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Abstract

This paper focuses on the statistical analysis of an adaptive real-time feedback schedul-
ing technique based on imprecise computation. We consider two-version tasks made
of a mandatory and an optional part to be scheduled according to a feedback control
rate-monotonic algorithm. A Proportional-Integral-Derivative (PID) control action
provides the feedback strategy for deciding about the execution or rejection of the
optional sub-tasks. By modelling the task execution times as random variables, we
compute the probability density of the CPU utilization and derive conditions on PID
parameters guaranteeing the stability of the overall system around a desired level of
CPU utilization. This allows us to highlight the tasks statistics and the scheduling
parameters that affect critically stability. The analysis is developed by first exploiting
a number of simplifying assumptions that are progressively removed. The main results
are also demonstrated through monte-carlo simulations of the scheduling algorithm.

1 This work has been financially supported by the cooperation project between Izmir Institute of Tech-
nology and Institute Áeronautique et Spatial.
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1. Introduction
Real-Time (RT) scheduling theory has traditionally focused on the develop-
ment of algorithms for analyzing feasibility and for producing schedules at
run-time. This traditional perspective of RT scheduling theory has well served
the safety-critical embedded systems community. On the other hand, as a
consequence of this behavior, RT systems are designed to have spare capac-
ity under normal operation. There are several reasons why such a restricted
perspective is proving to be increasingly inadequate for many application de-
mands. Most real-time scheduling results assume that the workload and the
real-time environment are relatively static and completely characterizable at
the design stage. Run-time scheduling algorithms are typically designed to be
correct only on feasible systems (i.e. systems for which it is indeed possible to
always meet all deadlines); on infeasible systems, the performance of such al-
gorithms may be unacceptably poor. A good example is the earliest-deadline-
first algorithm, which is optimal on uniprocessors under non-overload condi-
tions, but has been observed to perform miserably upon overload. According
to [3], [4], [5], [13], the next generation of real-time systems will be more
complex and capable of adaptivity as well as of meeting time constraints for
mission and safety critical functions. A challenge of the current research is to
make use of this spare capacity, in order to satisfy requirements for adaptivity
in the system.

Adaptivity can be implemented by means of optional computations, which
can be guaranteed at run-time by the use of flexible scheduling. Adaptive
scheduling techniques, most of which are based on imprecise computation
techniques, such as feedback control scheduling, have therefore been announced



for systems with unpredictable characteristic [3], [4], [12], [13]. Although
feedback control scheduling has been considered in many works so far, many
questions are still open. The most important one is how to systematically tune
the controller parameters in order to guarantee the stability of the overall sys-
tem. In this work we consider a feedback control rate-monotonic scheduling
(FC-RMS) system and present a stability analysis that highlights the main fac-
tors influencing the tuning of the controller parameters.

In section 2.1, imprecise computation models are briefly summarized. In
particular we focus on two-version tasks made by a mandatory and an op-
tional part. In section 2.2 and 2.3, the workload model and the FC-RMS are
introduced. In FC-RMS, we consider the use of PID controllers for two rea-
sons. First, their implementation is simple enough to guarantee acceptable
overhead introduced by the computation of the control action. Second, as al-
ready remarked in [4], [5] and [13], a PID control structure is flexible enough
to stabilize the system. On the other hand, in order to account for the unpre-
dictability of task durations, we model them as random variables over which
the scheduler has no control. The FC-RMS scheduler can only decide how
many optional sub-tasks will be executed in a control period and this process
will be modelled by the proper use of quantizer functions.

In section 3, we show how to characterize the statistical properties of all
the signals in the control loop. In particular, the application of the Central
Limit Theorem allows to model the CPU utilization as a gaussian random
variable. In section 4, by neglecting the effect of the quantizer, (i.e. when
the quantizer function is replaced by a linear one which corresponds assuming
that fractions of optional sub-tasks can be executed) we show rigorously the
relations linking task statistics to the choice of PID parameters guaranteeing
stability. This is done by resorting first to the state-space representation of the
closed-loop system and then by analyzing stability of the mean state. Finally,
in section 5 we discuss the effect of the quantizer on the dynamics of the
mean state. We highlight that, depending on the task statistics, two extreme
behaviors can be noticed: pure quantization effect and no quantization effect.
In such cases, by considering an integral control action we derive tight upper
bounds to the mean variation, in terms of the sampling time, the quantization
step and the task statistics. Once more, these relations provide useful insight
for the tuning of the controller gain.

All the theoretical results presented in the paper are demonstrated and com-
plemented by monte-carlo simulations of the FC-RMS scheme.

2. Feedback Control Rate-Monotonic Scheduling Architecture

In this section, we present Feedback Control RM scheduling, which integrates
feedback control and rate-monotonic scheduling. This is done in two steps.
First, we review imprecise computation models underlying feedback control
scheduling. Then, the task model and workload model used in the experi-
ments will be illustrated and finally the FC-RMS scheme will be introduced



comprehensively.

2.1. Imprecise Computations Revisited

Undesirable effects of timing faults are tolerable as long as all the important
tasks are completed in time. Therefore, rather than letting the operating system
treat all tasks equally, the programmer may identify some tasks as mandatory,
meaning that they must meet their deadlines, and some less important tasks as
optional, meaning that these tasks can be skipped to prevent possible timing
faults. The result produced by a task when it is entirely completed is the opti-
mal result. If the task is terminated before completion, the intermediate result
will be called imprecise. For instance, in radar signal processing, computation
of a new estimate of the noise level in the received signal can be skipped and
an old estimate can be used for one or a few sampling period(s) during over-
load. Imprecise computations include a number of implementation techniques
such as milestone, sieve, and multiple-version that are presented thoroughly
in [1] and [2]. In this work, a two-version implementation is considered. This
means that each task is composed of a mandatory and an optional sub-task.

In order to ensure that imprecise computation works properly, all the manda-
tory sub-tasks should have bounded resource and limited processing time re-
quirements. Moreover, mandatory sub-tasks must be allocated sufficient pro-
cessor time so as to complete by their deadlines. Then, the system can use
leftover processor time to complete as many optional sub-tasks as possible.
For guaranteed performance, a conservative scheduling policy can be used
to schedule mandatory sub-tasks. The scheduling of optional sub-tasks for
optimal processor use calls for a more dynamic policy. This work proposes
a rate-monotonic scheduler for mandatory sub-tasks and a feedback control
scheduling technique for optional sub-tasks.

2.2. Task Model and Workload

In order to characterize imprecise computations, classical task model of real-
time systems can be used with a few minor additions. We consider a set of
tasksTasks = {τ1, τ2, ..., τq} where each task is characterized by some pa-
rameters such as deadlinedi (this is considered as periodTi if the task is
periodic), processing timeCi and prioritypi. Each task is logically decom-
posed into two sub-tasks, the mandatory partMi and the optional partOi.
The processing times ofMi andOi areCi,m andCi,o, respectively. Thus,
Ci,m + Ci,o = Ci , i ∈ 1, . . . , q. The classical hard real-time model is a
special case of imprecise computation model whereCi,o ≡ 0. Similarly, the
soft real-time model is a special case where all tasks are completely optional,
which means thatCi,m ≡ 0. We assume that all tasks are periodic and the
execution timesCi,m andCi,o are random variables with finite average and
variance.

In all the experiments, we used the task parameters given in table 1.



q 15 (All periodic tasks)
Ci,m andCi,o U [150µs, 250µs]
Ti∈{1,...,q} {15, 2, 14, 3, 13, 4, 12, 5, 11, 6, 10, 7, 9, 8, 8}ms

T 100 ms
Kp,Ki,Kd, IW , yref 0.1, 2, 0.1, 100, 0.7

Table 1: Workload model and system parameters used in the experiments. The uni-
form ditribution is denoted withU

Figure 1: Feedback Control Rate-Monotonic Scheduling

2.3. Feedback Control Rate-Monotonic Scheduling
Rate-monotonic is a static priority driven preemptive scheduling technique
that works as follows: Each task is assigned with a priority that reflects its
required frequency. The scheduler selects the task having the highest priority
among the ready tasks, and gives the CPU control to it. Rate-monotonic is
well established technique and guarantees that all the mandatory sub-tasks will
meet their deadlines as long as the processor utilization fulfills the following
bound

q∑
i=1

Ci,mfi ≤ q(21/q − 1)

wherefi = 1/Ti for periodic tasks (see [10] for further details).
On the other hand, making decision on which optional tasks or how many

optional tasks will be executed is a much more complex problem. Feedback
control scheduling is a method for solving it. It is based on classical control
theory and brings the scheduling area a new approach: closed-loop scheduling.
Algorithms like rate monotonic and earliest-deadline-first are all “open-loop”
where “open-loop” refers to the fact that once schedules are created they are
not adjusted based on continuous feedback measurements. While open-loop
scheduling algorithms can perform well in static or dynamic systems in which



Figure 2: System Model of Feedback Control RM Scheduling

the workloads can be accurately modelled, they can perform poorly in un-
predictable dynamic environments. The idea of feedback control scheduling
comes from a typical feedback control system which is composed of a con-
troller, a plant to be controlled, actuators, and sensors. In order to apply con-
trol theory to a scheduler, we have to choose the components of the scheduler
corresponding to those of a feedback control system. Some possible controlled
variables can be miss ratio (which is defined as the number of deadlines misses
divided by total number of completed tasks) or CPU utilization (which is de-
fined as the percentage of CPU busy time in a sampling period). We have
chosen CPU utilization as the controlled variable, since in hard real-time sys-
tems the miss ratio should be always kept zero. In order to keep the utilization
at a given setpoint, the manipulated variable is the percentage or number of the
optional sub-tasks to be executed. As seen in figure 1, controller receives as
input the error,UtilizationSetpoint − MeasuredCPU Utilization; pro-
cesses the error and produces a value. This value is used by the task level
controller in order to decide how many optional sub-tasks will be executed.
In order to keep the CPU overhead for computing the control action to an ac-
ceptable level, the controller output is updated at a frequency1/T , whereT
denotes the sampling period (that is equal to 100 ms in our experiments, see
table 1). In order to characterize the evaluation of the CPU utilization in a



period of timeT , the model given in figure 2 can be used to represent the sys-
tem. Lett ∈ N denote the discrete time index, i.e. the actual timet̃ can be
computed as̃t = Tt. LetN denote the total number of the tasks at timet, i.e.

N =
q∑

i=1

T

Ti
(1)

Note that, in general, the number of tasks is not an integer. However, by
choosingT � maxTi the following approximation can be used

N =
q∑

i=1

Ni =
q∑

i=1

⌈
T

Ti

⌉
(2)

whereNi = dT/Tie is the number of instances of taskτi in the period[tT, (t+
1)T ] andd·e is the ceil function returning the lowest integer upper bound to
the argument. As a rule of thumb, approximation (2) is sensible ifT is at least
an order of magnitude bigger thanmaxTi.

Let the execution times of mandatory and optional sub-tasks beCj,m and
Cj,o respectively. The total execution times of mandatory and optional parts
of one instance within a sampling periodT are given by

Ci,m,T (t) =
Ni∑
j=1

Cj,m(t) , Ci,o,T (t) =
Ni∑
j=1

Cj,o(t) (3)

The total execution time of all mandatory parts within a sampling period is

Cm(t) =
q∑

i=1

Ci,m,T (t) (4)

The total execution time of all optional parts within a sampling period de-
pends on the scheduling policy. If optional sub-tasks are scheduled accord-
ing to Sieve method, each one of them is entirely executed or rejected. We
can model this fact through the use of vectorsl(k) ∈ {0, 1}q, defined as
l(k) = [1, 1, ..., 1, 0, 0, ..., 0]T and havingk “1”s corresponding to the optional
sub-tasks to be executed. Assume that the control actionu(t) is such that the
optional sub-tasks of tasksτ1, τ2, ..., τk will be executed in the starting period
(this corresponds to setl(t) = l(k) where the vectorl(k) is obtained by quan-
tizing u(t) as explained next). Then, equation (5) gives the total execution
time of all optional parts within one sampling period, under the assumption



thatτ1,o, τ2,o, ...τq,o are ordered according to the prioritiesp1 > p2 > ... > pq.

Co(t) = ( C1,o,T (t) ... Cq,o,T (t) ) .


l1(t)
l2(t)

...
lq(t)


=

q∑
i=1

Ci,o,T (t).li(t) =
k∑

i=1

Ci,o,T (t) (5)

where clearly, in the last inequalityk is a time-varying quantity. The signal
z(t) and the CPU utilizationy(t) represented in figure 2 are given by

z(t) =
Cm(t) + Co(t)

T
, y(t) = min{1, z(t)} (6)

The error signal is the difference between requested utilization and measured
utilization.

e(t) = yref − y(t) (7)

The controller takes the error, processes it and produces a value in the range
of [0, 1]. If the controller has a PID structure, then it computesu(t) according
to the equation

u(t) = Kpe(t) +Ki

t∑
i=t−IW

e(i) +Kd(e(t)− e(t− 1)) (8)

whereIW is the time window over which to sum the errors. In other words,
only errors in the lastIW sampling periods are considered in the integral term.

The output of PID controller is then quantized by the block
∼
q(.) seen in figure

2. The quantizer function first determinesk according to the rule

k =


0 if − 1

2q ≤ u < 1
2q

1 if 1
2q ≤ u < 3

2q
...

q if 2q−1
2q ≤ u < 2q+1

2q

(9)

and then generates the vectorl(k) which determines the number of optional
sub-tasks to be executed. For instance, ifk is 3 thenl(3) = [1, 1, 1, 0, ..., 0]T
and consequently three optional sub-tasks having the highest prioritiesp1, p2

andp3 will be executed in the next sampling interval.



3. Statistical Characterization of the Signals
In order to account for the unpredictability of task durations, we model them
asindependentrandom variables with finite average and variance over which
the scheduler has no control. In fact, as it will be shown next our results will
be independent of the probability distributions describing task durations.

In the experiments, we assume that the execution times of mandatory and
optional sub-tasks are sampled from the following uniform distributions

Cj,m(t) ∼ U [aj,m, bj,m] , Cj,o(t) ∼ U [aj,o, bj,o] (10)

Then, mean and variance of the random variablesCj,m andCj,o are given by

µCj,m
=
aj,m + bj,m

2
, σ2

Cj,m
=

(bj,m − aj,m)2

12
(11)

µCj,o
=
aj,o + bj,o

2
, σ2

Cj,o
=

(bj,o − aj,o)2

12
(12)

If there is a sufficient number of mandatory sub-tasks and a sufficient number
of optional sub-tasks to be executed within a sampling period the Central Limit
Theorem (CLT) can be used [7] in order to approximate the distributions ofCm

andCo. In our setting, the total number of mandatory sub-tasksNm is equal
to N given by equation (2) and the total number of optional sub-tasks to be
executed isNo =

∑k
i=1Ni. We point out that despite the fact that CLT is an

asymptotic theorem, it provides good approximations even ifNm andNo are
low (see [7]). In our experiments, we haveNm = 238 andNo = 179 as can
be calculated from table 1. An important fact is that CLT holds even if the
task durations are not uniformly distributed. Therefore, all our results hold for
general distributions associated toCi,m andCi,o.

For a generic signalξ, we denote withfξ(ξ|l) its probability density func-
tion (PDF) for the choice ofl = l(k) at timet. Let g(µ, σ2) be the gaussian
distribution with meanµ and varianceσ2. Then, for a fixed vectorl, CLT
states thatCm andCo can be represented by

Cm ∼ fCm
(Cm|l) = g(µm, σ

2
m), µm =

q∑
i=1

Ni∑
j=1

µCj,m
, σ2

m =
q∑

i=1

Ni∑
j=1

σ2
Cj,m

(13)

Co ∼ fCo
(Co|l) = g(µo, σ

2
o), µo =

k∑
i=1

Ni∑
j=1

µCj,o
, σ2

o =
k∑

i=1

Ni∑
j=1

σ2
Cj,o

(14)

According to the scheme reported in figure 2,Ctot is the sum ofCm andCo.
Thus, in view of the statistical independence ofCm andCo, we have

Ctot ∼ fCtot
(Ctot|l) = g(µtot, σ

2
tot) = g(µm + µo, σ

2
m + σ2

o) (15)



The distribution function ofz is given by

z ∼ fz(z|l) = g(µz, σ
2
z) = g(

µm + µo

T
,
σ2

m + σ2
o

T 2
) (16)

For the distribution ofy ande, we have

y ∼ fy(y|l) =


fz(y|l) y < 1

(1−
1∫

−∞
fz(z|l)dz)δ(y − 1) y = 1

0 y > 1

(17)

e ∼ fe(e|l) =


fz(y|l) y < yref − 1

(1−
1∫

−∞
fz(z|l)dz)δ(y − yref + 1) y = yref − 1

0 y > yref − 1

(18)

Note that the blockmin(1, z) in figure 2 produces a Dirac delta function into
the distributions ofy ande (see [7]). In fact, (17) and (18) represent a truncated

gaussian distribution and the coefficientβ = 1−
1∫

−∞
fz(z|l)dz multiplying the

δ function is significantly different from zero only if the average CPU utiliza-
tion y is close to one (β represents the probability of CPU overload for a given
l). This situation is clearly seen in the left panel of figure 3 where the empirical
PDF ofe has been obtained through monte-carlo simulations of the system in
figure 2. However, when the setpoint is chosen sufficiently away from 1 and
a stabilizing controller is used, the dirac delta function disappears as shown in
the right panel of figure 3. This corresponds to remove the blockmin(1, z)
in figure 2. We highlight that this approximation is realistic since the setpoint
should be chosen pretty far away from 1 in order to prevent undesirable satura-
tion effects [4], [11]. In fact, a setpoint that is close to one may cause overload
and lead to deadline misses of mandatory sub-tasks, which is not allowed in
hard real-time systems. Hence, formula (17) and (18) can be replaced by

y ∼ fy(y|l) = g(µy, σ
2
y) = g(

µm + µo

T
,
σ2

m + σ2
o

T 2
) (19)

e ∼ fe(e|l) = g(µe, σ
2
e) = g(yref −

µm + µo

T
,
σ2

m + σ2
o

T 2
) (20)

By using the PID formula (8), the probability distribution of the PID controller
output is the gaussian function given by

u ∼ fu(u|l) = g(µu, σ
2
u) = g((Kp +KiIW )µe, (K2

p +K2
i IW + 2K2

d)σ2
e)

(21)



Figure 3: Empirical PDF of the error. Left panel: case of CPU overload. Right panel:
absence of CPU overload.

Finally, we can derive the density function ofk for a fixed vectorl(k)(t),

fk(k|l) = δ(k)

1/2q∫
−∞

fu(u|l)du+ δ(k − 1)

3/2q∫
1/2q

fu(u|l)du+ . . .

+δ(k − q)

∞∫
(2q−1)/2q

fu(u|l)du (22)

4. Design of a Stabilizing PID Controller
In this section, a stability analysis is presented by neglecting the effect of the
quantizer. The assumption that there is no quantizer corresponds to the fact
that the scheduler executes fractions of optional sub-tasks. Although the fi-
nal goal is to consider the sieve implementation method for optional sub-tasks
(which means that the sub-tasks are either executed or rejected entirely, i.e. the
quantizer is used) for sake of clarity, we first focus on a system without quanti-
zation. Then, in section 5 we generalize our results to the case of quantization
and highlight how quantization affects stability.

Note that, in absence of quantization, the total execution time of all op-
tional sub-tasks within a sampling period is given by

Co(t) = Co,tot(t) · u(t) =
q∑

i=1

Ci,o,T (t) · u(t) (23)

In other words, formula (23) replaces (5).
The analysis is first done for a purely integral control action (i.e.Kp =

Kd = 0 andKi 6= 0 in (8)), and then generalized to the case of a complete



PID controller. The reason of considering a pure integral controller is that
the integral action is sufficient to stabilize the system. On the other hand,
the proportional and derivative actions may improve the tracking performance
during the transients [8].

4.1. Stability with Integral Controller
In order to find a a stabilizing controller we first derive the state space form
of the closed-loop system. Assume thatx ∈ R is the state of the integral
controller. Hence, controller equations are,

x(t+ 1) = x(t) + e(t)

u(t) = Kix(t)

and the system equations are

y(t) =
1
T

(Cm(t) + Co,tot(t)u(t))

e(t) = −y(t) + yref (t).

The closed-loop system is therefore described by

x(t+ 1) = x(t) + yref (t)− 1
T
Cm(t)− Ki

T
x(t)Co,tot(t) (24)

By assuming thatCo,tot, Cm andyref are stationary signals, the mean state
obeys to the law

E[x(t+ 1)] = E[x(t)] + (yref −
1
T
µm)− Ki

T
E[x(t)]µo,tot (25)

Let µx(t) = E[x(t)]. Hence, we have

µx(t+ 1) = (1− Ki

T
µo,tot)µx(t) + (yref −

1
T
µm) (26)

From this equation, the equilibrium forµx can be found as

µ̄x =
T

Kiµo,tot
(yref −

1
T
µm) (27)

A classical stability criterion for discrete time linear systems [8] guarantees
that µx(t) is asymptotically stable around̄µx, if the following condition is
fulfilled:

|1− Ki

T
µo,tot| < 1 (28)



Figure 4:E[e2(t)] vs.Ki with non-quantizedu(t). Left panel: plot forKi ∈ [−1, 5],
right panel: zoom forKi ∈ [0.1, 4.3].

If prior information about the total execution time of all optional sub-tasks
is available in the formµo,tot(t) ∈ [µo,tot,min, µo,tot,max], then, for guaran-
teing the stability, the parameterKi of the integral controller must verify the
inequality

0 < Ki <
2T

µo,tot,max
(29)

Inequality (29) takes into account the worst case for stability. This result is
demonstrated in figure 4 that shows the diagram ofE[e2(t)] vs. Ki obtained
by simulations. According to (28) and the workload parameters given in table
1, the system is stable for0 < Ki < 4.17. This predicts quite accurately the
experimental results (see figure 4) showing the achievement of stability for
Ki ∈ [0, 4.3]. The main value of formula (29) is to highlight that stability
properties depend only onµo,tot andT , while other parameters are irrelevant.

Remark 1 The previous analysis provides some useful hints for the choice of
the sampling periodT . From the control side,T should be chosen as small
as possible in order to guarantee a more effective control action. However,
as remarked in Section 2.3, the computation of the control action introduces a
CPU overhead that increases asT decreases. Then, a good choice ofT results
from the trade-off between these requirements. Moreover, periodicity of the
system causes an anomaly such that if all task periods are not considerably
smaller than the sampling period (i.e.T < maxTi), different number of
tasks appears in different sampling periods and utilization becomes jittery.
This phenomenon can be avoided by imposing a lower bound to the sampling
period [12].

4.2. Stability with PID Controller
When the controller has the complete PID structure, the state equations of the
controller become



x1(t+ 1) = x1(t) + e(t) = x1(t)−
Cm

T
− Co,tot

T
u(t) + yref

x2(t+ 1) = e(t) = −Cm

T
− Co,tot

T
u(t) + yref

x3(t+ 1) = x2(t)
u(t) = Kix1(t) +Kpx2(t) +Kd(x2(t)− x3(t))

and the closed-loop system equations are[
x1(t+ 1)
x2(t+ 1)
x3(t+ 1)

]
=

 1− Co,totKi

T −Co,tot

T (Kp +Kd)
KdCo,tot

T

−Co,totKi

T −Co,tot

T (Kp +Kd)
KdCo,tot

T
0 1 0

[
x1(t)
x2(t)
x3(t)

]

+

 yref − Cm

T
yref − Cm

T
0


Letµi(t) = E[xi(t)] for i ∈ {1, 2, 3}. Then, we haveµ(t+1) = A ·µ(t) +B
where

µ(t) =

[
µ1(t)
µ2(t)
µ3(t)

]
, A =

 1− µo,totKi

T −µo,tot

T (Kp +Kd)
Kdµo,tot

T

−µo,totKi

T −µo,tot

T (Kp +Kd)
Kdµo,tot

T
0 1 0

 ,
B =

[
yref − µm

T
yref − µm

T
0

]
For stability, the following condition must be satisfied [8]:

max |eig(A)| < 1 (30)

whereeig(A) denotes the set of eigenvalues ofA. An explicit computation
shows that the eigenvalues ofA must verify the equation

λ3 + (
µo,tot

T
(Kp +Ki +Kd) + 1)λ2 + (

µo,tot

T
Kp)λ−

µo,tot

T
Kd = 0 (31)

The stability conditions onKp,Ki andKd are now more involved than in the
case of a pure integral action. However, formula (30) and (31) show that they
still depend on the sampling periodT and the total average of the execution
times of optional sub-tasksµo,tot.

5. The Effect of Quantization on the Stability
The effect of quantization on the stability will now be discussed. For con-
venience, we just consider an integral control action. As seen from figure 2,



the blockq̃(u(t)) quantizes the output of the controller and produces a value
which determines the number of optional sub-tasks to be executed. The func-
tion implemented by the quantizer is given byq̃(u) = k wherek is defined in
equation (9). When the quantizer enters the system, equation (24) becomes

x(t+ 1) = x(t) + (yref (t)− 1
T
Cm(t))− 1

T
q̃(Kix(t))Co,tot(t) (32)

Taking the means, we have

µx(t+ 1) = µx(t) + (yref −
1
T
µm)− 1

T
Ex[q̃(Kix(t))]µo,tot (33)

By using the definition of average, the mean of the quantizer output can be
expressed as a function ofµx:

E[q̂(x)](µx) =
∫ ∞

−∞
q̃(Kix)

1√
2πσ2

x

e
− |x−µx|2

2σ2
x dx (34)

Let q̂(x) = q̃(Kix). Thus, from equation (9), we have

q̂(x) =


0 if − 1

2qKi
≤ x < 1

2qKi

1 if 1
2qKi

≤ x < 3
2qKi

...
q if 2q−1

2qKi
≤ x < 2q+1

2qKi

(35)

From (34), it is obvious thatE[q̂(x)] is the convolution between̂q(x) and
a gaussian function. Asσ2

x decreases, the gaussian converges toδ(x − µx)
and thenE[q̂(x)](µx) converges tôq(µx). Figure 5 shows the mean when
σx << 1

qKi
, σx ' 1

qKi
andσx >> 1

qKi
, respectively. First, the case for

σx <<
1

qKi
will be examined. In this case,E[q̂(x)](µx) is well approximated

by q̂(x). Therefore, equation (33) becomes

µx(t+ 1) = µx(t) + (yref −
1
T
µm)− 1

T
q̂(µx(t))µo,tot (36)

In order to investigate the stability of the system described by equation (36),
we first highlight that, because of the quantized input, the best we can expect
is thatµx asymptotically lies in a bounded intervalD aroundµ̄x (whereµ̄x is
computed as in (27) for a fixed value ofyref ). The objective of the controller
is to shrinkD as much as possible. A precise result can be obtained by apply-
ing proposition 2.3 of [9], that specialized to our context, results in the next
statement.

Proposition 1 Let γ be such that the inequality|1 − Kiµo,tot

T | < γ < 1 is

verified and consider the intervalD =
{
µx ∈ R : ‖µx − µ̄x‖ ≤ µo,tot

qT (1−γ)

}



Figure 5: Computation ofE[q̃(Kix)](µx) according to (34) whenσx(t) = 1
10

1
qKi

,

σx(t) = 1
qKi

andσx(t) = 10
qKi

respectively (q = 10,Ki = 3).

whereµ̄x is computed as in (27) for a given value ofyref . Then, for allµ0 =
µx(0) there existsN > 0 such thatµx(t) ∈ D, ∀t ≥ N . Moreover, ifµ0 ∈ D,
thenµx(t) ∈ D, ∀t ≥ 0.

Let δ = µo,tot

qT (1−γ) . Whenµx remains inD, the output of the controlleru
lies within [Ki(µ̄x − δ), Ki(µ̄x + δ)]. From the equilibrium equation (27), it
can also be found that CPU utilization verifiesy ∈ [yref − 1

T µo,totδ, yref +
1
T µo,totδ]. Let us say thatδ ≤ L∆ where∆ = 1

qKi
is the quantizer’s sensitivity

andL ∈ Z+. Obviously, it is desirable to chooseKi such thatδ ≤ L∆ is
verified forL = 1. In order to keepµx within [µ̄x − L∆, µ̄x + L∆], the
following condition must be satisfied

0 < Ki <
2L

1 + L

T

µo,tot
(37)

If we chooseL = 1, then, to keepµx within the range of[µ̄x − ∆, µ̄x + ∆],
the parameterKi should be chosen as

0 < Ki <
T

µo,tot
(38)

In our experiments, according to table 1, this corresponds having0 < Ki <
2.09. WhenKi exceeds 2.09,µx becomes within the range of[µ̄x−2∆, µ̄x +
2∆] and from condition (37), forKi > 2.78, the range forµx will be [µ̄x −
3∆, µ̄x +3∆]. Note that asKi increases, alsoE[e2(t)] increases. This can be
seen from the simulations reported in figure 6.

Consider now the case whenσx is “large”, i.e. it verifiesσx ≥ 1
qKi

. From
figure 5, we have thatE[q̃(Kix)](µx) can be approximated with the function



Figure 6:E[e2(t)] vs. Ki with quantized u(t). Left panel: plot forKi ∈ [−1, 5],
right panel: plot forKi ∈ [0.1, 4].

ηµx + ξ on the interval[− 1
2qKi

, 2q+1
2qKi

]. In this case, the quantization effect
disappears. Therefore, the mean equation becomes

µx(t+ 1) = µx(t) + (yref −
1
T
µm)− 1

T
ψ(Kiµx(t))µo,tot (39)

whereψ(Kiµx(t)) ≈ ηµx + ξ , ∀ [Kiµx(t)] ∈ [− 1
2qKi

, 2q+1
2qKi

]. Then, the
mean equation can be written as

µx(t+ 1) = µx(t) + (yref −
1
T
µm)− 1

T
(ηµx(t) + ξ)µo,tot (40)

and the stability condition reads as

0 < Ki <
1
η

2T
µo,tot,max

(41)

Note that the previous analysis highlight that, in the quantized case the state
varianceσx(t) influences the stability properties and the choice of the param-
eterKi. This suggests the use of an adaptive strategy for tuningKi(t) on-line
based on the empirical estimate ofσx(t). This topic will be considered in
future research.

6. Conclusions
In this paper, we presented a feedback control rate-monotonic scheduling sys-
tem. By assuming that all tasks are periodic and implemented with the two-
version method, we derived stability conditions for the proposed system when
PID controllers are used. The reason of choosing PID as a control action is
that it is a well-established technique in automatic control and it has been
proved to stabilize the feedback control scheduling system in aforementioned
works. On the other hand, the choice of more effective control schemes is still



an important research issue and future work will focus on alternatives to pure
PID such as adaptive PID or optimal control. This work can also be extended
to the case where the system processes are both periodic and aperiodic tasks
and there is also task dependency. Finally, optimizing system performance by
tuning simultaneously all the design parameters, includingKp,Ki,Kd andT ,
also requires additional research that will hinge on the statistical framework
developed in the paper.
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