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Predicting Suspended Sediment Loads and Missing Data
for Gediz River, Turkey

Asli Ulke1; Gokmen Tayfur2; and Sevinc Ozkul3

Abstract: Prediction of suspended sediment load �SSL� is important for water resources quantity and quality studies. The SSL of a
stream is generally determined by direct measurement of the suspended sediment concentration or by employing sediment rating curve
method. Although direct measurement is the most reliable method, it is very expensive, time consuming, and, in many instances,
problematic for inaccessible sections, especially during floods. On the other hand, measuring precipitation and flow discharge is relatively
easier and hence, there are more rain and flow gauging stations than SSL gauging stations in Turkey. Furthermore, due to its cost,
measurements of SSL are carried out in longer periods compared to precipitation and flow measurements. Although daily precipitation and
flow measurements are available for most of the Turkish river basins, at best semimonthly measurements are available for SSL. As such,
it is essential to predict SSL from precipitation and flow data and to fill the gap for the missing data records. This study employed artificial
intelligence methods of artificial neural networks �ANN� and neurofuzzy inference system, the sediment rating curve method, multilinear
regression, and multinonlinear regression methods for this purpose. The comparative analysis of the results showed that the artificial
intelligence methods have superiority over the other methods for predicting semimonthly suspended sediment loads. The ANN using
conjugate gradient optimization method showed the best performance among the proposed models. It also satisfactorily generated daily
SSL data for the missing period record of Gediz River, Turkey.
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Introduction

The estimation of suspended sediment load is very important for
water resources quantity and quality studies in the design and
management of the water resources projects. Sediment load car-
ried by rivers may lead to reduction in useful storage of a dam
and congestion in water inlets �Nakato 1990�. Furthermore, de-
sign of stable channels, estimation of aggradation and degradation
at bridge piers, prediction of sand and gravel mining effects on
riverbed, and determination of environmental impact assessment
and dredging needs are affected by sediment load transport �Singh
et al. 1998�. Also, sediment either in suspension or on the river
bed is a major pollutant and a carrier of nutrients, pesticides, and
other chemicals. The real-time distribution of the sediment load
and its forecast is necessary for controlling the pollution level in
rivers and reservoirs �Lopez et al. 2001�.

The suspended sediment load of a stream is generally deter-
mined by direct measurement of sediment concentrations or by
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the sediment transport equations. Direct measurement of sus-
pended sediment is one of the most reliable methods. Yet, it is
impractical and expensive to set up gauging stations at desired
locations and collect data for a sufficiently long period of time.
This may be the reason for having fewer operational sediment
gauging stations on Turkish rivers. In general, before building a
water structure such as a dam or a weir, the EIE �Electrical Works
Authority� or the DSI �State Water Works� builds temporary
gauging stations to measure sediment. Soon after the structure
becomes operational, the gauging stations are either removed or
not operated �EIE 2006�.

Sediment transport equations can be grouped into three major
groups—physically based, empirical, and regression-based. The
physically based models require enormous data sets and param-
eter estimation �Ozturk et al. 2001; Tayfur 2003�. Empirical mod-
els are not generic and are only applicable for the cases in which
they have been developed �Yang 1996; Tayfur 2003�. Regression-
based models such as the sediment rating curve �SCR� method are
simple and easily applicable ones �Jain 2001�. The SRC relates
suspended sediment concentration to flow rate through regression
equation, which can be linear or nonlinear. In practice, SRC is
generally preferred over other methods because ease of use and
the availability of flow gauging stations. However, since it is a
regression based, it has accuracy limitations. Specifically, SRC
may have relatively low R2 statistics and provide relatively poor
load estimates for certain flow ranges and short-term load esti-
mates �e.g., daily and weekly loads� �Crowder et al. 2007�.

Researchers hence have looked for alternative approaches. In
this last decade, the artificial neural networks �ANNs� �Cigizoglu
2002, 2004; Nagy et al. 2002; Tayfur and Guldal 2006; Raghu-

wanshi et al. 2006; Dogan et al. 2007; Alp and Cığızoğlu 2007�,
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fuzzy logic �FL� �Tayfur et al. 2003�, neurofuzzy �adaptive
neurofuzzy- inference system �ANFIS�� �Kisi 2005�, and genetic
algorithms �Aytek and Kisi 2008� have been commonly employed
for this purpose. The studies showed the superiority of the artifi-
cial intelligence methods over empirical equations �Nagy et al.
2002; Dogan et al. 2007�, the SRC method �Cigizoglu 2002,2004;
Kisi 2005; Aytek and Kisi 2008�; the unit sediment graph method
�Tayfur and Guldal 2006� and multilinear regression method �Ra-
ghuwanshi et al. 2006; Kisi 2005�.

Most of the artificial intelligence method application studies
predicted daily suspended sediment from daily flow data �Cigizo-
glu 2004; Kisi 2005; Alp and Cığızoğlu 2007�, and daily precipi-
tation data �Tayfur and Guldal 2006�. However, as pointed out
earlier, in Turkey, at best, one can find semimonthly measured
suspended sediment �SS� data. It then becomes essential to pre-
dict semimonthly SS data using available daily flow and precipi-
tation data. For this purpose, this study employs SRC, multiple
linear regression �MLR�, nonlinear multiple regression �NLMR�,
ANN, and ANFIS methods. The comparative study would shed a
light on the performance of the models in predicting semimonthly
SS data from daily flow and precipitation data for the Gediz
River, located in the Western part of Turkey. Furthermore, this
study would explore the capability of the models to fill the gap in
SS data records for the Gediz River. That is the daily missing data
of SS at the Gediz River would be generated by the proposed
model.

Accurate estimation of suspended load is difficult because
sediment concentration and flow rate vary significantly with time.
The measurements of sediment concentration and flow rate re-
spond rapidly to precipitation and snowmelt thus show very
flashy trend. For example, Schilling �2000� presented details and
patterns of flow rate and sediment load for water years 1996–
1998 for Walnut Creek Watershed and observed that daily mea-
sures of these variables were very flashy. Therefore, working with
low frequency sampling data, such as weekly, biweekly, or
monthly, might lead to misleading results.

Accuracy of sediment load estimates is dependent upon sam-
pling frequency resulting in better estimates but also higher asso-
ciated cost. What is suggested is to do sampling frequently during
high-flow seasons, but less frequently during low flows. In prac-
tice, the common frequency sampling is weekly, biweekly or
monthly �Li et al. 2006�. However, compared to daily measure-
ments, these periodic measurements would result in an under-
sampled data set �Li et al. 2006�. Schilling �2000� evaluated the
effect of sediment sampling frequency on annual sediment loads
and found that sampling weekly, biweekly, or monthly failed to
adequately characterize sediment loads from the watershed.

Although higher sampling frequency �such as daily� results in
better estimates, it is very costly. Hence, a balance between accu-
racy and cost is generally sought in practice �Li et al. 2006�. One
approach to obtain high-resolution sediment load values would be
to sample sediment on a periodic basis �weekly, biweekly, or
monthly� and then interpolate between measured values to gener-
ate daily data set �Li et al. 2006�. Appropriate interpolation meth-
odologies can be employed for this purpose. Li et al. �2006�
employed the common geostatistical method of cokriging to esti-
mate daily suspended sediment from weekly, biweekly, and
monthly data. They showed that estimated daily sediment loads
with cokriging using weekly measured data best matched the
measured daily values. However, the cokriging method failed
to predict daily values from biweekly and monthly samples �Li

et al. 2006�. This study, however, as it is presented later, em-
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ployed ANN, which provided fairly good estimates of daily val-
ues from semimonthly data.

The novelty of this study is mainly twofold: �1� predicting
semimonthly SS data using daily measured flow rate and precipi-
tation data and �2� generating daily SS data from semimonthly
measured data.

Methods

Sediment Rating Curve

The standard form for SRC is �Julien 2002; EIE 2006�

SSL�t� = aQ�t�
b �1�

where Q�t�=daily average flow �m3 /s�; SSL�t� is suspended sedi-
ment load �t/day�; and a and b=constants, which depend on river
characteristics.

Generally, the log transformation of SSL and flow data prior to
the analysis is carried out. Comparisons of actual and predicted
SSL, partially as a result of scatter about the regression line, as
well as the conversion of results from log space to arithmetic
space, indicate that rating curves can substantially underpredict
the high, and overpredict the low actual loads �Walling and Webb
1988; Asselman 2000�.

Multiple Linear Regression

Assuming that the dependent variable Y is affected by m indepen-
dent variables X1 , X2 , . . . ,Xm and a linear equation is selected for
the relation among them, the regression equation of Y can be
written as �Bayazıt and Oguz 1998�

y = b0 + b1x1 + b2x2 + . . . + bmxm �2�

where y in this equation shows the expected value of the variable
Y when the independent variables take the values X1=x1 ,
X2=x2 , . . . ,Xm=xm.

The regression coefficients b0 , b1 , b2 , . . . ,bm are evaluated, in
a manner similar to simple regression, by minimizing the sum of
the error distances of observation points from the plane expressed
by the regression equation �Bayazıt and Oguz 1998�. In this study,
the coefficients of the regressions were determined using the or-
dinary least square method.

SUMER �2006� and The Ministry of Environment and For-
estry of Turkey �MOEF� �2007� investigated the impact of climate
change on Gediz River basin. They carried out trend analysis for
the observed monthly and annual flow, precipitation and tempera-
ture series. They could not come up with statistically meaningful
trends. This implies that the data used in the current study might
be stationary and therefore in MLR model, employing the ordi-
nary least square method, would be sufficient.

Nonlinear Multiple Regression

Since the suspended sediment transported in the rivers is a non-
linear phenomenon, the multiple nonlinear regression models are
also studied. A good empirical representation of the response that
is inherently nonlinear in nature can be obtained through a poly-
nomial model �Jain and Indurthy 2003�. Hence, polynomial mod-
els are used for the nonlinear regression in this study. A
multinonlinear regression equation can be expressed as �Jain and

Indurthy 2003�:
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y = b0 + b1x1 + b2x2 + b11x1
2 + b22x2

2 + . . . . . . . . . �3�

In this study, five different types of multinonlinear polynomial
models were constructed.

Artificial Neural Network

The artificial neural network �ANN� is essentially a “black box”
operation mapping input data onto output data using a particular
set of nonlinear basis functions. Neurons, which are the basic
units, are connected to each other by links known as synapses.
Associated with each synapse, there is a weighting factor. Back
propagation method is generally employed for training the feed-
forward neural networks �FFNN� using a set of pairs of input and
output values. Each neuron at input and inner layers receives
input values, processes them and then passes the response to the
next layer. The numbers of neurons in the input and the output
layers are determined by the numbers of input and output vari-
ables, respectively. The most commonly used network is the
three-layer feed-forward ANN �ASCE Task Committee 2000�.

The ANN can have more than one hidden layer; however,
theoretical works have shown that a single hidden layer is suffi-
cient for an FFNN to approximate any complex nonlinear func-
tion �Cybenco 1989; Hornik et al. 1989�. The detailed theoretical
information about FFNN can be found in Haykin �1998� and
ASCE Task Committee �2000�.

In the present study, one-hidden-layer feed-forward artificial
neural network is used. Levenberg–Marquardt and conjuge gradi-
ent optimization techniques are employed, since they are more
powerful and faster than the conventional gradient descent tech-
nique �Hagan and Menhaj 1994; El-Bakyr 2003; Cigizoglu and
Kisi 2005�. The sigmoid function is used for the activation of the
hidden and output neurons. Hence, before applying ANN, the
input variables are scaled into the range of �0.1–0.9�. Influence of
scaling issue is discussed in elsewhere �Minns and Hall 1996�.

Adaptive Neurofuzzy Inference System

Intelligent computing tools such as ANN and FL approaches are
proven to be efficient when applied individually to a variety of
problems. Recently there has been a growing interest in combin-

Fig. 1. AN
ing both these approaches, and as a result, neurofuzzy computing
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techniques have evolved. This approach has been tested and
evaluated in the field of signal processing and related areas, but
researchers have only begun evaluating the potential of neuro-
fuzzy hybrid approach in hydrologic modeling studies.

There are only few neurofuzzy hydrological models in the lit-
erature. Jang �1993� was the first one who introduced an architec-
ture and a learning procedure for the fuzzy inference system �FIS�
that uses neural network learning algorithm for constructing set of
fuzzy if-then rules with appropriate membership functions �MFs�
from the specified input-output pairs. This procedure of develop-
ing a FIS using the framework of adaptive neural networks is
called an ANFIS. There are two methods that ANFIS employs for
updating MF parameters: �1� backpropagation for all parameters
�a steepest descent method� and �2� hybrid method consisting of
backpropagation for the parameters associated with the input
membership and least-squares estimation for the parameters asso-
ciated with the output MFs. As a result, training error decreases,
at least locally, throughout the learning process. Therefore, the
more the initial MFs resemble the optimal ones, the easier it will
be for the model parameter training to converge. Human expertise
on the target system to be modeled may aid in setting up these
initial MF parameters in the FIS structure.

A schematic representation of an ANFIS is shown in Fig. 1,
where in Layer 1, A1, A2 and B1, B2 are the MFs for inputs x and
y, respectively. Every node in this layer produces membership
grades of an input parameter. The MFs can be Gaussian, general-
ized bell shaped, triangular, or trapezoidal shaped. Every node in
Layer 2 is a fixed node whose output is the product of all incom-
ing signals. Normalized firing strengths are computed in the
nodes of Layer 3. Every node in Layer 4 is an adaptive node with
a node function O4,i= w̄if i= w̄i�pix+qiy+ri� where w̄i is the output
of Layer 3 and �pi , qi , ri� is the parameter set of the node. The
single node in Layer 5 is a fixed node, which computes the overall
output as the summation of all incoming signals. The detailed
theoretical information on ANFIS can be found in Jang �1993�.

Triangular �trimf�, generalized bell �gbellmf�, and Gaussian
�gaussmf� MFs and the hybrid learning algorithm, which com-
bines the methods of gradient descent and the least squares, are

rchitecture
FIS a
employed in all ANFIS simulations in this study.
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Test Case and Data

Description of the Test Case

The Gediz River �Fig. 2� originates from Murat Mountain on the
western part of the city of Kutahya. The three tributaries named
Murat Creek, Namaz Creek, and Karayer Creek join and then
merge into the Gediz River, which flows through the city of Usak
and then enters the reservoir of Demirkopru Dam, with its estuary
reaching the Aegean Sea. During its course the Gediz River
travels a distance of 401 km and supplies water to an area of
17,500 km2.

The hydrology of the Gediz Basin is typically Mediterranean.
Precipitation falls between November and April, and peak river
flows occur in February or March. Annual precipitation varies
from 800 mm in higher inland areas to about 450 mm near the
coast, with about 80% falling in the winter months. Under natural
conditions there is a steady decline in stream discharge until May,
when many of the smaller streams dry up. Summer flows are only
present in the Gediz River and its largest tributaries. Net annual
surface water availability in the Basin is estimated to be approxi-
mately 1,900 million m3 per year. Since 1990, however, there has
been a persistent decline in surface water flows into Demirkopru
reservoir and water availability has only averaged about 940 mil-
lion m3 during this period. Demirkopru Dam is an important irri-
gation water supply for the region and it produces hydroelectrical
energy during the irrigation season.

Due to conventional irrigation practices and degradation of
land cover and river morphology, sediment concentrations in the
Gediz River is very high. Sediment transportation and siltation is
an important problem for not only Gediz Basin, but also most of
the river basins in Turkey.

Data

Average daily flow and areally averaged total daily rainfall data
are used as model input variables in estimation of semimonthly
sediment loads by using soft computing and classical methods.
Necessary hydrometeorological �rainfall and streamflow� data are

Fig. 2. Location of meteorological an
collected by different agencies in Turkey. In contrast to meteoro-
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logical observations and streamflow gaging, representative daily
sediment sampling is done manually by using USDH-48, or
USD-49 instruments once or twice a month at very few stations
�e.g., only two in Gediz Basin�. USDH-48 is used in shallow flow
depths and placed into water directly by a person �EIE 2006�.
USD-49 is used in higher flow depths �but less than 4 or 5 m� and
placed into water by a crane or a cable system �EIE 2006�. A SRC
is generally developed by EIE �2006� using monitored flow and
suspended sediment concentrations. EIE �2006� use this curve to
estimate SSL of ungauged neighboring subbasins.

The Demirkopru Dam, whose dead storage tends to fill earlier
than planned, is chosen as the application area. 523-Acisu station,
which is run by EIE, is the unique station having flow and sedi-
ment data in the upstream of the dam. Acisu station has a drainage
area of 3 ,272 km2. Although streamflow observations date back
to 1969, sediment monitoring was initiated in 1971. The long
term average flow and annual SSL are 9.97 m3 /s and 247,969 t,
respectively. The average distribution of suspended sediment is
62.3% sand and 37.7% silt.

The daily total rainfall has been measured by the Turkish State
Meteorological Service �DMI�. The rainfall data are prepared
using the observations of three nearby meteorological stations
named Uşak, Gediz, and Simav. The altitudes of the stations are
919, 825, and 809 m, respectively. The areal average daily rainfall
data are computed using the Thiessen polygons method. The
weights of rainfall stations are determined as 0.398 for Usak,
0.461 for Gediz, and 0.141 for Simav.

The locations of all stations are given in Fig. 2. Since the
precipitation data record starts from 1975, this study is carried out
with the data set covering a period of Jan. 1, 1975–Aug. 1, 2005,
resulting in a total of 351 data points.

Statistical Analysis of Data

The statistical parameters �mean �x̄�, standard deviation �Sx�, co-
efficient of variation �Cv�, skewness coefficient �Csx�, overall
maximum �xmax�, and minimum �xmin�� of the whole data set are
presented in Table 1. It is obvious from Table 1 that the SSL

ment station on the Gediz catchment
d sedi
shows a skewed distribution with a high coefficient of variation.
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 The minimum and maximum values of the SSL change in a wide
range. Hence, all of these statistics points to the complexity of
modeling SSL behavior.

While determining the input variables for ANFIS and ANN,
cross-correlations between the input and output variables were
taken into account. The computed autocorrelations and cross-
correlations are presented in Table 2. Since the correlations are
weakening through the second lag, only one lag input scenario
combinations are constructed. Since there is no consecutive mea-
surement of daily SSL, the autocorrelations of SSL are not calcu-
lated and therefore the previous day’s SSL values are not included
in the input vector.

Table 1. Statistical Parameters of the Whole Data

Data set Data type x̄

Whole data Precipitation, P �mm� 1.70

Flow, Q �m3 /s� 10.47

SSL �t/day� 2,026.8

Table 2. Autocorrelations and Cross-Correlations of the Whole Data

Autocorrelations Cross-correlations

P-P Q-Q P-SSL Q-SSL P-Q

rx, y, 0 — — 0.61 0.82 0.54

rx, y, 1 0.25 0.65 0.42 0.61 0.46

rx, y, 2 0.47 0.47 0.19 0.37 0.32

Table 3. Statistical Parameters of Data Set 1 �Sampling from Gediz Riv

Data set Data periods Data type

Training Jan. 5, 1975–Feb. 13, 1979
Apr. 2, 1987–Aug. 1, 2005

P�t�

P�t−1�

Q�t�

Q�t−1�

SSL�t� 2,2

Testing Mar. 13, 1979–Mar. 3, 1987 P�t�

P�t−1�

Q�t�

Q�t−1�

SSL�t� 1,4

Table 4. Statistical Parameters of Data Set 2 �Sampling from Gediz Riv

Data set Data periods Data type

Training May 17, 1983–Aug. 1, 2005 P�t�

P�t−1�

Q�t�

Q�t−1�

SSL�t� 1,3

Testing Jan. 5, 1975–Apr. 20, 1983 P�t�

P�t−1�

Q�t�

Q�t−1�

SSL�t� 3,6
958 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / SEPTEMBER
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Data Sets and Scenarios

Two different training and testing data sets �Data Set 1 and Data
Set 2� and their statistical parameters are summarized in Tables 3
and 4, respectively. The training data set is used to calibrate
�train� the developed models. The testing data set is, on the other
hand, used to validate �test� the models. The calibration �training�
and validation �testing� of the models are given in the next sec-
tion.

The purpose of employing two different training and testing
data sets �Data Set 1 and Data Set 2� was to investigate the inter-
polation and extrapolation capability of the models for semi-
monthly suspended sediment predictions. In the first scenario
�Data Set 1�, the peak value in the testing data set was smaller
than that in the training data set �Table 3�. As such, this scenario
corresponds to testing the interpolation capability of the models.
In the second scenario �Data Set 2�, the peak value in the testing
set was higher than that in the training set �Table 4�, correspond-
ing to investigation of the extrapolation capability of the models.
Data Set 1 and Data Set 2, each consisting of 100 data points in
the testing period, cover the periods Mar. 13, 1979–Mar. 3, 1987
and Jan. 5, 1975–Apr. 20, 1983, respectively.

Sx Cv Csx xmax xmin

4.47 2.63 3.56 29.7 0

7.57 1.68 5.18 195 0.03

2.7 4.49 6.92 98,409.2 0.14

ion 523�

Sx Cv Csx xmax xmin

4.54 2.37 2.98 26.00 0

7.21 2.69 4.21 52.64 0

18.46 1.89 5.73 195 0.03

25.37 2.33 6.32 261 0.121

1,004.6 4.47 6.47 98,409.2 0.14

4.25 3.63 5.6 29.71 0

3.64 2.55 3.63 20.20 0

15.01 1.22 2.73 90.6 0.252

18.39 1.32 3.0 118 0.33

6,133.4 4.18 7.97 57,056.0 1.32

ion 523�

Sx Cv Csx xmax xmin

4.36 2.58 3.46 26.8 0

4.64 2.3 3.66 37.49 0

14.16 1.64 4.0 114 0.03

16.43 1.81 4.44 126 0.121

6,847.8 4.93 7.45 71,694.7 0.14

4.75 2.76 3.87 29.71 0

9.51 3.08 3.74 52.64 0

23.54 1.56 5.1 195 0.6

35.0 1.9 4.9 261 0.4

13,073.5 3.61 5.38 98,409.2 1.09
1

9,10
er Stat

x̄

1.92

2.68

9.74

10.89

49.7

1.17

1.43

12.28

13.88

67.4
er Stat

x̄

1.69

2.01

8.63

9.1

90.2

1.72

3.09

15.08

18.36

24.8
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Model Calibrations and Applications

Five different scenarios were composed according to input com-
binations. The simulation experiments are carried out in two cat-
egories: �1� simulating SSL using only flow data as input �Sim I�
and �2� simulating SSL using both rainfall and flow data as input
�Sim II� �see Table 5�. From the table, �t−1� denotes the previous
day’s input values and �t� denotes the current input values. The
output is the SSL, which is measured once or twice a month in the
Gediz River at Station 523. Estimating SSL using only rainfall
data was found to be insufficient �Ulke et al. 2007a,b�.

Different ANFIS and ANN architectures were tried and the
appropriate structures were determined for two data sets. Differ-
ent program codes, including neural networks and FL toolboxes,
were written in MATLAB language for the all scenarios. The

Table 5. Different Scenarios Employed Models

Simulations
Simulation
numbers Inputs

Simulation I Sim I-1 Q�t�
Sim I-2 Q�t� , Q�t−1�

Simulation II Sim II-1 P�t� , Q�t�
Sim II-2 P�t� , Q�t� , Q�t−1�
Sim II-3 P�t� , P�t−1�, Q�t� , Q�t−1�

Table 6. ANN Results for Data Set 1

Scenario Model inputs

Levenbe

R2

Train Test

Sim I-1 Q�t� 0.85 0.80

Sim I-2 Q�t� , Q�t−1� 0.97 0.76

Sim II-1 P�t� , Q�t� 0.99 0.87

Sim II-2 P�t� , Q�t� , Q�t−1� 0.92 0.75

Sim II-3 P�t� , P�t−1�, Q�t� , Q�t−1� 0.99 0.927

Table 7. ANN Results for Data Set 2

Scenario Model inputs

Levenbe

R2

Train Test

Sim I-1 Q�t� 0.80 0.67

Sim I-2 Q�t� , Q�t−1� 0.97 0.75

Sim II-1 P�t� , Q�t� 0.91 0.87

Sim II-2 P�t� , Q�t� , Q�t−1� 0.93 0.71

Sim II-3 P�t� , P�t−1�, Q�t� , Q�t−1� 0.99 0.65

Table 8. ANFIS Testing Period Results for Data Set 1

Scenario Model inputs MF

Sim I-1 Q�t� gaussmf

Sim I-2 Q�t� , Q�t−1� Gauss 2 mf

Sim II-1 P�t� , Q�t� gaussmf

Sim II-2 P�t� , Q�t� , Q�t−1� gaussmf

Sim II-3 P�t� , P�t−1�, Q�t� , Q�t−1� Gauss 2 mf
Note: MF=membership function type; N=number of membership functions.
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model results were compared by means of root-mean-square error
�RMSE�, mean absolute error �MAE�, and coefficient of determi-
nation �R2� statistics �Tayfur and Singh 2006�.

ANN Model Training and Testing

For each data set, in the training and testing periods of the ANN
model 250 and 100 data points were used, respectively. The num-
bers of hidden layer neurons were found using a simple trial-and-
error method. The number of neurons used in the hidden layer
varied from 2 to 10. For the training of ANN with CG �conjugate
gradient� 500 epochs and with LM �Levenberg-Marquardt� 150
epochs were found to be sufficient.

Tables 6 and 7 show the simulation results for Data Set 1 and
Data Set 2, respectively. As seen in these tables, both CG and LM
give the best performance with lowest RMSE, MAE, and the
highest R2 for testing period for Data Set 1 in Simulation II-3
�Table 6� and for Data Set 2 in Simulation II-1 �Table 7�. The
results in the tables also show that inclusion of precipitation in-
creases the accuracy.

ANFIS Model Calibration and Testing

Triangular (trimf), Generalized bell (gbellmf), and Gaussian
(gaussmf) functions were employed as MFs. The number of MFs
was varied from 2 to 4. Employing more than four MFs resulted

rguardt Conjugate gradient

MSE
t/day�

MAE
�t/day�

R2
RMSE
�t/day�

MAE
�t/day�Train Test

,847 1,193 0.81 0.71 3,346 1,265

,967 1,456 0.90 0.71 4,937 1,169

,557 1,533 0.94 0.75 3,449 922

,200 1,612 0.93 0.71 4,238 988

,646 820 0.97 0.92 1,799 696

rguardt Conjugate gradient

MSE
/day�

MAE
�t/day�

R2
RMSE
�t/day�

MAE
�t/day�Train Test

,109 2,395 0.8 0.66 9,057 2,278

,370 2,552 0.89 0.78 6,281 2,237

,731 1,614 0.90 0.89 4,384 1,332

,097 2,451 0.85 0.84 5,346 1,668

,928 2,488 0.91 0.70 7,139 2,356

N

R2

RMSE
�t/day�

MAE
�t/day�Train Test

4 0.76 0.70 3,706 1,420

3 3 0.87 0.72 4,637 1,260

3 3 0.91 0.84 3,318 895

3 3 2 0.93 0.93 1,692 823

3 2 3 3 0.93 0.71 19,999 3,499
rg-Ma

R
�

2

5

6

7

1

rg-Ma

R
�t

9

7

4

7

7
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in poor performance. The hybrid learning algorithm, which com-
bines the methods of gradient descent and the least squares, was
applied.

In Table 8, the ANFIS model results are presented for the Data
Set 1. Gaussian MF �3 3 2� gives the best performance with the
lowest RMSE, MAE, and the highest R2 for the testing period in
Simulation II-2 �Table 8�. Generalized bell MF �3 3� gives the
best performance for Data Set 2, with the lowest RMSE, MAE
and the highest R2 values in Simulation II-1 �Table 9�. The results
in Tables 8 and 9 also imply that inclusion of current precipitation
in the input vector improves the model prediction performance.

SRC Model Calibration

The relationships between daily suspended sediment load and
daily flow for Gediz River 523 Gauging Station for Data Set 1
and Data Set 2, respectively were obtained as

Table 9. ANFIS Testing Period Results for Data Set 2

Scenario Model inputs MF

Sim I-1 Q�t� gbellmf

Sim I-2 Q�t� , Q�t−1� gbellmf

Sim II-1 P�t� , Q�t� gbellmf

Sim II-2 P�t� , Q�t� , Q�t−1� trimf

Sim II-3 P�t� , P�t−1�, Q�t� , Q�t−1� trimf

Note: MF=membership function type; N=number of membership functio

Table 10. SRC Testing Period Results for Data Set 1

Scenario
Model
inputs

R2

RMSE
�t/day�

MAE
�t/day�Train Test

Sim I-1 Q�t� 0.78 0.59 5,280 1,047

Table 11. SRC Testing Period Results for Data Set 2

Scenario
Model
inputs

R2

RMSE
�t/day�

MAE
�t/day�Train Test

Sim I-1 Q�t� 0.77 0.81 11,510 3,035

Table 12. MLR Models for Data Set 1

Scenario Model inputs Train R2

Sim I-1 Q�t� 0.73

Sim I-2 Q�t� , Q�t−1� 0.768

Sim II-1 P�t� , Q�t� 0.759

Sim II-2 P�t� , Q�t� , Q�t−1� 0.78

Sim II-3 P�t� , P�t−1�, Q�t� , Q�t−1� 0.76

Table 13. MLR Models for Data Set 2

Scenario Model inputs Train R2

Sim I-1 Q�t� 0.51

Sim I-2 Q�t� , Q�t−1� 0.60

Sim II-1 P�t� , Q�t� 0.55

Sim II-2 P�t� , Q�t� , Q�t−1� 0.61

Sim II-3 P�t� , P�t−1�, Q�t� , Q�t−1� 0.60
960 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / SEPTEMBER
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SSL = 5.543Q1.642 �4�

SSL = 5.375Q1.562 �5�

Note that the SRCs were obtained using the training data set.
Tables 10 and 11 give the simulation results of SRCs for the
calibration and testing periods.

MLR Model Calibration

The MLR models given in Tables 12 and 13 were constructed for
all the simulations using the training data set. As seen in Tables
12 and 13, both for Data Set 1 and Data Set 2, Simulation II-2
gave better results than the other simulations. The MLR equation
in Simulation II-2 was chosen for the testing period application.

NLMR Model Calibration

The NLMR models given in Tables 14 and 15 were constructed
for all the simulations using the training data set. As seen in
Tables 14 and 15, both for Data Set 1 and Data Set 2, Simulation
II–3 gave better results than the other simulations. The NLMR
equation in Simulation II-3 was chosen for the testing period
application.

Note that SCR, MLR, and NLMR models presented above
were developed in this study. We first constructed the models
whose general forms were presented by Eqs. �1�–�3�, respectively.
Then, by the employment of the calibration data sets, we obtained
the optimal values of the coefficients for each model. Eqs. �13�
and �14� show the constructed models for the SCR method.

N

R2

RMSE
�t/day�

MAE
�t/day�Train Test

4 0.60 0.87 7,291 2,140

2 2 0.63 0.84 7,124 2,239

3 3 0.86 0.91 6,337 1,925

3 2 0.91 0.85 7,713 2,067

3 2 2 0.50 0.66 9,675 2,737

MLR equations

SSL=466.1Q�t�−2,291.57

SSL=649.51Q�t�−152.69Q�t−1�−2,415

SSL=416.18P�t�+413.79Q�t�−2,578

SSL=302.97P�t�+578.3Q�t�−125.11Q�t−1�−2,602.6

SSL=208.14P�t�+49.84P�t−1�+584.14Q�t�−136.03Q�t−1�−2,637.96

MLR equations

SSL=346.21Q�t�−1,596.84

SSL=562.75Q�t�−224.74Q�t−1�−1,419.97

SSL=345.66P�t�+295.63Q�t�−1,745.82

SSL=136.09P�t�+518.69Q�t�−199.68Q�t−1�−1,498.35

SSL=111.61P�t�+131.47P�t−1�+515.38Q�t�−217.49Q�t−1�−1,531
2

2

ns.
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Tables 12 and 13 present the developed MLR models and Tables
14 and 15 summarize the calibrated NLMR models for Data Set 1
and Data Set 2, respectively.

Discussion of Results

The performance of the developed models for testing periods for
Data Set 1 and for Data Set 2 is compared in Tables 16 and 17,
and in Figs. 3 and 4, respectively. The fit line equations are given
for significance level of 5% in Tables 16 and 17. For Data Set 1,
ANFIS and ANN estimates closely follow the observed values
�Fig. 3�. It can be seen from the hydrograph that the models were
able capture the peak values and the trend of SSL. The fit line
equations and R2 values for each model in Fig. 3 is given in Table
16. The estimates of the ANFIS and ANN models are closer to the
exact fit line �y=x line� than those of MLR, NLMR, and SRC
�Table 16�. The ANN_LM model estimated the observed peak

Table 14. NLMR models for All Scenarios for Data Set 1

Scenario Model inputs Train R2

Sim I-1 Q�t� 0.75

Sim I-2 Q�t� , Q�t−1� 0.83

Sim II-1 P�t� , Q�t� 0.79

Sim II-2 P�t� , Q�t� , Q�t−1� 0.84 SSL=

Sim II-3 P�t� , P�t−1�, Q�t� , Q�t−1� 0.845
SS

Table 15. NLMR Models for All Scenarios for Data Set 2

Scenario Model inputs Train R2

Sim I-1 Q�t� 0.58

Sim I-2 Q�t� , Q�t−1� 0.68

Sim II-1 P�t� , Q�t� 0.63

Sim II-2 P�t� , Q�t� , Q�t−1� 0.69 SSL=

Sim II-3 P�t� , P�t−1�, Q�t� , Q�t−1� 0.70
SS

Table 16. Comparison of the Models in Terms of MSE, MAE, R2, and

Models R2
RMSE
�t/day�

ANFIS 0.926 1,692

ANN_CG 0.919 1,799

ANN_LM 0.927 1,646

SRC 0.59 5,280

MLR 0.59 5,444

NLMR 0.56 5,408

Note: The fit line equations are given for �=0.05 significance level.

Table 17. Comparison of the Models in Terms of MSE, MAE, R2, and

Models R2
RMSE
�t/day�

ANFIS 0.91 6,337

ANN_CG 0.89 4,384

ANN_LM 0.87 4,731

SRC 0.81 11,510

MLR 0.75 7,535

NLMR 0.72 10,125
Note: The fit line equations are given for �= 0.05 significance level.
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suspended sediment load as 55,293 t/day while ANN_CG esti-
mated this peak to be 54,666 t/day and the ANFIS model esti-
mated this peak as 48,393 t/day. The ANN models were rather
close to the observed value 57,056 t/day. Though the R2 in these
ANN models are nearly equal �Table 16�, the fit line equation of
ANN_CG �Table 16� �assuming that the equation is y=a0x+a1�
suggests the plausibility of this model since its a0=0.996 is closer
to the 1 and its intercept is closer to zero with a1=73.5. MLR,
NLMR, and SRC have lower performance than the soft comput-
ing methods �Table 16, Fig. 3�. The results produced by MLR and
NLMR are more reasonable than those by SRC. The cumulative
error of the ANFIS, ANN_LM, MLR, NLMR, ANN_CG, and
SRC are, 18%, 7%, 85%, and 57% higher and 5%, 61% percent
lower than the observed total value, respectively �Table 15�. In
other words, ANN produced lowest error around 6%, followed by

NLMR equations

SSL=331.185Q�t�+1.085Q�t�
2 −1 ,448.42

L=953.41Q�t�−581.02Q�t−1�−2.22Q�t�
2 +2.32Q�t−1�

2 −1 ,518.98

SSL=38.13P�t�+269.89Q�t�+25.0P�t�
2 +1.051Q�t�

2 −1 ,515.4

�t�+847.46Q�t�−502.76Q�t−1�+14.85P�t�
2 −1.80Q�t�

2 +1.99Q�t−1�
2 −1 ,498.14

1.24P�t�−70.95P�t−1�+855.84Q�t�−535.90Q�t−1�+18.39P�t�
2 −6.06P�t−1�

2

−1.55Q�t�
2 +1.90Q�t−1�

2 −1 ,364.70

NLMR equations

SSL=80.23Q�t�+3.63Q�t�
2 −300.11

SSL=653.72Q�t�−579.05Q�t−1�−0.45Q�t�
2 +3.44Q�t−1�

2 −68.5

SSL=485.39P�t�+4.92Q�T�−6.18P�T�
2 +3.93Q�T�

2 −418.78

P�t�+550.55Q�t�−518.34Q�t−1�−10.65P�t�
2 +0.204Q�t�

2 +3.14Q�t−1�
2 −187.13

.55P�t�−154.85P�t−1�+610.53Q�t�−537.41Q�t−1�−4.37P�t�
2 +11.64P�t−1�

2

−0.88Q�t�
2 +3.20Q�t−1�

2 −247.89

ative Error in Test Period for Data Set 1

AE
ay�

Cumulative
error Fit line equations

23 +18 y=0.895x+430.5

96 �5 y=0.996x−73.5

20 +7 y=0.910x+228.1

47 �61 y=0.158x+335.0

85 +85 y=1.0124x+1633.5

82 +57 y=0.9919x+851.1

ative Error in Test Period for Data Set 2

AE
ay�

Cumulative
error Fit line equations

925 �33 y=0.557x+376.72

332 �22 y=0.847x−248.4

614 �22 y=0.913x−489.11

035 �82 y=0.148x+111.36

426 �20 y=0.499x+1086.6

368 +22 y=1.198x+88.52
SS

−66.2P

L=−14
363.75

L=292
Cumul

M
�t/d

8

6

8

1,0

3,2

2,6
Cumul

M
�t/d

1,

1,

1,

3,

3,

3,
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ANFIS around �20%�. Others produced higher cumulative errors
more than 60% �Table 16�.

In Data Set 2, ANFIS could not capture the peak values of SSL
and the trend of the sedimentograph �Fig. 4�. The ANN_LM
model estimated the observed peak SSL as 109,787 t/day, while
ANN_CG estimated this peak to be 99,897 t/day and the ANFIS
model estimated this peak as 52,827 t/day. The ANN models were
rather close to the observed value 98,409 t/day. Although both of
the ANN models performed satisfactorily, from the viewpoint of
capturing the peak and the fit line equation, ANN_CG produced
more plausible results. NLMR had a better performance than the
other conventional methods but it overestimated the peak as
170,000 t/day. Especially, by SRC model, the estimated values
are nearly 1/10 of the observed values �Fig. 4�. The underestima-
tions of the peaks are obviously seen for ANFIS, MLR, and SRC
�Fig. 4�. The cumulative error of the NLMR is 22% higher and
ANN_LM, ANN_CG, ANFIS, MLR, SRC are, 22, 22, 33, 20, and
82% percent lower than the observed total value, respectively
�Table 17�. ANN had overall about 22% cumulative error for
Data Set 2. This is about 4 times higher than that for Data Set 1.
This is an expected performance since ANNs, as shown by Tayfur
et al. �2007�, are not good extrapolators.

Fig. 3. Comparison o

Fig. 4. Comparison o
962 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / SEPTEMBER
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Above results imply that, although ANN_CG and ANN_LM
satisfactorily predicted the observed peak value, all the models,
especially SCR, in general, performed poorly for Data Set 2,
which corresponds to the investigation of the extrapolation capa-
bility of the models. On the other hand, artificial intelligence
methods, especially ANN_CG and ANN_LM, performed satisfac-
torily for Data Set 1, which corresponds to the investigation of the
interpolation capability of the models. Since, overall, ANN_CG
performed better than all the other models, it is recommended, in
this study, to be employed for predicting semimonthly SSL from
daily measured flow rate and precipitation data.

Predicting Missing Data

The analysis of the results above proved that the ANN_CG model
produced slightly better results than ANN_LM and ANFIS and it
outperformed SRC, MLR, NLMR. Hence, for the missing data
predictions for Gediz River, we employ only the ANN_CG. For
this purpose, we applied the trained ANN_CG network model to
the data, which cover the period Mar. 13, 1979–Apr. 2, 1985. In

ethods for Data Set 1

ethods for Data Set 2
f all m
f all m
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this period, there are 2,213 daily measured hydrometeorological
data but only semimonthly or monthly measured 75 number of
SSL data. That means there is about 2,138 SSL missing data
record, corresponding to 6-year period. The purpose here is to
generate these missing SSL data using hydrometeorological infor-
mation for Gediz River. For this purpose, the same network inputs
�Pt , Pt−1 ,Qt ,Qt−1� were employed in the input vector to produce
the missing SSL values. There were 2,213 daily SSL data �of
which 2,138 are missing� generated by the developed ANN model
as shown in Fig. 5. Figs. 6 and 7 show the measured precipitation
and flow discharge data for the same period of Mar. 13, 1979–
Apr. 2, 1985. As seen, in those figures, the model was able to
capture the trend of SSL data, compatible with the precipitation
and discharge data. That is, during the periods of high precipita-
tion and flows, the model generated high SSL values. During
drought periods, it produced low values. The cumulative SSL
produced for the missing data for this period of 6 years found

Fig. 5. ANN-predicted 2213 missing data for the period Mar. 13,
1979–Apr. 2, 1985

Fig. 6. Measured precipitation data in the period Mar. 13, 1979–Apr.
2, 1985

Fig. 7. Measured flow discharge data in the period Mar. 13, 1979–
Apr. 2, 1985
JOURNAL O
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to be about �SSLmissing=5 ,65�106 t, about 0.94�106 t /year.
This is in agreement with the estimates of DSI, which designed
88.4�106 m3 volume for the dead storage volume of Demirko-
pru reservoir, receiving sediment loads from rivers Gediz, Se-
lendi, Demirci, and Deliinis �Fig. 2� �Baytas and Ozkul 2000�.
The estimated dead storage volume by DSI, assuming that sedi-
ment density is 2.5 t /m3, corresponds to about 221�106 t sedi-
ment load accumulation in 100 years of life expectancy of the
dam. That means, the DSI-annual estimate was 2.2�106 t, of
which about 48% �1.05�106 t /year� is carried by Gediz river
�Baytas and Ozkul 2000�. Hence, DSI estimated that Gediz river
may be carrying about 1.05�106 t /year sediment into Demirko-
pru Dam reservoir. ANN estimated this value as 0.94
�106 t /year, about 10% less than that of DSI. These results
show the comparability of the estimates. To further illustrate the
plausibility of the results, Fig. 8 shows the comparison of the
produced missing data against the 75 �out of 2,213� SSL data
measured during this period �Mar. 13, 1979–Apr. 2, 1985�. As
seen in Fig. 8, the model was satisfactorily able to capture mea-
sured values, including the maximum value, which may be one of
the main concerns. The computed R2 value for Fig. 8 is 0.97.
These results are encouraging in the sense that ANN trained with
few semimonthly data can be employed for filling the daily miss-
ing SSL data records which is one of the main concerns of the
hydrologists.

Summary and Conclusions

This study developed artificial intelligence �ANN, ANFIS� and
regression based �SCR, MLR, NLMR� models to predict semi-
monthly suspended sediment loads from daily measured flow dis-
charge and precipitation data. The models were trained
�calibrated� and tested �validated� employing the data from Gediz
River, located in the western part of Turkey. The interpolation and
extrapolation capability of the models were investigated by em-
ploying two different data sets. The artificial intelligence methods
turned out to be very good interpolators and outperformed the
regression-based models. Although ANN models lack extrapola-
tion capability, they showed better performance than the others.

One of the main contributions of this study is that it developed
models which can do predictions for SSL measured less fre-
quently �semimonthly or monthly� in Turkey. Other contribution
is that the ANN model can successfully generate daily SSL data
which is one of the main concerns for the hydrologists and hy-
draulic engineers who design reservoir dead storage volume, and
river navigation, and water quality pollution in water bodies.

Fig. 8. Comparison of predicted missing 75 SSL data against the
measured data
Working with daily data provides better estimation of sediment
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loads coming into reservoirs �Li et al. 2006�. This is important
for better monitoring of the dead storage volume. The real time
distribution of the sediment load and its forecast is also necessary
for controlling the pollution level in rivers and reservoirs �Lopez
et al. 2001�. Daily sediment is related with water quality param-
eters, this, in turn, affects the decision on water intake level in
drinking water reservoirs.

Although daily sampling frequency may result in better esti-
mates, it is very costly. Therefore, a balance between accuracy
and cost is generally sought in practice by sampling sediment on
a periodic basis �biweekly or monthly� and then interpolating be-
tween measured values to generate daily data set. This is exactly
what is done in this study.

The following conclusions were also drawn from this study.
1. Inclusion of precipitation, along with flow rate data in the

input vector improves the SSL predictions by the developed
models.

2. ANN_CG model outperformed the other proposed models.
3. All the proposed models gave better results for Data Set 1

than Data Set 2. This is expected since the peak values in the
test period are much higher than those in the training period
in the Data Set 2. This reaffirms the lack of ANN capability
for extrapolation.

ANN model trained with few semimonthly data can be used to
fill gaps in missing daily SSL data records.
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