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Abstract

We study modules whose maximal submodules are supplements (direct
summands). For a locally projective module, we prove that every max-
imal submodule is a direct summand if and only if it is semisimple and
projective. We give a complete characterization of the modules whose
maximal submodules are supplements over Dedekind domains.
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1. Introduction

Let R be a unitary ring and M a left R-module. A submodule N of M is called a
supplement if there exists another submodule L such that N is minimal with respect to
the property that N + L = M . This is equivalent to N + L = M and N ∩ L ≪ N . A
module M is called supplemented if every submodule has a supplement. Several authors
have been recently attracted by different generalizations of supplemented modules. An
interesting example of this situation has been studied in [1], where modules M in which
the kernel of any epimorphism from M to a finitely generated module has a supplement
are studied. These modules are characterized as modules whose maximal submodules
have supplements, (see, [1, Theorem 2.8]). Motivated by these results, we study in this
paper, modules in which every maximal submodule is a supplement, and modules in
which every maximal submodule is a direct summand. For the sake of brevity, we call
them ms-modules and md-modules, respectively.
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We begin by studying some basic properties of md-modules. In particular, we show
that homomorphic images of md-modules are md-modules and that a module M con-
taining an md-module L is also md-module provided that L is not contained in any
maximal submodule of M (Proposition 2.2). In general, md-modules need not be closed
under extensions. But we show that M is an md-module provided that L and M/L are
md-modules where L is a closed submodule of M . These basic results allow us to char-
acterize semilocal rings as those rings in which any module with zero Jacobson radical is
an md-module.

In Section 3, we study locally projective md-modules. Locally projective modules
were introduced by Huisgen-Zimmermann in [20], and they coincide with the flat strict
Mittag-Leffler modules in the sense of Raynaud and Gruson (see [10]). These modules
are closely related to pure submodules of direct products of free modules (see [20]). And
it has been recently observed by several authors that there exists a strong connection
between the existence of nontrivial locally projective modules in the functor category
of a ring (in the sense that they are not projective) and the construction of separable
modules and the pure semisimplicity of certain subcategories of modules over the ring
(see e.g. [8, 9, 11, 12, 21]).

In particular, it is proved in [21] that any ring R which is not left perfect has locally
projective left modules which are not projective. Motivated by these relations, we show in
Section 3 that any locally projective md-module is semisimple projective. In particular,
we deduce that any projective md-module is semisimple.

In Section 4, we characterize the coatomic modules whose maximal submodules are
supplement (Theorem 4.3). As a consequence, for a module M over a left perfect ring, we
prove that every maximal submodule of M is a supplement if and only if Rad K = RadM
for every maximal submodule K of M .

In Section 5, we prove that the class of ms-modules is strictly larger than class of
md-modules. We close this paper by studying md-modules over commutative domains.
Zöschinger proved that over a Dedekind domain, a submodule of a module is closed if
and only it is coclosed. Using this result we obtain that ms-modules and md-modules
coincide over Dedekind domains. This allows us to determine completely the structure
of md-modules over Dedekind domains.

Throughout this paper, R will be an associative ring with identity and all modules
are unital left R-modules. By N ⊆ M we shall mean that N is a submodule of M . Let
L ⊆ M , L is said to be small in M , denoted by L ≪ M , if L + K 6= M for every proper
submodule K ⊆ M . Dually, a submodule L ⊆ M is called essential in M , denoted by
L � M , if L ∩ K 6= 0 for every nonzero K ⊆ M . By Rad M and Soc(M), we denote the
Jacobson radical and the socle of M , respectively. A submodule L of M is called closed

in M if L � K for some K ⊆ M , implies L = K. Dually, a submodule N of M is called
coclosed in M if N/K ≪ M/K implies K = N for every submodule K of N .

It is easy to see that a maximal submodule of a module is either essential or a direct
summand. Therefore a module is an md-module if and only if every maximal submodule
is a closed submodule.

2. Modules whose maximal submodules are direct summands

In this section we shall prove some closure properties of md-modules.

2.1. Proposition. The class of md-modules is closed under arbitrary direct sums and

homomorphic images.
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Proof. Let M =
∑

i∈I

Mi, where Mi is an md-module for each i ∈ I . Let K be a maximal

submodule of M . Then Mi * K for some i ∈ I , so that M = Mi + K and Mi ∩ K is
a maximal submodule of Mi. Since Mi is an md-module, there is a submodule L ⊆ Mi

such that Mi = L ⊕ Mi ∩ K for some L ⊆ M . Then it is straightforward to see that the
sum M = K + L is direct. Hence M is an md-module.

Let M be an md-module and f : M → N any homomorphism of left R-modules.
Note that md-modules are closed under isomorphisms, since being an md-module is a
lattice-theoretical notion. Therefore we can assume that f(M) is of the form M/L for
some submodule L of M . Let K/L be a maximal submodule of M/L. As K is also a
maximal submodule of M and M is an md-module, there exists a submodule S of M
such that M = K ⊕S. Now it is clear that the sum K/L + (S + L)/L = M/L is a direct
sum. Hence M/L is an md-module. �

Let M and N be R-modules. Then, N is said to be an M-generated module if there
is an epimorphism f : M (Λ) → N for some index set Λ.

From Proposition 2.1, we obtain the following.

2.2. Corollary. Any M-generated module of an md-module is an md-module. �

2.3. Proposition. Let M be an R-module and N ⊆ M . Suppose N is an md-module

and M/N has no maximal submodules. Then M is an md-module.

Proof. Let K be a maximal submodule of M . If N ⊆ K, then K/N would be a maximal
submodule of M/N , which is impossible, so we must have M = N + K. Since M/K ∼=
N/(N ∩ K) is simple, N ∩ K is a maximal submodule of N . Since N is an md-module,
N∩K⊕L = N for some simple submodule L ⊆ N . Then M = K+N = K+K∩N +L =
K + L. Since L is simple, K ∩ L = 0. That is, K is a direct summand of M , and so M
is an md-module. �

Let M be a module with no maximal submodules, i.e. satisfying Rad M = M , then
M is an md-module (take N = 0 in the above Proposition).

In general, a submodule of an md-module need not be an md-module. For example,
the Z-module ZQ is an md-module, because it has no maximal submodules. On the
other hand, ZQ does not contain any nonzero proper md-submodules, because proper
submodules of ZQ have a proper radical and moreover are indecomposable since ZQ is
uniform. However, we have the following result for particular submodules.

2.4. Proposition. Let M be an md-module. Then any coclosed submodule N of M with

Soc(M) ⊆ N is an md-module.

Proof. Let K be a maximal submodule of N . Since N is coclosed, we have N/K+T/K =
M/K for some proper submodule T/K ⊆ M/K. Then (N/K) ∩ (T/K) = 0 because
N/K is a simple module. Now we get M/K = N/K ⊕ T/K and so N ∩ T = K. Then
N/K ∼= M/T is also simple, hence T is a maximal submodule of M . Since M is an
md-module, M = T ⊕ S for some simple submodule S of M . Then S ⊆ Soc(M) ⊆ N .
By the modular law, we get N = N ∩ T ⊕ S = K ⊕ S. That is, K is a direct summand
of N . Hence N is an md-module. �

Let M be an R-module. If U and M/U are md-modules for some U ⊂ M , then
M need not be an md-module. To see this, let p be a prime integer, M = Z/p2Z and
U = pM . Then U and M/U are both simple modules, hence md-modules. Clearly, U is
a maximal submodule of M and U is not a direct summand of M . Hence M is not an
md-module.
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2.5. Proposition. Let M be an R-module and L be a closed submodule of M . If L and

M/L are md-modules, then M is an md-module.

Proof. Let K be a maximal submodule of M . If K +L = M , then M/K ∼= L/(L∩K) is
simple, so L∩K is a maximal submodule of L. Since L is an md-module, L = L∩K ⊕S
for some simple submodule S ⊆ L. Then M = K + L = K + L ∩ K + S = K + S and
K ∩ S = 0, so that K is a direct summand of M . If L ⊆ K, then K/L is a maximal
submodule of M/L, so K/L is a direct summand of M/L. That is, M/L = K/L ⊕ N/L
for some submodule N/L of M/L. Since N/L is simple, L is a maximal submodule of
N . As L is closed in M , L ∩ S = 0 for some nonzero S ⊆ N . So L ⊕ S = N with S a
simple submodule of M . We get M = K + N = K + L + S = K + S and K ∩ S = 0. So
K is a direct summand of M . Hence M is an md-module. �

For a module M let s(M) be the sum of all simple submodules of M that are direct
summands of M .

2.6. Theorem. For an R-module M , the following are equivalent.

(1) M is an md-module,

(2) M/s(M) has no maximal submodules,

(3) M/ Soc(M) has no maximal submodules.

Proof. (1) =⇒ (2) Let M be an md-module and suppose K is a maximal submodule of
M such that s(M) ⊆ K. Then M = K ⊕ S for some simple submodule S ⊆ M . Hence
S ⊆ s(M) ⊆ K, a contradiction. Therefore M/s(M) has no maximal submodules.

(2) =⇒ (3) Clear, because any submodule of M containing Soc(M) also contains
s(M).

(3) =⇒ (1) Clearly Soc(M) is an md-module. Then (3) and Proposition 2.3 implies
that M is an md-module. �

Note that, if M is a finitely generated module, then every submodule is contained in
a maximal submodule. In this case, M is an md-module if and only if it is semisimple
by Theorem 2.6. In particular, R is a semisimple (artinian) ring if and only if RR is an
md-module. Therefore, R is a semilocal ring if and only if R/J(R) is an md-module.

2.7. Proposition. Let M be a module such that s(M) is finitely generated. Then M is

an md-module if and only if M = s(M) ⊕ N , where N ⊆ M with N = RadN = Rad M .

Proof. First note that the (composition) length l(s(M)) of s(M) is finite. The proof is
by induction on the length l(s(M)) of s(M). First suppose l(s(M)) = 0. Then clearly
s(M) = 0, so that M has no maximal submodules, because M is an md-module. Then
RadM = M , and so we are done. Suppose l(s(M)) = n > 0 and each md-submodule of
M with length less than n has the desired decomposition. Let K be a maximal submodule
of M . Then M = K⊕S for some S ⊆ s(M). Now, K is an md-module by Proposition 2.1
and l(s(K)) = n − 1. By the induction hypothesis, K = s(K) ⊕ N where Rad N = N .
Then M = S ⊕ K = S ⊕ s(K) ⊕ N = s(M) ⊕ N , and this completes the proof.

For the converse, note that a module with no maximal submodules is an md-module.
Now if M = s(M)⊕N with N = RadN , then both s(M) and N are md-modules. Hence
M is an md-module by Proposition 2.1. �
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3. Locally projective modules

Let R be a ring and let us denote Soc(RR) by S. As S is a two-sided ideal, R/S
has a canonical ring structure. Moreover, for any R-module M , we have that M/SM
is an R/S-module. Let us note that a module M is semisimple projective if and only if
M = SM , where SM is the R-submodule of M generated by the products of elements
of S by elements of M .

The proof of the following lemma is straightforward.

3.1. Lemma. Let M be a left R-module, X an R/S-module and f : M → X a homo-

morphism of R-modules. Then SM ⊆ Ker(f). �

Let F be a module. We recall that F is called locally projective if for any epimorphism
p : X → Y , any homomorphism g : F → Y , and any finitely generated submodule Z of
F , there exists a homomorphism h : F → X such that p ◦ h |Z= g |Z (see e.g. [20]).

Every projective module is locally projective. But the converse is far from being true.
It was proved in [20, Examples 2.3(1)] that any pure submodule of a projective module is

locally projective. This means, for instance, that if F is a flat module and q : R(I) → F
is an epimorphism, then Ker(q) is always locally projective. But it cannot be projective
if we choose a flat module having projective dimension bigger than one. In fact, a main
result of [21, Theorem 10] asserts that if R is a ring which is not left perfect, then there
always exists a locally projective left R-module which is not projective.

The notion of locally projective module coincides with that of flat strict Mittag-Leffler
module in the sense of Raynaud and Gruson [10], and their existence has been shown to
have a strong relation with the decomposition properties of modules into direct summands
(see e.g. [11, 12]). Bearing in mind this connection, we will prove in this section that
any locally projective md-module is trivial in the sense that it is a direct sum of simple
projective modules.

We first need to prove the following lemma.

3.2. Lemma. Let F be a locally projective module. Then any finitely generated direct

summand of F is projective.

Proof. Let N be a finitely generated direct summand of F and p : R(n) → N an epimor-
phism. Let us denote by u : N → F the inclusion and let π : F → N be an epimorphism
such that π ◦ u = 1N . As F is locally projective and N is finitely generated, there exists
a homomorphism h : F → R(n) such that p ◦ h |N= π |N . But this means that N is a

direct summand of R(n) and therefore, projective. �

We can now state the main result of this section.

3.3. Theorem. Every locally projective md-module is semisimple projective.

Proof. Let F be a locally projective md-module. We need to show that SF = F . Assume
on the contrary that SF 6= F and let us choose 0 6= x ∈ F \ SF . Let p : R(I) → F
be an epimorphism for some index set I . As F is locally projective, there exists a
homomorphism h : F → R(I) such that p ◦ h(x) = x.

We claim that Gor(h) ⊆ (J + S)(I). Otherwise, if we call π : R(I) → R(I)/(J + S)(I)

the canonical projection, we have that π ◦ h 6= 0. And, as Rad(R(I)/(J + S)(I)) = 0, this

means that there exists an epimorphism q : R(I)/(J + S)(I) → C onto a simple module
C such that q ◦ π ◦ h 6= 0. Our hypothesis implies now that C is a direct summand of
F , which must be projective by Lemma 3.2. Hence C ⊆ SF . But this is a contradiction,
since otherwise q ◦ π ◦ h = 0.
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Let us now choose a finite subset K ⊆ I such that h(x) ⊆ R(K). Say that h(x) =
∑

i∈K

riei where ri ∈ R. Again, for any i ∈ K, we may choose a finite subset Ki ⊆ I such

that h ◦ p(ei) ⊆ R(Ki). Let us set K′ = K ∪

(

⋃

i∈K

Ki

)

. Then, for any i ∈ K, we can

find elements rij ∈ R such that h ◦ p(ei) =
∑

j∈K′ rijej . Thus we get that

h(x) = hph(x) = hp

(

∑

i∈K

riei

)

=
∑

i∈K

rihp(ei) =
∑

i∈K

ri

(

∑

j∈Ki

rijej

)

.

So, if we denote by φ : R(K′) → R(K′) the endomorphism whose matrix with respect to
the basis {ej}j∈K′ is (rij), we get that φ ◦ h(x) = h(x). Let us enlarge the row vector

(ri)K to a vector in R(K′) by setting rj = 0 if j ∈ K′ \ K. We deduce from the above
equality that (rj)j∈K′ = (rj)j∈K′ · (rij)i,j∈K′ . So if we denote by IK′ the identity matrix
of size K′, then (rj)j∈K′ · (IK′ − (rij)i,j∈K′) = 0.

On the other hand, as we know that Gor(h) ⊆ (J +S)(I), and S is a two-sided ideal of
R, we deduce that all entries of the matrix (rij +S)i,j∈K′ belong to the Jacobson radical
of R/S and therefore, it is a quasi-regular matrix by [2, Corollary 17.13]. This means
that the matrix IK′ − (rij + S) is invertible in the matrix ring MK′(R/S) and thus, the
row matrix (ri)i∈K′ = (0+S) is in MK′(R/S), i.e. ri ∈ S for any i ∈ K. But this means

that h(x) ∈ S(I) and, as any simple quotient of F is a direct summand, we deduce that
x = p ◦ h(x) ∈ SF . A contradiction, since we were assuming that x /∈ SF . �

In particular, we get the following corollary.

3.4. Corollary. Any projective md-module is semisimple. �

4. Maximal submodules that are supplements

In this section we shall study modules whose maximal submodules are supplements,
and call them ms-modules for short. Clearly any direct summand is a supplement, and
hence md-modules are ms-modules. We shall prove that the converse need not be true
in general.

It can be verified easily that the properties in Proposition 2.1 and Proposition 2.3
hold also for ms-modules.

Recall that a module is called coatomic provided that every submodule is contained in
a maximal submodule. First, we shall characterize coatomic ms-modules. Then we will
obtain a characterization of ms-modules over left perfect rings. We begin with following:

4.1. Lemma. Let M be a coatomic module and N be a coclosed submodule of M . Then

N is coatomic.

Proof. Suppose Rad(N/K) = N/K for some K ⊆ N . Then N/K ⊆ Rad(M/K) ≪
M/K. Then N/K ≪ M/K, and hence N = K because N is coclosed. Therefore N is
coatomic. �

4.2. Lemma. Let M be a module with RadM = 0. Then M is an ms-module if and

only if it is an md-module.

Proof. If RadM = 0 then supplements and direct summands in M are the same. �

4.3. Theorem. Let R be any ring and M be a coatomic R-module. Then M is an

ms-module if and only if the following conditions hold:

(i) Every maximal submodule N of M is coatomic and RadN = Rad M ,
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(ii) M/ RadM is semisimple.

Proof. Suppose M is an ms-module and K is a maximal submodule of M . Then K is a
supplement in M , so K is coatomic by Lemma 4.1, and Rad K = K∩Rad M = RadM by
[19, 41.1], which proves (i). Now (ii) follows from Lemma 4.2 and the fact that coatomic
md-modules are semisimple (see, Theorem 2.6).

Conversely, let K be a maximal submodule of M . Then K/ Rad M is a direct summand
of M/Rad M by (ii), so K + L = M and K ∩ L = RadM for some submodule L ⊆ M .
Since K is coatomic and RadK = RadM , we have K ∩ L = RadK ≪ K, that is K is a
supplement of L in M . Hence M is an ms-module. �

A ring R is called a left max ring if Rad M ≪ M for every left R-module M . Equiva-
lently, R is a left max ring if and only every (nonzero) left R-module is coatomic. Also, R
is a left perfect ring if R is a left max ring and R/RadR is semisimple as a left R-module
(see [2]). For every module M over a left perfect ring, we have M/ RadM is semisimple.

Now, from Theorem 4.3 we obtain the following corollary.

4.4. Corollary. Let R be a left perfect ring and M be an R-module. Then M is an

ms-module if and only if Rad K = RadM for every maximal submodule K of M . �

An R-module M is called π-projective if for every two submodules U, V of M with
U + V = M , there exists f ∈ End(M) with Gor(f) ⊆ U and Gor(1 − f) ⊆ V .

A projective module P together with an epimorphism f : P → M such that Ker(f) ≪
P is called a projective cover of M . A ring R is semiperfect if and only if every sim-
ple left R-module has a projective cover, if and only if the left (right) R-module R is
supplemented (see [19, 42.6]).

4.5. Proposition. Let R be a semiperfect ring and M a π-projective R-module. Then

M is an ms-module if and only if M is an md-module. In particular, RR is an ms-module

if and only if it is semisimple.

Proof. Necessity is clear. Now suppose M is an ms-module and let N be a maximal
submodule of M . Then by hypothesis M = N + L and N ∩ L ≪ N for some L ⊆ M .
Since R is semiperfect, the simple R-module M/N has a projective cover. So that N has
a supplement L′ in L by [16, Lemma 4.40]. Then N and L′ are mutual supplements.
Hence N is a direct summand of M by [3, 20.9]. �

5. An example

As we have mentioned, in general an ms-module need not be an md-module. In the
following two lemmas we shall prove the existence of such a module.

5.1. Lemma. Let R be a ring and M be an R-module. Suppose M has a simple submod-

ule U such that U �M and M/U is semisimple but not simple. Then M is an ms-module

but not an md-module.

Proof. It is clear from the hypothesis that Soc(M) = U and U ⊆ L for every nonzero
proper submodule L of M . In particular, U is contained in every maximal submodule of
M , and hence U ⊆ Rad M . Since (RadM)/U = Rad(M/U) = 0, we have RadM = U .
By the same argument we have RadN = U for every submodule N of M which contains
U properly. Let K be a maximal submodule of M . Then M/U = K/U ⊕ T/U for some
T/U ⊆ M/U because M/U is semisimple. We get K +T = M and K ∩T = U = Rad K.
Clearly U is finitely generated, so K ∩ T = U ≪ K. Therefore K is a supplement of T
in M . Hence M is an ms-module. Since every nonzero submodule of M contains U , K
is not a direct summand of M , i.e. M is not an md-module. �
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5.2. Lemma. Let R be a complete commutative noetherian local ring with maximal ideal

P . Suppose P is not principal. Then there exists an ms-module over R which is not an

md-module.

Proof. Let U be the simple R-module R/P and E = E(U) be the injective hull of U .
Let V = {e ∈ E | P 2e = 0}. Then V is a submodule of E and P (V/U) = 0, so that
V/U is a vector space over R/P . Also P/P 2 is a vector space over R/P . The dimension
of these vector spaces is the respective composition length. By [18, Corollary p. 154]
the composition length of V/U is the same as the composition length of P/P 2. Since
P is not principal, the composition length of P/P 2 is at least two (see [17, Proposition
9.3]), so that V/U is not simple. Therefore by Lemma 5.1, V is an ms-module but not
an md-module. �

5.3. Example. Let R = C[x, y], P = Rx + Ry and S = R/P 2. Then S is an artinian
local ring. Let M = ES(R/P ) be the injective hull of the simple S-module R/P . Then
P 2M = 0, so M is an ms-module but not an md-module by Lemma 5.2.

5.4. Corollary. Let M be an R-module such that RadM is a simple essential submodule

of M and M/ RadM ∼= S1 ⊕S2 for simple modules S1 and S2. Then M is an ms-module

but not an md-module. �

5.5. Note. A concrete example satisfying the hypothesis of Corollary 5.4 can be found
in [15, p. 339].

6. Modules over Commutative Rings

Throughout this section all rings are commutative. In general direct product of simple
modules need not be an md-module. For instance, let F be a field and R = F I where I
is an infinite index set. Then R is a direct product of simple R-modules each of which is
isomorphic to F . By [13, p. 264] R is not semisimple. Hence R is not an md-module by
Theorem 3.3.

In case R is commutative and noetherian, we shall prove that an arbitrary direct
product of simple R-modules is an md-module. First we need the following lemma.

6.1. Lemma. Let R be a ring and A be a finitely generated ideal of R. Let X =
∏

i∈I

Xi

be the direct product of the R-modules Xi. Suppose that Xi = AXi for all i ∈ I. Then

X = AX.

Proof. Let A = Ra1 + Ra2 + · · · + Rak for some k > 1, ai ∈ A, (1 6 i 6 k). For every
i ∈ I , we have Xi = AXi = a1Xi + · · · + akXi. Let x = (xi) ∈ X, where xi ∈ Xi for all
i ∈ I . By assumption, for every i ∈ I there exists xij ∈ Xi, (1 6 j 6 k) such that xi =
a1xi1 + · · · + akxik. Then (xij) ∈ X, (1 6 j 6 k) and x = a1(xi1) + · · · + ak(xik) ∈ AX.
Hence X = AX. �

6.2. Theorem. Let R be a noetherian ring and let {Uλ}λ∈Λ be a collection of simple

R-modules. Then M =
∏

λ∈Λ

Uλ is an md-module.

Proof. Let {Pi}i∈I be the collection of distinct maximal ideals Pi of R such that for every
i ∈ I there exists λ ∈ Λ with PiUλ = 0. For each i ∈ I let Λi = {λ ∈ Λ | PiUλ = 0}. Let
K be a maximal submodule of M and P the maximal ideal of R such that PM ⊆ K.
Since PM 6= M , we have Uλ 6= PUλ for some λ ∈ Λ by Lemma 6.1. Since Uλ is simple
and PUλ is a proper submodule of Uλ, we have PUλ = 0, so that P = Pj for some j ∈ I .
Again by Lemma 6.1, if L =

∏

λ∈Λ′

Uλ, where Λ′ =
⋃

{Λi | i ∈ I \ {j}}, then PL = L.
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Hence, L ⊆ K. Now let L′ =
∏

λ∈Λj

Uλ. Then PjL
′ = 0, so that L′ is semisimple, also

M = L ⊕ L′. Then K = L ⊕ (K ∩ L′) and K ∩ L′ is a direct summand of L′. Therefore
K is a direct summand of M . Hence, M is an md-module. �

We shall now characterize the md-modules over Dedekind domains. We begin with
the following lemma which is due to Zöschinger. Using this lemma we shall prove that
ms-modules and md-modules coincide over Dedekind domains.

6.3. Lemma. [22, Lemma 3.3] Let R be Dedekind domain, M an R-module and V ⊆ M .

Then V is coclosed if and only if V is closed.

Let M be any module and N ⊆ M . A submodule K of M is called a complement

of N if K is maximal in the collection of submodules L of M such that L ∩ N = 0. A
submodule T of M is called a complement if there is a submodule N of M such that T
is a complement of N . A submodule of M is a complement if and only if it is closed (see
[7, p.6]).

6.4. Proposition. Let R be a Dedekind domain and M an R-module. Then M is an

ms-module if and only if M is an md-module.

Proof. We only need to prove the necessity. Let N be a maximal submodule of M . Since
M is an ms-module, N is a supplement in M . So N is a complement in M by Lemma 6.3,
i.e. N ∩ L = 0 for some L ⊆ M and N is maximal with respect to this property. Now
L 6= 0 because M ∩ 0 = 0. Therefore N + L = M , i.e. N is a direct summand of M . �

6.5. Lemma. [1, Lemma 4.4] Let R be a Dedekind domain. For an R-module M the

following are equivalent.

(1) M is injective.

(2) M is divisible.

(3) M = PM for every maximal ideal P of R.

(4) M does not contain any maximal submodule. �

Let R be a Dedekind domain and M an R-module. For a maximal ideal P of R,
the submodule TP (M) = {m ∈ M | P nm = 0 for some positive integer n} is called the
P -primary component of M . If M = TP (M) for some maximal ideal P of R, then M is
called a P -primary module. For a torsion module M we always have M =

⊕

P∈Ω

TP (M),

where Ω is the set of all maximal ideals of R (see [4, 10.6.9]).

The divisible part of a module M is denoted by D(M). By Lemma 6.5, we have
M = D(M)⊕M ′ for some M ′ ⊆ M . If M is a divisible module, then M has no maximal
submodules, and so Rad M = M . Therefore, D(M) ⊆ Rad M for every R-module M .

6.6. Lemma. Let R be a Dedekind domain and M a reduced and P -primary module for

some maximal ideal P ⊆ R. Then M is an md-module if and only if M is semisimple.

Proof. Suppose M is an md-module. Then M/Soc(M) has no maximal submodules by
Proposition 2.6, so P (M/Soc(M)) = M/Soc(M) by Lemma 6.5, that is PM +Soc(M) =
M , and this gives P (PM + Soc(M)) = P 2M = PM . Therefore, PM is divisible by
Lemma 6.5, but M is reduced so that PM = 0. Hence M is an R/P -module, i.e. M is
semisimple.

The converse is clear. �

6.7. Theorem. Let R be a Dedekind domain and M a torsion R-module. The following

are equivalent.

(1) M is an md-module.
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(2) M = M1 ⊕ M2 where M1 is divisible and M2 is semisimple.

(3) Every submodule U ⊆ M with RadM ⊆ U is a direct summand of M .

Proof. (1) =⇒ (2) Let D be the divisible part of M . Then M = D⊕N for some N ⊆ M .
Since N is torsion, we have N =

⊕

P∈Ω

TP (N), and since M is an md-module TP (N) is

also an md-module for every P ∈ Ω by Proposition 2.1. Then TP (N) is semisimple by
Lemma 6.6. Therefore N is semisimple.

(2) =⇒ (3) We have RadM = Rad(M1 ⊕ M2) = RadM1 ⊕ Rad M2 = Rad M1 = M1.
Let RadM ⊆ U ⊆ M . Then we get U = M1 ⊕ U ∩ M2. Since M2 is semisimple,
M2 = K ⊕M2 ∩U for some K ⊆ M2. So, M = M1 ⊕M2 = M1 ⊕K ⊕M2 ∩U = K ⊕U.

(3) =⇒ (1) Rad M ⊆ P for every maximal submodule P of M . So, by hypothesis,
every maximal submodule of M is a direct summand. Hence M is an md-module. �

6.8. Lemma. [14, Example 6.34] Let R be a domain and M be an R-module. Then the

torsion submodule T (M) is a closed submodule of M . �

6.9. Corollary. Let R be domain and M be an R-module. If T (M) and M/T (M) are

md-modules, then M is an md-module.

If R is a Dedekind domain, then the converse also holds.

Proof. By Lemma 6.8, T (M) is a closed submodule of M . Then M is an md-module by
Proposition 2.5.

If R is a Dedekind domain, then T (M) is a coclosed submodule of M by Lemma 6.3
and Lemma 6.8. Since every simple submodule of M is torsion, Soc(M) ⊆ T (M), so
that T (M) is an md-module by Proposition 2.4. Hence, M/T (M) is an md-module by
Proposition 2.1. �

6.10. Lemma. Let R be a Dedekind domain and M a torsion-free R-module. Then M
is an md-module if and only if M is divisible.

Proof. Suppose M is an md-module and let P be a maximal submodule of M . Then
P ⊕ S = M for some simple submodule S of M . Thus S ⊆ T (M) = 0, so P = M , a
contradiction. Hence M has no maximal submodules, and M is divisible by Lemma 6.5.

Conversely, if M is divisible, then M has no maximal submodules by Lemma 6.5.
Hence M is an md-module. �

6.11. Theorem. Let R be a Dedekind domain and M be an R-module. Then M is an

md-module if and only if

(i) T (M) = M1 ⊕ M2, where M1 is semisimple and M2 is divisible,

(ii) M/T (M) is divisible.

Proof. Suppose M is an md-module. Then T (M) is an md-module by Corollary 6.9, so
T (M) has the desired decomposition by Theorem 6.7. Hence M/T (M) is divisible by
Lemma 6.10.

To prove the converse, let N be a maximal submodule of M . Then by (ii) we have
N +T (M) = M . Since M2 is divisible, M2 ⊆ RadM ⊆ N , so M = N +T (M) = N +M1.
Then N + S = M for some simple submodule S ⊆ M1. We have N ∩ S = 0 because
S is a simple submodule. Therefore N is a direct summand of M . Hence M is an
md-module. �
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[6] Estrada, S., Guil Asensio, P. A., Prest, M. and Trlifaj, J. Model category structures arising

from Drinfeld vector bundles, Work in progress.
[7] Dung, N. V., Huynh, D. V., Smith, P. F. and Wisbauer, R. Extending Modules (Long-

man:Burnt Mill, 1994).
[8] Eklof, P. C. Modules with strange decomposition properties. Infinite length modules, Biele-

feld, 75–87, 1998 (Trends Math., Birkhäuser, Basel, 2000).
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