
proposed antenna, probe feeding and an air gap (capacitive gap)
were used. Simulations were conducted to optimize the lengths of
the probe and air gap in order to obtain the widest bandwidth in
terms of return loss (VSWR [lt] 2) at 2 GHz band. According to the
measured results for the antenna implemented, the impedance
bandwidth was 734 MHz (29.01%) ranging from 2.163 to 2.897
GHz and the axial ratio bandwidth (AR [lt] 3dB) was 135 MHz
(5.48%) ranging from 2.394 to 2.529 GHz. The CP characteristic
of the antenna can be applied to mobile applications for the 2.4
GHz WLAN.
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ABSTRACT: An investigation of a novel fractal tree antenna with the
application to two different geometries is presented. The antenna is de-
signed by using the special Fibonacci number sequence which leads to
nonuniform branch length ratios to form the fractal tree. This new ap-
proach gives better performance, especially in the miniaturization of the
antenna, when compared with the conventional designs. The results ob-
tained from the experiments are also compared with the computed ones
and there is a very good agreement between the numerical and mea-
sured data. © 2008 Wiley Periodicals, Inc. Microwave Opt Technol Lett
50: 1046–1050, 2008; Published online in Wiley InterScience (www.
interscience.wiley.com). DOI 10.1002/mop.23299

Key words: fractal tree antennas; Fibonacci sequence; resonant fre-
quency

1. INTRODUCTION

Fractal geometry is first defined by Benoit Mandelbrot in 1975 to
describe complex geometries [1] and it is generated with an
iterative procedure. An initial structure called generator is copied
many times at different scales, positions, and directions [2] result-
ing fine, regular, or irregular configurations. There are a lot of
different fractal geometries. Koch curves, Koch and Minkowski
loops, Sierpinski triangles or carpets can be given as the best
known examples for these kinds of structures. The most important
property of fractal shapes is that they are self-similar structures and
therefore their scaled versions have the same characteristics with
the whole object.

Fractals have been recently used in antenna designs to obtain
various kinds of small and multiband antennas [3–14]. Generally,
the properties of the fractal geometry are related with the electro-
magnetic behavior of the antennas. As for the Koch fractal dipole
antenna, if the heights of the antennas are fixed and the number of
iterations is increased the resonant frequency of the antennas
decreases. Decreasing the resonant frequency with fixed height has
the same effect as miniaturizing the antenna at a fixed resonant
frequency. In addition to the miniaturization effect, using fractals
improves the antenna parameters, making them suitable for many
applications. Most of the fractal antennas can also be used as
multiband and wideband antennas because of the self-similar prop-
erty of the geometry. Sierpinski antenna is one of those which can
be used to achieve similar radiation patterns at various operating
frequency bands.

When small and multiband antennas are considered, fractal
trees are also very good candidates [15, 16]. They are widely used
in the design of miniaturized antennas because of their space filling
ability, compact size, and multiband behavior. Three dimensional
fractal trees with self-similar branch structure are also examined in
[17, 18]. Fractal tree antennas are designed by using various scale
factors [19] but the length ratios of consecutive branches are
constant. In this study, the antennas with nonuniform branch
length ratios are proposed and investigated. The new antennas are
compared with the ones designed by using uniform length ratios in
terms of the fundamental antenna parameters. The antennas are
also fabricated and measured.

2. ANTENNA DESIGN

Fractal tree antennas generated by applying an iterative procedure
are obtained by using a constant scale factor and this factor in the
designs is generally chosen as 1/2. Therefore, the branch lengths
increases according to the number sequence 1, 2, 4, 8, 16, 32, . . .

from the tip of the antenna to its base. Since the length of the
following branch is the double of the previous one, the antenna is
called as the D version in this work. The new antenna whose
branch length ratios are not constant is designed similar to the D
version but its branch lengths increases according to the Fibonacci
number sequence from the tip to the base. The Fibonacci numbers
appear in many unexpected places in nature such as on flowers,
plants, and trees [20]. Therefore, in this study, it is intended to use
this special sequence for the generation of fractal trees. The Fi-
bonacci numbers are determined by the recurrence relation

Fn � Fn�1 � Fn�2, n � 2 and F2 � F1 � 1 (1)

which leads to a sequence as 1, 1, 2, 3, 5, 8, . . .. The novel design
obtained from this sequence is called as the Fibonacci fractal tree
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antenna and it is designated by the F version. The branch length
ratios of D and F versions obtained by the sequences are given in
Table 1. In the table, the first and second columns for each iteration
correspond to D and F versions, respectively. The resulting geom-
etries for the tree structures are shown in Figure 1 for both of the
narrow and wide configurations. The angles between the branches
for all cases are always equal to 60°. In the narrow structure, the
branches are close to each other. Since the branches are close,
there are some touching branches in the new design after the first
iteration and an interesting configuration for the antenna is ob-
tained because of the special sequence. The branches are apart
from each other in the wide structure as seen from the figure. In
this configuration, the following branches are formed by splitting
them with an angle of 30° to the left and right. Wide fractal tree
antennas are examined to investigate the effect of the geometry in
decreasing the resonant frequency.

3. NUMERICAL RESULTS AND DISCUSSIONS

In the numerical analysis, dipole antennas are considered and the
results of the new design are compared with those of the D version.
All of the computations are performed by using the SuperNEC 2.7
Academic version [21]. The lengths from the base to the tips for
the structures shown in Figure 1 are always equal to 3.75 cm and
the radius of wires is 0.075 mm for all cases. The resonant
frequencies and the percent frequency shifts of the fractal tree
antennas are given in Table 2 for the narrow and wide structures.
The percent shift is calculated by comparing the frequency shift of

the proposed antennas and the frequency shift of the D version
with respect to the straight dipole. The formula used in the calcu-
lations can be expressed as

fDi � fFi

fsd � fDi

(2)

where fDi and fFi are the resonant frequencies of the D and F
versions at the ith iteration, respectively, and fsd is the resonant
frequency of the straight dipole which is 1900 MHz. The resonant
frequencies of the narrow and wide antennas decrease while the
iteration number increases. As seen from the table, the wide
antennas have better performance than the narrow antennas. The
resonant frequency difference for the narrow and wide configura-
tion of D version is small at lower iterations while the difference
reaches 75 MHz at the fifth iteration. For the F version, the
difference is approximately the twice of the ones for D version and
reaches 155 MHz at the last iteration. The resonant frequency
difference between D5 and F5 for the narrow one is 45 MHz while
the difference between the wide D5 and F5 antennas is 125 MHz.
For a better determination of performances, the percent shift of
resonant frequencies must be examined. For narrow configura-
tions, the proposed antenna gives good results but for the wide one
the performance of the antenna is remarkable. The resonant fre-
quency at the fifth iteration decreases to 1000 MHz which is
approximately the half of the resonant frequency of straight dipole
and the shift reaches to 15–16% even from the first iterations.
Consequently, it can be seen that the F antennas are more effective
in decreasing resonant frequency when compared with the stan-
dard D version. Another interesting result can be observed from

TABLE 1 The Branch Length Ratios for the D and F Versions

D0 F0 D1 F1 D2 F2 D3 F3 D4 F4 D5 F5

1/1 1/1 1/3 1/2 1/7 1/4 1/15 1/7 1/31 1/12 1/63 1/20
2/3 1/2 2/7 1/4 2/15 1/7 2/31 1/12 2/63 1/20

4/7 2/4 4/15 2/7 4/31 2/12 4/63 2/20
8/15 3/7 8/31 3/12 8/63 3/20

16/31 5/12 16/63 5/20
32/63 8/20

Figure 1 The configurations for the fractal tree antennas

TABLE 2 The Resonance Frequencies and the Percent Shifts
for the Antennas

itr

Narrow Antennas Wide Antennas

fDi fFi % Shift fDi fFi % Shift

0 1900 1900 — 1900 1900 —
1 1590 1550 13 1590 1550 12.9
2 1400 1350 10 1392 1308 16.5
3 1300 1250 8.3 1262 1168 14.7
4 1245 1195 7.6 1174 1065 15
5 1200 1155 6.4 1125 1000 16.1

Figure 2 The input reflection coefficients for the D versions
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the table that the narrow F antennas have nearly the same perfor-
mance with the wide configuration of D version in decreasing
resonant frequency. If the resonant frequencies of the wide anten-
nas are carefully examined one can also see that the resonant
frequencies of F4 and F3 antennas are smaller than those of D5 and
D4 antennas, respectively, and for the narrow ones they are about
to be equal. From the above information, it can be concluded that
the same performance of the D version can be obtained by the F
version at lower iterations with simpler configurations. Since the
branches closer to the tips are very small at higher iterations,
obtaining the same performance with simpler geometries and at
lower iterations becomes more important. To give an idea about
the input reflection, the computed S11 values of wide D and F
antennas are given in Figures 2 and 3, respectively. The system
gain of antennas (Gsys) is another important parameter and must be
examined in the designs. The system gain can be calculated by
using the following formula

Gsys�dB� � Gant�dB� � 10 log�1 � ���2�, (3)

where Gant is the antenna gain and � is the input reflection coef-
ficient. After computing Gant, the system gain can be obtained by

using the values given in Figures 2 and 3 via the Eq. (3). The
overall system gains for the antennas are presented in Figures 4
and 5. They are similar to each other and their picks occur at the
resonant frequencies of the antennas. Since the resonant frequen-
cies shift, the system gains shift accordingly. The quality factor
(Q) is another antenna parameter and it is generally considered in
the antenna designs. The quality factor is defined as the ratio of the
stored electric energy (We) or magnetic energy (Wm) to the radi-
ated power (Prad). There is a fundamental limit value (Qlimit) for
every antenna structure and it can also be calculated easily [3, 4].
The quality factors for the wide antennas are shown in Figures 6
and 7. In the figures, the Qlimit value of antennas is also presented.
The overall quality factor of the antennas is decreasing while the
iteration number increases which means it gets better at higher
iterations. Although it seems there is not much difference between
the Q values of the antennas, the F version is again more effective
in decreasing the quality factor than the D version. The far field
patterns of D5, F5 and F0�D0� versions at their resonant frequencies
are also shown in Figure 8 and they are omnidirectional in the
azimuth plane. There is not any difference between the patterns of
D5 and F5 versions, and they are also very close to that of F0

version. The radiation patterns of the antennas are not affected

Figure 3 The input reflection coefficients for the F versions

Figure 4 The system gains for the D versions

Figure 5 The system gains for the F versions

Figure 6 The quality factors for the D versions
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from the branch length ratios and the geometry of the fractal tree
antennas.

To obtain a different tree configuration the Fibonacci numbers
can be modified by leaving the first one out of the sequence and a
new recurrence relation

Fmn � Fmn�1 � Fmn�2, n � 2 and Fm2 � 2, Fm1 � 1 (4)

can be obtained. The modified sequence then becomes as 1, 2, 3,
5, 8, 13, 21, . . .. The fractal tree antennas formed by the use of this
sequence in the design procedure were also investigated in this
study. The results obtained are again better than those of the D
version. Although they are close to the ones for the F version, the
F antennas always give the best results.

From the discussions above, it is seen that the same or better
performance in terms of the fundamental antenna parameters is
obtained with the F version at lower frequencies when compared
with the D and Fm versions. Therefore, one can conclude that the

antennas can be made smaller with at least the same or better
performance by using the proposed F antenna.

4. EXPERIMENTAL STUDY

Experimental study was performed by using the monopole anten-
nas. Wide configurations of the D2, D3, F2, and F3 versions and the
straight monopole which corresponds to the F0 or D0 versions
were fabricated and measured. The antennas were mounted on
brass plates with an area of 70 � 70 cm2 and their lengths from
the tips to the base are equal to 3.75 cm as chosen in the numerical
study. They were fed by using 85 mil semirigid coaxial cables and
SMA connectors were used at the other side of cables for the
connection to the network analyzer. The radius of wires used to
fabricate the monopoles was chosen as to be equal to that of the
center conductor of coaxial cable which is 0.254 mm. The mea-
sured and computed values of input reflection coefficient (S11) for
the D and F version of the antennas are presented in Figures 9 and
10, respectively. As can be seen from the figures, the measured and
computed results are in a very good agreement.

5. CONCLUSION

A novel fractal tree antenna, called Fibonacci fractal tree antenna,
has been designed and introduced in this article. The main differ-

Figure 7 The quality factors for the F versions

Figure 8 The far field patterns of the F5, D5, and F0 (D0) versions at the
resonant frequencies

Figure 9 The measured and computed S11 for the D versions

Figure 10 The measured and computed S11 for the F versions

DOI 10.1002/mop MICROWAVE AND OPTICAL TECHNOLOGY LETTERS / Vol. 50, No. 4, April 2008 1049



ence of this antenna from the conventional ones is that the branch
lengths are determined according to the special Fibonacci number
sequence and their ratios are not constant. The proposed and
conventional designs have been simulated by using the method of
moments and compared in terms of the fundamental antenna
parameters for two different geometries. The new antenna per-
forms better and it is very effective in miniaturization than the
other one. The antennas were also fabricated and measured for the
comparisons and verification of the design.
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ABSTRACT: Local-global solution (LOGOS) modes provide a compu-
tationally efficient framework for developing fast, direct solution meth-
ods for electromagnetic simulations. In this article, we demonstrate that
the LOGOS framework yields fast direct solutions for finite element dis-
cretizations of the wave equation in two dimensions. For fixed-frequency
applications, numerical examples demonstrate that the memory and
CPU complexities of the proposed solver are nearly linear. © 2008
Wiley Periodicals, Inc. Microwave Opt Technol Lett 50: 1050–1054,
2008; Published online in Wiley InterScience (www.interscience.wiley.
com). DOI 10.1002/mop.23298

Key words: finite element method; solver; sparse factorization; localiz-
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1. INTRODUCTION

It has recently been observed that local-global solution (LOGOS)
modes provide a useful framework for the development of fast,
direct solutions of integral equation formulations of frequency-
domain electromagnetic radiation and scattering problems [1-6]. In
particular, overlapped, localizing LOGOS (OL-LOGOS) modes
have been observed to provide a fast direct solution procedure with
approximately O(N) memory and O(N log N) CPU costs for
fixed-frequency discretizations of integral equations [4]. In the
following, “fixed-frequency” is used to refer to the situation in
which the number of unknowns, N, used to discretize a given
problem increases while the frequency remains fixed.

The purpose of this article is to demonstrate that the OL-
LOGOS solution procedure also provides a sparse solver for finite
element discretizations of the wave equation for transverse mag-
netic (TMz) polarization field problems. For fixed-frequency sim-
ulations, the memory and CPU costs of the OL-LOGOS solver are
observed to scale nearly linearly with N. The OL-LOGOS factor-
ization is also shown to provide an efficient strategy for computing
the resonant frequencies of lossless structures.

2. TMz FEM SYSTEM DEFINITION

The z-directed electric field, Ez, associated with TMz polarized
fields on a piece-wise homogeneous domain satisfies the two-
dimensional Helmholtz equation [7, 8],

�2Ez� x, y� � �r�x, y�k0
2Ez�x, y� � 0. (1)

In (1), k0 � 2�f��0�0 is the wave number, and �r (x, y) indicates
the relative permittivity; the relative permeability is assumed to be
unity. In the following numerical examples, �r is piecewise con-
stant in the simulation domain (cf. Fig. 2).

Let � indicate the domain over which Ez is defined, and let �
indicate the boundary of �. With a testing field Ez

a, the weak form
of (1) can be written as [7, 8]

�
�

� ��EZ
a � �EZ � k0

2�rEZ
aEZ�d� ��

�

EZ
an̂ � �Ezd� � 0, (2)
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