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a b s t r a c t

In this paper, we demonstrate the effectiveness of the so-called (G0/G)-expansion method
by examining some nonlinear evolution equations with physical interest. Our work is moti-
vated by the fact that the (G0/G)-expansion method provides not only more general forms
of solutions but also periodic and solitary waves. If we set the parameters in the obtained
wider set of solutions as special values, then some previously known solutions can be
recovered. The method appears to be easier and faster by means of a symbolic computation
system.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Nonlinear evolution equations (NLEEs) have been the subject of study in various branches of mathematical–physical sci-
ences such as physics, biology, chemistry, etc. The analytical solutions of such equations are of fundamental importance
since a lot of mathematical–physical models are described by NLEEs. Among the possible solutions to NLEEs, certain special
form solutions may depend only on a single combination of variables such as traveling wave variables. In the literature, there
is a wide variety of approaches to nonlinear problems for constructing traveling wave solutions. Some of these approaches
are the Jacobi elliptic function method [1], inverse scattering method [2], Hirota’s bilinear method [3], homogeneous balance
method [4], homotopy perturbation method [5], Weierstrass function method [6], symmetry method [7], Adomian decom-
position method [8], sine/cosine method [9], tanh/coth method [10], the F-expansion method [11], the Exp-function method
[12,13] and so on. But, most of the methods may sometimes fail or can only lead to a kind of special solution and the solution
procedures become very complex as the degree of nonlinearity increases.

Recently, the (G0/G)-expansion method, firstly introduced by Wang et al. [14], has become widely used to search for var-
ious exact solutions of NLEEs [15–26]. The value of the (G0/G)-expansion method is that one treats nonlinear problems by
essentially linear methods. The method is based on the explicit linearization of NLEEs for traveling waves with a certain sub-
stitution which leads to a second-order differential equation with constant coefficients. Moreover, it transforms a nonlinear
equation to a simple algebraic computation.

Very lately, to enhance the (G0/G)-expansion method and expand the range of its applicability, further research has been
carried out by several authors. Some generalizations of the method have been made by Zhang et al. [27,28]. Zhang et al. [29]
improved the method to deal with evolution equations with variable coefficients. Zhang et al. [30] devised an algorithm for
using the method to solve nonlinear differential-difference equations. Yu-Bin et al. [31] modified the method to derive trav-
eling wave solutions for Whitham–Broer–Kaup-Like equations. Zhang [32] explored a new application of this method to
some special nonlinear evolution equations, the balance numbers of which are not positive integers. For studying the Vak-
hnenko equation, Wen-An et al. [33] presented a new function expansion method which can be thought of as the general-
. All rights reserved.

mailto:ismailaslan@iyte.edu.tr
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc


858 _I. Aslan / Applied Mathematics and Computation 215 (2009) 857–863
ization of the (G0/G)-expansion method. Still, substantial work has to be done in order for the (G0/G)-expansion method be
well established since every nonlinear equation has its own physically significant rich structure.

Although many efforts have been devoted to find various methods to solve (integrable or non-integrable) NLEEs, there is
no a unified method. The main merits of the (G0/G)-expansion method over the other methods are that it gives more general
solutions with some free parameters which, by suitable choice of the parameters, turn out to be some known solutions
gained by the existing methods. Besides, (i) in all finite difference and finite element methods, it is necessary to have bound-
ary and initial conditions. However, the (G0/G)-expansion method handles NLEEs in a direct manner with no requirement for
initial/boundary condition or initial trial function at the outset. It obtains a general solution with free parameters that can be
determined via boundary and/or initial conditions, (ii) most of the methods give solutions in a series form and it becomes
essential to investigate the convergence of approximation series. For example, the Adomian decomposition method depends
only on the initial conditions and obtains a solution in a series which converges to the exact solution of the problem. But,
with the (G0/G)-expansion method, one may obtain a general solution without approximation, (iii) it serves as a powerful
technique to integrate the NLEEs, even if the Painleve test of integrability fails, (iv) the solution procedure, using a computer
algebra system like Mathematica, is of utter simplicity.

Our aim in this paper is to present an application of the (G0/G)-expansion method to some nonlinear problems that is
solved by this method for the first time. The rest of this paper is organized as follows. In Section 2, we describe briefly
the (G0/G)-expansion method. In Section 3, we apply the method to the modified Degasperis–Procesi (mDP) equation, Bur-
gers–KdV equation and modified Benjamin–Bona–Mahony (mBBM) equation, respectively. In Section 4, some conclusions
are given.

2. The (G0/G)-expansion method

The objective of this section is to outline the use of the (G0/G)-expansion method for solving certain nonlinear partial dif-
ferential equations (PDEs). Suppose we have a nonlinear PDE for uðx; tÞ in the form
Pðu;ux;ut ;uxx;uxt ;utt; . . .Þ ¼ 0; ð1Þ
where P is a polynomial in its arguments, which includes nonlinear terms and the highest order derivatives. The transfor-
mation uðx; tÞ ¼ UðnÞ; n ¼ kxþwt reduces Eq. (1) to the ordinary differential equation (ODE)
PðU; kU0;wU0; k2U00; kwU00;w2U00; . . .Þ ¼ 0; ð2Þ
where U ¼ UðnÞ and prime denotes derivative with respect to n. We assume that the solution of Eq. (2) can be expressed by a
polynomial in (G0/G) as follows:
U ¼ an
G0

G

� �n

þ � � � ; ð3Þ
where G ¼ GðnÞ is the solution of the auxiliary linear second-order ordinary differential equation
G00 þ kG0 þ lG ¼ 0; ð4Þ
where G0 ¼ dG
dn ; G00 ¼ d2G

dn2 ; an–0; . . . ; a1; a0; k and l are constants to be determined later. The unwritten part in (3) is also a
polynomial in (G0/G), but the degree of which is generally equal to or less than n� 1. The positive integer n can be determined
by applying the homogeneous balancing method to the highest order derivatives and nonlinear terms appearing in Eq. (2).
Then substituting (3) into Eq. (2) under the consideration of Eq. (4) yields a system of nonlinear algebraic equations for
ai; k;l; k, and w. Suppose that these constants can be determined by solving the simultaneous algebraic equations with
the aid of a symbolic computation system such as Mathematica. On the other hand, depending on the sign of the discrim-
inant D ¼ k2 � 4l, the solutions of Eq. (4) can be readily written. As a result, more traveling wave solutions of Eq. (1) can be
derived. Of course, the correctness of the obtained results must be assured by substituting them back into the original
equation.

3. Applications

In this section, we will demonstrate the validity and reliability of (G0/G)-expansion method in detail with some nonlinear
evolution equations arising in applications.

3.1. The modified Degasperis–Procesi equation

Let us consider the celebrated mDP equation
ut � uxxt þ 4u2ux ¼ 3uxuxx þ uuxxx; ð5Þ
which is the modified form of Degasperis–Procesi equation [34]. Eq. (5) can be considered as a model for shallow-water
dynamics and is well-known to be integrable and possesses multi-soliton solutions with peaks (multi-peakons). A general
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form of Eq. (5), which is called the general modified DP–CH equation, has been studied by Wazwaz [35] and Biswas et al. [36]
recently. Now, we introduce the variable n ¼ kxþwt and make the transformation uðx; tÞ ¼ UðnÞ to reduce Eq. (5) to the ODE
wðU � k2U00Þ þ 4k
3

U3 � k3UU00 � k3ðU0Þ2 þ C ¼ 0; ð6Þ
where U ¼ UðnÞ, prime denotes derivative with respect to n, and Cis an integration constant. Assume that the solution of Eq.
(6) can be expressed as an ansatz (3) together with (4). Then, by using (3) and (4), it can be seen that
U3 ¼ a3
n

G0

G

� �3n

þ � � � ; ð7Þ

U00 ¼ nðnþ 1Þan
G0

G

� �nþ2

þ � � � ð8Þ
Balancing the terms U3 and UU00 in Eq. (6), from (7) and (8), we get 3n ¼ nþ ðnþ 2Þ which yields the leading order n ¼ 2.
Therefore, in view of the (G0/G)-expansion method, we can assume the solution of Eq. (6) in the form
U ¼ a2
G0

G

� �2

þ a1
G0

G

� �
þ a0; a2–0: ð9Þ
It follows, from (4) and (9), that
U0 ¼�2a2
G0

G

� �3

�ða1þ2a2kÞ
G0

G

� �2

�ða1kþ2a2lÞ
G0

G

� �
�a1l; ð10Þ

U00 ¼ 6a2
G0

G

� �4

þð2a1þ10a2kÞ
G0

G

� �3

þð8a2lþ3a1kþ4a2k
2Þ G0

G

� �2

þð6a2klþ2a1lþa1k
2Þ G0

G

� �
þ2a2l2þa1kl; ð11Þ
Substituting (9)–(11) into (6) and setting the coefficients of ðG0=GÞi; 0 6 i 6 6, to zero, we get the system of nonlinear alge-
braic equations for a0; a1; a2; k;l; k, and w:
G0

G

� �0

: C þwa0 þ
4ka3

0

3
� k2wkla1 � k3kla0a1 � k3l2a2

1 � 2k2wl2a2 � 2k3l2a0a2 ¼ 0; ð12aÞ

G0

G

� �1

: wa1 � k2wk2a1 � 2k2wla1 � k3k2a0a1 � 2k3la0a1 þ 4ka2
0a1 � 3k3kla2

1

� 6k2wkla2 � 6k3kla0a2 � 6k3l2a1a2 ¼ 0; ð12bÞ

G0

G

� �2

: �3k2wka1 � 3k3ka0a1 � 2k3k2a2
1 � 4k3la2

1 þ 4ka0a2
1 þwa2 � 4k2wk2a2

� 8k2wla2 � 4k3k2a0a2 � 8k3la0a2 þ 4ka2
0a2 � 15k3kla1a2 � 6k3l2a2

2 ¼ 0; ð12cÞ

G0

G

� �3

: �2k2wa1 � 2k3a0a1 � 5k3ka2
1 þ

4ka3
1

3
� 10k2wka2 � 10k3ka0a2 � 9k3k2a1a2

� 18k3la1a2 þ 8ka0a1a2 � 14k3kla2
2 ¼ 0; ð12dÞ

G0

G

� �4

: �3k3a2
1 � 6k2wa2 � 6k3a0a2 � 21k3ka1a2 þ 4ka2

1a2 � 8k3k2a2
2 � 16k3la2

2 þ 4ka0a2
2 ¼ 0; ð12eÞ

G0

G

� �5

: �12k3a1a2 � 18k3ka2
2 þ 4ka1a2

2 ¼ 0; ð12fÞ

G0

G

� �6

: �10k3a2
2 þ

4ka3
2

3
¼ 0: ð12gÞ
Solving the system ((12a)–(12g)) simultaneously, we get the solution sets:
C ¼ 1
96 k 32 �4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16� 15k4ðk2 � 4lÞ2

q� �
þ 5k4 24� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16� 15k4ðk2 � 4lÞ2

q
þ 5k2ðk2 � 4lÞ

� �
ðk2 � 4lÞ2

� �
;

w ¼ 1
2 �4k� k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16� 15k4ðk2 � 4lÞ2

q� �
; a0 ¼ 1

8 �4þ 5k2k2 þ 40k2l�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16� 15k4ðk2 � 4lÞ2

q� �
;

a2 ¼ 15k2

2 ; a1 ¼ 15k2k
2 :

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
ð13Þ
Now, substituting (13) together with the solutions of Eq. (4) into (9), we obtain the hyperbolic function traveling wave solu-
tions to Eq. (5) as
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u1;2ðx; tÞ ¼
15a

8

C1 cosh
ffiffi
a
p

2 xþ 1
2 �4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16� 15a2
p� �

t
� �

þ C2 sinh
ffiffi
a
p

2 xþ 1
2 �4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16� 15a2
p� �

t
� �

C1 sinh
ffiffi
a
p

2 xþ 1
2 �4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16� 15a2
p� �

t
� �

þ C2 cosh
ffiffi
a
p

2 xþ 1
2 �4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16� 15a2
p� �

t
� �

0
@

1
A

2

� 1
8

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16� 15a2
p

� 5
4

a� 1
2
; ð14Þ
where a ¼ k2ðk2 � 4lÞ > 0;C1 and C2 are arbitrary constants; the trigonometric function traveling wave solutions to Eq. (5)
as
u3;4ðx; tÞ ¼ �
15a

8

�C1 sin
ffiffiffiffiffi
�a
p

2 xþ 1
2 �4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16� 15a2
p� �

t
� �

þ C2 cos
ffiffiffiffiffi
�a
p

2 xþ 1
2 �4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16� 15a2
p� �

t
� �

C1 cos
ffiffiffiffiffi
�a
p

2 xþ 1
2 �4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16� 15a2
p� �

t
� �

þ C2 sin
ffiffiffiffiffi
�a
p

2 xþ 1
2 �4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16� 15a2
p� �

t
� �

0
@

1
A

2

� 1
8

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16� 15a2
p

� 5
4

a� 1
2
; ð15Þ
where a ¼ k2ðk2 � 4lÞ < 0;C1 and C2 are arbitrary constants; the rational function traveling wave solutions to Eq. (5) as
u5ðx; tÞ ¼
15C2

1

2ðC1xþ C3Þ2
; ð16Þ

u6ðx; tÞ ¼
15C2

1

2ðC1ðx� 4tÞ þ C3Þ2
� 1; ð17Þ
where C1 and C3 ¼ C2=k are arbitrary constants.
In particular, if we take C2–0; C2

1 < C2
2, then (14) leads the formal solitary wave solutions to Eq. (5) as
u7;8ðx; tÞ ¼
15a

8
tanh2

ffiffiffi
a
p

2
xþ 1

2
�4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16� 15a2
p� �

t
� �

þ n0

� �
� 1

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16� 15a2
p

� 5
4

a� 1
2
; ð18Þ
where a > 0 and n0 ¼ tanh�1ðC1=C2Þ; and (15) gives the periodic wave solutions to Eq. (5) as
u9;10ðx; tÞ ¼ �
15a

8
cot2

ffiffiffiffiffiffiffi
�a
p

2
xþ 1

2
�4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16� 15a2
p� �

t
� �

þ n0

� �
� 1

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16� 15a2
p

� 5
4

a� 1
2
; ð19Þ
where a < 0 and n0 ¼ tan�1ðC1=C2Þ.
Now, we compare our results with some others:

(i) We observe that the results (19), (20), (40), and (41) in Wazwaz [35] are particular cases of our results (14) and (15).
For example, if we take a ¼ 1 and n0 ¼ 0 in our result (18), then we get two solutions with the wave speeds 5

2 and 3
2 of

which the former one coincides with the Wazwaz’s results (19) and (40). Moreover, in [35], our rational solutions (16)
and (17) do not appear and traveling wave solutions are obtained only for one particular wave speed 5

2.
(ii) If we take a ¼ 1;C1 ¼

ffiffiffiffiffiffi
35
p

and C2 ¼
ffiffiffiffiffiffi
15
p

in our result (14), then we get the Liu and Ouyang’s result, peakon (10), in
[37].

(iii) First, taking a ¼ 1=2 and n0 ¼ 0 in our result (18), then we get the result (1.9) of Wang and Tang [38]. Second, plugging
C1 ¼

ffiffiffi
2
p

and C3 ¼
ffiffiffi
3
p

into our result (17) leads to the result (1.10) in [38]. Similarly, (1.11) and (1.12) in [38] can be
derived from our results.

3.2. The Burgers–KdV equation

Next, we consider the Burgers–KdV equation
ut þ auux þ buxx þ cuxxx ¼ 0; ð20Þ
where a; b, and c are arbitrary real constants with abc–0. This equation is a model for the propagation of waves on an elastic
tube [39]. Gibbon et al. [40] showed that Eq. (20) does not have the Painleve property. It can be regarded as a combination of
the Burger’s equation ða–0; b–0; c ¼ 0Þ and the KdV equation ða–0; b ¼ 0; c–0Þ. Now, letting uðx; tÞ ¼ UðnÞ; n ¼ kxþwt in
(20) and integrating the resulting ODE once, one obtains
ck3U00 þ k2bU0 þ ak
2

U2 þwU þ C ¼ 0; ð21Þ
where U ¼ UðnÞ, prime denotes derivative with respect to n, and C is an integration constant. The approach is similar to the
scheme used in previous section, so we will skip some details for simplicity. Balancing the terms U00 and U2 in Eq. (21) yields
the leading order n ¼ 2. Therefore, by substituting (3) with n ¼ 2 into (21) and solving the resulting system of five nonlinear
algebraic equations for a0; a1; a2; k;l; k, and w, we find the solution set:
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d ¼ �36k2b4þ625w2c2

1250kac2 ; a0 ¼ 3kb2�25wcþ30k2bck�75k3c2k2

25kac ;

l ¼ �b2þ25k2c2k2

100k2c2 ; a2 ¼ � 12k2c
a ; a1 ¼ � 12ð�kbþ5k2ckÞ

5a :

8<
:

9=
; ð22Þ
Substituting (22) into (3) with n ¼ 2 and using the solutions of Eq. (4), we derive the hyperbolic function traveling wave solu-
tion to Eq. (20) as
u1ðx; tÞ ¼ �
3b2

25ac

C1 cosh b
10c

��� ���ðxþ ctÞ þ C2 sinh b
10c

��� ���ðxþ ctÞ

C1 sinh b
10c

��� ���ðxþ ctÞ þ C2 cosh b
10c

��� ���ðxþ ctÞ

0
B@

1
CA

2

þ 6b
25a

b
10c

����
����

C1 cosh b
10c

��� ���ðxþ ctÞ þ C2 sinh b
10c

��� ���ðxþ ctÞ

C1 sinh b
10c

��� ���ðxþ ctÞ þ C2 cosh b
10c

��� ���ðxþ ctÞ

0
B@

1
CAþ 3b2 � 25cc

25ac
; ð23Þ
where c ¼ w
k ; C1 and C2 are arbitrary constants.

In particular, if we take C2–0; C2
1 < C2

2, then (23) leads the formal solitary wave solution to Eq. (20) as
u2ðx; tÞ ¼ �
3b2

25ac
tanh2 b

10c

����
����ðxþ ctÞ þ n0

� �
þ 6b

25a
b

10c

����
���� tanh

b
10c

����
����ðxþ ctÞ þ n0

� �
þ 3b2 � 25cc

25ac
; ð24Þ
where n0 ¼ tanh�1ðC1=C2Þ and c is an arbitrary constant.
For comparison purposes, we observe that our solutions (23) and (24) include the solutions (64) and (65) of Wazwaz [41]

and so do the solutions (18) and (20) of Feng [42]. Besides, the wave speeds in [41,42] are derived only in terms of the param-
eters of the Burgers–KdV equation in contrast to the more general form wave speed in our result (23).

3.3. The modified Benjamin–Bona–Mahony equation

The regularized long-wave equation, also known as Benjamin–Bona–Mahony (BBM) equation, in the form
ut þ ux þ uux � uxxt ¼ 0; ð25Þ
has been investigated, for the first time, by Benjamin et al. [43] as an alternative model to the Korteweg–de Vries equation
for long waves and it plays an important role in the modeling of nonlinear dispersive systems. The BBM equation is appli-
cable to the study of drift waves in plasma or the Rossby waves in rotating fluids. In this section, we investigate a variant of
the BBM Eq. (25), which is also known as the modified Benjamin–Bona–Mahony (mBBM) equation, as follows:
ut þ aux þ bu2ux � cuxxt ¼ 0; ð26Þ
where a; b, and c are arbitrary real constants. Similarly, the mBBM Eq. (26) may be viewed as an alternative to the modified
Korteweg-de Vries equation. Recently, Wazwaz [44] and Biswas et al. [45] investigated a variant of Eq. (25), which is called
the generalized BBM equation. Now, letting uðx; tÞ ¼ UðnÞ; n ¼ kxþwt in (26), we obtain
�ck2wU00 þ kb
3

U3 þ ðwþ akÞU þ C ¼ 0; ð27Þ
where U ¼ UðnÞ, prime denotes derivative with respect to n, and Cis an integration constant. Balancing the terms U00 and U3 in
Eq. (27) yields the leading order n ¼ 1. Therefore, we can write the solution of (27) in the form
U ¼ a1
G0

G

� �
þ a0; a1–0; ð28Þ
and thus we have
U3 ¼ a3
1

G0

G

� �3

þ 3a2
1a0

G0

G

� �2

þ 3a1a2
0

G0

G

� �
þ a3

0; ð29Þ

U00 ¼ 2a1
G0

G

� �3

þ 3a1k
G0

G

� �2

þ ða1k
2 þ 2a1lÞ

G0

G

� �
þ a1kl: ð30Þ
Substituting (28)–(30) into Eq. (27) and setting the coefficients of ðG0=GÞi ði ¼ 0;1;2;3Þ to zero, we get a system of nonlinear
algebraic equations for a0; a1; k;l; k, and w:
G0

G

� �0

: C þwa0 þ kaa0 þ
1
3

kba3
0 � k2wckla1 ¼ 0; ð31aÞ

G0

G

� �1

: wa1 þ kaa1 � k2wck2a1 � 2k2wcla1 þ kba2
0a1 ¼ 0; ð31bÞ
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G0

G

� �2

: �3k2wcka1 þ kba0a2
1 ¼ 0; ð31cÞ

G0

G

� �3

: �2k2wca1 þ
1
3

kba3
1 ¼ 0; ð31dÞ
Solving the system (31a)–(31d) simultaneously, we end up with the solution sets:
d ¼ 0; a1 ¼ �
2k

ffiffiffiffiffiffiffiffiffi
3ac

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�bð2þ k2cðk2 � 4lÞÞ

q ;w ¼ � 2ka
2þ k2cðk2 � 4lÞ

; a0 ¼ �
kk

ffiffiffiffiffiffiffiffiffi
3ac

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�bð2þ k2cðk2 � 4lÞÞ

q
8><
>:

9>=
>;; ð32Þ
Now, substituting (32) together with the solutions of Eq. (4) into (28), we obtain the hyperbolic function traveling wave solu-
tions to Eq. (26) as
u1;2ðx; tÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
3aca

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�bð2þ caÞ

p C1 cosh
ffiffi
a
p

2 x� 2a
2þca t

� �
þ C2 sinh

ffiffi
a
p

2 x� 2a
2þca t

� �

C1 sinh
ffiffi
a
p

2 x� 2a
2þca t

� �
þ C2 cosh

ffiffi
a
p

2 x� 2a
2þca t

� �
0
@

1
A; ð33Þ
where a ¼ k2ðk2 � 4lÞ > 0; C1 and C2 are arbitrary constants; the trigonometric function traveling wave solutions to Eq. (26)
as
u3;4ðx; tÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
3aca

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bð2þ caÞ

p �C1 sin
ffiffiffiffiffi
�a
p

2 x� 2a
2þca t

� �
þ C2 cos

ffiffiffiffiffi
�a
p

2 x� 2a
2þca t

� �

C1 cos
ffiffiffiffiffi
�a
p

2 x� 2a
2þca t

� �
þ C2 sin

ffiffiffiffiffi
�a
p

2 x� 2a
2þca t

� �
0
@

1
A; ð34Þ
where a ¼ k2ðk2 � 4lÞ < 0; C1 and C2 are arbitrary constants; the rational function traveling wave solutions to Eq. (26) as
u5;6ðx; tÞ ¼ �
ffiffiffiffiffiffiffiffiffi
6ac

p
C3ffiffiffiffiffiffiffi

�b
p

ðC3ðx� atÞ þ C2Þ
; ð35Þ
where C2 and C3 ¼ kC1 are arbitrary constants.
In particular, if we take C2–0; C2

1 < C2
2, then (33) leads the formal solitary wave solutions to Eq. (26) as
u7;8ðx; tÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
3aca

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�bð2þ caÞ

p tanh
ffiffiffi
a
p

2
x� 2a

2þ ca
t

� �
þ n0

� �
; ð36Þ
where a ¼ k2ðk2 � 4lÞ > 0 and n0 ¼ tanh�1ðC1=C2Þ, and (34) gives the periodic wave solutions to Eq. (26) as
u9;10ðx; tÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
3aca

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bð2þ caÞ

p cot
ffiffiffiffiffiffiffi
�a
p

2
x� 2a

2þ ca
t

� �
þ n0

� �
; ð37Þ
where a ¼ k2ðk2 � 4lÞ < 0 and n0 ¼ tan�1ðC1=C2Þ.
Now, we compare our results with others: (1) Yusufoğlu and Bekir’s results [46]: To match the equations, first we take

a ¼ b ¼ 1, and c ¼ �1 in (26) and so do in (33)–(37). Then if we take n0 ¼ 0 and a ¼ 4a2 in the new form of (36), our result
will be the same as the first expression of (5.6) in [46]. Moreover, by taking C1–0; C2

1 > C2
2, and n0 ¼ tanh�1ðC2=C1Þ in our

more general result (33) and following the same approach leads to the second expression of (5.6) in [46]. It can be shown
that our solutions (34) and (37) include the solutions (5.9) and (5.10) of [46]. (2) By a similar discussion, we can observe that
Wazwaz’s [47] results (68) and (69) are special cases of our results (33) and (36). It is worth to note that our rational solu-
tions (35) are not derived in [46,47].

4. Conclusion

This study shows that the (G0/G)-expansion method is quite efficient and practically well suited for use in finding exact
solutions for the problems considered here. The reliability of the method and the reduction in the size of computational do-
main give this method a wider applicability. Though the obtained solutions represent only a small part of the large variety of
possible solutions for the equations considered, they might serve as seeding solutions for a class of localized structures
existing in the physical systems. Furthermore, our solutions are in more general forms, and many known solutions to these
equations are only special cases of them. With the aid of Mathematica, we have assured the correctness of the obtained solu-
tions by putting them back into the original equations. We hope that they will be useful for further studies in applied
sciences.
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