
Model Checker-Based Delay Fault Testing of
Sequential Circuits

Savas Takan
Dept. of Computer Engineering
Izmir Institute of Technology

Urla, Izmir, Turkey
Email: savastakan@iyte.edu.tr

Berkin Guler
Dept. of Computer Engineering
Izmir Institute of Technology

Urla, Izmir, Turkey
Email: berkinguler@std.iyte.edu.tr

Tolga Ayav
Dept. of Computer Engineering
Izmir Institute of Technology

Urla, Izmir, Turkey
Email: tolgaayav@iyte.edu.tr

Abstract—This paper applies model checker-based testing, a
well-known method from software engineering, to the delay fault
testing of synchronous sequential logic circuits. We first model the
circuit as timed automata to reveal its timing characteristics. The
model is repeatedly mutated by injecting the delay faults under a
certain fault assumption and all the mutant models are checked
against the given properties by exploiting a model checker.
Counterexamples returned from the model checker form the basis
of test input sequences. Finally, the test suite minimization is
defined as an integer programming problem.

I. INTRODUCTION

The delay fault models consider that the fault does not
cause a logical error in the circuit output, rather it causes a
timing error. In case of a delay defect in a circuit, signals may
not be stabilized to their final logic value until a deadline, e.g.
the next clock edge for sequential circuits, and ignoring these
defects may cause the violation of the timing properties in
VLSI circuits [21][23]. To this end, this type of faults must be
carefully handled in production lines as well.

Model based testing techniques, on the other hand, got
much attention in the last decade since they provide cheap,
flexible and optimized test cases in complex systems. The
idea of this work is to get the benefit from those capabilities
of model checkers in the effort of automatic test pattern
generation for delay fault testing of VLSI circuits. To the best
of our knowledge, this is the first study applying model based
testing technique to the circuit testing.

Among different types of delay fault models and testing
strategies, we select Gate Delay model and At-Speed testing
strategy, and restrict our study to these assumptions. Gate
delay model assumes that the delay is lumped at one gate
in the circuit and it is defined as an interval. At-speed strategy
means that the test sequence is applied to the circuit at the
rated clock speed. The software tool developed in this study is
able to transform the given sequential circuits to the timed
automata model under those assumptions. By injecting the
delay faults to the components of the circuit, our tool creates
one mutant model for each component, which is directly sent
to the model checker. The reason why we tackle the problem
under the gate delay fault assumption is that its modeling is
more straightforward and the number of mutants is linear in the
the number of gates. The mutant models are checked against
the given properties and possibly returned counterexamples
constitute the test suite. Finally, we express the minimization

of the test suite as a weighted set cover problem that can be
solved either integer programming solvers or various heuristic
algorithms. We demonstrate the methodology through a trivial,
widely known sequential circuit, a traffic light controller.

The paper is structured as follows: Section II summarizes
delay testing of VLSI circuits and Section III shortly explains
the model based testing approach. The proposed approach
is explained thoroughly in Section IV. Finally, Section V
concludes the paper and gives insight into prospective future
work.

II. DELAY TESTING OF VLSI

The aim of delay testing is to reveal the timing defects
and make sure that the circuit satisfies the desired performance
specifications. Unlike the other fault models, delay fault testing
is highly tied to the testing strategy that defines how the tests
are applied to the circuit. The speed of the testing equipment
and the type of circuit such as combinational, scan, non-
scan or partial scan sequential determine the testing strategy.
Ordinarily, test vectors in the delay test should be applied to
the circuit at the desired operating speed. However, high-speed
test equipments cost much more. For that reason, testers are
designed as several times slower than the actual circuit speed.
Testing high-speed designs on slow testers require particular
test generation and application schemes and developing new
techniques for those is of paramount importance [18][27].

The delay defects in combinational circuits are observed
such that a vector pair V =< v1, v2 > is applied to the circuit
inputs at certain times and the measured output is checked
against its expected value. The first vector is applied for a
sufficient amount of time to initialize the signals. Then, the
second vector is applied for a certain amount of time, Tc

and the output is checked. Testing delay faults in sequential
circuits is more difficult since application of arbitrary vector
pairs is not possible. When studying sequential circuits, they
are represented as an iterative array of combinational logic
and each instance of the combinational logic is called a time-
frame. In this case, vector pairs can be represented as V =<
i1 + s1, i2, s2 > where i1, i2 are the values of primary inputs
and s1, s2 are the values of the state memory. i1 is supposed to
produce s2 as the next state. There are several testing strategies
such as enhanced scan, functional justification, slow-fast-slow,
at-speed etc. and for further details one may refer to [18].

Delay faults were first used by Breuer in 1974 and have

ARCS 2015, March 24 – 27, 2015, Porto/Portugal

ISBN 978-3-8007-3657-7 1 © VDE VERLAG GMBH, Berlin, Offenbach

been extensively studied since early 1980s [9]. There are many
delay fault models proposed since then. Each model has pros
and cons in terms of complexity, fault coverage, test generation
method etc. The common fault models are transition delay,
gate delay, path delay, line delay and segment delay [17]. We
shortly explain these models below.

Transition fault model supposes that the delay fault affects
only one gate in the circuit. Each gate can have a slow-to-rise
or a slow-to-fall transition fault. In fault-free circuit, each gate
is supposed to have a nominal delay. In case of a fault, this
delay is increased or decreased [18][26]. This model assumes
that the delay is large enough to prevent transition from
reaching any primary input at the time of observation. Thus,
delay fault can be observed either it is propagated through a
long path or a short path to any primary output.

The gate delay fault model is a quantitative model because
it considers the circuit delays. Gate delay fault model assumes
that the delay fault affects only one gate again and the delays
of logic gates are characterized with some precision in terms of
location and size. The gate delays are represented by intervals
in this model. A fault is an extra delay of a particular size
for the propagation of a rising or falling transition from the
gate input to output [20]. In contrast to the transition model,
the gate delay fault model does not suppose that the increased
delay will impact the efficiency independent of the propagation
path by using the fault site. The restrictions of the gate delay
fault model resemble those for the transition fault model. Due
to the single gate delay fault assumption a test may not able
to identify delay faults that are a consequence of the sum of
a few small delay defects [18]. Very long paths through the
fault site might be expected to cause performance degradation.
The main advantage of this model is the fact that the amount
of faults in a circuit is proportional to the number of gates
[20]. There are plenty of studies on the gate delay faults.
For example, Ashar expressed a method for synthesizing gate-
delay-fault testable multilevel circuits [1]. In 1995, Brakel
showed a technique concerning the extension of delay fault
test pattern generation to synchronous sequential circuits using
scan techniques [25]. Cavallera pointed out the issue of sim-
ulating gate delay faults in synchronous sequential circuits.
He provided a solution implemented in the fault simulator
DFSIM [10]. Takahashi offered a method of diagnosing gate
delay faults using delay fault simulation [24]. Irajpour created
a technique for a considerable amount of gate delay faults
in benchmark circuits, multiple tests collectively give more
comprehensive coverage than any single test using an extended
gate delay fault simulation algorithm [16]. In 2011, Bernardi
explained a novel methodology that takes into account Gate
Delay Fault as equal to a collection of Transition Delay Faults
[7].

In path delay fault model, any path at a total delay
exceeding the system clock interval is said to have a path
delay fault. Distributed defect impact a whole path. Under the
path delay fault model, a combinational circuit is considered
faulty if the delay of any of its paths exceeds a given limit.
The delay or length of the path shows the total of the delays
of the gates and interconnections upon the path. A significant
limitation of this fault model is the fact that the amount of paths
in the circuit could be possibly exponential in the number of
gates. That is why testing all path delay faults in the circuit

are certainly not practical [18]. There are studies that propose
to apply this testing through the critical paths only.

Line delay fault model checks a rising or falling delay fault
on a given signal line in the circuit. The fault is propagated
through the longest sensitizable path through the given line.
Like the transition and gate delay fault models, line delay
fault model assumes a single delay fault. The amount of faults
equals twice the number of lines in the circuit. A test shall
take care of several line delay faults. For this reason, this fault
model can detect some distributed delay defects regarding the
propagation paths. Since only one propagation path through
each relative line is considered, it might probably not able to
identify some defects [23] [19].

Segment delay fault model presents a trade-off amongst the
transition delay fault model and the path delay fault model.
The assumption in this model is the fact that the delay defect
impacts a few gates in a local area. The idea of this fault model
is to combine the benefits of the transition and path delay fault
models while avoiding their limitations [14][9]. The location
and length of the segment can be decided upon the basis of
available statistics from manufacturing defects.

III. MODEL CHECKER-BASED TESTING

Model Based Testing (MBT) is a testing technique that
relies on modeling the system and verification of this model.
Model checking is an automated technique [11]. It exhaustively
and automatically checks whether the model of system meets
a given specification [6]. If the state space exploration reveals
no property violations, correctness of the property is proven.
A fundamental function of model checkers is to produce
witnesses and counterexamples for property satisfaction or
violation, respectively. Whenever a model checker realizes
that a property has failed, it immediately stops searching and
returns a counterexample that illustrates the property violation.
A human analyzer can utilize this counterexample to recognize
and fix the design fault. MBT proposes that counterexamples
form the basis of test cases [15].

The Kripke structure is the formalism widely used to
describe model checking and also to determine the semantics
of temporal logic.

Definition 1 (Kripke structure). A Kripke structure K is a
tuple K = (S,S0, T,L)

● S is a finite set of states.

● S0 ⊆ S is an initial state set.

● T ⊆ S × S is a total transition relation, that is, for
every s ⊆ S there is an s′S such that (s, s′) ⊆ T .

● L: S ⇒ 2AP is a labeling function that maps each
state to a set of atomic propositions that hold in
this state, where AP is a countable set of atomic
propositions.

A path is an infinite execution sequence for this model. A
Kripke structure determines all feasible paths of a system.

Definition 2 (Path). A path p ∶=< s0, s1, . . . > of Kripke
structure K = (S,S0, T,L) is an infinite sequence such that
∀i ≥ 0 ∶ (si, si+1) ∈ T for K.

ARCS 2015, March 24 – 27, 2015, Porto/Portugal

ISBN 978-3-8007-3657-7 2 © VDE VERLAG GMBH, Berlin, Offenbach

As infinite paths are not usable in practice, model checking
utilizes finite sequences, known as traces.

Definition 3 (Trace) A trace t ∶=< s0, ...sn > of Kripke
structure K is a finite sequence such that ∀0 ≤ i < n ∶
(si, si+1) ∈ T for K. There can be a dedicated state si such
that si = sn and i ≠ n, which is a loop back state, and
< s0,⋯, si−1, (si,⋯, sn)

ω > is a path of K.

In model checking, properties over Kripke structures are
formulated in temporal logic, which will be presented in
subsection III-A. Model checking has some strengths and weak
points [2]. The strengths are as follows:

● It is suitable for a broad range of applications such as
software engineering, embedded systems, and hard-
ware design.

● It supports partial verification so properties could be
examined individually and enable concentrate on the
essential properties first.

● No complete requirement specification is required, it
is not susceptible to the likelihood that an error is
exposed; this contrasts with testing and simulation that
are targeted at tracing the many likely defects.

● It provides diagnostic information about instance a
property is invalidated; this is quite helpful for de-
bugging purposes.

The weak points of model checking are:

● It is primarily proper to control-intensive applications
and less designed for data-intensive applications.

● Its applicability is susceptible to decidability prob-
lems; for infinite-state systems, or reasoning about
abstract data types, model checking is not successfully
computable.

● It verifies a system model, rather than the system that
is actual product or prototype; any acquired outcome
is not hence as useful as the system model.

A. Timed Automata

Timed automata (TA) is a valuable tool for especially
designing real-time systems. In this context, we transform the
circuits to timed automata to express the timing behaviours of
them. Let X be a finite set of real valued clock variables and
V be a finite set of real valued data variables. A constraint C
is of the form:

C ∶∶= z ⊙ k ∣ z − y ⊙ k

where z, y ∈X or V, k ∈ N and ⊙ ∈ {≤,<,=,>,≥}.

Definition 4 (Timed Automaton). A timed automaton is a tuple
(Q, q0,X,Σ, δ, I) where:

● Q is a finite set of locations.

● q0 ∈ Q is the initial location.

● X is a finite set of clock variables.

● Σ is the set of denoting actions.

● δ ⊆ Q × 2C ×Σ × 2X ×Q is the set of transitions.

● I ∶ Q→ 2C assigns invariants to locations.

A clock valuation is a function u ∶ X → R≥0 from the set
of clocks to the non-negative reals. Let RX be the set of all
clock valuations. Let u0(x) = 0 for all x ∈ X . We will abuse
the notation by considering guards and invariants as sets of
clock valuations, writing u ∈ I(q) to mean that u satisfies
I(q).

Definition 5 (Semantics of Timed Automaton). Let
(Q, q0,X,Σ, δ, I) be a timed automaton. The semantics
is given by a transition system ⟨S, s0,→⟩ where S ⊆ L × RX

is the set of states, s0 = (q0, u0) is the initial state and
→⊆ S × {R≥0 ∪Σ} × S is the transition relation such that:

● (q, u)
d
�→ (q, u + d) if ∀d′ ∶ 0 ≤ d′ ≤ d⇒ u + d′ ∈ I(q),

and

● (q, u)
a
�→ (q′, u′) if ∃(q, g, a, r, q′) ∈ δ ∶ u ∈ g, u′ =

[r ↦ 0]u and u′ ∈ I(q).

where for d ∈ R≥0, u+ d maps each clock x in X to the value
u(x)+d, and [r ↦ 0]u denotes the clock valuation which maps
each clock in r to 0 and agrees with u over X/ r.

Time may pass only if it satisfies the invariant of the current
state. A transition of the automaton may occur if and only if
its guard and the invariant of the new state are satisfied. The
semantics of the automaton is the set of traces of the associated
transition system. Timed automata are often composed into a
network of timed automata over a common set of clocks and
actions, consisting of n timed automata.

Definition 6 (Network of Timed Automata). Let
(Qi, q

0
i ,Xi,Σi, δi, Ii) be a network of n timed automata.

Let q̄0 = (q
0
1 , q

0
2 , . . . , q

0
n) be the initial location vector. The

semantics is defined as the transition system ⟨S, s0,→⟩, where
S = (Q1 × . . . ×Qn) ×R

X is the set of states, s0 = (q̄0, u0) is
the initial state and →⊆ S × S is the transition relation.

B. Specification Language

Specifications will be expressed in real-time temporal logic
TCTL, which extends the the computation tree logic CTL with
clock variables.

Definition 7 (Syntax of TCTL). The formulas ϕ of TCTL are
defined inductively by the grammar

ϕ ∶∶= true ∣ p ∣ ¬ϕ ∣ ϕ ∧ϕ ∣ ϕ∃UIϕ ∣ ϕ∀UIϕ,

where p ∈ Pr is an atomic proposition and/or clock variables
and I ∈ I is an interval in the set of intervals I appearing in
ϕ.

From the above syntax, we can derive the following operators
(for further details on the semantics of TCTL and derivation
of operators, one may refer to [8], [22] and [12]):

ARCS 2015, March 24 – 27, 2015, Porto/Portugal

ISBN 978-3-8007-3657-7 3 © VDE VERLAG GMBH, Berlin, Offenbach

∃◊ψ (Possibly). There exists a path that property ψ
possibly holds.

∀ ◻ψ (Invariantly). Property ψ always holds.
∃ ◻ψ (Potentially always). There exists a path along

which property ψ always holds.
∀◊ψ (Eventually). Property ψ eventually holds.
ψ ↝ ϕ (Leads-to). Whenever property ψ holds, property

ϕ eventually holds.
ψ ↝≤t ϕ (Time-bounded Leads-to). Whenever property

ψ holds, property ϕ eventually holds in at most t
time units.

Safety Properties. Safety properties are of the form: “some-
thing bad will never happen”. For instance, in a model of
aircraft, a safety property might be that the altitude must never
exceed its maximum value.

Liveness Properties. Liveness properties are of the form:
“something will eventually happen”, e.g. when pressing the
button of the engine start, then eventually the engine should
start.

Bounded Liveness Properties. In real-time systems, a live-
ness property is not sufficient and bounded times response
should be investigated. Bounded time liveness property can be
expressed with a time-bounded leads-to operator, i.e. ϕ↝≤t ψ.
These properties can be reduced to simple safety properties
such that first the model under investigation is extended with
a boolean variable b and an additional clock z. The boolean
variable b must be initialized to false. Whenever ϕ starts
to hold b is set to true and the clock z is reset. When
ψ commences to hold b is set to false. Thus the truth-
value of b indicates whether there is an obligation of ψ to
hold in the future and z measures the accumulated time since
this unfulfilled obligation started. The time-bounded leads-to
property ϕ↝≤t ψ yields the verification of the safety property
∀ ◻ b ⇒ z ≤ t. Similarly, we can define ϕ ↝≥t ψ to express
that ψ must hold at least t time units after ϕ commences to
hold.

C. UPPAAL Model Checker

UPPAAL is a software tool for validation through a graph-
ical simulation and verification via model checking. It was
developed by Uppsala and Aalborg Universities and it has been
widely used by both industry and academia in projects ranging
from communication protocols to multimedia applications. The
tool allows to verify systems modeled as network of timed
automata augmented with variables, structured data types, user-
defined features and channel synchronization [3][4]. UPPAAL
accepts timed-automata models in XML format. It also has a
Java-based GUI that allows to create and simulate the models.
For a detailed explanation of UPPAL, one may refer to [5].

IV. MODEL BASED TESTING OF DELAY FAULTS

In this section, we explain our methodology called Model
Based Testing of Delay Faults (MBT-DF) and the developed
software tool that applies model checker-based testing to the
delay fault testing of synchronous sequential logic circuits.
The methodology is shown in Figure 1. The first step is to
model the circuit as timed automata to characterize precisely
the timing properties of the circuit. The model is mutated
by injecting the gate delay faults. Although the methodology

cannot be tied to a certain type of fault model and testing
strategy, we start this study with two assumptions: 1) Testing
strategy is “At-Speed” and 2) Fault model is “Gate-Delay”.
Once all the mutant models are generated, they are checked
against the given properties by exploiting the model-checker,
UPPAAL. Counterexamples returned from the model checker
form the basis of test input sequences. In the last step, the test
suite is minimized. Gate delay fault model assumes the delay

Fig. 1. MBT Methodology

is lumped at one gate in the circuit. The main advantage of
this model is that the number of faults is linear in the number
of gates in the circuit. The delays of gates are represented as
intervals and each gate may have different delay intervals due
to the manufacturing variations. For example, a 2-input AND
gate can be expressed with equation o(t) ∶= i1(t)AND i2(t). We
assume that the input signals i1(k) and i2(k) are refreshed at
times t1 and t2 and become i1(k+1) and i2(k+1) respectively.
The propagation delay of the gate is given with the interval
δ = [tmin, tmax]. Therefore the new output is assumed to be
stable at time t = max{t1, t2} + δ. The rule for sequential
circuits is such that the outputs of the next-state logic circuit
must be stable before the next clock transition. If sum of
the delays of cascaded gates through the longest path from
primary and state inputs to the next-state outputs exceeds one
clock cycle, this may lead to incorrect state transitions and
consequently incorrect primary outputs.

While transforming the circuit into the timed automata,
we represent each gate with a timed automaton separately.
Memory elements, flip-flops, clock and other several compo-
nents of the circuit can be represented with appropriate timed
automata as well. Therefore, the whole circuit is transformed

ARCS 2015, March 24 – 27, 2015, Porto/Portugal

ISBN 978-3-8007-3657-7 4 © VDE VERLAG GMBH, Berlin, Offenbach

to a network of timed automata. The automatons communicate
via the synchronization channels. To give some intuition to
the reader, we present a few examples below. Figure 2 shows

Fig. 2. Automaton for NOT gate

the TA of a NOT gate where x[in1] is the input and x[out]
is the output signal. The gate waits at its initial state until
the input is stable, i.e. c[ic] is fired. Signal propagation is
simulated with the communication channels. In the model of
the circuit, one communication channel is defined for each
wire. Once the input is stable, the gate is assumed to start
working and the automaton waits for a propagation delay.
After the delay has elapsed, it performs the logic function
x[out] = not x[in1], firing up the communication channel
c[oc]. The model checker expands the system on this timing
interval during the verification. Figure 3 shows the TA of 2-
input AND gate. x[in1], x[in2] are the input signals and

Fig. 3. Automaton for AND gate

x[out] is the output signal of the gate. When both inputs
are stable, i.e. both signals c[ic1] and c[ic2] are fired, the
gate starts working and after a delay period it performs the
logic function x[out] = x[in1]&x[in2], firing the output
channel c[oc]. All 2-input gates will be the same except for
the logic operator in the logic function. Figure 4 shows the

Fig. 4. Automaton to represent D Flip-Flop

automaton of DFF. It assigns the input to the output after
the propagation delay elapses and a clock transition occurs
regardless of whether the input is stable or not. Figure 5
is the TA for clock signal. The clock period is given with
the parameter T . The invariant t ≤ T and the guard t ≥ T

Fig. 5. Automaton to simulate clock

together forces the automaton to take the transition, firing
the channel clk at each clock period T . Then the additional
channel c[in] is immediately fired to trigger the gates with
the primary and secondary inputs. Last, a critical automaton

Fig. 6. Automaton to simulate one primary input

for simulating the primary inputs of the circuit is given in
Figure 6. One automaton must be defined for each primary
input. The selection expression i ∶ int[0,1] allows to assign
an arbitrarily chosen boolean value 0 or 1 to the primary input
x[in]. UPPAAL expands the search for both values during the
verification, which guarantees that all possible combinations
of the test inputs are taken into account.

We developed a Java-based tool that implements all the
stages of the proposed methodology. Our tool has two de-
pendencies, UPPAAL’s verification program to generate the
counterexamples and GLPK software [13] to optimize the
test suite. The tool can parse the circuits given in Verilog
format and produce the gate and wire lists. User is allowed to
select/unselect the gates of which the mutants will be created.
The clock period, the nominal and faulty delay ranges can also
be defined through the GUI seen in Figure 7. User creates
the mutants that are in fact TA models in UPPAAL-readable
XML format. Properties in TCTL language must be supplied
manually by the user. Finally, the program generates coun-
terexamples by running UPPAAL’s verifier and then optimizes
the test suite by exploiting GLPK optimization software.

We express our methodology through a common example,
Traffic Light Controller (TLC) used at a road intersection
as seen in Figure 8. There are two types of road crossing:
quiet crossings that use a simple sequence, and busy crossings
require a longer (delayed green) sequence. Some junctions may
use the busy sequence during the day and the quiet sequence
at night. One digital input signal called J (for junction type)
will indicate whether the road crossing is considered quiet.
J=0 denotes a busy junction and J=1 a quiet one. Thus, we
have a one-input, six-output synchronous system to design.
The FSM and the circuit is given in Figure 9. There are
two types of properties that can be defined for the sequential
circuits. We call them Type-1 and Type-2 properties in this
study. The Type-1 properties can be generated automatically
from the FSM-level requirements. For example, the TLC has
8 states and 12 transitions. For the transition from State 1 to

ARCS 2015, March 24 – 27, 2015, Porto/Portugal

ISBN 978-3-8007-3657-7 5 © VDE VERLAG GMBH, Berlin, Offenbach

Fig. 7. ATPG Tool for MBTDF

State 2, the following property can be written:

P1 ∶ (Q1=0&Q2=0&Q3=1) ↝≤Tclk
(Q1=0&Q2=1&Q3=0)

Type-2 properties are defined at a higher level and can be ex-
tracted from the system specifications manually. For instance,
the following safety property is essential for the TLC and it
must be satisfied; Two green lights must never be turned on
at the same time:

P2 ∶ ∀ ◻ not (G1=1 and G2=1)

The property simply says that condition (G1=1 and G2=1)
must never be true. Playing with the delay parameters tmin

and tmax for each gate, several mutants of the circuit can be
generated. For instance, mutant M1 is such that the delay of
AND gate that outputs G2 is sufficiently large. This mutant
does not hold P2. If we run the program for this specific mutant
against property P2, the following counterexample is returned:

T1 = [(0/010000), (0/100100), (0/010100), (0/100100),

(0/001000), (0/001001)]

Fig. 8. Traffic Light Controller

Fig. 9. FSM and Circuit of Traffic Light Controller

whereas the order of the input and outputs is like

ARCS 2015, March 24 – 27, 2015, Porto/Portugal

ISBN 978-3-8007-3657-7 6 © VDE VERLAG GMBH, Berlin, Offenbach

(J/R1A1G1R2A2G2). As seen, the last state of the test se-
quence invalidates property P2 since both G1 and G2 are true.

For this circuit, several Type-1 and Type-2 properties can
be written. Under the gate delay fault assumption, we can
create as many mutants as the number of gates. Our automatic
test pattern generation tool generates the counterexamples.

Once all the counterexamples are collected, the last stage is
to optimize the test suite. We express the optimization of test
suite as a weighted set cover problem. Let us assume that for
m mutants, we check them against p properties and obtain test
sequences T1, T2, . . . , Tn. We expect that n is approximately
m × p. A test suite with minimum number of test sequences
or minimum size that reveal all the faults is of interest. We
denote the weights with the lengths of test sequences:

w = [w1,w2,w3, . . . ,wn]
T .

For example, the length of T1 is 6. Let x be decision variables
associating to the test sequences. If xi = 1 then test sequence
i is included in the test suite. This is well-known weighted
set cover problem and it can be defined formally as an integer
programming problem:

minwTx (1)
s.t. Ax ≥ 1 (2)

where A is a m × n binary matrix. Each row of the matrix is
associated with a mutant and each column indicates whether
its associating test sequence belongs to that mutant or not. The
solution to this problem gives us the test suite with minimum
size.

V. CONCLUSION

We proposed a methodology applying the model based
testing technique to the delay fault testing of VLSI circuits.
The advantage of the methodology is due to the exhaustive
search capability of model checking, which supposedly finds
out the optimum test suite. The drawback seems to be the
high cost of model checking in terms of computational and
memory resource usage. The idea is to transform the circuit
to its equivalent timed automata, to create the mutant models
under certain fault assumptions and then generate the coun-
terexamples using UPPAAL model checker. The fault model
is Gate-Delay and the testing strategy is At-Speed Testing.
The developed software can successfully generate the test suite
in individual experiments with the traffic light controller and
some simple ISCAS’89 circuits such as s27 and s344, yet a
lot of experiments and extensive comparisons are needed to
prove the success of the methodology. The future research
will cover the deployment of other fault models and testing
strategies as well. In order to improve the performance of the
tool, additional effort in the circuit abstraction, i.e. compacting
the timed automata model could be of utmost importance.

REFERENCES

[1] Pranav Ashar, Srinivas Devadas, and Kurt Keutzer. Gate-delay-fault
testability properties of multiplexor-based networks. Formal Methods
in System Design, 2:93–112, 1993.

[2] Christel Baier and Joost-Pieter Katoen. Principles Of Model Checking,
volume 950. 2008.

[3] Gerd Behrmann, Alexandre David, and Kim Larsen. A Tutorial on
Uppaal, volume 3185. 2004.

[4] Gerd Behrmann, Alexandre David, Kim G. Larsen, John Hå kansson,
Paul Petterson, Yi Wang, and Martijn Hendriks. Uppaal 4.0. In Third
International Conference on the Quantitative Evaluation of Systems,
QEST 2006, pages 125–126, 2006.

[5] Gerd Behrmann, Re David, and Kim G. Larsen. A tutorial on uppaal.
pages 200–236. Springer, 2004.

[6] Mordechai (Moti) Ben-Ari. A primer on model checking. ACM Inroads,
1(1):40, 2010.

[7] P. Bernardi, M. Sonza Reorda, a. Bosio, P. Girard, and S. Pravos-
soudovitch. On the modeling of Gate Delay Faults by means of
Transition Delay Faults. Proceedings - IEEE International Symposium
on Defect and Fault Tolerance in VLSI Systems, pages 226–232, 2011.

[8] Mustapha Bourahla and Mohamed Benmohamed. Verification of real-
time systems by abstraction of time constraints. In IPDPS ’03:
Proceedings of the 17th International Symposium on Parallel and
Distributed Processing, page 238.1, Washington, DC, USA, 2003. IEEE
Computer Society.

[9] Stefano Di Carlo and Paolo Prinetto. Models in Hardware Testing. In
Models in Hardware Testing, volume 43. 2010.

[10] P. Cavallera, P. Girard, C. Landrault, and S. Pravossoudovitch. DFSIM:
a gate-delay fault simulator for sequential circuits. Proceedings ED&TC
European Design and Test Conference, 1996.

[11] Em Clarke, O Grumberg, and Da Peled. Model Checking. 1999.
[12] Dov M. Gabbay, Ian Hodkinson, and Mark Reynolds. Temporal logic

(vol. 1): mathematical foundations and computational aspects. Oxford
University Press, Inc., New York, NY, USA, 1994.

[13] GLPK. GNU Linear Programming Kit.
http://www.gnu.org/software/glpk, 2000.

[14] K Heragu, J H Patel, and V D Agrawal. Segment delay faults: a new
fault model. VLSI Test Symposium, 1996., Proceedings of 14th, pages
32–39, 1996.

[15] Document Id, Contact Person, and Contract Number. State of the Art
Survey. pages 1–60, 2008.

[16] Shahdad Irajpour, Sandeep K. Gupta, and Melvin a. Breuer. Multiple
tests for each gate delay fault: Higher coverage and lower test appli-
cation cost. Proceedings - International Test Conference, 2005:1211–
1219, 2005.

[17] Niraj K. Jha and Sandeep Gupta. Testing of digital systems. 2003.
[18] Angela Krstic and Kwang-Ting Cheng. Delay Fault Testing for VLSI

Circuits, volume 26. 1998.
[19] Chin Jen Lin Chin Jen Lin and S.M. Reddy. On Delay Fault Testing

in Logic Circuits. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 6(5), 1987.

[20] Ananta K. Majhi and Vishwani D. Agrawal. Tutorial: Delay Fault
Models and Coverage. Design, 1:364–369, 1997.

[21] Alicja Pierzynska and Slawomir Pilarski. Pitfalls in delay fault testing.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 16:321–329, 1997.

[22] Y. Tachi and S. Yamane. Real-time symbolic model checking for hard
real-time systems. In RTCSA ’99: Proceedings of the Sixth International
Conference on Real-Time Computing Systems and Applications, page
496, Washington, DC, USA, 1999. IEEE Computer Society.

[23] Mihkel Tagel, Peeter Ellervee, and Gert Jervan. Design and Test
Technology for Dependable Systems-on-Chip. 2010.

[24] Hiroshi Takahashi and Kwame Osei Boateng. Diagnosis of Single Gate
Delay Faults in Combinational Circuits using Delay Fault Simulation.
pages 108–112, 1998.

[25] G. van Brakel, U. Glaser, H.G. Kerkhoff, and H.T. Vierhaus. Gate delay
fault test generation for non-scan circuits. Proceedings the European
Design and Test Conference. ED&TC 1995, 1995.

[26] John A Waicukauski, Eric Lindbloom, Barry K Rosen, and Vijay S
Iyengar. TRANSITION FAULT SIMULATION. IEEE Design and Test
of Computers, 4:32–38, 1987.

[27] Laung-Terng Wang, Charles E. Stroud, and Nur a. Touba. System-on-
Chip Test Architectures: Nanometer Design for Testability. 2010.

ARCS 2015, March 24 – 27, 2015, Porto/Portugal

ISBN 978-3-8007-3657-7 7 © VDE VERLAG GMBH, Berlin, Offenbach

