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In this paper, the nonstationary signals have been recovered using the skeleton along the wavelet
ridges in the noisy case and the attractors of the cleaned signals are reconstructed in the phase
space by time-delay embedding. In order to verify the signal recovery and reconstruction proce-
dure, the similarity measure Hausdorff distance between cleaned, noise-free original attractors
have been calculated. The computations show that the procedure reduces the noise level accept-
ably and the reconstructed attractors are more similar to the original attractors.
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1.

Since the time-domain methods and frequency
domain methods alone, do not provide adequate
information about the nonlinear dynamical sys-
tems, the time-frequency domain methods have
been attracting many researchers. The wavelets
[Wong & Chen, 2001; Ozkurt & Savaci, 2001;
Chandre et al., 2003], the Wigner—Ville distribu-
tion [Chen, 1994; Lima & Cohen, 1998; Galleani
et al., 1999] have been used to analyze chaotic sys-
tems. The wavelet transform describes the time-
variation of the spectral content of the signal with
its multiresolution property. Therefore, the fre-
quency components of the nonstationary signals
may be resolved more accurately with wavelet anal-
ysis. The time-frequency domain representation of
a single trajectory contains relevant information
about the phase space structures while the asymp-
totical quantities such as Lyapunov exponents,
fractal dimension and entropy only reflect the
asymptotical behavior [Chandre et al., 2003].
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However, it is difficult to interpret the wavelet
analysis results especially for complex signals. In
this case, the information about the signal can be
extracted along the ridges of the wavelet transform
and the signal can be recovered by using wavelet
transform coefficients along the ridges which are
called skeleton of the wavelet transform [Delprat
et al., 1992]. The wavelet ridge extraction meth-
ods such as stationary phase method and the sim-
ple method have been introduced in [Delprat et al.,
1992] but they do not yield the actual ridges for
contaminated signals accurately. The method for
extracting the ridges of the contaminated signals
developed by [Carmona et al., 1997, 1999] is quite
accurate but it is not efficient in computational
cost. Therefore, the new ridge detection method
based on the singular value decomposition (SVD)
has been proposed and the wavelet ridges of the
contaminated signals have been determined by the
SVD-based ridge determination method in [Ozkurt
& Savaci, 2005].
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Fig. 1. The block diagram of the reconstruction of the nonstationary signal along the wavelet ridges.

In the present paper, the attractors of the
chaotic signals have been reconstructed in the phase
space by using the time-delay embedding of the sig-
nal obtained from wavelet ridges. In order to deter-
mine the accuracy of the attractor reconstruction
and the noise reduction procedure, the Hausdorff
distances between the noise-free original attrac-
tor and these attractors have been calculated. The
wavelet ridges of the noisy chaotic signals have
been calculated by the ridge determination algo-
rithm proposed in [Ozkurt & Savaci, 2005]. It has
been shown that the Hausdorff distance between the
original attractor of the noise-free signal and the
attractor of the cleaned signal is smaller than
the Hausdorff distance between the noise-free origi-
nal attractor and the attractor of the contaminated
signal.

In the second section of this paper, the prop-
erties of the continuous wavelet transform and the
wavelet ridges have been briefly given and the deter-
mination of the wavelet ridges for the noisy signals
[Ozkurt & Savaci, 2005] is introduced. In Sec. 3,
the recovery of the nonstationary signals along the
wavelet ridges, the phase space reconstruction of
the recovered signal and the test for accuracy of the
approximation using Hausdorff distance have been
given as the main contribution of this paper. The
proposed method has been summarized in Fig. 1
in which the pink and the yellow parts have already
been discussed in [Ozkurt & Savaci, 2005]. In Sec. 4,
this new procedure has been applied to the spiral
attractor and the double-scroll attractor of Chua’s
circuit in order to verify the proposed method.

2. Determination of Wavelet Ridges
and Noise Reduction

Before explaining the determination of the
wavelet ridges and noise reduction procedure, some

necessary definitions about the wavelet transform
and the wavelet ridges will be given in the sequel.

2.1. Wawvelet transform and

wavelet ridges

The integral wavelet transform of a signal s(t) is
defined as

Wia,biw) 2 [
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where W(-) is called as “mother wavelet” satisfy-
ing the admissibility condition [Mallat, 1999], and
* denotes the complex conjugate, and a and b
are the dilation (scale) and translation coefficients,
respectively. The scaled and translated wavelet is

obtained as
1 t—>b
1y (
a a

The local time-frequency energy density which
is called scalogram Ps(a,b; V) has been defined in
the wavelet domain as in [Mallat, 1999]
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The continuous wavelet transform conserves the

total energy of the signal Ep according to the

Plancherel’s formula as in [Delprat et al., 1992]
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where ¢, is the admissibility constant.

For the numerical computations, the discrete
samples of the continuous wavelet transform have
been considered and the scaled and translated

(4)
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wavelets have been defined at the dyadic grid as

Upn(t) = aam/Q‘I/(aamt —nby) m,neZ (5)

where ag,by € R are the dilation and translation
coefficients, respectively.

If the wavelets defined in Eq. (5) are chosen so
as to constitute a Riesz basis for every s(t) € L?(R),
by considering only finite number of basis vectors
for practical purposes, the total energy in Eq. (4)
can be approximately given in [Ozkurt & Savaci,
2005] as

ET £ ﬁ Z men (6)

where k £ bglnag and the entries of the scalogram
matrix P = [pmn]amxn are defined as

Pmn é ‘Cmn‘Q (7)
which are the local time-frequency domain energy
densities evaluated at the discrete dilations a,,
and translations b,. The truncation of the infinite
dimensional scalogram matrix in time has been car-
ried out by observing the attractor of the chaotic
signal in the phase space with sufficient number of
the samples.

The energy distribution of a wide class of sig-
nals at a particular time is concentrated at more
than one frequency in the time-frequency plane
along the wavelet ridges. The ridges are the curves
at the time-frequency plane along which the energy
is locally maximum. The relevant information about
the signal can be obtained by extracting the wavelet
transform coefficients along the ridges, which are
called the skeleton of the wavelet transform.

The multicomponent signal with the instan-
taneous amplitudes A;(tf) and the instantaneous
phases ¢;(t) can be described by

L
s(t) = 3 A(t)ern® (8)
=1

where L is the number of components, then the
wavelet transform can be written as in [Delprat
et al., 1992; Carmona et al., 1999

L
Wi (a, b W) — % S A(0)T 4O G+ (ag) (b)) + 1 (a,b)
=1

where  7(a,b) ~ O(|A]],|¢{]) (9)

where the prime denotes the derivative. Therefore, if
the Fourier transform of the mother wavelet “¥(w)”

is localized near a certain frequency w = wg, the
scalogram is localized around L curves

gty =2 =1, L
d =)= =LL ()

which are called the ridges of the wavelet transform.

2.2. Noise reduction by SVD based
ridge determination

When the signal is noise-free, the wavelet ridges can
be determined simply by calculating the local max-
ima. However, in the noisy case some additional
operations are required. In case of additive white
Gaussian noise, the wavelet coefficients related with
the noise are distributed all over the time-frequency
plane and added to the wavelet coefficients related
to the original signal, due to the linearity of the
wavelet transform. A wavelet ridge determination
algorithm based on SVD for noisy signal has been
proposed in [Ozkurt & Savaci, 2005]. In this
method, the scalogram of the noisy signal is
obtained and SVD is applied to the scalogram
matrix. Then, the approximate scalogram is
obtained using only the dominant singular values
of the scalogram. Finally, the ridges are determined
by finding the local maxima of the approximated
scalogram for each time instant. In the case of
mono-component signal, since the signal has sin-
gle instantaneous frequency at a given time instant,
a single ridge (the main ridge) will be sufficient to
locate the energy concentrations. SVD-based ridge
determination and noise reduction procedure have
been illustrated in the yellow part of the block dia-
gram in Fig. 1.

3. Signal Recovery, Phase Space
Reconstruction and Verification

After the wavelet ridges of the noisy signal have
been determined, the signal can be recovered from
the wavelet transform coefficients and the attrac-
tor of the chaotic signal is reconstructed in the
phase space by time-delay embedding [Abarbanel,
1996]. The reconstructed attractor and the noise-
free attractor are compared in the phase space in
terms of Hausdorff distance.

3.1.

Since the skeleton of the wavelet transform contains
the relevant information about the signal, the sig-
nal can be recovered using the wavelet coefficients
along the ridge. The real part of the signal s(t)

Signal recovery
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given in Eq. (8) can be approximately reconstructed
from the skeleton of the transform using the for-
mula Eq. (9) by neglecting the correction term
r(a,b) and using the normalized mother wavelet
U (a' ()] (b)) = U*(wp) = 1 as

L
5(b) = QRe{Z We(d'(b), b; \1:)} (11)
=1

where L is the number of ridges. The signal recov-
ery using the transform skeleton is a simple scheme
and it produces good approximations. But all the
points along the ridge must be included in the recov-
ery [Carmona et al., 1999]. The signal recovery has
been shown by the blue block in Fig. 1.

3.2. Phase space embedding

The phase space can be reconstructed by time-delay
embedding from the approximate discrete-time
scalar signal according to Taken’s Embedding the-
orem [Abarbanel, 1996; Kantz & Schreiber, 2002]
by properly choosing the embedding dimension and
embedding delay.

Let a vector z € R? be reconstructed from the
scalar observations “s(k)” as

2(k) = [s(k — T)s(k — 2T) - -~ s(k — dT)]  (12)

where d is the embedding dimension and T is the
embedding delay. By embedding, the reconstructed
attractor in the phase space is plotted using the
vector z(k) such that there is one-to-one map-
ping between the reconstructed attractor and the
original attractor which preserves the information
about the derivatives of the original flow [Kantz &
Schreiber, 2002; Kostelisch & Schreiber, 1993].

In the reconstruction of the embedded vector,
the first minimum of average mutual information is
chosen as the time delay and the embedding dimen-
sion is selected using “False Nearest Neighborhood
Method”. The Nonlinear Dynamics Toolbox [Reiss]
is used for the selection of the embedding dimen-
sion and the embedding delay. The purple block in
Fig. 1 represents the phase space embedding of the
recovered signal.

3.3.

The approximation can be accepted as accurate if
the distance between the attractors of the origi-
nal signal and the reconstructed signal is less than
the distance between the attractors of the original

Verification

signal and the contaminated signal as
h(Ao, Ar) < h(Ao, An) (13)

where Ap, Ar and Ay are the attractors of the
original, reconstructed and contaminated signals,
respectively, and h(A,B) is the Hausdorff distance
which can be classified as the similarity measure
[Veltkamp, 2001].

Definition 3.1. Let (X,d) be a complete metric
space, and H(X) denote the space whose points are
the compact subsets of X, other than the empty
set. Let A, B € H(X), then the Hausdorff distance
between two points A and B is defined by

h(A,B) £ max(u(A,B), u(B,A))  (14)

where p(A,B) = maxge A(minyep(d(a,b))) and
d(a,b) is the usual Euclidian distance between
points @ € A and b € B [Barnsley, 1993].

Remark. Although the signals in the time domain
are quite different due to a shift in time and/or
mean value, and/or a change in frequency, the
approximation may be considered as successful if
the original and reconstructed attractors are simi-
lar in the phase space. While the shift in time or
a change in frequency cannot be observed in the
phase space, the shift in the mean value has been
seen as the translation of the attractor in the phase
space. Therefore, instead of the usual Hausdorff dis-
tance, the Hausdorff distance under translations of
the objects, Mrp(-,-) which is defined below, has
been selected as the similarity measure.

Definition 3.2. The minimum Hausdorff distance
between all possible relative positions of the two
sets is defined as
Mr(A,B) = min h(A,tB) (15)
te

where T' is the group of translations [Huttenlocher
et al., 1993].

4. Applications

The recovery of nonstationary signals from the con-
taminated measurements using the ridge detection
algorithm based on the singular value decomposi-
tion method and the phase space reconstruction is
accomplished for the spiral attractor and double-
scroll attractors of the Chua’s circuit.

In the applications, the wavelet transform is
demonstrated by choosing the following standard
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complex Morlet mother wavelet

— L jwot ,—t2/2
U(t) Wir e?“e (16)
where wq defines the center frequency of the wavelet.
The dynamics of the Chua’s circuit is described
by the following differential set of equations

& =a(y—h(z),

y=z—y+z, (17)

z=—0y.
where o« and [ are the parameters defined by
the circuit components and the piecewise linear
characteristics are given as h(x) = (m1 — my)
(|l + 1| — |z —1|) where m; = —=1/7, my = —2/7
[Chua, 1992].

4.1.

The wavelet transform of the state variable xz(t)
with additional Gaussian white noise of variance
02 = 0.2 is numerically computed for the spiral
attractor which is observed for a = 8.50000425 and
(G =14.28 in Chua’s circuit. The number of scales
is M = 120 and the time instants N = 500. The
scalogram of the contaminated state variable xz(t)
of the spiral attractor is shown in Fig. 2(a).

The approximate scalogram P is obtained by
reducing the noise in selecting the singular values
of which the energy contribution is greater than
10% of the total energy. Then the wavelet ridges
are determined for the spiral attractor. The wavelet
ridges are shown in Fig. 2(b).

The signal z(t) is recovered by using Eq. (11)
along the determined ridges and the phase space

Spiral attractor
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is reconstructed using Taken’s embedding theorem
[Abarbanel, 1996]. The 2D projection of original,
contaminated and the reconstructed attractors in
the x — y plane has been illustrated in Fig. 3.

The Hausdorff distance between the set of
the points in the numerically computed noise-
free and reconstructed spiral attractors has been
calculated for scanning the phase space for all
possible translations of the reconstructed attrac-
tor. The minimum distance in Eq. (15) has been
obtained as Mr (Ao, Ar) = 0.2265. The Hausdorff
distance between the original attractor and the
contaminated attractor Ay has been calculated as
M7 (Ao, Ax) = 1.0364.

4.2. Double-scroll attractor

The double-scroll attractor is observed for a = 9
and f = 14.28 in Chua’s circuit. The normalized
scalogram is obtained for the state variable z(t)
with additional Gaussian white noise with vari-
ance 02 =0.2. The normalized scalogram matrix
is calculated for M = 120 scales and N = 1000
time instants. The scalogram matrix is shown in
Fig. 4(a). _

The approximate scalogram P is obtained by
choosing the dominant singular values which have
energy contribution greater than 10%. Then the
wavelet ridges which are shown in Fig. 4(b), are
calculated and the phase space reconstructed. The
embedding dimension d = 3 and the time delay
T = 775 have been selected by nonlinear dynamics
Toolbox [Reiss]. The projection of the attractors to
x — y plane is shown in Fig. 5.
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(a) Scalogram and (b) the ridges of the spiral attractor.
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(b) contaminated, (c) reconstructed signals for spiral attractor

)

The attractors of (a) original

Fig. 3.

calculated as

The minimum Hausdorfl distance between the

free attractor and the

reconstructed attractor, and the distance between
the noise-free and contaminated attractor have been

numerically computed noise

Mr(Ap, Ag) = 0.3862 < My (Ao, Ax) = 0.8366.
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Fig. 4. (a) Scalogram, and (b) the ridges of the double-scroll attractor.

Fig. 5. The attractors of (a) original, (b) contaminated, (c) cleaned signals for double-scroll attractor, respectively.
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5. Conclusions

The reconstruction of the attractors of the Chua’s
circuit from the contaminated attractors has been
accomplished using wavelet domain characteris-
tics. The signal has been analyzed in the wavelet
domain and the ridges of the transform have been
obtained using SVD based ridge determination
method. Then, the signal is recovered from the
wavelet domain coefficients along the ridges of the
state variable x(t), and the attractors embedded in
the phase space. Finally, the minimum Hausdorff
distance between the original and reconstructed
attractors and the distance between the original
and noisy attractors have been calculated. The
computations show that the Hausdorff distances
have reduced 78% for spiral attractor and 54% for
double-scroll attractor.
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