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Abstract

Analytical approaches have been developed for one-dimensional monochromatic delta-Eddington radiative transfer
equation through a vertically inhomogeneous medium. They are based on the solution of the Riccati equation that arises
from the decoupling of the two-stream radiances, and seek to approximate the exponent functions in the solution as
opposed to finding the solution as a whole. Depending on the case, Green–Liouville approximation or other techniques
presented in this paper are utilized for finding these exponents. Though developed for atmospheric radiative transfer prob-
lems applicable to the global climate change modelling, and for non-invasive medical applications on tissue–light interac-
tions, the techniques considered here are quiet general in nature. Hence, they can also be useful in other boundary value
problems of the diffusion type that involve linear second order ordinary differential equations with variable coefficients.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Solving an integro-differential equation of the radiative transfer for a light intensity, even in one dimension,
becomes a challenge due to the fact that its integral kernel involves all other yet unknown light intensities aris-
ing from all angles of scattering. As a consequence, the solutions at best are forced to be approximate in rep-
resenting these scattering directions as a finite number of primary pre-chosen streams. In a class of solutions
that is in general called the n-stream approximations, the two-stream approximations provide the least com-
plicated solution methods. It is quite possible that, depending on the physics of the problem, and the accuracy
demands on the particular application, one can obtain acceptable results with the number of streams as little
as only the two. Sometimes, as is the case for the general circulation models (GCMs) used in the climate
change studies, they are the only feasible approaches: as computational cost is necessarily high due to the fact
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that the dynamics, as well as the radiative, evaporative, convective heating and cooling processes have to be
computed over all the vertical and horizontal grids at all time steps (typically amounting to time spans of
100 years from now) in order to predict the future climate for one specific scenario of a climate forcing. Even
then all these computations turn out to be still expensive, and simpler than the two-stream radiative param-
eterizations are to be resorted to in the GCMs. On the other hand, the uncertainties in climate change predic-
tions that utilize GCMs on supercomputers, have arisen a need for better modeling of the atmospheric
radiative transfer, especially within clouds and aerosol loaded mediums [1–5]. Though in the past, it had been
acceptable to model these clouds as homogenous plane parallel slabs for purposes of climatological compar-
isons, the emerging trends are towards a better and more detailed investigation and modeling of the internal
inhomogeneities of those clouds at least in the vertical dimension [6–8].

In addition, the new developments in the bio-medical research is towards the non-invasive techniques that
utilize the absorption-scattering measurements of light at appropriate wavelengths on tissues or in vivo skin.
For example, the light–biological tissue interaction research advances on the detection of bilirubin concentra-
tions of newly born infants [9], blood glucose level detection [10,11], tissue PH measurements [12], and the
cancerous tissue search and detection with a promising future [13]. For the tissues and the skin, it is often hard
to exactly determine the optical parameters to begin with, for a number of reasons, including the obvious one
that they are race, sex, age and health dependent and have a wide range of variability over the organisms
[9,14,15]. While the models used for the light tissue interactions are limited to accuracies comparable with
the measurements, they are still to be the best among the possible ones. Two-stream approximations are again
the most suitable candidates in this respect.

The final form of any two-stream radiative transfer equation in vertically inhomogeneous medium results in
a boundary value problem for a second order ordinary differential equation (ODE) with variable coefficients.
The traditional approach in atmospheric radiative transfer is to consider the medium as composed of thin
homogeneous slabs, that is, in terms of a series of second order ODEs with constant coefficients. For each
of these slabs the solution is simple, analytical and thus found straightforwardly. The system of solutions
and their first order derivatives are joined together at the inter slab boundaries, and the complete solution
is obtained through processing the related matrix (by inversion, elimination, LU decomposition, relaxation,
etc.). However, in this paper on the vertically inhomogeneous problems, where the coefficients of the second
order ODEs are not constants, we aim to get the desired solutions as analytical as possible, or semi-analyti-
cally at the worst, while at the same time keeping the complexity of solutions at the lowest point.

The primary objective of this study is to investigate and further the application of the approximate analyt-
ical or semi-analytical solution techniques to the boundary value problems of the diffusion type, where the
two-stream approximations serve us well in providing examples for second order ODEs with variable coeffi-
cients. We show that the Liouville–Green (or also known as the WBB approximation) can be readily applied
to some regions of our problems, and beyond that region we can build other analytical approximations. Our
secondary objective is to demonstrate the degree of success and the range of applicability of the techniques
that we propose, by using the radiative transfer problems relevant to the climate change and biomedical
research, and the Schroedinger equation as employed in quantum mechanical tunneling phenomena; since
final form of the transfer equations in all these fields fall into the same broader category known as the diffusion
equation.

In order to better illustrate our approach, we focus on an analytical model based on the delta-Eddington
solution [16] to the monochromatic radiative transfer equation through an inhomogeneous optical depth. This
model is one dimensional in the vertical, the horizontal inhomogeneities and temporal variations being aver-
aged out. The reason for our preference to work with the delta-Eddington approximation is that it has been
shown to be the most accurate among all the two-stream approximations [17].

For details, we focus on the steady-state equation of monochromatic radiative transfer at a fixed wave num-
ber, which can be given as [18]
�dI=ðbe dsÞ ¼ I � J ; ð1Þ
where be is the extinction coefficient of the medium,~s is the position and (for ds ¼ dz=l the viewing direction is
along d~s, and l is the cosine of the angle between the direction of the outgoing beam and the upward z-axis),
the light intensity, I (also known as radiance, and defined as the energy of the light per unit solid angle, per
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unit time, per unit area that is perpendicular to its direction of propagation) is located at~s. J is the source term
at the position~s, for a plane parallel medium (meaning homogeneous or made homogenous by averaging in
the horizontal direction and horizontally extending to infinity as if bounded by two infinite planes from above
and below). At the point~s, the source term is given by
J ¼ -0

4p

Z 1

�1

dl0
Z 2p

0

d/0 � Pðl;/; l0;/0Þ � Ið~s; l0;/0Þ þ ð1� -0Þ � BðT ð~sÞÞ; ð2Þ
where BðT ð~sÞÞ is the Planck’s black body function at the temperature T of the point~s (or the altitude z) [18], -0

is the single scattering albedo (the ratio of scattering optical path to the extinction optical path, as given in the
denominator of the right-hand side of Eq. (1)), l 0 is the cosine of the angle between the z-axis and the incom-
ing radiance, and / 0 is the azimuthal angle for the incoming radiance in a pre-chosen spherical coordinate sys-
tem. Also the phase function that determines the angular distribution of the scattering light off from the point
~s is given by P ðl;/; l0;/0Þ, with the primed variables standing for the incoming directions over which the des-
ignated integral is to be performed. Since the medium is vertically inhomogeneous, all variables depend on the
altitude. As mentioned above, it is this integral form of the source term that mandates approximations in the
solutions as the streams, and yielding better accuracies with higher number of the streams.

The radiative transfer equation (Eq. (1) with Eq. (2)) is an integro-differential equation that traces the light
intensity at any desired direction within an infinitesimal volume of known shape and position, accounting for
the loss terms of absorption and scattering, and gain terms due to emission if present, and the multiple scat-
tering gains from the environs that scatter within this volume element, finally emerging out in the desired
direction. In this equation the dependent variable I is the radiance, which is a multi-variable function that
depends on both the position and the viewing direction at that position, comprising total of five variables (con-
sidering only the majority of cases that are at steady-state and have practical significance, otherwise time
would be the sixth variable). In the approximations, the dependency on the viewing direction can be repre-
sented by a finite set of discrete radiance function I’s at a given position, facilitating replacement of the integral
term with a summation over these I’s. The simplest approach is to consider only two radiances, or two
streams, one at the front and the other one at the back with respect to the incidence direction.

However, this simplicity comes with a price that we have to deal with negative reflectances and transmit-
tances for optically thin problems in all two-stream solutions (for this well documented shortcoming, see
Tables 6.2 and 6.3 on pp. 189–191 in Liou [18]. This is rectified in higher streams: for example as little as four
streams yield physically more acceptable (energy conserving) solutions [18], but the order of ODE then
becomes at least four. On the other hand, in the tissue–light interactions and in the climate change research,
this shortcoming is much offset with the statistically averaged nature of the needed solutions, leaving the two-
stream models as the first choice due to their directness and simplicity. For example, by definition a climato-
logical value is to be averaged at least for a decade over a given location on Earth, cancelling all random errors
of few percent during the averaging process. If the field of application is selected in such a way that the accu-
racy of the other parameters and uncertainties are of the same magnitude as that of the model results, the sim-
plicity and ensuing efficiency of use come as trade offs. Examples of these fields, as mentioned above are
climate research, tissue–light research, and some atmospheric remote sensing operations such as CEPEX
and INDOEX field experiments of the California Space Institute at La Jolla, CA, though for very detailed
and narrow field focused remote sensing operations, more accurate, and elaborate models are preferred (such
as discrete ordinate radiative transfer: DISORT [19], adding doubling [18]).

If the optimum angles of these representative radiances are selected in accordance with a two-point Gauss–
Legendre quadrature formula (see DeVries [20] for the details of the Gauss–Legendre quadrature), the errors
arising from having only two streams can be minimized, though not fully eliminated. Although the Gauss–
Legendre quadrature used in selecting these streams is numerical in origin, it preserves the analytical character
of the equations. Generalizations to multiple or n-streams had been developed; a source code named DISORT
was originally constructed from the Ph.D. thesis of Stamnes. It has been widely used, and now publicly avail-
able for electronic distribution [19,21].

An alternative and relatively more accurate approach among the two-stream approximations category is
known as the Eddington solution (along with its even more accurate modification known as the delta-Eddington)
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[17,18]. This approach treats the source integral fully analytically by representing the radiance as a superposition
of a symmetric and asymmetric parts, much as in a moment expansion with respect to l, where I linearly depends
on l, and resulting in two fluxes, one upward and the other in downward direction. Due to the azimuthal sym-
metry of I within the plane parallel medium, the source integral does not depend on the azimuthal angle, /; thus
the / dependent term in the truncated phase function does not appear explicitly. Also the phase function is
expanded in Legendre polynomials, containing only the zeroth and first order terms, though this truncation
to two terms is still the leading cause of negative reflectances and transmissivities apparently violating the con-
servation of energy for thin mediums. Here we focus on the two-stream approximations which are though not
very accurate, still adequate for atmospheric radiation applications primarily pertinent to climate change
research [22], and some medical applications.

2. The solution methods

In the following, we survey and present only those details of the delta-Eddington method as we emphasize
the difference of our approach from the original development. For the full derivation details of the delta-
Eddington integro-differential equation in a general case of both collimated and diffuse radiances through a
vertically homogeneous medium, the reader is referred to the references by Joseph et al., Lenoble, Liou
and Coakley [16–18,22]. Through inhomogeneous or homogeneous paths, the solution for the direct beam
is easily obtained and given as
Idðs; lÞ ¼ p � F S � exp½�ð1� -0 � f Þ � s=jl0j�; ð3Þ
where l0 is the negative of the cosine of the incoming solar beam angle with respect to the vertically up z-axis,
and sðzÞ ¼

R1
z beðzÞ � dz is the optical depth as measured from a given altitude upwards, and FS is the direct

solar beam intensity (or radiance). Then from here on, we shall proceed with the equation of the diffuse beam
only, hereafter denoted by Iðs; lÞ for simplicity and it is given as
l
dIðs; lÞ

ds
¼ Iðs; lÞ � -0

2

Z 1

�1

dl0 � Pðl; l0Þ � Iðs; l0Þ

� -0

2

Z 1

�1

dl0 � P NFðl; l0Þ � Idirðs; l0Þ � ð1� -0Þ � BðT ðsÞÞ; ð4Þ
where Idir is the direct beam intensity, and PNF is the non-forward part of the phase function. The forward
part is
P fðl; l0Þ ¼ 4 � p � f � dðl� l0Þ ð5Þ
and the non-forward part is
P NFðl; l0Þ ¼ ð1� f Þ � ð1þ 3 � ~g � l � l0Þ; ð6Þ
where ~g ¼ ðg � f Þ=ð1� f Þ is the new asymmetry parameter for the delta-Eddington case in terms of the ori-
ginal asymmetry parameter g (equal to spherical average of l), and the forward fraction f is commonly taken
as f ¼ g2 for optimum atmospheric cloud radiation applications. Through an inhomogeneous medium, single
scattering albedo and asymmetry parameter depend on the position and hence on the optical depth s. Skipping
the arduous derivation details, we present the integro-differential equation for the diffuse radiance Iðs; lÞ:
l
dIðs; lÞ

ds
¼ ð1� -0 � f Þ � Iðs; lÞ �

-0 � ð1� f Þ
2

Z 1

�1

dl0 � ð1þ 3 � ~g � l � l0Þ � Iðs; l0Þ � -0 � ð1� -0 � f Þ
4

� F S � exp½�ð1� -0 � f Þ � sjl0j� � ð1� 3 � ~g � l � jl0jÞ � ð1� -0Þ � BðT ðsÞÞ: ð7Þ
In the established delta-Eddington approach, the above diffuse radiance Iðs; lÞ is expressed as a combination
of an isotropic and non-isotropic parts (I0 and I1, respectively), and through an integration over the cosine of
the zenith angle, one second order ordinary differential equation is obtained for each of these parts. However,
in this paper we like to demonstrate an alternative approach through a separation of variables like method (see
Arfken [23] for the details of separation of variables method):
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Iðs; lÞ ¼ ZðsÞ �Mðl; sÞ; ð8Þ
where the Z function depends on only s, but the angular function M, depends on both l and s. Since we are
pursuing a two-stream solution, it would suffice to express M as a linear function of l as in
Mðl; sÞ ¼ 1þ mðsÞ � l: ð9Þ
After performing the mathematical operations indicated in Eq. (7), we obtain the following expression:
l � Z 0 þ l2 � m � Z 0 þ l2 � m0 � Z ¼ Z � bþ l � m � a � Z � ðp þ q � lÞ; ð10Þ
where primes denote the derivatives taken with respect to s, and
a ¼ 1� g � -0; ð11Þ
b ¼ 1� -0; ð12Þ
while the source contributions are
p ¼ -0 � ð1� f Þ
4

� F S � exp½�ð1� -0 � f Þ � sjl0j� þ BðT ðsÞÞ � ð1� -0Þ; ð13Þ

q ¼ � 3 � -0 � ð1� f Þ
4

� F S � ~g � jl0j � exp½�ð1� -0 � f Þ � s=jl0j� ð14Þ
and all these are functions of s. The Z part of the radiance for which we derive the ordinary differential equa-
tion depends only on the optical depth s; hence the above separation of variables trial turns out to be
successful.

Again in the original delta-Eddington approach the Eq. (10) and its l-fold is integrated (averaged) over l,
instead here we will force the above equation to satisfy the two streams at the Gauss–Legendre quadrature
points l1 ¼ 1=

ffiffiffi
3
p

and l2 ¼ �1=
ffiffiffi
3
p

. By once subtracting and adding the resultant two equations, and defining
a new variable as du ¼ a � ds, we obtain the following two independent first order ordinary differential
equations:
Z 0 � m � Z ¼ �q=a; ð15Þ

Z 0 � c2 � m0

m
Z ¼ � 3 � p

m � a ; ð16Þ
where c ¼
ffiffiffi
3
p
�
ffiffiffiffiffiffiffiffi
b=a

p
with

ffiffiffiffiffiffiffiffi
b=a

p
as the similarity parameter, and all derivatives are now with respect to the

new variable u, which is well known in the asymptotic radiation theory literature as the scaled optical thickness
[24]. From this point on, all functions and derivatives will be in terms of the variable u unless otherwise stated.
If we define Y ¼ m � Z, Eq. (15) becomes: Z 0 � Y ¼ �q=a; and Eq. (16) becomes: Y 0 � c2 � Z ¼ �3 � p=a. Here Z
corresponds to I0, and Y corresponds to I1 of the original delta-Eddington method. By taking the derivative of
the first equation and substituting Y 0 from the second one, we can show that one of these differential equations
can be converted to a second order one:
Z 00 � c2 � Z ¼ R; ð17Þ
where R ¼ �ðq=aÞ0 � 3 � p=a; and it can be used in conjunction with any of these two new first order differential
equations (Eq. (15) or Eq. (16)). Through the above definition of c and u, we have gained the advantage of
preventing the occurrence of Z 0 term in Eq. (17). We will show that an analytical approximation to the solu-
tion of this equation is possible, and we will give its form under various ranges of the atmospheric cloud and
biological tissue optical parameters. Though we will present the solutions for the sourceless cases, the partic-
ular solution related to the source term can be added later on either through an integrating factor method or a
variation of parameters method. The homogeneous part of this second order ordinary differential equation is
Z 00H � c2 � ZH ¼ 0 ð18Þ
and it can be solved by analytical approximations (or by numerical methods if desired) after we factorize it
with K to be determined by the non-linear first order ordinary differential equation (Eq. (20)) in the following
form:
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ðDþ KÞ � ðD� KÞ � ZH ¼ 0 ð19Þ
with D ¼ d=du, resulting in a Riccati type equation for a new unknown function K:
K2 ¼ c2 � K 0: ð20Þ
The homogeneous solution for ZðuÞ can be found by
ZHðuÞ ¼ Ca exp

Z u

0

KðaÞda

� �
þ Cb exp

Z u

0

KðaÞda

� � Z u

0

exp �2

Z w

0

KðaÞda

� �
dw ð21Þ
with two constants Ca and Cb, which are to be determined from the given boundary conditions. The particular
solution can be obtained as
ZPðuÞ ¼ exp

Z u

0

KðaÞda

� � Z u

0

exp �2

Z m

0

KðbÞdb

� � Z m

0

RðwÞ exp

Z w

0

KðgÞdg

� �� �
dm
or using the integration by parts technique this can also be shown to be identical to
ZPðuÞ ¼ exp

Z u

0

KðaÞda

� �
�
Z u

0

exp �2

Z m

0

KðbÞ � db

� �
dv

� �

�
Z u

0

RðwÞ � exp

Z w

0

KðgÞ � dg

� �� �
� dw� exp

Z u

0

KðaÞda

� �

�
Z u

0

RðwÞ � exp

Z m

0

KðbÞdb

� �
�
Z v

0

exp �2

Z w

0

KðgÞ � dg

� �
dw

� �� �
dm; ð22Þ
which is the same as the solution to be obtained by a variation of parameters technique (see Arfken [23, Chap-
ter 20] for more information on variation of parameters technique).

We assumed that these boundary conditions were given at the u0 ¼ 0 and u ¼ u� points, though, in general,
u0 need not to be zero. KðuÞ can be computed numerically from Eq. (20) as the integral of ðc2 þ K2Þ term with
a pre-chosen Kð0Þ. The solution ZHðuÞ does not depend on the choice of Kð0Þ; but some values may lead to
diverging KðuÞ solutions, and they cannot be useful as a solution to ZHðuÞ. Eq. (21) looks cumbersome: even if
KðuÞ can be analytically integrable in some simpler cases, depending on the second integral in the term with
the coefficient Cb; the solution ZHðuÞ may or may not be analytically evaluated.

In Eq. (18), if we proceed following the methods given by Schelkunoff and Stephenson [25,26], where the
solution for K is K ’ c� c0=2c, we get
ZHðuÞ ¼ C1 � exp

Z u

0

cðmÞ � dm

� �� ffiffiffiffiffiffiffiffiffi
cðuÞ

p
þ C2 � exp �

Z u

0

cðmÞ � dm

� �� ffiffiffiffiffiffiffiffiffi
cðuÞ

p
ð23Þ
with C1 and C2 as the new integration constants. Their method is based on defining a new variable as dt ¼
cðuÞ � du, eliminating the Z 0HðuÞ derivative in the subsequent differential equation, and then neglecting all other
terms except unity in the coefficient of ZHðuÞ, provided that
jc0j < c2: ð24Þ
However this condition on c 0 may not be satisfied in all cases: therefore we will present new methods that
covers these cases in the latter part of this paper. When the above condition is satisfied, it means that inho-
mogeneity is nowhere extreme since derivative of c depends on the inhomogeneity of the optical path. The
particular solution in Eq. (22) can also be re-expressed in terms of the Liouville–Green solution K ’
c� c0=2c as
ZPðuÞ ¼ exp

Z u

0

cðmÞdm

� ��
2
ffiffiffiffiffiffiffiffiffi
cðuÞ

ph i
�
Z u

0

exp �
Z m

0

cðwÞ � dw
� �� ffiffiffiffiffiffiffiffi

cðvÞ
p� �

RðvÞdv

� exp �
Z u

0

cðmÞdm

� ��
2
ffiffiffiffiffiffiffiffiffi
cðuÞ

ph i
�
Z u

0

exp

Z m

0

cðwÞdw
� ��

½
ffiffiffiffiffiffiffiffi
cðvÞ

p
�

� �
RðvÞdv: ð25Þ
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The above method with K ’ c� c0=2c is known as the Liouville–Green approximation or WKB approxi-
mation due to its wide application in quantum mechanics by Wentzel, Kramers and Brioullion [27]. It has been
forgotten and rediscovered by several applied mathematicians [25]. One variant is given by Stephenson and
Radmore [26] in the form of a perturbation solution. Still another approach is to iterate on the Eq. (20),
and is given by Merzbacher [27] for the ðnþ 1Þth iteration: Knþ1 ¼ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � K 0n

p
.

We notice that if we repeat the procedure used in obtaining Eq. (23) many times by defining dunþ1 ¼ cn � dun

at each nth step, as long as jdcn=dunj < c2
n is satisfied (but after some steps it may not be satisfied; the func-

tional DðcÞ, also called the Schwartzian derivative [26] defined as DðcÞ ¼ ðc0=2cÞ0 � ðc0=2cÞ2 may not be negli-
gible), we get a better approximation to Eq. (23).

In the following, we will work on the solutions to the homogenous parts of Eqs. (15) and (16) which are
Z 0H � m � ZH ¼ 0; ð26Þ

Z 0H �
c2 � m0

m
ZH ¼ 0 ð27Þ
and we will directly solve them for m. By equating the coefficients of ZH in the above equations, we obtain a
duplication of the Eq. (20), this time in terms of m, where m � K:
m2 ¼ c2 � m0; ð28Þ
which is to be used along with Eq. (25). It readily admits an approximate analytical solution if the function c,
whose behavior depends on the inhomogeneity along the optical path, satisfies the condition, jc0j < c2, every-
where in the domain of the solution. Under these circumstances, we shall demonstrate that m � c� c0=2c.

By inspecting Eq. (28), we see that when the inequality in Eq. (24) holds, m is nearly equal to c. Hence we
begin with m � cþ e1, where e1 is a perturbation on the function c. Inserting this into Eq. (27) and neglecting
e01 and e2

1 terms, since we expect that they are smaller than the others, we obtain: e1 ¼ �c0=2c. This last result
validates our neglecting of e01 and e2

1 terms. Instead of neglecting these terms, if we would desire a better
approximation, we would begin with m ’ c� c0=2cþ e2, and continue in the same fashion by neglecting e02
and e2

2, and e2 � c0=c terms to obtain e2 ¼ ½ðc0=cÞ2=8� ðc0=cÞ0=4�=c. Higher order terms can be obtained contin-
uing this way, and this method gives the same terms as in the exponential perturbation method given in Ste-
phenson [26]. Additionally a more systematic approach would be by taking m ¼ m0 þ k � m1 þ k2 � m2 þ � � � and
considering Eq. (28) as m2 ¼ c2 � k � m0 beforehand, which corresponds to the a priori knowledge that the
inequality in Eq. (24) holds. Here the k parameter serves as the ordering tool, and at the end of the perturba-
tion process it is set equal to unity.

Up to here, we have just demonstrated a variant of the perturbation approximation of Stephenson [26], and
we started with a Riccati [28] equation (Eq. (28)). We are proposing this solution for the atmospheric radiative
transfer use in climate change computations as long as the inequality of Eq. (24) holds, where the scattering
occurs in a one-dimensionally inhomogeneous medium, such as in clouds or aerosol loaded atmospheres. In
this form however, Eq. (24) restricts its utility to a cloud where the single scattering albedo -0 is not close to
unity; or indirectly b, or equivalently c is not close to zero, and c 0 is not very large. This condition can be real-
ized in the long wave (infrared and near infrared) absorption and emission of the water clouds and relatively
thin clouds with significant water vapor content and atmospheric infrared active trace gas contents, since in
the long wave range, water clouds have smaller single scattering albedos that are around 0.5. When we con-
sider the atmospheric gas and water vapor together which have zero single scatter albedos, the volume aver-
aged single scatter albedo of the atmospheric cloud layer turns out to be even less than the pure cloud case we
considered in the examples below. The conditions of this nature mostly occur at moist lower altitudes. For
water and ice clouds that scatter in the visible wavelengths, analytical radiation modeling through inhomoge-
neous optical paths becomes more challenging and from here on we set out to address it also.

In the Riccati equation as given by Eq. (28), we only need its two distinct solutions (any two among the
many possible ones) for the solution of the original second order ODE (Eq. (18)). We are actually interested
in the solutions for Iðu; lÞ, through these two solutions of mðuÞ in Eqs. (26) and (28). From Eqs. (8) and (9), we
can form the complete homogeneous solution as
IHðu; lÞ ¼ C1 � ZH1
ðuÞ �M1ðu; lÞ þ C2 � ZH2

ðuÞ �M2ðu; lÞ; ð29Þ
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where ZH1
ðuÞ ¼ exp½

R u
0

m1ðvÞ � dv�, ZH2
ðuÞ ¼ exp½

R u
0

m2ðvÞ � dv�, M1ðu; lÞ ¼ 1þ m1ðuÞ � l, and M2ðu; lÞ ¼ 1þ
m2ðuÞ � l.

Now we show that the Liouville–Green approach is a special case of the above factorization and Riccati
solution approach of tackling the second order ODEs with variable coefficients; and it allows us to write
the general solution in the same manner as would be for a second order ODE with constant coefficients. Using
Eq. (28) twice and denoting the two solutions as m1 and m2, we get an identity: namely m2

1 � m2
2 ¼ �ðm1 � m2Þ0.

In other words we get j ¼ �k0=k, where 2k ¼ m1 � m2 and 2j ¼ m1 þ m2. This helps us to re-express m1 and m2

in terms of k and its derivative k 0; thus we obtain:
K1 ¼ m1 ¼ k � k0=2k and K2 ¼ m2 ¼ �k � k0=2k: ð30Þ
If we can compute k, we will have a solution whose accuracy depends on the type and degree of the approx-
imations employed. The formulas listed in Eq. (30) give us an idea regarding the form of the function k that
satisfies Eq. (28), even when c goes to zero (a turning point problem), or c 0 is too large. They actually show
that the Liouville–Green method is one of the approximations where k ffi c, provided that the inequality in
Eq. (24) holds. We can write the general solution as ZðuÞ ¼ C1ZH1

ðuÞ þ C2ZH2
ðuÞ þ ZH2

ðuÞ �
R u

u0
ZH1
ðmÞRðvÞ=

W ðvÞdm� ZH1
ðuÞ �

R u
u0

ZH2
ðmÞRðvÞ=W ðvÞdm where the homogeneous solutions are ZH1

ðuÞ ¼ exp½
R u

u0
m1ðmÞ � dm�

and ZH2
ðuÞ ¼ exp½

R u
u0

m2ðmÞ � dm� with W ðvÞ, the Wronskian that is equal to �2kðu0Þ. In order to see that this
last form is exactly the same for a second order ODE with constant coefficients, first we absorb the constant
�kðu0Þ into the coefficients C1 and C2, and substitute m1 and m2 from Eq. (30): we obtain the combination of
Eqs. (23) and (25) for the general solution, this time in terms of k instead of c, demonstrating the generality of
the factorization plus Riccati approach for the second order ODEs.
2.1. Approximations on k

In order to approximate k, when c is close to zero (the Liouville–Green solution will not work, and this case
is called a turning point case [29,30]), we need to consider Eq. (28) with m1 (or alternatively with m2), since
both depend on k, giving ðk � k0=2kÞ2 ¼ c2 � ðk � k0=2kÞ0 which can be written as a non-linear second order
ordinary differential equation,
k2 � c2 ¼ ðk0=2kÞ0 � ðk0=2kÞ2 ð31Þ
or in the alternative form
4k4 � 4k2 � c2 ¼ 2k � k00 � 3 � ðk0Þ2 ð32Þ
also in the Picard approximate integral form
kðuÞ ’ kð0Þ þ k0ð0Þ
kð0Þ �

Z u

0

kðvÞ � dvþ 4

Z u

0

kðvÞ � dv
Z u

0

fk2ðwÞ þ ½k0ðwÞ=2kðwÞ�2 � c2ðwÞg � dw: ð33Þ
If we start with an initial guess function kðuÞ and its value at u ¼ 0, kð0Þ, we can employ the Picard iterative
integration procedure [29] until we obtain an acceptably accurate solution. Since we are interested in solutions
that are at the vicinity of the turning point (meaning c ¼ 0), we first solve Eq. (28) in the form m2 ’ �m0.
Again we need two (any two) solutions; one of these solutions, say m2 is obviously zero. Then, in Eq. (30) with
m2 ¼ 0, we get �k � ðk0=2kÞ ¼ 0, or k0 ¼ �2k2 (which has the same form as m in m02 ¼ �m2

2) integration of
which yields an hyperbolic function in terms of u:
kðuÞ ¼ ð1=2Þ=½1=2kð0Þ þ u� ð34Þ
with an arbitrary constant kð0Þ. We also get m2 � 2 � k, from which we see that for any number of Picard type
iterations in the Eq. (33) with the c2 ’ 0, we will always get back the same kðuÞ, exactly as given in Eq. (34).
Therefore we focus on the rest of the Eq. (33) that contains the small but non-zero c2 term. Then
kðuÞ ¼ ð1=2Þ=½1=2kð0Þ þ u� �
Z u

0

dv
1=2kð0Þ þ v

Z v

0

c2ðwÞ � dw ð35Þ
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is the expression we get after the first iteration for the solution around a turning point. The first term in the
above equation always survives after every iteration. Though kð0Þ can be arbitrarily chosen, care should be
taken that Eq. (34) will not diverge, i.e., 1=2kð0Þ should not equate to any value of u in the range from u0

to u* (0 to u* in this paper). The last term in Eq. (35) contains a double integral. It can either be analytically
integrated, depending on the form of the c2ðuÞ expression, or else it can be analytically approximated by the
application of Gauss–Legendre quadrature in the interval from 0 to u, regarding u as a parameter, as shown
below. Although we have chosen a two point Gauss–Legendre quadrature for the sake of demonstration, the
number of quadrature points can also be chosen larger.

With a two point Gauss–Legendre quadrature, any integral such as
R x

c f ðvÞdv ¼
Rþ1

�1
f ðtÞdt can be approx-

imated, by defining a new variable t in v ¼ ð1þ tÞ � x�c
2
þ c and dv ¼ ðx� cÞ � dt=2 such that

R x
c f ðvÞdv ¼Rþ1

�1
f ðtÞdt ¼ x�c

2
� f x�c

2
� 1þ 1ffiffi

3
p

� 	
þ c

h i
þ f x�c

2
1� 1ffiffi

3
p

� 	
þ c

h in o
, where � 1ffiffi

3
p are the quadrature points, and

the weights are unity. Similarly a double integration can be converted to three single integrations, each
expressible through the Gauss–Legendre approximation:

R x
b

R v
a f ðwÞdw ¼ x �

R x
a f ðwÞdw� b �

R b
a f ðwÞdw�R x

b v � f ðvÞdv, leading a way to express multiple integrals in the same fashion.
For example, the inner integral in Eq. (35) can be approximated as CðvÞ ¼

R v
0 c2ðwÞdw ¼

x
2

c2 x
2
� 1þ 1ffiffi

3
p

� 	h i
þ c2 x

2
� 1� 1ffiffi

3
p

� 	h in o
, then altogether the second term in Eq. (35) can be re-expressed asR u

0
dv

1=2kð0Þþv �
R v

0
c2ðwÞdw ¼

R u
0

HðvÞdv, where HðvÞ ¼ CðvÞ
½1=2kð0Þþv�. Finally we get:
kðuÞ ¼ ð1=2Þ=½1=2kð0Þ þ u� � u H
u
2
� 1þ 1ffiffiffi

3
p


 �� �
þ H

u
2

1� 1ffiffiffi
3
p


 �� �� �
: ð36Þ
Another case that we need to consider is when c2ðuÞ is a slowly varying function of u, say around u ¼ 0: in
other words it is nearly constant in the domain of the solution, but the Schwartzian derivative DðcÞ is not
small. In that case we have the two solutions as m1 ¼ dm1 þ c and m2 ¼ dm2 � c with new unknowns dm1

and dm2 (satisfying dm2
1 þ 2c � dm1 ¼ �c0 � ðdm1Þ0, and dm2

2 þ 2c � dm2 ¼ �c0 � ðdm2Þ0, from Eq. (28)). In a sim-
ilar fashion in obtaining the Eq. (30), we get 2dk � djþ 2c � dk ¼ �c0 � ðdkÞ0 where 2dk ¼ dm1 � dm2 and
2dj ¼ dm1 þ dm2. This yields dm1 ¼ dk�ðdkÞ0=½2ðdkþ cÞ�� c0=½2ðdkþ cÞ� and dm2 ¼�dk�ðdkÞ0=½2ðdkþ cÞ��
c0=½2ðdkþ 2cÞ�. For dm1 and dm2, and consequently for dk to be usable, they should have finite values in
the region of concern. If we further examine dm1 or dm2 expressions above, leaving c as a variable, we can
consider two cases: (1) c is very small but jc0j is finite, (2) c is finite (including zero) but jc0j is too large. Case
1 means ðdkÞ0 term should balance c 0: then it is sufficient to have a finite derivative for dk, and hence a finite dk.
In case 2, all the denominators are finite and only ðdkÞ0 term can balance a very large c 0; but a very large ðdkÞ0
implies, in turn, a very large dk as u changes farther away from this point. This behavior can only be tolerated
for an ignorably small region of the total solution domain and it is not desirable. However in our applications
below, we will choose to define m1 ¼ dm1þ cð0Þ and m2 ¼ dm2þ cð0Þ for c 6¼ 0 but nearly constant ðc’ cð0ÞÞ
cases so we will not need to consider the behavior of c 0.

In that case we have dm1 ’ dk � ðdkÞ0=½2½dk þ cð0Þ� and dm2 ’ �dk � ðdkÞ0=½2½dk þ cð0Þ�, or in other words,
in term of k, k ¼ dk þ cð0Þ. Since 2k ¼ m1 � m2 ¼ 2 � cð0Þ, and from Eq. (30) m1 ¼ k � k0=2k, at u ¼ 0, we get
k0ð0Þ ¼ 2k2ð0Þ � 2 � m1ð0Þ � kð0Þ. But m1ð0Þ ’ cð0Þ, thus we get k0ð0Þ ’ 0. Then we can approximate our initial
kðuÞ once more as k0ðuÞ ’ cð0Þ to be used in the Picard iterative method over Eq. (30) to get kðuÞ ¼
kð0Þ þ 2

R u
0

k2
0ðvÞ � dv� 2

R u
0

m1;0ðvÞ � k0ðvÞ � dv after the first iteration. But we also need a good starting form
for m1ðuÞ as in m1;0ðuÞ ¼ cð0Þ þ

R u
0
½c2ðvÞ � c2ð0Þ� � dv which comes from applying the Picard integration on

Eq. (27). Altogether we obtain a better approximation for kðuÞ:
kðuÞ ¼ cð0Þ þ c3ð0Þ � u2 � 2cð0Þ �
Z u

0

dv
Z v

0

c2ðwÞ � dw: ð37Þ
In the passing we note that when c ’ 0 we get back Eq. (32). The first term in Eq. (35), when used according
to Eqs. (41) and (42), gives the full solution where we may need to employ an appropriate Gauss–Legendre
quadrature in the complicated integrals.

Still another way of approximating the kðuÞ solution outside and inside the Liouville–Green domain can be
obtained by inspecting Eq. (31). If each term on the right-hand side is nearly zero, we get the Liouville–Green
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solution, but if these terms nearly cancel each other, implying that k ’ c, then, instead we get kðuÞ ¼
kð0Þ=½2kð0Þ=kð0Þ0 � u�2, or more generally
kðuÞ ¼ 1=½ka þ kb � u�2 ð38Þ
with ka and kb as constants to be determined by the linear least square curve fit of this kðuÞ to cðuÞ in the do-
main under consideration by minimizing the error integral

R u
0
½ðka þ kb � vÞ �

ffiffiffiffiffiffiffiffi
cðvÞ

p
� 1�2 dv, with respect to ka

and kb. Equating its partial derivatives with respect to ka and kb to zero gives us two linear equations for ka

and kb. Details of linear least square fit can be found in most elementary statistics textbooks. The above form
with

ffiffiffiffiffiffiffiffi
cðvÞ

p
is preferred so that even if cðuÞ nears zero the integral or its finite summation approximation will

not diverge. The method works well as will be shown in the example on the dermis-blood transition
applications.

Finally the last technique that we apply for approximating k is a first order perturbation solution to Eq.
(32), which also linearizes it, with k ¼ c0 þ k � k1, and c2 ¼ c2

0 þ kðc2 � c2
0Þ, where k is the perturbation param-

eter to be set equal to unity at the end, to obtain
k001 � 4c2
0 � k1 ¼ �2c0 � ðc2 � c2

0Þ; ð39Þ
where c0 is best taken to be the average value of cðuÞ (as 1=u� �
R u�

0
cðvÞdv) over the domain of consideration.

The solution is
kðuÞ ¼ Ca � expð�2uÞ þ Cb � expð2uÞ þ c0=2þ k1p; ð40Þ
where k1p is the particular solution to k001 � 4c2
0 � k1 ¼ �2c0c

2, which may be found by the method of undeter-
mined coefficients if c2 is given as a polynomial in u (or more generally this polynomial times some combina-
tion of cosine, sine or exponential functions of u). In other cases a few term Fourier series approximation to c2

can be adequate, given the fact that k1 itself is one of the terms in the perturbation approximation of k. The
boundary conditions on kðuÞ solution is arbitrary, but given the first order perturbative character of the solu-
tion, kð0Þ and kðu�Þ should not differ much from the c0. In fact for a symmetrical cðuÞ, choosing kð0Þ ¼
kðu�Þ ¼ c0 appears to be better than other choices. This technique is suitable to the diffusion type problems
when c2 is given as a symmetric hunch as will be shown in the quantum mechanical tunneling example.

We also employ a first order perturbation for I0ðuÞ � ZðuÞ on Eq. (18) for comparison with the above solu-
tions that are approximations direct on the kðuÞ term. Here we take Z ¼ Z0 þ k � Z1, and c2 ¼ c2

0 þ k � ðc2 � c2
0Þ

as before, yielding the two equations for Z0 and Z1, as Z0 � c2
0 � Z0 ¼ 0 and Z1 � c2

0 � Z1 ¼ ðc2 � c2
0Þ � Z0. The

prescribed boundary conditions are imposed on the zeroth order solution Z0, and on the Z1 solution the
boundary values are all taken as zeros. As in the case of the perturbation on kðuÞ, we choose to define c0

as the average c over the domain of consideration. These are ODEs with constant coefficients, but the second
one is inhomogeneous and it may not have an exact analytical solution, but can be analytically approximated
as for Eq. (39).

Up to here, we have summarized the Liouville–Green technique and developed four other methods for the
cases when it would not work: one at and around the turning point (Eqs. (33)–(35)), one at and around a
slowly varying c (Eq. (37)), one with the least square fit (Eq. (38)), and the last one for a symmetrical c2

(Eq. (40)). The last two of these solutions can also cover the Liouville–Green range. There is a connection
between the near turning point solution and the traditional Liouville–Green solution (which is well away from
the turning point) as can be seen by inspecting Eq. (20) or Eq. (28) more closely. In all approximations we are
searching for a solution of the kind where cðuÞ ¼ vðuÞ � mðuÞ. Inserting this form into Eq. (28), we obtain
ð1� v2Þ � m2 ¼ �m0. As v approaches unity, we obtain a Liouville–Green type solution, which is when c nearly
behaves like a constant. This further means that m0 	 c0 	 0 and the inequality in Eq. (24) holds. Following
our steps backward, we can say, if in the domain of the solution, inequality of Eq. (24) holds, we can rely upon
the Liouville–Green solution as a legitimate approximation. On the other hand if v 	 0, that is if c 	 0, we are
near a turning point and then we have m2 	 �m0, whose approximate solutions are given by one of the above
four methods. If we could have a hyperbolic function as given by Eq. (34) even for the Liouville–Green range,
that would mean that our c would have to approximately behave as ð1=2Þ=½1=2kð0Þ þ u � ��, for a small �, since
then the inequality in Eq. (24) would still hold. In more complicated problems, more than one case may be
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encountered: then in order to get the complete solution, it would be best to divide the domain into parts and
do a match of the solutions and their derivatives on the division points.

The particular solution to Eq. (17) in terms of the function kðuÞ can be expressed in a similar fashion to the
particular Liouville–Green solution with the only difference that c is replaced by k:
ZPðuÞ ¼ exp

Z u

0

kðmÞdm

� ��
2
ffiffiffiffiffiffiffiffiffi
kðuÞ

ph i� �
�
Z u

0

exp �
Z m

0

kðwÞdx

� �� ffiffiffiffiffiffiffiffiffi
kðvÞ

ph i� �
RðvÞdv

� exp �
Z u

0

kðmÞdm

� ��
2
ffiffiffiffiffiffiffiffiffi
kðuÞ

ph i� �
�
Z u

0

exp

Z m

0

kðwÞdx

� �� ffiffiffiffiffiffiffiffiffi
kðvÞ

ph i� �
RðvÞdv; ð41Þ
where the form of the function k as given by one of the equations, Eqs. (33)–(40), is adequate for most prac-
tical purposes considered in this paper. Furthermore, each of the integrals in the particular solution can be
approximated by the Gauss–Legendre quadrature as explained above. The homogeneous solution in terms
of kðuÞ is also:
ZHðuÞ ¼ bC1 exp

Z u

0

kðmÞdm

� �� ffiffiffiffiffiffiffiffiffi
kðuÞ

p
þ bC2 exp �

Z u

0

kðmÞdm

� �� ffiffiffiffiffiffiffiffiffi
kðuÞ

p
; ð42Þ
where the new constants are bC1 and bC2. Note that in the Liouville–Green domain kðuÞ ’ cðuÞ. The general
solution to Eq. (17) can be given as the sum of the above homogeneous solution in Eq. (42) and the particular
solution in Eq. (41) as ZðuÞ ¼ ZHðuÞ þ ZPðuÞ.

Now we are able to put together a solution for the delta-Eddington approximation where the actual quan-
tities that are computed are the upward and downward fluxes: F þðuÞ ¼ p I0ðuÞ þ 2

3
I1ðuÞ

� 

and F �ðuÞ ¼

p I0ðuÞ � 2
3
I1ðuÞ

� 

respectively, and I0 � Z and I1 � dZ=du.

In Earth’s atmospheric clouds the single scattering albedo in the visible wave lengths is close to unity, that
makes these problem a near the turning point type. Though cloud field experiments and observations are being
conducted, regarding the actual vertical optical profiles of all the cloud types, to a great degree our informa-
tion is still limited [31–36]. If we can speculate and assume a vertical profile of the optical parameters for our
examples, saying that an optical profile of a given cloud (at any wavelength) might possibly vary only between
the extremes of the known reported cloud types [37–39], we could see that the above four approximations
would be adequate in all such cases. Through comparisons with the numerical solutions obtained by standard
finite difference differential equation solution techniques, such as a shooting method, we have observed that
the correct usage of the equations, Eq. (21) and onward, indeed gives satisfactory results for atmospheric
cloud problems as well as some medical applications and diffusion problems, detailed examples of which
are given below.

3. Examples from cloud radiation problems

In order to construct some illustrative examples and test the limits of our approximations, we have first
inspected the eight cloud type parameterizations of Stephens [37] and cirrus parameterization of Takano
and Liou [38,39]. Then we hypothesized that in a cloud as the optical properties changed from cloud top
to base, at worst the cloud nature could change from one type to another. This in no ways is a claim on
how an actual cloud exhibits a vertical optical profile. The data on the vertical profiles of cloud microphysics
is at most not sufficient to construct realistic profiles. We have assumed a vertical extent of 1 km, which is rea-
sonable for most clouds. For demonstration purposes we have assumed that the single scattering albedo -0,
the asymmetry parameter g, and the extinction cross-section be (km�1), all change linearly from cloud top to
cloud base. We have not included the atmospheric gases and water vapor within our example clouds. If we did
so, their speculated change from one type to another would have been moderated by the atmospheric absorp-
tion, since atmospheric gases only absorb and have diffuse (Rayleigh) scattering in the visible wavelengths.
Under these circumstances it is likely that our example cases are extreme deviations from the reality, toward
a harsher test of our solutions, and so they serve us to demonstrate the utility of our models for the radiative
effect of clouds in the climate change scenarios as demonstrated below.

Our tests are based on the sourceless cases, i.e., there are no direct beam in the visible and no emission in the
long wavelengths. We have checked the upward and downward fluxes against a numerical differential equation



Table 1
The optical parameters of the cloud top and base for the hypothetical cases used in the examples

Cloud type k beð0Þ beðu�Þ -0ð0Þ -0ðu�Þ gð0Þ gðu�Þ
Water 2 124 17 0.85 0.98 0.84 0.79
Cirrus 0.55 2.61 0.17 0.999 0.999 0.84 0.77

The symbols ‘‘0’’ and ‘‘u*’’ stands for the cloud top and base, respectively. The units for the extinction coefficient, be, is in km�1, and the
wavenumber k, is in lm.

Table 2
The profiles of the relevant parameters for the water cloud to cloud transition case at 2 lm

z ðkmÞ u c c0=c2 DðcÞ
0.00 0.00 1.25 �0.007 �0.0003
0.10 3.36 1.21 �0.009 �0.0005
0.20 6.34 1.17 �0.012 �0.0007
0.30 8.96 1.12 �0.017 �0.001
0.40 11.2 1.06 �0.024 �0.002
0.50 13.2 1.00 �0.036 �0.004
0.60 14.8 0.93 �0.057 �0.008
0.70 16.2 0.85 �0.097 �0.019
0.80 17.2 0.76 �0.186 �0.053
0.90 18.0 0.65 �0.442 �0.208
1.00 18.5 0.52 �1.582 �1.577
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solver (using a shooting method [40]) results and found that an excellent agreement without the source term is
indicative of the reliability of the model even after we could include the source term, since it is expected that
the inclusion of the source term would improve the results even more. We assumed that the cloud tops are
illuminated with one unit of diffuse radiation (1 W m�2) and the cloud base has no illumination. In this case
the upward flux calculated at the top stands for the reflectivity and the downward flux at the base stands for
the transmissivity of the cloud as a whole. Absorptivity is ratio of the missing light flux at all the boundaries of
the medium to the total incoming flux, due to the conversion of the light energy into the other forms in the
medium via inelastic matter–light interactions and collisions between the particles. Also the delta-Eddington
method itself, though the best among all two-stream approximations, is still known to yield errors of few per-
cent, especially for thin clouds [18]. In comparing the numerical and analytical results we kept this fact in
mind, and we do not expect very accurate results from the either method but a reasonable match between
the two. Hence most of the results below are reported only up to a two significant figure level. We also com-
pared the results with those of the first order perturbation solution direct on I0, and found that our approx-
imate analytical solutions are as good as this I0 perturbation.

In order to construct hypothetical clouds for our examples, our selection criteria for the vertical change of
the cloud properties, was based on the maximum change in cðuÞ from cloud top to cloud base. We have found
in water clouds that the maximum change in cðuÞ is obtained at 2 lm wavelength, and when our cloud had the
optical properties of a Stratus-II at the base and those of a Cumulonimbus at the top. The fact that Stratus-II
has 0.05 (g/m3), and the Cumulonimbus has 2.50 (g/m3) liquid water content is responsible for this maximum
vertical change. We also considered cirrus clouds at long and visible wavelengths; we found that the maximum
transitions occur at 5 lm (2200 cm�1) wavelength between the cirrus uncinus and the cold cirrus. But we con-
sidered one of the two extremes of the given visible six band center wavelengths in Takano et al. [38,39],
namely the one at k ¼ 0:55 lm, since it exhibits a turning point case. Table 1 summarizes the cloud type depen-
dent parameters for the hypothetical example cases.

3.1. The water cloud transition example at 2 lm

c2ðuÞ is fitted versus u as c2ðuÞ ¼ 0:934þ 0:472
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18:735� u
p

� 0:0274ð18:735� uÞ � 0:890. The profiles of
the relevant parameters vs. the vertical z coordinate (measured from top to bottom in terms of km) are given
in Table 2. The Schwartzian derivative term is DðcÞ. Tables 3 and 4 below summarize the Liouville–Green



Table 3
The upward and downward diffuse flux results from Liouville–Green approximation vs. a numerical procedure (num) and the perturbation
(per) at 2 lm for the water cloud top region

u F þnum F+ Fþper F �num F� F �per

0.00 0.09 0.09 0.06 1.00 1.00 1.00
0.50 0.05 0.05 0.02 0.54 0.53 0.52
1.00 0.03 0.03 0.00 0.29 0.29 0.26
1.50 0.01 0.01 0.00 0.16 0.15 0.13
2.00 0.01 0.01 0.00 0.08 0.08 0.06
2.50 0.00 0.00 0.00 0.05 0.04 0.03
3.00 0.00 0.00 0.00 0.02 0.02 0.01

Table 4
The upward and downward diffuse flux results from Liouville–Green approximation vs. a numerical procedure (num) and the perturbation
(per) at 2 lm for the water cloud base region

u F þnum F+ Fþper F �num F� F �per

15.00 0.25 0.25 0.25 1.00 1.00 1.00
15.50 0.17 0.17 0.16 0.64 0.63 0.63
16.00 0.12 0.11 0.11 0.41 0.41 0.41
16.50 0.08 0.07 0.07 0.27 0.27 0.26
17.00 0.06 0.05 0.05 0.18 0.18 0.17
17.50 0.04 0.03 0.03 0.12 0.12 0.11
18.00 0.02 0.01 0.01 0.08 0.08 0.07
18.50 0.00 0.00 0.00 0.06 0.04 0.05
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approximation results and compares the fluxes with the numerically computed ones and with the results of the
perturbation approach on the original I0 equation. Since the water cloud is essentially opaque for a thickness
of 1 km, we have divided it into five sections of optical thickness of Du ¼ 3, plus one Du ¼ 3:5 from u ¼ 15 to
u ¼ 18:5. When computing the fluxes for the whole 1 km of the thickness, it is not needed that we go deeper
than the first 400 m from each side, since beyond this the downward and the upward fluxes are uniformly zero.
Table 4 gives the fluxes for a unit diffuse illumination as in Table 3 but for the lowest region of the cloud. We
notice that the Schwartzian term DðcÞ and the jc0j=c2 term have very high values at the cloud base, however in
the Liouville–Green solution, no adverse effects are observed, since this bad behavior is limited to an ignorable
part of the region, as had been discussed above. Overall, for this water cloud example, the Liouville–Green
approach performs better, and of course more directly and with less mathematical effort, than the I0 pertur-
bation method.

3.2. The cirrus cloud transition example at 0.55 lm

c2ðuÞ is fitted as a polynomial in u, c2ðuÞ ¼ 0:137� 0:164u� 1:418u2 þ 6:402u3 � 13:14u4 þ 12:49u5�
4:511u6. The profiles of the relevant parameters vs. the vertical coordinate z are given in Table 5. Table 6 below
summarizes the results for the numerical approach versus the c nearly zero approach (Eq. (37) for F þ0 and F �0 )
approach, a turning point case approach (Eq. (34) for F+ and F�), and perturbation on I0 method. The ana-
lytical results in the table below are obtained through a simple kðuÞ ¼ 1=2=½1=2kð0Þ þ u� term (Eq. (34)) with
kð0Þ set equal to 0.1. When we use the fuller expression for kðuÞ as given in Eq. (35), we get an almost identical
result to this. In this example the simplest kðuÞ turns out to be adequate; however for thicker clouds, a more
elaborate kðuÞ would be needed. The Schwartzian term is very large at the cloud base, consequently the Liou-
ville–Green approach is not applicable: if used it would lead to high errors (observed in our computations but
reported here). Eqs. (37) and (34) methods work as good as the perturbation on I0 approach; however in this
example the preferred approach emerges as Eq. (34), as it is the mathematically the least complicated and the
most direct one.



Table 6
The upward and downward diffuse flux results from a numerical (num) procedure vs. the turning point case solution, the nearly zero
approach (0), and the perturbation approach (per) at 0.55 lm for the cirrus case

u F þnum F+ F þ0 F þper F �num F� F �0 F �per

0.00 0.16 0.16 0.16 0.16 1.00 1.00 1.00 1.00
0.026 0.14 0.14 0.15 0.14 0.98 0.98 0.98 0.98
0.051 0.13 0.13 0.13 0.13 0.97 0.97 0.97 0.97
0.077 0.11 0.11 0.11 0.11 0.95 0.95 0.95 0.95
0.103 0.10 0.10 0.10 0.10 0.93 0.93 0.94 0.93
0.129 0.08 0.08 0.08 0.08 0.92 0.92 0.92 0.92
0.154 0.06 0.06 0.06 0.06 0.90 0.90 0.90 0.90
0.180 0.05 0.05 0.05 0.05 0.89 0.89 0.89 0.89
0.206 0.03 0.03 0.03 0.03 0.87 0.87 0.87 0.87
0.231 0.02 0.02 0.02 0.02 0.85 0.85 0.85 0.85
0.257 0.00 0.00 0.00 0.00 0.84 0.84 0.84 0.84

Table 5
The profiles of the relevant parameters for the cirrus cloud to cloud transition case at 0.55 lm

z ðkmÞ u c c0=c2 DðcÞ
0.00 0.00 0.137 �3.81 �0.11
0.10 0.041 0.134 �3.94 �0.20
0.20 0.079 0.131 �4.13 �0.33
0.30 0.115 0.128 �4.40 �0.52
0.40 0.147 0.26 �4.78 �0.83
0.50 0.176 0.124 �5.32 �1.37
0.60 0.201 0.122 �6.12 �2.45
0.70 0.222 0.120 �7.39 �4.97
0.80 0.239 0.118 �9.64 �12.52
0.90 0.250 0.116 �14.6 �48.81
1.00 0.257 0.114 �33.87 �677.5
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4. Examples from medical applications

We can also apply the delta-Eddington radiative transfer model to various non-invasive measurements
in vitro as well as in vivo biological tissues [41]. As in the cloud examples above, we assumed that the tissue
tops are illuminated with one unit of diffuse radiation (1 W m�2) and the base has no illumination
4.1. The human dermis blood transition example at 0.633 lm

Here we present an example on human dermis–blood interaction. At 633 nm, the total extinction coefficient
of human dermis is 189.7, the absorption coefficient is 2.7 and scattering coefficient is 187, where the asymme-
try parameter is 0.81 in units of cm�1 [14], while for the circulating human blood at the same wavelength, they
are 775.1, 2.1, 773, and 0.994, respectively [42]. We assumed that the dermis has the thickness of 0.5 mm and
the blood level beneath has the same depth, and both fuse together linearly, i.e., the optical properties linearly
change form the pure dermis at the top to pure blood at the bottom. The depth versus other optical parameters
are given in Table 7 below.

The fit for cðuÞ is best obtained as cðuÞ2 ¼ 0:190� 0:107=ðu� 4:314Þ � 0:0306=ðu� 4:314Þ2 � 0:005602=
ðu� 4:314Þ3. The numerical and perturbation on I0 solutions are given so as to compare with the least square
fit approximation on kðuÞ solutions (from Eq. (38), those with no subscripts) (Table 8).

It is evident from Table 7 that, the Liouville–Green approximation is not suitable for this case, as the
Schwartzian derivative grows high towards the pure blood layer. But the lest square approach that seeks
kðuÞ values around the cðuÞ values and results in a k profile as given in Eq. (38), namely kðuÞ ¼
1=½1:510� 0:04503u�2, is performing as well as the perturbation on I0 method. Its mathematical price comes



Table 7
The profiles of the relevant parameters for the human dermis to blood transition case at 0.633 lm

z ðmmÞ u c c0=c2 DðcÞ
0.00 0.00 0.46 0.039 0.000
0.10 0.42 0.46 0.040 0.001
0.20 0.90 0.47 0.044 0.003
0.30 1.41 0.47 0.053 0.005
0.40 1.94 0.48 0.067 0.009
0.50 2.47 0.49 0.093 0.017
0.60 2.96 0.50 0.141 0.037
0.70 3.39 0.53 0.242 0.103
0.80 3.75 0.56 0.505 0.416
0.90 4.01 0.64 1.515 3.619
1.00 4.15 0.97 13.947 438.7

Table 8
The upward and downward diffuse flux results from a numerical (num) procedure vs. the least square fit solution, and the perturbation on
I0 approach (per) at 0.663 lm for the human dermis to blood transition example

u F þnum F+ Fþper F �num F� F �per

0.00 0.51 0.52 0.51 1.00 1.00 1.00
0.41 0.42 0.42 0.41 0.82 0.82 0.82
0.83 0.34 0.34 0.33 0.67 0.68 0.67
1.24 0.27 0.27 0.26 0.55 0.55 0.55
1.66 0.21 0.21 0.21 0.45 0.45 0.44
2.07 0.16 0.16 0.16 0.36 0.36 0.36
2.49 0.12 0.12 0.12 0.29 0.29 0.29
2.90 0.08 0.08 0.08 0.23 0.22 0.23
3.32 0.05 0.05 0.05 0.18 0.17 0.17
3.73 0.02 0.03 0.02 0.13 0.13 0.13
4.15 0.00 0.00 0.00 0.09 0.09 0.09
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from numerically evaluating the minimization integrals in computing ka and kb, while the perturbation on I0

method needs to solve the ODE with the inhomogeneous right-hand side, which may still involve some numer-
ical computations if Fourier expansion is utilized, or iterations if some serial expansion is attempted. Both
methods cover non-Liouville–Green domains as well as the Liouville–Green domains.

4.2. The human aorta example at 0.633 lm

Another medical example is from the aorta–light interaction. Aorta has three layers named from inside out-
wardly as intima, media, and adventitia; and they are characterized by different optical parameters. Cheong
et al. [14] reports that for the intima, media, and adventitia layers, the total extinction coefficients are 175,
312, and 201, respectively in terms of cm�1; single scatter albedos are 0.977, 0.994, and 0.970, while the asym-
metry parameters are 0.85, 0.90, and 0.81, respectively. We assumed that these parameters change according to
a quadratic function throughout the assumed 1 mm wall thickness of the aorta. The fit cðuÞ ¼
0:657� 0:330uþ 0:152u2 � 0:0167u3 is adequate for this aorta–light interaction problem (Table 9).

For k found by the c nearly constant method of near the turning point via Eq. (37), the upward and down-
ward fluxes found with this k is given in Table 10. It is seen that both Eq. (37) approach and the perturbation
on I0 give comparable results. Though not reported here, the least square approach of Eq. (38), also works
fairly well. Considering that cðuÞ has a profile of an upward looking bowl, it is interesting that both Eqs.
(37) and (38) can perform well. In the next example, where cðuÞ has a shape of an upside down bowl, and
totally symmetric with respect to its center of geometry, we resort to the direct perturbation on k method
(Eq. (40)).



Table 10
The upward and downward diffuse flux results from the near the turning point approach via Eq. (37) vs. a numerical (num) procedure, and
the perturbation approach (per) at 0.663 lm for the human aorta example

u F þnum F+ F þper F �num F� F �per

0.00 0.47 0.47 0.46 1.00 1.00 1.00
0.36 0.40 0.40 0.40 0.82 0.82 0.81
0.71 0.34 0.34 0.33 0.68 0.68 0.68
1.07 0.28 0.28 0.27 0.57 0.57 0.57
1.42 0.22 0.22 0.22 0.48 0.48 0.48
1.78 0.17 0.17 0.17 0.40 0.40 0.40
2.14 0.13 0.13 0.13 0.33 0.33 0.33
2.49 0.09 0.09 0.09 0.27 0.27 0.26
2.85 0.06 0.06 0.05 0.21 0.21 0.21
3.20 0.03 0.03 0.03 0.16 0.16 0.16
3.56 0.00 0.00 0.00 0.12 0.12 0.12

Table 9
The profiles of the relevant parameters for the human aorta at 0.633 lm

z ðmmÞ u c c0=c2 DðcÞ
0.00 0.00 0.64 �0.38 �0.01
0.10 0.31 0.59 �0.50 �0.12
0.20 0.63 0.53 �0.66 �0.10
0.30 0.95 0.47 �0.73 0.08
0.40 1.27 0.43 �0.42 0.39
0.50 1.59 0.43 0.23 0.39
0.60 1.93 0.46 0.59 0.09
0.70 2.30 0.51 0.54 �0.07
0.80 2.70 0.56 0.39 �0.08
0.90 3.12 0.61 0.27 �0.06
1.00 3.56 0.65 0.20 �0.03
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5. Quantum mechanical tunneling example

This last example is what is known in semi-classical quantum mechanics as the electron tunneling through a
potential barrier, where the time independent probability amplitude, W, is a real valued function. Its applica-
tions are in scanning tunneling microscopy and in manufacturing of nano structures [43]. We adopt the data
from Beiser [44, p. 181]: electrons with energies of 1.0 eV are incident on a potential barrier of 10.0 eV through
a gap width of 0.50 nm. However we set out to find the distribution of electron flux through the gap for a given
value of transmission, say zero. Using the formula

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m � ðV � EÞ

p
=�h, with the electron mass, m ¼ 9:11


10�31 kg, and the barrier height V � E ¼ ð10:0� 1:0Þ � 1:60
 10�19 J=eV, �h ¼ 6:63
 10�34=2p, we find that
the maximum value of c is 7.5 in the time independent Schroedinger equation in one dimension
d2W=dx2 � ½2m � ðV � EÞ=�h2� �W ¼ 0. Defining a new variable u, as du ¼ 7:5dx, we convert the Schroedinger
equation into a simpler diffusion equation with respect to u, W00 � c2 �W ¼ 0, where W is the wave function
or probability amplitude to whose square the electron flux is proportional. Additionally we assume a parabolic
profile for the c2, namely, c2ðuÞ ¼ u � ð7:5� uÞ=ð7:5=2Þ2, such that at the midpoint u ¼ 7:5=2, its height is unity
and the symmetry axis passes through this point. Consequently Eq. (40) applies, and the first order perturba-
tion on k method is used. We present the probability amplitude profile within the gap in Table 11 below for a
zero transmission output.
6. Summary and discussion

Through out the paper we aimed to investigate analytical approaches specifically to the solution of the
monochromatic delta-Eddington problem through a plane parallel medium that is optically inhomogeneous



Table 11
The real probability amplitude distribution within the potential barrier for a zero transmission as given above found by the linearization
perturbation on k, versus the numerical (num) approach and the direct perturbation on the Schroedinger equation for W (per) results

u Wnum W Wper

0.00 1.00 1.00 1.00
0.75 0.61 0.61 0.60
1.50 0.33 0.32 0.32
2.25 0.16 0.16 0.14
3.00 0.08 0.08 0.06
3.75 0.04 0.04 0.01
4.50 0.02 0.02 0.00
5.25 0.01 0.01 0.00
6.00 0.00 0.00 0.00
6.75 0.00 0.00 0.00
7.50 0.00 0.00 0.00
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in the vertical, and in general to the one-dimensional diffusion problem. One of the resulting ordinary differ-
ential equations was a second order one with a variable coefficient and the other one was the derivative of that.
We have found that if we defined the optical path in terms of u, as defined above, the ordinary differential
equation for Z came out in its normal form (Eq. (17)). This form when factorized, led to Eqs. (19), (26)
and (27). Instead if we had tried to define the new optical path by dv ¼ 3bds, we would have had a new equa-
tion Y 00 � ða=3bÞY ¼ 0, in terms of v instead of Eq. (18) which then is in terms of u. But in this case as -0 would
go to unity, as it is so at the visible wavelengths, the second term would go to infinity. This means either Y00

must go to infinity or Y must go to zero, or both; none of which is useful as a solution.
In obtaining the two coupled equations from the basic radiative transfer equation, Eq. (7), we have tried a

separation of variables like method, and obtained a solution as the multiple of a part that depends on the opti-
cal path only, ZðsÞ; and the rest depending on the averaged cosine of the zenith angle (�1=

ffiffiffi
3
p

), which repre-
sents the angular dependency as a function of the optical path and the angle. Since we are dealing with only
two streams, Mðl; sÞ can only be expanded into two terms as in the original delta-Eddington method, except
with an optical path dependent second term, aðsÞ (Eq. (9)). There on, we again diverged from the original
approach and obtain two variables, ZðsÞ and mðsÞ, by the application of a two point Gauss–Legendre quad-
rature in a parallel development to non-Eddington two-stream approximations. Upon converting the two cou-
pled first order ordinary differential equations into two decoupled ordinary differential equations we sought
for their solutions. But we mainly chose to work on the homogenous (sourceless) part, since the particular
solution could be constructed through some known methods such as an integrating factor method, variation
of parameters method, or integration of the Wronskian method (Eq. (41)) [23].

The third term in the right-hand side of Eq. (7), the source term in the visible wavelengths, is analytical
when, -0, g, be are given analytically. In some cases the source term can be given as an approximate analytical
expression, for example in the long wavelengths BðuÞ ¼ Bð0Þ þ u½Bðu�Þ � Bð0Þ�=½u� � 0� for a cloud layer,
where u* is the maximum value of u [45]. When the source integrals are complicated, we can approximate them
analytically through a suitable Gauss–Legendre quadrature. The Gauss–Legendre approximations can be
used in computing kðuÞ if needed.

Eqs. (18) and (28) are the two equivalent homogenous equations, even though they are obtained through
different methods. Eq. (18) was found through redefining the dependent variable and factoring out the new
equations while Eq. (28) is found directly from the original pair of the first order coupled ordinary differential
equations. However Eq. (28) is a Riccati type and its any two solutions, say m1 and m2, will lead to the solu-
tions of these two first order equations; one of which is ZðuÞ ¼ bC1 exp½

R u
0

m1ðmÞdm�þ bC2 exp½�
R u

0
m2ðmÞ=dm�. At

first glance it is not obvious that this equation and Eq. (21) that was obtained through factorization are iden-
tical, albeit they have the different constants of integration. However as explained in obtaining Eqs. (30) and
(33), this identity emerged out of the fact that, any two solutions of m2 ¼ c2 � m0 can be recombined to obtain
2k ¼ m1 � m2 and 2j ¼ m1 þ m2 ¼ �k0=k (or equivalently in terms of dk and dj). These new functions convert
Eq. (30) into Eq. (42), whose special form is a Liouville–Green solution, Eq. (21). Since earlier we established
before Eq. (40), that 2k ¼ 2dk þ c, when we chose a very small dk, i.e., dk 	 0 to start with in the calculation of
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k, we obtained Eq. (23). This establishes Liouville–Green also as a special case of the Picard iterative
approach, though in the construction of its solution there is no need for any iteration. At some points in
the derivations, we had diverged from the original approaches, but at the end we got the same results while
demonstrating that alternative routes were also feasible.

In attacking the cloud radiation problems, the Liouville–Green solution should be the first choice and it
should be exploited as far as it can go. Beyond its range of applicability, such as at turning points, we need
a working method and we developed four approaches in Eqs. (33)–(40). This method involves the calculation
of new functions kðuÞ or dkðuÞ from the most obvious any two solutions of Eq. (28). When these solutions are
not exactly known, we start with the best estimates, and continue through Picard iterative approach. Luckily,
in the problems of cloud radiation, it seems as if the first one or two iterations would suffice. The Picard iter-
ative method has been successfully used before in atmospheric radiative transfer problems [29,30,46], albeit in
different approaches than ours.

We hypothesized some example clouds whose optical properties would severely change from top to base,
and yet we have found that for the water cloud case the Liouville–Green approximation would work satisfac-
torily. In other cases, where the cloud properties would change even more severely than we presented here,
then our four methods involving kðuÞ or dkðuÞ should be employed. Especially in the turning point problems,
the Liouville–Green approximation definitely will not be applicable and our turning point method involving
kðuÞ will successfully work. Though not reported here, we have tested our turning point approximation for
negative and imaginary c2s and found that it works satisfactorily on both sides of the turning point (negative
and positive u) as well. As we have demonstrated in the 0.55 lm cirrus transition example, even the zeroth
iteration gave satisfactory results. In computations of kðuÞ, care should be taken not to let kðuÞ to go or pass
through zero (kðuÞ ¼ 0), if not, Eq. (42) would diverge. Since the Riccati equation has theoretically infinite
number of solutions, some of which would be suitable for our problem, we can always choose the ones that
do not pass through kðuÞ ¼ 0. In doing this we may need to experiment with the arbitrary initial choices of
kðuÞ; or dkðuÞ if we are dealing with a c nearly constant problem. How much nearly constant c should be
depends on how many iterations we will have to do until a satisfactory solution is obtained.

In some problems we may improve the solution by using the Liouville–Green method more than once
(stopping when the Schwartzian derivative is large), balancing the extra work needed and the accuracy
required. In this study, we have not been able to present a one piece compact formula to cover all ranges. Thus
beyond the range of applicability of the Liouville–Green solution, we may need to patch an kðuÞ or dkðuÞ solu-
tion to it. This will be done by matching the fluxes and their first derivatives at the patch points (or surfaces for
the clouds).

In the cloud transition examples above, we have compared the analytical results with those of a numerical
scheme. If some specific c2ðuÞ happens to be given in a polynomial form, the solution to the Riccati equation
may have a polynomial form if it satisfies some certain conditions [28]. This may not be the case in general,
and we would have to solve it step by step, through a series expansion, perturbation, or iterative integration.
In choosing Picard iterative integration instead of a series method, we get an advantage of convergence for
optical paths that are not too large (if large we need to subdivide the range). If they are too large then we
can divide the domain into manageable parts. As we have showed that the abrupt changes in c (high c 0) within
a small portion of the domain does not affect the solution Z much; but it would, if we chose to work with a
series expansion of c 0 and Z. Actually Eq. (18) implies an iteration of the type: Ziþ1ðuÞ ¼ Zið0Þ þ Z 0ið0ÞuþR u

0
dv
R v

0
c2ðwÞZiðwÞdw, from which we clearly see that the solution depends on the double integral of a term

containing c2, and not on c 0. Similarly for a c nearly constant problem, m1;0ðuÞ ’ cð0Þ þ
R
½c2ðvÞ � c2ð0Þ�dv

expression shows that solution m depends on an integral of the c2 term. In either case, the solution does
not feel the high values of c 0, unless it occurs for a considerable part of the domain and eventually steeply
raises the value of c. The Picard iterative method was noted to be insensitive to vertical inhomogeneities
[29]. The prime advantage of the Picard iterative approach over the series solution of the Riccati equation
is that we do not have to expand c2ðuÞ into Taylor series where at some point u, it may diverge (becomes sin-
gular and goes out of the Liouville–Green range). The iterative integration on the other hand overlooks iso-
lated singularities.

In calculation of I1ðuÞ, some errors are inevitable since we evaluate it as a derivative of I0ðuÞ, which is
approximate itself. If we had only one second order ordinary differential equation to solve, ours and the Liou-
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ville–Green approximations would perform much better. In general, all the methods presented in this paper
are applicable to any second order ordinary differential equation. As a side benefit, these approximate analyt-
ical methods can be used reformulating the numerical approaches and help them to converge faster and more
accurately. For example one might specifically work around these approximations and compute the numerical
solution as a deviation term from those analytical approximations.

For very thick layers the whole solution is dominated by that term in the fluxes that contains the negative
exponential. This fact can be used establishing the near zero values for the upward and downward fluxes
beyond a certain large optical path even before the computation. In effect the problem can be divided into
two regions: one reasonably thick layer as measured from the entrance side of the light and the rest as an opti-
cally very thick part. In the optically very thick part the fluxes are practically zero and it may arithmetically
(without coupling, as if it is part of the full solution) added to the solution from the other region in construct-
ing the total cloud layer solution. This way one avoids dealing with optical paths that are too large for the
approximate solution. In fact, for the water cloud example at 2 lm wavelength, we have observed the appli-
cability of this approach. We have increased the optical path beyond 400 m, and found no change on the fluxes
of the top part no matter how far the optical path increased, while the fluxes in the lower part remained zero.

Though we have reported rounded off figures in the examples given above, more precise figures were used in
the calculations as it had to be. However considering that the delta-Eddington method is known to produce
unphysical values sometimes, especially negative transmissivities for optically thin layers; and since we were
demonstrating hypothetical cases of cloud transitions, our rounded off figures do fit the limits of accuracy
under these conditions. Additionally, we assumed linearly or quadratically changing profiles for all optical
parameters involved. This too should not detract from the generality of the methods: there is nothing in
the methods that depends inherently on any type of functional form. But for a very complex profile it would
be recommendable to subdivide the domain, rather than iterating or perturbing for a convergence in kðuÞ or
dkðuÞ at once.

A better and more practical method of representing atmospheric cloud radiation processes (absorption-
scattering-emission) through more realistic media (inhomogeneous optical paths), would help advance our
understanding regarding how clouds affect the climate change scenarios. Recently more interest is being direc-
ted towards the interiors of the clouds: ABC (atmospheric brown clouds) and UAV (unmanned aerial vehicle)
[47] observations and cloud–aerosol interactions are being investigated [48,49]. Both modelers and data ana-
lyzers of cloud interiors will need fast and accurate enough schemes. In addition, these radiative transfer meth-
ods can also be utilized in non-invasive medical engineering research. In this paper, we offered some
complimentary, analytical, and practical approaches to the inhomogeneous optical depth radiative transfer
problem. We tested the methods developed to the limits of current knowledge on the clouds and found them
satisfactory. In future as more cloud data becomes available, we aim to extend our modeling capability to
include more complicated cases, involving other cloud properties, such as shape, size distribution and extent
of the cloud groups statistically. We feel that some part of the answer to problems such as anomalous short
wave cloud absorption might lie in the interior inhomogeneity [8,50]. The better modeling and data interpre-
tation then would help us to understand [51,52] and better parameterize the cloud radiative effects in the cli-
mate change prediction models [53–55].

It is our hope that, in the near future, as the non-invasive techniques that utilize light absorption-scattering-
transmission on in vitro as well as in vivo tissues become more widespread, and as the tissue optical charac-
terizations advance more, our analytical approximations would be of some guidance in developing better
numerical and analytical methods.
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