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Abstract— In this paper, we propose an observer based
adaptive output feedback (OFB) tracking controller for rigid-
link robot manipulators. Specifically, we used a model inde-
pendent observer in conjuction with a desired compensation
adaptation law (DCAL) to remove the link velocity dependency
of the controller and achieved asymptotic stability of the
observer-controller couple despite the uncertainties associated
with the system dynamics. Lyapunov based arguments are
utilized to illustrate the stability of the proposed controller.
Simulation results are included to demonstrate the performance
of observer-controller couple.

I. INTRODUCTION

Controlling robot manipulators using only link position

measurements has received considerable attention due to the

fact that nearly all commercially available robot manipulators

do not have link velocity sensors and the ones that have

velocity sensors the sensor outputs are, most of the time,

contaminated with noise. The existing solutions to the fore-

mentioned problem can be categorized as observer based [1],

[2] and filter based [3], [4], [5], [6], [7] methods. In most

observer based methods, a model based observer [2], [8] is

used to estimate the velocity signal, where in filtered based

approaches surrogate filters are used to overcome the need of

velocity measurements. However, when the robot parameters

are not precisely known, the observer based methods fail

as most of them require the exact knowledge of system

parameters.

In this paper, we present a new model-free observer based

adaptive output feedback tracking controller for robot manip-

ulators. Inspired by the work of [9], the proposed controller

utilizes a new model-free observer structure, in conjunction

with a DCAL based adaptation formulation and achieves

semi-global asymptotic tracking performance despite the lack

of link velocity measurements and parametric uncertainties in

the robot dynamics. Compared to the model-free observers

in the literature (as in [10]) the proposed method has the

advantage of compensating for the uncertainties in the system

dynamics.

The rest of the paper is organized as follows. In Section II,

the dynamic model of the robot manipulator and model prop-

erties that are used in the analysis and design of the proposed

observer-controller couple are presented, while, Section III
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contains error system development and problem formulation.

In Section IV, design and stability analysis of the controller-

observer couple are proposed. In Section V, we demonstrate

the effectiveness of the proposed method through simulation

results obtained from a two link, direct drive planar robot

manipulator. Concluding remarks are presented in Section

VI.

II. ROBOT MODEL

The mathematical model for an n DOF, revolute joint,

direct drive, robot manipulator is assumed to have the

following form [11]

M(q)q̈ + Vm(q, q̇)q̇ + G(q) + Fdq̇ = τ (1)

where q(t), q̇(t), q̈(t) ∈ R
n denote the link position, velocity,

and acceleration, respectively, M(q) ∈ R
n×n represents the

positive-definite, symmetric inertia matrix, Vm(q, q̇) ∈ R
n×n

represents the centripetal-Coriolis matrix, G(q) ∈ R
n is the

gravitational vector, Fd ∈ R
n×n denotes the constant, diago-

nal, positive-definite, viscous friction matrix, and τ(t) ∈ R
n

represents the torque input control vector. We will assume

that the left-hand side of (1) is first-order differentiable.

The dynamic system given by (1) exhibits the following

properties that are utilized in the subsequent control devel-

opment and stability analysis.

Property 1: The inertia matrix can be bounded by the

following inequalities [11]

m1In ≤ M(q) ≤ m2In (2)

where m1 and m2 are positive constants, and In is the n×n
identity matrix. Likewise the inverse of the inertia matrix can

be bounded as follows

1

m2
In ≤ M−1(q) ≤ 1

m1
In. (3)

Property 2: The inertia and the centripetal-Coriolis matri-

ces satisfy the following relationship [12]

ξT

(

1

2
Ṁ(q) − Vm(q, q̇)

)

ξ = 0 ∀ ξ ∈ R
n. (4)

Property 3: The centripetal-Coriolis matrix satisfies the

following relationship [8]

Vm(q, ν)ξ = Vm(q, ξ)ν ∀ ξ, ν ∈ R
n. (5)

Property 4: The norm of the centripetal-Coriolis and fric-

tion matrices can be upper bounded as follows [11]

‖Vm(q, ξ)‖ ≤ ζc1 ‖ξ‖ , ‖Fd‖ ≤ ζf ∀ ξ ∈ R
n (6)

where ζc1, ζf ∈ R are positive bounding constants.
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Property 5: The robot dynamics given in (1) can be

linearly parameterized as follows [11]

Y (q, q̇, q̈)θ = M(q)q̈ + Vm(q, q̇)q̇ + G(q) + Fdq̇ (7)

where θ ∈ R
p contains the constant system parameters, and

Y (q, q̇, q̈) ∈ R
n×p denotes the regression matrix which is a

function of q(t), q̇(t), and q̈(t). The formulation of (7) can

also written in terms of the desired trajectory in the following

manner

Yd(qd, q̇d, q̈d)θ = M(qd)q̈d + Vm(qd, q̇d)q̇d + G(qd) + Fdq̇d

(8)

where the desired regression matrix Yd(qd, q̇d, q̈d) ∈ R
n×p

is a function of the desired link position, velocity, and ac-

celeration, denoted by qd(t), q̇d(t), q̈d(t) ∈ R
n, respectively.

Property 6: The inertia, centripetal-Coriolis, and gravity

terms of (1) can be upper bounded as follows [13]

‖M(ξ) − M(ν)‖i∞ ≤ ζm1 ‖(ξ − ν)‖
∥

∥M−1(ξ) − M−1(ν)
∥

∥

i∞
≤ ζm2 ‖(ξ − ν)‖

‖Vm(ξ, w) − Vm(ν, w)‖i∞ ≤ ζc2 ‖w‖ ‖(ξ − ν)‖
‖G(ξ) − G(ν)‖ ≤ ζg ‖(ξ − ν)‖

(9)

∀ξ, ν, w ∈ R
n, ζm1, ζm2, ζc2, ζg are positive bounding

constants, and ‖·‖i∞ denotes the induced norm of a matrix.

III. PROBLEM FORMULATION

The control objective is to design a link position tracking

controller for the robot manipulator model given by (1) under

the constraints that only the link position variable q(t) is

available for measurement and that the parameter vector θ
introduced in (7) is unknown. We will quantify the control

objective by defining the link position tracking error, denoted

by e(t) ∈ R
n, as follows

e , qd − q (10)

where we assume that qd(t) and its first three time derivatives

are bounded functions of time. To account for the unmea-

surable link velocity constraint, we define ˙̂q(t) ∈ R
n as the

observed velocity signal. The corresponding velocity and

position observation error signals, denoted by ˙̃q(t), q̃(t) ∈
R

n, respectively, are defined as

˙̃q = q̇ − ˙̂q,
q̃ = q − q̂.

(11)

To ease the presentation of the subsequent analysis, we will

use two auxiliary variables, filtered tracking error, denoted

by r (t) ∈ R
n, and filtered observation error, denoted by

s (t) ∈ R
n, as

r , ė + αe, and s , ˙̃q + αq̃ (12)

where α ∈ R is a positive control gain. It should be noted

that, regulating r (t) and s (t) ensures the regulation of e (t)
and q̃ (t), respectively. In addition, we define the difference

between the actual and estimated parameters as follows

θ̃ , θ − θ̂ (13)

where θ̃(t) ∈ R
p represents the parameter estimation error

vector, and θ̂(t) ∈ R
p represents a dynamic estimate of θ.

IV. OBSERVER-CONTROLLER DESIGN

Based on the subsequent error system development and the

stability analysis, we propose the following velocity observer

˙̂q = p + K0q̃ − Kce
ṗ = K1Sgn (q̃) + K2q̃ − αKce

(14)

where p (t) ∈ R
n is an auxiliary variable, K0, Kc, K1,

K2 ∈ R
n×n are diagonal, positive define gain matrices, and

Sgn (·) ∈ R
n is defined as

Sgn (ζ) =
[

sgn (ζ1) sgn (ζ2) · · · sgn (ζn)
]T ∀ζ ∈ R

n

(15)

with sgn (·) being the scalar signum function. It is straight-

forward to show that the time derivative of (14) yields

¨̂q = K1Sgn (q̃) + K2q̃ + K0
˙̃q − Kcr (16)

where the definition of r (t) given in (12) has been utilized.

Based on the subsequent stability analysis, the control input

torque, τ (t), is designed as

τ = Ydθ̂ + Kpe + Kcα (qd − q̂) + Kc

(

q̇d − ˙̂q
)

(17)

where Kp ∈ R
n×n is a diagonal positive define control gain

matrix and the parameter estimate vector θ̂(t) is generated

according to the following update rule

θ̂ = Proj

{

Γ

(

Y T
d e −

∫ t

0

d

dσ

{

Y T
d (σ)

}

e (σ) dσ

+ α

∫ t

0

Y T
d (σ) e (σ) dσ

)}

(18)

with Γ ∈ R
p×p being a constant, diagonal, positive-definite,

adaptation gain matrix and Proj{·} is a projection operator

introduced to ensure the boundedness of θ̂(t) and its time

derivative.

At this point, we want to note that, it is clear that, from

the observer-controller couple in (14) and (17), and the

parameter estimate law in (18), the proposed methodology

can be implemented without link velocity measurements.

However, for the ease of presentetation, we will make use

of the fact that

qd − q̂ = e + q̃ (19)

to re-arrange (17) in the following advantageous form

τ = Ydθ̂ + Kpe + Kcr + Kcs. (20)

Similarly, after taking the time derivative of (18), the param-

eter update law can be re-written in the following form

˙̂
θ = Proj

{

ΓY T
d r

}

. (21)

In the rest of paper, we will make use of these new definitions

for the controller and the parameter estimation law.
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A. Observer Analysis

After utilizing (1) for the link acceleration signal and (16)

for the time derivative of the observed velocity signal, the

observation error dynamics can be obtained as

¨̃q = q̈ − ¨̂q

= N0 − K1Sgn (q̃) − K2q̃ − K0
˙̃q + Kcr

(22)

where the auxiliary term N0 (t) ∈ R
n is defined as

N0 = M−1 (q) {τ − Vm (q, q̇) q̇ − G (q) − Fdq̇} . (23)

After inserting (20) and (8) into (23), we can explicitly obtain

the following expression

N0 = Nd + Nb (24)

where the auxiliary variables Nd (t) ∈ R
n and Nb (t) ∈ R

n

are specifically defined as

Nd (t) , q̈d + M−1 (qd)Ydθ̃ (25)

and

Nb (t) ,
(

M−1 (q) − M−1 (qd)
)

M (qd) q̈d

+
(

M−1 (q) − M−1 (qd)
)

Ydθ̃
+M−1 (q) {Vm (qd, q̇d) q̇d − Vm (q, q̇) q̇
+G (qd) − G (q) + Fd (q̇d − q̇)
+Kpe + Kc (r + s)}

(26)

Remark 1: After exploiting the boundedness properties of

the desired trajectory, we can show that both Nd (t) and

its time derivative, denoted by Ṅd (t), are bounded signals.

Furthermore, as illustrated in Appendix I, after using (5), (6),

(9), and the mean value theorem [14], Nb (t) can be upper

bounded as

‖Nb (t)‖ ≤ ρo1 ‖e‖ + ρo2 ‖r‖ + ρo3 ‖r‖2
+ ρo4 ‖s‖ (27)

where ρoi, i = 1, .., 4 are some positive known bounding

functions that depend on the model parameters and the

desired trajectory, and ‖·‖ denotes the standard Euclidean

norm.

After taking the time derivative of s (t) and inserting for

(22), the dynamics for the filtered observation error s (t) can

be obtained as follows

ṡ = Nd+Nb−K1Sgn (q̃)−K2q̃−(K0 − α) ˙̃q+Kcr. (28)

Provided that the observer gains are selected to satisfy

α (K0 − α) = K2 (29)

the expression in (28) can be rearranged to have the following

form

ṡ = Nd + Nb − K1Sgn (q̃) − K2

α
s + Kcr (30)

which enables us to state the following preliminary

Lyapunov-like analysis for the observer. Specifically, we

define the following non-negative scalar function V0 (t) ∈ R

V0 =
1

2
sT s + P0 (31)

where the scalar auxiliary function P0 (t) ∈ R is defined as

P0 = ζ0 −
t

∫

t0

w0 (σ) dσ (32)

where w0(t) ∈ R and the non-negative constant ζ0 ∈ R are

defined as

w0 , sT [Nb − K1Sgn (q̃)]

ζ0 ,
∑n

i=0 K1i |q̃i (0)| − q̃T (0)Nd (0)
(33)

where the subscript i = 1, 2, ..., n denotes the ith element of

a vector or a diagonal matrix. Following a similar analysis to

that of [9] and [15], it can be proven that when K1 satisfies

the following sufficient condition

K1i > ‖Ndi (t)‖
∞

+
1

α

∥

∥

∥
Ṅdi (t)

∥

∥

∥

∞

(34)

where ‖·‖
∞

denotes the L∞ norm, then P0 (t) in (32) is

always non-zero (i.e., P0 (t) ≥ 0) and V0(t) is a positive-

definite Lyapunov function with respect to s(t) and
√

P0(t).
After taking the time derivative of (31), we obtain

V̇0 = sT

[

−K2

α
s + Kcr + Nb

]

(35)

where (30), the time derivative of (32), and (33) were

utilized. The first term in the brackets in (35) will be used for

both damping the unwanted effects of the term Nb(t) in the

composite stability analysis and to ensure the convergence of

the observation error. The second term is designed to cancel

out the interconnection term between the observer-controller

subsystem. At this point, we are ready to proceed to the error

system development.

B. Error System Development

To obtain the dynamics of r (t), we take its time derivative

and premultiply the resulting equation by M (q), utilize (1)

and (10) and perform some algebraic manipulation, to obtain

M (q) ṙ = −Vm (q, q̇) r + Ysθ − τ (36)

where the auxiliary term Ys(t)θ ∈ R
n is defined as

Ysθ = M (q) (q̈d + αė)+Vm (q, q̇) (q̇d + αe)+G (q)+Fdq̇.
(37)

After substituting the control law in (20) into (36), we obtain

the following closed-loop dynamics for r (t)

M (q) ṙ = −Vm (q, q̇) r + χ − Kcr − Kcs − Kpe (38)

where the disturbance-like term χ (r, e, t) ∈ R
n is defined

as follows

χ = Ysθ − Ydθ (39)

with Yd(t)θ being defined in (8).

Remark 2: As illustrated in [11], and also shown in Ap-

pendix I, we can exploit the boundedness properties of the

desired trajectory, and Properties 3, 4, and 6, to show that

the norm of χ (·) can be upper bounded as

‖χ‖ ≤ ρ1 (e) ‖e‖ + ρ2 (e) ‖r‖ (40)

where ρ1 (e) and ρ2 (e) are known positive bounding func-

tions. The above bound will be exploited to obtain the

stability result presented in the next section.
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C. Stability Analysis

The combination of error systems in (30) and (38) yields

the following stability result for the observation error and

the position tracking error.

Theorem 1: The velocity observer in (14) and the control

law in (17) ensure that the closed-loop observer-controller

couple is semi-globally asymptotically stable in the sense

that

‖e (t)‖ ,
∥

∥ ˙̃q (t)
∥

∥ → 0 as t → +∞ (41)

provided that the controller and observer gains are selected

to satisfy (29), (34), and controller gain Kc and observer

gain K2 are chosen to satisfy the following constraints

Kc = 1 + ρ2 + knρ2
1

K2 = α
(

1 + ρo4 + kn

(

ρ2
o1 + ρ2

o2 + ρ2
o3

)) (42)

where ρ1 (e), ρ2 (e) were defined in (40), ρoi, i = 1, 2, 3, 4
were defined in (27) and kn ∈ R being a nonlinear damping

gain selected to satisfy the following condition

kn >

(

1 +
λ2

λ1
‖z (0)‖2

)

/2 (43)

and z (t) ∈ R
(3n+p+1)×1 defined as follows

z (t) ,
[

sT
√

P0 rT eT θ̃T
]T

. (44)

and the positive bounding constants λ1, λ2 ∈ R are defined

as
λ1 = 1

2 min {1, m1, λmin {Kp}}
λ2 = 1

2 max {1, m2, λmax {Kp}} .
(45)

Proof: We start our proof by introducing the following

non-negative function

V = V0 +
1

2
rT M (q) r +

1

2
eT Kpe +

1

2
θ̃T Γ−1θ̃. (46)

From (46), V (t) can be upper and lower bounded as

λ1 ‖x‖2 ≤ λ1 ‖z‖2 ≤ V ≤ λ2 ‖z‖2
(47)

where x (t) ∈ R
3n is defined as

x (t) ,
[

sT rT eT
]T

. (48)

Taking the time derivative of (46), and then substituting (12),

time derivative of (13), (21), (35) and (38), and cancelling

common terms results in

V̇ = sT

[

−K2

α
s + Nb

]

+ rT [χ − Kcr] − αKp ‖e‖2
(49)

where (4) has been utilized. After applying (27) and (39) to

(49), we can form the following upper bound for V̇ (t)

V̇ ≤ −‖e‖2 − ‖r‖2 − ‖s‖2

+
[

ρo1 ‖e‖ ‖s‖ − knρ2
o1 ‖s‖2

]

+
[

ρo2 ‖r‖ ‖s‖ − knρ2
o2 ‖s‖

2
]

+
[

ρo3 ‖r‖2 ‖s‖ − k2
nρ2

o3 ‖s‖2
]

+
[

ρ1 ‖e‖ ‖r‖ − knρ2
1 ‖r‖

2
]

.

(50)

After completing the squares for the terms in the brackets,

we can obtain

V̇ ≤ −
[

1 − 1

2kn

]

‖e‖2−
[

1 − 1

4kn

− 1

4kn

‖r‖2

]

‖r‖2−‖s‖2

(51)

which using the definition of x (t) in (48) can be further

upper bounded as

V̇ ≤ −
[

1 − 1

2kn

(

1 + ‖x‖2
)

]

‖x‖2
. (52)

The sign of the upper bound of V̇ (t) is determined by the

term in the brackets of (52). This term has to be positive

to ensure the negative semi-definiteness of V̇ (t), that is, to

ensure the negative semi-definiteness of V̇ (t), we must have

1 − 1

2kn

(

1 + ‖x‖2
)

> 0. (53)

From (47), a sufficient condition on (53) can be obtained as

1 − 1

2kn

(

1 +
V (t)

λ1

)

> 0

and hence at this point the analysis can be reformulated as

V̇ ≤ −β ‖x‖2
provided that 2kn >

(

1 +
V (t)

λ1

)

(54)

where β ∈ R is some positive constant (0 < β ≤ 1). Due to

the negative semi-defineteness of V̇ (t), the maximum value

that V (t) can have is its initial value, V (0), therefore, from

(47), a more conservative condition on kn can be obtained

to have the following form

V̇ ≤ −β ‖x‖2
provided that 2kn > 1 +

λ2

λ1
‖z (0)‖2

(55)

that is when kn is selected to satisfy (43), we can ensure

that V (t) is bounded, therefore, z (t) ∈ L∞ (i.e., e (t),
r (t), s (t), P0 (t) ∈ L∞). After utilizing standard signal

chasing arguments, we can show that all signals in the closed-

loop system are bounded and e (t) and ˙̃q (t) are uniformly

continuous signals (from the boundedness of their derivatives

over time), furthermore, from the integration of both sides

of (55), it is easy to see that x (t) ∈ L2 and therefore e (t),
˙̃q (t) ∈ L2. Finally, after utilizing a direct application of

Barbalat’s Lemma [16], we can obtain the result given in

(41) provided that the gain condition of (43) is satisfied.

V. SIMULATION RESULTS

The observer based adaptive output feedback controller

proposed in this paper was simulated on a two-link, direct-

drive, planar robot manipulator having the following dynamic

model [17]
[

p1 + 2p3c2 p2 + p3c2

p2 + p3c2 p2

] [

q̈1

q̈2

]

+

[

−p3s2q̇2 −p3s2(q̇1 + q̇2)
p3s2q̇1 0

] [

q̇1

q̇2

]

+

[

fd1 0
0 fd2

] [

q̇1

q̇2

]

=

[

τ1

τ2

]

(56)
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where p1 = 3.473 [kg-m2], p2 = 0.193 [kg-m2], p3 =
0.242 [kg-m2], fd1 = 5.3 [Nm-sec], fd2 = 1.1 [Nm-sec],

c2,cos(q2), and s2, sin(q2). Based on (7) and (56), the

system parameter vector θ can be constructed as

θ =
[

p1 p2 p3 fd1 fd2

]T
. (57)

The simulations were performed using the following de-

sired link position trajectory

qd(t) =

[

0.7 sin(t)
(

1 − exp
(

−0.3t3
))

1.2 sin(t)
(

1 − exp
(

−0.3t3
))

]

[rad] (58)

where the exponential term was included to ensure that

q̇d(0) = q̈d(0) =
...
q d(0) = 0 and the observer-controller

gains were selected as

α = diag
{

1.8 1.6
}

Ko = diag
{

8 6
}

, K1 = diag
{

1.6 1.2
}

,
Kc = diag

{

1.6 1.4
}

, Kp = diag
{

32 24
}

(59)

with the adaptation gains selected as

Γ = diag{11.6, 1.8, 2.4, 7.8, 8.6}.
We note that all the above gains were tuned by trial-and-

error until the best link position tracking performance was

achieved. The parameter estimate θ̂(t) was initialized to zero,

and the simulations were performed at a sampling frequency

of 2 kHz.

The results are shown in Figures 1-3. The link position

tracking errors are depicted in Figure 1, while the parameter

estimates and control torques are shown in Figures 2 and 3.

From Figure 1, it is clear that the tracking objective was met.
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Fig. 1. Link Tracking Errors

VI. CONCLUSION

In this paper, we have presented a new observer based

adaptive output feedback tracking controller for robot manip-

ulators. A novel observer-controller couple was introduced

that ensured semi-globally asymptotic tracking despite the

lack of link velocity measurements and parametric uncer-

tainties in the system dynamics. Simulation results were pre-

sented to illustrate the tracking performance of the observer-

controller couple. Future work will focus on extending the
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proposed result to design repetitive learning output feedback

controllers for robot manipulators.
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APPENDIX I

PROOF OF BOUNDS

In this appendix, we illustrate how the upper bounds

for Nb(t) in (27) and χ(t) in (40) are obtained. We start

with exploiting the expression given in (26), which can be

rewritten in the following form

Nb =
(

M−1 (q) − M−1 (qd)
)

(

M (qd) q̈d + Ydθ̃
)

+M−1 (q) {Vm (qd, q̇d) q̇d − Vm (q, q̇d) q̇d}
+M−1 (q) {2Vm (q, ė) q̇d − Vm (q, ė) ė}
+M−1 (q) {G (qd) − G (q) + Fd (q̇d − q̇)}
+M−1 (q) {Kpe + Kcr + Kcs}

(60)

where (5) has been utilized. After applying (3), (6), and (9),

we can upper bound (60) as

Nb ≤
{

ζm1m2 ‖q̈d‖ +
∥

∥

∥
Ydθ̃

∥

∥

∥
+

1

m1
ζc2 ‖q̇d‖ (61)

+
1

m1
λmax {Kp} +

1

m1
ζg

}

‖e‖

+

{

2

m1
ζc1 ‖q̇d‖ +

1

m1
ζf +

1

m1
λmax {Kc}

}

‖r‖

+
1

m1
ζc1 ‖r‖2

+
1

m1
λmax {Kc} ‖s‖

where the fact that ‖r(t)‖ ≥ ‖ė(t)‖ has been utilized. From

the structure of (61), it is clear that the bounding function

of (27) are

ρ01 = ζm1m2 ‖q̈d‖ +
1

m1
ζc2 ‖q̇d‖ (62)

+
1

m1
λmax {Kp} +

1

m1
ζg,

ρ02 =
2

m1
ζc1 ‖q̇d‖ +

1

m1
ζf +

1

m1
λmax {Kc} ,

ρ03 =
1

m1
ζc1, and ρ04 =

1

m1
λmax {Kc}

and the bound given in (27) is valid.

For the expression in (40), we start with the previously

found upper bound on the same term [11] (see Chapter 6

equation 6.2-9) as

‖χ‖ ≤ ζ1 ‖e‖ + ζ2 ‖e‖2
+ ζ3 ‖r‖ + ζ4 ‖r‖ ‖e‖ (63)

where ζi, i = 1, 2, 3, 4 are positive bounding constants that

depend on the desired trajectory and physical parameters

(i.e., link mass, link length, friction coefficients, etc.). The

right-hand-side of (63) can be written to have the following

form

‖χ‖ ≤ (ζ1 + ζ2 ‖e‖) ‖e‖ + (ζ3 + ζ4 ‖e‖) ‖r‖ (64)

from which it is quite obvious that when the bounding

functions ρ1 (e) , and ρ2 (e) are selected as

ρ1 (e) = ζ1 + ζ2 ‖e‖ (65)

ρ2 (e) = ζ3 + ζ4 ‖e‖

bound given in (40) is satisfied.
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