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SUMMARY
This paper presentsan adaptive actuator failure compensation
method, which compensates for uncertainties due to
unknown actuator failures for redundant manipulator
systems. The method is first developed for manipulators
whose joints are concurrently actuated. While physical
realization of concurrently actuated manipulators and the
advantages of their use have been understood before,
in this paper failure modeling, controller structure, and
adaptive update rules for handling uncertainties from the
actuator failures are studied. The adaptive actuator failure
compensation method is then expanded for a cooperating
multiple manipulator system with uncertain actuator failures.
Dynamic equations of such a multiple manipulator system in
the task space are derived and the adaptive actuator failure
compensation problem is formulated in the task space, for
which a compensation controller structure is proposed with
stable adaptive parameter update laws. The adaptive control
scheme is able to compensate for the uncertainties of system
parameters and actuator failures in a more general sense.
For both cases, closed-loop system stability and asymptotic
tracking are proved, despite uncertain system failures.

KEYWORDS: Actuator failure compensation, Adaptive con-
troller design, Redundant manipulator failure compensation.

1. Introduction
This paper intends to investigate a new method for actuator
failure compensation for redundant manipulators. It starts
with motivation for this work: redundancy and actuator
failure compensation in robotics and continues by explaining
the need for a concurrently actuated manipulator, studying
the physical realization aspects of concurrently actuated
manipulators and proposing a new control method for post-
failure control, where the number and location of the failed
actuators as well as the failure values are unknown. Later,
the control theory is applied into cooperating multiple
manipulator system where the system redundancy is achieved
by using more than one manipulator.

When high system reliability and safety are expected from
a robotic manipulator, fault tolerance is employed into system
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design for applications where the task of themanipulator
is too important to stop during the operation because of a
failure, such as hazardous environments (i.e., nuclear waste
handling and surgery), or it is too difficult to give service to
the manipulator after it fails, such as space and underwater
applications.

In order to make the manipulator fault tolerant, mostly
in the literature, it is built as a kinematically redundant
manipulator. The number of joints of the manipulator
determines the degree of freedom (DOF) of the manipulator,
considering that the joints are not coupled. This characteristic
shows the reach ability of the manipulator with arbitrary
orientation in its workspace.

In kinematically redundant manipulators, before a failure
occurs, the redundancy can be used to optimize the
motion of the manipulator. The optimization criteria
can be minimization of the joint disturbance torque for
independent joint controlled manipulators,1 optimization of
the manipulator motion with end-effector path constraints,2

or multiple criteria3 such as motion optimization, minimum
time, minimum energy, and minimum distance. After the
failure occurs, different algorithms are used to detect the
failure and isolate the failed joint, such as observers,4 position
and velocity tracking errors,5 full manipulator dynamics,6

and neural networks.7 By isolating the failed joint, new
mechanical and control structures are used to drive the failed
manipulator.8

Another way of making a manipulator redundant is by
using concurrent actuators at the joints.9,10 Redundancy
is introduced and different manipulator mechanical
architectures are ranked by fault tolerance measure for
fault tolerance capacity in ref. [9] By using fault tolerance
capacity, designers of the manipulator can categorize the
manipulator mechanical structure. A parallel-coupled micro-
macro actuator system has been designed by Morrell and
Salisbury in ref. [10] to achieve a low impedance system
and a wide range of applied force. In concurrently actuated
manipulators, unknown actuator failure compensation by
adaptive control without detecting the failure is an ongoing
research.

In the second part of the research, the object is considered
to be manipulated with multiple manipulators not only
because it requires multiple manipulators to be moved but
also to ensure that if actuator failures occur the remaining
manipulators will be able to accomplish moving the object as
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Fig. 1. Cooperating multiple manipulators.

desired. In this section, an adaptive scheme for a cooperating
multiple manipulator system with actuator failures in the
task space is proposed, where system stability and tracking
error convergence are achieved without detecting the failed
actuator or having prior knowledge of failure. An adaptive
actuator failure compensation controller for a platform
manipulator was designed in ref. [11], but the interaction
between the expandable legs and the upper platform was
ignored.

In this current study, the effect of a manipulator on
other manipulators in the cooperating manipulator system
is also considered. Cooperating multiple manipulators are
needed to handle the common object in which many robotic
applications such as moving a massive object, handling
flexible payload, or assembling applications are not feasible
for one manipulator, because of the complexity of the
application. Legged vehicles and multi-fingered hands can
also be categorized as cooperating multiple manipulator
system. With a set of closed kinematic chains, for instance,
the manipulators are holding a common rigid object
(Fig. 1), multiple manipulator system have more complexity
in control design due to the dynamic interaction between
the manipulators, because the system has a set of kinematic
and dynamic constraints, where manipulators are controlled
cooperatively to avoid internal stress on the payload. The
controller should be designed to ensure the load sharing and
compensate for the variation of the payload.

Manipulator task space controllers have been studied
before such as adaptive control design12,13 and PID control
design.14 In ref. [12] an adaptive control algorithm is
designed for task space control of manipulators where the
inverse of the Jacobian is not required and the requirement
of bounded inverse of the inertia matrix is eliminated,
using knowledge of the joint acceleration vector. In ref.
[13] an iterative learning algorithm is used with adaptive
controller design to eliminate the computation need for real-
time parameter identification, but learning algorithms can not
handle large modeling uncertainties and external disturbance.

This paper is organized as follow: Physical realization
of the concurrent actuated joints for robotic applications

Fig. 2. Dual actuation system.

is explained in Section 2. Actuator failures in concurrent
actuated systems are studied in Section 3. Section
3.1. states the actuator failure problem formulation in
robotics. In Section 3.2., a new adaptive algorithm for
control of a redundant manipulator with actuator failures
(whose location, number, and failure value are unknown)
is developed. Dynamic equations of the cooperating
manipulator in the task space are derived in Section 4.
In Section 5 an adaptive control scheme is developed to
compensate for uncertainties arising from actuator failures.
Lyapunov stability analysis proves boundedness of the
closed-loop signals and asymptotic tracking of a reference
trajectory for the object. Section 6 gives the conclusions of
this work.

2. Realization of Concurrent Actuated Joints
It is practically possible to connect different actuators
mechanically to build a concurrent actuated joint. In
ref. [9], instead of having a single actuator at the link, another
actuator is also attached to the same link, allowing the joint
to still be controllable, in case any of the actuators fail. When
the failure occurs, the failed actuator can be disengaged by a
clutch mechanism, so the remaining actuator can still drive
the system. An example of a dual actuator system is shown
in Fig. 2. Dual actuation can also be used to eliminate the
backlash effects and torque saturation at the joint. Instead of
a gear box, a belt drive is used in ref. [10], where a micro-
actuator is directly attached and a macro-actuator is coupled
by a compliant transmission to the joint axis, which is shown
in Fig. 3.

As an alternative of using separate actuators and a
mechanical connection to form a concurrent actuated joint,
the actuator itself can be built so that it is redundant. In
ref. [15], by using separate stator winding phases which
are electrically, magnetically, thermally, and physically
independent of all others, a fault-tolerant actuator is achieved,
shown in Fig. 4. Another way of creating a dynamically
redundant actuator is to use a multiple segment/modular
motor,16 where two segments of the electric motor have
separate stator winding, while sharing the same rotor, which
is illustrated in Fig. 5.
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Fig. 3. Parallel-coupled micro-macro actuators.

Fig. 4. Parallel phase stator windings.

Fig. 5. Multiple segment modular motor.

3. Concurrent Actuator Failure Compensation
The problem of compensating for the actuator failure in
concurrent actuated systems has been studied for flight
control systems. In ref. [17], the actuator failure case is
such that, m actuators are connected concurrently, up to p

actuators may fail and remaining actuators are still capable
of driving the system. After the unknown time of failure,
the failed actuator applies constant unknown input to the
system. Under these conditions, the authors designed an
adaptive control law, proved the system stability and showed
the desired system performance.

In this section, an adaptive compensation scheme for
concurrently actuated manipulators, where at the ith joint
mi actuators are connected concurrently, is developed. After
p number of actuators fail at unknown times and apply

unknown constant torques, the adaptive controller stabilizes
the system, the tracking error converges to zero and all system
signals are bounded.

3.1. Problem formulation
The dynamic model of a concurrently actuated manipulator
system is formulated as

D(q)q̈ + C(q, q̇)q̇ + g(q) = τ (3.1)

where q, q̇, q̈ ∈ Rn are joint variables position, velocity
and acceleration vectors; D(q) ∈ Rn×n is the inertia matrix,
C(q, q̇) ∈ Rn×n is the Coriolis and centrifugal term, g(q) ∈
Rn×1 is the gravity term, τ ∈ Rn×1 is the joint torque vector
and n is the degree of freedom (number of joints).

In a concurrent actuation case, at the ith joint, i ∈
{1, 2, . . . , n}, mi actuators are connected concurrently and
the number of concurrent actuators mi can be different at
each joint. For the ith joint, the dynamics is written as

Di(q)q̈ + Ci(q, q̇)q̇ + gi(q) = τi, (3.2)

where Di(q), Ci(q, q̇), and gi(q) are the ith row of D(q),
C(q, q̇), and g(q) respectively.

To model the redundancy, the joint torque is formulated as

τi = τi1 + τi2 + · · · + τimi
(3.3)

where τij is the torque applied to ith joint by the j th actuator.
The actuator failures are modeled as

τij (t) =
lij∑

k=1

τijkfijk(t), t ≥ tij , (3.4)

for j = 1, 2, . . . , mi and i = 1, 2, . . . , n, with some
unknown constant τijk and known failure signal fijk(t), where
the failure time instant tij is unknown.18 A commonly used
failure model is

τij (t) = τ̄ij , t ≥ tij , (3.5)

with unknown constant failure values τ̄ij , which is considered
in this paper’s design and analysis of adaptive failure
compensation schemes (the general case (3.4) can be
similarly handled).

The basic assumption for, the existence of an adaptive
compensation scheme for unknown system and failure
parameters is as follow:

(A.1) the system (3.1) is designed such that
for each joint in the presence of up to mi − 1
actuator failures, the concurrently actuated
manipulator system can still achieve a desired
control objective by the remaining actuators,
when implemented with known system and
failure parameters.

The main objective of adaptive control is to adjust
the remaining actuators to achieve the desired system
performance, when there are up to mi − 1 unknown actuator
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failures in the ith joint and parameter uncertainties of the
system. As seen from the following design and analysis, the
basic assumption (A.1) is satisfied for the system (3.1).

When pi actuators are failed at the ith joint, that is,
τij (t) = vij (t), where vij (t) is the applied control input to be
determined, for j �= j1, . . . , jpi

and τij (t) = τ̄ij , where τ̄ij is
an unknown constant torque produced by a failed actuator,
for j = j1, . . . , jpi

, the dynamic Eq. (3.2) becomes.

Di(q)q̈ + Ci(q, q̇)q̇ + gi(q)=
∑

j �=j1,...,jpi

vij (t) +
∑

j=j1,...,jpi

τ̄ij ,

(3.6)

with {j1, j2, . . . , jpi
} ⊂ {1, 2, . . . , mi} indicating a certain

failure pattern.
The control objective is to design a feedback control law

vij (t) for the dynamic system (3.6) to ensure that all closed-
loop system signals and parameter estimates are bounded
and that the manipulator output q(t) asymptotically tracks a
given reference output qd (t).

3.2. Adaptive control design
Define the tracking error e and the filtered tracking errors r

and v as

e = q − qd, r = ė + λe, v = q̇d − λe, (3.7)

where λ > 0 is a design parameter.
The closed-loop Eq. (3.6) can be expressed as

Di(q)ṙ + Ci(q, q̇)r = −Yi(q, q̇, v, v̇)θi

+
∑

j �=j1,...,jpi

vij (t) +
∑

j=j1,...,jpi

τ̄ij (3.8)

where

Yi(q, q̇, v, v̇)θi = Di(q)v̇ + Ci(q, q̇)v + gi(q), (3.9)

θi is the unknown parameter vector and Yi is the known
function for i = 1, 2, . . . , n.

In order to achieve the desired system performance, the
following control structure is used:

vij (t) = Yi(q, q̇, v, v̇)θ̂ij + p̂ij − Kij ri, (3.10)

where Kij > 0, j = 1, 2, . . . , mi , i = 1, 2, . . . , n, are scalar
gains, θ̂ij and p̂ij are parameter estimates to be determined
from adaptive laws.

From the failure model (3.5) and the controller structure
(3.10) when pi actuators fail at the ith joint, that is, τij (t) =
τ̄ij , j = j1, j2, . . . , jpi

, where the failed actuators will not
apply any torque, the closed-loop Eq. (3.8) becomes

Di(q)ṙ + Ci(q, q̇)r = −Yi(q, q̇, v, v̇)θi

+
∑

j �=j1,...,jpi

[Yi(q, q̇, v, v̇)θ̂ij + p̂ij − Kij ri]

+
∑

j=j1,...,jpi

τ̄ij , (3.11)

for i = 1, 2, . . . , n. The parameters θij and pij , the nominal
values of θ̂ij and p̂ij , exist to satisfy the matching
equations:

∑
j �=j1,...,jpi

θij = θi (3.12)

∑
j �=j1,...,jpi

pij +
∑

j=j1,...,jpi

τ̄ij = 0 (3.13)

where θij and pij change their values when new failures
appear.

In the closed-loop Eq. (3.11), by considering the
Eqs. (3.12), (3.13) and adding and subtracting the same
term,

∑
j �=j1,...,jpi

(Yiθij + pij ), the closed-loop equation is
rewritten as

Di(q)ṙi + Ci(q, q̇)ri =
∑

j �=j1,...,jpi

Yi θ̃ij

+
∑

j �=j1,...,jpi

p̃ij −
∑

j �=j1,...,jpi

Kij ri, (3.14)

where θ̃ij = θ̂ij − θij , p̃ij = p̂ij − pij .
With a slight abuse of the notation j1, . . . , jn, for the n-link

manipulator, the closed-loop system can be written as

D(q)ṙ + C(q, q̇)r =

⎡
⎢⎣

∑
j1 �=j11,...,j1p1

Y1θ̃1j1

...∑
jn �=jn1,...,jnpn

Ynθ̃njn

⎤
⎥⎦

+

⎡
⎢⎣

∑
j1 �=j11,...,j1p1

p̃1j1

...∑
jn �=jn1,...,jnpn

p̃njn

⎤
⎥⎦ −

⎡
⎢⎣

∑
j1 �=j11,...,j1p1

K1j1r1

...∑
jn �=jn1,...,jnpn

Knjn
rn

⎤
⎥⎦ .

(3.15)

Suppose that failures happen at time instants tk , k =
1, 2, . . . , N and 0 < t1 < t2 < · · · < tN (at each time instant
tk , there may be more than one actuator failures at different
joints). We consider such a Lyapunov function as

V = Vk = 1

2
rT D(q)r + 1

2

n∑
i=1

∑
ji �=ji1,...,jipi

θ̃ T
iji

�−1
iji

θ̃iji

+1

2

n∑
i=1

∑
ji �=ji1,...,jipi

γ −1
iji

p̃2
iji

(3.16)

for each time interval (tk, tk+1), k = 0, 1, . . . , N , with t0 = 0
and tN+1 = ∞, corresponding to a certain failure pattern as
{j1, j2, . . . , jpi

} for the ith joint, where �iji
= �T

iji
> 0 and

γiji
> 0.
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Differentiating V in the interval (tk, tk+1) yields

V̇ = rT D(q)ṙ + 1

2
rT Ḋ(q)r +

n∑
i=1

∑
ji �=ji1,...,jipi

˙̃θ
T

iji
�−1

iji
θ̃iji

+
n∑

i=1

∑
ji �=ji1,...,jipi

γ −1
iji

˙̃piji
p̃iji

. (3.17)

Substituting the (3.15) into (3.17) results

V̇ = 1

2
rT [Ḋ(q) − 2C(q, q̇)]r + rT

⎡
⎢⎣

∑
j1 �=j11,...,j1p1

Y1θ̃1j1

...∑
jn �=jn1,...,jnpn

Ynθ̃njn

⎤
⎥⎦

+ rT

⎡
⎢⎣

∑
j1 �=j11,...,j1p1

p̃1j1

...∑
jn �=jn1,...,jnpn

p̃njn

⎤
⎥⎦−rT

⎡
⎢⎣

∑
j1 �=j11,...,j1p1

K1j1r1

...∑
jn �=jn1,...,jnpn

Knjn
rn

⎤
⎥⎦

+
n∑

i=1

∑
ji �=ji1,...,jipi

˙̃θ
T

iji
�−1

iji
θ̃iji

+
n∑

i=1

∑
ji �=ji1,...,jipi

γ −1
iji

˙̃piji
p̃iji

(3.18)

where the first term results in zero from the skew-symmetric
property of Ḋ(q) − 2C(q, q̇).

The parameter update laws are chosen as

˙̂θ ij = ˙̃θ ij = −�ijY
T
i (q, q̇, v, v̇)ri, �ij = �T

ij > 0 (3.19)

˙̂pij = ˙̃pij = −γij ri, −γij > 0, (3.20)

with θ̂ij (0) = θ̂i0 for some θ̂i0 such that
∑mi

j=1 θ̂i0 = miθ̂i0

is an initial estimate of θi , and p̂ij (0) = 0, where i =
1, . . . , n, j = 1, . . . , mi . The derivative of the Lyapunov
function is then found as

V̇ = −
n∑

i=1

∑
ji �=ji1,...,jipi

Kiji
r2
i ≤ 0, (3.21)

for each time interval (tk, tk+1).
Whenever new failures occur, the Lyapunov function V =

Vk changes with actuator failures into Vk+1 such that V is not
continuous at the time instants tk , k = 0, 1, . . . , N . Except
for a finite number (N as indicated here) of discontinuous
points, V is differentiable with a negative time derivative,
which means V decreases with time in each time interval
(tk, tk+1) when there is no actuator failures during this time
span. Starting from the first time interval [t0, t1), we see that
V (t) ≤ V (t0) from V̇ ≤ 0 for ∀t ∈ [t0, t1). It is concluded that
all closed-loop signals are bounded for t ∈ [t0, t1), including
θ̂ij (t) and p̂ij (t). At time t = t1, some actuators at some
joints fail, which results in the abrupt change of V from
V0 to V1 with a set of new finite constants θij and pij .
In addition to the new constants θij and pij satisfying the
matching conditions (3.12)–(3.13), some of the parameter
estimates θ̂ij (t) and p̂ij (t) are removed from the Lyapunov
function V because their corresponding actuators are not

working anymore. Since θ̂ij (t) and p̂ij (t) are continuous and
are finite at time t1, the change of V , however, is a jumping
with a finite value, that is, V (t+1 ) = V1(t1) is bounded.
Repeating the argument above, we establish the boundedness
of r(t), θ̂ij (t), and p̂ij (t) for some j corresponding to the
remaining actuators in the time interval (t1, t2) and prove
that V (t+2 ) = V2(t2) is bounded. Continuing in the same way,
we have that V (t) ≤ V (t+k ) for ∀t ∈ (tk, tk+1) with a finite
V (t+k ), k = 0, 1, . . . , N . Therefore, we conclude that V (t) is
piecewise continuous and bounded.

Recall that at each joint, there remains at least one actuator
for achieving the control objective. Hence at least one pair
of θ̂ij (t) and p̂ij (t) with some j for each i remains in the
Lyapunov function V , which implies that θ̂ij (t) and p̂ij (t)
with some j ∈ {1, 2, . . . , mi} for each i = 1, 2, . . . , n are
bounded for ∀t ∈ [0, ∞). Form the adaptive update laws
(3.19) and (3.20), we note that for the ith joint, θ̂ij (t) and
p̂ij (t) are parallel to each other with different adaptive gains
for different j . Since at least one pair of them with some j

is bounded for ∀t ∈ [0, ∞), the others are also bounded in
the sense that the adaptive laws for them are calculated in
computing chips virtually even if the signals may not exist
due to the failures in the corresponding actuators. It follows
that all closed-loop signals are bounded for both the real
signals applied to the manipulator system and virtual signals
calculated in computing chips.

Considering the last time interval (tN , ∞) with a
finite V (t+N ), we see that it follows from (3.21) that
r(t) ∈ L2. On the other hand, from the boundedness of
the closed-loop signals, it can be shown that ṙ(t) ∈ L∞
so that limt→∞ r(t) = 0, from which it can be shown that
limt→∞ e(t) = 0. Thus, stability in the Lyapunov sense and
asymptotic tracking: limt→∞ e(t) = 0 are established.

Remark 3.1. For time-varying actuator failures modeled as
(3.4), a complete parameterization of the actuator failures can
be obtained as shown in ref. [18]. With the parameterization
of actuator failures and system uncertainties, the proposed
adaptive compensation design in this section can be extended
to achieve asymptotic tacking of reference signals for
concurrently actuated manipulator system in the presence
of the time-varying actuator failures. In case that the failure
signal fijk(t) in the failure model (3.4) is unknown, while
fijk(t) is bounded by some function of time, a modified
bounding design of adaptive compensation can be applied to
the concurrently actuated manipulator for achieving stability
and desired tracking performance in the sense that the
tracking error can be made as small as expected by choosing
larger design parameters.

4. Dynamic Equations for Cooperating Manipulators
In the design of adaptive actuator failure compensation
scheme for a cooperating multiple manipulator system, the
dynamic equations of the system in the task space are derived
and by modifying the control algorithm designed for concur-
rently actuated manipulator system the control algorithm for
a cooperating multiple manipulator system is derived.

When cooperating multiple manipulators are moving an
object, they form a closed kinematic chain, where the system
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is constrained by holonomic and nonholonomic constrains
between the manipulators themselves and the object. The
dynamic modeling of the cooperating multiple manipulator
system in task space is derived in this section. It is assumed
that each manipulator, which is non-redundant with the
same n degree of freedom, does not enter any singular
configuration and there is no relative motion between the
object and the manipulator end-effectors. By formulating the
control problem in task space, the need for solving the inverse
kinematics problem is eliminated, but these control schemes
still require the Jacobian matrix to be known. In ref. [14]
a PID control algorithm is designed to compensate for the
uncertainties in the Jacobian matrix, where an estimator is
used to obtain an approximation of the Jacobian matrix.

The dynamic equation of the ith manipulator with n

DOF in a multiple manipulator system is given as shown in
ref.[ 20]:

Di(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) = τi − J T
i Fi (4.1)

for i = 1, 2, . . . , m, where m is the number of manipulators
in the multiple manipulator system, qi , q̇i and q̈i ∈ Rn are
joint variable position, velocity and acceleration vectors,
Di(qi) ∈ Rn×n is the inertia matrix, Ci(qi, q̇i) ∈ Rn×n is the
Coriolis and centrifugal terms, gi(qi) ∈ Rn×1 is the gravity
term, τi ∈ Rn×1 is the generalized torque vector, J T

i is the
Jacobian matrix defined as Ji = ∂hi(qi)/∂qi with hi being
the forward kinematic output function for the ith manipulator
to be defined in (4.4) and Fi is the applied generalized end-
effector force vector for the ith manipulator.

Equation of motion for the common object is formulated
as

Do(xc)ẍc + Co(xc, ẋc)ẋc + go(xc) = AT F, (4.2)

where xc ∈ Rnc×1, ẋc and ẍc are position, velocity and
acceleration vectors of the center of the mass of the object,
nc is the dimension of the position vector of the mass
of the object, Do(xc) ∈ Rnc×nc is the inertia matrix of the
object, Co(xc, ẋc) ∈ Rnc×nc is the Coriolis and centrifugal
terms of the object, go(xc) ∈ Rnc×1 is the gravity term,
F = [FT

1 , . . . , F T
m ]T is the generalized end-effector force

vector and A ∈ Rnm×nc is the Jacobian matrix defined by

A = [
AT

1 , . . . , AT
m

]T
, Ai = ∂πi(xc)

∂xc

, (4.3)

in which the constraint equations are defined as

xi = hi(qi) = πi(xc),

ẋi = Jiq̇i = Aiẋc, i = 1, 2, . . . , m, (4.4)

where xi ∈ Rn is the position of the ith manipulator in the
Cartesian coordinates, hi is the forward kinematic output
function of the ith manipulator and πi is the transformation
matrix from object frame to the ith manipulator end-effector
frame.

When the dynamic equation of motion of the ith
manipulator is written in the object coordinate, it is

formulated as ref. [21]

D̄i(xc)ẍc + C̄i(xc, ẋc)ẋc + ḡi(xc) = ET
i (xc)τi − AT

i Fi,

(4.5)

where Ei(xc) = J−1
i Ai , D̄i = ET

i DiEi , C̄i = ET
i CiEi +

ET
i DiĖi and ḡi = ET

i gi .
By summing the manipulator dynamic Eq. (4.5) with the

object dynamic Eq. (4.2), the dynamic equation of the system
in the task space is formulated as

D(xc)ẍc + C(xc, ẋc)ẋc + g(xc) = ET (xc)τ, (4.6)

where D = ∑m
i=1 D̄i + Do, C = ∑m

i=1 C̄i + Co, g =∑m
i=1 ḡi + go, E = [ET

1 , ET
2 , . . . , ET

m]T ∈ Rnm×nc and
τ = [τT

1 , τ T
2 , . . . , τ T

m ]T ∈ Rnm×1.

5. Cooperating Actuator Failure Compensation
In this section, the failure compensation problem for
a cooperating manipulator system is formulated and an
adaptive control scheme is designed to ensure system stability
and asymptotic tracking of a reference for the object in
the task space. By using a direct adaptive design, it is
expected that there is no need for fault detection and isolation
algorithms in order to ensure the desired system performance
in the presence of failures.

5.1. Problem formulation
In a multiple manipulator system, the actuator failure
problem is formulated as follows: at an unknown time instant,
some actuators at the joints of some manipulators may fail
during operation. There can be up to nm − nc failures in
the multiple manipulator system (4.6), that is, at least nc

independent actuators at the joints of some manipulators
are left for guaranteeing the control objective, because the
manipulators with n DOF are independent of each other.

The actuator failure is modeled as

τij (t) = τ̄ij , t ≥ tij , (5.1)

for the ith manipulator j th joint, i ∈ {1, 2, . . . , m}, j ∈
{1, 2, . . . , n}, where the failure time instant tij and the
constant value of τ̄ij are unknown.

In case of actuator failures, the actual input τ can be
expressed as

τ (t) = v(t) + σ (τ̄ − v(t)) (5.2)

where v(t) ∈ Rnm is the applied control input to
be determined, τ̄ = [τ̄11, . . . , τ̄1n, . . . , τ̄ij , . . . , τ̄mn]T is
the vector of torques from the failed actuators,
σ = diag{σ11, . . . , σ1n, . . . , σij , . . . , σmn} is an nm × nm

diagonal matrix identifying the unknown failure pattern with
σij = 1, if the actuator at the j th joint of the ith manipulator
fails, otherwise, σij = 0.
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When some actuators are failed in a certain failure pattern
σ , the manipulator dynamic Eq. (4.6) becomes

D(xc)ẍc + C(xc, ẋc)ẋc + g(xc) = ET (xc)σ τ̄

+ET (xc)(I − σ )v(t). (5.3)

The objective of adaptive compensation control is to adjust
the remaining control inputs to achieve the desired system
performance, when there are up to nm − nc actuator failures
at manipulator joints with unknown failure time instants tij ,
failure parameters τ̄ij, and failure locations σij , in addition to
system parameter uncertainties. More specifically, the control
objective is to design a feedback control law v(t) for the
dynamic systems (5.3) to ensure that all closed-loop system
signals and parameter estimates are bounded and that in the
task space, the object position xc(t) asymptotically tracks a
given reference xcd (t).

5.2. Adaptive controller design
Because of the uncertainties in actuator failures and
manipulator system parameters, an adaptive design is used to
generate v(t) = [v1(t), v2(t), . . . , vnm−1(t), vnm(t)]T ∈ Rnm,
to compensate for actuator failures and system uncertainties.

The advantage of designing the controller in the task space
is that there is no need to measure the forces acting on the
end-effectors of the manipulators, since these internal forces
are eliminated in the dynamical modeling. However, the task
space control of a manipulator system requires knowledge of
the common object position and velocity vectors, xc and ẋc,
which can be measured by using vision systems.19

Define the tracking error ex ∈ Rnc and the filtered tracking
errors rx ∈ Rnc and vx ∈ Rnc as

ex = xc − xcd, rx = ėx + λex, vx = ẋcd − λex, (5.4)

where xcd is the reference for xc and λ ∈ Rnc×nc > 0 is a gain
matrix.

The closed-loop Eq. (5.3) can be expressed as

D(xc)ṙx + C(xc, ẋc)rx = −Yx(xc, ẋc, vx, v̇x)θx

+ ET (xc)σ τ̄ + ET (xc)(I − σ )v(t), (5.5)

where

Yx(xc, ẋc, vx, v̇x)θx = D(xc)v̇x + C(xc, ẋc)vx + g(xc),
(5.6)

θx ∈ Rnθ is an unknown system parameter vector and Yx ∈
Rnc×nθ is a matrix of known functions.

Failure parameterization. Suppose that for any up to
nm − nc actuator failures, there is no singular configuration
in the multiple manipulator system, which implies that the
matrix ET (xc)(I − σ ) has full row rank for ∀σ ∈ 	, where
	 = {σi | i = 1, 2, . . . , N} is the set of all failure patterns
with N = ∑nm−nc

k=0

(
nm

k

)
, that is, σi is a particular expression

of σ defined in (5.2) and there are totally N of them. Since
actuator failures can be identified by their failure patterns, we
use σī with some ī ∈ {1, 2, . . . , N} to represent one specific
failure pattern among all N actuator failure patterns. It is also

noted that only one actuator pattern in 	 will happen at a time.
Introducing Ēi(xc) = (I − σi)E(xc) for i = 1, 2, . . . , N , we
define

Y = [
Ē1

(
ĒT

1 Ē1
)−1

Yx, Ē2
(
ĒT

2 Ē2
)−1

Yx,

. . . , ĒN

(
ĒT

NĒN

)−1
Yx] ∈ Rnm×Nnθ ,

H = [
Ē1

(
ĒT

1 Ē1
)−1

ET , Ē2
(
ĒT

2

Ē2
)−1

ET , . . . , ĒN

(
ĒT

NĒN

)−1
ET

] ∈ Rnm×Nnm,

G = [
Ē1

(
ĒT

1 Ē1
)−1

, Ē2
(
ĒT

2 Ē2
)−1

, . . . ,

ĒN

(
ĒT

NĒN

)−1] ∈ Rnm×Nnc . (5.7)

For convenience, we denote σ1 as the pattern for the no failure
case, that is, σ1 = 0, a zero matrix and Ē1(xc) = E(xc),
corresponding to

(
nm

0

)
in N = ∑nm−nc

k=0

(
nm

k

)
.

With Y , H, and G defined in (5.7), we propose the
following nominal controller

v∗(t) = Y (xc, ẋc, vx, v̇x)θ0 − H (xc)ρ0 − G(xc)K0rx,

(5.8)

where θ0 = [θT
01, θ

T
02, . . . , θ

T
0N ]T ∈ RNnθ and ρ0 =

[ρT
01, ρ

T
02, . . . , ρ

T
0N ]T ∈ RNnm are parameter vectors

with θ0i ∈ Rnθ and ρ0i ∈ Rnm, i = 1, 2, . . . , N and
K0 = [K01, K02, . . . , K0N ]T ∈ RNnc×nc is a matrix with N

diagonal matrices K0i ∈ Rnc×nc , i = 1, 2, . . . , N .
Substituting (5.8) into (5.5), we obtain the closed-loop

system

D(xc)ṙx + C(xc, ẋc)rx = −Yx(xc, ẋc, vx, v̇x)θx + ET (xc)σ τ̄

+ ET (xc)(I − σ )
(
Y (xc, ẋc, vx, v̇x)θ0

− H (xc)ρ0 − G(xc)K0rx

)
. (5.9)

To ensure asymptotic tracking, matching conditions are
derived for the nominal controller as

ET (xc)(I − σ )Y (xc, ẋc, vx, v̇x)θ0 = Yx(xc, ẋc, vx, v̇x)θx

ET (xc)(I − σ )H (xc)ρ0 = ET (xc)σ τ̄

ET (xc)(I − σ )G(xc)K0rx = KDrx, (5.10)

where KD ∈ Rnc×nc is a diagonal matrix whose diagonal
elements are defined to be positive constants. With the
matching conditions (5.10) satisfied, the closed-loop system
becomes

D(xc)ṙx + C(xc, ẋc)rx = −KDrx. (5.11)

The stability and asymptotic tracking property of the closed-
loop system (5.11) can be shown by the Lyapunov function
V = 1

2rT
x D(xc)rx whose time derivative V̇ = −rT

x KDrx .
The matching conditions given by (5.10) are satisfied

because the Eq. (5.10) is solvable for ∀σ ∈ 	. One solution
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to (5.10) for a specific failure pattern σī is

⎧⎪⎨
⎪⎩

θ0ī = θx, ρ0ī = σ τ̄ , K0ī = KD

if σ = σī , ī ∈ {1, 2, . . . , N},
θ0i = 0, ρ0i = 0, K0ī = 0

for i = 1, 2, . . . , N and i �= ī.

(5.12)

Since we do not know which actuator will fail during
system operation, we choose a controller structure for each
v∗

j (t) instead of v∗(t) as

v∗
j (t) = Yj (xc, ẋc, vx, v̇x)θj − Hj (xc)ρj − Gj (xc)Kjrx,

j = 1, 2, . . . , nm, (5.13)

where Yj is the j th row of Y , Hj is the j th row of H ,
and Gj is the j th row of G, θj = [θT

j1, θ
T
j2, . . . , θ

T
jN ]T ∈

RNnθ and ρj = [ρT
j1, ρ

T
j2, . . . , ρ

T
jN ]T ∈ RNnm and Kj =

[Kj1, Kj2, . . . , KjN ]T ∈ RNnc×nc . Based on the matching
conditions (5.10), the nominal values of θj , ρj and Kj ,
j = 1, 2, . . . , nm, can be

θj = θ0, ρj = ρ0, Kj = K0, j = 1, 2, . . . , nm.

(5.14)

Control law. Suppose that at time t , there are p failed
actuators with a failure pattern σ = σī , that is, for u(t) =
τ (t) = [u1(t), u2(t), . . . , unm−1(t), unm(t)]T ∈ Rnm and ū =
τ̄ = [ū1, ū2, . . . , ūnm−1, ūnm]T ∈ Rnm, it holds that uj =
ūj , j = j1, j2, . . . , jp, for some subset {j1, j2, . . . , jp} ⊂
{1, 2, . . . , nm} and that uj (t) = vj (t), all j ∈ {1, 2, . . . , nm}
but j �= j1, j2, . . . , jp. For j1, j2, . . . , jp unknown, the
adaptive control law is designed for all vj (t) as

vj (t) = Yj (xc, ẋc, vx, v̇x)θ̂j − Hj (xc)ρ̂j − Gj (xc)K̂j rx,

j = 1, 2, . . . , nm, (5.15)

where θ̂j ∈ RNnθ and ρ̂j ∈ RNnm are the estimates of θj and
ρj given by (5.14). With the adaptive controller (5.15), the
closed-loop system for σ = σī is given by

D(xc)ṙx + C(xc, ẋc)rx

= −Yxθx + ET σī τ̄ +
∑

j �=j1,...jp

ET
(j )Yj θ̂j

−
∑

j �=j1,...jp

ET
(j )Hj ρ̂j −

∑
j �=j1,...jp

ET
(j )GjK̂j rx

= −Yxθx + ET σī τ̄ + ĒT
ī
Y θ0 − ĒT

ī
Hρ0

+
∑

j �=j1,...jp

ET
(j )Yj θ̃j −

∑
j �=j1,...jp

ET
(j )Hj ρ̃j

−
∑

j �=j1,...jp

ET
(j )GjK̃j rx − KDrx

=
∑

j �=j1,...jp

ET
(j )(xc)Yj (xc, ẋc, vx, v̇x)θ̃j

−
∑

j �=j1,...jp

ET
(j )(xc)Hj (xc)ρ̃j

−
∑

j �=j1,...jp

ET
(j )(xc)Gj (xc)K̃j (xc)rx − KDrx,

(5.16)

where E(j ) is the j th row of E and θ̃j = θ̂j − θj , ρ̃j =
ρ̂j − ρj and K̃j = K̂j − Kj , are the parameter errors (for Kj

defined to be with a positive KD in (5.10), (5.12) and (5.14)).

Adaptive scheme. Let K̂jil denote the lth diagonal
elements of the diagonal matrix K̂ji , j = 1, 2, . . . , nm, i =
1, 2, . . . , N , l = 1, 2, . . . , nc. The parameter update laws of
θ̂j (t), ρ̂j (t) and K̂jil(t) are designed as

˙̂θj = −�θjY
T
j (xc, ẋc, vx, v̇x)E(j )(xc)rx, �θj = �T

θj > 0
(5.17)

˙̂ρj = �ρjH
T
j (xc)E(j )(xc)rx, �ρj = �T

ρj > 0 (5.18)

˙̂Kjil = γjilGjil(xc)rxlE(j )(xc)rx, γjil > 0, (5.19)

for j = 1, 2, . . . , nm, i = 1, 2, . . . , N and l = 1, 2, . . . , nc,
with θ̂j (0) = θ̂0, ρ̂j (0) = 0 and K̂jil(0) = K̂jil0 as initial
estimates of θ0, ρ0 = 0 and K0 defined by (5.12) with
i = 1 (the no failure case, such that τ̄ = 0 holds), where
Gjil(xc) is the [(i − 1)nc + l]th component of Gj (xc), rxl is
the lth component of rx , �θj = �T

θj > 0, �ρj = �T
ρj > 0 and

γjil > 0 are the adaptive gains.

5.3. Stability analysis
Suppose that failures happen at time instants tk , k =
1, 2, . . . , M and 0 < t1 < t2 < · · · < tM (at each time instant
tk , there may be more than one actuator failures at some
joints of some manipulators). We consider such a Lyapunov
function as

V = Vk = 1

2
rT
x D(xc)rx

+ 1

2

∑
j �=j1,...,jp

θ̃ T
j �−1

θj θ̃j + 1

2

n∑
j �=j1,...,jp

ρ̃T
j �−1

ρj ρ̃j

+ 1

2

n∑
j �=j1,...,jp

N∑
i=1

nc∑
l=1

γ −1
jil K̃

2
jil (5.20)

for each time interval (tk, tk+1), k = 0, 1, . . . , M , with t0 = 0
and tM+1 = ∞, corresponding to a certain failure pattern as
{j1, j2, . . . , jp}, where �θj = �T

θj > 0, �ρj = �T
ρj > 0 and

γjil > 0.
Differentiating V with respect to time in the interval

(tk, tk+1) along (5.16) yields

V̇ = 1

2
rT
x [Ḋ(xc) − 2C(xc, ẋc)]rx

+
∑

j �=j1,...jp

rT
x ET

(j )(xc)Yj (xc, ẋc, vx, v̇x)θ̃j
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−
∑

j �=j1,...jp

rT
x ET

(j )(xc)Hj (xc)ρ̃j

−
∑

j �=j1,...jp

rT
x ET

(j )(xc)Gj (xc)K̃j rx − rT
x KDrx

+
∑

j �=j1,...,jp

˙̃θ
T

j �−1
θj θ̃j +

n∑
j �=j1,...,jp

˙̃ρT

j �−1
ρj ρ̃j

+
n∑

j �=j1,...,jp

N∑
i=1

nc∑
l=1

γ −1
jil

˙̃KjilK̃jil,

(5.21)

where the first term results in zero from the skew-symmetric
property of Ḋ(q) − 2C(q, q̇). With the adaptive update laws
(5.17)–(5.19), the time-derivative of the Lyapunov function
V becomes

V̇ = −rT
x KDrx ≤ 0. (5.22)

When new actuator failures occur, the Lyapunov function
V = Vk changes with failures into Vk+1. Hence V is not
continuous at the time instants tk , k = 0, 1, . . . , M . Except
for a finite number (M as indicated here) of discontinuous
points, V is differentiable with a negative time derivative,
that is, V decreases with time in each time interval (tk, tk+1)
when there is no actuator failures during this time span.

Starting from the first time interval [t0, t1), we see that
V (t) ≤ V (t0) from V̇ ≤ 0 for ∀t ∈ [t0, t1). It is concluded
that all signals are bounded for t ∈ [t0, t1), including the
estimates θ̂j (t), ρ̂j (t) and K̂jil(t) for j = 1, 2, . . . , nm, i =
1, 2, . . . , N , l = 1, 2, . . . , nc.

At time t = t1, when some actuators fail, that is, the control
signals to some joints are stopped by some constant torques
with unknown values, V changes abruptly from V0 to V1.
First of all, based on a new failure pattern, the unknown
parameters θj , ρj, and Kjil change into a set of new θj ,
ρj and Kjil with finite values. It is also noted that some of
the parameter estimates θ̂j (t), ρ̂j (t), and K̂jil(t) with some
j ∈ {1, 2, . . . , nm} are removed from the Lyapunov function
V because their corresponding actuators are not working
anymore. Since θ̂j (t), ρ̂j (t), and K̂jil(t) are continuous and
are finite at time t1 and the unknown parameters θj , ρj , Kjil

have finite values to satisfy the matching conditions under
the current failure pattern, the change of V is a finite value
jumping, which means that V (t+1 ) = V1(t1) is bounded.

Repeating the argument above, we establish the
boundedness of r(t), θ̂j (t), ρ̂j (t), and K̂jil(t) for some
j corresponding to the remaining actuators in the time
interval (t1, t2) and prove that V (t+2 ) = V2(t2) is bounded.
Continuing in the same way, we have that V (t) ≤ V (t+k )
for ∀t ∈ (tk, tk+1) with a finite V (t+k ), k = 0, 1, . . . , M .
Therefore, we conclude that V (t) is piecewise continuous
and bounded.

Recall that any nc actuators of the nk actuators are
independent and assumed to guarantee the nonsingular
property, that is, each row E(j )(xc) of E(xc) can be
represented by a linear combination of any other nc rows

of E(xc). Form the adaptive update laws (5.8)–(5.10), we
thus know that for the j th designed control input vj (t), the
adaptive laws of its estimates θ̂j (t), θ̂j (t), and K̂jil(t) are a
linear combination of the adaptive laws for the estimates of
any other nc control inputs. On the other hand, at any time
there remain at least nc actuators for achieving the control
objective. Hence at least nc sets of θ̂j (t), ρ̂j (t), and K̂jil(t)
with some j remain in the Lyapunov function V , which
implies that θ̂j (t), ρ̂j (t), and K̂jil(t) some j ∈ {1, 2, . . . , nm}
(no less than nc different j ) for each i = 1, 2, . . . , N and
l = 1, 2, . . . , nc are bounded for ∀t ∈ [0, ∞). Since at least
nc sets of them with some j are bounded for ∀t ∈ [0, ∞),
the others are also bounded in the sense that the estimates
obey their adaptive laws, which are linear combinations of
the remaining nc sets, with different initial values. Notice
that even if those estimate signals may not be applied to the
system if the corresponding actuators are failed, the adaptive
laws of them are still calculated in computing chips virtually.
It follows that all closed-loop signals are bounded for both
the real signals applied to the manipulator system and virtual
signals calculated in computing chips.

Considering the last time interval (tM, ∞) with a finite
V (t+M ), we see that it follows from (5.22) that rx(t) ∈ L2.
On the other hand, from the boundedness of the closed-
loop signals, it can be shown that ṙx(t) ∈ L∞ so that
limt→∞ rx(t) = 0, from which it follows that limt→∞ ex(t) =
0 and limt→∞ ėx(t) = 0.

Thus, stability in the Lyapunov sense and asymptotic
tracking: limt→∞ e(t) = 0 are established for the adaptive
actuator failure compensation design of the cooperating
multiple manipulator system in the task space, despite
actuator failures.

6. Conclusions
In this paper, actuator failure compensation for redundant
manipulators is addressed, using a new adaptive control
method to compensate for uncertainties from actuator
failures. The developed adaptive compensation scheme
consists of a parametrized controller structure to handle
all possible actuator failure patterns and an adaptive law to
update the controller parameters when the failure parameters
are unknown. Such an adaptive failure compensation scheme
is applicable to concurrently actuated manipulator systems
whose actuators may fail as well as to cooperating multiple
manipulator system whose actuators and joints may fail
during the system operation. With a modified Lyapunov
stability analysis to deal with discontinuous parameters due
to failures, the stability and asymptotic output tracking of
the closed-loop systems are proved, in the presence of
uncertainties of actuator failures.
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