MODULES WHOSE MAXIMAL SUBMODULES ARE SUPPLEMENTS¹⁸

Engin Büyükaşik^{*} and Dilek Pusat-Yılmaz^{*†}

Received 17:08:2009 : Accepted 20:04:2010

Abstract

We study modules whose maximal submodules are supplements (direct summands). For a locally projective module, we prove that every maximal submodule is a direct summand if and only if it is semisimple and projective. We give a complete characterization of the modules whose maximal submodules are supplements over Dedekind domains.

Keywords: Locally projective module, Supplement submodule.

2000 AMS Classification: 13 C 05, 13 C 99, 16 D 10, 16 P 40.

1. Introduction

Let R be a unitary ring and M a left R-module. A submodule N of M is called a supplement if there exists another submodule L such that N is minimal with respect to the property that N + L = M. This is equivalent to N + L = M and $N \cap L \ll N$. A module M is called supplemented if every submodule has a supplement. Several authors have been recently attracted by different generalizations of supplemented modules. An interesting example of this situation has been studied in [1], where modules M in which the kernel of any epimorphism from M to a finitely generated module has a supplement are studied. These modules are characterized as modules whose maximal submodules have supplements, (see, [1, Theorem 2.8]). Motivated by these results, we study in this paper, modules in which every maximal submodule is a direct summand. For the sake of brevity, we call them ms-modules and md-modules, respectively.

[‡]Work supported by TUBITAK project number 107T709.

 $^{{}^{\}S}\text{The}$ authors would like to thank Prof. P. F. Smith and Prof. P. A. Guil Asensio for their valuable suggestions and comments.

^{*}Izmir Institute of Technology, Department of Mathematics, 35430 Urla, Izmir, Turkey.

E-mail: (E. Büyükaşik) enginbuyukasik@iyte.edu.tr (D. P.-Yılmaz) dilekyilmaz@iyte.edu.tr [†]Corresponding Author.

We begin by studying some basic properties of md-modules. In particular, we show that homomorphic images of md-modules are md-modules and that a module M containing an md-module L is also md-module provided that L is not contained in any maximal submodule of M (Proposition 2.2). In general, md-modules need not be closed under extensions. But we show that M is an md-module provided that L and M/L are md-modules where L is a closed submodule of M. These basic results allow us to characterize semilocal rings as those rings in which any module with zero Jacobson radical is an md-module.

In Section 3, we study locally projective md-modules. Locally projective modules were introduced by Huisgen-Zimmermann in [20], and they coincide with the flat strict Mittag-Leffler modules in the sense of Raynaud and Gruson (see [10]). These modules are closely related to pure submodules of direct products of free modules (see [20]). And it has been recently observed by several authors that there exists a strong connection between the existence of nontrivial locally projective modules in the functor category of a ring (in the sense that they are not projective) and the construction of separable modules and the pure semisimplicity of certain subcategories of modules over the ring (see e.g. [8, 9, 11, 12, 21]).

In particular, it is proved in [21] that any ring R which is not left perfect has locally projective left modules which are not projective. Motivated by these relations, we show in Section 3 that any locally projective md-module is semisimple projective. In particular, we deduce that any projective md-module is semisimple.

In Section 4, we characterize the coatomic modules whose maximal submodules are supplement (Theorem 4.3). As a consequence, for a module M over a left perfect ring, we prove that every maximal submodule of M is a supplement if and only if Rad K = Rad M for every maximal submodule K of M.

In Section 5, we prove that the class of ms-modules is strictly larger than class of md-modules. We close this paper by studying md-modules over commutative domains. Zöschinger proved that over a Dedekind domain, a submodule of a module is closed if and only it is coclosed. Using this result we obtain that ms-modules and md-modules coincide over Dedekind domains. This allows us to determine completely the structure of md-modules over Dedekind domains.

Throughout this paper, R will be an associative ring with identity and all modules are unital left R-modules. By $N \subseteq M$ we shall mean that N is a submodule of M. Let $L \subseteq M$, L is said to be *small* in M, denoted by $L \ll M$, if $L + K \neq M$ for every proper submodule $K \subseteq M$. Dually, a submodule $L \subseteq M$ is called *essential* in M, denoted by $L \trianglelefteq M$, if $L \cap K \neq 0$ for every nonzero $K \subseteq M$. By Rad M and Soc(M), we denote the Jacobson radical and the socle of M, respectively. A submodule L of M is called *closed* in M if $L \trianglelefteq K$ for some $K \subseteq M$, implies L = K. Dually, a submodule N of M is called *coclosed* in M if $N/K \ll M/K$ implies K = N for every submodule K of N.

It is easy to see that a maximal submodule of a module is either essential or a direct summand. Therefore a module is an md-module if and only if every maximal submodule is a closed submodule.

2. Modules whose maximal submodules are direct summands

In this section we shall prove some closure properties of md-modules.

2.1. Proposition. The class of md-modules is closed under arbitrary direct sums and homomorphic images.

Proof. Let $M = \sum_{i \in I} M_i$, where M_i is an md-module for each $i \in I$. Let K be a maximal submodule of M. Then $M_i \notin K$ for some $i \in I$, so that $M = M_i + K$ and $M_i \cap K$ is a maximal submodule of M_i . Since M_i is an md-module, there is a submodule $L \subseteq M_i$ such that $M_i = L \oplus M_i \cap K$ for some $L \subseteq M$. Then it is straightforward to see that the sum M = K + L is direct. Hence M is an md-module.

Let M be an md-module and $f: M \to N$ any homomorphism of left R-modules. Note that md-modules are closed under isomorphisms, since being an md-module is a lattice-theoretical notion. Therefore we can assume that f(M) is of the form M/L for some submodule L of M. Let K/L be a maximal submodule of M/L. As K is also a maximal submodule of M and M is an md-module, there exists a submodule S of M such that $M = K \oplus S$. Now it is clear that the sum K/L + (S+L)/L = M/L is a direct sum. Hence M/L is an md-module.

Let M and N be R-modules. Then, N is said to be an M-generated module if there is an epimorphism $f: M^{(\Lambda)} \to N$ for some index set Λ .

From Proposition 2.1, we obtain the following.

2.2. Corollary. Any M-generated module of an md-module is an md-module. \Box

2.3. Proposition. Let M be an R-module and $N \subseteq M$. Suppose N is an md-module and M/N has no maximal submodules. Then M is an md-module.

Proof. Let K be a maximal submodule of M. If $N \subseteq K$, then K/N would be a maximal submodule of M/N, which is impossible, so we must have M = N + K. Since $M/K \cong N/(N \cap K)$ is simple, $N \cap K$ is a maximal submodule of N. Since N is an md-module, $N \cap K \oplus L = N$ for some simple submodule $L \subseteq N$. Then $M = K + N = K + K \cap N + L = K + L$. Since L is simple, $K \cap L = 0$. That is, K is a direct summand of M, and so M is an md-module.

Let M be a module with no maximal submodules, i.e. satisfying $\operatorname{Rad} M = M$, then M is an md-module (take N = 0 in the above Proposition).

In general, a submodule of an md-module need not be an md-module. For example, the \mathbb{Z} -module $_{\mathbb{Z}}\mathbb{Q}$ is an md-module, because it has no maximal submodules. On the other hand, $_{\mathbb{Z}}\mathbb{Q}$ does not contain any nonzero proper md-submodules, because proper submodules of $_{\mathbb{Z}}\mathbb{Q}$ have a proper radical and moreover are indecomposable since $_{\mathbb{Z}}\mathbb{Q}$ is uniform. However, we have the following result for particular submodules.

2.4. Proposition. Let M be an md-module. Then any coclosed submodule N of M with $Soc(M) \subseteq N$ is an md-module.

Proof. Let K be a maximal submodule of N. Since N is coclosed, we have N/K+T/K = M/K for some proper submodule $T/K \subseteq M/K$. Then $(N/K) \cap (T/K) = 0$ because N/K is a simple module. Now we get $M/K = N/K \oplus T/K$ and so $N \cap T = K$. Then $N/K \cong M/T$ is also simple, hence T is a maximal submodule of M. Since M is an md-module, $M = T \oplus S$ for some simple submodule S of M. Then $S \subseteq \text{Soc}(M) \subseteq N$. By the modular law, we get $N = N \cap T \oplus S = K \oplus S$. That is, K is a direct summand of N. Hence N is an md-module.

Let M be an R-module. If U and M/U are md-modules for some $U \subset M$, then M need not be an md-module. To see this, let p be a prime integer, $M = \mathbb{Z}/p^2\mathbb{Z}$ and U = pM. Then U and M/U are both simple modules, hence md-modules. Clearly, U is a maximal submodule of M and U is not a direct summand of M. Hence M is not an md-module.

2.5. Proposition. Let M be an R-module and L be a closed submodule of M. If L and M/L are md-modules, then M is an md-module.

Proof. Let *K* be a maximal submodule of *M*. If K + L = M, then $M/K \cong L/(L \cap K)$ is simple, so $L \cap K$ is a maximal submodule of *L*. Since *L* is an md-module, $L = L \cap K \oplus S$ for some simple submodule $S \subseteq L$. Then $M = K + L = K + L \cap K + S = K + S$ and $K \cap S = 0$, so that *K* is a direct summand of *M*. If $L \subseteq K$, then K/L is a maximal submodule of M/L, so K/L is a direct summand of M/L. That is, $M/L = K/L \oplus N/L$ for some submodule N/L of M/L. Since N/L is simple, *L* is a maximal submodule of *N*. As *L* is closed in *M*, $L \cap S = 0$ for some nonzero $S \subseteq N$. So $L \oplus S = N$ with *S* a simple submodule of *M*. We get M = K + N = K + L + S = K + S and $K \cap S = 0$. So *K* is a direct summand of *M*. Hence *M* is an md-module. \Box

For a module M let s(M) be the sum of all simple submodules of M that are direct summands of M.

2.6. Theorem. For an *R*-module *M*, the following are equivalent.

- (1) M is an md-module,
- (2) M/s(M) has no maximal submodules,
- (3) $M/\operatorname{Soc}(M)$ has no maximal submodules.

Proof. (1) \Longrightarrow (2) Let M be an md-module and suppose K is a maximal submodule of M such that $s(M) \subseteq K$. Then $M = K \oplus S$ for some simple submodule $S \subseteq M$. Hence $S \subseteq s(M) \subseteq K$, a contradiction. Therefore M/s(M) has no maximal submodules.

(2) \implies (3) Clear, because any submodule of M containing Soc(M) also contains s(M).

 $(3) \Longrightarrow (1)$ Clearly Soc(M) is an md-module. Then (3) and Proposition 2.3 implies that M is an md-module.

Note that, if M is a finitely generated module, then every submodule is contained in a maximal submodule. In this case, M is an md-module if and only if it is semisimple by Theorem 2.6. In particular, R is a semisimple (artinian) ring if and only if $_{R}R$ is an md-module. Therefore, R is a semilocal ring if and only if R/J(R) is an md-module.

2.7. Proposition. Let M be a module such that s(M) is finitely generated. Then M is an md-module if and only if $M = s(M) \oplus N$, where $N \subseteq M$ with N = Rad N = Rad M.

Proof. First note that the (composition) length l(s(M)) of s(M) is finite. The proof is by induction on the length l(s(M)) of s(M). First suppose l(s(M)) = 0. Then clearly s(M) = 0, so that M has no maximal submodules, because M is an md-module. Then Rad M = M, and so we are done. Suppose l(s(M)) = n > 0 and each md-submodule of M with length less than n has the desired decomposition. Let K be a maximal submodule of M. Then $M = K \oplus S$ for some $S \subseteq s(M)$. Now, K is an md-module by Proposition 2.1 and l(s(K)) = n - 1. By the induction hypothesis, $K = s(K) \oplus N$ where Rad N = N. Then $M = S \oplus K = S \oplus s(K) \oplus N = s(M) \oplus N$, and this completes the proof.

For the converse, note that a module with no maximal submodules is an md-module. Now if $M = s(M) \oplus N$ with N = Rad N, then both s(M) and N are md-modules. Hence M is an md-module by Proposition 2.1.

3. Locally projective modules

Let R be a ring and let us denote $Soc(_RR)$ by S. As S is a two-sided ideal, R/S has a canonical ring structure. Moreover, for any R-module M, we have that M/SM is an R/S-module. Let us note that a module M is semisimple projective if and only if M = SM, where SM is the R-submodule of M generated by the products of elements of S by elements of M.

The proof of the following lemma is straightforward.

3.1. Lemma. Let M be a left R-module, X an R/S-module and $f : M \to X$ a homomorphism of R-modules. Then $SM \subseteq \text{Ker}(f)$.

Let F be a module. We recall that F is called *locally projective* if for any epimorphism $p: X \to Y$, any homomorphism $g: F \to Y$, and any finitely generated submodule Z of F, there exists a homomorphism $h: F \to X$ such that $p \circ h \mid_{Z} = g \mid_{Z}$ (see e.g. [20]).

Every projective module is locally projective. But the converse is far from being true. It was proved in [20, Examples 2.3(1)] that any pure submodule of a projective module is locally projective. This means, for instance, that if F is a flat module and $q: R^{(I)} \to F$ is an epimorphism, then Ker(q) is always locally projective. But it cannot be projective if we choose a flat module having projective dimension bigger than one. In fact, a main result of [21, Theorem 10] asserts that if R is a ring which is not left perfect, then there always exists a locally projective left R-module which is not projective.

The notion of locally projective module coincides with that of flat strict Mittag-Leffler module in the sense of Raynaud and Gruson [10], and their existence has been shown to have a strong relation with the decomposition properties of modules into direct summands (see e.g. [11, 12]). Bearing in mind this connection, we will prove in this section that any locally projective md-module is trivial in the sense that it is a direct sum of simple projective modules.

We first need to prove the following lemma.

3.2. Lemma. Let F be a locally projective module. Then any finitely generated direct summand of F is projective.

Proof. Let N be a finitely generated direct summand of F and $p: \mathbb{R}^{(n)} \to N$ an epimorphism. Let us denote by $u: N \to F$ the inclusion and let $\pi: F \to N$ be an epimorphism such that $\pi \circ u = 1_N$. As F is locally projective and N is finitely generated, there exists a homomorphism $h: F \to \mathbb{R}^{(n)}$ such that $p \circ h \mid_N = \pi \mid_N$. But this means that N is a direct summand of $\mathbb{R}^{(n)}$ and therefore, projective.

We can now state the main result of this section.

3.3. Theorem. Every locally projective md-module is semisimple projective.

Proof. Let F be a locally projective md-module. We need to show that SF = F. Assume on the contrary that $SF \neq F$ and let us choose $0 \neq x \in F \setminus SF$. Let $p : R^{(I)} \to F$ be an epimorphism for some index set I. As F is locally projective, there exists a homomorphism $h: F \to R^{(I)}$ such that $p \circ h(x) = x$.

We claim that $\operatorname{Gor}(h) \subseteq (J+S)^{(I)}$. Otherwise, if we call $\pi : \mathbb{R}^{(I)} \to \mathbb{R}^{(I)}/(J+S)^{(I)}$ the canonical projection, we have that $\pi \circ h \neq 0$. And, as $\operatorname{Rad}(\mathbb{R}^{(I)}/(J+S)^{(I)}) = 0$, this means that there exists an epimorphism $q : \mathbb{R}^{(I)}/(J+S)^{(I)} \to C$ onto a simple module C such that $q \circ \pi \circ h \neq 0$. Our hypothesis implies now that C is a direct summand of F, which must be projective by Lemma 3.2. Hence $C \subseteq SF$. But this is a contradiction, since otherwise $q \circ \pi \circ h = 0$. Let us now choose a finite subset $K \subseteq I$ such that $h(x) \subseteq R^{(K)}$. Say that $h(x) = \sum_{i \in K} r_i e_i$ where $r_i \in R$. Again, for any $i \in K$, we may choose a finite subset $K_i \subseteq I$ such

that $h \circ p(e_i) \subseteq R^{(K_i)}$. Let us set $K' = K \cup \left(\bigcup_{i \in K} K_i\right)$. Then, for any $i \in K$, we can find elements $r_{ij} \in R$ such that $h \circ p(e_i) = \sum_{i \in K'} r_{ij}e_j$. Thus we get that

$$h(x) = hph(x) = hp\left(\sum_{i \in K} r_i e_i\right) = \sum_{i \in K} r_i hp(e_i) = \sum_{i \in K} r_i \left(\sum_{j \in K_i} r_{ij} e_j\right).$$

So, if we denote by $\phi : \mathbb{R}^{(K')} \to \mathbb{R}^{(K')}$ the endomorphism whose matrix with respect to the basis $\{e_j\}_{j \in K'}$ is (r_{ij}) , we get that $\phi \circ h(x) = h(x)$. Let us enlarge the row vector $(r_i)_K$ to a vector in $\mathbb{R}^{(K')}$ by setting $r_j = 0$ if $j \in K' \setminus K$. We deduce from the above equality that $(r_j)_{j \in K'} = (r_j)_{j \in K'} \cdot (r_{ij})_{i,j \in K'}$. So if we denote by $I_{K'}$ the identity matrix of size K', then $(r_j)_{j \in K'} \cdot (I_{K'} - (r_{ij})_{i,j \in K'}) = 0$.

On the other hand, as we know that $\operatorname{Gor}(h) \subseteq (J+S)^{(I)}$, and S is a two-sided ideal of R, we deduce that all entries of the matrix $(r_{ij}+S)_{i,j\in K'}$ belong to the Jacobson radical of R/S and therefore, it is a quasi-regular matrix by [2, Corollary 17.13]. This means that the matrix $I_{K'} - (r_{ij} + S)$ is invertible in the matrix ring $M_{K'}(R/S)$ and thus, the row matrix $(r_i)_{i\in K'} = (0+S)$ is in $M_{K'}(R/S)$, i.e. $r_i \in S$ for any $i \in K$. But this means that $h(x) \in S^{(I)}$ and, as any simple quotient of F is a direct summand, we deduce that $x = p \circ h(x) \in SF$. A contradiction, since we were assuming that $x \notin SF$.

In particular, we get the following corollary.

3.4. Corollary. Any projective md-module is semisimple.

4. Maximal submodules that are supplements

In this section we shall study modules whose maximal submodules are supplements, and call them *ms-modules* for short. Clearly any direct summand is a supplement, and hence md-modules are ms-modules. We shall prove that the converse need not be true in general.

It can be verified easily that the properties in Proposition 2.1 and Proposition 2.3 hold also for ms-modules.

Recall that a module is called *coatomic* provided that every submodule is contained in a maximal submodule. First, we shall characterize coatomic ms-modules. Then we will obtain a characterization of ms-modules over left perfect rings. We begin with following:

4.1. Lemma. Let M be a coatomic module and N be a coclosed submodule of M. Then N is coatomic.

Proof. Suppose $\operatorname{Rad}(N/K) = N/K$ for some $K \subseteq N$. Then $N/K \subseteq \operatorname{Rad}(M/K) \ll M/K$. Then $N/K \ll M/K$, and hence N = K because N is coclosed. Therefore N is coatomic.

4.2. Lemma. Let M be a module with $\operatorname{Rad} M = 0$. Then M is an ms-module if and only if it is an md-module.

Proof. If Rad M = 0 then supplements and direct summands in M are the same.

4.3. Theorem. Let R be any ring and M be a coatomic R-module. Then M is an ms-module if and only if the following conditions hold:

(i) Every maximal submodule N of M is coatomic and $\operatorname{Rad} N = \operatorname{Rad} M$,

(ii) $M / \operatorname{Rad} M$ is semisimple.

Proof. Suppose M is an ms-module and K is a maximal submodule of M. Then K is a supplement in M, so K is coatomic by Lemma 4.1, and Rad $K = K \cap \text{Rad } M = \text{Rad } M$ by [19, 41.1], which proves (i). Now (ii) follows from Lemma 4.2 and the fact that coatomic md-modules are semisimple (see, Theorem 2.6).

Conversely, let K be a maximal submodule of M. Then $K/\operatorname{Rad} M$ is a direct summand of $M/\operatorname{Rad} M$ by (ii), so K + L = M and $K \cap L = \operatorname{Rad} M$ for some submodule $L \subseteq M$. Since K is coatomic and $\operatorname{Rad} K = \operatorname{Rad} M$, we have $K \cap L = \operatorname{Rad} K \ll K$, that is K is a supplement of L in M. Hence M is an ms-module.

A ring R is called a *left max ring* if $\operatorname{Rad} M \ll M$ for every left R-module M. Equivalently, R is a left max ring if and only every (nonzero) left R-module is coatomic. Also, R is a *left perfect ring* if R is a left max ring and $R/\operatorname{Rad} R$ is semisimple as a left R-module (see [2]). For every module M over a left perfect ring, we have $M/\operatorname{Rad} M$ is semisimple.

Now, from Theorem 4.3 we obtain the following corollary.

4.4. Corollary. Let R be a left perfect ring and M be an R-module. Then M is an ms-module if and only if $\operatorname{Rad} K = \operatorname{Rad} M$ for every maximal submodule K of M.

An *R*-module *M* is called π -projective if for every two submodules *U*, *V* of *M* with U + V = M, there exists $f \in \text{End}(M)$ with $\text{Gor}(f) \subseteq U$ and $\text{Gor}(1 - f) \subseteq V$.

A projective module P together with an epimorphism $f: P \to M$ such that $\text{Ker}(f) \ll P$ is called a *projective cover* of M. A ring R is semiperfect if and only if every simple left R-module has a projective cover, if and only if the left (right) R-module R is supplemented (see [19, 42.6]).

4.5. Proposition. Let R be a semiperfect ring and M a π -projective R-module. Then M is an ms-module if and only if M is an md-module. In particular, _RR is an ms-module if and only if it is semisimple.

Proof. Necessity is clear. Now suppose M is an ms-module and let N be a maximal submodule of M. Then by hypothesis M = N + L and $N \cap L \ll N$ for some $L \subseteq M$. Since R is semiperfect, the simple R-module M/N has a projective cover. So that N has a supplement L' in L by [16, Lemma 4.40]. Then N and L' are mutual supplements. Hence N is a direct summand of M by [3, 20.9].

5. An example

As we have mentioned, in general an ms-module need not be an md-module. In the following two lemmas we shall prove the existence of such a module.

5.1. Lemma. Let R be a ring and M be an R-module. Suppose M has a simple submodule U such that $U \trianglelefteq M$ and M/U is semisimple but not simple. Then M is an ms-module but not an md-module.

Proof. It is clear from the hypothesis that $\operatorname{Soc}(M) = U$ and $U \subseteq L$ for every nonzero proper submodule L of M. In particular, U is contained in every maximal submodule of M, and hence $U \subseteq \operatorname{Rad} M$. Since $(\operatorname{Rad} M)/U = \operatorname{Rad}(M/U) = 0$, we have $\operatorname{Rad} M = U$. By the same argument we have $\operatorname{Rad} N = U$ for every submodule N of M which contains U properly. Let K be a maximal submodule of M. Then $M/U = K/U \oplus T/U$ for some $T/U \subseteq M/U$ because M/U is semisimple. We get K + T = M and $K \cap T = U = \operatorname{Rad} K$. Clearly U is finitely generated, so $K \cap T = U \ll K$. Therefore K is a supplement of T in M. Hence M is an ms-module. Since every nonzero submodule of M contains U, K is not a direct summand of M, i.e. M is not an md-module.

5.2. Lemma. Let R be a complete commutative noetherian local ring with maximal ideal P. Suppose P is not principal. Then there exists an ms-module over R which is not an md-module.

Proof. Let U be the simple R-module R/P and E = E(U) be the injective hull of U. Let $V = \{e \in E \mid P^2 e = 0\}$. Then V is a submodule of E and P(V/U) = 0, so that V/U is a vector space over R/P. Also P/P^2 is a vector space over R/P. The dimension of these vector spaces is the respective composition length. By [18, Corollary p. 154] the composition length of V/U is the same as the composition length of P/P^2 . Since P is not principal, the composition length of P/P^2 is at least two (see [17, Proposition 9.3]), so that V/U is not simple. Therefore by Lemma 5.1, V is an ms-module but not an md-module.

5.3. Example. Let $R = \mathbb{C}[x, y]$, P = Rx + Ry and $S = R/P^2$. Then S is an artinian local ring. Let $M = E_S(R/P)$ be the injective hull of the simple S-module R/P. Then $P^2M = 0$, so M is an ms-module but not an md-module by Lemma 5.2.

5.4. Corollary. Let M be an R-module such that $\operatorname{Rad} M$ is a simple essential submodule of M and $M / \operatorname{Rad} M \cong S_1 \oplus S_2$ for simple modules S_1 and S_2 . Then M is an ms-module but not an md-module.

5.5. Note. A concrete example satisfying the hypothesis of Corollary 5.4 can be found in [15, p. 339].

6. Modules over Commutative Rings

Throughout this section all rings are commutative. In general direct product of simple modules need not be an md-module. For instance, let F be a field and $R = F^{I}$ where I is an infinite index set. Then R is a direct product of simple R-modules each of which is isomorphic to F. By [13, p. 264] R is not semisimple. Hence R is not an md-module by Theorem 3.3.

In case R is commutative and noetherian, we shall prove that an arbitrary direct product of simple R-modules is an md-module. First we need the following lemma.

6.1. Lemma. Let R be a ring and A be a finitely generated ideal of R. Let $X = \prod_{i \in I} X_i$

be the direct product of the R-modules X_i . Suppose that $X_i = AX_i$ for all $i \in I$. Then X = AX.

Proof. Let $A = Ra_1 + Ra_2 + \dots + Ra_k$ for some $k \ge 1$, $a_i \in A$, $(1 \le i \le k)$. For every $i \in I$, we have $X_i = AX_i = a_1X_i + \dots + a_kX_i$. Let $x = (x_i) \in X$, where $x_i \in X_i$ for all $i \in I$. By assumption, for every $i \in I$ there exists $x_{ij} \in X_i$, $(1 \le j \le k)$ such that $x_i = a_1x_{i1} + \dots + a_kx_{ik}$. Then $(x_{ij}) \in X$, $(1 \le j \le k)$ and $x = a_1(x_{i1}) + \dots + a_k(x_{ik}) \in AX$. Hence X = AX.

6.2. Theorem. Let R be a noetherian ring and let $\{U_{\lambda}\}_{\lambda \in \Lambda}$ be a collection of simple R-modules. Then $M = \prod_{\lambda \in \Lambda} U_{\lambda}$ is an md-module.

Proof. Let $\{P_i\}_{i\in I}$ be the collection of distinct maximal ideals P_i of R such that for every $i \in I$ there exists $\lambda \in \Lambda$ with $P_iU_{\lambda} = 0$. For each $i \in I$ let $\Lambda_i = \{\lambda \in \Lambda \mid P_iU_{\lambda} = 0\}$. Let K be a maximal submodule of M and P the maximal ideal of R such that $PM \subseteq K$. Since $PM \neq M$, we have $U_{\lambda} \neq PU_{\lambda}$ for some $\lambda \in \Lambda$ by Lemma 6.1. Since U_{λ} is simple and PU_{λ} is a proper submodule of U_{λ} , we have $PU_{\lambda} = 0$, so that $P = P_j$ for some $j \in I$. Again by Lemma 6.1, if $L = \prod_{\lambda \in \Lambda'} U_{\lambda}$, where $\Lambda' = \bigcup \{\Lambda_i \mid i \in I \setminus \{j\}\}$, then PL = L.

Hence, $L \subseteq K$. Now let $L' = \prod_{\lambda \in \Lambda_j} U_{\lambda}$. Then $P_j L' = 0$, so that L' is semisimple, also $M = L \oplus L'$. Then $K = L \oplus (K \cap L')$ and $K \cap L'$ is a direct summand of L'. Therefore

 $M = L \oplus L^*$. Then $K = L \oplus (K \cap L^*)$ and $K \cap L^*$ is a direct summand of L^* . Therefore K is a direct summand of M. Hence, M is an md-module.

We shall now characterize the md-modules over Dedekind domains. We begin with the following lemma which is due to Zöschinger. Using this lemma we shall prove that ms-modules and md-modules coincide over Dedekind domains.

6.3. Lemma. [22, Lemma 3.3] Let R be Dedekind domain, M an R-module and $V \subseteq M$. Then V is coclosed if and only if V is closed.

Let M be any module and $N \subseteq M$. A submodule K of M is called a *complement* of N if K is maximal in the collection of submodules L of M such that $L \cap N = 0$. A submodule T of M is called a *complement* if there is a submodule N of M such that Tis a complement of N. A submodule of M is a complement if and only if it is closed (see [7, p.6]).

6.4. Proposition. Let R be a Dedekind domain and M an R-module. Then M is an ms-module if and only if M is an md-module.

Proof. We only need to prove the necessity. Let N be a maximal submodule of M. Since M is an ms-module, N is a supplement in M. So N is a complement in M by Lemma 6.3, i.e. $N \cap L = 0$ for some $L \subseteq M$ and N is maximal with respect to this property. Now $L \neq 0$ because $M \cap 0 = 0$. Therefore N + L = M, i.e. N is a direct summand of M. \Box

6.5. Lemma. [1, Lemma 4.4] Let R be a Dedekind domain. For an R-module M the following are equivalent.

(1) M is injective.

- (2) M is divisible.
- (3) M = PM for every maximal ideal P of R.
- (4) M does not contain any maximal submodule.

Let R be a Dedekind domain and M an R-module. For a maximal ideal P of R, the submodule $T_P(M) = \{m \in M \mid P^n m = 0 \text{ for some positive integer } n\}$ is called the P-primary component of M. If $M = T_P(M)$ for some maximal ideal P of R, then M is called a P-primary module. For a torsion module M we always have $M = \bigoplus_{P \in O} T_P(M)$,

where Ω is the set of all maximal ideals of R (see [4, 10.6.9]).

The divisible part of a module M is denoted by D(M). By Lemma 6.5, we have $M = D(M) \oplus M'$ for some $M' \subseteq M$. If M is a divisible module, then M has no maximal submodules, and so Rad M = M. Therefore, $D(M) \subseteq \text{Rad } M$ for every R-module M.

6.6. Lemma. Let R be a Dedekind domain and M a reduced and P-primary module for some maximal ideal $P \subseteq R$. Then M is an md-module if and only if M is semisimple.

Proof. Suppose M is an md-module. Then $M/\operatorname{Soc}(M)$ has no maximal submodules by Proposition 2.6, so $P(M/\operatorname{Soc}(M)) = M/\operatorname{Soc}(M)$ by Lemma 6.5, that is $PM + \operatorname{Soc}(M) = M$, and this gives $P(PM + \operatorname{Soc}(M)) = P^2M = PM$. Therefore, PM is divisible by Lemma 6.5, but M is reduced so that PM = 0. Hence M is an R/P-module, i.e. M is semisimple.

The converse is clear.

6.7. Theorem. Let R be a Dedekind domain and M a torsion R-module. The following are equivalent.

(1) M is an md-module.

- (2) $M = M_1 \oplus M_2$ where M_1 is divisible and M_2 is semisimple.
- (3) Every submodule $U \subseteq M$ with Rad $M \subseteq U$ is a direct summand of M.

Proof. (1) \Longrightarrow (2) Let D be the divisible part of M. Then $M = D \oplus N$ for some $N \subseteq M$. Since N is torsion, we have $N = \bigoplus_{P \in \Omega} T_P(N)$, and since M is an md-module $T_P(N)$ is also an md-module for every $P \in \Omega$ by Proposition 2.1. Then $T_P(N)$ is semisimple by Lemma 6.6. Therefore N is semisimple.

(2) \Longrightarrow (3) We have Rad $M = \text{Rad}(M_1 \oplus M_2) = \text{Rad} M_1 \oplus \text{Rad} M_2 = \text{Rad} M_1 = M_1$. Let Rad $M \subseteq U \subseteq M$. Then we get $U = M_1 \oplus U \cap M_2$. Since M_2 is semisimple, $M_2 = K \oplus M_2 \cap U$ for some $K \subseteq M_2$. So, $M = M_1 \oplus M_2 = M_1 \oplus K \oplus M_2 \cap U = K \oplus U$.

 $(3) \Longrightarrow (1) \operatorname{Rad} M \subseteq P$ for every maximal submodule P of M. So, by hypothesis, every maximal submodule of M is a direct summand. Hence M is an md-module. \Box

6.8. Lemma. [14, Example 6.34] Let R be a domain and M be an R-module. Then the torsion submodule T(M) is a closed submodule of M.

6.9. Corollary. Let R be domain and M be an R-module. If T(M) and M/T(M) are md-modules, then M is an md-module.

If R is a Dedekind domain, then the converse also holds.

Proof. By Lemma 6.8, T(M) is a closed submodule of M. Then M is an md-module by Proposition 2.5.

If R is a Dedekind domain, then T(M) is a coclosed submodule of M by Lemma 6.3 and Lemma 6.8. Since every simple submodule of M is torsion, $Soc(M) \subseteq T(M)$, so that T(M) is an md-module by Proposition 2.4. Hence, M/T(M) is an md-module by Proposition 2.1.

6.10. Lemma. Let R be a Dedekind domain and M a torsion-free R-module. Then M is an md-module if and only if M is divisible.

Proof. Suppose M is an md-module and let P be a maximal submodule of M. Then $P \oplus S = M$ for some simple submodule S of M. Thus $S \subseteq T(M) = 0$, so P = M, a contradiction. Hence M has no maximal submodules, and M is divisible by Lemma 6.5.

Conversely, if M is divisible, then M has no maximal submodules by Lemma 6.5. Hence M is an md-module.

6.11. Theorem. Let R be a Dedekind domain and M be an R-module. Then M is an md-module if and only if

- (i) $T(M) = M_1 \oplus M_2$, where M_1 is semisimple and M_2 is divisible,
- (ii) M/T(M) is divisible.

Proof. Suppose M is an md-module. Then T(M) is an md-module by Corollary 6.9, so T(M) has the desired decomposition by Theorem 6.7. Hence M/T(M) is divisible by Lemma 6.10.

To prove the converse, let N be a maximal submodule of M. Then by (ii) we have N+T(M) = M. Since M_2 is divisible, $M_2 \subseteq \operatorname{Rad} M \subseteq N$, so $M = N+T(M) = N+M_1$. Then N + S = M for some simple submodule $S \subseteq M_1$. We have $N \cap S = 0$ because S is a simple submodule. Therefore N is a direct summand of M. Hence M is an md-module.

Acknowledgments The authors are grateful to the referees for their valuable suggestions and comments which improved the presentation of the paper.

References

- Alizade, R., Bilhan, G. and Smith, P.F. Modules whose maximal submodules have supplements, Comm. Algebra 29, 2389–2405, 2001.
- [2] Anderson, F. W. and Fuller, K. R. Rings and Categories of Modules (Springer, New York, 1992).
- [3] Clark, J., Lomp, C., Vanaja, N. and Wisbauer, R. Lifting Modules. Supplements and Projectivity in Module Theory, (Frontiers in Mathematics, Birkhäuser, Basel, 2006).
- [4] Cohn, P. M. Basic Algebra (Springer, London, 2003).
- [5] Drinfeld, V. Infinite-dimensional vector bundles in algebraic geometry: an introduction, in The Unity of Mathematics (Birkhäuser, Boston, 2006), 263–304.
- [6] Estrada, S., Guil Asensio, P. A., Prest, M. and Trlifaj, J. Model category structures arising from Drinfeld vector bundles, Work in progress.
- [7] Dung, N. V., Huynh, D. V., Smith, P.F. and Wisbauer, R. Extending Modules (Longman:Burnt Mill, 1994).
- [8] Eklof, P.C. Modules with strange decomposition properties. Infinite length modules, Bielefeld, 75–87, 1998 (Trends Math., Birkhäuser, Basel, 2000).
- [9] Eklof, P.C. and Shelah, S. The Kaplansky test problems for ℵ1-separable groups, Proc. Amer. Math. Soc. 126 (7), 1901–1907, 1998.
- [10] Gruson, L. and Raynaud, M. Critères de platitude et de projectivité. Techniques de "platification" d'un module, Invent. Math. 13, 1–89, 1971.
- [11] Guil Asensio, P. A., Izurdiaga, M. C. and Torrecillas, B. Decomposition properties of strict Mittag-Leffler modules, J. Algebra 310, 290–302, 2007.
- [12] Guil Asensio, P. A., Izurdiaga, M. C. and Torrecillas, B. Accesible subcategories of modules and pathological objects, Forum Math. 22 (3), 485–507, 2010.
- [13] Kasch, F. Modules and Rings (Academic Press, London, 1982).
- [14] Lam, T.Y. Lectures on Modules and Rings (Springer-Verlag, New York, 1999).
- [15] Mcconnel, J. C. and Robson, J. C. Homomorphisms and extensions of modules over certain differential polynomial rings, J. Algebra 26, 319–342, 1973.
- [16] Mohamed, S. H. and Müller, B.J. Continuous and Discrete Modules (Cambridge University Press, New York, 1990).
- [17] Sharp, R. Y. Steps in Commutative Algebra (Cambridge University Press, Cambridge, 1990).
- [18] Sharpe, D.W. and Vamos, P. Injective Modules (Cambridge University Press, Cambridge, 1972).
- [19] Wisbauer, R. Foundations of Modules and Rings (Gordon and Breach, Reading, 1991).
- [20] Zimmermann-Huisgen, B. Pure submodules of direct products of free modules, Math. Ann. 224 (3), 233–245, 1976.
- [21] Zimmermann-Huisgen, B. On the abundance of ℵ₁-separable modules, in: Abelian Groups and Noncommutative Rings, Contemp. Math.130, 167–180, 1992.
- [22] Zöschinger, H. Komplementierte moduln über Dedekindringen, J. Algebra 29, 42–56, 1974.