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In this paper it is shown that afi-complemented complete modular lattiEevith small radi-
cal is weakly supplemented if and only if it is semilocélis a cofinitely weak supplemented
lattice if and only if every maximal element df has a weak supplement i If a/0 is a
cofinitely weak supplemented (weakly supplemented) sublatticel Amdhas no maximal el-
ement {/a is weakly supplemented andhas a weak supplement i), thenL is cofinitely
weak supplemented (weakly supplemented).
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weak supplemented lattice.

1. INTRODUCTION

ThroughoutL denotes an arbitrary complete modular lattice with smallest element 0 and greatest
element 1; by a lattice we will mean a complete modular lattice. An elemeftl is said to be
smallinL if a vV b # 1 holds for everyb # 1. Itis denoted bys < L. An elementa of L is

called a supplement of an elemérnn L if o vV b = 1 anda is minimal with respect to this property.
Equivalently, an element is a supplement of in L if and only ifa Vb = 1 anda A b < a/0.
Reducing the last condition @A b < L we obtain the definition of weak supplementisis said

to be supplemented (respectively, weakly supplemented) if every elenoért has a supplement
(respectively, weak supplement) in Many properties of weak supplement submodules hold in
an arbitrary lattice and sometimes the proofs can be obtained by slight modification of those for



338 RAFAIL ALIZADE AND S. EYLEM TOKSOY

modules. We give examples of lattices showing that not all generalizations are true and give the
proofs of the results for lattices in those situations when the proofs are essentially different from
those in the module case. Some results proved for lattices provide new results or simpler proofs of
known results for modules. An elemenbf L is said to be essentialdif A b # 0 for every nonzero
elementh in L. Itis denoted by: < L (see [7]). An element is called anE-complement of an
elementz of Lif a Ab=0anda Vb < L. Alattice L is calledE-complemented if every element

of L has anE’-complement inL (see [8]). If for every element of L there is an elemeritof L

such that: v b =1 anda A b = 0, thenL is said to be complemented (see [6]). The radiedl L)

of L is the meet of all maximal elements bdf(see [10]). If1/rad(L) is complemented, theh is

called a semilocal lattice (cf. [4, 17.1]). In Section 2 weakly supplemented lattices are studied. We
prove that an’-complemented latticé with small radical is weakly supplemented if and only if

it is semilocal. Also we show that ali-complemented weakly supplemented latticevith zero

radical is complemented.

A sublattice of the fornb/a = {x € L | a < z < b} is called a quotient sublattice (see [5]).

An elementu of L is called cofinite inL if the quotient sublatticé /a is compact, thatis = \/ z;
iel
for some elements; > a implies thatl = \/ z; for some finite subsef’ of /. If each element of
ieF

L is a join of compact elements, thénis said to be compactly generated (see [10]). In Section 3
we study cofinitely weak supplemented lattices or briefly cws-lattices, that is lattices whose cofinite
elements have weak supplements. It is proved thita cws-lattice if and only if every maximal
element of L has a weak supplement. We give a condition under which a compactly generated

cofinitely weak supplemented lattice is cofinitely supplemented.

2. WEAKLY SUPPLEMENTEDLATTICES

The following example shows that a homomaorphic image of a small element under a lattice mor-
phism need not be small unlike the module case.

Example2.1 — LetA = {1,2,3,6,12} andB = {1,2,3,6}. Consider the latticeg4, |) and
(B,|) where| is the divides relationz | y meanse dividesy.

Consider the lattice morphisih: (A,|) — (B,|) defined byf(k) = k for k = 1,2, 3,6 and
f(12) = 6. Clearly,2 < Asince2 Vv z # 12 for all x # 12. But f(2) =2 « Bsince2Vv3 =6
whilst 3 # 6.

Nevertheless using the following properties of small sublattices we will show that the quotient
sublatticesl /a of a weakly supplemented lattice is weakly supplemented. We will write b if
a < banda # b.

Lemma2.2 — ([3, Lemma 7.2, Lemma 7.3 and Lemma 7.4]) ket b be elements irL.

(1) If a < b/0, thena vV c < (bV c)/cforeverycin L.
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12

(4, 1) (B; 1)

(2) b Lifandonlyifa < L andb < 1/a.

(3) If a < b/0, thena < L.

Proposition2.3 — If L is a weakly supplemented lattice, then for every elemehe quotient
sublatticel /a is also weakly supplemented.

PROOF: Letb be an element of /a. SinceL is weakly supplemented, there is a weak supple-
mentz of bin L,i.e.zvVb=1andx Ab < L =1/0. Clearly(a VvV x) Vb= 1. By Lemma 2.2(1),
(avVz)ANb=(bAx)Va< (1Va)/a=1/a. O

Small cover of a weakly supplemented module is weakly supplemented (see [4, 17.13]). The
same is true for lattices.

Proposition2.4 — If 1/a is a weakly supplemented sublatticelofor some element < L,
thenL is also weakly supplemented.

PROOF : For every element in L there exists a weak supplemenbf = V a in 1/a, i.e.
yV(rVa)=1landy A (zVa) < 1/a. By Lemma 2.22)y A (z V a) < L. Thusy A z <
y A (x Va) < L. Hencey is a weak supplement afin L. O

Proposition2.5 — (cf. [9, Proposition 2.2(5)], see also [4, 17.13] and [4, 20.3])a i a
supplement of some element of a weakly supplemented ldititteen the quotient sublatticg/0 is
also weakly supplemented.

PROOF: Leta be a supplement dfin L, i.e. a Vb = 1 anda A b < a/0. By Proposition
2.3,1/b=(aVb)/b=a/(a A b)is weakly supplemented. Thus by Proposition 2.4) is weakly
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supplemented. O

Proposition2.6 — (cf. [1, Proposition 2.7]). 16 is a weak supplement ofin L andc <« L,
thenb is a weak supplement afVv ¢ in L.

PROOF: Clearly(a VvV c¢) Vb= 1. Letd =aAbandu = (a V ¢) Ab. Suppose: V y = 1 for
somey in L. Clearlyu Vx = 1 wherex =y Vv d. Thenb=bA1=bA (uVzx)=uV (bAx)and
l=aVb=aVuV(bAz)=aV[aVc)AbV(bAz). By modularlaw,

l1=[(avVe)A(aVbd)]V(bAx)=aVeV (bAx).

Sincec < L,1 =aV (bAz). Thenb = (bAz)V (bAa) =bAuz, thatisb < z. Now
l=uVvVe<bVze <z soxr=1. Sinced < L,y = 1. Thusb is a weak supplement afV cin
L. O

The proofs of the following two propositions are the same as for modules (see [4, 17.9 (6) and
17.12)).

Proposition2.7 — If a Vb = 1 for some elements, b of a weakly supplemented lattide then
a has a weak supplementn L such that < b.

Proposition2.8 — If a; V az = 1 for some elements;, ay of L with a;/0 andas/0 weakly
supplemented, theh is weakly supplemented.

The following theorem generalizes [2, Theorem 2.1] to lattices.

Theorem2.9— If 1/a anda/0 are weakly supplemented anchas a weak supplement iy
thenL is also weakly supplemented.

PROOF: Letb be a weak supplement afin L. Sincea /0 is weakly supplemented,/(a A D) is
weakly supplemented. The quotient sublatticé: A ) is also weakly supplemented singga A
b) =2 (aVb)/a = 1/a. Thenl/(a Ab) = [a/(a AD)] V [b/(a A b)] is weakly supplemented by
Proposition 2.8. Therefore is weakly supplemented by Proposition 2.4. O

An element is called a pseudo-complement of an elemtent if b A ¢ = 0 andc is maximal
with respect to this propertyL is said to be pseudo-complemented if every element bfs a
pseudo-complement ih (see [11]). Pseudo-complemented latticesiareomplemented (see [8]).
On the other hand ik is the lattice of all submodules of a weak supplemented module which is not
supplemented, then the dual lattiE® is £-complemented but not pseudo-complemented.

It is well known that the lattice of submodules of every module is pseudo-complemented (see
[11]) and therefore-complemented. The following example shows that this fact need not be true
in an arbitrary lattice.

Example2.10 — Consider the interval, 1] with usual topology. The set of closed subsets
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of [0,1] form a complete distributive lattice with respect to the operatiofsC; = () C; and
iel iel

V C; = | C; (closure of | C;) for any family {C;}ic; from C. Suppose thaf0} has ank-

i€l i€l i€l

complementdinC,i.e. {0} NA = ¢and{0} UA<C. SinceA is closeda = inf A € A, therefore

a > 0. ThenA C [a,1] C [g, 1} and({0} U A)N E, g} = ¢, thatis{0} U A is not essential in

C. This contradiction shows that the latti€es not £-complemented.

Recall that if every element of L is a complement of an elementin i.e. « Vb = 1 and
a Ab=0forsomebin L, thenL is called a complemented lattice (see [6]).

Lemma2.11 — If L is complemented, thes/0 is complemented for every elemenof L.

PROOF: Let z be an element of /0. SinceL is complemented, there exists an elemgiof
L such thatr Vy = 1 andz Ay = 0. Clearlya A (x A y) = 0. By modular lawa = a A 1 =
aN(xzVy)=xzV(aAy). Soxisacomplementofa Ay)ina/0. O

Lemma2.12 — (see [3, Exercise 4.5]) dfis essential i, then for every elemetitof L, a A b
is essential irb/0.

PROOF: Supposéda A b) A ¢ = 0 for somecin b/0. Sincea <L, c=bAc=0. O

An elementc of L is called compact, if for every subs&t = {z; | i € I} of Lwithe < \/ z;
iel
there exists a finite subsét of I such thate < \/ z;. A lattice L is said to be compact if 1
1€EF
is compact and compactly generated (or algebraic) if each of its elements is a join of compact
elements (see [10]). H < banda < ¢ < bimpliesc = a, then we say that is covered by (or b
coversa). If O is covered by for some element of L, thena is called an atom (see [12]). A lattice

L is called semiatomic if 1 is a join of atoms in(see [3]).

Proposition2.13 — Let L be anFE-complemented lattice and be an element of. different
from O, 1. If the quotient sublattick/a is complemented, then there are elemént$, in L such
thatb, is a complement of;, b1 /0 is complemented; < b, /0 andb, /a is complemented.

If L is compactly generated, then the converse holds.

PROOF: There exist$; in L such thab; A a = 0 andb; V a < L. Sincel /a is complemented,
there is a complemerdt of b; Vain 1/a. Sol = (b Va)Vbe = by Vb and0 = by Aa =
b1 A [(bl vV a) VAN bg} =b A [(b1 A bg) V a] = (b1 AN bg) vV (bl A a) = b1 A bs. Furthermorebg/a
andb, /0 = by /(b1 A a) = (b1 V a)/a are complemented by Lemma 2.11. Sirigev a < L,
a=(by Ab2) Va=(byVa)Aby <by/0byLemma 2.12.

Now suppose thak is compactly generated and there are eleménts, satisfying the con-
ditions. Sublatticegb; V a)/a andbs/a are compactly generated by [3, Exercise 2.7 and Exer-
cise 2.9 (iii)]. Since(b; V a)/a = b1/(b1 A a) = b1/0, it is complemented. Compactly gen-
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erated complemented latticés; V a)/a and by/a are semiatomic by [3, Theorem 6.8]. Then
1/a = (b1 Vb2)/a= (b1 Va)/a V by/ais semiatomic and sinck is compactly generated/a is
compactly generated. Therefarga is complemented by [3, Theorem 6.8]. O

Lemma2.14 — LetL be anE-complemented lattice andbe an element of different from 0,
1. The quotient sublattice/a is complemented if and only if for every eleméntf L, there exists
an elementin L suchthabve=1andbAc < a.

PROOF: (=) Letb be an element of.. Sinceb V a isin1/a, it has a complementin 1/a.
Then(bAc)Va=(bVa)Ac=a,therefor&dANc<aandbVc=(bVa)Ve=1.

(<) Letb € 1/a. There is an elementof L withbV c=1andbAc < a. ThenbV (cVa) =
bVe=1andbA (cVa)=(bAc)Va=a,thatiscV aisacomplementobinl/a. Sol/ais
complemented. O

Recall that the meet of all maximal elements (different from 1J.iis called the radical of
(see [10]), denoted byad(L). If a < L andm is a maximal element i, thenm V a # 1,
thereforem V a = m and soa < m. It means that the radical df contains all small elements éf
(see also [10, Proposition 6]). A lattideis said to be semilocal if the quotient sublatticead(L)
is complemented (cf. [4, 17.1]).

Theorem2.15— If L is an E-complemented weakly supplemented lattice, then it is semilocal
and there are elements, b, in L such thath; is a complement df,; with b, /0 complemented and
rad(L) < by/0.

PROOF: SincelL is weakly supplemented, for every elemémntf L there exists an elemeabf
L suchthat v c=1andbAc < L, thereforeb A ¢ < rad(L). Then the sufficient condition of
Lemma 2.14 is satisfied if take = rad(L). Thereforel/rad(L) is complemented. Then the rest
statements of the theorem follows from Proposition 2.13. O

Corollary 2.16 — LetL be anE-complemented lattice with small radical. Then L is weakly
supplemented if and only if it is semilocal.

PROOF: (=) By Theorem 2.15.

(<) AssumeL is semilocal, i.el/rad(L) is complemented. By Lemma 2.14, for every element
a of L there is an elemeritin L such thain Vb = 1 anda A b < rad(L) < L. Sob is a weak
supplement of, in L. O

Corollary 2.17 — An E-complemented latticé with zero radical is weakly supplemented if
and only if it is complemented.

Remark2.18 : Since pseudo-complemented latticesev@mplemented the last five statements
are true for pseudo-complemented lattices as well.
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3. COFINITELY WEAK SUPPLEMENTEDLATTICES

For compactly generated lattices, without loss of generality, weak supplements of cofinite elements
can be regarded as compact elements:

Lemma3.1 — (cf. [1, Lemma 2.1]) LeL be a compactly generated lattice anlie a cofinite
element ofL. If b is a weak supplement afin L, thena has a weak supplemeain L such that
¢ < bandcis compact.

PROOF: SinceL is compactly generatetl,= \/ ¢; where eacly; is compact.

iel
Then

l=aVb=aV(Vca)=V(aVg).
iel iel

Sincel/a is compact,l = \/ (a V ¢;) = aV (V ¢) for some finite subsef’ of I. But
i€F i€F
¢ =\ ¢; is compact by [3, Proposition 2.1]. Cleaxlys a weak supplement af O
icF
The following example shows that Lemma 3.1 need not be true for lattices that are not compactly
generated.

Example3.2 — LetL = {(x,0) | € [0,1]} U {(0,¥) | v € [0,1]} C R? and define the order
=< on L as follows. (a,b) < (c,d) if eitherb = d = 0 anda < ¢; ora = ¢ = 0 andb < d; or
b = c¢ = 0anda < d. One can easily verify thal is a complete modular lattice with the largest
element(0, 1) and the smallest elemefti, 0). Since the quotient sublatti¢e, 1)/(1,0) is simple,
it is compact. Sd1,0) is a cofinite element of.. Leta be a real number with < a < 1. Clearly
(0,a) Vv (1,0) = (0,1) and(0,a) A (1,0) = (a,0) is small inL, so(0, a) is a weak supplement of
(1,0) in L. On the other hand, there is no compact elemetit @xcept for(0, 0), therefore there is
no compact weak suppleme(t ¢) of (1,0) with (b,¢) < (0, a).

Proposition3.3 — If L is acwslattice, then for every elemeatof L, 1/a is also acwssublattice
of L.

PROOF: Let b be a cofinite element of/a. Then1/b is a compact sublattice it/a, so1/b
is a compact quotient sublattice In This means that is a cofinite element of.. Sincel is a
cwslattice, b has a weak supplementin L, i.e. x Vb = 1 andx A b < L. Sincex A b < L,
(xVa)Ab=(zAb)Va < (1Va)/a=1/abylLemma2.2(1). SeV ais a weak supplement of
binl/a. O

We are going to prove thdtis cwslattice if and only if every maximal element éfhas a weak
supplement. This result was proved fmvsmodules in [1]. The proof of the following lemma for
modules ([1, Lemma 2.15]) is valid for lattices as well.
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Lemma3.4 — Leta andb be elements of. such thath is a weak supplement of a maximal
elementn of L. If a V b has a weak supplement in thena has a weak supplement in

LetI" be the set of all elementof L such thab is a weak supplement of some maximal element
of L and letcws(L) denote the join of all elements bf

Theorem3.5— A lattice L is a cws-lattice if and only if every maximal elementdfas a weak
supplement.

PROOF: (=) Clear since every maximal element is cofinite.
(<) Observing that every nonzero compact lattice has a maximal element by [3, Lemma 2.4],
this part of the proof is analogous to the proof of Theorem 2.16 in [1]. |

Using this theorem we prove that an arbitrary joircefs|attices is acwslattice (see [1, Propo-
sition 2.12]).

Theorem3.6— Let {a;/0},c; be a collection of cws-sublattices of L with= \/ a;. ThenL
iel
is a cws-lattice.

PROOF: Let m be any maximal element df. If a; < mforalli € I,thenl = \/ a; < m
which is a contradiction. So there existg & I such thata; £ m. Thenl = a; vleéz Since
a;j/(a; Am) = (a; V. m)/m = 1/m, the element; A m is maximal ina;/0. By hypothesis there
is a weak supplementof a; A m in a;/0, i.e. (a; Am)Vc = a; anda; AmAc < a;/0. If
¢ < mthena; = (aj Am)Vc < m, a contradiction. Se £ m. Thereforel = m V ¢ and
mAc=a; AmAc< LbylLemma 2.2(3). Thugis a weak supplement of, in L. By Theorem

3.5, L is acwslattice. O

Theorem 3.5 is also used in the proof of the following theorem which in its turn gives a new
result for modules.

Theorem3.7— If a/0 is a cws-sublattice of and1/a has no maximal element, thénis also
a cws-lattice.

PROOF: Letb be a maximal element di. If a < bthenb is a maximal element of/a, butl/a
has no maximal element. $o% b, thereforea Vb = 1 anda/(a A b) = (a V b)/b = 1/b. Sinceb
is @ maximal element of, a A b is @ maximal and therefore a cofinite element.gf. Then there
is a weak supplementof a A bin a/0, thatis(a A b) V¢ =aand(a A b) A c < a/0. Sincecis in
a/0,cANb=cA(aANb) < L.cVb=cV(aAb)Vb=aVb=1.Socisaweak supplement &f
in L. By Theorem 3.5[ is acwslattice. O

Lemma3.8 — Let L be a compactly generated lattice anbe a cofinite element df. If a has
a weak supplemeritin L and for every compact elemenwith ¢ < b, rad(c/0) = ¢ A rad(L),
thena has a compact supplementin
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PROOF: Sincea is cofinite,1/a is compact. So by Lemma 3.4 ,has a compact weak supple-
mentc with ¢ < b,i.e.1 =aVcanda A c < L. Thena A ¢ < rad(L). Soa A ¢ < cArad(L) =
rad(c/0). Sincec is compactrad(c/0) < ¢/0 by [10, Proposition 9 (iii)]. Thus A ¢ < ¢/0.
Hencec is a supplement af in L. O

Using Lemma 3.8 one can easily modify the proofs of [1, Theorem 2.19] and [1, Corollary 2.20]
to prove Theorem 3.9 and Corollary 3.10.

Theorem3.9— Let L be a compactly generated lattice such that for every compact element
of L, rad(c/0) = ¢ A rad(L). ThenL is cofinitely weak supplemented if and only ifs cofinitely
supplemented.

Corollary 3.10 — Let L be a compact lattice such that for every compact elemenft L,
rad(c/0) = ¢ Arad(L). ThenL is weakly supplemented if and onlyifis supplemented. Further-
more in this case every compact elemenLa$ a supplement.
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