all xi is
therefore Oð‘2logð‘ÞÞ.
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2.2. Class overlap measures based on posterior distribution

estimates

Several measures of class overlap at a point xAX can be
computed from f0(x) and f1(x) using the expressions in Eqs. (4) and
(5). As suggested by Eq. (6), f0(x) and f1(x) can be used to compute
a measure MLLR(x) that estimates the log-likelihood ratio of the
two classes by

MLLRðxÞ ¼ log
f0ðxÞ

f1ðxÞ

� �
ð13Þ

for all x with f0ðxÞa0 and f1ðxÞa0, providing the maximum
likelihood classification rule when compared to 0. The overlap
between the two classes is then given by the set of points in X
where MLLRðxÞC0. A major benefit of MLLR is its ability to
determine the specificity at which the points xi occur within the
two classes. It therefore allows dividing {xi} into three subsets, as
those that are specific to C0, those that are specific to C1, and those
that are non-specific beyond a certain specificity threshold a51.
These divisions can be obtained by assigning all the samples for
which MLLRðxiÞ4 logðð1�aÞ=aÞ to the group specific to C0, those for
which MLLRðxiÞo�logðð1�aÞ=aÞ to the group specific to C1, and the
remaining samples to the non-specific group. The significance of a
as the specificity threshold is in ensuring that no more than a
fraction a of samples in either specific group is included in that
group erroneously.

A second measure of class overlap can be defined in inspiration
from the Henze–Penrose affinity [12,13] that computes the
integralZ

x

2p1ðxÞp2ðxÞ

p1ðxÞþp2ðxÞ
dx

for any given probability distributions p1(x) and p2(x), and goes to
1 when p1(x)¼p2(x) for all x. We define the measure MHP-like(x) for
a sample x as a variant of the integrand above by

MHP-likeðxÞ ¼ f0ðxÞf1ðxÞC
pðxjxAC0ÞpðxjxAC1Þ

ðpðxjxAC0ÞþpðxjxAC1ÞÞ
2

ð14Þ

Note that over the regions of overlap, f0ðxÞC f1ðxÞC1=2 and MHP-

like(x) approaches 1/4. Conversely, for points that are highly
specific to one or the other class, MHP-like(x) is near zero.

A final measure of overlap can be computed using the
difference of f0(x) and f1(x) by

MDiff ðxÞ ¼ f0ðxÞ�f1ðxÞC
pðxjxAC0Þ�pðxjxAC1Þ

pðxjxAC0ÞþpðxjxAC1Þ
ð15Þ

Note that MDiff(x) computes the difference of the posterior
distributions of the two classes at a sample x, forming the basis
of the maximum a posteriori classification rule. This measure is
similar to MLLR in the sense that the points of strong overlap are
also given by the set of points for which MDiff C0. On the other
hand, MDiff can be computed for any x, even those for which
f0(x)¼0 or f1(x)¼0. In addition, it can be shown that the
thresholds 7ð1�2aÞ on MDiff provide a division of the data into
C0�specific, C1�specific, and non-specific data points for a given
significance level a as well.

2.3. Selection of the optimal reference set size

The discussion above offers the class overlap measures MLLR,
MHP-like, and MDiff to be computed from available data using the
quasi-supervised learning algorithm in Section 2.1. The accuracy
at which these measures follow their true values, however,
inevitably depends on the number of samples included in the
reference sets from each class, denoted by n. Ideally, the best n

would produce minimal class overlap or, equivalently, maximal
class separation, so that MLLR and MDiff are never around 0, and
MHP-like is 0 for all xi. In addition, n should be as small as possible,
for large n produces nearest neighbor classifiers that are too
flexible [14,15], reducing accuracy and increasing the estimation
noise. In light of these considerations, we propose the following
cost functional:

EðnÞ ¼ 4
X

i

MHP-likeðxiÞþ2n ð16Þ

to be minimized with respect to n. This cost functional represents
a trade-off between a desire to penalize the choices of n that
produce a large overlap between the two classes via the first term,
and a competing desire to limit n to smaller values via the second
term. The reasoning behind the first term follows from the main
objective of the quasi-supervised learning paradigm: to identify
the samples that are specific to their class of origin by minimizing
the overlap. The second term incorporates the structural risk
minimization principle in statistical learning that favors nearest
neighbor classifiers with small reference sets for better general-
ization ability [14,15]. The scaling of the first term by a factor of 4
ensures that the costs incurred in the two marginal scenarios
where, at the one end, MHP-like(xi) ¼1/4 for all xi indicating
complete overlap, and at the other n¼ ‘=2 when the reference
sets are as large as they can be (assuming ‘0 ¼ ‘1), are equal.

In order to illustrate the suitability of the cost functional in Eq.
(16) in determining the best n, we have generated two random
datasets, the first dataset containing 50 points drawn indepen-
dently from a Gaussian distribution with zero mean and unit
standard deviation, and the second dataset containing 50 points
drawn independently from another Gaussian distribution with
mean 1 and unit standard deviation. We have then carried out the
quasi-supervised learning algorithm contrasting these two data-
sets for n¼1,2,3,y,49, and computed the class overlap measures
MLLR, MHP-like, and MDiff for all points {xi}. By comparing the
resulting class overlap measures to the true theoretical values, we
have obtained the mean squared error graphs of the estimated
class overlap measures for varying n. These graphs are shown in
Fig. 2 along with the plot of the cost functional E(n). The smallest
errors on MLLR, MHP-like, and MDiff were obtained at n¼3, 3, and 2,
respectively. The functional E(n) attained its minimum value at
n¼3. Note that the jagged behavior observed on the mean
squared error plot of MLLR for large n is due to the removal of an
increasing number of data points xi for which f0(xi)¼0 or f1(xi)¼0
from the error computation.
2.4. Detection of abnormalities using quasi-supervised learning

The algorithm described above estimates the posterior dis-
tributions of two classes by f0(xi) and f1(xi) at each data vector xi in
a dataset {xi,yi}, i¼ 1,2, . . . ,‘, where yi are the binary class labels.
While this covers a very general family of statistical learning
problems, the scenario primarily addressed in this paper refers to
a case where the first class consists of samples drawn from a
single reference control probability distribution, and the second
containing samples drawn from the reference distribution as well
as a distinct target distribution, modeling the distribution of the
abnormal samples defined in some sense. In other words, from
here on, we will treat the class C0 as representing the reference
control dataset, and the class C1 as the unlabeled mixed dataset,
and address the identification of samples in C1 that belong to the
target distribution.

Consider the class-conditional probability distributions p0(x)
and p1(x) for classes C0 and C1 given by

p0ðxÞ ¼ prðxÞ ð17Þ
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and

p1ðxÞ ¼ ð1�lÞprðxÞþlptðxÞ ð18Þ

where pr and pt denote the reference control and the target
distributions, respectively. For lC1, the situation converges to a
conventional supervised statistical learning problem addressed by
a plethora of classification methods studied extensively in the
pattern recognition literature. For small l, however, the problem
of separating the two classes via classification becomes daunting
due to the strong overlap between the two classes. Classification
algorithms, devoting the greatest effort to sorting through the
region of overlap, are prone to miss or downplay the significance
of the small set of points generated from the target distribution in
the mixed dataset. The quasi-supervised learning algorithm, on
the other hand, directly computes estimates for the posterior
distributions of the two classes at all data points. Note that under
the circumstances described above, the expressions for f0(x) and
f1(x) become

f0ðxÞC
prðxÞ

ð2�lÞprðxÞþlptðxÞ
ð19Þ

and

f1ðxÞC
ð1�lÞprðxÞþlptðxÞ

ð2�lÞprðxÞþlptðxÞ
ð20Þ

Thus, over the points drawn from the reference distribution, the
estimates f0 and f1 would follow each other closely around 0.5
with f0 slightly greater than f1, all the while maintaining f0(x)+
f1(x)¼1 for all x. Conversely, over the points drawn from the
target distribution, f1 would increase toward 1 at the expense of
decreasing f0, implying specificity to the second class, and hence,
the target distribution.

The detection of abnormalities can be accomplished simply by
thresholding the class overlap measures MLLR or MDiff observed
over the mixed dataset with respect to a specific threshold. The
samples for which these class overlap measures fall below the
associated thresholds are thus labeled as abnormal. Furthermore,
the detection rate can be tuned to achieve a desired false
discovery rate, measured by the ratio of samples in the reference
control dataset satisfying the detection criterion. Note that the
samples of the reference control dataset are normal by construc-
tion, and are not subject to scrutiny by abnormality detection.
3. Results

In this section, we first present experiment results contrasting
the proposed algorithm to alternative strategies from the
literature on a synthetic dataset. We then demonstrate the utility
of the algorithm for biomedical data analysis on real multi-color
flow cytometry and multi-channel electroencephalography
datasets.
3.1. Detection performance on synthetic data

In order to assess the detection performance of the proposed
method, we have randomly generated reference control and
mixed testing datasets of known probability distributions with a
range of controlled parameters, and computed the average
receiver operating characteristics curves for each parameter
combination. The reference control dataset was modeled by a
d-dimensional multivariate Gaussian with zero mean and identity
covariance. The target distribution was also modeled as a
multivariate Gaussian with identity covariance, but with mean
shifted along the first dimension to 3. The reference dataset
contained N samples all drawn from the reference distribution,
while the mixed dataset consisted of ð1�lÞN samples drawn from
the reference distribution along with lN samples drawn from the
target distribution. In our experiments, we have treated the
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dimensionality d, the number of samples per dataset N, and the
fraction of samples in the mixed dataset from the target
distribution l as control variables. In each independent repeat,
we have randomly generated the reference and mixed datasets
according to the parameters d, N, and l, carried out abnormality
detection using the quasi-supervised learning algorithm and
computed the corresponding receiver operating characteristics
curves.

In each experiment, abnormality detection via quasi-super-
vised learning entailed thresholding the measure MDiff on the
mixed dataset samples with a threshold TAð�1,1Þ and labeling
those for which MDiff ðxÞrT as from the target distribution. The
detection and the false alarm rates denoted by PD(T) and PFA(T)
were defined as the fraction of samples from the target and
reference distributions in the mixed dataset detected correctly
and incorrectly. Note that the choice of the measure MDiff for
detection does not precondition the recognition performance of
the quasi-supervised learning strategy, since an identical criterion
can be devised by computing and comparing MLLR against an
appropriately chosen threshold as well. In both cases, the
recognition is carried out in the maximum a posteriori
sense, where the samples are assigned based on the posterior
probabilities.

For comparison purposes, we have also trained a support
vector machine classifier to separate the reference and mixed
datasets [1,2]. In the classifier construction, we have used a
Gaussian radial basis function kernel with

Kðxi,xjÞ ¼ exp �
Jxi�xjJ

2

2s2

 !
ð21Þ

where the scale parameter s was determined by minimizing the
number of support vectors in training via a line search. In order to
take into account the non-separable cases, the Lagrange multi-
pliers of the quadratic optimization were bound from above by
100 during training, producing a soft-margin classification. The
detection of the samples in the mixed dataset originating from the
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Fig. 3. Detection outcomes in a representative performance evaluation experiment wit

detections by the minimum spanning tree strategy, support vector machine classificat
target distribution was carried out by thresholding the classifier
underlying function

hðxÞ ¼
X

i

yibiKðx,xiÞþb ð22Þ

by a threshold T 0Að�1,1Þ, yi being �1 or 1 based on whether xi

belongs to the reference or mixed datasets, and bi and b obtained by
training the classifier. The mixed dataset samples for which hðxÞZT 0

were then identified as from the target distribution. The associated
false alarm and detection rates were computed as before, respec-
tively, as the fraction of mixed dataset samples drawn from the
reference distribution detected erroneously, and the fraction of those
drawn from the target distribution detected correctly.

As a second alternative, we have constructed a minimum
spanning tree on all samples, and identified those of the mixed
dataset that were not connected to any of the reference control
samples as from the target distribution. Note that in such a
minimum spanning tree, the mixed dataset samples that share
edges only with other mixed dataset samples would be the ones
that reduce a graph-theoretic estimate of the Henze–Penrose
affinity between the datasets [12,16,13]. Note also that this
strategy produces only a single false alarm rate and a single
detection rate as the detection rule cannot be varied by changing
a threshold as in the previous two cases, though a receiver
operating characteristics curve can be constructed by joining the
paired false alarm and detection rates with the origin on one side,
and paired unit false alarm and detection rates on the other.

We have let d¼1, 2, 3, N¼50, 100, 200, and l¼ 0:25,0:50,0:75,
and carried out 20 random experiments for each combination. As
the case where l¼ 1:00 does not allow computation of a false
alarm rate on the mixed testing dataset, it was omitted from the
experiments. A representative random experiment with d¼2,
N¼50, and l¼ 0:25 is shown in Fig. 3. The reference dataset
samples are marked by gray cross signs and those of the mixed
dataset by gray plus signs, while the mixed dataset samples from
the target distribution by dark dots. The broken line indicates the
optimal Bayes detection boundary achieving 11 correct detections
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and 1 misdetection (Fig. 3a). The minimum spanning tree strategy
detects only 5 out of 12 target samples along with 8 misdetections
indicated by squares (Fig. 3b). The support vector machine
strategy constructs a decision boundary between the two
datasets using 77 support vectors (in circles) and incurs 18
misdetections (in the shaded area) in return for 10 correct
detections (Fig. 3c). The proposed quasi-supervised learning
strategy incurs only one misdetection for 10 correct detections,
shown by diamond signs (Fig. 3d).

In order to contrast the detection performances, we have
computed the area under the average receiver operating char-
acteristics curves of 20 independent repeats carried out for each
combination of d, N, and l. The results are shown in Table 1. For
small l, the detection performance of the support vector machine
method was very poor, and it gradually improved to approach the
Bayesian optimal for larger values of l and increasing N, especially
at low d. The average area under the curve values by
the minimum spanning tree method generally rested well below
the Bayesian optimal though they did not exhibit such strong
Table 1
Performance evaluation of the quasi-supervised learning algorithm (QSL) in

comparison with the graph theoretic alternative using minimum spanning trees

(MST) and support vector machine classification (SVM) on synthetic data.

MST SVM QSL

N¼50

d¼1

l¼ 0:25 0.7897 0.6531 0.9259

l¼ 0:50 0.8570 0.9102 0.9413

l¼ 0:75 0.8845 0.9607 0.9280

d¼2

l¼ 0:25 0.7625 0.6840 0.9332

l¼ 0:50 0.8470 0.8991 0.9505

l¼ 0:75 0.8638 0.9455 0.9286

d¼3

l¼ 0:25 0.7319 0.6870 0.9199

l¼ 0:50 0.7970 0.8342 0.9397

l¼ 0:75 0.8599 0.9224 0.9324

N¼100

d¼1

l¼ 0:25 0.7727 0.6734 0.9438

l¼ 0:50 0.8440 0.9648 0.9560

l¼ 0:75 0.8770 0.9579 0.9467

d¼2

l¼ 0:25 0.7843 0.6711 0.9323

l¼ 0:50 0.8200 0.8926 0.9569

l¼ 0:75 0.8637 0.9532 0.9485

d¼3

l¼ 0:25 0.7577 0.6302 0.9456

l¼ 0:50 0.8040 0.8308 0.9555

l¼ 0:75 0.8480 0.9277 0.9541

N¼200

d¼1

l¼ 0:25 0.7923 0.7700 0.9494

l¼ 0:50 0.8435 0.9610 0.9579

l¼ 0:75 0.8802 0.9633 0.9639

d¼2

l¼ 0:25 0.7740 0.6012 0.9394

l¼ 0:50 0.8225 0.9316 0.9624

l¼ 0:75 0.8677 0.9601 0.9678

d¼3

l¼ 0:25 0.7790 0.6925 0.9358

l¼ 0:50 0.8113 0.8589 0.9616

l¼ 0:75 0.8577 0.9489 0.9663

The measures represent the areas under the average receiver operating

characteristics curves from 20 independent repeats. In all cases, the area under

the receiver operator characteristics curve of an optimal Bayes classifier was

0.9752.
dependence on l. By contrast, the quasi-supervised learning
method’s performance closely matched the Bayesian optimal for
all values of l and N. In addition, the negative effect of the
dimensionality increase on the support vector machine detection
performance was not apparent in the performance of the
quasi-supervised learning method.

3.2. Comparative analysis of flow cytometry data

Multicolor flow cytometry is a powerful tool for rapidly and
quantitatively characterizing the phenotypes of cell populations.
The technology is based on fluorescently tagging each individual
cell in a suspension for specific biomarkers and scanning them
individually under laser illumination. This provides a high
dimensional vector of features for every cell, pertaining to their
size, shape, and the set of biomarkers they possess. Comparative
analysis of flow cytometry data then concerns identifying
different cell types in terms of these high dimensional feature
vectors, or contrasting the cell distributions obtained from
different individuals or at different times [17–19].

We have applied the proposed quasi-supervised learning method
on a flow cytometry dataset that was originally collected and used in
the study of causal relationships in human primary naı̈ve CD4+ T
cells [20]. The part of the dataset used in our experiments consists of
T cells fluorescently labeled for 11 biomarkers (raf, mek1/2, Plcg,
PIP2, PIP3, Erk, akt, PKA, PKC, p38, jnk) once after a general baseline
stimulation mediated by anti-CD3/CD28, and after further stimula-
tion mediated by one of akt-inhibitor, LY294002, and Psitectorigen-
in. The baseline dataset contained fluorescence measurements from
853 cells, and the subsequent datasets contained fluorescence
measurements from 911, 848, and 810 cells, respectively.

We have compared the akt-inhibitor, LY294002, and Psitector-
igenin stimulation datasets separately to the baseline dataset
after taking the feature values to the natural logarithm and
computed the measures MLLR and MDiff at all cells. In Fig. 4, the
cells with more than 97.5% specificity to their respective group
are shown by dark cross signs. The histograms of the class overlap
measure MDiff between the baseline and post-stimulation datasets
indicate that the stimulation mediated by Psitectorigenin has
significantly altered the baseline cell distribution, resulting in a
bi-modal histogram with most of the measurements accumulated
near 71. The overlap with the baseline is much stronger in the
post-stimulation mediated by the akt-inhibitor, as indicated by a
significantly smaller number of cells specific to their own group
beyond the 97.5% level. The stimulation mediated by LY294002
had no perceivable effect on the cell distributions, exposed by a
complete overlap with the baseline dataset and the lack of any
cells with sufficiently high group specificity. Note that while the
scatter plots show the cell distributions in terms of the two
features exhibiting the greatest correlation with the class overlap
measure MDiff, the computation of the measure itself was carried
out using all 11 features simultaneously.

3.3. Pattern detection in electroencephalography data

An electroencephalography plot of an individual refers to the
recordings of the electrophysiological activity of their brain
measured by electrodes placed over the scalp [21]. The small
voltages measured at each electrode act as channel readings. From
a statistical learning point of view, the collection of readings from
many channels acquired at a specific time instant organized into a
column vector corresponds to a data sample reflecting the
individual’s brain activity pattern at that instant. These samples
can then be analyzed in a variety of clinical settings using pattern
recognition methods.
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We have used the quasi-supervised learning method to
contrast the brain activity patterns of an alcoholic and a healthy
control subject on a previously published electroencephalography
dataset [22]. The data consist of 64-channel 256 Hz
electroencephalography recordings of 1 s duration from 10 trials,
under visual stimuli where the subjects were presented by either
a matching or non-matching pair of images. We have contrasted
the matching dataset samples to the non-matching dataset
post-sbaseline
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the control subject. The brain activity patterns of the healthy
control subject show a clear distinction between the two stimulus
types, as indicated by the number of class overlap measures near
71. Conversely, the brain activity patterns of the alcoholic subject
during matched and non-matched stimuli overlap to a larger
extent as evidenced by a more diffuse histogram. These results are
consistent with the evidence in the literature documenting
significant differences in brain activity in response to various
stimuli in alcoholism [23].
4. Conclusion

We have presented a novel statistical learning algorithm that
contrasts two datasets by computing estimates for the posterior
probability of their samples of belonging in either dataset. When
one of the dataset contains samples of one class only and the
other an unlabeled mixture, the algorithm instantiates a quasi-
supervised learning paradigm whereby the samples of a second
class in the mixed dataset are identified automatically based on
the computed posterior probabilities. In performance evaluation
experiments on synthetic target detection data, the proposed
method outperformed alternative strategies based on support
vector machine classification and minimum spanning trees for
varying dataset size, overlap, and dimensionality.

The proposed paradigm is ideally suited to a dichotomous
biomedical data analysis setting of abnormal versus normal since
it does not require exact knowledge of which samples are
abnormal in the mixed dataset. Given the difficulties and draw-
backs of collecting manually labeled ground truth datasets for
supervised learning in biomedical applications, quasi-supervised
learning proves to be a viable alternative with minimal manual
input. These strengths were demonstrated by experiments on
automated comparison of cell distributions in multi-color flow
cytometry data and brain activity pattern analysis on 64-channel
electroencephalography data.

In a wider perspective, estimation of posterior probabilities
from available data makes the proposed algorithm suitable also
for general statistical learning tasks such as classification as a
model-free alternative to existing techniques. Especially in cases
where the data do not allow perfect separation of the different
classes, the algorithm can be expected to outperform off-the-shelf
classification algorithms as it will avoid searching for a separation
boundary optimized according to some criterion. In extreme
cases, the estimated posterior probabilities can be followed by
regression algorithms to reduce the estimation noise. Extension of
the algorithm from binary to multi-class classification is also
straightforward, with minor modifications on the conditional
probability decompositions to take into account the presence of
additional class labels.

As is the case with all statistical learning methods, however,
the proposed scheme is not immune against the well-established
issues with feature selection and data normalization. Indeed, it is
conceptually possible to undertake feature selection iteratively
within the algorithm by gradually removing the features that are
ineffectual towards the estimated posterior probabilities. On the
other hand, the specifics of such a strategy would inevitably
be application-dependent, and must be addressed separately in
each case.
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