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RESOLUTIONS IN COTORSION THEORIES

KAREN AKINCI AND RAFAIL ALIZADE

Abstract. We consider the λ- (µ−) and λ- (µ-) dimensions of modules taken under a
cotorsion theory (F , C) satisfying the Hereditary Condition, and establish some inequal-
ities between the dimensions of the modules of a short exact sequence, not necessarily
Hom (F ,−) exact. We investigate the question of whether the property of having a (spe-
cial) F - or C-resolution of length n is resolving, closed under extensions or coresolving and
establish some inequalities connecting the λ- (µ−) and λ- (µ-) dimensions of modules in
a short exact sequence.

1. Introduction

Throughout a module will mean a unitary left R-module over an arbitrary but fixed ring
R with identity.

A cotorsion theory (see [8] ) is a pair of classes of modules (F , C) such that

F =⊥ C =
{

F |Ext1 (F,C) = 0 for all C ∈ C
}

and

C = F⊥=
{

C|Ext1 (F,C) = 0 for all F ∈ F
}

.

A partial left F-resolution (or partial F-projective resolution) of a module M of length

n is a complex Fn
dn→ Fn−1 → . . . → F1

d1→ F0

d0→ M → 0 with each Fi ∈ F , which is
Hom (F,−) exact for every F ∈ F . Similarly a partial right C-resolution of a module M of

length n is a complex 0 → M
e0→ C0

e1→ C1 → . . . → Cn−1

en→ Cn with each Ci ∈ C, which is
Hom (−, C) exact for every C ∈ C. Taken under a cotorsion theory (F , C), an F -resolution
is normally left and a C-resolution is normally right, this will not be stated where there
is no danger of ambiguity. If Ker di ∈ C for all i, then the partial F -resolution is called
special and similarly the partial C-resolution above is special if Coker ei ∈ F for all i.

Definition 1.1. The λ-dimension (λ-dimension) of M is defined as follows: λ (M) =

n (λ (M) = n) if there is a partial F -resolution (special partial F -resolution) Fn
dn−→

Fn−1 −→ . . . −→ F1

d1−→ F0

d0−→ M −→ 0 of M of length n and if there is no longer
such complex. If there is no partial F -resolution (special partial F -resolution) then we say
that λ (M) = −1 (λ (M) = −1), and if there exists a partial F -resolution (special partial
F -resolution) for every n ≥ 0 we say that λ (M) = ∞ (λ (M) = ∞). The partial (special

Key words and phrases. Cotorsion Theory, Hereditary Condition, Special left F -resolution, Special
right C-resolution, λ-, µ−, λ-, µ- dimensions.
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2 KAREN AKINCI AND RAFAIL ALIZADE

partial) C-resolution and µ-dimension (µ-dimension) for a class of C modules are defined
dually.

For every F ∈ F we have special F -resolution . . . → 0 → . . . → 0 → F→F→0, so
λ (F ) = λ (F ) = ∞. Similarly µ (C) = µ (C) = ∞ for every C ∈ C.

We study the notions of λ-dimension (and µ-dimension) when (F , C) is a cotorsion theory
satisfying the Hereditary Condition (HC) (see [3]), that is, Ext2 (F,C) = 0 for every F ∈ F
and C ∈ C, or equivalently, F is resolving, or C is coresolving. Recall that a class A of
modules containing all projective (injective) modules is called resolving (coresolving) if for
every short exact sequence of modules 0 → A → B → C → 0 the condition B,C ∈ A
(A,B ∈ A) implies A ∈ A (C ∈ A).

The following example of a cotorsion theory not satisfying HC is given in the proof of
Proposition 3.6 in [4]. Recall that a module C is called weakly cotorsion if it is cotorsion
in the Matlis sense, that is, Ext1 (Q,C) = 0 (where Q is the field of fractions of R) (see
[7]), and a module F is strongly flat if Ext1(F,C) = 0 for all weakly cotorsion modules
C. Let R be a valuation domain which is not a Matlis domain, i.e. pr. dim Q > 1 and let
0 → H → F → Q → 0 be a free presentation of Q. Then F and Q are strongly flat but
H is not (see the proof of Prop. 3.6 in [4]). So the cotorsion theory (SF ,WC), where SF
is the class of strongly flat modules and WC is the class of the weakly cotorsion modules,
does not satisfy HC.

2. λ- and µ-dimensions

The following theorem is similar to Theorem 8.6.14 of [5] where the exact sequence
0 → M ′ → M → M ′′ → 0 is Hom (F ,−) exact. We can remove this condition and prove
the stronger case for any cotorsion theory (F , C) that satisfies HC.

Theorem 2.1. If the cotorsion theory (F , C) satisfies HC and 0 → M ′ → M → M ′′ → 0
is exact then λ (M) ≥ min

(

λ (M ′) , λ (M ′′)
)

.

Proof. Let min
(

λ (M ′) , λ (M ′′)
)

= n, by induction on n we will prove that λ (M) ≥ n. For
n = −1 there is nothing to prove. If n = 0, then both M ′ andM ′′ have special F -precovers.
By Theorem 3.1 of [1], M also has a special F -precover, so λ (M) ≥ 0. Assume that for
all n ≤ k the inequality holds and let n = k + 1. Given λ (M ′) , λ (M ′′) ≥ k + 1, then

there are special F -resolutions: F ′

k

d′
k−→ F ′

k−1
−→ . . . −→ F ′

1

d′
1−→ F ′

0

f
−→ M ′ −→ 0 and

F ′′

k

d′′
k−→ F ′′

k−1 −→ . . . −→ F ′′

1

d′′
1−→ F ′′

0

g
−→ M ′′ −→ 0. By the proof of Theorem 3.1 in [1] we

have the following diagram with exact rows

0 −→ F ′

0 −→ F0 −→ F ′′

0 −→ 0
↓f ↓e ||

0 −→ M ′ −→ X −→ F ′′

0 −→ 0
|| ↓h ↓g

0 −→ M ′ −→ M −→ M ′′ −→ 0
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RESOLUTIONS IN COTORSION THEORIES 3

From this diagram we obtain the following commutative diagram whose columns and
rows are exact by the 3× 3 Lemma.

0 0 0
↓ ↓ ↓

0 −→ C ′

0 −→ C0 −→ C ′′

0 −→ 0
↓ ↓v ↓

0 −→ F ′

0 −→ F0 −→ F ′′

0 −→ 0
↓f ↓h◦e ↓g

0 −→ M ′ −→ M −→ M ′′ −→ 0
↓ ↓ ↓
0 0 0

where C ′

0 = Ker f ∈ C and C ′′

0 = Ker g ∈ C. This means C0 = Ker (h ◦ e) ∈ C also. Since
F ′

0, F
′′

0 ∈ F we have that F0 ∈ F also. For C ′

0 and C ′′

0 there are special F -resolutions:

F ′

k

d′
k−→ F ′

k−1
−→ . . . −→ F ′

1 −→ C ′

0 −→ 0 and F ′′

k

d′′
k−→ F ′′

k−1
−→ . . . −→ F ′′

1 −→ C ′′

0 −→ 0,

so λ (C ′

0) ≥ k and λ (C ′′

0 ) ≥ k, and by the inductive assumption λ (C0) ≥ k. That

is, C0 has a special F -resolution Fk −→ Fk−1 −→ . . . −→ F1

u
−→ C0 −→ 0. Then

Fk −→ Fk−1 −→ . . . −→ F1

v◦u
−→ F0 −→ M −→ 0, where v : C0 → F0 is the inclusion map,

gives a special F -resolution of M , that is λ (M) ≥ k + 1 as required. �

The following theorem shows that if λ (M) = n > k ≥ 0 then every special F -resolution
of length k can be extended to a special F -resolution of length n. Meaning that the
λ-dimension of a module M does not depend on the choice of the special F -resolution.
The analogous result for F -resolutions was proved in [5] (Prop 8.6.6).

Theorem 2.2. If the cotorsion theory (F , C) satisfies HC, λ (M) ≥ n > k ≥ 0 and

Fk
dk−→ Fk−1 −→ . . . −→ F1

d1−→ F0

d0−→ M −→ 0 is a partial special left F-resolution of
length k of M , then λ (Lk) ≥ n−k−1 where Lk = Ker dk ∈ C. In particular, if λ (M) = n,
then λ (Lk) = n− k − 1.

Proof. This theorem is again proven by induction on k. For k = 0, applying Theorem
8.6.16 of [5], to the exact sequence 0 → L0 → F0 → M → 0, we see that λ (L0) ≥
min

(

λ (F0) , λ (M)− 1
)

= λ (M) − 1 ≥ n − 0 − 1. Assume that λ (Lk) ≥ n − k − 1.
Applying Theorem 8.6.16. of [5] to the exact sequence 0 → Lk+1 → Fk+1 → Lk → 0, we
get λ (Lk+1) ≥ min

(

λ (Fk+1) , λ (Lk)− 1
)

= λ (Lk)− 1 ≥ n− k − 1− 1 = n− (k + 1)− 1.

Now suppose that λ (M) = n, λ (Lk) = s and let Gs → Gs−1 → ... → G1 → Lk → 0
be a special F -resolution of Lk. Then Gs → ... → G1 → Fk → ... → F0 → M → 0 is a
special F -resolution of M , so n = λ (M) ≥ s + k + 1. Therefore, λ (Lk) = s ≤ n − k − 1.
On the other hand s ≥ n−k−1, so we see that equality holds and λ (Lk) = n−k−1. �

In the case λ (M) = ∞ we have the following corollary.
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4 KAREN AKINCI AND RAFAIL ALIZADE

Corollary 2.3. If the cotorsion theory (F , C) satisfies HC and λ (M) = ∞ then there is

an infinite special F-resolution . . . −→ Fn
dn−→ Fn−1 −→ . . . −→ F1

d1−→ F0

d0−→ M −→ 0
of M .

Proof. Since λ (M) ≥ 0, there is a special F -precover F0

f0
−→ M −→ 0 ofM . Since λ (M) ≥

1, λ (Ker f0) ≥ 0 by Theorem 2.2, so there is a special F -precover F1

f1
−→ Ker f0 −→ 0

of Ker f0. Now λ (M) ≥ 2, therefore λ (Ker f0) ≥ 0 and Ker f1 has a special F -precover.
Continuing in this way an infinite special F -resolution can be constructed for M . �

We would like to give the following result (which follows immediately from Theorem
8.6.16 in [5]) in connection with Theorem 3.8 of [1]. Recall that a cotorsion theory (F , C)
is said to satisfy the extended hereditary condition (EHC) if it satisfies HC, gl. dimR < ∞
and every module from C has a special F -precover (or equivalently, every module from F
has a special C-preenvelope) (see [1]). Here the given condition that EHC should hold can
now be replaced by the condition that λ (M ′′) ≥ 1.

Corollary 2.4. If the cotorsion theory (F , C) satisfies HC and in the short exact sequence
0 → M ′ → M → M ′′ → 0, M has a special F-precover and λ (M ′′) ≥ 1, then M ′ has a
special F-precover.

Now we study the case when every module from C has a special F -precover.

Lemma 2.5. If every module from C has a special F-precover, then for every module M

either λ (M) = −1 or λ (M) = ∞. In particular, λ (C) = ∞ for every C from C.

Proof. If λ (M) 6= −1, i. e. M has a special F -precover 0 → C0 → F0 → M → 0, then C0

has a special F -precover 0 → C1 → F1 → C0 → 0 and so on, Cn has a special F -precover
0 → Cn+1 → Fn+1 → Cn → 0. Yoneda product of these short exact sequences gives an
infinite special F -resolution

. . . → Fn→Fn−1 → . . . → F1→F0→M → 0

of M . So λ (C) = ∞. The second statement is obvious. �

Proposition 2.6. If the cotorsion theory (F , C) satisfies HC and every module from C has
a special F-precover, then for every module M with finite injective dimension, λ (M) = ∞.

Proof. Let inj. dimM = n and

0 −→ M −→ I0 −→ . . . −→ In−1 −→ In −→ 0

be an injective resolution of M . This sequence can be represented as an Yoneda product
of short exact sequences

0 −→ M −→ I0 −→ K0 −→ 0
0 −→ K0 −→ I1 −→ K1 −→ 0

...
...

...
0 −→ Kn−3 −→ In−2 −→ Kn−2 −→ 0
0 −→ Kn−2 −→ In−1 −→ In −→ 0
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RESOLUTIONS IN COTORSION THEORIES 5

Since λ (In−1) = λ (In) = ∞, applying Corollary 2.4 to the last row we obtain that Kn−2

has a special F -precover and by Lemma 2.5 λ (Kn−2) = ∞. Similarly Corollary 2.4 and
Lemma 2.5 gives λ (Kn−3) = ∞. Continuing in this way we see that λ (M) = ∞. �

The dual results hold for µ-dimensions.
The following corollary of 2.6 gives an improvement of Proposition 3.7 in [1].

Corollary 2.7. If the cotorsion theory (F , C) satisfies EHC, then λ (M) = µ (M) = ∞
for every module M .

Lemma 2.8. If the cotorsion theory (F , C) satisfies HC, then Extn (F,C) = 0 for every
F ∈ F , C ∈ C and n ≥ 1.

Proof. Let C ∈ C. By induction on n we prove that Extn (F,C) = 0 for every F ∈ F . For
n = 1, 2 it satisfies by the definitions. Let n ≥ 3 and suppose that the equality satisfies for
every k < n and let F ∈ F . Take any short exact sequence 0 → A → P → F → 0 with
projective P . Then A ∈ F since (F , C) satisfies HC. Therefore from the exact sequence

. . . −→ Extn−1(A,C) −→ Extn(F,C) −→ Extn(P,C) −→ . . .

we conclude that Extn(F,C) = 0. �

Theorem 2.9. Suppose that the cotorsion theory (F , C) satisfies HC and gl. dimR = n <

∞. If λ (M) ≥ n− 1 (λ (M) ≥ n− 1) , then λ (M) = ∞ (λ (M) = ∞).

Proof. Suppose that λ (M) ≥ n−1, i.e. we have a partial F -resolution Fn−1

dn−1

−→ Fn−2 −→

. . . −→ F1

d1−→ F0

d0−→ M −→ 0 with each Fi ∈ F . Then we have the following short exact
sequences:

0 −→ Kn−1 −→ Fn−1 −→ Kn−2 −→ 0
0 −→ Kn−2 −→ Fn−2 −→ Kn−3 −→ 0

...
...

...
0 −→ K1 −→ F1 −→ K0 −→ 0
0 −→ K0 −→ F0 −→ M −→ 0

where Ki = Ker di for i = 0, 1, 2, . . . , n− 1. For every C ∈ C we have the following exact
sequences:

Ext1(Fn−1, C) −→ Ext1(Kn−1, C) −→ Ext2(Kn−2, C) −→ Ext2(Fn−1, C)
Ext2(Fn−2, C) −→ Ext2(Kn−2, C) −→ Ext3(Kn−3, C) −→ Ext3(Fn−2, C)

...
...

...
Extn−1(F1, C) −→ Extn−1(K1, C) −→ Extn(K0, C) −→ Extn(F1, C)
Extn(F0, C) −→ Extn(K0, C) −→ Extn+1(M,C) −→ Extn+1(F0, C)

Since Ext1(Fn−1, C) = Ext2(Fn−1, C) = Ext2(Fn−2, C) = Ext3(Fn−2, C) = . . . = Extn(F0, C) =
Extn+1(F0, C) = 0 we have the isomorphisms

Ext1(Kn−1, C) ∼= Ext2(Kn−2, C) ∼= Ext3(Kn−3, C) ∼= . . . ∼= Extn−1(K1, C) ∼=

∼= Extn(K0, C) ∼= Extn+1(M,C).
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6 KAREN AKINCI AND RAFAIL ALIZADE

But gl. dimR = n , so Ext1(Kn−1, C) ∼= Extn+1(M,C) ∼= 0. Therefore Kn−1 ∈ F . So we
have an infinite F -resolution of M :

. . .→0 −→ Kn−1−→Fn−1−→ . . . −→ F1

d1−→ F0

d0−→ M −→ 0

The proof of the equality λ (M) = ∞ is similar. �

The dual results hold for for the µ− and µ− dimensions of modules.

3. Relations between λ- and λ-dimensions, and µ- and µ-dimensions

In this section we aim to give inequalities between the λ- and λ-dimensions of modules in
a short exact sequence. These inequalities are similar to the inequalities involving only the
λ-dimensions, or the λ-dimensions in [6]. We use Theorem 3.1 of [1] to prove the following
theorem which is similar to Theorem 8.6.9 of [5]. In our case the complex is not necessarily
Hom (F ,−) exact, but the given cotorsion theory satisfies HC.

Theorem 3.1. If the cotorsion theory (F , C) satisfies HC and 0 → M ′ → M → M ′′ → 0
is exact then:

(1) λ (M) ≥ min
(

λ (M ′) , λ (M ′′)
)

,

(2) λ (M ′) ≥ min
(

λ (M) , λ (M ′′)− 1
)

.

Proof. (1) We modify the proof of Theorem 2.1 as follows. Let
min

(

λ (M ′) , λ (M ′′)
)

= n. By induction on n we prove that λ (M) ≥ n. Again for n = −1
there is nothing to prove. Assume that for n ≤ k the inequality holds and let n = k + 1.
There is a special F -resolution F ′

k → F ′

k−1
→ . . . → F ′

1 → F ′

0 → M ′ → 0 for M ′ and
an F -resolution F ′′

k → F ′′

k−1
→ . . . → F ′′

1 → F ′′

0 → M ′′ → 0 for M ′′. For every F ∈ F
applying Hom(F,−) to the commutative exact diagram:

0 0
↓ ↓
C ′′

0 = C ′′

0

↓ ↓
0 −→ M ′ −→ X −→ F ′′

0 −→ 0
|| ↓h ↓g

0 −→ M ′ −→ M −→ M ′′ −→ 0
↓ ↓
0 0

we have the following diagram with exact rows:

0 −→ Hom(F,M ′) −→ Hom(F,X) −→ Hom(F, F ′′) −→ Ext1(F,M ′)
|| ↓h∗

↓g∗ ||
0 −→ Hom(F,M ′) −→ Hom(F,M) −→ Hom(F,M ′′) −→ Ext1(F,M ′)

Since g∗ is epic, h∗ is also epic by the Five Lemma. Furthermore since Ker e ∼= Ker f =
C ′

0 ∈ C, applying Hom (F,−) to the exact sequence 0 → C ′

0 −→ F0

e
−→ X −→ 0 we obtain

the following exact sequence
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RESOLUTIONS IN COTORSION THEORIES 7

. . . −→ Hom (F, F0)
e∗−→ Hom (F,X) −→ Ext1 (F,C ′

0) = 0

from which we conclude that e∗ is also epic. Then (h ◦ e)
∗
= h∗ ◦ e∗ is epic and therefore

0 −→ C0 −→ F0

h◦e
−→ M −→ 0 is Hom (F ,−) exact.

Here F ′

0 and F ′′

0 in F gives us that F0 ∈ F . Now if k = 0 then F0

h◦e
−→ M is an F -

precover of M , so λ (M) ≥ 0. If k ≥ 1, then min
(

λ (C ′

0) , λ (C
′′

0 )
)

≥ k, and so by the
inductive assumption λ (C0) ≥ k, that is, C0 has a F -resolution Fk −→ Fk−1 −→ . . . −→

F1

u
−→ C0 −→ 0, therefore Fk −→ Fk−1 −→ . . . −→ F1

v◦u
−→ F0 −→ M −→ 0 forms an

F -resolution of M . That is, λ (M) ≥ k + 1.
(2) Let min

(

λ (M) , λ (M ′′)− 1
)

= n. Then there is an exact sequence, 0 → C ′′

0 →

F ′′

0 → M ′′

0 → 0 with F ′′

0 ∈ F and C ′′

0 ∈ C and λ (C ′′

0 ) ≥ n. We have an exact commutative
diagram:

0 0
↓ ↓
C ′′

0 = C ′′

0

↓ ↓
0 −→ M ′ −→ X −→ F ′′

0 −→ 0
|| ↓ ↓

0 −→ M ′ −→ M −→ M ′′ −→ 0
↓ ↓
0 0

By 1) we have that λ (X) ≥ n. Then we have a Hom(F ,−) exact sequence 0 → A0 →
F0 → X → 0 with F0 ∈ F and λ (A0) ≥ n − 1. From this we get the following exact
commutative diagram;

0 0
↓ ↓
A0 = A0

↓ ↓
0 −→ F ′

0 −→ F0 −→ F ′′

0 −→ 0
↓ ↓ ||

0 −→ M ′ −→ X −→ F ′′

0 −→ 0
↓ ↓
0 0

One can easily verify by means of the Five Lemma (using the techniques of the proof
of the first part), that the sequence 0 → A0 → F ′

0 → M ′ → 0 is Hom (F ,−) exact. F0,
F ′′

0 ∈ F means that because of HC, F ′

0 ∈ F . Now if F ′

n−1 → . . . → F ′

1 → A0 → 0 is a left
F -resolution of A0, then F ′

n−1 → . . . → F ′

1 → F0 → M ′ → 0 is a left F -resolution of M ′.
Therefore λ (M ′) ≥ n. �
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8 KAREN AKINCI AND RAFAIL ALIZADE

The dual results for µ- and µ-dimensions derived in a similar way and we state the
theorem without proof.

Theorem 3.2. If the cotorsion theory (F , C) satisfies HC and 0 → M ′ → M → M ′′ → 0
is exact then;
1) µ (M) ≥ min (µ (M ′) , µ (M ′′)),
2) µ (M ′′) ≥ min (µ (M ′)− 1, µ (M)).

References

[1] K. D. Akıncı and R. Alizade, Special precovers in cotorsion theories, Proc. Edin. Math. Soc. 45:2
(2002), 411–420.

[2] , Cotorsion theories and resolutions, International Congress of Math., Abstracts of Short Com-
munications and Poster Sessions (2002), 9.

[3] R. Alizade, Inheritance of the properties of coprojectivity and coinjectivity for certain proper
classes,(Russian), Izv. Akad. Nauk Azerbaijan. SSR Ser. Fiz.-Tekhn. Mat. Nauk 4:5 (1983), 3–7.

[4] S. Bazzoni and L. Salce, On strongly flat modules over integral domains, Rocky Mountan J. Math. 34:2
(2004), 417–439.

[5] E. Enochs and O. M. G. Jenda, Relative homological algebra, Walter de Gruyter-New York, 2000.
[6] E.Enochs, O. M. G. Jenda, and L. Oyonarte, λ and µ-Dimensions of Modules, Rend. Sem. Mat. Univ.

Padova 105 (2001), 111–123.
[7] E.Matlis, Torsion-Free Modules, Chicago Lectures in Mathematics, University of Chicago Press,

Chicago-London, 1972.
[8] L.Salce, Cotorsion theories for abelian groups, Symp. Math. 23 (1972), 12–32.
[9] J.Xu, Flat covers of modules, Lecture Notes in Mathematics, 1634, Springer Verlag, 1996.

e-mail:karenakinci@yahoo.co.uk

Izmir Institute of Technology,, Department of Mathematics,, Gülbahçeköyü, 35437,
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