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We construct a Madelung fluid model with time variable parameters as a dissipative
quantum fluid and linearize it in terms of Schrödinger equation with time-dependent
parameters. It allows us to find exact solutions of the nonlinear Madelung system
in terms of solutions of the Schrödinger equation and the corresponding classical
linear ordinary differential equation with variable frequency and damping. For the
complex velocity field, the Madelung system takes the form of a nonlinear com-
plex Schrödinger–Burgers equation, for which we obtain exact solutions using com-
plex Cole–Hopf transformation. In particular, we give exact results for nonlinear
Madelung systems related with Caldirola–Kanai-type dissipative harmonic oscilla-
tor. Collapse of the wave function in dissipative models and possible implications
for the quantum cosmology are discussed. C© 2010 American Institute of Physics.
[doi:10.1063/1.3524505]

I. INTRODUCTION

In the recent years, the Madelung fluid description of quantum mechanics has been applied to
some fields where the quantum formalism is a useful tool for describing the evolution of classical
(quantumlike) systems and studying the dispersionless or semiclassical limit of nonlinear partial
differential equations of Schrödinger type, Ref. 1. The Madelung fluid representation, proposed first
by Madelung, Ref. 2, being a complex quantity, represents a solution of the Schrödinger equation,
in terms of modulus and phase. Substituted to the Schrödinger equation, it allows to obtain a
pair of nonlinear hydrodynamic-type equations. Then the principle of probability conservation in
quantum mechanics becomes related with a hydrodynamic interpretation of continuity equation for
probability flow. This hydrodynamic formulation offers an opportunity to connect directly the motion
of quantum particles with the motion of a fluid and gives a different way to visualize the quantum
mechanical evolution, Ref. 3. Moreover, the Madelung fluid representation becomes fundamental
in superconductivity theory, Ref. 4, and description of quantum fluids like superfluid He, Ref. 5. In
such models, Madelung hydrodynamic variables have direct physical meaning, as ρ = |�|2 plays
the role of the superfluid density, while v = ∇(arg �) becomes the superfluid velocity.

Here, we would like to emphasize a remarkable property of the Madelung transformation. The
Madelung fluid equations are nonlinear system of partial differential equations (PDEs), while the
Schrödinger equation is the linear one. Then, the Madelung transform is a complex linearization
transform, similar to the Cole–Hopf transformation, Refs. 6 and 7, linearizing the nonlinear Burgers
equation in terms of the linear heat equation. Nonlinear models admitting such type of direct
linearization are called by Calogero as C-integrable models, Ref. 8. From this point of view, the
Madelung nonlinear fluid equations are C-integrable.

It is an interesting problem to describe dissipation in quantum fluids and the Madelung rep-
resentation could be very useful in this study. Recently, the quantum mechanical description of
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dissipative systems has attracted a lot of attention. These systems can be implemented as a particular
realization of the time-dependent Schrödinger equation with time variable parameters. In the case
of parametric harmonic oscillator with time-dependent frequency and mass, the exact solution of
the Schrödinger equation can be given in terms of solution of the corresponding classical linear
ordinary differential equation, Refs. 9–12. In the present paper, we construct the Madelung fluid
model with time variable parameters as a dissipative quantum fluid and linearize it in terms of the
time variable Schrödinger equation. It allows us to find exact solution of the nonlinear Madelung
system in terms of solutions of the Schrödinger equation and the corresponding classical damped
parametric oscillator. The Madelung system written for the complex velocity field takes the form
of a nonlinear Burgers-type equation, which we call the complex Schrödinger–Burgers equation.
Then, we use complex Cole–Hopf transformation to obtain exact solutions of nonlinear dissipative
complex Schrödinger–Burgers models. As known, in the usual Cole–Hopf transformation zeros of
the linear heat equation lead to poles in the corresponding Burgers equation. Similarly, in our case,
by the complex Cole–Hopf transformation the zeros of the Schrödinger equation transform to pole
singularities in the complex Schrödinger–Burgers equation. Thus, using the exact solutions of the
linear problem, we describe also the dynamics of the poles in the corresponding nonlinear problem.

We would like to remark here that in the study of the Schrödinger equation, it is common to look
for solutions in a Hilbert space and corresponding physical interpretation of the quantum mechanics.
However, considering the linear Schrödinger equation as linearization of the nonlinear Madelung-
type PDE, solutions of the Schrödinger equation which are not square integrable, not physically
meaningful from the point of view of quantum mechanics, can also lead to an important class of
solutions to the related nonlinear problems. As we mentioned above, in this case the hydrodynamic
system has meaning with direct physical interpretation.

The paper is organized as follows. In Sec. II, first we give exact solutions of the linear Schrödinger
equation for harmonic oscillator with time-dependent parameters in terms of solution of the corre-
sponding classical parametric oscillator, see (Ref. 9). Then, we find the Madelung representation of
the Schrödinger equation as a pair of time variable quantum Hamilton–Jacobi and continuity equa-
tion. The hydrodynamic form of the equations with variable coefficients are found as well. For each
nonlinear system, we construct an exact formal solution with general initial conditions and explicit
solution for some specific initial conditions. In Sec. III, we formulate the Madelung system as the
complexified quantum Hamilton–Jacobi equation in the form of a potential Schrodinger–Burgers
equation and using the results in Sec. II, we find exact solutions of the corresponding initial value
problem (IVP). In Sec. IV, using the complex Cole–Hopf transformation, we obtain exact solutions
of the complex Schrödinger–Burgers equation with time variable parameters in terms of solutions
to the corresponding linear Schrödinger equation. This leads also to exact solutions for the system
of nonlinear PDE’s for the classical velocity and quantum velocity. In Sec. V, we describe in details
a dissipative Madelung fluid and the nonlinear complex Schrödinger–Burgers model related with
Caldirola–Kanai oscillator, when mass of the system is exponentially growing with time, Refs. 13
and 14. Exact solutions of the nonlinear models are found for the critical, underdamped and the
overdamped cases. Moreover, the trajectories describing the motion of zeros and poles are derived
and given explicitly. For each case, some illustrative plots are constructed. Section VI includes some
remarks on the probability density functions of the Caldirola–Kanai oscillator, which behave like
delta-convergent sequences at time infinity and show some unusual properties at the support of test
functions. Section VII is the conclusion part.

II. SCHRÖDINGER EQUATION FOR HARMONIC OSCILLATOR WITH TIME-DEPENDENT
PARAMETERS AND ITS MADELUNG REPRESENTATION

Consider the one-dimensional Schrödinger equation with time-dependent parameters

i�
∂�

∂t
= − �

2

2μ(t)

∂2�

∂q2
+ μ(t)ω2(t)

2
q2�, (1)
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and initial condition

�(q,t0) = ψ(q), −∞ < q < ∞. (2)

Using the evolution operator method it was proved that, see (Ref. 9), if x(t) is the solution of the
classical equation of motion

ẍ + μ̇(t)

μ(t)
ẋ + ω2(t)x = 0, x(t0) = x0 �= 0, ẋ(t0) = 0, (3)

with μ(t) > 0, μ(t) ∈ C ′(I ), ω2(t) > 0, ω(t) ∈ C(I ), t0 ∈ I ⊂ R, then for all t ∈ I such that
x(t) �= 0, the solution of the quantum evolution problem (1)–(2) is given by �(q,t) = Û(t,t0)ψ(q),
where the evolution operator is

Û(t,t0) = exp

(
i

2
f (t)q2

)
exp

(
h(t)(q

∂

∂q
+ 1

2
)

)
exp

(
− i

2
g(t)

∂2

∂q2

)
, (4)

and the auxiliary functions are

f (t) = μ(t)

�

ẋ(t)

x(t)
; g(t) = −�x2(t0)

∫ t dξ

μ(ξ )x2(ξ )
, g(t0) = 0; h(t) = ln

|x(t0)|
|x(t)| . (5)

If the initial function ψ(q) belongs to the Hilbert space L2(R), then it can be written in the form
ψ(q) =∑∞

k=0〈ψ,ϕk〉ϕk(q), where

ϕk(q) = Nke− 	0
2 q2

Hk(
√

	0q), k = 0,1,2, . . . , (6)

are the normalized eigenstates corresponding to eignenvalues Ek = �
2	0(k + 1/2) of the Hamilto-

nian for the standard harmonic oscillator:

Ĥ0 = −�
2

2

∂2

∂q2
+ ω2

0

2
q2, ω0 = const. (7)

Here, Hk(q), k = 0,1,2, . . . denote the standard Hermite polynomials generated by the expression
exp(2qξ − ξ 2) =∑∞

k=0
ξ k

k! Hk(q) and Nk = (2kk!)−1/2(	0/π )1/4 are the normalization constants,
(	0 = ω0/�). Therefore, the time-evolved state is

�(q,t) =
∞∑

k=0

〈ψ,ϕk〉Û(t,t0)ϕk(q) =
∞∑

k=0

〈ψ,ϕk〉�k(q,t), (8)

where

�k(q,t) = Nk

√
R(t) × exp

(
i

(
k + 1

2

)
arctan(	0g(t))

)
× exp

(
i

(
μ(t)ẋ(t)

2�x(t)
− 	2

0

2
g(t)R2(t)

)
q2

)
× exp

(
−	0

2
R2(t)q2

)
× Hk

(√
	0 R(t)q

)
,

(9)

and

R(t) =
(

x2
0

x2(t) + (	0x(t)g(t))2

) 1
2

. (10)

The corresponding probability densities ρk(q,t) = |�k(q,t)|2 are,

ρk(q,t) = 1

2kk!
√

π
×
√

	0 R(t) × exp

(
−
(√

	0 R(t)q
)2
)

× H 2
k

(√
	0 R(t)q

)
, k = 0,1,2, . . . .

(11)
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A. Madelung representation

Madelung representation of the complex-valued wave function

�(q,t) =
√

ρ(q,t) exp

(
i

�
S(q,t)

)
= exp

(
1

2
ln ρ(q,t) + i

�
S(q,t)

)
, (12)

where ρ is the probability density and S is the action, both being real-valued functions, decomposes
the Schrödinger equation (1) into a system of nonlinear coupled partial differential equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂S

∂t
+ 1

2μ(t)

(
∂S

∂q

)2

+ μ(t)ω2(t)

2
q2 = �

2

2μ(t)

[
1√
ρ

∂2√ρ

∂q2

]
,

∂ρ

∂t
+ ∂

∂q

[
ρ

1

μ(t)

∂S

∂q

]
= 0.

(13)

The first equation may be viewed as a generalization of the usual Hamilton–Jacobi equation. The

term with explicit � dependence is the quantum potential Q(q,t) = − �
2

2μ(t)

[
1√
ρ

∂2√ρ

∂q2

]
, encoding the

quantum aspects of the theory. When � → 0, the equation becomes Hamilton–Jacobi equation for
a non–relativistic particle with time-dependent mass. The second equation is a continuity equation
expressing the conservation of probability density.

General IVP: Using the relation (12), one can see that the system (13), with general initial
conditions

S(q,t0) = S̃(q), ρ(q,t0) = ρ̃(q), (14)

S̃(q),ρ̃(q) being real-valued functions has formal solution

S(q,t) = −i� ln

(
�(q,t)

|�(q,t)|
)

, ρ(q,t) = |�(q,t)|2, (15)

where �(q,t) is a solution of the Schrödinger equation (1) with initial condition

ψ(q) =
√

ρ̃(q) exp(
i

�
S̃(q)). (16)

Clearly, the explicit form of the solutions S(q,t), ρ(q,t) depends on the properties of the initial
functions ρ̃(q) and S̃(q). In this work, as in the following special IVP, we shall consider initial
functions ρ̃(q), S̃(q) so that in (16) one has ψ(q) ∈ L2(R). Then, �(q,t) can be found using (9) and
one can obtain explicitly the solution (15) of the system (13) with initial conditions (14). Note also
that, in general the action S(q,t) = −i� ln(�/|�|) + 2πn�, n = 0, ± 1, ± 2, . . . is multivalued,
but fixing the initial condition S(q,t0) = S̃(q) leads to a single-valued solution of the IVP.

Special IVP: According to the above general discussion, we find that the system (13) with
specific initial conditions

Sk(q,t0) = 0, ρk(q,t0) = ϕ2
k (q) = N 2

k exp
(
−(
√

	0q)2
)

H 2
k (
√

	0q) , k = 0,1,2, . . .

has exact solutions

Sk(q,t) = −i� ln

(
�k(q,t)

|�k(q,t)|
)

= 1

2

(
μ(t)

ẋ(t)

x(t)
− �	2

0g(t)R2(t)

)
q2 + �(k + 1

2
) arctan(	0g(t)),

ρk(q,t) = |�k(q,t)|2 = 1

2kk!
√

π
×
√

	0 R(t) × exp

(
−
(√

	0 R(t)q
)2
)

× H 2
k

(√
	0 R(t)q

)
,

where �k(q,t) is given by (9) and ρk(q,t) is same as (11).
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B. Madelung hydrodynamic equations

Introducing classical velocity, v(q,t) = 1

μ(t)

∂S

∂q
, the system (13) transforms to Madelung fluid

coupled system of equations with time variable coefficients :⎧⎪⎪⎨⎪⎪⎩
∂v

∂t
+ μ̇(t)

μ(t)
v + v

∂v

∂q
= − 1

μ(t)

∂

∂q

[ −�
2

2μ(t)

(
1√
ρ

∂2√ρ

∂q2

)
+ μ(t)ω2(t)

2
q2

]
,

∂ρ

∂t
+ ∂

∂q
[ρv] = 0,

(17)

where ρ(q,t) is the density and v(q,t) is the velocity field of the one-dimensional fluid. The
hydrodynamical interpretation of the Schrödinger equation was first introduced by Madelung
(Ref. 2). One can see also (Ref. 3). As well known, the only formal difference between the Madelung
(quantum) fluid equations and the Euler (classical) equations of hydrodynamics is the quantum po-
tential term containing the Planck constant �.

General IVP: The system of fluid equation (17), with general initial conditions

v(q,t0) = ṽ(q), ρ(q,t0) = ρ̃(q),

ṽ(q), ρ̃(q) being real-valued functions, has formal solution

v(q,t) = − i�

μ(t)

∂

∂q
ln

(
�(q,t)

|�(q,t)|
)

, ρ(q,t) = |�(q,t)|2, (18)

where �(q,t) is solution of the Schrödinger equation (1) with the initial condition

ψ(q) =
√

ρ̃(q) exp

(
i

�
μ(t0)

∫ q

ṽ(ξ )dξ

)
.

Special IVP: The system (17) with specific initial conditions

vk(q,t0) = 0, ρk(q,t0) = ϕ2
k (q), k = 0,1,2, . . . , (19)

has exact solutions

vk(q,t) = − i�

μ(t)

∂

∂q
ln

(
�k(q,t)

|�k(q,t)|
)

=
(

ẋ(t)

x(t)
− �	2

0
g(t)R2(t)

μ(t)

)
q, (20)

and ρk(q,t) as found before.
Note that, solving the equation dq/dt = v(q,t) gives q(t) = c/R(t) =

c
√

x2(t) + (	0g(t)x(t))2, where the integration constant c is fixed by the initial position
q(t0) = q0. These can be seen as “quantum streamlines,” analogue to classical trajectories.

III. POTENTIAL SCHRÖDINGER–BURGERS EQUATION

Writing the wave function in the form �(q,t) = exp
(

i
�
μ(t)F(q,t)

)
, where F(q,t) is a complex

potential, the linear Schrödinger equation (1) transforms to the nonlinear potential Schrödinger–
Burgers equation:

∂ F

∂t
+ μ̇(t)

μ(t)
F + 1

2
(
∂ F

∂q
)2 + ω2(t)

2
q2 = i�

2μ(t)

∂2 F

∂q2
. (21)

General IVP: The IVP for the potential Schrödinger–Burgers equation⎧⎪⎨⎪⎩
∂ F

∂t
+ μ̇(t)

μ(t)
F + 1

2
(
∂ F

∂q
)2 + ω2(t)

2
q2 = i�

2μ(t)

∂2 F

∂q2
,

F(q,t0) = F̃(q),

(22)

has a formal solution given by

F(q,t) = − i�

μ(t)
(ln �(q,t)), (23)
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where �(q,t) is a solution of the IVP for the Schrödinger equation⎧⎪⎪⎨⎪⎪⎩
i�

∂�

∂t
= − �

2

2μ(t)

∂2�

∂q2
+ μ(t)ω2(t)

2
q2�,

�(q,t0) = ψ(q) = exp

(
i

�
μ(t0)F̃(q)

)
.

(24)

If the initial condition F̃(q) is such that ψ(q) ∈ L2(R), then by (8), the solution of the initial value
problem (22) is

F(q,t) = − i�

μ(t)
ln

∞∑
k=0

〈ψ,ϕk〉�k(q,t). (25)

In particular, we have the following IVP with specific initial conditions.
Special IVP:⎧⎪⎪⎨⎪⎪⎩

∂ F

∂t
+ μ̇(t)

μ(t)
F + 1

2
(
∂ F

∂q
)2 + ω2(t)

2
q2 = i�

2μ(t)

∂2 F

∂q2
,

Fk(q,t0) = − i�

μ(t0)
(ln ϕk(q)) = i�

μ(t0)

(
	0

2
q2 − ln(Nk Hk(

√
	0q))

)
, k = 0,1,2, . . . .

(26)

has exact solutions

Fk(q,t) =
[

1

2

(
ẋ(t)

x(t)
− �	2

0
g(t)

μ(t)
R2(t)

)
q2 + �

μ(t)
(k + 1

2
) arctan(	0g(t))

]
+ i�

μ(t)

[
	0

2
R2(t)q2 − ln

(
Nk

√
R(t)Hk(

√
	0 R(t)q)

)]
. (27)

Now, using the Madelung representation (12) and relation (23), one can write

F(q,t) = F1(q,t) + iF2(q,t) = 1

μ(t)
S(q,t) − i�

2μ(t)
ln ρ(q,t), (28)

where F1 represents the velocity potential and F2 the stream function of the fluid, ( F1,F2 being real
valued). Accordingly, the real and imaginary parts of the potential Schrödinger–Burgers equation
(21) become ⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂F1

∂t
+ μ̇

μ
F1 + 1

2

(
(
∂F1

∂q
)2 − (

∂F2

∂q
)2

)
+ ω2(t)

2
q2 = − �

2μ

∂2F2

∂q2
,

∂F2

∂t
+ μ̇

μ
F2 + ∂F1

∂q

∂F2

∂q
= �

2μ

∂2F1

∂q2
.

(29)

General IVP: Using the relations (28) and (15), one can see that the nonlinear system (29) with
general initial conditions

F1(q,t0) = F̃1(q), F2(q,t0) = F̃2(q),

and F̃1(q), F̃2(q) real-valued functions, has formal solution

F1(q,t) = − i�

μ(t)
ln

(
�(q,t)

|�(q,t)|
)

, F2(q,t) = − �

μ(t)
ln(|�(q,t)|),

where �(q,t) is solution of the Schrödinger equation (1) with initial condition

�(q,t0) = ψ(q) = exp

(
i

�
μ(t0)̃F1(q)

)
× exp

(
−1

�
μ(t0)̃F2(q)

)
.

Special IVP: Solutions of the system (29) with specific initial conditions

F1,k(q,t0) = 0, F2,k(q,t0) = �

μ(t0)

(
	0

2
q2 − ln(Nk Hk(

√
	0q)

)
, k = 0,1,2, . . .
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are clearly the real and imaginary parts of (27), that is

F1,k(q,t) =
[

1

2

(
ẋ(t)

x(t)
− �	2

0
g(t)

μ(t)
R2(t)

)
q2 + �

μ(t)
(k + 1

2
) arctan(	0g(t))

]

F2,k(q,t) = �

μ(t)

[
	0

2
R2(t)q2 − ln

(
Nk

√
R(t)Hk(

√
	0 R(t)q)

)]
.

IV. SCHRÖDINGER–BURGERS EQUATION

Representation of the wave function in the form

�(q,t) = exp

(
i

h
μ(t)
∫ q

V (ξ,t)dξ

)
, (30)

where V (q,t) is a complex velocity, transforms the Schrödinger equation (1) to the nonlinear
Schrödinger–Burgers equation with time-dependent coefficients

∂V

∂t
+ μ̇(t)

μ(t)
V + V

∂V

∂q
+ ω2(t)q = i�

2μ(t)

∂2V

∂q2
. (31)

This transformation, as before, allows us to obtain solutions of the nonlinear problem in terms of
the corresponding linear one, as follows.

General IVP: The IVP for the Schrödinger–Burgers equation⎧⎪⎨⎪⎩
∂V

∂t
+ μ̇(t)

μ(t)
V + V

∂V

∂q
+ ω2(t)q = i�

2μ(t)

∂2V

∂q2
,

V (q,t0) = Ṽ (q),

(32)

has formal solution given by the complex Cole–Hopf transformation

V (q,t) = − i�

μ(t)

∂

∂q
(ln �(q,t)), (33)

where �(q,t) is solution of the IVP for the Schrödinger equation⎧⎪⎪⎨⎪⎪⎩
i�

∂�

∂t
= − �

2

2μ(t)

∂2�

∂q2
+ μ(t)ω2(t)

2
q2� ,

�(q,t0) = ψ(q) = exp

(
i

�
μ(t0)

∫ q

Ṽ (ξ )dξ

)
.

(34)

If the initial condition Ṽ (q) is such that ψ(q) ∈ L2(R), then by (8), the solution of (32) is

V (q,t) = −i�
∑∞

k=0〈ψ,ϕk〉∂q�k(q,t)

μ(t)
∑∞

k=0〈ψ,ϕk〉�k(q,t)
,

where ∂q denotes differentiation with respect to q. A particular case is the following IVP with
specific initial conditions.

Special IVP: The problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂V

∂t
+ μ̇(t)

μ(t)
V + V

∂V

∂q
+ ω2(t)q = i�

2μ(t)

∂2V

∂q2
,

Vk(q,t0) = − i�

μ(t0)

d

dq
(ln ϕk(q)) = i�

μ(t0)

[
	0q − ∂q Hk(

√
	0q)

Hk(
√

	0q)

]
, k = 0,1,2, . . .

(35)

has exact solution of the form

Vk(q,t) =
[

ẋ(t)

x(t)
− �	2

0
g(t)

μ(t)
R2(t)

]
q + i�

μ(t)

[
	0 R2(t)q − ∂q Hk(

√
	0 R(t)q)

Hk(
√

	0 R(t)q)

]
, k = 0,1,2, . . . .

(36)
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Using the Madelung representation (12) and the complex Cole–Hopf transformation (33), one
can write the complex velocity function in the form

V (q,t) = v(q,t) + iu(q,t) = 1

μ(t)

∂S

∂q
− i�

2μ(t)

∂

∂q
(ln ρ), (37)

where v,u are real valued, v represents the classical velocity and u the quantum velocity. This splits
the Schrödinger-Burgers equation into real and imaginary parts, respectively:⎧⎪⎪⎨⎪⎪⎩

∂v

∂t
+ μ̇(t)

μ(t)
v + v

∂v

∂q
+ ω2(t)q = −�

2μ(t)

∂2u

∂q2
+ u

∂u

∂q
,

∂u

∂t
+ μ̇(t)

μ(t)
u + u

∂v

∂q
+ v

∂u

∂q
= �

2μ(t)

∂2v

∂q2
.

(38)

General IVP: Using relations (37) and (15), we find that the system of nonlinear coupled
equations (38) with general initial conditions

v(q,t0) = ṽ(q), u(q,t0) = ũ(q)

has formal solution

v(q,t) = − i�

μ(t)

∂

∂q
ln

(
�(q,t)

|�(q,t)|
)

, u(q,t) = − �

μ(t)

∂

∂q
ln(|�(q,t)|),

where �(q,t) is a solution of the Schrödinger equation (1) with general initial condition

�(q,t0) = exp

(
i

�
μ(t0)

∫ q

ṽ(ξ )dξ

)
× exp

(
−1

�
μ(t0)

∫ q

ũ(ξ )dξ

)
.

Special IVP: System (38) with specific initial conditions

vk(q,t0) = 0, uk(q,t0) = �

μ(t0)

[
	0q − ∂q Hk(

√
	0q)

Hk(
√

	0q)

]
, k = 0,1,2, . . .

has exact solutions

vk(q,t) =
[

ẋ(t)

x(t)
− �	2

0
g(t)

μ(t)
R2(t)

]
q, uk(q,t) = �

μ(t)

[
	0 R2(t)q − ∂q Hk(

√
	0 R(t)q)

Hk(
√

	0 R(t)q)

]
.

Clearly, the quantity |Vk(q,t)|2 = v2
k (q,t) + u2

k(q,t) which is analog of kinetic energy can be also
explicitly computed. In addition, |Vk(q,t)| can be interpreted also as an amplitude of envelope of the
modulated wave.

Motion of zeros and poles: Due to the complex Cole–Hopf transformation (33), the zeros of
the wave function �(q,t) (and ρ(q,t)) for the Schrödinger equation become poles of the solution
V (q,t) (and |V (q,t)|2 ) for the nonlinear Schrödinger–Burgers equation (32). In particular, we
note that �k(q,t) given by (9) has zeros at points where Hk(

√
	0 R(t)q) = 0, and these points are

pole singularities for Vk(q,t) given by (36). Thus, denoting by τ
(l)
k , l = 1,2, . . . k, the zeros of the

Hermite polynomial Hk(ξ ), i.e., Hk(τ (l)
k ) = 0, we obtain that for each k = 1,2,3, . . . , the motion

of the zeros and poles is given by

q (l)
k (t) = τ

(l)
k√

	0 R(t)
= τ

(l)
k

|x0|
√

	0

√
x2(t) + (	0g(t)x(t))2, l = 1,2, . . . ,k. (39)

General analysis of the system describing the dynamics of the zeros and poles will be presented
in later work. However, for some particular cases the motion of zeros and poles is discussed and
illustrated in Sec. V.
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V. EXACTLY SOLVABLE MODELS

A. Madelung representation of standard quantum harmonic oscillator

The subject of this work is to study nonlinear models with time-dependent parameters, but for
comparative reasons we briefly mention about the case when the parameters are constant, that is
μ(t) = 1 and ω2(t) = ω2

0. Thus, we start with IVP for the standard quantum harmonic oscillator⎧⎪⎨⎪⎩ i�
∂�

∂t
= −�

2

2

∂2�

∂q2
+ ω2

0

2
q2�,

�(q,t0) = ϕk(q), k = 0,1,2, . . .

(40)

which has well known solutions

�k(q,t) = e− i
�

(k+ 1
2 )(t−t0)ϕk(q), k = 0,1,2, . . . ,

in terms of ϕk(q) given by (6). To find these solutions, one can use also formula (9) with x(t) =
x0 cos[ω0(t − t0)], g(t) = − �

ω0
tan[ω0(t − t0)], and R(t) = 1. It follows that:

a. The system for generalized Hamilton–Jacobi and continuity equations with specific initial
conditions, that is ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂S

∂t
+ 1

2

(
∂S

∂q

)2

+ ω2
0

2
q2 = �

2

2

[
1√
ρ

∂2√ρ

∂q2

]
,

∂ρ

∂t
+ ∂

∂q

[
ρ

∂S

∂q

]
= 0,

Sk(q,t0) = 0, ρk(q,t0) = ϕ2
k (q), k = 0,1,2, . . . ,

has solutions

Sk(q,t) = −�ω0(k + 1

2
)(t − t0), ρk(q,t) = ϕ2

k (q), k = 0,1,2, . . .

b. The IVP for the hydrodynamic equations⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂v

∂t
+ v

∂v

∂q
= − ∂

∂q

[−�
2

2

(
1√
ρ

∂2√ρ

∂q2

)
+ ω2

0

2
q2

]
,

∂ρ

∂t
+ ∂

∂q
[ρv] = 0,

vk(q,t0) = 0, ρk(q,t0) = ϕ2
k (q), k = 0,1,2, . . . ,

has solutions

vk(q,t) = 0, ρk(q,t) = ϕ2
k (q), k = 0,1,2, . . . .

c. The IVP for potential Schrödinger–Burgers equation⎧⎪⎨⎪⎩
∂ F

∂t
+ 1

2
(
∂ F

∂q
)2 + ω2

0

2
q2 = i�

2

∂2 F

∂q2
,

Fk(q,t0) = −i� ln ϕk(q), k = 0,1,2, . . . .

has solutions

Fk(q,t) = −i� ln �k(q,t) = −ω0(k + 1

2
)(t − t0) − i� ln ϕk(q), k = 0,1,2, . . . .

d. The IVP for Schrödinger–Burgers equation⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂V

∂t
+ V

∂V

∂q
+ ω2

0q = i�

2

∂2V

∂q2
,

Vk(q,t0) = −i�
d

dq
(ln ϕk(q)) = i�

[
	0q − ∂q Hk(

√
	0q)

Hk(
√

	0q)

]
, k = 0,1,2, . . . .
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has solutions

Vk(q,t) = i�

[
	0q − ∂q Hk(

√
	0q)

Hk(
√

	0q)

]
, k = 0,1,2, . . . ,

so that the classical and quantum velocities are

vk(q,t) = 0, uk(q,t) = �

[
	0q − ∂q Hk(

√
	0q)

Hk(
√

	0q)

]
.

Notice that, in this case, the zeros of the wave function �k(q,t) and the poles of the solution Vk(q,t)

are the points q (l)
k = τ

(l)
k√
	0

, l = 1,2, . . . ,k, which are fixed in time.

B. Madelung representation of Caldirola–Kanai oscillator

The Caldirola–Kanai model, (Refs. 13 and 14), which is a one-dimensional system with an
exponentially increasing mass, is the best known model of harmonic oscillator with time-dependent
parameters. Here, using the general discussion in the previous parts, we obtain exact solutions of the
nonlinear problems related with the Caldirola–Kanai oscillator:⎧⎪⎨⎪⎩ i�

∂�

∂t
= −�

2

2
e−γ t ∂

2�

∂q2
+ 1

2
ω2

0eγ t q2�, q ∈ R, t > 0,

�(q,0) = ψ(q)

(41)

where μ(t) = eγ t is the integrating factor, 
(t) = γ > 0 is the damping term, and ω2(t) = ω2
0 is a

constant frequency. As stated in the beginning of Sec. II, solutions of the Cadirola–Kanai oscillator
can be found in terms of the solution to the corresponding classical equation of motion:

ẍ + γ ẋ + ω2
0x = 0, x(0) = x0 �= 0, ẋ(0) = 0. (42)

Clearly, according to the sign of 	2 = ω2
0 − (γ 2/4) there are three different type of behavior—

critical damping, underdamping, and overdamping. For each type, nonlinear models discussed in
Secs. II–IV are presented and exact solutions are found, as follows.

1. Critical damping case, �2 = 0

If 	2 = ω2
0 − (γ 2/4) = 0, then the classical equation (42) has solution

x1(t) = x0e− γ t
2 (1 + γ

2
t),

and it follows from (5) and (10) that

g1(t) = −�t

1 + γ

2 t
, R1(t) =

(
eγ t

(1 + γ

2 t)2 + w2
0t2

)1/2

.

Then, by (9), solutions of the Schrödinger equation (41) with initial conditions �(q,0) = ϕk(q), are

�k(q,t) = Nk

(
eγ t

(1 + γ

2 t)2 + w2
0t2

)1/4

× exp

(
i(k + 1

2
) arctan(

−ω0t

1 + γ

2 t
)

)
(43)

× exp

(
−i

ω2
0

2�

(
teγ t

1 + γ

2 t

)(
1 − 1

(1 + γ

2 t)2 + w2
0t2

)
q2

)
× exp

(
−ω0

2�

(
eγ t

(1 + γ

2 t)2 + w2
0t2

)
q2

)

× Hk

⎛⎝√ω0

�

(
eγ t

(1 + γ

2 t)2 + w2
0t2

)1/2

q

⎞⎠ , k = 0,1,2, . . . . (44)
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a. Hamilton–Jacobi-type representation of Caldirola–Kanai oscillator, 	2 = 0. Madelung rep-
resentation of the wave function decomposes the Schrödinger equation (41) into a system of nonlinear
coupled partial differential equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂S

∂t
+ 1

2
e−γ t

(
∂S

∂q

)2

+ ω2
0

2
eγ t q2 = �

2

2
e−γ t

[
1√
ρ

∂2√ρ

∂q2

]
,

∂ρ

∂t
+ e−γ t ∂

∂q

[
ρ

∂S

∂q

]
= 0.

This system of equations with specific initial conditions

Sk(q,0) = 0, ρk(q,0) = N 2
k exp

(
−ω0

�
q2
)

H 2
k

(√
ω0

�
q

)
, k = 0,1,2, . . . ,

has exact solutions of the form

Sk(q,t) =
(

−ω2
0

2

(
teγ t

1 + γ

2 t

)(
1 − 1

(1 + γ

2 t)2 + w2
0t2

)
q2

)
+
(

�(k + 1

2
) arctan(

−ω0t

1 + γ

2 t
)

)
,

ρk(q,t) = N 2
k

(
eγ t

(1 + γ

2 t)2 + w2
0t2

)1/2

× exp

(
−ω0

�

(
eγ t(

1 + γ

2 t
)2 + w2

0t2

)
q2

)

× H 2
k

⎛⎝√ω0

�

(
eγ t

(1 + γ

2 t)2 + w2
0t2

)1/2

q

⎞⎠ . (45)

b. Madelung hydrodynamic equations, 	2 = 0. The system of hydrodynamic equations for the
velocity and density of the fluid⎧⎪⎪⎨⎪⎪⎩

∂v

∂t
+ γ v + v

∂v

∂q
= −e−γ t ∂

∂q

[−�
2

2

e−γ t

√
ρ

∂2√ρ

∂q2
+ ω2

0

2
eγ t q2

]
,

∂ρ

∂t
+ ∂

∂q
[ρv] = 0,

with specific initial conditions

vk(q,0) = 0, ρk(q,0) = N 2
k exp

(
−ω0

�
q2
)

H 2
k

(√
ω0

�
q

)
, k = 0,1,2, . . .

has solutions

vk(q,t) =
(

−ω2
0

(
t

1 + γ

2 t

)(
1 − 1

(1 + γ

2 t)2 + w2
0t2

)
q

)
,

and ρk(q,t) given by (45).
c. The potential Schrödinger–Burgers equation, 	2 = 0. The IVP for potential Schrödinger–

Burgers equation⎧⎪⎪⎨⎪⎪⎩
∂ F

∂t
+ γ F + 1

2
(
∂ F

∂q
)2 + ω2

0

2
q2 = i�

2
e−γ t (

∂2 F

∂q2
),

Fk(q,0) = i
(

ω0
2 q2 − � ln(Nk Hk(

√
ω0
�

q))
)

, k = 0,1,2, . . .

(46)

has exact solutions of the form

Fk(q,t) = F1,k(q,t) + iF2,k(q,t),
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FIG. 1. Case 	2 = 0. (a) Evolution of probability density ρ0(q,t). (b) Plot of ρ0(q,t) at times t = 6,7,8, showing Dirac-delta
behavior as t → ∞.

where

F1,k = −ω2
0

2

(
t

1 + γ

2 t

)(
1 − 1

(1 + γ

2 t)2 + w2
0t2

)
q2 + �e−γ t (k + 1

2
) arctan(

−ω0t

1 + γ

2

),

F2,k = ω0

2

(
1

(1 + γ

2 t)2 + w2
0t2

)
q2 − �e−γ t ln

⎡⎣Nk

(
e−(γ /2)t

(1 + γ

2 t)2 + w2
0t2

)1/2

× Hk

⎛⎝
√√√√ω0

�

(
eγ t

(1 + γ

2 t)2 + w2
0t2

)
q

⎞⎠⎤⎦.
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FIG. 2. Case 	2 = 0. (a) Evolution of probability density ρ1(q,t). (b) Plot of ρ1(q,t) at times t = 2,3,4.

The representation F(q,t) = F1(q,t) + iF2(q,t) decomposes the potential Schrödinger–Burgers
equation (46) into the system:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂F1

∂t
+ γ F1 + 1

2

(
(
∂F1

∂q
)2 − (

∂F2

∂q
)2

)
+ ω2

0

2
q2 = −�e−γ t

2

∂2F2

∂q2
,

∂F2

∂t
+ γ F2 + ∂F1

∂q

∂F2

∂q
= �e−γ t

2

∂2F1

∂q2
.

Obviously, solutions of this system with specific initial conditions

F1,k(q,0) = 0, F2,k(q,0) =
(

ω0

2
q2 − � ln(Nk Hk(

√
ω0

�
q))

)
are the real and imaginary parts of Fk , that is F1,k and F2,k as found above.

d. The Schrödinger–Burgers equation, 	2 = 0. The IVP for the nonlinear Schrödinger–Burgers
equation ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂V

∂t
+ γ V + V

∂V

∂q
+ ω2

0q = i�
e−γ t

2

∂2V

∂q2
,

Vk(q,0) = i

⎡⎣ω0q − 2k
√

�ω0

⎛⎝Hk−1(
√

ω0
�

q)

Hk(
√

ω0
�

q)

⎞⎠⎤⎦ , k = 0,1,2, . . . ,

(47)
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FIG. 3. Case 	2 = 0. (a) Evolution of probability density ρ2(q,t). (b) Plot of ρ2(q,t) at times t = 2,3,4.

has solutions

Vk(q,t) =
(

−ω2
0

(
t

1 + γ

2 t

)(
1 − 1

(1 + γ

2 t)2 + w2
0t2

)
q

)

+i

⎡⎣( ω0

(1 + γ

2 t)2 + w2
0t2

)
q − 2k

√
�ω0e−γ t

(
eγ t

(1 + γ

2 t)2 + w2
0t2

)1/2

×

⎛⎜⎜⎝Hk−1(

√
ω0
�

(
eγ t

(1+ γ

2 t)2+w2
0 t2

)
q)

Hk(

√
ω0
�

(
eγ t

(1+ γ

2 t)2+w2
0 t2

)
q)

⎞⎟⎟⎠
⎤⎥⎥⎦ . (48)

We used that ∂q Hk(q) = 2k Hk−1(q) and H−1 = 0.

The complex velocity function, written in the form V (q,t) = v(q,t) + iu(q,t), where v,u are
real-valued functions, splits the Schrödinger–Burgers equation (47) into the system:⎧⎪⎪⎨⎪⎪⎩

∂v

∂t
+ γ v + v

∂v

∂q
− u

∂u

∂q
+ ω2

0q = −�

2
e−γ t ∂

2u

∂q2
,

∂u

∂t
+ γ u + u

∂v

∂q
+ u

∂v

∂q
= �

2
e−γ t ∂

2v

∂q2
.
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FIG. 4. Case 	2 = 0. (a) Evolution of |V2(q,t)|2. (b) Behavior of |V2(q,t)|2 at times t = 0,1.

This system with specific initial conditions

vk(q,0) = 0, uk(q,0) = ω0q − 2k
√

�ω0

⎛⎝Hk−1(
√

ω0
�

q)

Hk(
√

ω0
�

q)

⎞⎠ , k = 0,1,2, . . .

clearly, has solutions vk(q,t) and uk(q,t) which are respectively, the real and imaginary parts of
Vk(q,t) in expression (48).

e. Motion of zeros and poles, 	2 = 0. From expression (43), we see that the solution �k(q,t)
(also ρk(q,t) ) of the linear Schrödinger equation (41) has zeros at points where

Hk(

√√√√ω0

�

(
eγ t(

1 + γ

2 t
)2 + w2

0t2

)
q) = 0,

and these zeros are pole singularities of the solution Vk(q,t) (also |Vk(q,t)|2 ) for the nonlinear
Schrödinger–Burgers equation (47). Therefore, for each fixed k = 0,1,2,3, . . . , the motion of the
zeros and poles is described by the curves:

q (l)
k (t) = τ

(l)
k

√
�

ω0
× e− γ

2 t ×
√

(1 + γ

2
t)2 + w2

0t2, l = 1,2, . . . k, (49)

where τ
(l)
k , l = 1,2, . . . k, are the zeros of the Hermite polynomial Hk(ξ ). Clearly, at an initial

time the position of the zeros and poles is q (l)
k (0) = τ

(l)
k

√
�/ω0, and when γ > 0, t → ∞ one has

q (l)
k (t) → 0 due to increasing mass μ(t) = eγ t (dissipation).
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FIG. 5. Case 	2 = 0. (a) Contour plot of |V2(q,t)|2. (b) Position of the moving poles of |V2(q,t)|2 ( zeros of ρ2(q,t),)
described by the curves q(1)

2 (t) = − e−t√
2

√
(1 + t)2 + t2 and q(2)

2 (t) = −q(1)
2 (t).

In Figs. 1, 2, and 3, we illustrate the behavior of ρk(q,t) for k = 0,1,2 and in Fig. 4 we plot
|V2(q,t)|2. Figure 5 shows the motion of zeros and poles for k = 2. For simplicity, the constants are
chosen to be x0 = � = ω0 = 1 and γ = 2.
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2. Under damping case, �2 > 0

If 	2 = ω2
0 − (γ 2/4) > 0, then the classical equation (42) has solution

x2(t) = x0
ω0

|	|e− γ t
2 cos[|	|t − α], (50)

where α = tan−1( γ

2|	| ), and the linear Schrödinger equation in (41) has exact solutions of the form

�k(q,t) = Nk

√
R2(t) × exp

(
i

(
k + 1

2

)
arctan(

ω0

�
g2(t))

)
× exp

(
i

(
eγ t ẋ2(t)

2�x2(t)
− 1

2
(
ω0

�
)2g2(t)R2

2(t)

)
q2

)
× exp

(
−1

2

ω0

�
R2

2(t)q2

)
× Hk

(√
ω0

�
R2(t)q

)
, (51)

where

g2(t) = −�
|	|
ω2

0

(
tan[|	|t − α] + γ

2|	|
)

, (52)

R2(t) = |	|
ω0

e
γ t
2

| cos[|	|t − α]|

(
1 + 	2

ω2
0

(
tan[|	|t − α] + γ

2|	|
)2
)−1/2

. (53)

a. Hamilton–Jacobi-type representation, 	2 > 0. The nonlinear system consisting of general-
ized Hamilton–Jacobi equation and continuity equation⎧⎪⎪⎨⎪⎪⎩

∂S

∂t
+ 1

2
e−γ t

(
∂S

∂q

)2

+ ω2
0

2
eγ t q2 = �

2

2
e−γ t

[
1√
ρ

∂2√ρ

∂q2

]
,

∂ρ

∂t
+ e−γ t ∂

∂q

[
ρ

∂S

∂q

]
= 0,

with specific initial conditions

Sk(q,0) = 0, ρk(q,0) = N 2
k exp

(
−ω0

�
q2
)

H 2
k (

√
ω0

�
q), k = 0,1,2, . . . ,

has exact solutions of the form

Sk(q,t) = 1

2

(
eγ t ẋ2(t)

x2(t)
− ω2

0

�
g2(t)R2

2(t)

)
q2 + �(k + 1

2
) arctan(

ω0

�
g2(t)),

ρk(q,t) = N 2
k × R2(t) × exp

(
−ω0

�
R2

2(t)q2
)

× H 2
k

(√
ω0

�
R2(t)q

)
. (54)

b. Madelung hydrodynamic equations, 	2 > 0. The system of hydrodynamic equations⎧⎪⎪⎨⎪⎪⎩
∂v

∂t
+ γ v + v

∂v

∂q
= −e−γ t ∂

∂q

[−�
2

2

e−γ t

√
ρ

∂2√ρ

∂q2
+ ω2

0

2
eγ t q2

]
,

∂ρ

∂t
+ ∂

∂q
[ρv] = 0,

with specific initial conditions

vk(q,0) = 0, ρk(q,0) = N 2
k exp

(
−ω0

�
q2
)

H 2
k (

√
ω0

�
q), k = 0,1,2, . . .

has solutions

vk(q,t) =
(

ẋ2(t)

x2(t)
− ω2

0

�
e−γ t g2(t)R2

2(t)

)
q

and ρk(q,t) given by (54).
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FIG. 6. Case 	2 > 0. (a) Evolution of probability density ρ2(q,t). (b) Behavior of ρ2(q,t) at times t = 4,6,8.

c. The potential Schrödinger–Burgers equation, 	2 > 0. The IVP for the potential Schrödinger–
Burgers equation⎧⎪⎪⎨⎪⎪⎩

∂ F

∂t
+ γ F + 1

2
(
∂ F

∂q
)2 + ω2

0

2
q2 = i�

e−γ t

2
(
∂2 F

∂q2
),

Fk(q,0) = i
(

ω0
2 q2 − � ln(Nk Hk(

√
ω0
�

q))
)

, k = 0,1,2, . . .

has exact solutions of the form

Fk(q,t) = F1,k(q,t) + iF2,k(q,t),

where

F1,k(q,t) =
[

1

2

(
ẋ2(t)

x2(t)
− ω2

0

�
e−γ t g2(t)R2

2(t)

)
q2 + �e−γ t (k + 1

2
) arctan

(ω0

�
g2(t)
)]

,

F2,k(q,t) = e−γ t

[
ω0

2
R2

2(t)q2 − � ln

(
Nk

√
R2(t)Hk

(√
ω0

�
R2(t)q

))]
.
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FIG. 7. Case 	2 > 0. (a) Evolution of |V2(q,t)|2. (b) Position of the moving poles of |V2(q,t)|2, described by q(1)
2 (t) =

−
√

2
3 cos[

√
3

2 t − π
6 ] × e− t

2

√
1 + 3

4

(
tan[

√
3

2 t − π
6 ] + 1√

3

)2
, q(2)

2 (t) = −q(1)
2 (t).

The real and imaginary parts of Fk , that is F1,k and F2,k are solutions of the IVP⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂F1

∂t
+ γ F1 + 1

2

(
(
∂F1

∂q
)2 − (

∂F2

∂q
)2

)
+ ω2

0

2
q2 = −�

e−γ t

2

∂2F2

∂q2
,

∂F2

∂t
+ γ F2 + ∂F1

∂q

∂F2

∂q
= �

e−γ t

2

∂2F1

∂q2

F1(q,0) = 0, F2(q,0) =
(

ω0
2 q2 − � ln(Nk Hk(

√
ω0
�

q))
)

.

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  193.140.249.2 On: Thu, 08 Dec 2016

11:37:57
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d. The Schrödinger–Burgers equation, 	2 > 0. The IVP for the Schrödinger–Burgers equation⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂V

∂t
+ γ V + V

∂V

∂q
+ ω2

0q = i�
e−γ t

2

∂2V

∂q2
,

Vk(q,0) = i

⎡⎣ω0q − 2k
√

�ω0

⎛⎝Hk−1(
√

ω0
�

q)

Hk(
√

ω0
�

q)

⎞⎠⎤⎦, k = 0,1,2, . . . ,

has solutions

Vk(q,t) =
[

ẋ2(t)

x2(t)
− ω2

0

�
e−γ t g2(t)R2

2(t)

]
q

+ ie−γ t

[
ω0 R2

2(t)q − 2k
√

ω0�R2(t)

⎛⎝Hk−1(
√

ω0
�

R2(t)q)

Hk(
√

ω0
�

R2(t)q)

⎞⎠]. (55)

Therefore, the system for the classical and quantum velocities⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂v

∂t
+ γ v + v

∂v

∂q
+ ω2

0q = −�

2
e−γ t ∂

2u

∂q2
+ u

∂u

∂q
,

∂u

∂t
+ γ u + u

∂v

∂q
+ u

∂v

∂q
= �

2
e−γ t ∂

2v

∂q2
.

with initial conditions

vk(q,0) = 0, uk(q,0) = ω0q − 2k
√

�ω0

⎛⎝Hk−1(
√

ω0
�

q)

Hk(
√

ω0
�

q)

⎞⎠ , k = 0,1,2, . . . ,

has solutions vk(q,t) and uk(q,t) which are respectively, the real and imaginary parts of Vk(q,t)
given by expression (55).

e. Motion of zeros and poles, 	2 > 0. From expression (51), we see that �k(q,t) has zeros at
points where Hk(

√
	0 R2(t)q) = 0 and these zeros are poles of the solution Vk(q,t) for the nonlinear

Schrödinger–Burgers equation. Then, we find that for each k = 1,2,3, . . . , the motion of the zeros
and poles is described explicitly by

q (l)
k (t) = τ

(l)
k

√
�ω0

|	| × e− γ

2 t × | cos[|	|t − α]|
√

1 + 	2

ω2
0

(
tan[|	|t − α] + γ

2|	|
)2

, l = 1,2, . . . k.

(56)

As before, for γ > 0 and t → ∞ we have q (l)
k (t) → 0 due to dissipation.

As an example for the underdamping case, in Fig. 6 we give the plot of ρ2(q,t), and in Fig. 7
we illustrate |V2(q,t)|2, and the behavior of its poles. The constants are chosen to be x0 = � = ω0

= γ = 1.

3. Over damping case, �2 < 0

When 	2 = ω2
0 − (γ 2/4) < 0, the classical equation (42) has solution:

x3(t) = x0
ω0

	′ e− γ t
2 sinh[	′t + β], (57)
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FIG. 8. Case 	2 < 0. (a) Evolution of probability density ρ3(q,t). (b) Behavior of ρ3(q,t) at times t = 3,4.

where 	′ =
√

|	2|, and β = coth−1( γ

2	′ ). Then, the linear Schrödinger equation in (41) has exact
solutions:

�k(q,t) = Nk

√
R3(t) × exp

(
i

(
k + 1

2

)
arctan

(ω0

�
g3(t)
))

× exp

(
i

(
eγ t ẋ3(t)

2�x3(t)
− 1

2
(
ω0

�
)2g3(t)R2

3(t)

)
q2

)
× exp

(
−1

2

ω0

�
R2

3(t)q2

)
× Hk

(√
ω0

�
R3(t)q

)
,

(58)

where

g3(t) = �	′

ω2
0

(
coth[	′t + β] − γ

2	′
)

,

R3(t) = 	′

ω0

e
γ t
2

| sinh[	′t + β]|
(

1 + 	′2

ω2
0

(
coth[	′t + β] − γ

2	′
)2
)−1/2

.
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FIG. 9. Case 	2 < 0. (a) Evolution of |V3(q,t)|2. (b) Contour plot of |V3(q,t)|2, from which one can observe the position
q(1)

3 (t), q(2)
3 (t) ,and q(3)

3 (t) of the moving poles.

a. Hamilton–Jacobi-type representation of Caldirola–Kanai oscillator, 	2 < 0. The nonlinear
system consisting of generalized Hamilton–Jacobi equation and continuity equation:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂S

∂t
+ 1

2
e−γ t

(
∂S

∂q

)2

+ ω2
0

2
eγ t q2 = �

2

2
e−γ t

[
1√
ρ

∂2√ρ

∂q2

]
,

∂ρ

∂t
+ e−γ t ∂

∂q

[
ρ

∂S

∂q

]
= 0,

with specific initial conditions

S(q,0) = 0, ρk(q,0) = N 2
k exp

(
−ω0

�
q2
)

H 2
k (

√
ω0

�
q), k = 0,1,2, . . . ,
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has exact solutions of the form

Sk(q,t) = 1

2

(
eγ t ẋ3(t)

x3(t)
− ω2

0

�
g3(t)R2

3(t)

)
q2 + �(k + 1

2
) arctan(

ω0

�
g3(t)),

ρk(q,t) = N 2
k × R3(t) × exp

(
−ω0

�
R2

3(t)q2
)

× H 2
k

(√
ω0

�
R3(t)q

)
. (59)

b. Madelung hydrodynamic equations, 	2 < 0. The system of hydrodynamic equations⎧⎪⎪⎨⎪⎪⎩
∂v

∂t
+ γ v + v

∂v

∂q
= −e−γ t ∂

∂q

[−�
2

2

e−γ t

√
ρ

∂2√ρ

∂q2
+ ω2

0

2
eγ t q2

]
,

∂ρ

∂t
+ ∂

∂q
[ρv] = 0,

with specific initial conditions

vk(q,0) = 0, ρk(q,0) = N 2
k exp

(
−ω0

�
q2
)

H 2
k (

√
ω0

�
q) , k = 0,1,2, . . .

has solutions

vk(q,t) =
(

ẋ3(t)

x3(t)
− ω2

0

�
e−γ t g3(t)R2

3(t)

)
q

and ρk(q,t) given by (59).
c. The potential Schrödinger–Burgers equation, 	2 < 0. The IVP for potential Schrödinger–

Burgers equation⎧⎪⎪⎨⎪⎪⎩
∂ F

∂t
+ γ F + 1

2
(
∂ F

∂q
)2 + ω2

0

2
q2 = i�

e−γ t

2
(
∂2 F

∂q2
),

Fk(q,0) = i
(

ω0
2 q2 − � ln(Nk Hk(

√
ω0
�

q))
)

, k = 0,1,2, . . .

(60)

has exact solutions of the form

Fk(q,t) = F1,k(q,t) + iF2,k(q,t),

where

F1,k(q,t) =
[

1

2

(
ẋ3(t)

x3(t)
− ω2

0

�
e−γ t g3(t)R2

3(t)

)
q2 + �e−γ t (k + 1

2
) arctan(

ω0

�
g3(t))

]

F2,k(q,t) = e−γ t

[
ω0

2
R2

3(t)q2 − � ln

(
Nk

√
R3(t)Hk

(√
ω0

�
R3(t)q

))]
. (61)

The real and imaginary parts of Fk , that is F1,k and F2,k , are solutions of the IVP :⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂F1

∂t
+ γ F1 + 1

2

(
(
∂F1

∂q
)2 − (

∂F2

∂q
)2

)
+ ω2

0

2
q2 = −�

e−γ t

2

∂2F2

∂q2
,

∂F2

∂t
+ γ F2 + ∂F1

∂q

∂F2

∂q
= �

e−γ t

2

∂2F1

∂q2

F1,k(q,0) = 0, F2,k(q,0) =
(

ω0
2 q2 − � ln(Nk Hk(

√
ω0
�

q))
)

.

(62)
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d. The Schrödinger–Burgers equation, 	2 < 0. The IVP for the nonlinear Schrödinger–Burgers
equation ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂V

∂t
+ γ V + V

∂V

∂q
+ ω2

0q = i�
e−γ t

2

∂2V

∂q2
,

Vk(q,0) = i

⎡⎣ω0q − 2k
√

ω0�

⎛⎝Hk−1(
√

ω0
�

q)

Hk(
√

ω0
�

q)

⎞⎠⎤⎦, k = 0,1,2, . . . ,

(63)

has solutions

Vk(q,t) =
[

ẋ3(t)

x3(t)
− ω2

0

�
R3(t)e−γ t g3(t)R2

3(t)

]
q + ie−γ t

×
⎡⎣ω0 R2

3(t)q − 2k
√

ω0�R3(t)

⎛⎝Hk−1(
√

ω0
�

R3(t)q)

Hk(
√

ω0
�

R3(t)q)

⎞⎠⎤⎦ . (64)

Obviously, the system for the classical and quantum velocities⎧⎪⎪⎨⎪⎪⎩
∂v

∂t
+ γ v + v

∂v

∂q
+ ω2

0q = −�
e−γ t

2

∂2u

∂q2
+ u

∂u

∂q
,

∂u

∂t
+ γ u + u

∂v

∂q
+ u

∂v

∂q
= �

e−γ t

2

∂2v

∂q2
.

(65)

with initial conditions

vk(q,0) = 0, uk(q,0) =
⎡⎣ω0q −

√
ω0�

⎛⎝Hk−1(ω0
�

q)

Hk(
√

ω0
�

q)

⎞⎠⎤⎦ , k = 0,1,2, . . . ,

has solutions v(q,t) and uk(q,t) which are the real and imaginary parts of Vk(q,t) given by (64).
e. Motion of zeros and poles, 	2 < 0. The wave function �k(q,t) given by (58) has zeros at

points where Hk(
√

ω0
�

R3(t)q) = 0 and these zeros are poles of the solution Vk(q,t) for the nonlinear

Schrödinger–Burgers equation (63). For each k = 1,2,3, . . . , the motion of the zeros and poles is
described explicitly by

q (l)
k (t) = τ

(l)
k

√
�

ω0
× e− γ

2 t × | sinh[	′t + β]|
√

1 + 	′2

ω2
0

(
coth[	′t + β] − γ

2	′
)2

, l = 1,2, . . . k.

(66)

As an example, we illustrate the evolution of the probability density ρ3(q,t) in Fig. 8, and |V3(q,t)|2
in Fig. 9 (x0 = � = ω0 = 1, γ = 3). In that case, according to (66), |V3(q,t)|2 has three moving
poles, whose position is described by q (1)

3 (t), q (2)
3 (t) = 0, and q (3)

3 (t) = −q (1)
3 (t), where

q (1)
3 (t) = −

√
2

3
× e− 3

2 t × cosh[

√
5

2
t]

√
(1 + 3√

5
tanh[

√
5

2
t])2 + (

2√
5

tanh[

√
5

2
t])2.

VI. DIRAC-DELTA BEHAVIOR OF PROBABILITY DENSITY AT TIME INFINITY

In Sec. V, explicit formulas for probability density functions ρk(q,t) of the Caldirola–Kanai
oscillator were given, and some illustrative plots were constructed. We observe that the functions
ρk(q,t) at time infinity, behave like Dirac-delta distribution δ(q). Moreover, from Figs. 1, 3, and 6,
we see that when k is even, at q = 0 one has ρk(0,t) → ∞ as t → ∞, which is a typical behavior
of the well known delta sequences. However, when k is odd, at q = 0 one has ρk(0,t) = 0 for all
t, see Figs. 2 and 8. This is an unusual property and recently it was discussed also in (Ref. 16). In
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what follows, we state the result more precisely. Consider the probability density function (11) for
the Schrödinger equation (1), that is

ρk(q,t) = 1

2kk!
√

π
×
√

	0 R(t) × exp

(
−
(√

	0 R(t)q
)2
)

× H 2
k

(√
	0 R(t)q

)
, k = 0,1,2, . . . ,

and in particular assume that

lim
t→∞ R(t) = ∞,

which can be easily verified for the Caldirola–Kanai oscillator. Then, we claim that, for each fixed
k = 0,1,2, . . . , the probability densities ρk(q,t), considered as functions of a single variable q, with
parameter t > 0, form a delta-convergent sequence, that is

lim
t−>∞ ρk(q,t) = δ(q). (67)

Indeed, since R(t) > 0 and ρk(q,t) are non-negative functions, even with respect to q variable, then
by substitution ξ = √

	0 R(t)q, one has∫ ∞

−∞
ρk(q,t)dq = lim

M−>∞

∫ M

−M
ρk(q,t)dq = lim

M−>∞
1

2kk!
√

π

∫ M
√

	0 R(t)

−M
√

	0 R(t)
exp(−ξ 2)H 2

k (ξ )dξ = 1,

(68)

for any t and each k, as consequence of the well known integral
∫∞
−∞ exp(−ξ 2)H 2

k (ξ )dξ = 2kk!
√

π.

Thus , for any M > 0, one has
∫ M
−M ρk(q,t)dq ≤ ∫∞

−∞ ρk(q,t)dq = 1, which shows that the integral∫ M
−M ρk(q,t)dq is bounded by a constant independent on M and t. On the other hand, for any M > 0

and each k = 0,1,2, . . . ,

lim
t−>∞

∫ M

−M
ρk(q,t)dq = lim

t−>∞
1

2kk!
√

π

∫ M
√

	0 R(t)

−M
√

	0 R(t)
exp(−ξ 2)H 2

k (ξ )dξ = 1, (69)

and since ∫ ∞

−∞
ρk(q,t)dq =

∫ −M

−∞
ρk(q,t)dq +

∫ M

−M
ρk(q,t)dq +

∫ ∞

M
ρk(q,t)dq = 1

one has

lim
t−>∞

∫ −M

−∞
ρk(q,t)dq = 0 and lim

t−>∞

∫ ∞

M
ρk(q,t)dq = 0. (70)

Then, according to the definition of delta-convergent sequence, see Ref. 17, the result (67) follows.
Another approach to see that ρk(q,t) converges to Dirac delta is to show that,

lim
t−>∞

∫ ∞

−∞
ρk(q,t) f (q)dq = f (0), (71)

for test functions f on R, (infinitely differentiable function vanishing outside of some bounded
interval). In fact, using that (68) holds for every t, one can write∫ ∞

−∞
ρk(q,t) f (q)dq − f (0) =

∫ ∞

−∞
ρk(q,t)[ f (q) − f (0)]dq.

Then, if [−M,M] contains the support of f, that is f (q) = 0 for |q| ≥ M , one has

|
∫ ∞

−∞
ρk(q,t) f (q)dq − f (0) | ≤ | f (0) |

∫ −M

−∞
ρk(q,t)dq

+
∫ M

−M
ρk(q,t) | f (q) − f (0) | dq + | f (0) |

∫ ∞

M
ρk(q,t)dq,
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where by (70),

lim
t−>∞ | f (0) |

∫ −M

−∞
ρk(q,t)dq = 0, lim

t−>∞ | f (0) |
∫ ∞

M
ρk(q,t)dq = 0. (72)

Therefore, we need only to show that

lim
t−>∞

∫ M

−M
ρk(q,t) | f (q) − f (0) | dq = 0. (73)

By the mean-value theorem, one has | f (q) − f (0) |≤ max | f ′(q)||q|, and thus∫ M

−M
ρk(q,t) | f (q) − f (0) | dq ≤ max | f ′(q)|

∫ M

−M
|q|ρk(q,t)dq = 2 max | f ′(q)|

∫ M

0
q ρk(q,t)dq.

To evaluate the last integral one can write explicitly:∫ M

0
q ρk(q,t)dq = 1

2kk!
√

π

∫ M

0

√
	0 R(t) q exp

(
−
(√

	0 R(t)q
)2
)

H 2
k

(√
	0 R(t)q

)
dq

=
(

1

2kk!
√

π

)
1√

	0 R(t)

∫ M
√

	0 R(t)

0
ξ exp(−ξ 2)H 2

k (ξ )dξ.

Thus, it is not difficult to see that limt−>∞
∫ M

0 q ρk(q,t)dq = 0, from which (73) follows. Finally,
from (72) and (73) the proof of (71) is done.

VII. CONCLUSION

In the present paper, we have described time variable Madelung fluid and its linearization in
terms of time variable linear Schrödinger equation. Our model, as descriptive of dissipative quantum
fluid, admits exact solution for specific time-dependent systems, like the harmonic oscillator with
time-dependent frequency and mass. In this case, exact time evolution has been described in terms of
solutions for the corresponding damped classical oscillator. In particular, for the damping simulated
by an exponentially growing mass (the Caldirola–Kanai model), it was shown that the quantum
damping squeezes the density function of the fluid and leads to Dirac-delta function. This can have
some implications in quantum cosmology. In fact, if �(q,t) is a solution of the Caldirola–Kanai
oscillator for a damped system

i�
∂�

∂t
= −�

2

2
e−γ t ∂

2�

∂q2
+ 1

2
ω2

0eγ t q2�,

then �(q,t) = �∗(q, − t), where (∗) denotes complex conjugation, is a solution of the related
dual amplified system:

i�
∂�

∂t
= −�

2

2
eγ t ∂

2�

∂q2
+ 1

2
ω2

0e−γ t q2�.

Hence, knowing that the solution �(q,t) of the Caldirola–Kanai model has merging zeros and
describes collapse of the wave function to Dirac-delta function at time infinity, leads to possible
interpretation of the solution �∗(q, − t) for the dual system. Namely, we will have expanding
wave function with creation of zeros as point particles from initial singularity at time zero. And
this evolution simulates quantum mechanism similar to creation of expanding Universe from initial
singularity in Big-Bang cosmology.

Finally, we note that by our results it is possible to find explicit exact solutions to a wide class of
exactly solvable dissipative quantum fluids and complex Schrödinger–Burgers equations. For this we
can use our recent work on exactly solvable dissipative systems, such as quantum Sturm–Liouville
problems (Ref. 9). Then, it is possible also to describe the dynamics of the zeros and poles in the
corresponding dissipative linear and nonlinear systems. These questions are under investigation now.
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