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Clustering is a widely used technique to manage the essential operations such as routing and data
aggregation in wireless sensor networks (WSNs). We propose two new graph-theoretic distributed
clustering algorithms for WSNs that use a weighted matching method for selecting strong links. To the
best of our knowledge, our algorithms are the first attempts that use graph matching for clustering.
The first algorithm is divided into rounds; extended weighted matching operation is executed by nodes
in each round; thus the clusters are constructed synchronously. The second algorithm is the enhanced
version of the first algorithm, which provides not only clustering but also backbone formation in
an energy-efficient and asynchronous manner. We show the operation of the algorithms, analyze
them, provide the simulation results in an ns2 environment. We compare our proposed algorithms
with the other graph-theoretic clustering algorithms and show that our algorithms select strong
communication links and create a controllable number of balanced clusters while providing low-
energy consumptions. We also discuss possible applications that may use the structure provided by

these algorithms and the extensions to the algorithms.
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1. INTRODUCTION

Wireless sensor networks (WSNs) do not have any fixed
infrastructure and consist of sensor nodes that perform
sensing and communicating tasks. Habitat monitoring, military
surveillance and target tracking are example application types
in WSNs. Clustering the network to construct a robust
communication structure is a significant research area in
WSNs. Clustering and backbones using clusters are provided
in WSNs in order to decrease the number of messages and
total time spent for routing the sensed data to the sink. By
clustering the network, an efficient topology is constructed
which makes routing and data aggregation tasks easier. In
clustering schemes, each node is classified as either cluster
head or cluster member. Cluster members are ordinary nodes,
whereas cluster heads perform various tasks on behalf of the
members of the clusters.

A WSN can be modeled as a graph G(V, E), where V

is the set of vertices (nodes of WSN) and E is the set
of edges (communication links between the nodes). Graph-
theoretic algorithms use results from graph theory and develop
algorithms to solve various difficult problems. Graph-theoretic
clustering algorithms, similarly, assume that the underlying
network is modeled as a graph and provide clusters of the
network using this property.

Various algorithms are proposed in the literature for
clustering in WSNs. LEACH [1] assumes that cluster heads
consume uniform energy and it provides random rotation of
cluster heads. Cluster heads in HEED [2] are elected using a
probabilistic method that is based on the residual energy of
a node and the number of its neighbors. EECS [3], EEUC
[4] and EEMC [5] also employ clustering in WSNs for
communication purposes and these systems do not use graph-
theoretic approaches for clustering.
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In [6], we find one of the algorithms that performs
graph-theoretic clustering in sensor networks. Examples of
graph-theoretic clustering algorithms for various networks
are given in [7–14]. After the network is modeled as a
graph, then a completely new algorithm may be proposed or
distributed versions of centralized algorithms may be designed.
Existing graph-theoretic clustering algorithms generally aim at
constructing a backbone of cluster heads directed to the sink
node where selection of strong communication channels and
cluster quality is not considered when forming the backbone.
However, the selection of links with higher communication
capabilities reduces the total energy consumption at the
message transmissions in multi-hop sensor network topologies
[15].

A matching in a graph G is a set of non-loop edges with
no shared endpoints. The vertices incident to the edges of
a matching M are saturated by M. A perfect or maximum
matching in a graph is a matching that saturates every
vertex [16]. If the graph is weighted and we are looking for
the maximum selected edge weight, then the problem is called
weighted matching. Matching has numerous applications such
as chemical structure analysis, pattern recognition and machine
learning [17].

In this study, we propose two weighted matching-based
algorithms for clustering and backbone formation in sensor
networks. The algorithms try to select heavy edges to provide
communication over energy-efficient communication links for
reliable and efficient communication. In the first algorithm,
clusters are enlarged in a synchronous manner where the
algorithm is executed in rounds and a certain task is performed at
each round. The second algorithm is the enhanced version of the
first algorithm where backbone formation is also provided along
with the application of energy-efficient techniques to reduce
the total number of messages. To the best of our knowledge,
these two algorithms are the first algorithms in the literature
that perform graph-theoretic clustering using matching in any
type of network. Furthermore, they consider quality of the
communication links to provide reliable communication among
and within the clusters which is overlooked by the existing
clustering algorithms. Lastly, they are fully distributed in nature
making them suitable for large-scale applications such as sensor
networks.

The rest of this paper is organized as follows. In Section 2,
the network model and clustering problem is described and the
related work is surveyed in Section 3. The proposed algorithms
are described in Sections 4 and 5. The detailed analysis
of the algorithms are given in Section 6 and the results
of performance tests are presented in Section 7. Possible
sensor network applications that may employ the proposed
algorithms and extensions to the algorithms are given in
Section 8. Conclusions and future works are given in Section
9. Pseudo-codes of the algorithms are given for reference in
Appendix.

2. BACKGROUND

2.1. Network model

The following assumptions are made about the network as in
[2, 6, 7, 9, 12]:

(i) Each node has a distinct node_id.
(ii) The nodes are stationary.

(iii) Links between nodes are symmetric. Thus if there is a
link from u to v, there exists a reverse link from v to u.

(iv) Nodes do not know their positions. They are not
equipped with a position tracker like a GPS receiver.

(v) All nodes are equal in terms of processing capabilities,
radio, battery and memory.

(vi) Each node knows its neighbors and the quality of the
links connected to the neighbors. The quality of a link
is the same for both nodes attached to it.

On the basis of these assumptions, the network may be
modeled as a weighted undirected graph Gw(V , Ew), where
V is the set of vertices, Ew is the set of the edges with
weights. The weights of the edges can be represented by the link
quality indicators supported by various underlying protocols as
in [18, 19]. An example weighted undirected graph model is
depicted in Fig. 1 where the transmission ranges of the nodes
are shown with dotted circles, and the weight of each edge
corresponds to its link quality.

The other popular model used in graph-theoretical
approaches is the unit disk graph model where each node is

FIGURE 1. Weighted undirected graph model.
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identified with a disk of unit radius r=1, and there is an edge
between two nodes u and v if and only if the distance between u

and v is at most 1 [20, 21]. Unit disk graphs captures the behav-
ior of broadcast radio transmission; thus it is good for modeling
ad hoc and sensor networks [20], but this model lacks represen-
tation of link qualities. A weighted undirected graph model not
only models the radio transmission but also represents the link
qualities by the edge weights.

2.2. The clustering problem

Clustering is a basic method to group similar objects from a
whole set of objects. The number of groups must be controllable,
the size of the groups should be balanced in any clustering
scheme and also the operation of grouping should not be costly.
In networks, clustering is performed to simply partition the
whole network into subnetworks to ease communication tasks.
Backbone formation is the construction of the virtual path of
cluster heads to provide the relaying of sensed data to the sink.
The aims of the proposed approaches for clustering varies. For
example, the algorithm in [6] targets to guarantee that each
ordinary node is connected to a single cluster head to construct
disjoint clusters, whereas the algorithm in [22] argues that
overlapping clusters is also a good idea for fault tolerance,
node localization and topology control. The algorithm in [12]
produces clusters with a star topology in which the cluster
head is at the center of the star, whereas multi-hop clusters are
produced in [6]. Clustering and backbone formation objectives
for sensor networks can be listed as follows:

(1) Nodes may initiate the clustering and backbone
formation operation at any time locally. Hence, these
operations should be distributed and asynchronous.

(2) In clustering and backbone formation operations, strong
communication links should be selected for ease of
communication.

(3) The cluster heads are the servers of their cluster
members. They collect sensed data from their members
to process, aggregate, filter and route this data to the
sink. A cluster head may consume its energy very
fast if its cluster is overcrowded. On the other hand,
construction of clusters with very small sizes may not
be cost effective. In conclusion, the number and sizes
of clusters should be controllable by the algorithms to
adjust them to the required values.

(4) The clustering algorithms should be independent from
the underlying protocols as much as possible to interface
with various MAC and physical layer standards such as
in [18, 19, 23–26].

(5) The algorithms should be efficient in terms of time
and message complexity to provide low energy
consumptions of sensor networks.

(6) Overlapping clusters may provide fault tolerance but
sending sensed data by a member node to more than

one cluster head may degrade the energy of nodes. The
clusters may not be overlapping if fault tolerance is
provided by other methods. The fault tolerance methods
proposed are discussed in Section 8.

3. RELATED WORK

3.1. Graph-theoretic clustering algorithms

Graph-theoretic clustering algorithms for ad hoc networks can
mainly be classified as dominating set (DS) based and spanning
tree based. A DS is a subset S of a graph G such that every
vertex in G is either in S or adjacent to a vertex in S [16].
If the nodes in the DS is connected, then the DS is called a
connected dominating set (CDS). A two-phased CDS algorithm
is proposed in [9], in which initially each vertex marks itself
as dominator due to some predefined rules. Dai and Wu [10],
Nanuvala [11], and Cokuslu et al. [12] added extra heuristics
to Wu’s algorithm to reduce the size of the CDS Yan et al. [13]
proposed an energy-efficient DS-based construction by using
the nodes’ residual power.

A graph GS = (VS, ES) is a spanning subgraph of G =
(V , E) if VS = V . A spanning tree of a graph is an
undirected connected acyclic spanning subgraph [27]. Banerjee
and Khuller [14] proposed a protocol based on a spanning tree
for hierarchical routing in wireless networks. In their scheme, a
cluster is a subset of vertices whose induced graph is connected.
Erciyes et al. [6] proposed a distributed spanning tree-based
clustering algorithm (DSTA) for sensor networks. The depth
parameter is provided by the algorithm to adjust the diameter
of the clusters. The sink periodically sends a PARENT(nhops)
message to its neighbors to reinitiate the operation. Each
node sends the PARENT((nhops + 1)mod depth) message to
its neighbors upon the first reception of the PARENT(nhops)
message. The recipients of the message with nhops = 0 are the
SUBROOTS; nhops < depth are the INTERMEDIATE nodes;
nhops = depth are LEAF nodes.

3.2. Graph matching algorithms

Graph matching algorithms in the literature can be classified
into the following five types:

(1) Maximum matching algorithms for undirected
graphs [28].

(2) Maximum weighted matching algorithms for undirected
graphs [29].

(3) Matching and weighted matching algorithms for
bipartite graphs [30].

(4) Matching and weighted matching algorithms for
trees [31].

(5) Matching algorithms for directed graphs [32].

Maximum weighted matching algorithms (type 2) choose
the edges to maximize the total weight in this model. Thus
type 2 algorithms are the basis of our clustering operation.
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Maximum weighted matching is in the polynomial complexity
set (P ) and approximation algorithms are proposed for
this problem to provide more efficient solutions. Maximum
weighted graph matching algorithms can be centralized
or distributed. The centralized algorithms are: Gabow’s
maximum weighted matching algorithm [33], Avis’ algorithm
with 1/2 approximation ratio [34], Preis’ algorithm with
1/2 approximation ratio [35], Drake’s algorithm with 2/3-
ε approximation ratio [36], Petite’s algorithm with 2/3-ε
approximation ratio [37]. The distributed algorithms are:
Uehara’s algorithm with 1/� (� is the maximum nodal
degree) approximation ratio [38], Wattenhofer’s algorithm
with 1/5 approximation ratio [39], Hoepman’s algorithm with
1/2 approximation ratio [29], Lotker’s algorithm with 1/2
approximation ratio [40] and Nieberg’s algorithm with 1 − ε

approximation ratio [41].
Hoepman’s algorithm is the distributed version of Preis’

centralized algorithm. In Hoepman’s algorithm, it is assumed
that all of the nodes know their neighbors and the weights of the
edges incident to them. Each node sends a request message to its
candidate. The candidate is the neighbor node that is connected
on the heaviest edge. If two of the nodes both receive the request
from each other, the edge connecting them is selected and they
will be matched. If a node sends a request message to a matched
node, the matched node will reply with a drop message. Each
node uses two sets: the set of neighbors (N) and the set of
requested neighbors (R). A node deletes the source of the drop
message in its (N).

4. MATCHING-BASED SYNCHRONOUS
CLUSTERING ALGORITHM

4.1. General idea

We propose the matching-based synchronous clustering
algorithm (MASC) which constructs clusters by using
maximum weighted matching. One of the goals of the algorithm
is the selection of the strong communication links in the
undirected weighted graph model to maximize the intra-cluster
communication and to focus on clustering quality. MASC
works in rounds and each round starts after the previous one is
completed by all cooperating nodes. At each round, each cluster
head tries to merge with the adjacent cluster over the maximum
weight edge connecting them. Merging of clusters at each round
reduces the number of dummy clusters that frequently occur in
DS-based clustering algorithms. Our algorithm is an extended
version of Hoepman’s distributed matching algorithm [29]
adapted for sensor networks. Hoepman’s algorithm requires
only local message exchanges providing scalability on sensor
networks. Although the approximation ratio of the algorithm
is 1/2, its approximation ratios are very high for randomly and
uniformly generated sensor networks as shown in Section 7.1.
Even though the approximation ratio of Nieberg’s algorithm is
1−ε, it requires the construction of a maximal independent set

which will result in high time and message complexities for our
implementation, and thus it is not suitable as a basis for our
clustering algorithm.

4.2. Description

We assume that the nodes are time synchronized in addition
to the assumptions made in Section 2.1 to be able to start the
rounds at the same time. The local algorithm consists of sending
messages over adjoining links, waiting for incoming messages
and processing messages. The finite state machine (FSM) of
the algorithm is shown in Fig. 2; its pseudo-codes are given in
Algorithms 1 and 2.

In a clustering session, a node first sends a REQUEST
message along the strongest link to a destination node. The
destination node which is connected to the originator node with
the strongest link is called the candidate of the originator node.
If the originator node is already the candidate of the destination
node, the destination node will reply with REQUEST_ACK
and the clustering operation will be completed. Otherwise, if
the destination node is matched with another node, it will reply
with a DROP message and will search for new candidates.
This mechanism is similar to Hoepman’s algorithm; our exten-
sion and contribution is to classify nodes as cluster heads and
cluster members and giving them different responsibilities for
constructing higher-level clusters. The states of the algorithm
are as follows:

(i) LEADER: LEADER is the cluster head of its cluster. All
the nodes are in the LEADER state at the beginning of the
algorithm execution. If a LEADER receives a REQUEST

FIGURE 2. FSM of MASC.
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from its candidate, it replies with a REQUEST_ACK
message to maintain a new cluster. In this clustering
scheme, one of the nodes will make a state transition to
a MATCHED_LEADER state and the other node will be
the MEMBER of the new cluster. The selection is made
by executing the following procedure:

(1) Let RSSi be the second largest Received Signal
Strength (RSS) value of the edge outgoing from the
cluster of nodei and RSSj for nodej . The id of the
nodei is idi and that of nodej is idj .

(2) The node with the largest RSS is the new leader and
makes a state transition to the MATCHED_LEADER
state, the other node becomes the member.

(3) If RSS values are equal, the node with the bigger id
is the new leader.

We use this leader selection heuristic, since the node
connected on the edge with the second largest RSS will
be the next candidate. The LEADER node knows all of
the neighbors of its cluster members and updates its list
for each clustering session by getting the neighbor list
from the previous LEADER nodes which participated in
these operations.

(ii) MATCHED_LEADER: A node in this state rejects the
clustering requests by sending a DROP message after
which it makes a state transition to the LEADER state.

(iii) MEMBER: Cluster member nodes are in the MEMBER
state and they forward their requests to their cluster head.

(iv) CANDIDATE_WT_ACK : At the start of a round,
each LEADER node sends a REQUEST message
to its candidate and makes a state transition to a
CANDIDATE_WT_ACK state. If a DROP message is
received, a new candidate is selected. If no other
candidate exists, the node will make a transition to a
MATCHED_LEADER state.

We also provide a modified version of MASC called MOD-
MASC which uses node id’s in matching instead of edge weights
to provide a reference for tests to evaluate the difference in
choosing the maximum weight edge or a random edge. MOD-
MASC chooses the neighbor with the smallest id for clustering.

4.3. An example operation

Assume a WSN with 20 nodes in which also the id of the nodes
and the weights of the edges connecting them are given, as
shown in Fig. 3. The tracing of an example clustering operation
for three rounds using MASC is as follows. In the first round,
a NEW_ROUND_INTERRUPT occurs in node 13. Node 13 is
initially in a LEADER state, then it makes a state transition to
CANDIDATE_WT_ACK state and sends a REQUEST message
to its candidate, node 0. The state of the node 0 before receiving
the REQUEST messages is LEADER and its candidate is node
13, and so it replies with a REQUEST_ACK message. The
second largest RSS value of the node 13 is node 5 and node

FIGURE 3. An example operation.

0 is node 7 and hence node 0 makes a state transition to the
MATCHED_LEADER state and node 13 makes a state transition
to the MEMBER state. At the same time node 11 sends a
REQUEST message to node 0. The request of the node 11 is
rejected with a DROP message from node 0. Node 14 and node
3, node 4 and node 5, node 12 and node 9, node 15 and node 2,
node 10 and node 17, node 6 and node 1, node 11 and node 7
make clustering operations in the first round similar to the above
operation explained. On the other hand, all requests of node 16,
node 8, node 19 and node 20 are dropped by their candidates
and they cannot find any cluster to join in the first round.

In the beginning of the second round, node 12 sends a
REQUEST message to node 3. Node 3 which is in the MEMBER
state receives the REQUEST message and forwards it to
its LEADER, node 14. Node 14 replies to the REQUEST
message with REQUEST_ACK, since the edge connecting
the two clusters is the strongest link between them. After
REQUEST_ACK is received by node 12, the nodes of the new
cluster are: {14, 3, 12, 9}. At the end of the second round, the
other clusters are formed as follows: {13, 0, 11, 7}, {6, 1, 8},
{15, 10, 2, 17}. The clustering operations are similar in the third
round and at the end of the algorithm, the clusters produced by
the algorithm are as follows: {14, 3, 12, 9, 4, 5}, {6, 1, 8, 19},
{13, 0, 16, 11, 7}, {15, 10, 2, 17, 20}. The cluster head nodes of
each cluster are filled with gray and all of the matched edges
are drawn bold as shown in Fig. 3.

5. MATCHING-BASED CLUSTERING AND
BACKBONE FORMATION ALGORITHM

5.1. General idea

MASC uses weighted graph matching as the method to select
the strong communication links for clustering, different from the
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other graph-theoretic algorithms. Also the number of clusters
can be controlled by the number of rounds different from the DS-
based clustering algorithms [9–13]. The advantages of MASC
over other graph-theoretic approaches is described in Sections 6
and 7. On the other hand, MASC lacks some important design
issues as follows:

(i) The nodes are assumed to be time synchronized. To
maintain this situation, the nodes should implement
either a time synchronization protocol [42] or a
synchronizer middleware [43].

(ii) The energy consumption of the algorithm execution is
greater than the proposed graph-theoretic approaches as
shown in Sections 6 and 7.

(iii) The backbone formation is left to an upper layer
protocol.

We propose a matching-based asynchronous clustering
and backbone formation algorithm (MCUBA) to decrease
the disadvantages of MASC as much as possible while
preserving its advantages. The MCUBA is based on the same
weighted matching as in MASC, but in addition to MASC,
MCUBA provides fully asynchronous clustering and backbone
formation.Also, MCUBA includes methods for reducing energy
consumption.

5.2. Asynchronous cluster and backbone formation

The MCUBA algorithm constructs clusters and a backbone
concurrently and asynchronously. The FSMs for the MCUBA
are given in Figs. 4 and 5 and the detailed pseudo-codes
are given in Algorithms 3–6. FSM in Fig. 4 is used by
all of the nodes except the sink node which employs the
FSM shown in Fig. 5. The LEADER, CANDIDATE_WT_ACK
and MEMBER states of MCUBA are similar to those states
of MASC with small modifications. Initially all the nodes
except the sink node executing MCUBA are in a LEADER
state. After an LDR_T OUT occurs at a node, it sends a
REQUEST message to its candidate and makes a state transition
to the CANDIDATE_WT_ACK state. If the destination node’s
candidate is the originator node, then the destination node sends
a REQUEST_ACK message to the originator node. After the
originator node receives the REQUEST_ACK message, it can
make a state transition to either a LEADER, LEADER_END,
MEMBER or MEMBER_END state. The basic message flow
and leader election procedure of MCUBA is similar to that of
MASC.

To control the cluster levels, a parameter named upper_level
is introduced. Before the execution of the algorithm, each node’s
upper_level parameter is set to the same value. If a leader node’s
cluster level reaches the upper_level, it makes a state transition
to the LEADER_END state. A node in the LEADER_END state
drops all of the clustering requests. The same procedure is
applied to the member nodes. A node in the MEMBER_END
state drops all clustering requests without forwarding them to its

leader. This approach provides balanced clusters and eliminates
unnecessary forwarding of the REQUEST and DROP messages.

When a node receives a REQUEST message from one of
its neighbors other than its candidate, it stores this request.
After a leader node completes its clustering session, it searches
for a new candidate unless it reaches the upper_level. The
leader node’s new candidate might be the source of the previous
REQUEST message. In this case, the leader node replies with a
REQUEST_ACK message. This approach is different from that
of MASC. In MASC, a node in the MATCHED_LEADER state
drops all requests.

The backbone formation of the MCUBA is similar to the
clustering operation. The main idea behind the backbone
formation is combining all of the clusters as a super cluster.
The backbone formation is managed by the sink node. The
FSM of the sink node is shown in Fig. 5. Initially, sink
node participates in the clustering operation similar to the
other ordinary nodes. Different from other nodes, the sink
node is always the leader in clustering sessions. After the
cluster of the sink node reaches the upper_level, it starts
backbone formation. In each backbone formation session, the
sink node selects the locally heaviest edge outgoing from
its cluster. When the cluster level of sink node reaches the
upper_level, the sink node makes a state transition from a
CANDIDATE_WT_ACK state to SINK_WT_FOR_BACKBONE
state by sending a BACKBONE_REQUEST message along
the outgoing edge with the heaviest weight. This message
is forwarded to the leader of the destination cluster. If this
cluster’s level has already reached the upper_level, the leader
of this cluster replies with a BACKBONE_REQUEST_ACK.
Otherwise, BACKBONE_REQUEST is stored in this cluster
head until the cluster level reaches upper_level. If the cluster
head changes, the old cluster head forwards the stored
BACKBONE_REQUEST message to the new leader. When the
sink node receives a BACKBONE_REQUEST_ACK, it merges
the source cluster and its own cluster, and then continues the
same operation described below until all the clusters are merged.

5.3. Reducing energy consumption

Overhearing occurs when a node receives a packet that
is not destined to itself [23]. Although overhearing causes
energy consumption, it may be useful to gather neighborhood
information, reliable routing and distributed query processing.
To maintain reliable message transmission, ACK messages
are sent for each successful message transfer. The overhearing
technique is applied to reduce the number of ACK messages to
decrease the energy consumption. In Fig. 6, a sensor network
with three nodes is shown. In the left side of Fig. 6, nodeA sends
a message to node C without using overhearing. In the first step,
node A sends its message to node B. Node B sends the ACK

message to node A after it successfully receives the message of
node A. In the third step, node B routes the message of node A
to node C and node C sends the ACK message to node A as
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FIGURE 4. MCUBA’s FSM for nodej .

FIGURE 5. MCUBA’s FSM for sink.
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FIGURE 6. Overhearing technique.

the last step. If we use overhearing technique, the total number
of steps reduces to three, since the routed message by node B
is also used as an ACK message.

5.4. An example operation

An example operation of the MCUBA with upper_level = 4
on a network with 20 nodes is shown in Fig. 7. Each node’s id
and the weights of the edges connecting the nodes are given.
Node 0 is the sink node executing the algorithm in Fig. 5; other

FIGURE 7. An example operation of MCUBA.

nodes are the ordinary nodes executing the algorithm in Fig. 4.
Initially all ordinary nodes are in a LEADER state; the sink
node is in a SINK state. Node 0’s candidate is node 16, since the
heaviest edge outgoing from node 0 is the edge that connects
node 0 to node 16. Node 0 sends a REQUEST message to node
16. Node 16’s candidate is node 0, and hence node 16 replies
with a REQUEST_ACK message to node 0 and they construct
a new cluster of level 2. Since node 0 is the sink node, it is
chosen as the leader of this cluster. Concurrently, node 5 and
node 19 perform a clustering operation similar to this operation.
The second largest RSS value of node 5 is 8 and that of node
19 is 5 as shown in Fig. 7; thus node 5 is chosen as the leader.
Node 9 and node 2, node 1 and node 14, node 6 and node 18,
node 11 and node 4, node 12 and node 8, node 13 and node 7
make clustering operations similar to the operations explained
above.

Node 17 had sent a REQUEST message to node 2 while
node 2 was making a clustering operation with node 9. Since
node 2’s candidate was not node 17, node 2 did not send a
REQUEST message but it recorded the REQUEST of node 17.
After node 2 completes its clustering session with node 9, it
sends a REQUEST_ACK message to node 17 since node 17
becomes the new candidate of node 2. The new cluster is formed
as: {17, 2, 9}, and the new leader of this cluster is node 17. The
other clusters of level 3 are constructed as follows: {3, 8, 12} and
{11, 4, 15}. Concurrently, node 1 sends a REQUEST message
to node 6. The candidate of node 6 is node 1, and hence node
6 sends a REQUEST_ACK message to node 1 and cluster D is
formed as follows: {1, 14, 6, 18} as shown in Fig. 7. The leader
of this cluster, node 1, makes a transition to the LEADER_END
state since its cluster level reaches the upper_level. The nodes
in the LEADER_END state reject all clustering requests. Node
0 merges its cluster with node 5’s cluster and clusterA is formed
as follows: {0, 5, 19, 16} as shown in Fig. 7. The cluster level
of node 0 exceeds the upper_level, node 0 makes a transition to
the SINK_WT_FOR_BACKBONE state, and starts a backbone
formation operation. Node 0 sends a BACKBONE_REQUEST
message to node 12, since node 12 is connected to node 0’s
cluster on the heaviest edge as seen in Fig. 7. After node
12 receives the BACKBONE_REQUEST message, it forwards
the message to its leader, node 3, since node 12 is a cluster
member. Node 3 records the received BACKBONE_REQUEST
message and do not respond since its clustering operation is
not finished.

Node 17 receives DROP messages from all its candidates
since the levels of cluster A and cluster D reaches upper_level
and their leaders reject all clustering requests. Because of this
situation, node 17 makes a transition to the LEADER_END state.
The cluster B is formed as follows: {17, 12, 9}.At the same time,
the clusters of node 3 and node 7, and the clusters of node 11
and node 10 are merged. The cluster C is formed as follows: {3,
12, 8, 13, 7}, and the cluster D is produced as follows:{3, 12,
8, 13, 7} shown in Fig. 7. Selected edges for communication
during the clustering sessions are shown as bold in Fig. 7.
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FIGURE 8. An example backbone formation of MCUBA.

The leader of cluster C, node 3, sends a
BACKBONE_REQUEST_ACK message in reply to the
recorded BACKBONE_REQUEST after the level of clus-
ter C reaches upper_level. After node 0 receives the
BACKBONE_REQUEST_ACK message of node 3, clus-
ter C is merged with the backbone. Node 0 sends a
BACKBONE_REQUEST message to node 11 along the
heaviest edge that connects the backbone to other clusters.
Node 11 is in the LEADER_END state and replies with a
BACKBONE_REQUEST_ACK message after it receives the
BACKBONE_REQUEST message from node 0. When node
0 receives the BACKBONE_REQUEST_ACK from node 11,
cluster E is merged with the backbone. Similarly cluster B and
cluster D are merged into the backbone. The iterations of the
backbone formation is depicted in Fig. 8. The bold lines in
Fig. 8 are the selected edges between clusters for the backbone
formation. All the selected edges of backbone are shown with
the dashed lines in Fig. 7.

6. ANALYSIS

6.1. Proof of correctness

Observation 1. In MASC and the MCUBA, in a clustering
session, source node sends a REQUEST message, destination
node either replies with a DROP or REQUEST_ACK message.

Observation 2. In MASC, the nodes in the MEMBER states
are the cluster members, the nodes in the MATCHED_LEADER
state are the cluster heads. In the MCUBA, the nodes in the
MEMBER and MEMBER_END state are the cluster members,
the nodes in the LEADER_END state are the cluster heads and
the node in the SINK_END state is the sink node.

Observation 3. In a backbone formation session of
MCUBA, the source node sends a BACKBONE_REQUEST
message, and the destination node replies with a
BACKBONE_REQUEST_ACK message.

Lemma 6.1. In MASC and the MCUBA, if a node sends a
REQUEST message to its candidate, then it receives a DROP
or REQUEST_ACK message from its candidate.

Proof. We first prove the MASC by cases. The cases explained
below are also shown in Fig. 2.

Case 1: The candidate is in either a LEADER
or CANDIDATE_WT_ACK state. It sends a
REQUEST_ACK message.
Case 2: The candidate is in a MATCHED_LEADER
state. It sends a DROP message.
Case 3: The candidate is in a MEMBER state. It forwards
the message to its leader. Due to Observation 2, the
leader cannot be in the MEMBER state. Thus we jump
to the Case 1 or Case 2.

Lemma 6.2. In MASC, no state transitions are possible
for a node in the MEMBER state and no state transitions
before the end of the round is possible for a node in the
MATCHED_LEADER state. In MCUBA, no state transitions
are possible for a node in a MEMBER, MEMBER_END,
LEADER_END or SINK_END state.

Proof. In MASC, a node makes a state transition from
a MATCHED_LEADER state to LEADER state when
END_OF_ROUND occurs. No other state transitions are possi-
ble for MASC and MCUBA as seen in FSMs in Figs. 2,4 and 5,
with the pseudo-codes in Algorithms 1–6.

Lemma 6.3. In MCUBA, if a source node sends a
BACKBONE_REQUEST message, it will be replied with a
BACKBONE_REQUEST_ACK message.

Proof. The destination is either a cluster head, member or a
node that continues clustering operation. We prove the lemma
by the following cases.

Case 1: The node is in the LEADER_END
state. In this state, the node replies with a
BACKBONE_REQUEST_ACK message.
Case 2: The node is in the MEMBER or MEMBER_END
state. The node forwards the BACKBONE_REQUEST
message to its leader.
Case 3: The node is in the LEADER or
CANDIDATE_WT_ACK state. It records the
BACKBONE_REQUEST message. If the node
makes a state transition to the MEMBER or
MEMBER_END state, it forwards the previously
recorded BACKBONE_REQUEST_ACK mes-
sage to its leader. Else if the node makes a state
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transition to the LEADER_END state, it sends a
BACKBONE_REQUEST_ACK message.
Case 4: The node is in the SINK, SINK_END or
SINK_WT_FOR_BACKBONE state. If a node is in
one of these states, it is not possible to receive
BACKBONE_REQUEST_ACK since there is only one
sink node. As seen in FSMs in Figs. 4 and 5, with
the pseudo-codes in Algorithms 3–6, this case is not
possible.

Theorem 6.1. After the execution of MASC, each node is a
cluster head or a member node belonging to a cluster.

Proof. We prove by contradiction. If the theorem is valid, then
according to Observation 2 the node is in the MEMBER or
MATCHED_LEADER state. We assume to the contrary that a
node is in the CANDIDATE_WT_ACK or LEADER state after
the execution of the algorithm. We investigate each of the
following cases:

Case 1: The node is in the LEADER state. It must
not receive any REQUEST message from its candidate
or send any REQUEST messages to its candidate;
because if one of these events occurs, the node
makes a state transition. If the nodes does not receive
any REQUEST message, a LEADER_TOUT occurs, it
makes a state transition to a CANDIDATE_WT_ACK
state and sends a REQUEST message to its candidate.
According to Lemma 6.1, if it receives a REQUEST
message from its candidate it sends a REQUEST_ACK
message and makes a state transition to the MEMBER or
MATCHED_LEADER state. If the node does not have
any candidate, a LEADER_TOUT occurs and it makes
a state transition to the MATCHED_LEADER state.
Case 2: The node is in a CANDIDATE_WT_ACK
state. The node must not receive any message from
its candidate; because if it receives REQUEST or
REQUEST_ACK from its candidate, it makes a state
transition to the MATCHED_LEADER or MEMBER
state. If the node receives a DROP message, it makes
a state transition to the MATCHED_LEADER state or
sends a REQUEST message to its candidate. According
to Lemma 6.1, if a node sends a REQUEST message to
its candidate, it receives a REQUEST_ACK or DROP
message.

All nodes make a state transition to the MEMBER or
MATCHED_LEADER state. Lemma 6.2 shows that state
transitions from the MEMBER or MATCHED_LEADER
state in a round are not possible. We contradict with our
assumption.

Theorem 6.2. After the execution of the MCUBA, a node is
the sink node, a cluster head or a member node belonging to a
cluster.

Proof. The proof is the same as in Theorem 6.1. We
assume the contrary. Thus the node is either in the
LEADER, CANDIDATE_WT_ACK, SINK or SINK_WT_
FOR_BACKBONE state. Each case is investigated below:

Case 1: The node is in the LEADER state. The node
must not receive any message from its candidate or send
any message to its candidate. If the node receives any
message from its candidate, it makes a state transition
to the MEMBER, MEMBER_END or LEADER_END
state. If the node sends a REQUEST message to its
candidate, it makes a state transition to the LEADER
state. If the node has no candidate, it makes a state
transition to the LEADER_END state.
Case 2: The node is in the SINK state. The
possibilities are the same as in case (1). The node
makes a state transition to the CANDIDATE_WT_ACK,
SINK_WT_FOR_BACKBONE or SINK _END state.
Case 3: The node is in the CANDIDATE_WT_ACK state.
The node must not receive any message. By Lemma 6.1,
node receives a DROP or REQUEST_ACK message.
Case 4: The node is in the SINK_WT_
FOR_BACKBONE state. The node must not receive
a BACKBONE_REQUEST_ACK message for each
BACKBONE_REQUEST message; but by Lemma 6.3,
each BACKBONE_REQUEST message is given a reply.

In all cases, each node makes a state transition to the
MEMBER, MEMBER_END, LEADER_END or SINK_END
state. By Lemma 6.2, state transitions from these states are not
possible. We contradict with our assumption.

Corollary 6.1. MCUBA and MASC are free from deadlock
and starvation.

Proof. We assume the contrary. We assume that MCUBA
and MASC are not free from deadlock and starvation. By
Observation 1, in a clustering session of MCUBA and
MASC, the source node sends a REQUEST message, and
the destination node replies with a DROP or REQUEST_ACK
message. There must be a problem in this message flow.
Nevertheless, it is proved in Lemma 6.1, Lemma 6.2 and
Theorem 6.1, that all message flows related to clustering are
successful. By Observation 3, in a backbone formation session
of MCUBA, each received BACKBONE_REQUEST is replied
by a BACKBONE_REQUEST_ACK message. If there is a
deadlock or starvation, then there must be a problem in this flow.
Nevertheless, it is proved in Lemma 6.3 and Theorem 6.2 that
all message flows related to backbone formation are successful.
We contradict with our assumption.

6.2. Clustering quality

Theorem 6.3. The upper bound of the cluster level for MASC
with r rounds is 2r .

Proof. The proof is by induction.

The Computer Journal, Vol. 53 No. 10, 2010

 at Izm
ir Y

uksek T
eknoloji E

nstitusu on D
ecem

ber 12, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


Matching-Based Clustering Algorithms for Sensor Networks 1563

Base step: If r = 1, then the algorithm runs same with
Hoepman’s distributed matching. Thus the upper bound is 2.

Induction step: We assume that after the rth round ends, the
upper bound is 2r . At each round, only one clustering operation
is permitted to a cluster head. Because of this, at the (r + 1)th
round, the upper bound is 2r+2r=2r+1.

Theorem 6.4. The upper bound of the cluster level for the
MCUBA with s = upper_level is 2(s−1).

Proof. The leader node continues the clustering operation until
it reaches s, so that the upper bound of the cluster level occurs
when two clusters of s−1 levels combine.

6.3. Selected edge weights

In this section we analyse the lower bounds of the total selected
edges for clustering and backbone formation operations in
MASC and the MCUBA.The list of variables used in this section
is given below:

(i) W : The total selected edge weight for the clustering
operation by using perfect weighted matching.

(ii) B: The total selected edge weight for the backbone for-
mation operation by using perfect weighted matching.

(iii) A: The total selected edge weight by MASC with r

rounds.
(iv) S: The total selected edge weight for the clustering

operation by the MCUBA with upper_level = 2r and
s = upper_level.

(v) C: The total selected edge weight for the backbone for-
mation operation by the MCUBA with upper_level =
2r and s = upper_level.

Theorem 6.5. The lower bound of A is

A ≥ W

r∑
i=1

(1/2)i .

Proof. We prove by induction.
Base step: If r = 1, then the algorithm turns to Hoepman’s

distributed matching. Thus A ≥ W(1/2) is true.
Induction step: For r = n, we assume that, A ≥

W
∑r

i=1(1/2)i holds. For r = n + 1, selected edge weights
will be 1/2 of the remaining at the worst case as follows:

A ≥ W

n∑
i=1

(1/2)i +
(

W − W

n∑
i=1

(1/2)i

)
(1/2)

A ≥ W

n∑
i=1

(1/2)i + W(1 − (1 − (1/2)n))(1/2)

A ≥ W

n∑
i=1

(1/2)i + W(1/2)n+1

A ≥ W

n+1∑
i=1

(1/2)i .

Theorem 6.6. The value S + C lies in between as follows:

W

s∑
i=1

(1/2)i ≤ S + C ≤ W + B.

Proof. We prove by induction.
Base step: For r = 1, s = 2. The upper bound of the cluster

level produced by the MCUBA with s = 2 is 2s − 2 from
Theorem 6.4. In this case, MASC and the MCUBA create same
clusters. From Theorem 6.5, the selected edge weights are as
follows:

W(1/2) ≤ (S = A) ≤ W + B

For 0 ≤ C ≤ B, we have

W(1/2) ≤ (S = A) ≤ S + C ≤ W + B

W(1/2) ≤ S + C ≤ W + B.

Induction step: We assume that, for r = 2n, the theorem
is true. When r = 2n+1, upper_level of the MCUBA is
2(2n+1) − 2 = 2n+2 − 2. In this case, the selected edge weights
for clustering are as follows:

S = W

2n+2−2∑
i=1

(1/2)i,

W

n+1∑
i=1

(1/2)i ≤ W

2n+2−2∑
i=1

(1/2)i + C ≤ W + B.

For n ≥ 0, we have

W

n+1∑
i=1

(1/2)i ≤ W

2n+2−1∑
i=1

(1/2)i,

then

W

n∑
i=1

(1/2)i ≤ S + C ≤ W + B.

6.4. Message and time complexities

Theorem 6.7. The message complexity of MASC with r

rounds is O(�2r ) per node. The lower bound for message
complexity is �(r) per node.

Proof. In the worst case, the leader of the cluster of the 2r−1

level is rejected by all neighbors of all nodes belonging to the
same cluster. This case is depicted in Fig. 9. The total message
transfer in this case is

2(� − 1) + · · · + 2(2r−1(� − 1) + (� − 1))

2r−1

= 2(� − 1)(1 + 2 + · · · + (2r−1 + 1))

2r−1

= (� − 1)(2r−1 + 1)(2r−2 + 1)

2r−1

=
(

�2r

4
+ � + �

2
+ 2�

2r
− 2r−2 − 3

2
− 2

2r

)
∈ O(�2r ).
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The lower bound occurs when each node only sends one
REQUEST message and receives a REPLY message. In this case
only 2r message exchanges are done. Thus, the lower bound for
the message complexity is �(r).

Theorem 6.8. The time complexity of the MASC with r

rounds is O(�2r r).

Proof. The worst case for time complexity is the same as the
worst case for the message complexity as seen in Fig. 9. Thus
the time complexity of a round is O(r�). The time complexity
for r rounds is O(�2r r).

Theorem 6.9. The message complexity of MCUBA with s =
upper_level has a lower bound of �(2) per node and has an
upper bound of O(�s).

Proof. The worst case is same with MASC as shown in Fig. 9.
However, the cluster level depends on s. In addition, each node
may send an n/s backbone formation message. The calculations
for the worst case are given below:

2(� − 1) + · · · + 2(2s − 2(� − 1) + (� − 1))

2s − 2
+ n

sn

= 2(� − 1)(1 + 2 + · · · + 2s − 1)

2s − 2
+ 1

s

= (� − 1)(2s − 1)(2s)

(2s − 2)
+ 1

s

=
(

�2s2 − �2s − 4s2 + 2s

2s − 2
+ 1

s

)
∈ O(�s).

The best case occurs in the complete graph Kn in Fig. 10.
Here the n nodes exchange a REQUEST and a REPLY message.
After that the, n/2 nodes exchange a REQUEST and a REPLY

FIGURE 9. Topology for worst case message complexity of MASC.

FIGURE 10. Topology for best case message complexity of MCUBA.

message. The operation is as follows. The equation is given by

n(1 + 1/2 + 1/4 + · · · )
n

≤ 2.

Theorem 6.10. The time complexity of the MCUBA has a
lower bound of �(log(n)) and an upper bound of O(n).

Proof. We consider clustering and backbone formation
together. The best case occurs when clusters of level 1 are
connected to form clusters of level 2, clusters of level 2 are
connected to form clusters of level 4, and the operation continues
similarly. Figure 10 shows the sample network for the lower
bound. We need �(log(n)) time for the best case. The worst
case occurs when a cluster starts from a single node and ends
with level n. In this case, n − 1 iterations are done, so that the
worst case time complexity is O(n). Figure 11 shows the worst
case iterations.

6.5. Reductions in energy consumption

Theorem 6.11. Assume that the nodes are distributed
uniformly and randomly. Also assume that the total energy
consumption of the nodes are mainly caused by message
transmissions (energy consumptions other than radio are
negligible). Overhearing reduces at least 40% of the energy
consumed at an average clustering session of the MCUBA with
upper_level ≥ 8.

Proof. Let s be the upper_level. Since the cluster level varies
between 1 and 2s−2 with the same probability, the average value
of the cluster level is s. In this case, the average value of the
cluster diameter is s/2. Figure 12 shows the average clustering
session between two clusters. Let a CONTROL_ACK message
be a low-level acknowledgement for reliable transmission.
Without overhearing, for each message transmission of the
MCUBA, a CONTROL_ACK message should be sent so that
the total message transfers for an average clustering session

FIGURE 11. Topology for worst case time complexity of MCUBA.
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FIGURE 12. An average clustering session.

without overhearing is (N ):

N = (REQUEST messages + REPLY messages

+ CONTROL_ACK messages)

= ((s/2 + 1) + (s/2 + 1) + (s + 2))

= 2s + 4.

By using overhearing, there is no need for CONTROL_ACK
messages except the two last messages which are not routed,
such that the total number of messages with the overhearing
technique is given by

T = ((s/2 + 1) + (s/2 + 1) + 2)

= s + 4,

and
N − T

�
= s

2s + 4
.

For s ≥ 8, we have

s

2s + 4
100 ≥ 40%.

7. PERFORMANCE EVALUATION

We firstly implemented Hoepman’s distributed matching in ns2
simulator version 2.31 to test its performance. To calculate the
approximation ratio of Hoepman’s algorithm, we implemented
Gabow’s maximum weighted algorithm [33]. After this, the
proposed MASC and MCUBA algorithms were implemented
in ns2 simulator. Besides, we implemented a modified version
of MASC (MOD-MASC), which uses the node id in matching
instead of edge weights. MOD-MASC chooses the neighbor
with the smallest id for clustering. MOD-MASC has the
same time and message complexities as MASC, however, its
approximation ratio may vary significantly due to its random
operation. To compare our algorithms with the existing graph-
theoretic approaches, we implemented the DSTA and a DS-
based algorithm. The DSTA constructs clusters and ensures
a spanning tree formation rooted at the sink as described in

Section 3.1. We set the depth parameter of the DSTA to 3 in
our experiments. The DS is a CDS-based clustering algorithm,
an algorithm similar to Wu’s algorithm. Initially all nodes are
white in the DS algorithm. The DS has two rules to find the the
CDS:

(1) If the node has two unconnected neighbors, it marks
itself as black.

(2) If the node’s neighbors with greater id cover all
neighbors of the node, the node marks itself as white.

We generated randomly connected networks with 100 to 400
nodes that are uniformly distributed. IEEE 802.11 radio and
MAC standards readily available in the ns2 simulator were
chosen for lower layer protocols. Two way ground was used as
the propagation model. The transmission power is 0.660 mW,
the received power is 0.395 mW and the communication range
of a sensor node is 250 m. We measured the performance of
the algorithms for average node degrees varying between 4, 5
and 6. To vary degrees, different size of flat surface areas were
chosen as shown in Table 1.

7.1. Tests for Hoepman’s algorithm

The approximation ratios of Hoepman’s algorithm were
measured against the varying number of nodes and node
degrees. To find the approximation ratio, we derived a weighted
graph, Gw = (V , Ew), in which V is the set of nodes in
the simulation area and E is the set edges with RSS values
connecting nodes. Gabow’s algorithm is not distributed, it inputs
Gw and outputs the maximum weighted matching set EM. Let
EH be the matching found by Hoepman’s algorithm, TH be the
total edge weights in EH and TM be the total edge weights in
EM; then the approximation ratio of the Hoepman’s algorithm
is TH/TM. Table 2 shows the approximation ratios of Hoepman’s
algorithm. The measured approximation ratio values are greater
than 0.99 and are independent from node number and node
degree variations. Although the worst case approximation ratio
of the algorithm is 0.5 theoretically, for networks of randomly
and uniformly dispersed sensor nodes, the approximation ratio
is close to the maximum value of 1.

Secondly, we measured the total number of messages and
wallclock time values of the Hoepman’s algorithm. Figure 13
shows the number of messages used in Hoepman’s algorithm.

TABLE 1. Size of surface areas (X × Y (m)).

Degree
Node
number 4 5 6

100 2700 × 1200 2520 × 1200 2340 × 1040
200 5100 × 1200 4760 × 1120 4420 × 1040
300 7800 × 1200 7280 × 1120 6760 × 1040
400 10200 × 1200 9520 × 1120 8840 × 1040
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TABLE 2. Approximation ratios of Hoepman’s algorithm.

Degree
Node
number 4 5 6

100 0.9986 0.9982 0.9977
200 0.9986 0.9983 0.9983
300 0.9992 0.9987 0.9984
400 0.9991 0.9988 0.9986

FIGURE 13. Number of messages used in Hoepman’s algorithm.

FIGURE 14. Wallclock time values of Hoepman’s algorithm.

The number of messages increase linearly against the number
of nodes, and increase slightly against the node degree. A node,
on the average, sends four messages for distributed matching
including the acknowledgment messages for reliable message
transfer. The wallclock time values of the algorithm varies
between 2 s to 3 s as seen in Fig. 14 and as with the total
number of message measurements, wallclock time values are
stable against the node number and average node degree. We can
conclude from our measurements that Hoepman’s algorithm has
very high approximation ratios and it is scalable with regard to
message and wallclock time measurements. Thus, Hoepman’s
algorithm is very suitable as the basis of our iterative clustering
algorithms for sensor networks.

7.2. Selected edge weights

Selection of stronger links for clustering and backbone
formation is an important criterion for our algorithms. We
measured the total selected edge weights of MASC and the
MCUBA. The edge weights were represented with the RSS
values defined in IEEE 802.11 [19]. The weight of selected
edges in the rth round are heavier than the (r+1)th round, and so
the slope of the function must be decreasing. As seen in Fig. 15,
as the number of rounds and number of nodes increase, the
selected total edge weight by MASC increases. As the number
of rounds increases, the slope of the function decreases as shown
in Fig. 15. We measured the total selected edge weights by the
MCUBA with upper_level = 10. As the average node degree
increases, although the percentage of strong links to weak links
remains same, the total number of strong links increases. Since
the MCUBA chooses strong links instead of randomly choosing,
the total selected edge weight increases as the number of nodes
and average node degree increases as shown in Fig. 16.

We compared the total selected edge weights of the
algorithms as seen in Fig. 17. We can classify the algorithms
as follows: Weighted matching-based algorithms (MCUBA
and MASC), matching-based algorithms (MOD-MASC),
dominating set-based algorithms (DS) and spanning tree-
based algorithms (DSTA). We implemented the MCUBA with
upper_level = 10, MASC and MOD-MASC with 4 rounds;
the cluster levels produced by the algorithms in this case are
approximately equal. As seen in Fig. 17, weighted matching-
based and matching-based algorithms select stronger links than

FIGURE 15. Total selected edge weights by MASC.

FIGURE 16. Total selected edge weights by MCUBA.
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FIGURE 17. Total selected edge weights by algorithms.

the DS-based and spanning tree-based approaches. It can be
stated from here that the graph matching technique has a better
performance than the existing graph-theoretic approaches with
regard to link selection. Weighted matching-based algorithms
target to maximize the edge weights, on the other hand id-based
matching algorithms randomly choose the edges. Owing to this
fact, as seen in Fig. 17, the total selected RSS values of the
MCUBA and MASC are higher than the MOD-MASC. The
MCUBA constructs clusters and forms the backbone, whereas
MASC only produces clusters. Because of this, the total edge
weights selected by MCUBA for communication is higher than
those selected by the MASC as seen in Fig. 17. On the average,
if the total edge weights selected by the DSTA is W then the
edge weights selected by the DS is 2.3W , MOD-MASC is 3.7W ,
MASC is 4.6W and the MCUBA is 7W .

7.3. Clustering quality

To evaluate the quality of the produced clusters, we used two
metrics: the number of clusters and the node count in clusters.
The node count in a cluster is called the level of the cluster.
The number of clusters must be controllable in a preferable
clustering algorithm. In MASC, for each round, low-level
clusters merge to form higher-level clusters such that the number
of clusters decrease as the number of rounds increase. As seen
in Fig. 18, the number of clusters are approximately equal to
half of the number of nodes in the first round and cluster number
decreases as the number of rounds increases. In the MCUBA,

FIGURE 18. Number of clusters produced by MASC.

the cluster levels can be adjusted by the upper_level parameter,
so that the number of clusters is controllable. The number of
clusters produced by the MCUBA with upper_level = 10 is
measured against the number of nodes and the average node
degree as shown in Fig. 19. The number of clusters produced by
the MCUBA is stable and controllable as seen in this figure. We
also vary the upper_level of the MCUBA between 5, 7, 10 and
20 to measure the effect of the upper_level parameter as shown
in Fig. 20. The number of produced clusters by the MCUBA
are 19, 16, 10 and 6, respectively. From these measurements,
we can state that the MCUBA’s upper_level parameter controls
the number of clusters efficiently as expected.

A comparison of the number of clusters produced by
algorithms is seen in Fig. 21. The DS is restricted by the
CDS construction and thus number of clusters may not be

FIGURE 19. Number of clusters produced by MCUBA.

FIGURE 20. Clusters produced by MCUBA against upper_level.

FIGURE 21. Number of clusters produced by algorithms.
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controllable. On the other hand, the cluster levels are adjustable
in the DSTA with the depth parameter. Among all of the
implemented algorithms, the DS has the worst performance as
shown in Fig. 21 because the number of clusters is more than
half of the nodes. The DSTA with depth = 3 performs well
since the number of clusters increases linearly with a small
slope as the number of nodes increases. The MCUBA with
upper_level = 10 produces 46 clusters, MASC with four rounds
produces 65 clusters, the DSTA produces 102 clusters, and
the DS produces 247 clusters for the sensor network with 400
nodes having an average degree of 4. The MCUBA and MASC
perform very well since the number of clusters is stable against
the number of nodes. They achieve the merging clustering
operations to construct clusters with higher level, and thus the
number of clusters are controllable.

The second criterion of the clustering performance is
the balancing of the clusters. Our balance metric is the
coefficient of variation (CV), which is computed as the standard
deviation/mean. If the CV < 1; then the distribution is
considered to be of low variance, else it is of high variance.
We measure the CV values of the MCUBA against the node
degree and the upper_level parameter. The CV values of the
MCUBA with upper_level = 10 are stable against node degree
and number of nodes as seen in Fig. 22. The average value of the
CV measurements of MCUBA with upper_level = 10 is 0.43.
We fix the average node degree to 4 and vary the upper_level of
the MCUBA between 5, 7, 10 and 20 to measure the CV. The

FIGURE 22. CV of clusters produced by MCUBA.

FIGURE 23. CV of clusters produced by MCUBA against
upper_level.

FIGURE 24. CV of clusters produced by algorithms.

measured CV values are stable and vary between 0.40 and 0.25
as seen in Fig. 23. The comparison of the CV values measured by
MASC with four rounds, the MCUBA with upper_level = 10
and the DSTA with depth = 3 is seen in Fig. 24. Since the
number of clusters produced by the DS is not controllable, we
do not include the DS in this comparison. The average CV values
of MASC, the MCUBA and the DSTA are 0.44, 0.45 and 1.29,
respectively.

7.4. Energy consumptions

Energy efficiency is an important objective for the WSN.
We measured the energy consumption of the algorithms for
clustering and backbone formation. It is assumed that the energy
consumptions occur mostly by message transfers. The energy
consumption of MASC increases linearly against the number
of rounds and the number of nodes as shown in Fig. 25. In
addition, as shown in Fig. 26, the energy consumed by the
MCUBA with upper_level = 10 increases linearly with the
node degree and the number of nodes. We compared the energy
consumption of all approaches as seen in Fig. 27. In the DS and
the DSTA, nodes exchange less number of messages than those
in MASC and MOD-MASC; thus the energy consumptions
of MASC and MOD-MASC are higher. The main reason of
this energy consumption is the operation of merging low-level
clusters to construct high-level clusters. To decrease this energy
consumption, an overhearing technique was applied in the
MCUBA. The effect of the overhearing technique applied in

FIGURE 25. Energy consumption of MASC.
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FIGURE 26. Energy consumption of MCUBA.

FIGURE 27. Energy consumptions of algorithms.

the MCUBA to reduce the energy consumption can be seen
in Fig. 27. The energy consumption of the DS, the DSTA and
the MCUBA is similar. On the average, the DSTA consumes
0.90J, the MCUBA 1.16J, the DS 1.32J, MOD-MASC 3.28J
and MASC 3.53J per node.

7.5. Wallclock Times

We measured the wallclock times of the MCUBA with
upper_level = 10, MASC with four rounds, the DSTA with
depth = 3 and the DS. As seen in Fig. 14, at the worst case, the
time for the distributed matching is 3 s approximately. In our
measurements, the time for a round of MASC is 5 s in the worst
case; thus we set the round of MASC to 5 s. Although the nodes
are idle when they finish the execution of the MASC in a round
before 5 s, they must wait until the end of the round. Since nodes
execute asynchronously in the MCUBA, there is no waiting
time for all nodes. The wallclock of MASC with four rounds
is constant and equals 20 s. In the DSTA, a node forwards each
received message to all neighbors. In the DS, the nodes decide
their states by learning the states of their neighbors. In this type
of algorithms, collisions may frequently occur since each node
may exchange messages with its neighbors in the same time
intervals. To prevent these collisions, IEEE 802.11 MAC uses
an exponential back-off timer so that the execution time of the
algorithms increases. As seen in Fig. 28, the MCUBA performs
the best among the other approaches, the DSTA also performs
well, whereas MASC performs the worst due to waiting times.

FIGURE 28. Wallclock time of algorithms.

8. DISCUSSIONS

In this section, we discuss the applicability and the extensions
of our proposed algorithms. The MCUBA and MASC are
based on selecting strong communication links as described
in the previous sections. We use the RSS values available as
implemented in IEEE 802.11 standards on ns2 as the link quality
metric. Quality metrics other than the RSS may be used. Lal
shows that in a stationary sensor network, it is possible to obtain
a good estimate of the true cost metric based on only a few
measurements [15]. Lal also states that the energy consumed
on a link has a strong relationship with the state of the wireless
channel between two communicating nodes. Therefore one of
the design parameters for the energy-efficient multi-hop routing
is the link selection. We define a sensor network application to
run on the MCUBA, DS and DSTA, where each node senses
events and sends these messages to the sink node. This is a
typical requirement for the habitat monitoring application. The
definitions for this application and the network parameters are
given below:

(i) n: number of nodes;
(ii) �: average node degree;

(iii) T : the total time for the application;
(iv) p: period time for the clustering algorithms;
(v) E: average energy dissipated in a message transfer;

(vi) V : the total number of events sensed by the nodes;
(vii) s: the MCUBA’s upper_level parameter.

We assume that an event is routed from the event catcher
node to the sink node in log(n) hops on the average. Generally,
in sensor network applications, nodes may malfunction due to
various reasons. Therefore to provide fault tolerance, clustering
algorithms run periodically. The message complexity of the
MCUBA is O(�s), that of the DS and DSTA is O(�). From
our simulations, we found the average link quality of the DSTA
as to be W , DS to be 2.3W , MCUBA to be 7W as shown in
Section 7.2. Let α, β and γ be the number of retransmissions
for a successful packet transmission needed by the DSTA,
DS and MCUBA. From Lal’s study [15], we may state that
α < β < γ with regard to average link qualities. The total
energy consumption of the sensor network includes energy
consumptions of the clustering algorithm and the application
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with the retransmissions. The total energy consumptions of the
MCUBA (M), DS (D) and DSTA (T ) are given by

M = ((n�s)�T/p� + log(n)V )αE, (1)

D = ((n�)�T/p� + log(n)V )βE, (2)

T = ((n�)�T/p� + log(n)V )γE. (3)

It is obvious from Equations (2) and (3) that D is smaller than
T . We now compare M and D. From Equations (2) and (1),
D − M is given by

D − M = ((n�)�T/p(β − sα)� + log(n)V (β − α))E. (4)

From Equation 4, as the number of events increases, the
MCUBA consumes less energy than the DS. For β > sα, the
MCUBA consumes less energy than the DS for varied number
of nodes, average node degrees and application lifetimes. The
application designer should consider these parameters before
the selection of the clustering algorithm.

The MCUBA and MASC may run on various underlying
sensor network protocols. Both algorithms only require send,
receive primitives and the link quality indicator. The send and
receive primitives are important services required from MAC
and the physical layer [18, 19, 23–25]. IEEE 802.15.4 provides
the link quality indicator (LQI) which can be calculated by
the combination of the signal-to-noise ratio and the detected
energy. In S-MAC and the TRAMA, probe packets and the
overhearing method are used to obtain link quality [44]. B-
MAC [25], M-MAC [24] and the WMEWMA [45] are the other
underlying protocols for the multi-hop routing network layers
which provide link quality estimation.

The MCUBA is the enhanced version of MASC. The
total selected edge weights, cluster quality, time and message
complexity of the MCUBA are shown to be better than MASC.
Also the simulation results show that the MCUBA performs
better than MASC. In some clustering approaches, the backbone
formation algorithm is located on top of the clustering algorithm
[46], where the clusters are constructed first and then the
cluster heads form the backbone. MASC can be used in this
manner as the underlying protocol of a backbone formation
algorithm. For example, a ring backbone with balanced clusters
can be constructed with MASC and the backbone formation
algorithm (BFA) proposed in [46] for sensor networks. The
second approach for backbone construction is increasing the
transmission ranges of the cluster heads [2]. After clustering is
completed, cluster heads increase their transmission range for
communicating with each other. This approach is also suitable
for MASC. The energy consumption of MASC can be reduced
by the overhearing technique as applied in the MCUBA.

Cluster heads may consume their energy more than
ordinary nodes since they are responsible for data processing,
aggregation and routing messages to the sink. Hence rotation of
the cluster heads may be provided by the clustering approaches.
The MCUBA and MASC can be easily extended for energy-
efficient rotating cluster head selection. The graph model can

be extended to Gw(Vw, Ew) in which not only edges but also
vertices have weights where the weight of a vertex is its initial
energy.We may change the leader selection policy of MASC and
the MCUBA using this model. The candidate with the largest
weight may be chosen as the backup. This method provides
energy-efficient cluster head selection and can be implemented
on MASC and the MCUBA with minor modifications.

The periodic running of the clustering algorithms is not the
only way of supporting fault tolerance. One other method is the
selection of backup cluster heads [2]. The MCUBA and MASC
can be extended to provide backup cluster heads. The FSM in
Fig. 29 shows the additions needed to provide fault tolerance.
After a node makes a state transition to the LEADER_END state,
it chooses a backup cluster head and sendsYOU_ARE_BACKUP
to it. Simply, the neighbor node in the same cluster and with
the greatest energy may be chosen as the cluster head. If
a node in the MEMBER or MEMBER_END state receives a
YOU_ARE_BACKUP message, it makes a state transition to
BACKUP_LEADER and the backup polls its cluster head by
sending POLL_LEADER messages periodically and makes a
state transition to the WT_LEADER state. When the cluster
head in the LEADER_END state receives the POLL_LEADER
message, it replies with a HEARTBEAT message. If the cluster
head does not respond, the backup cluster head tries to send
a POLL_LEADER message for poll_number times defined
by the user. When the backup realizes that the cluster head
malfunctions, a LEADER_DEAD event occurs in the backup
and makes a state transition to LEADER_END state by sending
a YOU_ARE_BACKUP message to the new backup. The
backup can also malfunction. In this case, a BACKUP_TOUT
occurs in the cluster head; it selects a new backup and sends
a YOU_ARE_BACKUP message to the new backup. This
approach is good when one of the cluster heads or cluster
members malfunctions. If both of them malfunction, new
techniques should be employed. To tolerate faults occurring
in ordinary nodes, extended routing tables can be designed. In
extended routing tables, a node may store more than one entry
for each destination. This information may be obtained during
message exchanges and overhearing. On the other hand, since

FIGURE 29. FSM for providing fault tolerance.
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this method causes significant memory space consumption, an
optimization must be provided.

9. CONCLUSIONS

We proposed two new graph-theoretic algorithms for clustering
and backbone formation in WSNs. Our original idea is to use
the weighted matching for the clustering operation in order to
select the edges with the heavy weights. We used Hoepman’s
distributed weighted matching algorithm as the basis of our
proposed algorithms. Hoepman’s algorithm is implemented and
shown to be scalable for sensor networks in terms of the total
number of messages and time elapsed. Also, the measured
approximation ratios for this algorithm using simulations are
greater than 99% of the maximum value, which makes this
algorithm very suitable for our clustering algorithm basis. We
showed the design of the proposed algorithms, MASC and the
MCUBA, by the FSM and pseudo-codes. We gave the analysis
for the time and message complexity of the algorithms. Also,
the lower bounds for the total selected edge quality are given
with the upper bounds for the cluster level theoretically. Both
algorithms are implemented on a simulation environment and
the results obtained show that our proposed algorithms select
stronger links, produce more evenly distributed and controllable
number of clusters than the other graph-theoretic approaches.
The energy consumed in MASC is reduced in the MCUBA by
applying the overhearing technique. We discussed and analyzed
that selection of strong links between nodes for clustering
and backbone formation may provide energy-efficient multi-
hop routing for applications that may run on the infrastructure
created by our proposed algorithms. Fault tolerance and energy-
efficient cluster head rotation extensions are also discussed for
the proposed algorithms.
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APPENDIX

In this section, the detailed pseudo-codes of MASC and
the MCUBA are given. The main algorithm and the helper
procedures of MASC are shown in Algorithms 1 and 2 . The
MCUBA’s pseudo-codes and the other needed procedures are
shown in Algorithms 3–6.

Algorithm 1. MASC for nodej receiving message from nodei .

1: initially cur_state_j : the current state of nodej

2: cur_state ← LEADER
3: round ← 0
4: msg: the received message, includes: Ci , RSSi , leaderi
5: Ci : the set of nodes in the same cluster with nodei

6: RSSi : the second largest RSS value of a cluster head nodei ,
used to determine the leadership

7: �j : the set of neighbors of nodej which do not belong to the
cluster of nodej , given as the parameter

8: Mw(A): the operator which returns the id of the node in set
A which has the largest weight of the edge connecting to nodej

9: candidatej ← Mw(�j )

10: m_rounds: number of maximum rounds, given as the
parameter

11: R: the set of collected requests
12: Legend : � State ∧ input_message −→ actions
13: procedure Main(�j , m_rounds)
14: loop
15: � LEADER ∧ Request −→
16: call RQST( msg, m_rounds,�j )
17: � LEADER ∧ New_Round_Interrupt −→
18: R ← ∅
19: candidatej ← Mw(�j)

20: send REQUEST to candidatej

21: cur_statej ← CANDIDATE_WT_ACK
22: � LEADER ∧ Drop −→
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23: call DRP (msg,m_rounds,�j )
24: � MATCHED_LEADER ∧ Request −→
25: send DROP to nodei

26: � MATCHED_LEADER ∧ End_Of _Round −→
27: cur_statej ← LEADER
28: � CANDIDATE_WT_ACK ∧ Request −→
29: call RQST(msg,m_rounds,�j )
30: � CANDIDATE_WT_ACK ∧ Request_Ack −→
31: call CLSTR (msg,m_rounds,�j )
32: � CANDIDATE_WT_ACK ∧ Drop −→
33: call DRP (msg,m_rounds,�j )
34: � MEMBER ∧ Request −→
35: if idi ∈ Cj then
36: send Request_Ack

37: else forward Request to leaderj
38: end if
39: end loop
40: end procedure

Algorithm 2. MASC for nodej receiving message from nodei

(Part 2).

41: procedure RQST(msg,m_rounds,�j )
42: if leaderi = idj then
43: send Request_Ack

44: else if idi=candidatej then
45: call CLSTR(msg, m_rounds,�j )
46: else
47: R ← R ∪ idi

48: end if
49: end procedure
50: procedure CLSTR(msg, m_rounds, �j )
51: send Request_Ack

52: if (RSSi>RSSj )or((RSSi=RSSj ) and idi>idj ) then
53: cur_statej ← MEMBER
54: leaderj ← idi

55: else
56: if round < m_rounds then
57: round ← round + 1
58: set Round_T imer

59: end if
60: cur_statej ← MATCHED_LEADER
61: �j ← �j ∪ �i

62: end if
63: end procedure
64: procedure DRP(msg,m_rounds, �j )
65: �j ← �j / idi

66: candidatej ← Mw(�j )

67: if candidatej = ∅ then
68: if round < m_rounds then
69: round ← round + 1
70: set Round_Timer
71: end if

72: cur_statej ← MATCHED_LEADER
73: else
74: if candidatej ∈ R then
75: call CLSTR(msgcandidatej

,m_rounds,�j )
76: end if
77: end if
78: end procedure

Algorithm 3. MCUBA for nodej receiving message from nodei .

1: initially cur_state_j : the current state of nodej

2: cur_state ← LEADER
3: c_level: the cluster level
4: c_level ← 0
5: uc_level: the upper cluster level
6: b_candidate: the backbone candidate
7: msg: is the received message, includes: Ci , RSSi , leaderi
8: Ci : the set of nodes in the same cluster with nodei

9: RSSi : the second largest RSS value of a cluster head nodei ,
used to determine the leadership.

10: �j : the set of neighbors of nodej which do not belong to the
cluster of nodej

11: �b: the set of neighbors of sink node which do not belong to
the backbone

12: Mw(A): the operator which returns the id of the node in set
A which has the largest weight of the edge connecting to nodej .

Algorithm 4. MCUBA for nodej receiving message from nodei

(Part 2).

13: R: the set of collected Request msgs.
14: BR: the received Backbone_Request msg.
15: D: the set of collected Drop msgs.
16: Legend : � State ∧ input_msg −→ actions
17: procedure Main(�j , uc_level)
18: loop
19: � LEADER ∧ Request −→
20: call RQST(msg,uc_level,�j )
21: � LEADER ∧ Ldr_TOUT −→
22: call LDR(msg,uc_level,�j )
23: � LEADER ∧ Drop −→
24: call DRP(msg,uc_level,�j )
25: � LEADER ∧ Backbone_Request −→
26: BR ← msg

27: � LEADER_END ∧ Request −→
28: call RQST_END(msg)
29: � LEADER_END ∧ Backbone_Request −→
30: send Backbone_Request_Ack to nodei

31: � CANDIDATE_WT_ACK ∧ Request −→
32: call RQST(msg,uc_level,�j )
33: � CANDIDATE_WT_ACK ∧ Drop −→
34: call DRP(msg,uc_level,uc_level)
35: � CANDIDATE_WT_ACK ∧ Request_Ack −→
36: call CLSTR(msg,uc_level,uc_level)
37: � CANDIDATE_WT_ACK ∧ Backbone_Request

38: −→ BR ← msg
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39: � MEMBER ∧ Request −→
40: if idi ∈ Cj then
41: send Request_Ack to nodei

42: else
43: forward Request to leaderj
44: end if
45: � MEMBER ∧ Backbone_Request −→
46: forward Backbone_Request to nodej

47: � MEMBER_END ∧ Request −→
48: call RQST_END(msg)
49: � MEMBER_END ∧ Backbone_Request −→
50: forward Backbone_Request to leaderj
51: � SINK_WT_FOR_BACKBONE ∧ Request −→
52: send Drop to nodei

53: � SINK_WT_FOR_BACKBONE ∧
54: Backbone_Request_Ack −→
55: call BCKBN(msg,�j )
56: end loop
57: end procedure
58: procedure RQST(msg, uc_level,�j )
59: if leaderi = idj then
60: send Request_Ack

61: else if idi=candidatej then
62: call CLSTR(msg, uc_level,�j )
63: else
64: R ← R ∪ idi

65: end if
66: end procedure

Algorithm 5. MCUBA for nodej receiving message from nodei

(Part 3).

67: procedure CLSTR(msg, uc_level,�j )
68: send Request_Ack

69: leaderj ← idi

70: cluster_levelj ← cluster_levelj + cluster_leveli
71: if (idi = idsink) or ( (RSSi > RSSj ) or ( (RSSi = RSSj ) and

idi > idj ) ) then
72: forward all REQUESTs in R to leaderj
73: forward BR to leaderj
74: if cluster_levelj >= uc_level then
75: cur_statej ← MEMBER_END
76: else
77: cur_statej ← MEMBER
78: end if
79: else
80: �j ← �j ∪ �i

81: candidatej ← Mw(�j )

82: if cluster_levelj >=uc_level and candidatej 
= ∅ then
83: cur_statej ← CANDIDATE_WT_ACK
84: else
85: send Drop to all node ∈ R

86: R ← ∅
87: if idj = sinkj then

88: �b ← �j

89: b_candidatej ← Mw(�b)

90: cur_statej ←
91: SINK_WT_FOR_BACKBONE
92: if b_candidatej 
= ∅ then
93: send Backbone_Request to
94: b_candidate

95: else
96: cur_statej ← SINK_END
97: end if
98: else
99: cur_statej ← LEADER_END
100: if BR 
= ∅ then
101: send Backbone_Request_Ack to BRi

102: end if
103: end if
104: end if
105: end if
106: end procedure
107: procedure RQST_END(msg)
108: if idi ∈ Cj then
109: send Request_Ack to nodei

110: else
111: send Drop to nodei

112: end if
113: end procedure
114: procedure BCKBN(msg,�j )
115: �b ← �b ∪ �i

116: b_candidatej ← Mw(�b)

117: if b_candidatej 
= ∅ then
118: send Backbone_Request to b_candidatej

119: else
120: b_candidatej ← SINK_END
121: end if
122: end procedure

Algorithm 6. MCUBA for nodej receiving message from nodei

(Part 4).

123: procedure DROP(msg,uc_level,�j )
124: �j ← �j / idi

125: candidatej ← Mw(�j )

126: if candidatej = ∅ then
127: cur_state ← MATCHED_LEADER
128: else
129: if candidatej ∈ R then
130: call CLSTR(msgcandidatej

, uc_level,�j )
131: end if
132: end if
133: end procedure
134: procedure LDR(msg,uc_level,�j )
135: if cluster_level < uc_level then
136: Request to candidatej

137: cur_state ← CANDIDATE_WT_ACK
138: else
139: send Drop to all node ∈ R
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140: if idj 
= idsink then
141: cur_statej ← LEADER_END
142: if BR 
= ∅ then
143: send Backbone_Request_Ack to BRi

144: end if
145: else
146: �b ← �j

147: b_candidatej ← Mw(�b)

148: cur_statej ←
149: SINK_WT_FOR_BACKBONE
150: if b_candidatej 
= ∅ then
151: send BACKBONE_REQUEST to b_candidate

152: else
153: cur_statej ← SINK_END
154: end if
155: end if
156: end if
157: end procedure
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