
Optimal Control for Real-Time Feedback
Rate-Monotonic Schedulers�

Tolga Ayav1 and Giancarlo Ferrari-Trecate2
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Abstract. This paper presents an optimal control scheme for a real-
time feedback control rate-monotonic scheduling (FC-RMS) system. We
consider two-version tasks composed of a mandatory and an optional
part to be scheduled according to the FC-RMS. In FC-RMS, the con-
troller provides a feedback strategy for deciding about the execution
or rejection of the optional sub-tasks. By modeling the task execution
times as random variables, we first find the statistical model of FC-RMS
and then we design a pure optimal controller and an optimal controller
with feedforward integral compensation. The comparison of these two
schemes with common Proportional-Integral-Derivative (PID) controller
highlights the benefit of the optimal scheme with integral compensa-
tion. The results are demonstrated through the real implementation of
FC-RMS on RT-Linux.

1 Introduction

Real-Time (RT) dynamic scheduling algorithms traditionally fall into two cat-
egories: static and dynamic priority-driven. One major paradigm for the static
priority-driven scheduling is Rate-Monotonic (RM). The main drawback of RM
is that it considers WCETs, which results in systems having spare capacity under
normal operation [1]. Dynamic priority driven scheduling can be further divided
into two categories: algorithms that work in resource sufficient environments and
algorithms that work in resource insufficient environments. In the first category,
resources are sufficient in the sense that all the tasks are schedulable at any
given time despite their unknown arrival times. Earliest-Deadline-First (EDF)
has been proved to be an optimal dynamic scheduling algorithm in resource suf-
ficient environments [1]. On the other hand, it may be impossible to guarantee
that the resources are sufficient in unpredictable environments.

According to [2] and [3], the next generation of real-time systems will be
more complex and capable of adaptivity as well as of meeting time constraints
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for mission and safety critical functions. A challenge of the current research is,
therefore, to use more adaptive techniques such as feedback control scheduling
in order to handle the transient overload, to use the spare capacity existing with
traditional algorithms and to enhance the fault tolerance of real-time systems
[2] [3] [4].

Although feedback control scheduling has been considered so far in different
works, many questions are still open. The most important one is how to design
a controller in order to guarantee the stability of the overall system. Most of
the contributions in the literature focused on the use of PID controllers. In this
work, we consider a FC-RMS system with optimal and feedforward compensated
optimal controllers. We first construct a novel optimal controller that relies on
the estimated task statistics. We show that the optimal controller is not able to
track a given setpoint, while it provides better performance, during the transient,
than PID. Then, in order to eliminate the steady-state error, we enhance the
optimal control action with a feedforward integral action.

2 Feedback Control Rate-Monotonic Scheduling
Architecture

In this section, we present the architecture we consider that integrates feedback
control and rate-monotonic scheduling. The model is developed for a generic
control action.

2.1 Feedback Control Rate-Monotonic Scheduling

FC-RM scheduling features a feedback control loop that is invoked at every
sampling interval. It is composed of a Monitor, a Controller and a Task Level

Fig. 1. Feedback Control Rate-Monotonic Scheduling. The left panel shows the
schematic diagram and the right panel shows the mathematical model.
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Controller (see figure 1). We choose as a controlled variable the CPU utilization
(which is defined as the percentage of CPU busy time in a sampling period) since
in hard real-time systems the miss ratio should be always kept zero [3]. In each
sampling instance, the CPU utilization is monitored and the error is obtained
by comparing it with the setpoint. The controller takes the error, produces a
control value to minimize the error, i.e., to keep the utilization at a given set-
point. The task level controller takes the output of the controller and adjusts the
manipulated variable (the percentage or number of the optional sub-tasks to be
executed) accordingly. In order to keep the overhead at an acceptable level, the
controller output is updated at a frequency 1/T , where T denotes the sampling
period (that is equal to 100 ms in our experiments, see table 1).

We use the Rate-monotonic (RM) algorithm to schedule the mandatory sub-
tasks since, under suitable assumptions (see [1]), it can guarantee that tasks
will meet their deadlines. On the other hand, making decision on which optional
tasks or how many optional tasks will be executed is a much more complex
problem. Feedback control scheduling is a method for solving it.

We consider a set of tasks Tasks = {τ1, τ2, ..., τq} where each task is charac-
terized by some parameters such as deadline di (this is considered as period Ti

if the task is periodic), processing time Ci and priority pi. Each task consists of
two sub-tasks, the mandatory part Mi and the optional part Oi. The processing
times of Mi and Oi are Ci,m and Ci,o, respectively. Thus, Ci,m + Ci,o = Ci , i ∈
{1, . . . , q}.

The evaluation of the CPU utilization in a time interval of length T can be
represented by the scheme in figure 1 that we illustrate next. Let t ∈ N denote the
discrete time index, i.e. the actual time t̃ can be computed as t̃ = T t. The total
number N of the tasks at time t, is then given by N =

∑q
i=1�T/Ti�. Note that

Ni = �T/Ti� is the number of instances of task τi in the period [tT, (t+1)T ] and
�·� is the ceil function returning the lowest integer upper bound to the argument.
The total execution time of all optional parts within a sampling period depends
on the scheduling policy. If optional sub-tasks are scheduled according to Sieve
method, each one of them is entirely executed or rejected [5]. Assume that the
control action u(t) is such that the optional sub-tasks of tasks τ1, τ2, ..., τk will
be executed in the period [tT, (t + 1)T ]. Then, the total execution times of all
mandatory instances and of all optional parts within a sampling period, under
the assumption that τ1,o, τ2,o, ..., τq,o are ordered according to their priorities
p1 > p2 > ... > pq, are given by

Cm(t) =
q∑

i=1

Ci,m(t) · �T/Ti�, Co(t) =
k∑

i=1

Ci,o(t) · �T/Ti�. (1)

Clearly, in (1), k = k(t) is a time-varying quantity. The signal z(t), the CPU
utilization y(t) and the error signal e(t) represented in figure 1 are given by

z(t) =
Cm(t) + Co(t)

T
, y(t) = min{1, z(t)} , e(t) = yref − y(t). (2)
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The error signal is the difference between the requested utilization yref and the
measured one, i.e. the controller takes the error, processes it and produces the
value of u(t) in the range of [0, 1]. Various control algorithms will be discussed
in the next section. The output of the controller is then quantized by the block
∼
q(.) seen in figure 1. The quantizer function determines the number of optional
sub-tasks to be executed by mapping [0, 1] to [0, q].

2.2 Statistical Characterization of the Signals

In order to account for the unpredictability of task durations, we model them as
independent random variables with finite average and variance over which the
scheduler has no control.

If there is a sufficient number of mandatory sub-tasks and a sufficient number
of optional sub-tasks to be executed within a sampling period, the Central Limit
Theorem (CLT) can be used [6] in order to approximate the distributions of Cm

and Co. In our setting, the total number of mandatory sub-tasks Nm is equal to N
and the total number of optional sub-tasks to be executed is No =

∑k
i=1 Ni. We

point out that, despite the fact that CLT is an asymptotic theorem, it provides
good approximations even if Nm and No are low (see [6]). In our experiments, we
have Nm = 303 and No = 181 as can be calculated from table 1. An important
fact is that CLT holds even if the task durations are not uniformly distributed.
Therefore, all our results hold for general distributions (with finite average and
variance) associated to Ci,m and Ci,o.

For a generic signal ξ, we denote with fξ(ξ|κ) its Probability Density Function
(PDF) for the choice of executing κ optional sub-tasks at time t. Let g(µ, σ2)
be the Gaussian distribution with mean µ and variance σ2. Then, for a fixed k,
CLT states that Cm and Co can be represented by

Cm ∼ fCm(Cm|k) = g(µm, σ2
m), µm =

q∑

i=1

Ni∑

j=1

µCj,m , σ2
m =

q∑

i=1

Ni∑

j=1

σ2
Cj,m

(3)

Co ∼ fCo(Co|k) = g(µo, σ
2
o), µo =

k∑

i=1

Ni∑

j=1

µCj,o , σ2
o =

k∑

i=1

Ni∑

j=1

σ2
Cj,o

. (4)

According to the scheme reported in figure 1, Ctot is the sum of Cm and Co.
Thus, in view of the statistical independence of Cm and Co, we have

Ctot ∼ fCtot(Ctot|k) = g(µtot, σ
2
tot) = g(µm + µo, σ

2
m + σ2

o). (5)

The distribution function of z, defined in 2, is given by

z ∼ fz(z|k) = g(µz, σ
2
z) = g

(
µm + µo

T
,
σ2

m + σ2
o

T 2

)

. (6)

For the distribution of y, we have

y ∼ fy(y|k) =

⎧
⎪⎪⎨

⎪⎪⎩

fz(y|k) y < 1

(1 −
1∫

−∞
fz(z|k)dz)δ(y − 1) y = 1

0 y > 1

(7)
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Note that the block min(1, z) in figure 1 produces a Dirac delta function into
the distributions of y and e (see [6]). In fact, (7) represents a truncated Gaussian

distribution and the coefficient β = 1 −
1∫

−∞
fz(z|k)dz multiplying the δ function

is significantly different from zero only if the average CPU utilization y is close
to one (in fact, β represents the probability of CPU overload for a given k).
On the other hand, when the setpoint is chosen sufficiently away from 1 and a
stabilizing controller is used, the delta function disappears (see [7] for further
details). This corresponds to remove the block min(1, z) in figure 1. We highlight
that this approximation is realistic since the set point should be chosen pretty
far away from 1 in order to prevent undesirable saturation effects [3]. Hence, the
PDFs of y and e can be approximated as

y ∼ g

(
µm + µo

T
,
σ2

m + σ2
o

T 2

)

, e ∼ g

(

yref − µm + µo

T
,
σ2

m + σ2
o

T 2

)

. (8)

The PDF of u(t), fu(u|k) depends on the specific control scheme. Stankovic and
Lu considered the use of PID control since it is a well-established technique in
automatic control and in some cases is able to stabilize the scheduling system.
For stability, it is of paramount importance to properly choose the controller
parameters. Stankovic and Lu presented a method for tuning the PID parameters
that relies on a deterministic scheduler model. Another approach to tune the PID
parameters is given in [7], which presents the design of stabilizing PID controller
based on the statistical framework presented in this paper.

On the other hand, the choice of more effective control schemes is still an
important research issue. In the next section, we propose an optimal control
scheme as an alternative to PID.

3 Optimal Control

Optimal control relies on the estimated task statistics. The block diagram of
the optimal control rate-monotonic scheduling system is given in figure 2. The
goal of the optimal control is to compute u(t) that minimizes the variance of
the error. For sake of clarity, it is assumed that there is no quantization in the
system and the setpoint is far from 1, i.e., min(1,z) box is removed. Thus, the
utilization y(t) can be written as

y(t + 1) =
1
T

(Cm(t) + Co,tot(t)u(t)) (9)

The cost function is the mean square error that, using equation 5.34 from [6],
can be written as

J(t + 1) = E[e2(t + 1)] = E2[e(t + 1)] + V ar[e(t + 1)]. (10)

In (10), it holds that E2[e(t+1)] = (−
∧
y(t+1|t)+yref (t+1))2 where

∧
y(t+1|t) is

the optimal predictor of y(t + 1) on the basis of the information collected up to
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Fig. 2. Optimal Control Rate-Monotonic Scheduling. The left panel shows the system
with pure optimal controller and the right panel shows the system with feedforward
integral compensated optimal controller.

time t. According to certainty equivalence principle [8], the optimal prediction

of y(t) is given by
∧
y(t) = yd(t+1) where y(t) = yd(t)+ν(t). Here, yd(t) coincides

with the optimal prediction of the deterministic part of y(t) and ν(t) is a white

noise. This principle will be applied to find
∧
y(t + 1|t). First, y(t + 1) can be

written as

y(t + 1) =
1
T

µm(t) +
1
T

µo,tot(t)u(t)
︸ ︷︷ ︸

+
1
T

∼
Cm(t) +

1
T

∼
Co,tot(t)u(t)

︸ ︷︷ ︸
(11)

= yd(t) + ν(t)

The uncorrelation between ν(t) and ν(t − τ) ∀τ ≥ 1, can be easily proved from
the following properties: 1) u(t) depends only on the past history of Cm and Co,
i.e., from Cm(t − ξ) and Co(t − ξ), ξ ≥ 1; 2) C̃m and C̃o are zero mean random
variables. Thus, ν(t) is a white noise with zero mean. By applying the certainty
equivalence principle, the optimal predictor of y(t + 1) is given by

∧
y(t + 1) =

1
T

(µm(t) + µo,tot(t)u(t)). (12)

On the other hand, V ar[e(t + 1)] takes the following form:

V ar[e(t + 1)] = E[(e(t + 1) − E[e(t + 1)])2] =
1

T 2 σ2
m(t) +

1
T 2 σ2

o,tot(t)u
2(t).

By using equations (12) and (13) in (10), the cost function J(t+1) can be written
as

J(t + 1) =
(

yref (t + 1) − 1
T

µm(t) − 1
T

µo,tot(t)u(t)
)2

+
1

T 2 σ2
m(t) +

1
T 2 σ2

o,tot(t)u
2(t).

(13)
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As a final step, u∗(t) (the optimal value of u(t), which minimizes J(t + 1)) is
found by imposing dJ(t+1)

du(t) |u∗(t)= 0 thus obtaining

u∗(t) =
−µm(t)µo,tot(t) + T yref (t + 1)µo,tot(t)

µ2
o,tot(t) + σ2

o,tot(t)
(14)

Equation (14) highlights that if one can estimate the mean of all mandatory
sub-tasks and the mean and variance of all optional sub-tasks within a sampling
period, then u∗(t) can be calculated in closed-form. When u(t) = u∗(t) is used,
the CPU utilization obeys to the dynamics

y(t + 1) =
1
T

(
µm(t)σ2

o,tot(t) + µ2
o,tot(t)Tyref(t + 1)

µ2
o,tot(t) + σ2

o,tot(t)

)

(15)

as t → ∞. Note that even if the task statistics and the setpoint are constant
in time, if σ2

o,tot(t) 	= 0, one has, in general, that y(t) does not converge to yref

as t → ∞. Moreover, incorrect estimations of the task statistics may further
degrade the performance of the optimal controller.

4 Optimal Control with Feedforward Compensation

In order to avoid the bias produced by optimal control, we propose to add a
feedforward integral control action. The block diagram of this scheme is given
in figure 2.

In order to find a stabilizing controller, we first derive the state space form of
the closed-loop system. Assume that x ∈ R is the state of the integral controller.
Hence, controller equations are,

x(t+1) = x(t)+e(t) , u(t) = Kix(t)+
(

−µm(t)µo,tot(t) + T yref (t + 1)µo,tot(t)
µ2

o,tot(t) + σ2
o,tot(t)

)

and the system equations are,

y(t) =
1
T

[

Cm(t) + Co,tot(t)
(

Kix(t) +
−µm(t)µo,tot(t) + T yref (t + 1)µo,tot(t)

µ2
o,tot(t) + σ2

o,tot(t)

)]

e(t) = −y(t) + yref (t).

The closed-loop system is therefore described by

x(t + 1) = x(t) + yref(t) − 1
T

Cm(t)

− 1
T

Co,tot(t)
(

Kix(t) +
−µm(t)µo,tot(t) + T yref (t + 1)µo,tot(t)

µ2
o,tot(t) + σ2

o,tot(t)

)

.(16)

By assuming that Co,tot, Cm and yref are stationary signals, the mean state
dynamics is

µx(t+1) = µx(t)+yref − 1
T

µm− Ki

T
µo,totµx(t)− 1

T

(
−µmµ2

o,tot + T yrefµ2
o,tot

µ2
o,tot + σ2

o,tot

)
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where µx(t) = E[x(t)]. A classical stability criterion for discrete time linear
systems [9] guarantees that µx(t) is asymptotically stable around its equilibrium,
if the following condition is fulfilled

∣
∣
∣
∣1 − Ki

T
µo,tot

∣
∣
∣
∣ < 1. (17)

Then, formula (17) provides an explicit bound on the values of Ki guaranteeing
the convergence of the average error to zero.

5 Implementation on RT-Linux and Experimental
Results

We tested FC-RMS with PID, optimal and compensated optimal controllers
using the RT-Linux system (a detailed description of FC-RMS with stabilizing
PID controllers is provided in [7]).

RT-Linux has a priority-driven preemptive scheduler loaded as a kernel mod-
ule [10]. In order to implement our FC-RMS method on RT-Linux 3.1, we mod-
ified the default scheduler so as to measure CPU utilization and other task
statistics µm, µo,tot and σo,tot. A dummy application consisting of a periodic
task set has also been created.

The CPU utilization y, the mean of all mandatory tasks µm, and the mean
and variance of k optional sub-tasks within one sampling period are easy to
reconstruct by resorting to the empirical estimators for the mean and variance
of stationary stochastic processes [6]. However we have to estimate the mean
and variance of all optional sub-tasks µo,tot and σ2

o,tot in order to use formula
(14). Under the assumption that the mean and variance of each optional sub-
task are constant, i.e., µCj,o = µc and σ2

Cj,o
= σc, ∀j ∈ {1, 2, . . . , q}, one gets

µo,tot = µo.
q
k and σ2

o,tot = σ2
o . q

k .
In the optimal controller, there is no parameter to tune. However it needs

accurate estimates of the task statistics that may be difficult to obtain when
the system is overloaded [3]. Another drawback is that the mean and variance
of each optional sub-task are not constant in time, which results in incorrect
estimations. These two pitfalls are overcome by using the feedforward integral
controller.

In order to compare the performance of PID, optimal and compensated op-
timal controllers during transients, we used a step workload jumping from the
nominal load Lnom to a maximum load Lmax at a given time instant, as reported
in table 1.

A comparison of figures 3.A, 3.B, and 3.C shows that pure optimal control
provides the best transient characteristics in terms of settling time and over-
shoot. However, it cannot track the setpoint due to the bias shown in formula
(15). The additional feedforward integral controller compensates this undesired
phenomenon thus providing a better error tracking while preserving satisfactory
performance in the transient.
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Fig. 3. Experimental results. A) CPU utilization with PID controller. Kp = 0.1, Ki =
2.0 and Kd = 0.1. B) CPU utilization with pure optimal controller. C) CPU utilization
with feedforward integral compensated optimal controller.

Table 1. Parameters characterizing the workloads Lnom and Lmax. U [a, b] represents
uniform distribution between a and b.

Lnom Lmax

q 0 20
Ci,m and Ci,o (µs) - U[130, 180]

Ti∈{1,...,q} (ms) - {15,2,14,3,13,4,12,5,11,6,10,7,9,8,8,35,8,15,3,10}
T (ms) 100 100
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6 Conclusions

In this paper, we presented a feedback control rate-monotonic scheduling sys-
tem. By assuming that all tasks are periodic, independent and implemented
with the two-version method, we first derived a statistical representation of the
scheduling system. Then, we proposed a novel feedforward compensated optimal
controller as an alternative to PID. The new controller achieves better perfor-
mance (in terms of overshoot, settling time and error tracking) as shown in the
experimental results obtained from a real implementation of FC-RMS on RT-
Linux. We highlight that the developed statistical framework can be very useful
for designing and analyzing feedback control scheduling systems based on other
control strategies such as hybrid control. Performance comparisons of PID and
optimal controllers on real applications with different types of tasks (such as ape-
riodic, dependent) and different implementation techniques (such as milestone
and multiple-version) still require additional research, which may lead to major
generalization of the proposed method.
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