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Abstract. We describe a replication-based protocol that uses group
communication for fault tolerance in the Computational Grid. The Grid
is partitioned into a number of clusters and each cluster has a designated
coordinator that manages the states of the replicas within its cluster.
The coordinators belong to a process group and the proposed protocol
ensures the correct sequence of message deliveries to the replicas by the
coordinators. Any failing node of the Grid is replaced by an active replica
to provide correct continuation of the operation of the application. We
show the theoretical framework along with illustrations of the replication
protocol and its implementation results and analyze its performance and
scalability.

1 Introduction

Computational Grids consist of heterogenous computational resources, possibly
with different users, and provide them with remote access to these resources [1],
[2]. The Grid has attracted researchers as an alternative to supercomputers for
high performance computing. One important advantage of Grid computing is the
provision of resources to the users that are locally unavailable. Since there are
multitude of resources in a Grid environment, convenient utilization of resources
in a Grid provides improved overall system performance and decreased turn-
around times for user jobs. Users of the Grid submit jobs at random times
with significant turnaround times and failure of a node of the Grid would halt
the execution of the application necessiating the need for fault tolerance in the
Grid. Furthermore, the difficulty and the cost of recovering from faults in the
Grid environment may be higher than the normal applications. Fault tolerance
schemes in the Grid environment can be classified as the application specific
fault tolerance based on middleware fault detection; task and data replication
at middleware and transport levels; WAN, MAN and LAN resilience schemes at
Internet/Network Level [3].

In this study, we propose a model and a protocol to perform task replication
at middleware level for fault tolerance in the Grid using the process groups. A
process group is a logical name for a set of computing elements whose member-
ship may change with time. Replication using process groups for fault tolerance
has attracted many researchers for many years [8][9][T0][IT]. There are several
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systems which provide fault tolerant group communication such as Transis [7],
Horus [16] and Totem [6]. Moshe [14] extends these services to a WAN. The com-
mon goal of these projects is to provide a reliable multicast communication for
process groups. Total Order Multicast is the basic paradigm to provide message
ordering in fault tolerant systems that use active replication [I5]. It has been
studied extensively and many protocols have been proposed. A detailed survey
is given in [12].

An important component of the replication mechanism is the Total Order
Multicast (TOM) protocol which ensures that all of the replicas receive the mul-
ticast messages destined to the replica group in the same order so that all of the
replica finite state machines are in identical states. To achieve TOM in the Grid,
we assume that the Grid is partitioned into clusters by a suitable algorithm or
manually. Each cluster is controlled by a cluster head called the coordinator.
These coordinators are the cluster heads and interface points for the ordinary
nodes to the network. They perform TOM on behalf of the ordinary nodes they
represent. The rest of the paper is organized as follows. Section 2 provides the
background on group communication and TOM. In Section 3, the proposed pro-
tocol including the coordinator and the node algorithms is described. In Section
4, the operation of the protocol is illustrated and Section 5 provides the analy-
sis of the algorithms. The implementation results obtained from the tests are
given in Section 6 and Section 7 contains the concluding remarks along with
discussions.

2 Background

2.1 Group Membership

Replication is a common approach to achieve fault tolerance in a distributed
system such that replicas provide redundancy in case of a failure of a server.
Two main classes of replication are the active and passive replications. In passive
replication, client deals only with one replica and the primary sends messages
to the secondaries to update their views. A client sends a message to all of the
replicas in active replication and the states of the replicas are maintained as
identical, in general, using finite state machines. To ensure consistency of the
replicas, a group communication primitive called the Total Order Multicast may
be used which guarantees that the requests by the clients are received by all
replicas in the same order.

A group membership service manages a group of processes and is based on
the view which is the list of processes belonging to a group. View change should
be notified to all members. There are three basic operations needed to manage
group membership effectively; join, leave and exclude. Join is executed by a
process p and upon acceptance of it, all of the processes update their view. More
importantly, the state of the group needs to be transferred to the new member p.
A process will be removed from a group by exclusion if its crash is detected by
a member of a group and exit is a voluntarily release of a process from a group
by itself. The group management module should also provide the two primitives;



674 K. Erciyes

send multicast to send a message to all members and receive multicast to receive
a message sent by a member of the group. These two primitives can be realised
using various approaches such as reliable broadcast, reliable FIFO broadcast and
total order multicast. Reliable Broadcast of a message in a group ensures that
messages are delivered by all processes or none.

2.2 Total Order Multicast

Total Order Multicast (TOM) ensures that no pair of messages are delivered to
the members of a group in a different order. TOM can be specified in terms of
the following properties :

— Validity : If a correct process broadcasts a message m, then some correct
process in its group will eventually deliver it.

— Uniform Agreement : If a process delivers a message m, then all correct
processes in its group will eventually deliver it.

— Uniform Integrity : Every correct process in the sender’s group delivers m
at most once and only if m was previously broadcast.

— Uniform Total Order : If two correct processes deliver two messages m, and
ma, they do it in the same order.

Atomic broadcast is a special case of total order multicast where a TOM mes-
sage is delivered to all of the group members or none. In other words, Atomic
Broadcast obeys TOM and Reliable Broadcast. Atomic Broadcast or Reliable
TOM protocols can be symmetric or asymmetric depending on whether some
nodes are privileged in the system exist or not. Most of the symmetric protocols
such as Isis [§] impose total order from the casual order relation between the
messages. The static sequencer protocols such as in Amoeba [13] assume a se-
quencer where messages are first transmitted to this sequencer which multicasts
them in order. One disadvantage of the central sequencer type of asymmetric
TOM protocols is the message bottleneck around this component and having a
single point of failure in the system.

3 Replication Protocol

3.1 The Model

We assume that the clusters of the Grid are already formed. For TOM in the
Grid, we propose the architecture shown in Fig. [[l where replicas form clusters
and each cluster is represented by a coordinator. Each replica cluster is a process
group called the replica group and furthermore, coordinators of the clusters form
a single outer group called the coordinator group. Election of a new coordinator
is provided as in [5] if it crashes. Coordinators perform multicast communication
in both groups they belong but their main function is to represent their cluster
replicas in the outer coordinator group.
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Fig. 1. The Replication Model for the Grid

3.2 The TOM Protocol

The TOM protocol proposed for the hierarhical groups use the Static Token
Algorithm (STA) which employs similar data structures for the Token as in
Suzuki-Kasami [17] algorithm for distributed mutual exclusion. A process that
acquires the system wide unique token has the right to send a TOM message.
The token data structure is as follows :

— Token Sequence Number (TSN) : integer;
— Token Request Queue (TRQ) : Queue of nodes;

Also every node has a Local Sequence Number (LSN) which shows the last se-
quence number of any TOM Msg that node has received. Any node that requires
to send a TOM Msg, sends a request (Node Req) to its coordinator as shown in
the state machine diagram of Fig. 2l The request by the node is converted to a
Tok Req by the coordinator which is circulated in the ring. The coordinator sets
its state to Wait Token (WTTK) and changes to Hold Token (HLTK) when it
receives the token and then forwards it to the requesting node. Once a node re-
ceives the token from the coordinator, it incerements TSN and stamps the TOM
message with this TSN and sends it to the coordinator. Since there is a unique
Token with a unique TSN, any TOM message from any node will have a unique
sequence number which provides the total ordering of the messages. The FSM of
the coordinator also depicts the sequence for atomicity. When the coordinator
receives the TOM Msg from the node, it broadcasts this to the ring and upon
reply, it sends TOM Chk message to check the acknowledgements. If all nodes
in the group have received the TOM msg, the operation is succesful and a final
TOM Set message is sent to all coordinators to allow the final delivery to the
nodes. Any node receiving the TOM Set message checks whether LSN+1=TSN,
that is, whether this message has arrived in sequence. If so, TOM Msg is deliv-
ered to the application, otherwise it is delayed until prior messages arrive. At
any state, a coordinator may receive a remote TOM Msg which is not shown in
Fig[2 for simplicity. In this case, the coordinator braodcasts the TOM msg in its
cluster and also receives replies from each node.
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Fig. 2. The Coordinator for Static Token Algorithm

Illustration of STA

Fig. Bl shows an example scenario for STA. Initially, Token is held in the replica
cluster 2 by coordinator C5. For simplicity, it is assumed that coordinators are
directly connected to the nodes and to each other. The following is the sequence
of events :

1.
2.

o

10.

Node n13 in cluster 1 requests Token from its coordinator Cy by Node Req.
C1, does not have the Token, hence broadcasts this request by Ri3 in the
coordinator group.

C5 has the token which is not being used and has TSN as 0 and its queue
is empty. C5 sets the destination of the token as n13 and sends this token to
C.

C1 receives the Token and sends it to ni3 which is received by it. These first
four steps are depicted in Fig. Bl(a).

While nq3 is holding the Token, nodes n2; and nss in clusters 2 and 3 make
requests consecutively to their coordinators for the Token which in turn send
requests Ro1 and Rgs tothe coordinator group.

R51 and then R3o reach Cp consecutively. C7 queues these requests.

When n3 receives the token, it increments TSN of the Token to 1 and sends
TOM message with this sequence number to C; along with the Token. Steps
5-6-7 are depicted in Fig. Bl(b).

C1 receives the Token and the TOM message. It broadcasts TOM on the
coordinator group. C1 also checks its local Coordinator Token Request Queue
(CRQ). It appends the nodes in its local queue to the Token Queue, removes
the first node from the TRQ (n31) and sends the token to Cs.

C5 and Cb, pass an acknowledgement message (TOM Ack) to the source.
Steps 8 and 9 are depicted in Fig. Bl(c).

If C4 receives (TOM Ack) acknowledgements from every node in the group,
the TOM is succesful. In this case, C issues a TOM Set message to finally
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initate the actual delivery of the TOM message to the application. The
replica node however, checks its LSN with TSN to conclude TOM delivery
as described above.

11. When C receives the Token from C7, it proceeds similar to 7-8-9-10 above
and when no; finishes with the Token, C5 sends it to C5. Steps 10 and 11
are depicted in Fig. Bl(d). Note that this is performed in parallel with the
TOM M sg delivery of nis.

CLUSTER GROUP

TRQ

Token ®) "2

CLUSTER GROUP n

TOM_Msg O n

33
TOM_Reply TOM_Msgs &
Token ACKs
TOM_Chk O
TOM_Msgs 5./ n
& N[ 2| oken @ *
ACKs T "2<1) ©
o | [5] |~

© —» MULTICAST MESSAGE (@)

e UNICAST MESSAGE

Fig. 3. Operation of the STA Algorithm

5 Analysis of STA

Assuming k, m, n and d are upperbounds on the number of clusters, nodes in a
cluster in the network, nodes in the ring of coordinators and the diameter of a
cluster respectively, the sending and atomically reception of the TOM message
by all nodes in the group requires the following steps :

1. Request by the node : O(d)

2. Circulation of Tok Req and reception of token : O(k) as this is All to All
Communication in a unidirectional ring or again O(k) this is k unicast mes-
sages to implement a multicast message in case of a different architecture.

3. Sending of Token to the Node : O(d)
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Sending of TOM message by the node to the coordinator : O(d)
Circulation of TOM message by the coordinator : O(k)
Local broadcast of TOM by each coordinator in its cluster O(m)
Collection of the acknowledgements from the nodes by each coordinator :
O(m)

8. Circulation of acknowledgement message (TOM Ack) by the coordinator :

O(k)

9. Set operation by the source cordinator for atomicity : O(k)

10. Set operation by the coordinators in local clusters for atomicity : O(m)

oo

Theorem 1. The total time per TOM using STA Algorithm is Oronr(m)

Proof. The total time required for TOM delivery is the sum of all of the 9 steps
above which can be evaluated as follows

Oromt =4k +3m + 3d = OTOMT(m) (1)
assuming k=m and d is negligible.

Theorem 2. The total number of messages per TOM using STA Algorithm is
Oromm (m?)

Proof. The total number of messages required for TOM delivery can be found
similarly by calculating the sum of messages in transit at each step of operation
above except for local broadcast operations (steps 6,7 and 10) where the number
of messages sent are k*m.

Oromm = 4k + 3km + 3d = Oronm (m?) (2)

assuming k=m and d is negligible.

Corollary 1. For a network of N nodes, the total time per TOM using STA
Algorithm is Oronr (V' N) and the total number of messages required per TOM
using STA is Oropr(N).

Proof. Tt was shown by theorems 2 and 3 that Oroar(m) and Oronrar (m?).
Since total number of nodes in a network N is equal to the total number of
nodes in the model network which is km=m? assuming k=m, OTOMT(\/N) and
Oromr(N).

An algorithm like Suzuki-Kasami [I7] would require 0 or N messages (N — 1 for
requests and 1 for Token). By Corollary 1, we can conclude that STA provides
and order of magnitude decrease in TOM execution time including obtaining the
Token with respect to an algorithm like Suzuki-Kasami.

5.1 Verification of Total Order Multicast Properties by STA

The TOM properties can be verified for STA operation follows :
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Validity : When a correct process broadcasts a message msg, then all of
the correct TO Node processes will deliver this message as directed by their
cluster coordinators in TOM Set message.

— Uniform Agreement : The delivery of the messages to the application by
all of the TO Node processes occur in the same cycle and the messages are
delivered by all of the correct TO Node processes in the cluster identities of
which are supervised by the local coordinator.

— Uniform Integrity : The messages at a node are delivered at most once by
the TOM Set message issued by the coordinator.

— Uniform Total Order : The messages are delivered in the same order as there

is only one sequence number (TSN) kept at Token and only the holder of the

Token can send a TOM message. Fach node has a local sequence number

(LSN) and will not deliver a message that is larger than its LSN+1 which

means any out of order messages wil be delayed until the TOM Msg with

the correct sequence arrives.

6 Implementation Results Using MPI

We implemented the architecture shown in Fig. [l using the MPI (Message Pass-
ing Interface) [4] over a cluster of 20 processors. The end-to-end run times of the
STA Algorithm for a single request, from the time of the request until the actual
delivery of the TOM message to the application are measured against varying
number of clusters and the size of clusters as shown in Fig. [l

TOM Performance

14c /

@ 120 , + # of processor in each cluster=3
E_ 100 = # of processor in each cluster=4
@ i H «

£ & / ——# of processor in each cluster=5
F o i ——# of processor in each cluster=5

Total Processor Number

Fig. 4. TOM Run Time Results against Cluster Size and Numbers

MPI multicast message facility was used for group communication within a
cluster. As shown in the figure, the run time of STA increases linearly with the
number of clusters and also the count of processors in each cluster. The perfor-
mance of the proposed architecture in terms of the size of the single message
delivered to the application is depicted in Fig. Bl It can be observed that the
delivery times are almost stable with respect to cluster numbers and sizes.
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Fig. 5. Daisy Architecture Run Time Results against Message Size

7 Discussions and Conclusions

We proposed a framework and a protocol with two algorithms to implement
TOM in the Grid to provide fault tolerance by replication to the application.
We showed that the proposed algorithms provide significant gains in the number
of messages and the time to deliver TOM messages theoretically with respect
to a flat architecture without any hierarchies. The preliminary results indicated
that the protocol is scalable in terms of run times and the sizes of the messages
delivered. The coordinators have an important role and they may fail. New co-
ordinators may be elected and any failed node member can be excluded from
the cluster which is an improvement over classical algorithms as they do not
provide recovery for a crashed node in general. The recovery procedures can be
implemented using algorithms as in [5] which is not discussed here. One other
advantage of the proposed model is the pre-processing of the requests of the
nodes by the coordinators are performed independently resulting in improved
performance. We are looking into implementing this protocol in a Grid environ-
ment with larger cluster sizes and counts and measure the performance of the
whole protocol including the clustering algorithm.
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